diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 24 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 2 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 2 | ||||
-rw-r--r-- | src/algebra/formula.spad.pamphlet | 515 | ||||
-rw-r--r-- | src/algebra/tex.spad.pamphlet | 4 | ||||
-rw-r--r-- | src/interp/c-doc.boot | 4 | ||||
-rw-r--r-- | src/interp/category.boot | 6 | ||||
-rw-r--r-- | src/interp/diagnostics.boot | 43 | ||||
-rw-r--r-- | src/interp/i-output.boot | 11 | ||||
-rw-r--r-- | src/interp/macros.lisp | 71 | ||||
-rw-r--r-- | src/interp/setvars.boot | 113 | ||||
-rw-r--r-- | src/interp/setvart.boot | 50 | ||||
-rw-r--r-- | src/interp/spad.lisp | 1 | ||||
-rw-r--r-- | src/interp/sys-globals.boot | 3 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3106 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6308 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 46 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10710 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 22923 |
19 files changed, 21606 insertions, 22336 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 25ec1ab8..8546c455 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,29 @@ 2011-07-04 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/setvars.boot: Remove support for script formula. + * interp/setvart.boot: Likewise. + * interp/diagnostics.boot (sayBrightlyNT1): Move from macros.lisp. + (sayBrightly1): Likewise. + (sayBrightlyNT): Likewise. + (sayBrightly): Likewise. + (sayBrightlyI): Likewise. + (sayMSG): Likewise. + (sayTeX): Likewise. + (sayMSG2File): Likewise. + * interp/i-output.boot (formulaFormat): Remove. + (output): Adjust. + * interp/macros.lisp (sayMSGNT): Remove. + (sayFORTRAN): Likewise. + (sayFORMULA): Likewise. + ($formulaOutputstream): Likewise. + * interp/sys-globals.boot ($formulaOutputstream): Remove. + * interp/spad.lisp ($formulaFormat): Remove. + * algebra/exposed.lsp.pamphlet: Do not expose ScriptFormulaFormat + and ScriptFormulaFormat1. + * algebra/exposed.lsp.pamphlet: Remove. + +2011-07-04 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/int-top.boot (SpadInterpretStream): Remove binding of $erMsgToss, as it is never assigned to. (phIntReportMsgs): Adjust. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 2441b559..f116a4d8 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -569,7 +569,7 @@ SPADFILES= \ ${OUTSRC}/ffnb.spad ${OUTSRC}/ffpoly2.spad ${OUTSRC}/ffpoly.spad \ ${OUTSRC}/ffp.spad ${OUTSRC}/ffx.spad \ ${OUTSRC}/files.spad ${OUTSRC}/float.spad ${OUTSRC}/fmod.spad \ - ${OUTSRC}/fname.spad ${OUTSRC}/fnla.spad ${OUTSRC}/formula.spad \ + ${OUTSRC}/fname.spad ${OUTSRC}/fnla.spad \ ${OUTSRC}/fortcat.spad ${OUTSRC}/fortmac.spad ${OUTSRC}/fortpak.spad \ ${OUTSRC}/fortran.spad ${OUTSRC}/forttyp.spad ${OUTSRC}/fourier.spad \ ${OUTSRC}/fparfrac.spad ${OUTSRC}/fraction.spad ${OUTSRC}/free.spad \ diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index ffc816cf..2b24b303 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -387,8 +387,6 @@ (|RomanNumeral| . ROMAN) (|Ruleset| . RULESET) (|Scope| . SCOPE) - (|ScriptFormulaFormat| . FORMULA) - (|ScriptFormulaFormat1| . FORMULA1) (|Segment| . SEG) (|SegmentAst| . SEGAST) (|SegmentBinding| . SEGBIND) diff --git a/src/algebra/formula.spad.pamphlet b/src/algebra/formula.spad.pamphlet deleted file mode 100644 index 750bf710..00000000 --- a/src/algebra/formula.spad.pamphlet +++ /dev/null @@ -1,515 +0,0 @@ -\documentclass{article} -\usepackage{open-axiom} -\begin{document} -\title{\$SPAD/src/algebra formula.spad} -\author{Robert S. Sutor} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{domain FORMULA ScriptFormulaFormat} -<<domain FORMULA ScriptFormulaFormat>>= -)abbrev domain FORMULA ScriptFormulaFormat -++ Author: Robert S. Sutor -++ Date Created: 1987 through 1990 -++ Change History: -++ Basic Operations: coerce, convert, display, epilogue, -++ formula, new, prologue, setEpilogue!, setFormula!, setPrologue! -++ Related Constructors: ScriptFormulaFormat1 -++ Also See: TexFormat -++ AMS Classifications: -++ Keywords: output, format, SCRIPT, BookMaster, formula -++ References: -++ SCRIPT Mathematical Formula Formatter User's Guide, SH20-6453, -++ IBM Corporation, Publishing Systems Information Development, -++ Dept. G68, P.O. Box 1900, Boulder, Colorado, USA 80301-9191. -++ Description: -++ \spadtype{ScriptFormulaFormat} provides a coercion from -++ \spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. -++ The basic SCRIPT formula format object consists of three parts: a -++ prologue, a formula part and an epilogue. The functions -++ \spadfun{prologue}, \spadfun{formula} and \spadfun{epilogue} -++ extract these parts, respectively. The central parts of the expression -++ go into the formula part. The other parts can be set -++ (\spadfun{setPrologue!}, \spadfun{setEpilogue!}) so that contain the -++ appropriate tags for printing. For example, the prologue and -++ epilogue might simply contain ":df." and ":edf." so that the -++ formula section will be printed in display math mode. - -ScriptFormulaFormat(): public == private where - E ==> OutputForm - I ==> Integer - L ==> List - S ==> String - - public == Join(SetCategory, CoercibleFrom E) with - convert: (E,I) -> % - ++ convert(o,step) changes o in standard output format to - ++ SCRIPT formula format and also adds the given step number. - ++ This is useful if you want to create equations with given numbers - ++ or have the equation numbers correspond to the interpreter step - ++ numbers. - display: (%, I) -> Void - ++ display(t,width) outputs the formatted code t so that each - ++ line has length less than or equal to \spadvar{width}. - display: % -> Void - ++ display(t) outputs the formatted code t so that each - ++ line has length less than or equal to the value set by - ++ the system command \spadsyscom{set output length}. - epilogue: % -> L S - ++ epilogue(t) extracts the epilogue section of a formatted object t. - formula: % -> L S - ++ formula(t) extracts the formula section of a formatted object t. - new: () -> % - ++ new() create a new, empty object. Use \spadfun{setPrologue!}, - ++ \spadfun{setFormula!} and \spadfun{setEpilogue!} to set the - ++ various components of this object. - prologue: % -> L S - ++ prologue(t) extracts the prologue section of a formatted object t. - setEpilogue!: (%, L S) -> L S - ++ setEpilogue!(t,strings) sets the epilogue section of a - ++ formatted object t to strings. - setFormula!: (%, L S) -> L S - ++ setFormula!(t,strings) sets the formula section of a - ++ formatted object t to strings. - setPrologue!: (%, L S) -> L S - ++ setPrologue!(t,strings) sets the prologue section of a - ++ formatted object t to strings. - - private == add - import OutputForm - import Character - import Integer - import List OutputForm - import List String - - Rep := Record(prolog : L S, formula : L S, epilog : L S) - - -- local variables declarations and definitions - - expr: E - prec,opPrec: I - str: S - blank : S := " @@ " - - maxPrec : I := 1000000 - minPrec : I := 0 - - splitChars : S := " <>[](){}+*=,-%" - - unaryOps : L S := ["-","^"]$(L S) - unaryPrecs : L I := [700,260]$(L I) - - -- the precedence of / in the following is relatively low because - -- the bar obviates the need for parentheses. - binaryOps : L S := ["+->","|","**","/","<",">","=","OVER"]$(L S) - binaryPrecs : L I := [0,0,900, 700,400,400,400, 700]$(L I) - - naryOps : L S := ["-","+","*",blank,",",";"," ","ROW","", - " habove "," here "," labove "]$(L S) - naryPrecs : L I := [700,700,800, 800,110,110, 0, 0, 0, - 0, 0, 0]$(L I) --- naryNGOps : L S := ["ROW"," here "]$(L S) - naryNGOps : L S := nil$(L S) - - plexOps : L S := ["SIGMA","PI","INTSIGN","INDEFINTEGRAL"]$(L S) - plexPrecs : L I := [ 700, 800, 700, 700]$(L I) - - specialOps : L S := ["MATRIX","BRACKET","BRACE","CONCATB", _ - "AGGLST","CONCAT","OVERBAR","ROOT","SUB", _ - "SUPERSUB","ZAG","AGGSET","SC","PAREN"] - - -- the next two lists provide translations for some strings for - -- which the formula formatter provides special variables. - - specialStrings : L S := - ["5","..."] - specialStringsInFormula : L S := - [" alpha "," ellipsis "] - - -- local function signatures - - addBraces: S -> S - addBrackets: S -> S - group: S -> S - formatBinary: (S,L E, I) -> S - formatFunction: (S,L E, I) -> S - formatMatrix: L E -> S - formatNary: (S,L E, I) -> S - formatNaryNoGroup: (S,L E, I) -> S - formatNullary: S -> S - formatPlex: (S,L E, I) -> S - formatSpecial: (S,L E, I) -> S - formatUnary: (S, E, I) -> S - formatFormula: (E,I) -> S - parenthesize: S -> S - precondition: E -> E - postcondition: S -> S - splitLong: (S,I) -> L S - splitLong1: (S,I) -> L S - stringify: E -> S - - -- public function definitions - - new() : % == [[".eq set blank @",":df."]$(L S), - [""]$(L S), [":edf."]$(L S)]$Rep - - coerce(expr : E): % == - f : % := new()$% - f.formula := [postcondition - formatFormula(precondition expr, minPrec)]$(L S) - f - - convert(expr : E, stepNum : I): % == - f : % := new()$% - f.formula := concat(["<leqno lparen ",string(stepNum)$S, - " rparen>"], [postcondition - formatFormula(precondition expr, minPrec)]$(L S)) - f - - display(f : %, len : I) == - s,t : S - for s in f.prolog repeat sayFORMULA(s)$Lisp - for s in f.formula repeat - for t in splitLong(s, len) repeat sayFORMULA(t)$Lisp - for s in f.epilog repeat sayFORMULA(s)$Lisp - - display(f : %) == - display(f, _$LINELENGTH$Lisp pretend I) - - prologue(f : %) == f.prolog - formula(f : %) == f.formula - epilogue(f : %) == f.epilog - - setPrologue!(f : %, l : L S) == f.prolog := l - setFormula!(f : %, l : L S) == f.formula := l - setEpilogue!(f : %, l : L S) == f.epilog := l - - coerce(f : %): E == - s,t : S - l : L S := nil - for s in f.prolog repeat l := concat(s,l) - for s in f.formula repeat - for t in splitLong(s, (_$LINELENGTH$Lisp pretend Integer) - 4) repeat - l := concat(t,l) - for s in f.epilog repeat l := concat(s,l) - (reverse l) :: E - - -- local function definitions - - postcondition(str: S): S == - len : I := #str - len < 4 => str - plus : Character := char "+" - minus: Character := char "-" - for i in 1..(len-1) repeat - if (str.i =$Character plus) and (str.(i+1) =$Character minus) - then setelt(str,i,char " ")$S - str - - stringify expr == object2String(expr)$Lisp pretend S - - splitLong(str : S, len : I): L S == - -- this blocks into lines - if len < 20 then len := _$LINELENGTH$Lisp - splitLong1(str, len) - - splitLong1(str : S, len : I) == - l : List S := nil - s : S := "" - ls : I := 0 - ss : S - lss : I - for ss in split(str,char " ") repeat - lss := #ss - if ls + lss > len then - l := concat(s,l)$List(S) - s := "" - ls := 0 - lss > len => l := concat(ss,l)$List(S) - ls := ls + lss + 1 - s := concat(s,concat(ss," ")$S)$S - if positive? ls then l := concat(s,l)$List(S) - reverse l - - group str == - concat ["<",str,">"] - - addBraces str == - concat ["left lbrace ",str," right rbrace"] - - addBrackets str == - concat ["left lb ",str," right rb"] - - parenthesize str == - concat ["left lparen ",str," right rparen"] - - precondition expr == - outputTran(expr)$Lisp - - formatSpecial(op : S, args : L E, prec : I) : S == - op = "AGGLST" => - formatNary(",",args,prec) - op = "AGGSET" => - formatNary(";",args,prec) - op = "CONCATB" => - formatNary(" ",args,prec) - op = "CONCAT" => - formatNary("",args,prec) - op = "BRACKET" => - group addBrackets formatFormula(first args, minPrec) - op = "BRACE" => - group addBraces formatFormula(first args, minPrec) - op = "PAREN" => - group parenthesize formatFormula(first args, minPrec) - op = "OVERBAR" => - null args => "" - group concat [formatFormula(first args, minPrec)," bar"] - op = "ROOT" => - null args => "" - tmp : S := formatFormula(first args, minPrec) - null rest args => group concat ["sqrt ",tmp] - group concat ["midsup adjust(u 1.5 r 9) ", - formatFormula(first rest args, minPrec)," sqrt ",tmp] - op = "SC" => - formatNary(" labove ",args,prec) - op = "SUB" => - group concat [formatFormula(first args, minPrec)," sub ", - formatSpecial("AGGLST",rest args,minPrec)] - op = "SUPERSUB" => - -- variable name - form : List S := [formatFormula(first args, minPrec)] - -- subscripts - args := rest args - null args => concat form - tmp : S := formatFormula(first args, minPrec) - if tmp ~= "" then form := append(form,[" sub ",tmp])$(List S) - -- superscripts - args := rest args - null args => group concat form - tmp : S := formatFormula(first args, minPrec) - if tmp ~= "" then form := append(form,[" sup ",tmp])$(List S) - -- presuperscripts - args := rest args - null args => group concat form - tmp : S := formatFormula(first args, minPrec) - if tmp ~= "" then form := append(form,[" presup ",tmp])$(List S) - -- presubscripts - args := rest args - null args => group concat form - tmp : S := formatFormula(first args, minPrec) - if tmp ~= "" then form := append(form,[" presub ",tmp])$(List S) - group concat form - op = "MATRIX" => formatMatrix rest args --- op = "ZAG" => --- concat ["\zag{",formatFormula(first args, minPrec),"}{", --- formatFormula(first rest args,minPrec),"}"] - concat ["not done yet for ",op] - - formatPlex(op : S, args : L E, prec : I) : S == - hold : S - p : I := position(op,plexOps) - p < 1 => error "unknown Script Formula Formatter unary op" - opPrec := plexPrecs.p - n : I := #args - (n ~= 2) and (n ~= 3) => error "wrong number of arguments for plex" - s : S := - op = "SIGMA" => "sum" - op = "PI" => "product" - op = "INTSIGN" => "integral" - op = "INDEFINTEGRAL" => "integral" - "????" - hold := formatFormula(first args,minPrec) - args := rest args - if op ~= "INDEFINTEGRAL" then - if hold ~= "" then - s := concat [s," from",group concat ["\displaystyle ",hold]] - if not null rest args then - hold := formatFormula(first args,minPrec) - if hold ~= "" then - s := concat [s," to",group concat ["\displaystyle ",hold]] - args := rest args - s := concat [s," ",formatFormula(first args,minPrec)] - else - hold := group concat [hold," ",formatFormula(first args,minPrec)] - s := concat [s," ",hold] - if opPrec < prec then s := parenthesize s - group s - - formatMatrix(args : L E) : S == - -- format for args is [[ROW ...],[ROW ...],[ROW ...]] - group addBrackets formatNary(" habove ",args,minPrec) - - formatFunction(op : S, args : L E, prec : I) : S == - group concat [op, " ", parenthesize formatNary(",",args,minPrec)] - - formatNullary(op : S) == - op = "NOTHING" => "" - group concat [op,"()"] - - formatUnary(op : S, arg : E, prec : I) == - p : I := position(op,unaryOps) - p < 1 => error "unknown Script Formula Formatter unary op" - opPrec := unaryPrecs.p - s : S := concat [op,formatFormula(arg,opPrec)] - opPrec < prec => group parenthesize s - op = "-" => s - group s - - formatBinary(op : S, args : L E, prec : I) : S == - p : I := position(op,binaryOps) - p < 1 => error "unknown Script Formula Formatter binary op" - op := - op = "**" => " sup " - op = "/" => " over " - op = "OVER" => " over " - op - opPrec := binaryPrecs.p - s : S := formatFormula(first args, opPrec) - s := concat [s,op,formatFormula(first rest args, opPrec)] - group - op = " over " => s - opPrec < prec => parenthesize s - s - - formatNary(op : S, args : L E, prec : I) : S == - group formatNaryNoGroup(op, args, prec) - - formatNaryNoGroup(op : S, args : L E, prec : I) : S == - null args => "" - p : I := position(op,naryOps) - p < 1 => error "unknown Script Formula Formatter nary op" - op := - op = "," => ", @@ " - op = ";" => "; @@ " - op = "*" => blank - op = " " => blank - op = "ROW" => " here " - op - l : L S := nil - opPrec := naryPrecs.p - for a in args repeat - l := concat(op,concat(formatFormula(a,opPrec),l)$L(S))$L(S) - s : S := concat reverse rest l - opPrec < prec => parenthesize s - s - - formatFormula(expr,prec) == - i : Integer - not %pair?(expr)$Foreign(Builtin) => - str := stringify expr - %integer?(expr)$Foreign(Builtin) => - i := expr : Integer - if negative? i or (i > 9) then group str else str - positive?(i := position(str,specialStrings)) => - specialStringsInFormula.i - str - l : L E := (expr pretend L E) - null l => blank - op : S := stringify first l - args : L E := rest l - nargs : I := #args - - -- special cases - member?(op, specialOps) => formatSpecial(op,args,prec) - member?(op, plexOps) => formatPlex(op,args,prec) - - -- nullary case - 0 = nargs => formatNullary op - - -- unary case - (1 = nargs) and member?(op, unaryOps) => - formatUnary(op, first args, prec) - - -- binary case - (2 = nargs) and member?(op, binaryOps) => - formatBinary(op, args, prec) - - -- nary case - member?(op,naryNGOps) => formatNaryNoGroup(op,args, prec) - member?(op,naryOps) => formatNary(op,args, prec) - op := formatFormula(first l,minPrec) - formatFunction(op,args,prec) - -@ -\section{package FORMULA1 ScriptFormulaFormat1} -<<package FORMULA1 ScriptFormulaFormat1>>= -)abbrev package FORMULA1 ScriptFormulaFormat1 -++ Author: Robert S. Sutor -++ Date Created: 1987 through 1990 -++ Change History: -++ Basic Operations: coerce -++ Related Constructors: ScriptFormulaFormat -++ Also See: TexFormat, TexFormat1 -++ AMS Classifications: -++ Keywords: output, format, SCRIPT, BookMaster, formula -++ References: -++ SCRIPT Mathematical Formula Formatter User's Guide, SH20-6453, -++ IBM Corporation, Publishing Systems Information Development, -++ Dept. G68, P.O. Box 1900, Boulder, Colorado, USA 80301-9191. -++ Description: -++ \spadtype{ScriptFormulaFormat1} provides a utility coercion for -++ changing to SCRIPT formula format anything that has a coercion to -++ the standard output format. - -ScriptFormulaFormat1(S : SetCategory): public == private where - public == with - coerce: S -> ScriptFormulaFormat() - ++ coerce(s) provides a direct coercion from an expression s of domain S to - ++ SCRIPT formula format. This allows the user to skip the step of - ++ first manually coercing the object to standard output format - ++ before it is coerced to SCRIPT formula format. - - private == add - import ScriptFormulaFormat() - - coerce(s : S): ScriptFormulaFormat == - coerce(s :: OutputForm)$ScriptFormulaFormat - -@ -\section{License} -<<license>>= ---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ---All rights reserved. --- ---Redistribution and use in source and binary forms, with or without ---modification, are permitted provided that the following conditions are ---met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- ---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -@ -<<*>>= -<<license>> - -<<domain FORMULA ScriptFormulaFormat>> -<<package FORMULA1 ScriptFormulaFormat1>> -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} diff --git a/src/algebra/tex.spad.pamphlet b/src/algebra/tex.spad.pamphlet index 99314dff..180c4c26 100644 --- a/src/algebra/tex.spad.pamphlet +++ b/src/algebra/tex.spad.pamphlet @@ -65,7 +65,7 @@ in addition we need to add a line defining [[PI2]] in [[formatPlex]]: ++ Basic Operations: coerce, convert, display, epilogue, ++ tex, new, prologue, setEpilogue!, setTex!, setPrologue! ++ Related Constructors: TexFormat1 -++ Also See: ScriptFormulaFormat +++ Also See: ++ AMS Classifications: ++ Keywords: TeX, LaTeX, output, format ++ References: \TeX{} is a trademark of the American Mathematical Society. @@ -653,7 +653,7 @@ TexFormat(): public == private where ++ Change History: ++ Basic Operations: coerce ++ Related Constructors: TexFormat -++ Also See: ScriptFormulaFormat, ScriptFormulaFormat1 +++ Also See: ++ AMS Classifications: ++ Keywords: TeX, output, format ++ References: \TeX{} is a trademark of the American Mathematical diff --git a/src/interp/c-doc.boot b/src/interp/c-doc.boot index 19ab4bd4..cfcd96a9 100644 --- a/src/interp/c-doc.boot +++ b/src/interp/c-doc.boot @@ -1272,11 +1272,11 @@ checkDocError u == $constructorName => checkDocMessage u u if $exposeFlag and $exposeFlagHeading then - SAYBRIGHTLY1($exposeFlagHeading,$outStream) + sayBrightly1($exposeFlagHeading,$outStream) sayBrightly $exposeFlagHeading $exposeFlagHeading := nil sayBrightly msg - if $exposeFlag then SAYBRIGHTLY1(msg,$outStream) + if $exposeFlag then sayBrightly1(msg,$outStream) --if called by checkDocFile (see file checkdoc.boot) ++ Augment `u' with information about the owner of the source file diff --git a/src/interp/category.boot b/src/interp/category.boot index 6407fca9..53079f37 100644 --- a/src/interp/category.boot +++ b/src/interp/category.boot @@ -296,7 +296,7 @@ PredImplies(a,b) == SigListOpSubsume([[name1,sig1,:.],:.],list) == --does m subsume another operator in the list? - --see "operator subsumption" in SYSTEM SCRIPT + --see "operator subsumption" in JHD's report --if it does, returns the subsumed member lsig1 := #sig1 ans := [] @@ -305,7 +305,7 @@ SigListOpSubsume([[name1,sig1,:.],:.],list) == return ans MachineLevelSubsume([name1,[out1,:in1],:flag1],[name2,[out2,:in2],:flag2]) == - -- Checks for machine-level subsumption in the sense of SYSTEM SCRIPT + -- Checks for machine-level subsumption -- true if the first signature subsumes the second -- flag1 = flag2 and: this really should be checked, but symbolEq?(name1,name2) and MachineLevelSubset(out1,out2) and @@ -442,7 +442,7 @@ JoinInner(l,$e) == -- this skips buggy code which discards needed categories for [b,condition] in FindFundAncs l' repeat --This loop implements Category Subsumption - --as described in SYSTEM SCRIPT + --as described in JHD's report if not (b.0=nil) then --It's a named category bname:= b.0 diff --git a/src/interp/diagnostics.boot b/src/interp/diagnostics.boot index fd5c5e09..a16cba91 100644 --- a/src/interp/diagnostics.boot +++ b/src/interp/diagnostics.boot @@ -97,3 +97,46 @@ MESSAGEPRINT_-2 x == MESSAGEPRINT_-1 first x MESSAGEPRINT_-2 rest x +--% + +++ if not nil, gives stream for sayBrightly output +$sayBrightlyStream := nil + +sayBrightlyNT1(x,out) == + cons? x => brightPrint(x,out) + brightPrint0(x,out) + +sayBrightly1(x,out) == + sayBrightlyNT1(x,out) + finishLine out + +sayBrightlyNT(x,out == $OutputStream) == + x = nil => nil + $sayBrightlyStream ~= nil => sayBrightlyNT1(x,$sayBrightlyStream) + IS_-CONSOLE out => sayBrightlyNT1(x,out) + sayBrightly1(x,out) => sayBrightlyNT1(x,out) + nil + +sayBrightly(x,out == $OutputStream) == + x = nil => nil + $sayBrightlyStream ~= nil => sayBrightly1(x,$sayBrightlyStream) + IS_-CONSOLE out => sayBrightly1(x,out) + sayBrightly1(x,out) => sayBrightly1(x,$OutputStream) + nil + +sayBrightlyI(x,out == $OutputStream) == + x = nil => nil + sayBrightly1(x,out) + +sayMSG x == + x = nil => nil + sayBrightly1(x,$algebraOutputStream) + +sayMSG2File msg == + file := makePathname('spadmsg,'listing,$listingDirectory) + str := DEFIOSTREAM(['(MODE . OUTPUT),['FILE,:file]],255,0) + sayBrightly1(msg,str) + +sayTeX x == + x = nil => nil + sayBrightly1(x,$texOutputStream) diff --git a/src/interp/i-output.boot b/src/interp/i-output.boot index f79112b2..56f164a2 100644 --- a/src/interp/i-output.boot +++ b/src/interp/i-output.boot @@ -1524,15 +1524,6 @@ spadPrint(x,m) == output(x,m) newlineIfDisplaying() -formulaFormat expr == - sff := '(ScriptFormulaFormat) - formatFn := getFunctionFromDomain("coerce",sff,[$OutputForm]) - displayFn := getFunctionFromDomain("display",sff,[sff]) - SPADCALL(SPADCALL(expr,formatFn),displayFn) - if not $collectOutput then - finishLine $algebraOutputStream - nil - texFormat expr == tf := $TexFormat formatFn := @@ -1562,7 +1553,6 @@ mathmlFormat expr == output(expr,domain) == if isWrapped expr then expr := unwrap expr isMapExpr expr => - if $formulaFormat then formulaFormat expr if $texFormat then texFormat expr if $mathmlFormat then mathmlFormat expr if $algebraFormat then mathprintWithNumber(expr,domain) @@ -1573,7 +1563,6 @@ output(expr,domain) == texFormat outputDomainConstructor expr T := coerceInteractive(objNewWrap(expr,domain),$OutputForm) => x := objValUnwrap T - if $formulaFormat then formulaFormat x if $fortranFormat then dispfortexp x if not $collectOutput then diff --git a/src/interp/macros.lisp b/src/interp/macros.lisp index 13018ade..3793de79 100644 --- a/src/interp/macros.lisp +++ b/src/interp/macros.lisp @@ -326,77 +326,6 @@ ((stringp x) x) ((write-to-string x)))) -(defun |sayTeX| (x) - (if (null x) - nil - (sayBrightly1 x |$texOutputStream|))) - -(defvar |$sayBrightlyStream| nil "if not nil, gives stream for sayBrightly output") - -(defun |sayBrightly| (x &optional (out-stream |$OutputStream|)) - (COND ((NULL X) NIL) - (|$sayBrightlyStream| - (sayBrightly1 X |$sayBrightlyStream|)) - ((IS-CONSOLE out-stream) - (sayBrightly1 X out-stream)) - ((sayBrightly1 X out-stream) - (sayBrightly1 X |$OutputStream|)))) - -(defun |sayBrightlyI| (x &optional (s |$OutputStream|)) - "Prints at console or output stream." - (if (NULL X) NIL (sayBrightly1 X S))) - -(defun |sayBrightlyNT| (x &optional (S |$OutputStream|)) - (COND ((NULL X) NIL) - (|$sayBrightlyStream| - (sayBrightlyNT1 X |$sayBrightlyStream|)) - ((IS-CONSOLE S) - (sayBrightlyNT1 X S)) - ((sayBrightly1 X S) - (sayBrightlyNT1 X |$OutputStream|)))) - -(defun sayBrightlyNT1 (X out) - (if (ATOM X) - (|brightPrint0| X out) - (|brightPrint| X out))) - -(defun sayBrightly1 (X out) - (if (ATOM X) - (progn - (|brightPrint0| X out) - (TERPRI out) - (force-output out)) - (progn - (|brightPrint| X out) - (TERPRI out) - (force-output out)))) - -(defun |sayMSG| (X) - (if (NULL X) NIL (sayBrightly1 X |$algebraOutputStream|))) - -(defun |sayMSGNT| (X) - (if (NULL X) NIL (sayBrightlyNT1 X |$algebraOutputStream|))) - -(defun |sayMSG2File| (msg) - (PROG (file str) - (SETQ file (|makePathname| '|spadmsg| '|listing| |$listingDirectory|)) - (SETQ str - (DEFIOSTREAM - (CONS '(MODE . OUTPUT) (CONS (CONS 'FILE file) NIL)) - 255 0)) - (sayBrightly1 msg str) - (SHUT str) ) ) - -(defvar |$fortranOutputStream|) - -(defun |sayFORTRAN| (x) "Prints on Fortran output stream." - (if (NULL X) NIL (sayBrightly1 X |$fortranOutputStream|))) - -(defvar |$formulaOutputStream|) - -(defun |sayFORMULA| (X) "Prints on formula output stream." - (if (NULL X) NIL (sayBrightly1 X |$formulaOutputStream|))) - ;; the following are redefined in MSGDB BOOT (DEFUN BLANKS (N &optional (stream |$OutputStream|)) diff --git a/src/interp/setvars.boot b/src/interp/setvars.boot index 561793c3..4b459db5 100644 --- a/src/interp/setvars.boot +++ b/src/interp/setvars.boot @@ -1464,119 +1464,6 @@ describeSetOutputOpenMath() == '"the one you set with the )cd system command.",'%l,_ '"The current setting is: ",'%b,setOutputOpenMath "%display%",'%d] --- See the subsection output script in setvart.boot --- --- ---------------------- The script Option ---------------------- - --- Description: display output in SCRIPT formula format - --- )set output script is used to tell AXIOM to turn IBM Script --- formula-style output printing on and off, and where to place --- the output. By default, the destination for the output is the --- screen but printing is turned off. - --- Syntax: )set output script <arg> --- where arg can be one of --- on turn IBM Script formula printing on --- off turn IBM Script formula printing off --- (default state) --- console send IBM Script formula output to screen --- (default state) --- fp<.fe> send IBM Script formula output to file with file --- prefix fp and file extension .fe. If not given, --- .fe defaults to .sform. - --- If you wish to send the output to a file, you must issue --- this command twice: once with on and once with the file --- name. For example, to send IBM Script formula output to --- the file polymer.sform, issue the two commands - --- )set output script on --- )set output script polymer - --- The output is placed in the directory from which you --- invoked AXIOM or the one you set with the )cd system command. --- The current setting is: Off:CONSOLE --- - - -setOutputFormula arg == - arg = "%initialize%" => - $formulaOutputStream := - DEFIOSTREAM('((MODE . OUTPUT) (DEVICE . CONSOLE)),255,0) - $formulaOutputFile := '"CONSOLE" - $formulaFormat := nil - - arg = "%display%" => - if $formulaFormat then label := '"On:" else label := '"Off:" - strconc(label,$formulaOutputFile) - - (null arg) or (arg = "%describe%") or (first arg = '_?) => - describeSetOutputFormula() - - -- try to figure out what the argument is - - if arg is [fn] and - fn in '(Y N YE YES NO O ON OF OFF CONSOLE y n ye yes no o on of off console) - then 'ok - else arg := [fn,'sform] - - arg is [fn] => - UPCASE(fn) in '(Y N YE O OF) => - sayKeyedMsg("S2IV0002",'(script script)) - UPCASE(fn) in '(NO OFF) => $formulaFormat := nil - UPCASE(fn) in '(YES ON) => $formulaFormat := true - UPCASE(fn) = 'CONSOLE => - SHUT $formulaOutputStream - $formulaOutputStream := - DEFIOSTREAM('((MODE . OUTPUT) (DEVICE . CONSOLE)),255,0) - $formulaOutputFile := '"CONSOLE" - - (arg is [fn,ft]) or (arg is [fn,ft,fm]) => -- aha, a file - if (ptype := pathnameType fn) then - fn := strconc(pathnameDirectory fn,pathnameName fn) - ft := ptype - if null fm then fm := 'A - filename := $FILEP(fn,ft,fm) - null filename => - sayKeyedMsg("S2IV0003",[fn,ft,fm]) - (testStream := MAKE_-OUTSTREAM(filename,255,0)) => - SHUT $formulaOutputStream - $formulaOutputStream := testStream - $formulaOutputFile := object2String filename - sayKeyedMsg("S2IV0004",['"IBM Script formula",$formulaOutputFile]) - sayKeyedMsg("S2IV0003",[fn,ft,fm]) - - sayKeyedMsg("S2IV0005",nil) - describeSetOutputFormula() - - -describeSetOutputFormula() == - sayBrightly ['%b,'")set output script",'%d,_ - '"is used to tell AXIOM to turn IBM Script formula-style",'%l,_ - '"output printing on and off, and where to place the output. By default, the",'%l,_ - '"destination for the output is the screen but printing is turned off.",'%l,_ - '%l,_ - '"Syntax: )set output script <arg>",'%l,_ - '" where arg can be one of",'%l,_ - '" on turn IBM Script formula printing on",'%l,_ - '" off turn IBM Script formula printing off (default state)",'%l,_ - '" console send IBM Script formula output to screen (default state)",'%l,_ - '" fp<.fe> send IBM Script formula output to file with file prefix fp",'%l,_ - '" and file extension .fe. If not given, .fe defaults to .sform.",'%l, - '%l,_ - '"If you wish to send the output to a file, you must issue this command",'%l,_ - '"twice: once with",'%b,'"on",'%d,'"and once with the file name. For example, to send",'%l,_ - '"IBM Script formula output to the file",'%b,'"polymer.sform,",'%d,'"issue the two commands",'%l,_ - '%l,_ - '" )set output script on",'%l,_ - '" )set output script polymer",'%l,_ - '%l,_ - '"The output is placed in the directory from which you invoked AXIOM or",'%l,_ - '"the one you set with the )cd system command.",'%l,_ - '"The current setting is: ",'%b,setOutputFormula "%display%",'%d] - - -- See the section tex in setvart.boot -- -- ----------------------- The tex Option ------------------------ diff --git a/src/interp/setvart.boot b/src/interp/setvart.boot index 0b1ff0d0..c19f8688 100644 --- a/src/interp/setvart.boot +++ b/src/interp/setvart.boot @@ -1131,7 +1131,6 @@ $setOptions := '( -- algebra display output in algebraic form On:CONSOLE -- asgard show output in asgard form off -- characters choose special output character set plain --- script display output in SCRIPT formula format Off:CONSOLE -- fortran create output in FORTRAN format Off:CONSOLE -- fraction how fractions are formatted vertical -- length line length of output displays 77 @@ -1389,55 +1388,6 @@ $setOptions := '( "console")) NIL) --- ---------------------- The script Option ---------------------- --- --- Description: display output in SCRIPT formula format --- --- )set output script is used to tell AXIOM to turn IBM Script --- formula-style output printing on and off, and where to place --- the output. By default, the destination for the output is the --- screen but printing is turned off. --- --- Syntax: )set output script <arg> --- where arg can be one of --- on turn IBM Script formula printing on --- off turn IBM Script formula printing off --- (default state) --- console send IBM Script formula output to screen --- (default state) --- fp<.fe> send IBM Script formula output to file with file --- prefix fp and file extension .fe. If not given, --- .fe defaults to .sform. --- --- If you wish to send the output to a file, you must issue --- this command twice: once with on and once with the file --- name. For example, to send IBM Script formula output to --- the file polymer.sform, issue the two commands --- --- )set output script on --- )set output script polymer --- --- The output is placed in the directory from which you --- invoked AXIOM or the one you set with the )cd system command. --- The current setting is: Off:CONSOLE - (script - "display output in SCRIPT formula format" - interpreter - FUNCTION - setOutputFormula - (("display output in SCRIPT format" - LITERALS - $formulaFormat - (off on) - off) - (break $formulaFormat) - ("where script output goes (enter {\em console} or a a pathname)" - FILENAME - $formulaOutputFile - chkOutputFileName - "console")) - NIL) - -- --------------------- The scripts Option ---------------------- -- -- Description: show subscripts,... linearly diff --git a/src/interp/spad.lisp b/src/interp/spad.lisp index 02c9c87f..3811bdc4 100644 --- a/src/interp/spad.lisp +++ b/src/interp/spad.lisp @@ -50,7 +50,6 @@ (defvar |$functorForm| nil "checked in addModemap0") (defvar |$Rep| '|$Rep| "should be bound to gensym? checked in coerce") (defvar |$definition| nil "checked in DomainSubstitutionFunction") -(defvar |$formulaFormat| nil "if true produce script formula output") (defvar |$texFormat| nil "if true produce tex output") (defvar |$fortranFormat| nil "if true produce fortran output") (defvar |$algebraFormat| t "produce 2-d algebra output") diff --git a/src/interp/sys-globals.boot b/src/interp/sys-globals.boot index c2e13a16..c46ff38b 100644 --- a/src/interp/sys-globals.boot +++ b/src/interp/sys-globals.boot @@ -443,9 +443,6 @@ $texOutputStream := MAKE_-SYNONYM_-STREAM "*STANDARD-OUTPUT*" $fortranOutputStream := MAKE_-SYNONYM_-STREAM "*STANDARD-OUTPUT*" -$formulaOutputStream := - MAKE_-SYNONYM_-STREAM "*STANDARD-OUTPUT*" - conOutStream := MAKE_-SYNONYM_-STREAM "*STANDARD-OUTPUT*" diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 14412a20..01ada672 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2293007 . 3518066231) +(2289958 . 3518758386) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4508 . T) (-4506 . T) (-4505 . T) ((-4513 "*") . T) (-4504 . T) (-4509 . T) (-4503 . T)) +((-4504 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4500 . T) (-4505 . T) (-4499 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3581) +(-32 R -3577) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) +((|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4511))) +((|HasAttribute| |#1| (QUOTE -4507))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3581 UP UPUP -3099) +(-40 -3577 UP UPUP -3095) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4504 |has| (-421 |#2|) (-376)) (-4509 |has| (-421 |#2|) (-376)) (-4503 |has| (-421 |#2|) (-376)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-4043 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-363))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -930) (QUOTE (-1209)))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-4043 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209)))))) -(-41 R -3581) +((-4500 |has| (-419 |#2|) (-376)) (-4505 |has| (-419 |#2|) (-376)) (-4499 |has| (-419 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4039 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4039 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))))) +(-41 R -3577) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -435) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-319)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4508 |has| |#1| (-571)) (-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) +((-4504 |has| |#1| (-569)) (-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4511 . T) (-4512 . T)) -((-4043 (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-872))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-872))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-872))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-872))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))))) +((-4507 . T) (-4508 . T)) +((-4039 (-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-870)))) (-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-870))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| $ (QUOTE (-1081))) (|HasCategory| $ (|%list| (QUOTE -1070) (QUOTE (-560))))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4508 . T)) +((-4504 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3581) +(-54 |Base| R -3577) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,77 +158,77 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -4056) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -4052) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -4056) +(-62 -4052) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -4056) +(-63 -4052) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -4056) +(-64 -4052) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -4056) +(-65 -4052) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4056) +(-66 -4052) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4056) +(-67 -4052) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4056) +(-68 -4052) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4056) +(-69 -4052) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4056) +(-70 -4052) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4056) +(-71 -4052) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4056) +(-72 -4052) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4056) +(-73 -4052) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4056) +(-74 -4052) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -4056) +(-75 -4052) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,51 +240,51 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -4056) +(-78 -4052) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4056) +(-79 -4052) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4056) +(-80 -4052) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4056) +(-81 -4052) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4056) +(-82 -4052) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4056) +(-83 -4052) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4056) +(-84 -4052) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4056) +(-85 -4052) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4056) +(-86 -4052) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4056) +(-87 -4052) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -4056) +(-88 -4052) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -4056) +(-89 -4052) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-376)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4511 . T)) +((-4507 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4511 . T) ((-4513 "*") . T) (-4512 . T) (-4508 . T) (-4506 . T) (-4505 . T) (-4504 . T) (-4509 . T) (-4503 . T) (-4502 . T) (-4501 . T) (-4500 . T) (-4499 . T) (-4507 . T) (-4510 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4498 . T)) +((-4507 . T) ((-4509 "*") . T) (-4508 . T) (-4504 . T) (-4502 . T) (-4501 . T) (-4500 . T) (-4505 . T) (-4499 . T) (-4498 . T) (-4497 . T) (-4496 . T) (-4495 . T) (-4503 . T) (-4506 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4494 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4508 . T)) +((-4504 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4513 "*")))) +((|HasAttribute| |#1| (QUOTE (-4509 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4511 . T)) +((-4507 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4512 . T)) +((-4508 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-560) (QUOTE (-940))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1052))) (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872))) (-4043 (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872)))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1184))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (|HasCategory| (-560) (QUOTE (-147))))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4039 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1133))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-872))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-114) (QUOTE (-1133))) (|HasCategory| (-114) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-114) (QUOTE (-102)))) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-114) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL (-112 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -396,22 +396,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-117 -3581 UP) +(-117 -3577 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-119 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-940))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1052))) (|HasCategory| (-118 |#1|) (QUOTE (-844))) (|HasCategory| (-118 |#1|) (QUOTE (-872))) (-4043 (|HasCategory| (-118 |#1|) (QUOTE (-844))) (|HasCategory| (-118 |#1|) (QUOTE (-872)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1184))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-940)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-118 |#1|) (QUOTE (-938))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-118 |#1|) (QUOTE (-1050))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-870))) (-4039 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-870)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) (-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4512))) +((|HasAttribute| |#1| (QUOTE -4508))) (-121 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -422,15 +422,15 @@ NIL NIL (-123 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-125) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL (-126 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -438,24 +438,24 @@ NIL NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-131) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| (-130) (QUOTE (-872))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1133))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-4043 (-12 (|HasCategory| (-130) (QUOTE (-1133))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| (-130) (QUOTE (-872))) (|HasCategory| (-130) (QUOTE (-1133)))) (|HasCategory| (-130) (QUOTE (-872))) (-4043 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-872))) (|HasCategory| (-130) (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-130) (QUOTE (-1133))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1133))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-4039 (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-130) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131)))) (|HasCategory| (-130) (QUOTE (-870))) (-4039 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -474,13 +474,13 @@ NIL NIL (-136) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4513 "*") . T)) +(((-4509 "*") . T)) NIL -(-137 |minix| -3106 R) +(-137 |minix| -3102 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138 |minix| -3106 S T$) +(-138 |minix| -3102 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -502,8 +502,8 @@ NIL NIL (-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4511 . T) (-4501 . T) (-4512 . T)) -((-4043 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-4507 . T) (-4497 . T) (-4508 . T)) +((-4039 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -518,7 +518,7 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4508 . T)) +((-4504 . T)) NIL (-148 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -526,9 +526,9 @@ NIL NIL (-149) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4508 . T)) +((-4504 . T)) NIL -(-150 -3581 UP UPUP) +(-150 -3577 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -539,14 +539,14 @@ NIL (-152 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasAttribute| |#1| (QUOTE -4511))) +((|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasAttribute| |#1| (QUOTE -4507))) (-153 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-154 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4506 . T) (-4505 . T) (-4508 . T)) +((-4502 . T) (-4501 . T) (-4504 . T)) NIL (-155) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -568,7 +568,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-160 R -3581) +(-160 R -3577) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -599,10 +599,10 @@ NIL (-167 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1235))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasAttribute| |#2| (QUOTE -4510)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571)))) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569)))) (-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4504 -4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4507 |has| |#1| (-6 -4507)) (-4510 |has| |#1| (-6 -4510)) (-1502 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 -4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4503 |has| |#1| (-6 -4503)) (-4506 |has| |#1| (-6 -4506)) (-1500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4504 -4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4507 |has| |#1| (-6 -4507)) (-4510 |has| |#1| (-6 -4510)) (-1502 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4043 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-940))))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1235)))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1235)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasAttribute| |#1| (QUOTE -4510)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363))))) +((-4500 -4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4503 |has| |#1| (-6 -4503)) (-4506 |has| |#1| (-6 -4506)) (-1500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4039 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-938))))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasAttribute| |#1| (QUOTE -4506)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363))))) (-172 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -630,7 +630,7 @@ NIL NIL (-175) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-176) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -638,7 +638,7 @@ NIL NIL (-177 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4513 "*") . T) (-4504 . T) (-4509 . T) (-4503 . T) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") . T) (-4500 . T) (-4505 . T) (-4499 . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-178) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -655,7 +655,7 @@ NIL (-181 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-976 |#2|) (|%list| (QUOTE -912) (|devaluate| |#1|)))) +((|HasCategory| (-974 |#2|) (|%list| (QUOTE -910) (|devaluate| |#1|)))) (-182 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -692,7 +692,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-191 R -3581) +(-191 R -3577) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -804,23 +804,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-219 -3581 UP UPUP R) +(-219 -3577 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-220 -3581 FP) +(-220 -3577 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-221) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-560) (QUOTE (-940))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1052))) (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872))) (-4043 (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872)))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1184))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (|HasCategory| (-560) (QUOTE (-147))))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4039 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147))))) (-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-223 R -3581) +(-223 R -3577) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -834,19 +834,19 @@ NIL NIL (-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4508 . T)) +((-4504 . T)) NIL -(-228 R -3581) +(-228 R -3577) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4286 . T) (-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4282 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -854,19 +854,19 @@ NIL NIL (-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4513 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-233 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4512 . T)) +((-4508 . T)) NIL (-234 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4508 . T)) +((-4504 . T)) NIL (-235 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -878,7 +878,7 @@ NIL NIL (-237 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL (-238 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -890,33 +890,33 @@ NIL NIL (-240) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4508 . T)) +((-4504 . T)) NIL (-241 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4511))) +((|HasAttribute| |#1| (QUOTE -4507))) (-242 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4512 . T)) +((-4508 . T)) NIL (-243) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -3106 R) +(-244 S -3102 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (QUOTE (-872))) (|HasAttribute| |#3| (QUOTE -4508)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (QUOTE (-1133)))) -(-245 -3106 R) +((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasAttribute| |#3| (QUOTE -4504)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131)))) +(-245 -3102 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4505 |has| |#2| (-1081)) (-4506 |has| |#2| (-1081)) (-4508 |has| |#2| (-6 -4508)) (-4511 . T)) +((-4501 |has| |#2| (-1079)) (-4502 |has| |#2| (-1079)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) NIL -(-246 -3106 R) +(-246 -3102 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4505 |has| |#2| (-1081)) (-4506 |has| |#2| (-1081)) (-4508 |has| |#2| (-6 -4508)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#2| (QUOTE (-376))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (-4043 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-240))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4508)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -3106 A B) +((-4501 |has| |#2| (-1079)) (-4502 |has| |#2| (-1079)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4039 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-240))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-247 -3102 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -930,7 +930,7 @@ NIL NIL (-250) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4504 . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-251 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -938,20 +938,20 @@ NIL NIL (-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-254 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL (-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4513 "*") |has| |#2| (-175)) (-4504 |has| |#2| (-571)) (-4509 |has| |#2| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-940)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-569)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) (-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -966,23 +966,23 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4508 -4043 (-3047 (|has| |#4| (-1081)) (|has| |#4| (-240))) (|has| |#4| (-6 -4508)) (-3047 (|has| |#4| (-1081)) (|has| |#4| (-928 (-1209))))) (-4505 |has| |#4| (-1081)) (-4506 |has| |#4| (-1081)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-817))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-872))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#4| (QUOTE (-376))) (-4043 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1081)))) (-4043 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-817))) (-4043 (|HasCategory| |#4| (QUOTE (-817))) (|HasCategory| |#4| (QUOTE (-872)))) (|HasCategory| |#4| (QUOTE (-872))) (|HasCategory| |#4| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#4| (QUOTE (-240))) (-4043 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#4| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-817))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-872))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-817))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-872))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-817))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-872))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -930) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1081)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1081))))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1081)))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasAttribute| |#4| (QUOTE -4508)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1081))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1081)))) (-12 (|HasCategory| |#4| (QUOTE (-1081))) (|HasCategory| |#4| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) +((-4504 -4039 (-3043 (|has| |#4| (-1079)) (|has| |#4| (-240))) (|has| |#4| (-6 -4504)) (-3043 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1207))))) (-4501 |has| |#4| (-1079)) (-4502 |has| |#4| (-1079)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-4039 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1079)))) (-4039 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (QUOTE (-815))) (-4039 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-240))) (-4039 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasAttribute| |#4| (QUOTE -4504)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4508 -4043 (-3047 (|has| |#3| (-1081)) (|has| |#3| (-240))) (|has| |#3| (-6 -4508)) (-3047 (|has| |#3| (-1081)) (|has| |#3| (-928 (-1209))))) (-4505 |has| |#3| (-1081)) (-4506 |has| |#3| (-1081)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#3| (QUOTE (-376))) (-4043 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081)))) (-4043 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-817))) (-4043 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (QUOTE (-872)))) (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-240))) (-4043 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -930) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1081))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasAttribute| |#3| (QUOTE -4508)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-4504 -4039 (-3043 (|has| |#3| (-1079)) (|has| |#3| (-240))) (|has| |#3| (-6 -4504)) (-3043 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1207))))) (-4501 |has| |#3| (-1079)) (-4502 |has| |#3| (-1079)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-4039 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4039 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4039 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-240))) (-4039 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasAttribute| |#3| (QUOTE -4504)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-240)))) (-262 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL (-263 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL (-264 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1023,15 +1023,15 @@ NIL (-273 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-239)))) +((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239)))) (-274 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) (-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1076,11 +1076,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-287 R -3581) +(-287 R -3577) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-288 R -3581) +(-288 R -3577) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1103,10 +1103,10 @@ NIL (-293 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133)))) +((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131)))) (-294 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4512 . T)) +((-4508 . T)) NIL (-295 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1127,18 +1127,18 @@ NIL (-299 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4512))) +((|HasAttribute| |#1| (QUOTE -4508))) (-300 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -2261 -4024 |exactQuo|) +(-301 S R |Mod| -2257 -4020 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-302) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4504 . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-303) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1150,16 +1150,16 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4508 -4043 (|has| |#1| (-1081)) (|has| |#1| (-487))) (-4505 |has| |#1| (-1081)) (-4506 |has| |#1| (-1081))) -((|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1081)))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1081)))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1144)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-748)))) +((-4504 -4039 (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4501 |has| |#1| (-1079)) (-4502 |has| |#1| (-1079))) +((|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746)))) (|HasCategory| |#1| (QUOTE (-485))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-310))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746)))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-746)))) (-306 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1167,16 +1167,16 @@ NIL (-309 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1081)))) +((|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-310) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-311 -3581 S) +(-311 -3577 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-312 E -3581) +(-312 E -3577) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1206,7 +1206,7 @@ NIL NIL (-319) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-320 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1216,7 +1216,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-322 -3581) +(-322 -3577) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1230,12 +1230,12 @@ NIL NIL (-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-940))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-872))) (-4043 (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-872)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-1184))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-940)))) (|HasCategory| (-1286 |#1| |#2| |#3| |#4|) (QUOTE (-147))))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1050))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-4039 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))))) (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4508 -4043 (-12 (|has| |#1| (-571)) (-4043 (|has| |#1| (-1081)) (|has| |#1| (-487)))) (|has| |#1| (-1081)) (|has| |#1| (-487))) (-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) ((-4513 "*") |has| |#1| (-571)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-571)) (-4503 |has| |#1| (-571))) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (QUOTE (-21))) (-4043 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (QUOTE (-1081))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1144)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1081)))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1081)))) (-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1081)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-21)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1144)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-25)))) (-4043 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1081))) (|HasCategory| $ (|%list| (QUOTE -1070) (QUOTE (-560))))) +((-4504 -4039 (-12 (|has| |#1| (-569)) (-4039 (|has| |#1| (-1079)) (|has| |#1| (-485)))) (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) ((-4509 "*") |has| |#1| (-569)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-569)) (-4499 |has| |#1| (-569))) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-4039 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-21)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25)))) (-4039 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558))))) (-327 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1244,7 +1244,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-329 R -3581) +(-329 R -3577) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1254,8 +1254,8 @@ NIL NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1266,8 +1266,8 @@ NIL NIL (-334 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| (-560) (QUOTE (-816)))) +((-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-814)))) (-335 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1275,26 +1275,26 @@ NIL (-336 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-793) (QUOTE (-816)))) +((|HasCategory| (-791) (QUOTE (-814)))) (-337 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175)))) (-338 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-340 S -3581) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-340 S -3577) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-381)))) -(-341 -3581) +(-341 -3577) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-342) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1312,7 +1312,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-346 -3581 UP UPUP R) +(-346 -3577 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1320,37 +1320,37 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-348 S -3581 UP UPUP R) +(-348 S -3577 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-349 -3581 UP UPUP R) +(-349 -3577 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-350 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-351 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-352 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1081))) (|HasCategory| $ (|%list| (QUOTE -1070) (QUOTE (-560))))) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558))))) (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| (-936 |#1|) (QUOTE (-147))) (|HasCategory| (-936 |#1|) (QUOTE (-381)))) (|HasCategory| (-936 |#1|) (QUOTE (-149))) (|HasCategory| (-936 |#1|) (QUOTE (-381))) (|HasCategory| (-936 |#1|) (QUOTE (-147)))) -(-354 S -3581 UP UPUP) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147)))) +(-354 S -3577 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376)))) -(-355 -3581 UP UPUP) +(-355 -3577 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4504 |has| (-421 |#2|) (-376)) (-4509 |has| (-421 |#2|) (-376)) (-4503 |has| (-421 |#2|) (-376)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 |has| (-419 |#2|) (-376)) (-4505 |has| (-419 |#2|) (-376)) (-4499 |has| (-419 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-356 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1358,16 +1358,16 @@ NIL NIL (-357 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| (-936 |#1|) (QUOTE (-147))) (|HasCategory| (-936 |#1|) (QUOTE (-381)))) (|HasCategory| (-936 |#1|) (QUOTE (-149))) (|HasCategory| (-936 |#1|) (QUOTE (-381))) (|HasCategory| (-936 |#1|) (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147)))) (-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-359 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-360 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1382,51 +1382,51 @@ NIL NIL (-363) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-364 R UP -3581) +(-364 R UP -3577) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-365 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| (-936 |#1|) (QUOTE (-147))) (|HasCategory| (-936 |#1|) (QUOTE (-381)))) (|HasCategory| (-936 |#1|) (QUOTE (-149))) (|HasCategory| (-936 |#1|) (QUOTE (-381))) (|HasCategory| (-936 |#1|) (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147)))) (-366 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-367 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -3581 GF) +(-370 -3577 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-371 -3581 FP FPP) +(-371 -3577 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL (-374 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4508 . T)) +((-4504 . T)) NIL (-375 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1434,7 +1434,7 @@ NIL NIL (-376) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-377 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1447,10 +1447,10 @@ NIL (-379 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-571)))) +((|HasCategory| |#2| (QUOTE (-569)))) (-380 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4508 |has| |#1| (-571)) (-4506 . T) (-4505 . T)) +((-4504 |has| |#1| (-569)) (-4502 . T) (-4501 . T)) NIL (-381) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1462,15 +1462,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376)))) (-383 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL (-384 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4512)) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133)))) +((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131)))) (-385 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4511 . T)) +((-4507 . T)) NIL (-386 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1478,7 +1478,7 @@ NIL NIL (-387 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4506 . T) (-4505 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T)) NIL (-388 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1487,14 +1487,14 @@ NIL (-389 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) +((|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-390 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4494 . T) (-4502 . T) (-4286 . T) (-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4490 . T) (-4498 . T) (-4282 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1506,11 +1506,11 @@ NIL NIL (-394 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) +((-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) (-395 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) ((|HasCategory| |#1| (QUOTE (-175)))) (-396) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1518,7 +1518,7 @@ NIL NIL (-397 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL (-398) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) @@ -1531,10 +1531,10 @@ NIL (-400 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-872)))) +((|HasCategory| |#1| (QUOTE (-870)))) (-401) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL (-402) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1546,3707 +1546,3699 @@ NIL NIL (-404 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL (-405) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-406 -3581 UP UPUP R) +(-406 -3577 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL (-407) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) -NIL -NIL -(-408 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) -NIL -NIL -(-409) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410) +(-408) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-411) +(-409) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-412 -4056 |returnType| -1549 |symbols|) +(-410 -4052 |returnType| -1547 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-413 -3581 UP) +(-411 -3577 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-414 R) +(-412 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-415 S) +(-413 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-416) +(-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-417 S) +(-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4494)) (|HasAttribute| |#1| (QUOTE -4502))) -(-418) +((|HasAttribute| |#1| (QUOTE -4490)) (|HasAttribute| |#1| (QUOTE -4498))) +(-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4286 . T) (-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4282 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-419 R) +(-417 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1254))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1254)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) -(-420 R S) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1252))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +(-418 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-421 S) +(-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4498 -12 (|has| |#1| (-6 -4509)) (|has| |#1| (-466)) (|has| |#1| (-6 -4498))) (-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-872)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1184))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4498)) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-422 A B) +((-4494 -12 (|has| |#1| (-6 -4505)) (|has| |#1| (-464)) (|has| |#1| (-6 -4494))) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-870)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4494)) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-420 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-423 S R UP) +(-421 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-424 R UP) +(-422 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-425 A S) +(-423 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) -(-426 S) +((|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) +(-424 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-427 R -3581 UP A) +(-425 R -3577 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4508 . T)) +((-4504 . T)) NIL -(-428 R1 F1 U1 A1 R2 F2 U2 A2) +(-426 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-429 R -3581 UP A |ibasis|) +(-427 R -3577 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -1070) (|devaluate| |#2|)))) -(-430 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -1068) (|devaluate| |#2|)))) +(-428 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-431 S R) +(-429 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-432 R) +(-430 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4508 |has| |#1| (-571)) (-4506 . T) (-4505 . T)) +((-4504 |has| |#1| (-569)) (-4502 . T) (-4501 . T)) NIL -(-433 R) +(-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-434 S R) +(-432 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) -(-435 R) +((|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1142))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) +(-433 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4508 -4043 (|has| |#1| (-1081)) (|has| |#1| (-487))) (-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) ((-4513 "*") |has| |#1| (-571)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-571)) (-4503 |has| |#1| (-571))) +((-4504 -4039 (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) ((-4509 "*") |has| |#1| (-569)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-569)) (-4499 |has| |#1| (-569))) NIL -(-436 R A S B) +(-434 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-437 R FE |x| |cen|) +(-435 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-438 R FE |Expon| UPS TRAN |x|) +(-436 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-439 A S) +(-437 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-381)))) -(-440 S) +((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381)))) +(-438 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4511 . T) (-4501 . T) (-4512 . T)) +((-4507 . T) (-4497 . T) (-4508 . T)) NIL -(-441 S A R B) +(-439 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-442 R -3581) +(-440 R -3577) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-443 R E) +(-441 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4498 -12 (|has| |#1| (-6 -4498)) (|has| |#2| (-6 -4498))) (-4505 . T) (-4506 . T) (-4508 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4498)) (|HasAttribute| |#2| (QUOTE -4498)))) -(-444 R -3581) +((-4494 -12 (|has| |#1| (-6 -4494)) (|has| |#2| (-6 -4494))) (-4501 . T) (-4502 . T) (-4504 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4494)) (|HasAttribute| |#2| (QUOTE -4494)))) +(-442 R -3577) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-445 R -3581) +(-443 R -3577) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-446 R -3581) +(-444 R -3577) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-447 R -3581) +(-445 R -3577) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-448) +(-446) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-449 R -3581 UP) +(-447 R -3577 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-48))))) -(-450) +((|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-48))))) +(-448) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-451) +(-449) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-452 |f|) +(-450 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-453) +(-451) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-454) +(-452) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-455) +(-453) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-456 UP) +(-454 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-457 R UP -3581) +(-455 R UP -3577) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-458 R UP) +(-456 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-459 R) +(-457 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-418)))) -(-460) +((|HasCategory| |#1| (QUOTE (-416)))) +(-458) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-461 |Dom| |Expon| |VarSet| |Dpol|) +(-459 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL ((|HasCategory| |#1| (QUOTE (-376)))) -(-462 |Dom| |Expon| |VarSet| |Dpol|) +(-460 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-463 |Dom| |Expon| |VarSet| |Dpol|) +(-461 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-464 |Dom| |Expon| |VarSet| |Dpol|) +(-462 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-465 S) +(-463 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-466) +(-464) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-467 R |n| |ls| |gamma|) +(-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4508 |has| (-421 (-976 |#1|)) (-571)) (-4506 . T) (-4505 . T)) -((|HasCategory| (-421 (-976 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-421 (-976 |#1|)) (QUOTE (-571)))) -(-468 |vl| R E) +((-4504 |has| (-419 (-974 |#1|)) (-569)) (-4502 . T) (-4501 . T)) +((|HasCategory| (-419 (-974 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-419 (-974 |#1|)) (QUOTE (-569)))) +(-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4513 "*") |has| |#2| (-175)) (-4504 |has| |#2| (-571)) (-4509 |has| |#2| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-940)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-469 R BP) +(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-569)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-470 OV E S R P) +(-468 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-471 E OV R P) +(-469 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-472 R) +(-470 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-473 R FE) +(-471 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-474 RP TP) +(-472 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-475 |vl| R IS E |ff| P) +(-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-476 E V R P Q) +(-474 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-477 R E |VarSet| P) +(-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-478 S R E) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-479 R E) +(-477 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-480) +(-478) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-481) +(-479) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-482) +(-480) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-483 S R E) +(-481 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-484 R E) +(-482 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-485 |lv| -3581 R) +(-483 |lv| -3577 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-486 S) +(-484 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-487) +(-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4508 . T)) +((-4504 . T)) NIL -(-488 |Coef| |var| |cen|) +(-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) -(-489 |Key| |Entry| |Tbl| |dent|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) -(-490 R E V P) +((-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) +(-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-491) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-492) +(-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-493 |Key| |Entry| |hashfn|) +(-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) -(-494) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) +(-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-495 |vl| R) +(-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4513 "*") |has| |#2| (-175)) (-4504 |has| |#2| (-571)) (-4509 |has| |#2| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-940)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-496 -3106 S) +(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-569)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-494 -3102 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4505 |has| |#2| (-1081)) (-4506 |has| |#2| (-1081)) (-4508 |has| |#2| (-6 -4508)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#2| (QUOTE (-376))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (-4043 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-240))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4508)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-497) +((-4501 |has| |#2| (-1079)) (-4502 |has| |#2| (-1079)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4039 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-240))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-498 S) +(-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-499 -3581 UP UPUP R) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -3577 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-500 BP) +(-498 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-501) +(-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-560) (QUOTE (-940))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1052))) (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872))) (-4043 (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872)))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1184))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (|HasCategory| (-560) (QUOTE (-147))))) -(-502 A S) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4039 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147))))) +(-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4511)) (|HasAttribute| |#1| (QUOTE -4512)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) -(-503 S) +((|HasAttribute| |#1| (QUOTE -4507)) (|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) +(-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-504 S) +(-502 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-505) +(-503) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-506 S) +(-504 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-507) +(-505) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-508 -3581 UP |AlExt| |AlPol|) +(-506 -3577 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-509) +(-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| $ (QUOTE (-1081))) (|HasCategory| $ (|%list| (QUOTE -1070) (QUOTE (-560))))) -(-510 S |mn|) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558))))) +(-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-511 R |mnRow| |mnCol|) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-512 K R UP) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-513 R UP -3581) +(-511 R UP -3577) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-514 |mn|) +(-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1133))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-872))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-114) (QUOTE (-1133))) (|HasCategory| (-114) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-114) (QUOTE (-102)))) -(-515 K R UP L) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-114) (QUOTE (-102)))) +(-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-516) +(-514) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-517 R Q A B) +(-515 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-518 -3581 |Expon| |VarSet| |DPoly|) +(-516 -3577 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-1209))))) -(-519 |vl| |nv|) +((|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-1207))))) +(-517 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-520) +(-518) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-521 A S) +(-519 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) -(-522 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) -(-523 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-521 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-524 A S) +(-522 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) -(-525 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) -(-526 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-524 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) -(-527 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-525 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-528 A B) +(-526 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-529 S E |un|) +(-527 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-816)))) -(-530 S |mn|) +((|HasCategory| |#2| (QUOTE (-814)))) +(-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-531) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-532 |p| |n|) +(-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) -(-533 R |mnRow| |mnCol| |Row| |Col|) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (|HasCategory| (-593 |#1|) (QUOTE (-147))) (|HasCategory| (-593 |#1|) (QUOTE (-381)))) (|HasCategory| (-593 |#1|) (QUOTE (-149))) (|HasCategory| (-593 |#1|) (QUOTE (-381))) (|HasCategory| (-593 |#1|) (QUOTE (-147)))) +(-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-534 S |mn|) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-535 R |Row| |Col| M) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4512))) -(-536 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4508))) +(-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4512))) -(-537 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4508))) +(-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4513 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-538) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-539) +(-537) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-540 S) +(-538 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-541) +(-539) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-542 GF) +(-540 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-543) +(-541) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-544 R) +(-542 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-545 |Varset|) +(-543 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| (-793) (QUOTE (-1133))))) -(-546 K -3581 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-791) (QUOTE (-1131))))) +(-544 K -3577 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-547) +(-545) NIL NIL NIL -(-548) +(-546) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-549) +(-547) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-550 R) +(-548 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-551 |Coef| UTS) +(-549 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-552 K -3581 |Par|) +(-550 K -3577 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-553 R BP |pMod| |nextMod|) +(-551 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-554 OV E R P) +(-552 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-555 K UP |Coef| UTS) +(-553 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-556 |Coef| UTS) +(-554 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-557 R UP) +(-555 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-558 S) +(-556 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-559) +(-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4509 . T) (-4510 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-560) +(-558) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \\spad{nothing}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4493 . T) (-4499 . T) (-4503 . T) (-4498 . T) (-4509 . T) (-4510 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4489 . T) (-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-561) +(-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-562) +(-560) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-563) +(-561) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-564) +(-562) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-565 |Key| |Entry| |addDom|) +(-563 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) -(-566 R -3581) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) +(-564 R -3577) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-567 R0 -3581 UP UPUP R) +(-565 R0 -3577 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-568) +(-566) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-569 R) +(-567 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4286 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4282 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-570 S) +(-568 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-571) +(-569) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-572 R -3581) +(-570 R -3577) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-573 I) +(-571 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-574) +(-572) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-575 R -3581 L) +(-573 R -3577 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) -(-576) +((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|)))) +(-574) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-577 -3581 UP UPUP R) +(-575 -3577 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-578 -3581 UP) +(-576 -3577 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-579) +(-577) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-580 R -3581 L) +(-578 R -3577 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) -(-581 R -3581) +((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|)))) +(-579 R -3577) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-649))))) -(-582 -3581 UP) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-647))))) +(-580 -3577 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-583 S) +(-581 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-584 -3581) +(-582 -3577) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-585 R) +(-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4286 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4282 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-586) +(-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-587 R -3581) +(-585 R -3577) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-649))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-571)))) -(-588 -3581 UP) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-569)))) +(-586 -3577 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-589 R -3581) +(-587 R -3577) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-590) +(-588) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-591) +(-589) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-592) +(-590) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-593) +(-591) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-594 |p| |unBalanced?|) +(-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-595 |p|) +(-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) -(-596) +(-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-597 -3581) +(-595 -3577) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-1209))))) -(-598 E -3581) +((-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-1207))))) +(-596 E -3577) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-599 R -3581) +(-597 R -3577) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-600) +(-598) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-601 I) +(-599 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-602 GF) +(-600 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-603 R) +(-601 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-149)))) -(-604) +(-602) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-605 R E V P TS) +(-603 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-606) +(-604) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-607 |mn|) +(-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4043 (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133)))) (|HasCategory| (-146) (QUOTE (-872))) (-4043 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-608 E V R P) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4039 (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-870))) (-4039 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +(-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-609 |Coef|) +(-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) -(-610 |Coef|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558)))))) +(-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4513 "*") |has| |#1| (-571)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-571)))) -(-611) +(((-4509 "*") |has| |#1| (-569)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-569)))) +(-609) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-612 A B) +(-610 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-613 A B C) +(-611 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-614 R -3581 FG) +(-612 R -3577 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-615 S) +(-613 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-616 R |mn|) +(-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-617 S |Index| |Entry|) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4512)) (|HasCategory| |#2| (QUOTE (-872))) (|HasAttribute| |#1| (QUOTE -4511)) (|HasCategory| |#3| (QUOTE (-1133)))) -(-618 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-870))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#3| (QUOTE (-1131)))) +(-616 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-619) +(-617) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-620 R A) +(-618 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4508 -4043 (-3047 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4506 . T) (-4505 . T)) -((-4043 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-621) +((-4504 -4039 (-3043 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4502 . T) (-4501 . T)) +((-4039 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +(-619) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-622) +(-620) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-623) +(-621) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-624) +(-622) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-625) +(-623) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-626) +(-624) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-627 |Entry|) +(-625 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (QUOTE (-1191))) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| (-1191) (QUOTE (-872))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-102)))) -(-628 S |Key| |Entry|) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-102)))) +(-626 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-629 |Key| |Entry|) +(-627 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4512 . T)) +((-4508 . T)) NIL -(-630 S) +(-628 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) -(-631 R S) +((|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) +(-629 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-632 S) +(-630 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-633 S) +(-631 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-634 -3581 UP) +(-632 -3577 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-635 S) +(-633 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-636) +(-634) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-637 S) +(-635 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-638 A R S) +(-636 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-871)))) -(-639 S R) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-869)))) +(-637 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-640 R) +(-638 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4508 . T)) +((-4504 . T)) NIL -(-641 R -3581) +(-639 R -3577) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-642 R UP) +(-640 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4506 . T) (-4505 . T) ((-4513 "*") . T) (-4504 . T) (-4508 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) -(-643 R E V P TS ST) +((-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4500 . T) (-4504 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) +(-641 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-644 OV E Z P) +(-642 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-645) +(-643) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-646 |VarSet| R |Order|) +(-644 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4508 . T)) +((-4504 . T)) NIL -(-647 R |ls|) +(-645 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-648 R -3581) +(-646 R -3577) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-649) +(-647) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-650 |lv| -3581) +(-648 |lv| -3577) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-651) +(-649) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (QUOTE (-1191))) (|%list| (QUOTE |:|) (QUOTE -2300) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1191) (QUOTE (-872))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (QUOTE (-1133)))) -(-652 R A) +((-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2296) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-870))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (QUOTE (-1131)))) +(-650 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4508 -4043 (-3047 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4506 . T) (-4505 . T)) -((-4043 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-653 S R) +((-4504 -4039 (-3043 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4502 . T) (-4501 . T)) +((-4039 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +(-651 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-654 R) +(-652 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4506 . T) (-4505 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T)) NIL -(-655 R FE) +(-653 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-656 R) +(-654 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-657 |vars|) +(-655 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-658 S R) +(-656 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3045 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) -(-659 K B) +((-3041 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +(-657 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4506 . T) (-4505 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| (-657 |#2|) (QUOTE (-1133))))) -(-660 R) +((-4502 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-655 |#2|) (QUOTE (-1131))))) +(-658 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-661 K B) +(-659 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-662 S) +(-660 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-663 S) +(-661 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-664 A B) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-662 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-665 A B) +(-663 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-666 A B C) +(-664 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-667 T$) +(-665 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-668 S) +(-666 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-669 S) +(-667 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-670 R) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-668 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-671 S E |un|) +(-669 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-672 A S) +(-670 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4512))) -(-673 S) +((|HasAttribute| |#1| (QUOTE -4508))) +(-671 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-674 M R S) +(-672 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-814)))) -(-675 R -3581 L) +((-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (QUOTE (-812)))) +(-673 R -3577 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-676 A -2902) +(-674 A -2898) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-677 A) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-675 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-678 A M) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-676 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-679 S A) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-677 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-680 A) +(-678 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-681 -3581 UP) +(-679 -3577 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-682 A L) +(-680 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-683 S) +(-681 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-684) +(-682) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-685 R) +(-683 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-686 |VarSet| R) +(-684 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4506 . T) (-4505 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T)) ((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175)))) -(-687 A S) +(-685 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-688 S) +(-686 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-689 -3581 |Row| |Col| M) +(-687 -3577 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-690 -3581) +(-688 -3577) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-691 R E OV P) +(-689 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-692 |n| R) +(-690 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4508 . T) (-4511 . T) (-4505 . T) (-4506 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4513 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-4043 (|HasAttribute| |#2| (QUOTE (-4513 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-693) +((-4504 . T) (-4507 . T) (-4501 . T) (-4502 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4509 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))) (-4039 (|HasAttribute| |#2| (QUOTE (-4509 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-691) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-694 |VarSet|) +(-692 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-695 A S) +(-693 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-696 S) +(-694 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-697 R) +(-695 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-698) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-696) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-699 |VarSet|) +(-697 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-700 A) +(-698 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-701 A C) +(-699 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-702 A B C) +(-700 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-703) +(-701) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-704 A) +(-702 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-705 A C) +(-703 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-706 A B C) +(-704 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-707 S R |Row| |Col|) +(-705 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4513 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571)))) -(-708 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569)))) +(-706 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL -(-709 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-707 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-710 R |Row| |Col| M) +(-708 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571)))) -(-711 R) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569)))) +(-709 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4511 . T) (-4512 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4513 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-712 R) +((-4507 . T) (-4508 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-710 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-713 T$) +(-711 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-714 S -3581 FLAF FLAS) +(-712 S -3577 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-715 R Q) +(-713 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-716) +(-714) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4504 . T) (-4509 |has| (-721) (-376)) (-4503 |has| (-721) (-376)) (-1502 . T) (-4510 |has| (-721) (-6 -4510)) (-4507 |has| (-721) (-6 -4507)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-4043 (|HasCategory| (-721) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| (-721) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-4043 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (-4043 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1052))) (|HasCategory| (-721) (QUOTE (-1235))) (-12 (|HasCategory| (-721) (QUOTE (-1034))) (|HasCategory| (-721) (QUOTE (-1235)))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (QUOTE (-376)))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-940)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-940))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1092))) (|HasCategory| (-721) (QUOTE (-1235)))) (|HasCategory| (-721) (QUOTE (-1092))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (QUOTE (-376)))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-4043 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| (-721) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4510)) (|HasAttribute| (-721) (QUOTE -4507)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (|%list| (QUOTE -930) (QUOTE (-1209)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (QUOTE (-147)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-940)))) (|HasCategory| (-721) (QUOTE (-363))))) -(-717 S) +((-4500 . T) (-4505 |has| (-719) (-376)) (-4499 |has| (-719) (-376)) (-1500 . T) (-4506 |has| (-719) (-6 -4506)) (-4503 |has| (-719) (-6 -4503)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-719) (QUOTE (-149))) (|HasCategory| (-719) (QUOTE (-147))) (|HasCategory| (-719) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-381))) (|HasCategory| (-719) (QUOTE (-376))) (-4039 (|HasCategory| (-719) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-239))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4039 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (|%list| (QUOTE -298) (QUOTE (-719)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -321) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-719) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (-4039 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-719) (QUOTE (-1050))) (|HasCategory| (-719) (QUOTE (-1233))) (-12 (|HasCategory| (-719) (QUOTE (-1032))) (|HasCategory| (-719) (QUOTE (-1233)))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-376)))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-938)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-938))))) (|HasCategory| (-719) (QUOTE (-557))) (-12 (|HasCategory| (-719) (QUOTE (-1090))) (|HasCategory| (-719) (QUOTE (-1233)))) (|HasCategory| (-719) (QUOTE (-1090))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-376)))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (QUOTE (-239)))) (-4039 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-569)))) (-12 (|HasCategory| (-719) (QUOTE (-239))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| (-719) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-569))) (|HasAttribute| (-719) (QUOTE -4506)) (|HasAttribute| (-719) (QUOTE -4503)) (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-147)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-363))))) +(-715 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4512 . T)) +((-4508 . T)) NIL -(-718 U) +(-716 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-719) +(-717) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-720 OV E -3581 PG) +(-718 OV E -3577 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-721) +(-719) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4286 . T) (-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4282 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-722 R) +(-720 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-723) +(-721) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4510 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4506 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-724 S D1 D2 I) +(-722 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-725 S) +(-723 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-726 S) +(-724 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-727 S T$) +(-725 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-728 S -3156 I) +(-726 S -3152 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-729 E OV R P) +(-727 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-730 R) +(-728 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-731 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-729 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-732) +(-730) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-733 R |Mod| -2261 -4024 |exactQuo|) +(-731 R |Mod| -2257 -4020 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-734 R |Rep|) +(-732 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1184))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-735 IS E |ff|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-733 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-736 R M) +(-734 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) (-4508 . T)) +((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-737 R |Mod| -2261 -4024 |exactQuo|) +(-735 R |Mod| -2257 -4020 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4508 . T)) +((-4504 . T)) NIL -(-738 S R) +(-736 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-739 R) +(-737 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-740 -3581) +(-738 -3577) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4508 . T)) +((-4504 . T)) NIL -(-741 S) +(-739 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-742) +(-740) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-743 S) +(-741 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-744) +(-742) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-745 S R UP) +(-743 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381)))) -(-746 R UP) +(-744 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4504 |has| |#1| (-376)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 |has| |#1| (-376)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-747 S) +(-745 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-748) +(-746) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-749 -3581 UP) +(-747 -3577 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-750 |VarSet| E1 E2 R S PR PS) +(-748 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-751 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-749 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-752 E OV R PPR) +(-750 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-753 |vl| R) +(-751 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4513 "*") |has| |#2| (-175)) (-4504 |has| |#2| (-571)) (-4509 |has| |#2| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-940)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-889 |#1|) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-754 E OV R PRF) +(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-569)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-752 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-755 E OV R P) +(-753 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-756 R S M) +(-754 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-757 R M) +(-755 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) (-4508 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-872)))) -(-758 S) +((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-870)))) +(-756 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4511 . T) (-4501 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-759 S) +((-4507 . T) (-4497 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-757 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4501 . T) (-4512 . T)) +((-4497 . T) (-4508 . T)) NIL -(-760) +(-758) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-761 S) +(-759 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-762 |Coef| |Var|) +(-760 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4506 . T) (-4505 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-763 OV E R P) +(-761 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-764 E OV R P) +(-762 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-765 S R) +(-763 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-766 R) +(-764 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-767) +(-765) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-768) +(-766) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-769) +(-767) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-770) +(-768) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-771) +(-769) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (BDF),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-772) +(-770) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-773) +(-771) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-774) +(-772) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-775) +(-773) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-776) +(-774) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the QR factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the QR factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-777) +(-775) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real,{} square matrices,{} using the QZ algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-778) +(-776) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A x=b,{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-779) +(-777) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A X=B,{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-780) +(-778) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} ln(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-781) +(-779) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-782 S) +(-780 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-783) +(-781) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-784 S) +(-782 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-785) +(-783) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-786 |Par|) +(-784 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-787 -3581) +(-785 -3577) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-788 P -3581) +(-786 P -3577) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-789 T$) +(-787 T$) NIL NIL NIL -(-790 UP -3581) +(-788 UP -3577) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-791) +(-789) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-792 R) +(-790 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-793) +(-791) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4513 "*") . T)) +(((-4509 "*") . T)) NIL -(-794 R -3581) +(-792 R -3577) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-795) +(-793) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-796 S) +(-794 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-797 R |PolR| E |PolE|) +(-795 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-798 R E V P TS) +(-796 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-799 -3581 |ExtF| |SUEx| |ExtP| |n|) +(-797 -3577 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-800 BP E OV R P) +(-798 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-801 |Par|) +(-799 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-802 R |VarSet|) +(-800 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))) (-3045 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))) (-3045 (|HasCategory| |#1| (QUOTE (-559)))) (-3045 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))) (-3045 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560))))) (-3045 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1209)))) (-3045 (|HasCategory| |#1| (|%list| (QUOTE -1023) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-803 R) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-3041 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-3041 (|HasCategory| |#1| (QUOTE (-557)))) (-3041 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-3041 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558))))) (-3041 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-3041 (|HasCategory| |#1| (|%list| (QUOTE -1021) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-801 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1184))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-804 R S) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-802 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-805 R) +(-803 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) -(-806 R E V P) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) +(-804 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-807 S) +(-805 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-175)))) -(-808) +((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-175)))) +(-806) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-809) +(-807) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-810) +(-808) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-811) +(-809) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-812 |Curve|) +(-810 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-813 S) +(-811 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-814) +(-812) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-815 S) +(-813 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-816) +(-814) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-817) +(-815) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-818) +(-816) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-819 S R) +(-817 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-381)))) -(-820 R) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381)))) +(-818 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-821) +(-819) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-822 R) +(-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-4043 (|HasCategory| (-1028 |#1|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-1028 |#1|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1028 |#1|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1028 |#1|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) -(-823 -4043 R OS S) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-4039 (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) +(-821 -4039 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-824) +(-822) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-825 R -3581 L) +(-823 R -3577 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-826 R -3581) +(-824 R -3577) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-827) +(-825) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-828 R -3581) +(-826 R -3577) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-829) +(-827) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-830 -3581 UP UPUP R) +(-828 -3577 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-831 -3581 UP L LQ) +(-829 -3577 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-832) +(-830) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-833 -3581 UP L LQ) +(-831 -3577 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-834 -3581 UP) +(-832 -3577 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-835 -3581 L UP A LO) +(-833 -3577 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-836 -3581 UP) +(-834 -3577 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-837 -3581 LO) +(-835 -3577 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-838 -3581 LODO) +(-836 -3577 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-839 -3106 S |f|) +(-837 -3102 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4505 |has| |#2| (-1081)) (-4506 |has| |#2| (-1081)) (-4508 |has| |#2| (-6 -4508)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#2| (QUOTE (-376))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (-4043 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-240))) (-4043 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4508)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-840 R) +((-4501 |has| |#2| (-1079)) (-4502 |has| |#2| (-1079)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4039 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-240))) (-4039 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-838 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-842 (-1209)) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-842 (-1209)) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-842 (-1209)) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-842 (-1209)) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-842 (-1209)) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-841 |Kernels| R |var|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-839 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4513 "*") |has| |#2| (-376)) (-4504 |has| |#2| (-376)) (-4509 |has| |#2| (-376)) (-4503 |has| |#2| (-376)) (-4508 . T) (-4506 . T) (-4505 . T)) +(((-4509 "*") |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 |has| |#2| (-376)) (-4499 |has| |#2| (-376)) (-4504 . T) (-4502 . T) (-4501 . T)) ((|HasCategory| |#2| (QUOTE (-376)))) -(-842 S) +(-840 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-843 S) +(-841 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-872)))) -(-844) +((|HasCategory| |#1| (QUOTE (-870)))) +(-842) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-845) +(-843) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath XML encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-846) +(-844) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-847) +(-845) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from CD \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \"r\",{} \"w\" or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-848) +(-846) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath XML encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-849) +(-847) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-850) +(-848) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown CD or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown CD error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-851 R) +(-849 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-852 P R) +(-850 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240)))) -(-853) +(-851) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from CD \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the CDs supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-854 S) +(-852 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4511 . T) (-4501 . T) (-4512 . T)) +((-4507 . T) (-4497 . T) (-4508 . T)) NIL -(-855) +(-853) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-856 R) +(-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4508 |has| |#1| (-871))) -((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-21))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) -(-857 R S) +((-4504 |has| |#1| (-869))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-855 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-858 R) +(-856 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) (-4508 . T)) +((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-859 A S) +(-857 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-860 S) +(-858 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-861) +(-859) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-862) +(-860) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-863) +(-861) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-864) +(-862) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-865) +(-863) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-866 R) +(-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4508 |has| |#1| (-871))) -((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-21))) (-4043 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) -(-867 R S) +((-4504 |has| |#1| (-869))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-4039 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-865 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-868) +(-866) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-869 -3106 S) +(-867 -3102 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-870) +(-868) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-871) +(-869) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-4508 . T)) +((-4504 . T)) NIL -(-872) +(-870) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-873 T$ |f|) +(-871 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) -(-874 S) +((|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) +(-872 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-875) +(-873) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-876 S R) +(-874 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175)))) -(-877 R) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175)))) +(-875 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-878 R C) +(-876 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) -(-879 R |sigma| -3748) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) +(-877 R |sigma| -3744) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-880 |x| R |sigma| -3748) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-878 |x| R |sigma| -3744) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) -(-881 R) +((-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376)))) +(-879 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) -(-882) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) +(-880) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-883) +(-881) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-884) +(-882) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-885 S) +(-883 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-886) +(-884) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-887) +(-885) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-888) +(-886) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-889 |VariableList|) +(-887 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-890) +(-888) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-891 R |vl| |wl| |wtlevel|) +(-889 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) (-4508 . T)) +((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-892 R PS UP) +(-890 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-893 R |x| |pt|) +(-891 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-894 |p|) +(-892 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-895 |p|) +(-893 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-896 |p|) +(-894 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-894 |#1|) (QUOTE (-940))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-149))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-894 |#1|) (QUOTE (-1052))) (|HasCategory| (-894 |#1|) (QUOTE (-844))) (|HasCategory| (-894 |#1|) (QUOTE (-872))) (-4043 (|HasCategory| (-894 |#1|) (QUOTE (-844))) (|HasCategory| (-894 |#1|) (QUOTE (-872)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-894 |#1|) (QUOTE (-1184))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-894 |#1|) (QUOTE (-239))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-894 |#1|) (QUOTE (-240))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -894) (|devaluate| |#1|)) (|%list| (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (QUOTE (-319))) (|HasCategory| (-894 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-940)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))))) -(-897 |p| PADIC) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-892 |#1|) (QUOTE (-938))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-149))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-892 |#1|) (QUOTE (-1050))) (|HasCategory| (-892 |#1|) (QUOTE (-842))) (|HasCategory| (-892 |#1|) (QUOTE (-870))) (-4039 (|HasCategory| (-892 |#1|) (QUOTE (-842))) (|HasCategory| (-892 |#1|) (QUOTE (-870)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (QUOTE (-1182))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (QUOTE (-239))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (QUOTE (-240))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -892) (|devaluate| |#1|)) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (QUOTE (-319))) (|HasCategory| (-892 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-938)))) (|HasCategory| (-892 |#1|) (QUOTE (-147))))) +(-895 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-872))) (-4043 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-872)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1184))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-898 S T$) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870))) (-4039 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-896 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-1133))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))))) -(-899) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))))) +(-897) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-900) +(-898) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-901) +(-899) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-902 CF1 CF2) +(-900 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-903 |ComponentFunction|) +(-901 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-904 CF1 CF2) +(-902 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-905 |ComponentFunction|) +(-903 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-906) +(-904) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-907 CF1 CF2) +(-905 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-908 |ComponentFunction|) +(-906 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-909) +(-907) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-910 R) +(-908 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-911 R S L) +(-909 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-912 S) +(-910 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-913 |Base| |Subject| |Pat|) +(-911 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3045 (|HasCategory| |#2| (QUOTE (-1081)))) (-3045 (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209)))))) (-12 (|HasCategory| |#2| (QUOTE (-1081))) (-3045 (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209))))) -(-914 R S) +((-12 (-3041 (|HasCategory| |#2| (QUOTE (-1079)))) (-3041 (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-3041 (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) +(-912 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-915 R A B) +(-913 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-916 R) +(-914 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-917 R -3156) +(-915 R -3152) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-918 R S) +(-916 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-919 |VarSet|) +(-917 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-920 UP R) +(-918 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-921 A T$ S) +(-919 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-922 T$ S) +(-920 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-923) +(-921) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-924 UP -3581) +(-922 UP -3577) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-925) +(-923) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **"))) NIL NIL -(-926) +(-924) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-927 R S) +(-925 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-928 S) +(-926 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4508 . T)) +((-4504 . T)) NIL -(-929 A S) +(-927 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-930 S) +(-928 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-931 S) +(-929 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-932 S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-930 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4508 . T)) -((-4043 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-872)))) -(-933 |n| R) +((-4504 . T)) +((-4039 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-870)))) +(-931 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-934 S) +(-932 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4508 . T)) +((-4504 . T)) NIL -(-935 S) +(-933 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-936 |p|) +(-934 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) ((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) -(-937 R E |VarSet| S) +(-935 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-938 R S) +(-936 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-939 S) +(-937 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-940) +(-938) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-941 R0 -3581 UP UPUP R) +(-939 R0 -3577 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-942 UP UPUP R) +(-940 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-943 UP UPUP) +(-941 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-944 R) +(-942 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-945 R) +(-943 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-946 E OV R P) +(-944 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-947) +(-945) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-948 -3581) +(-946 -3577) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-949) +(-947) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4513 "*") . T)) +(((-4509 "*") . T)) NIL -(-950 R) +(-948 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-951) +(-949) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-952 |xx| -3581) +(-950 |xx| -3577) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-953 -3581 P) +(-951 -3577 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-954 R |Var| |Expon| GR) +(-952 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-955) +(-953) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-956 S) +(-954 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-957) +(-955) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-958) +(-956) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-959) +(-957) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-960 R -3581) +(-958 R -3577) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-961 S A B) +(-959 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-962 S R -3581) +(-960 S R -3577) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-963 I) +(-961 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-964 S E) +(-962 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-965 S R L) +(-963 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-966 S E V R P) +(-964 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -912) (|devaluate| |#1|)))) -(-967 -3156) +((|HasCategory| |#3| (|%list| (QUOTE -910) (|devaluate| |#1|)))) +(-965 -3152) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-968 R -3581 -3156) +(-966 R -3577 -3152) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-969 S R Q) +(-967 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-970 S) +(-968 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-971 S R P) +(-969 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-972) +(-970) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-973 R) +(-971 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-974 |lv| R) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-972 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-975 |TheField| |ThePols|) +(-973 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-871)))) -(-976 R) +((|HasCategory| |#1| (QUOTE (-869)))) +(-974 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1209) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1209) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1209) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1209) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1209) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-977 R S) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1207) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1207) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1207) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1207) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1207) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-975 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-978 |x| R) +(-976 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-979 S R E |VarSet|) +(-977 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-940))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) -(-980 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-938))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) +(-978 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-981 E V R P -3581) +(-979 E V R P -3577) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-982 E |Vars| R P S) +(-980 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-983 E V R P -3581) +(-981 E V R P -3577) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-466)))) -(-984) +((|HasCategory| |#3| (QUOTE (-464)))) +(-982) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-985) +(-983) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-986 R E) +(-984 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4509))) -(-987 R L) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4505))) +(-985 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-988 S) +(-986 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-989 A B) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-987 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-990) +(-988) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-991 -3581) +(-989 -3577) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-992 I) +(-990 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-993) +(-991) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-994 A B) +(-992 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4508 -12 (|has| |#2| (-487)) (|has| |#1| (-487)))) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-872))))) (-12 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-817)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-872))))) -(-995) +((-4504 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) +(-993) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-996 T$) +(-994 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-997 T$) +(-995 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-998 S T$) +(-996 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-999) +(-997) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-1000 S) +(-998 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL -(-1001 R |polR|) +(-999 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-466)))) -(-1002) +((|HasCategory| |#1| (QUOTE (-464)))) +(-1000) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1003) +(-1001) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-1004 S |Coef| |Expon| |Var|) +(-1002 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-1005 |Coef| |Expon| |Var|) +(-1003 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1006) +(-1004) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-1007 S R E |VarSet| P) +(-1005 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-571)))) -(-1008 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-569)))) +(-1006 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4511 . T)) +((-4507 . T)) NIL -(-1009 R E V P) +(-1007 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-466)))) -(-1010 K) +((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-464)))) +(-1008 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1011 |VarSet| E RC P) +(-1009 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1012 R) +(-1010 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1013 R1 R2) +(-1011 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1014 R) +(-1012 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1015 K) +(-1013 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1016 R E OV PPR) +(-1014 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1017 K R UP -3581) +(-1015 K R UP -3577) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1018 R |Var| |Expon| |Dpoly|) +(-1016 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319))))) -(-1019 |vl| |nv|) +(-1017 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1020 R E V P TS) +(-1018 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1021) +(-1019) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1022 A S) +(-1020 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1184)))) -(-1023 S) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1182)))) +(-1021 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1024 A B R S) +(-1022 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1025 |n| K) +(-1023 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1026) +(-1024) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1027 S) +(-1025 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL -(-1028 R) +(-1026 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4504 |has| |#1| (-302)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-559)))) -(-1029 S R) +((-4500 |has| |#1| (-302)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-557)))) +(-1027 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-302)))) -(-1030 R) +((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-302)))) +(-1028 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4504 |has| |#1| (-302)) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 |has| |#1| (-302)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1031 QR R QS S) +(-1029 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1032 S) +(-1030 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1033 S) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1031 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1034) +(-1032) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1035 -3581 UP UPUP |radicnd| |n|) +(-1033 -3577 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4504 |has| (-421 |#2|) (-376)) (-4509 |has| (-421 |#2|) (-376)) (-4503 |has| (-421 |#2|) (-376)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-4043 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-363))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -930) (QUOTE (-1209)))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-4043 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -928) (QUOTE (-1209)))))) -(-1036 |bb|) +((-4500 |has| (-419 |#2|) (-376)) (-4505 |has| (-419 |#2|) (-376)) (-4499 |has| (-419 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4039 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4039 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))))) +(-1034 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-560) (QUOTE (-940))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1052))) (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872))) (-4043 (|HasCategory| (-560) (QUOTE (-844))) (|HasCategory| (-560) (QUOTE (-872)))) (|HasCategory| (-560) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1184))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1209)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-940)))) (|HasCategory| (-560) (QUOTE (-147))))) -(-1037) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4039 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147))))) +(-1035) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1038) +(-1036) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1039 RP) +(-1037 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1040 S) +(-1038 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1041 A S) +(-1039 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4512)) (|HasCategory| |#2| (QUOTE (-1133)))) -(-1042 S) +((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-1131)))) +(-1040 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1043 S) +(-1041 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1044) +(-1042) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4504 . T) (-4509 . T) (-4503 . T) (-4506 . T) (-4505 . T) ((-4513 "*") . T) (-4508 . T)) +((-4500 . T) (-4505 . T) (-4499 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4504 . T)) NIL -(-1045 R -3581) +(-1043 R -3577) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1046 R -3581) +(-1044 R -3577) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1047 -3581 UP) +(-1045 -3577 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1048 -3581 UP) +(-1046 -3577 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1049 S) +(-1047 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1050 F1 UP UPUP R F2) +(-1048 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1051) +(-1049) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1052) +(-1050) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1053 |Pol|) +(-1051 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1054 |Pol|) +(-1052 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1055) +(-1053) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1056 |TheField|) +(-1054 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4504 . T) (-4509 . T) (-4503 . T) (-4506 . T) (-4505 . T) ((-4513 "*") . T) (-4508 . T)) -((-4043 (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1070) (QUOTE (-560))))) -(-1057 -3581 L) +((-4500 . T) (-4505 . T) (-4499 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4504 . T)) +((-4039 (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (QUOTE (-558))))) +(-1055 -3577 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1058 S) +(-1056 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1133)))) -(-1059 R E V P) +((|HasCategory| |#1| (QUOTE (-1131)))) +(-1057 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1060) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1058) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1061 R) +(-1059 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4513 "*")))) -(-1062 R) +((|HasAttribute| |#1| (QUOTE (-4509 "*")))) +(-1060 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319)))) -(-1063 S) +(-1061 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1064 S) +(-1062 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1065 S) +(-1063 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1066 -3581 |Expon| |VarSet| |FPol| |LFPol|) +(-1064 -3577 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1067) +(-1065) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (QUOTE (-1209))) (|%list| (QUOTE |:|) (QUOTE -2300) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133))) (|HasCategory| (-1209) (QUOTE (-872))) (|HasCategory| (-51) (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102)))) -(-1068) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2296) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-870))) (|HasCategory| (-51) (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102)))) +(-1066) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1069 A S) +(-1067 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1070 S) +(-1068 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1071 Q R) +(-1069 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1072 R) +(-1070 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1073) +(-1071) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1074 UP) +(-1072 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1075 R) +(-1073 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1076 T$) +(-1074 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-1077 T$) +(-1075 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1078 R |ls|) +(-1076 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| (-802 |#1| (-889 |#2|)) (QUOTE (-1133))) (|HasCategory| (-802 |#1| (-889 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -802) (|devaluate| |#1|) (|%list| (QUOTE -889) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-889 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-802 |#1| (-889 |#2|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-889 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-889 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-802 |#1| (-889 |#2|)) (QUOTE (-102)))) -(-1079) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-1131))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -800) (|devaluate| |#1|) (|%list| (QUOTE -887) (|devaluate| |#2|)))))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-887 |#2|) (QUOTE (-381))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-102)))) +(-1077) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1080 S) +(-1078 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1081) +(-1079) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4508 . T)) +((-4504 . T)) NIL -(-1082 |xx| -3581) +(-1080 |xx| -3577) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1083 S) +(-1081 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1084 S |m| |n| R |Row| |Col|) +(-1082 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-571))) (|HasCategory| |#4| (QUOTE (-175)))) -(-1085 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-175)))) +(-1083 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4511 . T) (-4506 . T) (-4505 . T)) +((-4507 . T) (-4502 . T) (-4501 . T)) NIL -(-1086 |m| |n| R) +(-1084 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4511 . T) (-4506 . T) (-4505 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-888))))) -(-1087 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4507 . T) (-4502 . T) (-4501 . T)) +((|HasCategory| |#3| (QUOTE (-175))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886))))) +(-1085 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1088 R) +(-1086 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-1089) +(-1087) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1090 S T$) +(-1088 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1133)))) -(-1091 S) +((|HasCategory| |#1| (QUOTE (-1131)))) +(-1089 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1092) +(-1090) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1093 |TheField| |ThePolDom|) +(-1091 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1094) +(-1092) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4499 . T) (-4503 . T) (-4498 . T) (-4509 . T) (-4510 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1095) +(-1093) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (QUOTE (-1209))) (|%list| (QUOTE |:|) (QUOTE -2300) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1133))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-1133))) (|HasCategory| (-1209) (QUOTE (-872))) (|HasCategory| (-51) (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (QUOTE (-102)))) -(-1096 S R E V) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2296) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-870))) (|HasCategory| (-51) (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (QUOTE (-102)))) +(-1094 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1023) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-1209))))) -(-1097 R E V) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1021) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-1207))))) +(-1095 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-1098) +(-1096) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1099 S |TheField| |ThePols|) +(-1097 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1100 |TheField| |ThePols|) +(-1098 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1101 R E V P TS) +(-1099 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1102 S R E V P) +(-1100 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1103 R E V P) +(-1101 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1104 R E V P TS) +(-1102 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1105) +(-1103) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1106) +(-1104) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1107 |Base| R -3581) +(-1105 |Base| R -3577) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1108 |f|) +(-1106 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1109 |Base| R -3581) +(-1107 |Base| R -3577) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1110 R |ls|) +(-1108 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1111 R UP M) +(-1109 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4504 |has| |#1| (-376)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))))) -(-1112 UP SAE UPA) +((-4500 |has| |#1| (-376)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))))) +(-1110 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1113 UP SAE UPA) +(-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1114) +(-1112) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1115) +(-1113) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1116 S) +(-1114 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1117) +(-1115) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1118 R) +(-1116 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1119 R) +(-1117 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1120 (-1209)) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1120 (-1209)) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1120 (-1209)) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1120 (-1209)) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1120 (-1209)) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1120 S) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1118 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1121 S) +(-1119 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1133)))) -(-1122 R S) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1131)))) +(-1120 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-871)))) -(-1123) +((|HasCategory| |#1| (QUOTE (-869)))) +(-1121) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1124 S) +(-1122 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1121 |#1|) (QUOTE (-1133)))) -(-1125 R S) +((|HasCategory| (-1119 |#1|) (QUOTE (-1131)))) +(-1123 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1126 S) +(-1124 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1127 S L) +(-1125 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1128) +(-1126) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1129 S) +(-1127 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4511 . T) (-4501 . T) (-4512 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1130 A S) +((-4507 . T) (-4497 . T) (-4508 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-1128 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1131 S) +(-1129 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4501 . T)) +((-4497 . T)) NIL -(-1132 S) +(-1130 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1133) +(-1131) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1134 |m| |n|) +(-1132 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1135) +(-1133) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1136 |Str| |Sym| |Int| |Flt| |Expr|) +(-1134 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1137 |Str| |Sym| |Int| |Flt| |Expr|) +(-1135 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1138 R FS) +(-1136 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1139 R E V P TS) +(-1137 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1140 R E V P TS) +(-1138 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1141 R E V P) +(-1139 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1142) +(-1140) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1143 S) +(-1141 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1144) +(-1142) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1145 |dimtot| |dim1| S) +(-1143 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4505 |has| |#3| (-1081)) (-4506 |has| |#3| (-1081)) (-4508 |has| |#3| (-6 -4508)) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081)))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#3| (QUOTE (-376))) (-4043 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081)))) (-4043 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-817))) (-4043 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (QUOTE (-872)))) (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (QUOTE (-381))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-4043 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-240))) (-4043 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1081))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -930) (QUOTE (-1209))))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-1133))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1081)))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-817))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-872))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-872))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-4043 (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasAttribute| |#3| (QUOTE -4508)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1081)))) (-12 (|HasCategory| |#3| (QUOTE (-1081))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) -(-1146 R |x|) +((-4501 |has| |#3| (-1079)) (-4502 |has| |#3| (-1079)) (-4504 |has| |#3| (-6 -4504)) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#3| (QUOTE (-376))) (-4039 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4039 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4039 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-381))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4039 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-240))) (-4039 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-1131))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4039 (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#3| (QUOTE -4504)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +(-1144 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-466)))) -(-1147) +((|HasCategory| |#1| (QUOTE (-464)))) +(-1145) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1148) +(-1146) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1149 R -3581) +(-1147 R -3577) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1150 R) +(-1148 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1151) +(-1149) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1152) +(-1150) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4499 . T) (-4503 . T) (-4498 . T) (-4509 . T) (-4510 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1153 S) +(-1151 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4511 . T) (-4512 . T)) +((-4507 . T) (-4508 . T)) NIL -(-1154 S |ndim| R |Row| |Col|) +(-1152 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4513 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) -(-1155 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4509 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) +(-1153 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-4511 . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4507 . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1156 R |Row| |Col| M) +(-1154 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1157 R |VarSet|) +(-1155 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1158 |Coef| |Var| SMP) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1156 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1159 R E V P) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1157 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1160 UP -3581) +(-1158 UP -3577) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1161 R) +(-1159 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1162 R) +(-1160 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1163 R) +(-1161 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1164 S A) +(-1162 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-872)))) -(-1165 R) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1163 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1166 R) +(-1164 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1167) +(-1165) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1168) +(-1166) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1169) +(-1167) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1170) +(-1168) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1171) +(-1169) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1172 V C) +(-1170 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1173 V C) +(-1171 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-1172 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1172) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-1133)))) (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-1133))) (-4043 (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| (-1172 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1172) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-1133)))) (|HasCategory| (-1172 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| (-1172 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-1172 |#1| |#2|) (QUOTE (-102)))) -(-1174 |ndim| R) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131))) (-4039 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102)))) +(-1172 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4508 . T) (-4500 |has| |#2| (-6 (-4513 "*"))) (-4511 . T) (-4505 . T) (-4506 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4513 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-376))) (-4043 (|HasAttribute| |#2| (QUOTE (-4513 "*"))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-1175 S) +((-4504 . T) (-4496 |has| |#2| (-6 (-4509 "*"))) (-4507 . T) (-4501 . T) (-4502 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (-4039 (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-1173 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1176) +(-1174) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1177 R E V P TS) +(-1175 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1178 R E V P) +(-1176 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1179) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1177) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1180 S) +(-1178 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1181 A S) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1179 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1182 S) +(-1180 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1183 |Key| |Ent| |dent|) +(-1181 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) -(-1184) +((-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) +(-1182) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \\spad{nothing}.}")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1185) +(-1183) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1186 |Coef|) +(-1184 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1187 S) +(-1185 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4512 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1188 S) +((-4508 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1186 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1189 A B) +(-1187 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1190 A B C) +(-1188 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1191) +(-1189) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4043 (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133)))) (|HasCategory| (-146) (QUOTE (-872))) (-4043 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1133))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-1192 |Entry|) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4039 (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-870))) (-4039 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +(-1190 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (QUOTE (-1191))) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-1133))) (|HasCategory| (-1191) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (QUOTE (-102)))) -(-1193 A) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (QUOTE (-102)))) +(-1191 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) -(-1194 |Coef|) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) +(-1192 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1195 |Coef|) +(-1193 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1196 R UP) +(-1194 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-319)))) -(-1197 |n| R) +(-1195 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1198 S1 S2) +(-1196 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1199) +(-1197) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1200 |Coef| |var| |cen|) +(-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4513 "*") -4043 (-3047 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-844))) (|has| |#1| (-175)) (-3047 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-940)))) (-4504 -4043 (-3047 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-844))) (|has| |#1| (-571)) (-3047 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-940)))) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-1184)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1144))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-1052)))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-844)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-872))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-1184)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -1207) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-872)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1207 |#1| |#2| |#3|) (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1201 R -3581) +(((-4509 "*") -4039 (-3043 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3043 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4500 -4039 (-3043 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-3043 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1050)))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1199 R -3577) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1202 R) +(-1200 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1203 R) +(-1201 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-940)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1184))) (|HasCategory| |#1| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1204 R S) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1202 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1205 E OV R P) +(-1203 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1206 |Coef| |var| |cen|) +(-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) -(-1207 |Coef| |var| |cen|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1144))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) -(-1208) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1206) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1209) +(-1207) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1210 R) +(-1208 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1211 R) +(-1209 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-6 -4509)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4043 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-1003) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4509))) -(-1212) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-6 -4505)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4039 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-1001) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4505))) +(-1210) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1213) +(-1211) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1214) +(-1212) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1215 N) +(-1213 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1216 N) +(-1214 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1217) +(-1215) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1218 R) +(-1216 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1219) +(-1217) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1220 S) +(-1218 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1221 |Key| |Entry|) +(-1219 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4511 . T) (-4512 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2300) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1133))) (-4043 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888))))) (-4043 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (QUOTE (-102)))) -(-1222 S) +((-4507 . T) (-4508 . T)) +((-12 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4372) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2296) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4039 (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4039 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (QUOTE (-102)))) +(-1220 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1223 S) +(-1221 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1224 R) +(-1222 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1225 S |Key| |Entry|) +(-1223 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1226 |Key| |Entry|) +(-1224 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4512 . T)) +((-4508 . T)) NIL -(-1227 |Key| |Entry|) +(-1225 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1228) +(-1226) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1229) +(-1227) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1230 S) +(-1228 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1231) +(-1229) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1232 R) +(-1230 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1233) +(-1231) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1234 S) +(-1232 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1235) +(-1233) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1236 S) +(-1234 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1133))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1133)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1237 S) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1235 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1238) +(-1236) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1239 R -3581) +(-1237 R -3577) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1240 R |Row| |Col| M) +(-1238 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1241 R -3581) +(-1239 R -3577) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -912) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -912) (|devaluate| |#1|))))) -(-1242 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (|devaluate| |#1|))))) +(-1240 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1243 S R E V P) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1241 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-381)))) -(-1244 R E V P) +(-1242 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1245 |Curve|) +(-1243 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1246) +(-1244) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1247 S) +(-1245 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) -(-1248 -3581) +((|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) +(-1246 -3577) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1249) +(-1247) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1250) +(-1248) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1251 S) +(-1249 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-872)))) -(-1252) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1250) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1253 S) +(-1251 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1254) +(-1252) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1255) +(-1253) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1256) +(-1254) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1257) +(-1255) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1258) +(-1256) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1259 |Coef| |var| |cen|) +(-1257 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4513 "*") -4043 (-3047 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-844))) (|has| |#1| (-175)) (-3047 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-940)))) (-4504 -4043 (-3047 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-844))) (|has| |#1| (-571)) (-3047 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-940)))) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1184)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1144))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052)))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-844)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-872))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1184)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1209)) (|%list| (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -1070) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-872)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-940)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1260 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4509 "*") -4039 (-3043 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3043 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-938)))) (-4500 -4039 (-3043 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-3043 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1050)))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1258 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1261 |Coef|) +(-1259 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1262 S |Coef| UTS) +(-1260 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-1263 |Coef| UTS) +(-1261 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1264 |Coef| UTS) +(-1262 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1184)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-4043 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-4043 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-4043 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-560) (QUOTE (-1144))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1052)))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-844)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-872))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1184)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1184)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1209)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-940))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-4043 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) -(-1265 ZP) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-4039 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4039 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-4039 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-4039 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) +(-1263 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1266 S) +(-1264 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1133)))) -(-1267 R S) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1131)))) +(-1265 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-871)))) -(-1268 |x| R) +((|HasCategory| |#1| (QUOTE (-869)))) +(-1266 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4513 "*") |has| |#2| (-175)) (-4504 |has| |#2| (-571)) (-4507 |has| |#2| (-376)) (-4509 |has| |#2| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-391)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -912) (QUOTE (-560)))) (|HasCategory| (-1114) (|%list| (QUOTE -912) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560))))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (|%list| (QUOTE -916) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1114) (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (QUOTE (-560)))) (-4043 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (-4043 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-940)))) (-4043 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-940)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1184))) (|HasCategory| |#2| (|%list| (QUOTE -930) (QUOTE (-1209)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (-4043 (-12 (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-1269 |x| R |y| S) +(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-569)) (-4503 |has| |#2| (-376)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4039 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4039 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4039 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4039 (-12 (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-1267 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1270 R Q UP) +(-1268 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1271 R UP) +(-1269 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1272 R UP) +(-1270 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1273 R U) +(-1271 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1274 S R) +(-1272 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1184)))) -(-1275 R) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1182)))) +(-1273 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4509 |has| |#1| (-6 -4509)) (-4506 . T) (-4505 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-1276 R PR S PS) +(-1274 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1277 S |Coef| |Expon|) +(-1275 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1144))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#2|) (QUOTE (-1209)))))) -(-1278 |Coef| |Expon|) +((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1142))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#2|) (QUOTE (-1207)))))) +(-1276 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1279 RC P) +(-1277 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1280 |Coef| |var| |cen|) +(-1278 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) -(-1281 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1279 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1282 |Coef|) +(-1280 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1283 S |Coef| ULS) +(-1281 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1284 |Coef| ULS) +(-1282 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1285 |Coef| ULS) +(-1283 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4509 |has| |#1| (-376)) (-4503 |has| |#1| (-376)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-4043 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) -(-1286 R FE |var| |cen|) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4039 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) +(-1284 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4513 "*") |has| (-1280 |#2| |#3| |#4|) (-175)) (-4504 |has| (-1280 |#2| |#3| |#4|) (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| (-1280 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-175))) (-4043 (|HasCategory| (-1280 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1280 |#2| |#3| |#4|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1280 |#2| |#3| |#4|) (|%list| (QUOTE -1070) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1280 |#2| |#3| |#4|) (|%list| (QUOTE -1070) (QUOTE (-560)))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1280 |#2| |#3| |#4|) (QUOTE (-571)))) -(-1287 A S) +(((-4509 "*") |has| (-1278 |#2| |#3| |#4|) (-175)) (-4500 |has| (-1278 |#2| |#3| |#4|) (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-4039 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-569)))) +(-1285 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4512))) -(-1288 S) +((|HasAttribute| |#1| (QUOTE -4508))) +(-1286 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1289 |Coef| |var| |cen|) +(-1287 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-4043 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1209)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1144))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -4462) (|%list| (|devaluate| |#1|) (QUOTE (-1209)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-990))) (|HasCategory| |#1| (QUOTE (-1235))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1209))))) (|HasSignature| |#1| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#1|))))))) -(-1290 |Coef1| |Coef2| UTS1 UTS2) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4039 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4458) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1288 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1291 S |Coef|) +(-1289 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-990))) (|HasCategory| |#2| (QUOTE (-1235))) (|HasSignature| |#2| (|%list| (QUOTE -3570) (|%list| (|%list| (QUOTE -663) (QUOTE (-1209))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4328) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1209))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) -(-1292 |Coef|) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%list| (QUOTE -3566) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4324) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) +(-1290 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4513 "*") |has| |#1| (-175)) (-4504 |has| |#1| (-571)) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-569)) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1293 |Coef| UTS) +(-1291 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1294 -3581 UP L UTS) +(-1292 -3577 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-571)))) -(-1295) +((|HasCategory| |#1| (QUOTE (-569)))) +(-1293) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1296 |sym|) +(-1294 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1297 S R) +(-1295 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1298 R) +((|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1296 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4512 . T) (-4511 . T)) +((-4508 . T) (-4507 . T)) NIL -(-1299 R) +(-1297 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4512 . T) (-4511 . T)) -((-4043 (-12 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4043 (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-4043 (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-872))) (-4043 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| (-560) (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1081)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1300 A B) +((-4508 . T) (-4507 . T)) +((-4039 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4039 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4039 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4039 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-1298 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1301) +(-1299) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1302) +(-1300) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1303) +(-1301) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1304) +(-1302) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1305) +(-1303) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1306 A S) +(-1304 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1307 S) +(-1305 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4506 . T) (-4505 . T)) +((-4502 . T) (-4501 . T)) NIL -(-1308 R) +(-1306 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1309 K R UP -3581) +(-1307 K R UP -3577) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1310) +(-1308) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1311) +(-1309) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1312 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1310 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4506 |has| |#1| (-175)) (-4505 |has| |#1| (-175)) (-4508 . T)) +((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1313 R E V P) +(-1311 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-4512 . T) (-4511 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-888)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1314 R) +((-4508 . T) (-4507 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1312 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-4505 . T) (-4506 . T) (-4508 . T)) +((-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1315 |vl| R) +(-1313 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4508 . T) (-4504 |has| |#2| (-6 -4504)) (-4506 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4504))) -(-1316 R |VarSet| XPOLY) +((-4504 . T) (-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4500))) +(-1314 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1317 S -3581) +(-1315 S -3577) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149)))) -(-1318 -3581) +(-1316 -3577) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4503 . T) (-4509 . T) (-4504 . T) ((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL -(-1319 |vl| R) +(-1317 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4504 |has| |#2| (-6 -4504)) (-4506 . T) (-4505 . T) (-4508 . T)) +((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-1320 |VarSet| R) +(-1318 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4504 |has| |#2| (-6 -4504)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -739) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasAttribute| |#2| (QUOTE -4504))) -(-1321 R) +((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -737) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4500))) +(-1319 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4504 |has| |#1| (-6 -4504)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4504))) -(-1322 |vl| R) +((-4500 |has| |#1| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4500))) +(-1320 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4504 |has| |#2| (-6 -4504)) (-4506 . T) (-4505 . T) (-4508 . T)) +((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T)) NIL -(-1323 R E) +(-1321 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4508 . T) (-4509 |has| |#1| (-6 -4509)) (-4504 |has| |#1| (-6 -4504)) (-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4508)) (|HasAttribute| |#1| (QUOTE -4509)) (|HasAttribute| |#1| (QUOTE -4504))) -(-1324 |VarSet| R) +((-4504 . T) (-4505 |has| |#1| (-6 -4505)) (-4500 |has| |#1| (-6 -4500)) (-4502 . T) (-4501 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4500))) +(-1322 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4504 |has| |#2| (-6 -4504)) (-4506 . T) (-4505 . T) (-4508 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4504))) -(-1325) +((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4500))) +(-1323) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1326 A) +(-1324 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1327 R |ls| |ls2|) +(-1325 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1328 R) +(-1326 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1329 |p|) +(-1327 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4513 "*") . T) (-4505 . T) (-4506 . T) (-4508 . T)) +(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T)) NIL NIL NIL @@ -5264,4 +5256,4 @@ NIL NIL NIL NIL -((-3 NIL 2292987 2292992 2292997 2293002) (-2 NIL 2292967 2292972 2292977 2292982) (-1 NIL 2292947 2292952 2292957 2292962) (0 NIL 2292927 2292932 2292937 2292942) (-1329 "ZMOD.spad" 2292736 2292749 2292865 2292922) (-1328 "ZLINDEP.spad" 2291834 2291845 2292726 2292731) (-1327 "ZDSOLVE.spad" 2281794 2281816 2291824 2291829) (-1326 "YSTREAM.spad" 2281289 2281300 2281784 2281789) (-1325 "YDIAGRAM.spad" 2280923 2280932 2281279 2281284) (-1324 "XRPOLY.spad" 2280143 2280163 2280779 2280848) (-1323 "XPR.spad" 2277938 2277951 2279861 2279960) (-1322 "XPOLYC.spad" 2277257 2277273 2277864 2277933) (-1321 "XPOLY.spad" 2276812 2276823 2277113 2277182) (-1320 "XPBWPOLY.spad" 2275251 2275271 2276586 2276655) (-1319 "XFALG.spad" 2272299 2272315 2275177 2275246) (-1318 "XF.spad" 2270762 2270777 2272201 2272294) (-1317 "XF.spad" 2269205 2269222 2270646 2270651) (-1316 "XEXPPKG.spad" 2268464 2268490 2269195 2269200) (-1315 "XDPOLY.spad" 2268078 2268094 2268320 2268389) (-1314 "XALG.spad" 2267746 2267757 2268034 2268073) (-1313 "WUTSET.spad" 2263716 2263733 2267347 2267374) (-1312 "WP.spad" 2262923 2262967 2263574 2263641) (-1311 "WHILEAST.spad" 2262721 2262730 2262913 2262918) (-1310 "WHEREAST.spad" 2262392 2262401 2262711 2262716) (-1309 "WFFINTBS.spad" 2260055 2260077 2262382 2262387) (-1308 "WEIER.spad" 2258277 2258288 2260045 2260050) (-1307 "VSPACE.spad" 2257950 2257961 2258245 2258272) (-1306 "VSPACE.spad" 2257643 2257656 2257940 2257945) (-1305 "VOID.spad" 2257320 2257329 2257633 2257638) (-1304 "VIEWDEF.spad" 2252521 2252530 2257310 2257315) (-1303 "VIEW3D.spad" 2236482 2236491 2252511 2252516) (-1302 "VIEW2D.spad" 2224381 2224390 2236472 2236477) (-1301 "VIEW.spad" 2222101 2222110 2224371 2224376) (-1300 "VECTOR2.spad" 2220740 2220753 2222091 2222096) (-1299 "VECTOR.spad" 2219240 2219251 2219491 2219518) (-1298 "VECTCAT.spad" 2217152 2217163 2219208 2219235) (-1297 "VECTCAT.spad" 2214871 2214884 2216929 2216934) (-1296 "VARIABLE.spad" 2214651 2214666 2214861 2214866) (-1295 "UTYPE.spad" 2214295 2214304 2214641 2214646) (-1294 "UTSODETL.spad" 2213590 2213614 2214251 2214256) (-1293 "UTSODE.spad" 2211806 2211826 2213580 2213585) (-1292 "UTSCAT.spad" 2209285 2209301 2211704 2211801) (-1291 "UTSCAT.spad" 2206384 2206402 2208805 2208810) (-1290 "UTS2.spad" 2205979 2206014 2206374 2206379) (-1289 "UTS.spad" 2200857 2200885 2204377 2204474) (-1288 "URAGG.spad" 2195578 2195589 2200847 2200852) (-1287 "URAGG.spad" 2190263 2190276 2195534 2195539) (-1286 "UPXSSING.spad" 2187881 2187907 2189317 2189450) (-1285 "UPXSCONS.spad" 2185559 2185579 2185932 2186081) (-1284 "UPXSCCA.spad" 2184130 2184150 2185405 2185554) (-1283 "UPXSCCA.spad" 2182843 2182865 2184120 2184125) (-1282 "UPXSCAT.spad" 2181432 2181448 2182689 2182838) (-1281 "UPXS2.spad" 2180975 2181028 2181422 2181427) (-1280 "UPXS.spad" 2178190 2178218 2179026 2179175) (-1279 "UPSQFREE.spad" 2176605 2176619 2178180 2178185) (-1278 "UPSCAT.spad" 2174400 2174424 2176503 2176600) (-1277 "UPSCAT.spad" 2171880 2171906 2173985 2173990) (-1276 "UPOLYC2.spad" 2171351 2171370 2171870 2171875) (-1275 "UPOLYC.spad" 2166431 2166442 2171193 2171346) (-1274 "UPOLYC.spad" 2161397 2161410 2166161 2166166) (-1273 "UPMP.spad" 2160329 2160342 2161387 2161392) (-1272 "UPDIVP.spad" 2159894 2159908 2160319 2160324) (-1271 "UPDECOMP.spad" 2158155 2158169 2159884 2159889) (-1270 "UPCDEN.spad" 2157372 2157388 2158145 2158150) (-1269 "UP2.spad" 2156736 2156757 2157362 2157367) (-1268 "UP.spad" 2153764 2153779 2154151 2154304) (-1267 "UNISEG2.spad" 2153261 2153274 2153720 2153725) (-1266 "UNISEG.spad" 2152614 2152625 2153180 2153185) (-1265 "UNIFACT.spad" 2151717 2151729 2152604 2152609) (-1264 "ULSCONS.spad" 2142629 2142649 2142999 2143148) (-1263 "ULSCCAT.spad" 2140366 2140386 2142475 2142624) (-1262 "ULSCCAT.spad" 2138211 2138233 2140322 2140327) (-1261 "ULSCAT.spad" 2136451 2136467 2138057 2138206) (-1260 "ULS2.spad" 2135965 2136018 2136441 2136446) (-1259 "ULS.spad" 2125536 2125564 2126481 2126910) (-1258 "UINT8.spad" 2125413 2125422 2125526 2125531) (-1257 "UINT64.spad" 2125289 2125298 2125403 2125408) (-1256 "UINT32.spad" 2125165 2125174 2125279 2125284) (-1255 "UINT16.spad" 2125041 2125050 2125155 2125160) (-1254 "UFD.spad" 2124106 2124115 2124967 2125036) (-1253 "UFD.spad" 2123233 2123244 2124096 2124101) (-1252 "UDVO.spad" 2122114 2122123 2123223 2123228) (-1251 "UDPO.spad" 2119695 2119706 2122070 2122075) (-1250 "TYPEAST.spad" 2119614 2119623 2119685 2119690) (-1249 "TYPE.spad" 2119546 2119555 2119604 2119609) (-1248 "TWOFACT.spad" 2118198 2118213 2119536 2119541) (-1247 "TUPLE.spad" 2117689 2117700 2118094 2118099) (-1246 "TUBETOOL.spad" 2114556 2114565 2117679 2117684) (-1245 "TUBE.spad" 2113203 2113220 2114546 2114551) (-1244 "TSETCAT.spad" 2101274 2101291 2113171 2113198) (-1243 "TSETCAT.spad" 2089331 2089350 2101230 2101235) (-1242 "TS.spad" 2087924 2087940 2088890 2088987) (-1241 "TRMANIP.spad" 2082288 2082305 2087612 2087617) (-1240 "TRIMAT.spad" 2081251 2081276 2082278 2082283) (-1239 "TRIGMNIP.spad" 2079778 2079795 2081241 2081246) (-1238 "TRIGCAT.spad" 2079290 2079299 2079768 2079773) (-1237 "TRIGCAT.spad" 2078800 2078811 2079280 2079285) (-1236 "TREE.spad" 2077246 2077257 2078278 2078305) (-1235 "TRANFUN.spad" 2077085 2077094 2077236 2077241) (-1234 "TRANFUN.spad" 2076922 2076933 2077075 2077080) (-1233 "TOPSP.spad" 2076596 2076605 2076912 2076917) (-1232 "TOOLSIGN.spad" 2076259 2076270 2076586 2076591) (-1231 "TEXTFILE.spad" 2074820 2074829 2076249 2076254) (-1230 "TEX1.spad" 2074376 2074387 2074810 2074815) (-1229 "TEX.spad" 2071570 2071579 2074366 2074371) (-1228 "TEMUTL.spad" 2071125 2071134 2071560 2071565) (-1227 "TBCMPPK.spad" 2069226 2069249 2071115 2071120) (-1226 "TBAGG.spad" 2068284 2068307 2069206 2069221) (-1225 "TBAGG.spad" 2067350 2067375 2068274 2068279) (-1224 "TANEXP.spad" 2066758 2066769 2067340 2067345) (-1223 "TALGOP.spad" 2066482 2066493 2066748 2066753) (-1222 "TABLEAU.spad" 2065963 2065974 2066472 2066477) (-1221 "TABLE.spad" 2063896 2063919 2064166 2064193) (-1220 "TABLBUMP.spad" 2060675 2060686 2063886 2063891) (-1219 "SYSTEM.spad" 2059903 2059912 2060665 2060670) (-1218 "SYSSOLP.spad" 2057386 2057397 2059893 2059898) (-1217 "SYSPTR.spad" 2057285 2057294 2057376 2057381) (-1216 "SYSNNI.spad" 2056508 2056519 2057275 2057280) (-1215 "SYSINT.spad" 2055912 2055923 2056498 2056503) (-1214 "SYNTAX.spad" 2052246 2052255 2055902 2055907) (-1213 "SYMTAB.spad" 2050314 2050323 2052236 2052241) (-1212 "SYMS.spad" 2046343 2046352 2050304 2050309) (-1211 "SYMPOLY.spad" 2045322 2045333 2045404 2045531) (-1210 "SYMFUNC.spad" 2044823 2044834 2045312 2045317) (-1209 "SYMBOL.spad" 2042318 2042327 2044813 2044818) (-1208 "SWITCH.spad" 2039089 2039098 2042308 2042313) (-1207 "SUTS.spad" 2036068 2036096 2037487 2037584) (-1206 "SUPXS.spad" 2033270 2033298 2034119 2034268) (-1205 "SUPFRACF.spad" 2032375 2032393 2033260 2033265) (-1204 "SUP2.spad" 2031767 2031780 2032365 2032370) (-1203 "SUP.spad" 2028409 2028420 2029182 2029335) (-1202 "SUMRF.spad" 2027383 2027394 2028399 2028404) (-1201 "SUMFS.spad" 2027012 2027029 2027373 2027378) (-1200 "SULS.spad" 2016570 2016598 2017528 2017957) (-1199 "SUCHTAST.spad" 2016339 2016348 2016560 2016565) (-1198 "SUCH.spad" 2016029 2016044 2016329 2016334) (-1197 "SUBSPACE.spad" 2008160 2008175 2016019 2016024) (-1196 "SUBRESP.spad" 2007330 2007344 2008116 2008121) (-1195 "STTFNC.spad" 2003798 2003814 2007320 2007325) (-1194 "STTF.spad" 1999897 1999913 2003788 2003793) (-1193 "STTAYLOR.spad" 1992542 1992553 1999772 1999777) (-1192 "STRTBL.spad" 1990557 1990574 1990706 1990733) (-1191 "STRING.spad" 1989323 1989332 1989544 1989571) (-1190 "STREAM3.spad" 1988896 1988911 1989313 1989318) (-1189 "STREAM2.spad" 1988024 1988037 1988886 1988891) (-1188 "STREAM1.spad" 1987730 1987741 1988014 1988019) (-1187 "STREAM.spad" 1984516 1984527 1987123 1987138) (-1186 "STINPROD.spad" 1983452 1983468 1984506 1984511) (-1185 "STEPAST.spad" 1982686 1982695 1983442 1983447) (-1184 "STEP.spad" 1981895 1981904 1982676 1982681) (-1183 "STBL.spad" 1979943 1979971 1980110 1980125) (-1182 "STAGG.spad" 1978642 1978653 1979933 1979938) (-1181 "STAGG.spad" 1977339 1977352 1978632 1978637) (-1180 "STACK.spad" 1976567 1976578 1976817 1976844) (-1179 "SRING.spad" 1976327 1976336 1976557 1976562) (-1178 "SREGSET.spad" 1974026 1974043 1975928 1975955) (-1177 "SRDCMPK.spad" 1972603 1972623 1974016 1974021) (-1176 "SRAGG.spad" 1967786 1967795 1972571 1972598) (-1175 "SRAGG.spad" 1962989 1963000 1967776 1967781) (-1174 "SQMATRIX.spad" 1960484 1960502 1961400 1961487) (-1173 "SPLTREE.spad" 1954950 1954963 1959746 1959773) (-1172 "SPLNODE.spad" 1951570 1951583 1954940 1954945) (-1171 "SPFCAT.spad" 1950379 1950388 1951560 1951565) (-1170 "SPECOUT.spad" 1948931 1948940 1950369 1950374) (-1169 "SPADXPT.spad" 1941022 1941031 1948921 1948926) (-1168 "spad-parser.spad" 1940487 1940496 1941012 1941017) (-1167 "SPADAST.spad" 1940188 1940197 1940477 1940482) (-1166 "SPACEC.spad" 1924403 1924414 1940178 1940183) (-1165 "SPACE3.spad" 1924179 1924190 1924393 1924398) (-1164 "SORTPAK.spad" 1923728 1923741 1924135 1924140) (-1163 "SOLVETRA.spad" 1921491 1921502 1923718 1923723) (-1162 "SOLVESER.spad" 1919947 1919958 1921481 1921486) (-1161 "SOLVERAD.spad" 1915973 1915984 1919937 1919942) (-1160 "SOLVEFOR.spad" 1914435 1914453 1915963 1915968) (-1159 "SNTSCAT.spad" 1914035 1914052 1914403 1914430) (-1158 "SMTS.spad" 1912317 1912343 1913594 1913691) (-1157 "SMP.spad" 1909720 1909740 1910110 1910237) (-1156 "SMITH.spad" 1908565 1908590 1909710 1909715) (-1155 "SMATCAT.spad" 1906683 1906713 1908509 1908560) (-1154 "SMATCAT.spad" 1904733 1904765 1906561 1906566) (-1153 "SKAGG.spad" 1903702 1903713 1904701 1904728) (-1152 "SINT.spad" 1902642 1902651 1903568 1903697) (-1151 "SIMPAN.spad" 1902370 1902379 1902632 1902637) (-1150 "SIGNRF.spad" 1901495 1901506 1902360 1902365) (-1149 "SIGNEF.spad" 1900781 1900798 1901485 1901490) (-1148 "SIGAST.spad" 1900198 1900207 1900771 1900776) (-1147 "SIG.spad" 1899560 1899569 1900188 1900193) (-1146 "SHP.spad" 1897504 1897519 1899516 1899521) (-1145 "SHDP.spad" 1884859 1884886 1885376 1885475) (-1144 "SGROUP.spad" 1884467 1884476 1884849 1884854) (-1143 "SGROUP.spad" 1884073 1884084 1884457 1884462) (-1142 "SGCF.spad" 1877212 1877221 1884063 1884068) (-1141 "SFRTCAT.spad" 1876158 1876175 1877180 1877207) (-1140 "SFRGCD.spad" 1875221 1875241 1876148 1876153) (-1139 "SFQCMPK.spad" 1870034 1870054 1875211 1875216) (-1138 "SFORT.spad" 1869473 1869487 1870024 1870029) (-1137 "SEXOF.spad" 1869316 1869356 1869463 1869468) (-1136 "SEXCAT.spad" 1867144 1867184 1869306 1869311) (-1135 "SEX.spad" 1867036 1867045 1867134 1867139) (-1134 "SETMN.spad" 1865496 1865513 1867026 1867031) (-1133 "SETCAT.spad" 1864981 1864990 1865486 1865491) (-1132 "SETCAT.spad" 1864464 1864475 1864971 1864976) (-1131 "SETAGG.spad" 1861013 1861024 1864444 1864459) (-1130 "SETAGG.spad" 1857570 1857583 1861003 1861008) (-1129 "SET.spad" 1855843 1855854 1856940 1856979) (-1128 "SEQAST.spad" 1855546 1855555 1855833 1855838) (-1127 "SEGXCAT.spad" 1854702 1854715 1855536 1855541) (-1126 "SEGCAT.spad" 1853627 1853638 1854692 1854697) (-1125 "SEGBIND2.spad" 1853325 1853338 1853617 1853622) (-1124 "SEGBIND.spad" 1853083 1853094 1853272 1853277) (-1123 "SEGAST.spad" 1852813 1852822 1853073 1853078) (-1122 "SEG2.spad" 1852248 1852261 1852769 1852774) (-1121 "SEG.spad" 1852061 1852072 1852167 1852172) (-1120 "SDVAR.spad" 1851337 1851348 1852051 1852056) (-1119 "SDPOL.spad" 1848592 1848603 1848883 1849010) (-1118 "SCPKG.spad" 1846681 1846692 1848582 1848587) (-1117 "SCOPE.spad" 1845858 1845867 1846671 1846676) (-1116 "SCACHE.spad" 1844554 1844565 1845848 1845853) (-1115 "SASTCAT.spad" 1844463 1844472 1844544 1844549) (-1114 "SAOS.spad" 1844335 1844344 1844453 1844458) (-1113 "SAERFFC.spad" 1844048 1844068 1844325 1844330) (-1112 "SAEFACT.spad" 1843749 1843769 1844038 1844043) (-1111 "SAE.spad" 1841183 1841199 1841794 1841929) (-1110 "RURPK.spad" 1838842 1838858 1841173 1841178) (-1109 "RULESET.spad" 1838295 1838319 1838832 1838837) (-1108 "RULECOLD.spad" 1838147 1838160 1838285 1838290) (-1107 "RULE.spad" 1836395 1836419 1838137 1838142) (-1106 "RTVALUE.spad" 1836130 1836139 1836385 1836390) (-1105 "RSTRCAST.spad" 1835847 1835856 1836120 1836125) (-1104 "RSETGCD.spad" 1832289 1832309 1835837 1835842) (-1103 "RSETCAT.spad" 1822257 1822274 1832257 1832284) (-1102 "RSETCAT.spad" 1812245 1812264 1822247 1822252) (-1101 "RSDCMPK.spad" 1810745 1810765 1812235 1812240) (-1100 "RRCC.spad" 1809129 1809159 1810735 1810740) (-1099 "RRCC.spad" 1807511 1807543 1809119 1809124) (-1098 "RPTAST.spad" 1807213 1807222 1807501 1807506) (-1097 "RPOLCAT.spad" 1786717 1786732 1807081 1807208) (-1096 "RPOLCAT.spad" 1765916 1765933 1786282 1786287) (-1095 "ROUTINE.spad" 1761317 1761326 1764065 1764092) (-1094 "ROMAN.spad" 1760645 1760654 1761183 1761312) (-1093 "ROIRC.spad" 1759725 1759757 1760635 1760640) (-1092 "RNS.spad" 1758701 1758710 1759627 1759720) (-1091 "RNS.spad" 1757763 1757774 1758691 1758696) (-1090 "RNGBIND.spad" 1756923 1756937 1757718 1757723) (-1089 "RNG.spad" 1756658 1756667 1756913 1756918) (-1088 "RMODULE.spad" 1756439 1756450 1756648 1756653) (-1087 "RMCAT2.spad" 1755859 1755916 1756429 1756434) (-1086 "RMATRIX.spad" 1754629 1754648 1754972 1755011) (-1085 "RMATCAT.spad" 1750208 1750239 1754585 1754624) (-1084 "RMATCAT.spad" 1745677 1745710 1750056 1750061) (-1083 "RLINSET.spad" 1745381 1745392 1745667 1745672) (-1082 "RINTERP.spad" 1745269 1745289 1745371 1745376) (-1081 "RING.spad" 1744739 1744748 1745249 1745264) (-1080 "RING.spad" 1744217 1744228 1744729 1744734) (-1079 "RIDIST.spad" 1743609 1743618 1744207 1744212) (-1078 "RGCHAIN.spad" 1742130 1742146 1743024 1743051) (-1077 "RGBCSPC.spad" 1741919 1741931 1742120 1742125) (-1076 "RGBCMDL.spad" 1741481 1741493 1741909 1741914) (-1075 "RFFACTOR.spad" 1740943 1740954 1741471 1741476) (-1074 "RFFACT.spad" 1740678 1740690 1740933 1740938) (-1073 "RFDIST.spad" 1739674 1739683 1740668 1740673) (-1072 "RF.spad" 1737348 1737359 1739664 1739669) (-1071 "RETSOL.spad" 1736767 1736780 1737338 1737343) (-1070 "RETRACT.spad" 1736195 1736206 1736757 1736762) (-1069 "RETRACT.spad" 1735621 1735634 1736185 1736190) (-1068 "RETAST.spad" 1735433 1735442 1735611 1735616) (-1067 "RESULT.spad" 1732995 1733004 1733582 1733609) (-1066 "RESRING.spad" 1732342 1732389 1732933 1732990) (-1065 "RESLATC.spad" 1731666 1731677 1732332 1732337) (-1064 "REPSQ.spad" 1731397 1731408 1731656 1731661) (-1063 "REPDB.spad" 1731104 1731115 1731387 1731392) (-1062 "REP2.spad" 1720818 1720829 1730946 1730951) (-1061 "REP1.spad" 1715038 1715049 1720768 1720773) (-1060 "REP.spad" 1712592 1712601 1715028 1715033) (-1059 "REGSET.spad" 1710384 1710401 1712193 1712220) (-1058 "REF.spad" 1709719 1709730 1710339 1710344) (-1057 "REDORDER.spad" 1708925 1708942 1709709 1709714) (-1056 "RECLOS.spad" 1707684 1707704 1708388 1708481) (-1055 "REALSOLV.spad" 1706824 1706833 1707674 1707679) (-1054 "REAL0Q.spad" 1704122 1704137 1706814 1706819) (-1053 "REAL0.spad" 1700966 1700981 1704112 1704117) (-1052 "REAL.spad" 1700838 1700847 1700956 1700961) (-1051 "RDUCEAST.spad" 1700559 1700568 1700828 1700833) (-1050 "RDIV.spad" 1700214 1700239 1700549 1700554) (-1049 "RDIST.spad" 1699781 1699792 1700204 1700209) (-1048 "RDETRS.spad" 1698645 1698663 1699771 1699776) (-1047 "RDETR.spad" 1696784 1696802 1698635 1698640) (-1046 "RDEEFS.spad" 1695883 1695900 1696774 1696779) (-1045 "RDEEF.spad" 1694893 1694910 1695873 1695878) (-1044 "RCFIELD.spad" 1692111 1692120 1694795 1694888) (-1043 "RCFIELD.spad" 1689415 1689426 1692101 1692106) (-1042 "RCAGG.spad" 1687351 1687362 1689405 1689410) (-1041 "RCAGG.spad" 1685214 1685227 1687270 1687275) (-1040 "RATRET.spad" 1684574 1684585 1685204 1685209) (-1039 "RATFACT.spad" 1684266 1684278 1684564 1684569) (-1038 "RANDSRC.spad" 1683585 1683594 1684256 1684261) (-1037 "RADUTIL.spad" 1683341 1683350 1683575 1683580) (-1036 "RADIX.spad" 1680120 1680134 1681666 1681759) (-1035 "RADFF.spad" 1677823 1677860 1677942 1678098) (-1034 "RADCAT.spad" 1677418 1677427 1677813 1677818) (-1033 "RADCAT.spad" 1677011 1677022 1677408 1677413) (-1032 "QUEUE.spad" 1676230 1676241 1676489 1676516) (-1031 "QUATCT2.spad" 1675850 1675869 1676220 1676225) (-1030 "QUATCAT.spad" 1674020 1674031 1675780 1675845) (-1029 "QUATCAT.spad" 1671938 1671951 1673700 1673705) (-1028 "QUAT.spad" 1670390 1670401 1670733 1670798) (-1027 "QUAGG.spad" 1669223 1669234 1670358 1670385) (-1026 "QQUTAST.spad" 1668991 1669000 1669213 1669218) (-1025 "QFORM.spad" 1668609 1668624 1668981 1668986) (-1024 "QFCAT2.spad" 1668301 1668318 1668599 1668604) (-1023 "QFCAT.spad" 1667003 1667014 1668203 1668296) (-1022 "QFCAT.spad" 1665287 1665300 1666489 1666494) (-1021 "QEQUAT.spad" 1664845 1664854 1665277 1665282) (-1020 "QCMPACK.spad" 1659759 1659779 1664835 1664840) (-1019 "QALGSET2.spad" 1657754 1657773 1659749 1659754) (-1018 "QALGSET.spad" 1653858 1653891 1657668 1657673) (-1017 "PWFFINTB.spad" 1651273 1651295 1653848 1653853) (-1016 "PUSHVAR.spad" 1650611 1650631 1651263 1651268) (-1015 "PTRANFN.spad" 1646746 1646757 1650601 1650606) (-1014 "PTPACK.spad" 1643833 1643844 1646736 1646741) (-1013 "PTFUNC2.spad" 1643655 1643670 1643823 1643828) (-1012 "PTCAT.spad" 1642909 1642920 1643623 1643650) (-1011 "PSQFR.spad" 1642223 1642248 1642899 1642904) (-1010 "PSEUDLIN.spad" 1641108 1641119 1642213 1642218) (-1009 "PSETPK.spad" 1627812 1627829 1640986 1640991) (-1008 "PSETCAT.spad" 1622211 1622235 1627792 1627807) (-1007 "PSETCAT.spad" 1616584 1616610 1622167 1622172) (-1006 "PSCURVE.spad" 1615582 1615591 1616574 1616579) (-1005 "PSCAT.spad" 1614364 1614394 1615480 1615577) (-1004 "PSCAT.spad" 1613236 1613268 1614354 1614359) (-1003 "PRTITION.spad" 1611933 1611942 1613226 1613231) (-1002 "PRTDAST.spad" 1611651 1611660 1611923 1611928) (-1001 "PRS.spad" 1601268 1601286 1611607 1611612) (-1000 "PRQAGG.spad" 1600702 1600713 1601236 1601263) (-999 "PROPLOG.spad" 1600306 1600314 1600692 1600697) (-998 "PROPFUN2.spad" 1599929 1599942 1600296 1600301) (-997 "PROPFUN1.spad" 1599335 1599346 1599919 1599924) (-996 "PROPFRML.spad" 1597903 1597914 1599325 1599330) (-995 "PROPERTY.spad" 1597399 1597407 1597893 1597898) (-994 "PRODUCT.spad" 1595081 1595093 1595365 1595420) (-993 "PRINT.spad" 1594833 1594841 1595071 1595076) (-992 "PRIMES.spad" 1593094 1593104 1594823 1594828) (-991 "PRIMELT.spad" 1591215 1591229 1593084 1593089) (-990 "PRIMCAT.spad" 1590858 1590866 1591205 1591210) (-989 "PRIMARR2.spad" 1589625 1589637 1590848 1590853) (-988 "PRIMARR.spad" 1588464 1588474 1588634 1588661) (-987 "PREASSOC.spad" 1587846 1587858 1588454 1588459) (-986 "PR.spad" 1586211 1586223 1586910 1587037) (-985 "PPCURVE.spad" 1585348 1585356 1586201 1586206) (-984 "PORTNUM.spad" 1585139 1585147 1585338 1585343) (-983 "POLYROOT.spad" 1583988 1584010 1585095 1585100) (-982 "POLYLIFT.spad" 1583253 1583276 1583978 1583983) (-981 "POLYCATQ.spad" 1581379 1581401 1583243 1583248) (-980 "POLYCAT.spad" 1574881 1574902 1581247 1581374) (-979 "POLYCAT.spad" 1567679 1567702 1574047 1574052) (-978 "POLY2UP.spad" 1567131 1567145 1567669 1567674) (-977 "POLY2.spad" 1566728 1566740 1567121 1567126) (-976 "POLY.spad" 1563991 1564001 1564506 1564633) (-975 "POLUTIL.spad" 1562956 1562985 1563947 1563952) (-974 "POLTOPOL.spad" 1561704 1561719 1562946 1562951) (-973 "POINT.spad" 1560368 1560378 1560455 1560482) (-972 "PNTHEORY.spad" 1557070 1557078 1560358 1560363) (-971 "PMTOOLS.spad" 1555845 1555859 1557060 1557065) (-970 "PMSYM.spad" 1555394 1555404 1555835 1555840) (-969 "PMQFCAT.spad" 1554985 1554999 1555384 1555389) (-968 "PMPREDFS.spad" 1554447 1554469 1554975 1554980) (-967 "PMPRED.spad" 1553934 1553948 1554437 1554442) (-966 "PMPLCAT.spad" 1553011 1553029 1553863 1553868) (-965 "PMLSAGG.spad" 1552596 1552610 1553001 1553006) (-964 "PMKERNEL.spad" 1552175 1552187 1552586 1552591) (-963 "PMINS.spad" 1551755 1551765 1552165 1552170) (-962 "PMFS.spad" 1551332 1551350 1551745 1551750) (-961 "PMDOWN.spad" 1550622 1550636 1551322 1551327) (-960 "PMASSFS.spad" 1549597 1549613 1550612 1550617) (-959 "PMASS.spad" 1548615 1548623 1549587 1549592) (-958 "PLOTTOOL.spad" 1548395 1548403 1548605 1548610) (-957 "PLOT3D.spad" 1544859 1544867 1548385 1548390) (-956 "PLOT1.spad" 1544032 1544042 1544849 1544854) (-955 "PLOT.spad" 1538955 1538963 1544022 1544027) (-954 "PLEQN.spad" 1526357 1526384 1538945 1538950) (-953 "PINTERPA.spad" 1526141 1526157 1526347 1526352) (-952 "PINTERP.spad" 1525763 1525782 1526131 1526136) (-951 "PID.spad" 1524737 1524745 1525689 1525758) (-950 "PICOERCE.spad" 1524394 1524404 1524727 1524732) (-949 "PI.spad" 1524011 1524019 1524368 1524389) (-948 "PGROEB.spad" 1522620 1522634 1524001 1524006) (-947 "PGE.spad" 1514293 1514301 1522610 1522615) (-946 "PGCD.spad" 1513247 1513264 1514283 1514288) (-945 "PFRPAC.spad" 1512396 1512406 1513237 1513242) (-944 "PFR.spad" 1509099 1509109 1512298 1512391) (-943 "PFOTOOLS.spad" 1508357 1508373 1509089 1509094) (-942 "PFOQ.spad" 1507727 1507745 1508347 1508352) (-941 "PFO.spad" 1507146 1507173 1507717 1507722) (-940 "PFECAT.spad" 1504856 1504864 1507072 1507141) (-939 "PFECAT.spad" 1502594 1502604 1504812 1504817) (-938 "PFBRU.spad" 1500482 1500494 1502584 1502589) (-937 "PFBR.spad" 1498042 1498065 1500472 1500477) (-936 "PF.spad" 1497616 1497628 1497847 1497940) (-935 "PERMGRP.spad" 1492386 1492396 1497606 1497611) (-934 "PERMCAT.spad" 1491047 1491057 1492366 1492381) (-933 "PERMAN.spad" 1489603 1489617 1491037 1491042) (-932 "PERM.spad" 1485410 1485420 1489433 1489448) (-931 "PENDTREE.spad" 1484630 1484640 1484910 1484915) (-930 "PDSPC.spad" 1483443 1483453 1484620 1484625) (-929 "PDSPC.spad" 1482254 1482266 1483433 1483438) (-928 "PDRING.spad" 1482096 1482106 1482234 1482249) (-927 "PDMOD.spad" 1481912 1481924 1482064 1482091) (-926 "PDEPROB.spad" 1480927 1480935 1481902 1481907) (-925 "PDEPACK.spad" 1475063 1475071 1480917 1480922) (-924 "PDECOMP.spad" 1474533 1474550 1475053 1475058) (-923 "PDECAT.spad" 1472889 1472897 1474523 1474528) (-922 "PDDOM.spad" 1472327 1472340 1472879 1472884) (-921 "PDDOM.spad" 1471763 1471778 1472317 1472322) (-920 "PCOMP.spad" 1471616 1471629 1471753 1471758) (-919 "PBWLB.spad" 1470212 1470229 1471606 1471611) (-918 "PATTERN2.spad" 1469950 1469962 1470202 1470207) (-917 "PATTERN1.spad" 1468294 1468310 1469940 1469945) (-916 "PATTERN.spad" 1462865 1462875 1468284 1468289) (-915 "PATRES2.spad" 1462537 1462551 1462855 1462860) (-914 "PATRES.spad" 1460120 1460132 1462527 1462532) (-913 "PATMATCH.spad" 1458308 1458339 1459819 1459824) (-912 "PATMAB.spad" 1457737 1457747 1458298 1458303) (-911 "PATLRES.spad" 1456823 1456837 1457727 1457732) (-910 "PATAB.spad" 1456587 1456597 1456813 1456818) (-909 "PARTPERM.spad" 1454643 1454651 1456577 1456582) (-908 "PARSURF.spad" 1454077 1454105 1454633 1454638) (-907 "PARSU2.spad" 1453874 1453890 1454067 1454072) (-906 "script-parser.spad" 1453394 1453402 1453864 1453869) (-905 "PARSCURV.spad" 1452828 1452856 1453384 1453389) (-904 "PARSC2.spad" 1452619 1452635 1452818 1452823) (-903 "PARPCURV.spad" 1452081 1452109 1452609 1452614) (-902 "PARPC2.spad" 1451872 1451888 1452071 1452076) (-901 "PARAMAST.spad" 1451000 1451008 1451862 1451867) (-900 "PAN2EXPR.spad" 1450412 1450420 1450990 1450995) (-899 "PALETTE.spad" 1449398 1449406 1450402 1450407) (-898 "PAIR.spad" 1448405 1448418 1448974 1448979) (-897 "PADICRC.spad" 1445609 1445627 1446772 1446865) (-896 "PADICRAT.spad" 1443468 1443480 1443681 1443774) (-895 "PADICCT.spad" 1442017 1442029 1443394 1443463) (-894 "PADIC.spad" 1441720 1441732 1441943 1442012) (-893 "PADEPAC.spad" 1440409 1440428 1441710 1441715) (-892 "PADE.spad" 1439161 1439177 1440399 1440404) (-891 "OWP.spad" 1438409 1438439 1439019 1439086) (-890 "OVERSET.spad" 1437982 1437990 1438399 1438404) (-889 "OVAR.spad" 1437763 1437786 1437972 1437977) (-888 "OUTFORM.spad" 1427171 1427179 1437753 1437758) (-887 "OUTBFILE.spad" 1426605 1426613 1427161 1427166) (-886 "OUTBCON.spad" 1425675 1425683 1426595 1426600) (-885 "OUTBCON.spad" 1424743 1424753 1425665 1425670) (-884 "OUT.spad" 1423861 1423869 1424733 1424738) (-883 "OSI.spad" 1423336 1423344 1423851 1423856) (-882 "OSGROUP.spad" 1423254 1423262 1423326 1423331) (-881 "ORTHPOL.spad" 1421733 1421743 1423165 1423170) (-880 "OREUP.spad" 1421177 1421205 1421404 1421443) (-879 "ORESUP.spad" 1420469 1420493 1420848 1420887) (-878 "OREPCTO.spad" 1418358 1418370 1420389 1420394) (-877 "OREPCAT.spad" 1412545 1412555 1418314 1418353) (-876 "OREPCAT.spad" 1406622 1406634 1412393 1412398) (-875 "ORDTYPE.spad" 1405859 1405867 1406612 1406617) (-874 "ORDTYPE.spad" 1405094 1405104 1405849 1405854) (-873 "ORDSTRCT.spad" 1404864 1404879 1405027 1405032) (-872 "ORDSET.spad" 1404564 1404572 1404854 1404859) (-871 "ORDRING.spad" 1404381 1404389 1404544 1404559) (-870 "ORDMON.spad" 1404236 1404244 1404371 1404376) (-869 "ORDFUNS.spad" 1403368 1403384 1404226 1404231) (-868 "ORDFIN.spad" 1403188 1403196 1403358 1403363) (-867 "ORDCOMP2.spad" 1402481 1402493 1403178 1403183) (-866 "ORDCOMP.spad" 1400934 1400944 1402016 1402045) (-865 "OPTPROB.spad" 1399572 1399580 1400924 1400929) (-864 "OPTPACK.spad" 1391981 1391989 1399562 1399567) (-863 "OPTCAT.spad" 1389660 1389668 1391971 1391976) (-862 "OPSIG.spad" 1389322 1389330 1389650 1389655) (-861 "OPQUERY.spad" 1388903 1388911 1389312 1389317) (-860 "OPERCAT.spad" 1388369 1388379 1388893 1388898) (-859 "OPERCAT.spad" 1387833 1387845 1388359 1388364) (-858 "OP.spad" 1387575 1387585 1387655 1387722) (-857 "ONECOMP2.spad" 1386999 1387011 1387565 1387570) (-856 "ONECOMP.spad" 1385732 1385742 1386534 1386563) (-855 "OMSERVER.spad" 1384738 1384746 1385722 1385727) (-854 "OMSAGG.spad" 1384526 1384536 1384694 1384733) (-853 "OMPKG.spad" 1383158 1383166 1384516 1384521) (-852 "OMLO.spad" 1382591 1382603 1383044 1383083) (-851 "OMEXPR.spad" 1382425 1382435 1382581 1382586) (-850 "OMERRK.spad" 1381475 1381483 1382415 1382420) (-849 "OMERR.spad" 1381020 1381028 1381465 1381470) (-848 "OMENC.spad" 1380372 1380380 1381010 1381015) (-847 "OMDEV.spad" 1374705 1374713 1380362 1380367) (-846 "OMCONN.spad" 1374114 1374122 1374695 1374700) (-845 "OM.spad" 1373111 1373119 1374104 1374109) (-844 "OINTDOM.spad" 1372874 1372882 1373037 1373106) (-843 "OFMONOID.spad" 1371013 1371023 1372830 1372835) (-842 "ODVAR.spad" 1370274 1370284 1371003 1371008) (-841 "ODR.spad" 1369918 1369944 1370086 1370235) (-840 "ODPOL.spad" 1367129 1367139 1367469 1367596) (-839 "ODP.spad" 1354628 1354648 1355001 1355100) (-838 "ODETOOLS.spad" 1353277 1353296 1354618 1354623) (-837 "ODESYS.spad" 1350971 1350988 1353267 1353272) (-836 "ODERTRIC.spad" 1347004 1347021 1350928 1350933) (-835 "ODERED.spad" 1346403 1346427 1346994 1346999) (-834 "ODERAT.spad" 1344036 1344053 1346393 1346398) (-833 "ODEPRRIC.spad" 1341129 1341151 1344026 1344031) (-832 "ODEPROB.spad" 1340386 1340394 1341119 1341124) (-831 "ODEPRIM.spad" 1337784 1337806 1340376 1340381) (-830 "ODEPAL.spad" 1337170 1337194 1337774 1337779) (-829 "ODEPACK.spad" 1323900 1323908 1337160 1337165) (-828 "ODEINT.spad" 1323335 1323351 1323890 1323895) (-827 "ODEIFTBL.spad" 1320738 1320746 1323325 1323330) (-826 "ODEEF.spad" 1316233 1316249 1320728 1320733) (-825 "ODECONST.spad" 1315778 1315796 1316223 1316228) (-824 "ODECAT.spad" 1314376 1314384 1315768 1315773) (-823 "OCTCT2.spad" 1314014 1314035 1314366 1314371) (-822 "OCT.spad" 1312102 1312112 1312816 1312855) (-821 "OCAMON.spad" 1311950 1311958 1312092 1312097) (-820 "OC.spad" 1309746 1309756 1311906 1311945) (-819 "OC.spad" 1307264 1307276 1309426 1309431) (-818 "OASGP.spad" 1307079 1307087 1307254 1307259) (-817 "OAMONS.spad" 1306601 1306609 1307069 1307074) (-816 "OAMON.spad" 1306359 1306367 1306591 1306596) (-815 "OAMON.spad" 1306115 1306125 1306349 1306354) (-814 "OAGROUP.spad" 1305653 1305661 1306105 1306110) (-813 "OAGROUP.spad" 1305189 1305199 1305643 1305648) (-812 "NUMTUBE.spad" 1304780 1304796 1305179 1305184) (-811 "NUMQUAD.spad" 1292756 1292764 1304770 1304775) (-810 "NUMODE.spad" 1284108 1284116 1292746 1292751) (-809 "NUMINT.spad" 1281674 1281682 1284098 1284103) (-808 "NUMFMT.spad" 1280514 1280522 1281664 1281669) (-807 "NUMERIC.spad" 1272628 1272638 1280319 1280324) (-806 "NTSCAT.spad" 1271136 1271152 1272596 1272623) (-805 "NTPOLFN.spad" 1270681 1270691 1271047 1271052) (-804 "NSUP2.spad" 1270073 1270085 1270671 1270676) (-803 "NSUP.spad" 1263068 1263078 1267488 1267641) (-802 "NSMP.spad" 1259167 1259186 1259459 1259586) (-801 "NREP.spad" 1257569 1257583 1259157 1259162) (-800 "NPCOEF.spad" 1256815 1256835 1257559 1257564) (-799 "NORMRETR.spad" 1256413 1256452 1256805 1256810) (-798 "NORMPK.spad" 1254355 1254374 1256403 1256408) (-797 "NORMMA.spad" 1254043 1254069 1254345 1254350) (-796 "NONE1.spad" 1253719 1253729 1254033 1254038) (-795 "NONE.spad" 1253460 1253468 1253709 1253714) (-794 "NODE1.spad" 1252947 1252963 1253450 1253455) (-793 "NNI.spad" 1251842 1251850 1252921 1252942) (-792 "NLINSOL.spad" 1250468 1250478 1251832 1251837) (-791 "NIPROB.spad" 1249009 1249017 1250458 1250463) (-790 "NFINTBAS.spad" 1246569 1246586 1248999 1249004) (-789 "NETCLT.spad" 1246543 1246554 1246559 1246564) (-788 "NCODIV.spad" 1244767 1244783 1246533 1246538) (-787 "NCNTFRAC.spad" 1244409 1244423 1244757 1244762) (-786 "NCEP.spad" 1242575 1242589 1244399 1244404) (-785 "NASRING.spad" 1242179 1242187 1242565 1242570) (-784 "NASRING.spad" 1241781 1241791 1242169 1242174) (-783 "NARNG.spad" 1241181 1241189 1241771 1241776) (-782 "NARNG.spad" 1240579 1240589 1241171 1241176) (-781 "NAGSP.spad" 1239656 1239664 1240569 1240574) (-780 "NAGS.spad" 1229373 1229381 1239646 1239651) (-779 "NAGF07.spad" 1227804 1227812 1229363 1229368) (-778 "NAGF04.spad" 1222206 1222214 1227794 1227799) (-777 "NAGF02.spad" 1216299 1216307 1222196 1222201) (-776 "NAGF01.spad" 1212068 1212076 1216289 1216294) (-775 "NAGE04.spad" 1205776 1205784 1212058 1212063) (-774 "NAGE02.spad" 1196428 1196436 1205766 1205771) (-773 "NAGE01.spad" 1192422 1192430 1196418 1196423) (-772 "NAGD03.spad" 1190418 1190426 1192412 1192417) (-771 "NAGD02.spad" 1183149 1183157 1190408 1190413) (-770 "NAGD01.spad" 1177434 1177442 1183139 1183144) (-769 "NAGC06.spad" 1173301 1173309 1177424 1177429) (-768 "NAGC05.spad" 1171794 1171802 1173291 1173296) (-767 "NAGC02.spad" 1171069 1171077 1171784 1171789) (-766 "NAALG.spad" 1170634 1170644 1171037 1171064) (-765 "NAALG.spad" 1170219 1170231 1170624 1170629) (-764 "MULTSQFR.spad" 1167177 1167194 1170209 1170214) (-763 "MULTFACT.spad" 1166560 1166577 1167167 1167172) (-762 "MTSCAT.spad" 1164654 1164675 1166458 1166555) (-761 "MTHING.spad" 1164313 1164323 1164644 1164649) (-760 "MSYSCMD.spad" 1163747 1163755 1164303 1164308) (-759 "MSETAGG.spad" 1163592 1163602 1163715 1163742) (-758 "MSET.spad" 1161505 1161515 1163253 1163292) (-757 "MRING.spad" 1158482 1158494 1161213 1161280) (-756 "MRF2.spad" 1158044 1158058 1158472 1158477) (-755 "MRATFAC.spad" 1157590 1157607 1158034 1158039) (-754 "MPRFF.spad" 1155630 1155649 1157580 1157585) (-753 "MPOLY.spad" 1153029 1153044 1153388 1153515) (-752 "MPCPF.spad" 1152293 1152312 1153019 1153024) (-751 "MPC3.spad" 1152110 1152150 1152283 1152288) (-750 "MPC2.spad" 1151763 1151796 1152100 1152105) (-749 "MONOTOOL.spad" 1150114 1150131 1151753 1151758) (-748 "MONOID.spad" 1149433 1149441 1150104 1150109) (-747 "MONOID.spad" 1148750 1148760 1149423 1149428) (-746 "MONOGEN.spad" 1147498 1147511 1148610 1148745) (-745 "MONOGEN.spad" 1146268 1146283 1147382 1147387) (-744 "MONADWU.spad" 1144346 1144354 1146258 1146263) (-743 "MONADWU.spad" 1142422 1142432 1144336 1144341) (-742 "MONAD.spad" 1141582 1141590 1142412 1142417) (-741 "MONAD.spad" 1140740 1140750 1141572 1141577) (-740 "MOEBIUS.spad" 1139476 1139490 1140720 1140735) (-739 "MODULE.spad" 1139346 1139356 1139444 1139471) (-738 "MODULE.spad" 1139236 1139248 1139336 1139341) (-737 "MODRING.spad" 1138571 1138610 1139216 1139231) (-736 "MODOP.spad" 1137228 1137240 1138393 1138460) (-735 "MODMONOM.spad" 1136959 1136977 1137218 1137223) (-734 "MODMON.spad" 1133583 1133599 1134302 1134455) (-733 "MODFIELD.spad" 1132945 1132984 1133485 1133578) (-732 "MMLFORM.spad" 1131805 1131813 1132935 1132940) (-731 "MMAP.spad" 1131547 1131581 1131795 1131800) (-730 "MLO.spad" 1130006 1130016 1131503 1131542) (-729 "MLIFT.spad" 1128618 1128635 1129996 1130001) (-728 "MKUCFUNC.spad" 1128153 1128171 1128608 1128613) (-727 "MKRECORD.spad" 1127741 1127754 1128143 1128148) (-726 "MKFUNC.spad" 1127148 1127158 1127731 1127736) (-725 "MKFLCFN.spad" 1126116 1126126 1127138 1127143) (-724 "MKBCFUNC.spad" 1125611 1125629 1126106 1126111) (-723 "MINT.spad" 1125050 1125058 1125513 1125606) (-722 "MHROWRED.spad" 1123561 1123571 1125040 1125045) (-721 "MFLOAT.spad" 1122081 1122089 1123451 1123556) (-720 "MFINFACT.spad" 1121481 1121503 1122071 1122076) (-719 "MESH.spad" 1119276 1119284 1121471 1121476) (-718 "MDDFACT.spad" 1117495 1117505 1119266 1119271) (-717 "MDAGG.spad" 1116786 1116796 1117475 1117490) (-716 "MCMPLX.spad" 1112151 1112159 1112765 1112966) (-715 "MCDEN.spad" 1111361 1111373 1112141 1112146) (-714 "MCALCFN.spad" 1108459 1108485 1111351 1111356) (-713 "MAYBE.spad" 1107759 1107770 1108449 1108454) (-712 "MATSTOR.spad" 1105075 1105085 1107749 1107754) (-711 "MATRIX.spad" 1103641 1103651 1104125 1104152) (-710 "MATLIN.spad" 1101009 1101033 1103525 1103530) (-709 "MATCAT2.spad" 1100291 1100339 1100999 1101004) (-708 "MATCAT.spad" 1091853 1091875 1100259 1100286) (-707 "MATCAT.spad" 1083287 1083311 1091695 1091700) (-706 "MAPPKG3.spad" 1082202 1082216 1083277 1083282) (-705 "MAPPKG2.spad" 1081540 1081552 1082192 1082197) (-704 "MAPPKG1.spad" 1080368 1080378 1081530 1081535) (-703 "MAPPAST.spad" 1079707 1079715 1080358 1080363) (-702 "MAPHACK3.spad" 1079519 1079533 1079697 1079702) (-701 "MAPHACK2.spad" 1079288 1079300 1079509 1079514) (-700 "MAPHACK1.spad" 1078932 1078942 1079278 1079283) (-699 "MAGMA.spad" 1076738 1076755 1078922 1078927) (-698 "MACROAST.spad" 1076333 1076341 1076728 1076733) (-697 "M3D.spad" 1073918 1073928 1075576 1075581) (-696 "LZSTAGG.spad" 1071172 1071182 1073908 1073913) (-695 "LZSTAGG.spad" 1068424 1068436 1071162 1071167) (-694 "LWORD.spad" 1065169 1065186 1068414 1068419) (-693 "LSTAST.spad" 1064953 1064961 1065159 1065164) (-692 "LSQM.spad" 1063062 1063076 1063456 1063507) (-691 "LSPP.spad" 1062597 1062614 1063052 1063057) (-690 "LSMP1.spad" 1060440 1060454 1062587 1062592) (-689 "LSMP.spad" 1059297 1059325 1060430 1060435) (-688 "LSAGG.spad" 1058966 1058976 1059265 1059292) (-687 "LSAGG.spad" 1058655 1058667 1058956 1058961) (-686 "LPOLY.spad" 1057617 1057636 1058511 1058580) (-685 "LPEFRAC.spad" 1056888 1056898 1057607 1057612) (-684 "LOGIC.spad" 1056490 1056498 1056878 1056883) (-683 "LOGIC.spad" 1056090 1056100 1056480 1056485) (-682 "LODOOPS.spad" 1055020 1055032 1056080 1056085) (-681 "LODOF.spad" 1054066 1054083 1054977 1054982) (-680 "LODOCAT.spad" 1052732 1052742 1054022 1054061) (-679 "LODOCAT.spad" 1051396 1051408 1052688 1052693) (-678 "LODO2.spad" 1050660 1050672 1051067 1051106) (-677 "LODO1.spad" 1050051 1050061 1050331 1050370) (-676 "LODO.spad" 1049426 1049442 1049722 1049761) (-675 "LODEEF.spad" 1048228 1048246 1049416 1049421) (-674 "LO.spad" 1047629 1047643 1048162 1048189) (-673 "LNAGG.spad" 1043816 1043826 1047619 1047624) (-672 "LNAGG.spad" 1039967 1039979 1043772 1043777) (-671 "LMOPS.spad" 1036735 1036752 1039957 1039962) (-670 "LMODULE.spad" 1036519 1036529 1036725 1036730) (-669 "LMDICT.spad" 1035690 1035700 1035938 1035965) (-668 "LLINSET.spad" 1035397 1035407 1035680 1035685) (-667 "LITERAL.spad" 1035303 1035314 1035387 1035392) (-666 "LIST3.spad" 1034614 1034628 1035293 1035298) (-665 "LIST2MAP.spad" 1031541 1031553 1034604 1034609) (-664 "LIST2.spad" 1030243 1030255 1031531 1031536) (-663 "LIST.spad" 1027804 1027814 1029216 1029243) (-662 "LINSET.spad" 1027583 1027593 1027794 1027799) (-661 "LINFORM.spad" 1027046 1027058 1027551 1027578) (-660 "LINEXP.spad" 1025789 1025799 1027036 1027041) (-659 "LINELT.spad" 1025160 1025172 1025672 1025699) (-658 "LINDEP.spad" 1024009 1024021 1025072 1025077) (-657 "LINBASIS.spad" 1023645 1023660 1023999 1024004) (-656 "LIMITRF.spad" 1021592 1021602 1023635 1023640) (-655 "LIMITPS.spad" 1020502 1020515 1021582 1021587) (-654 "LIECAT.spad" 1019986 1019996 1020428 1020497) (-653 "LIECAT.spad" 1019498 1019510 1019942 1019947) (-652 "LIE.spad" 1017493 1017505 1018767 1018912) (-651 "LIB.spad" 1015208 1015216 1015654 1015669) (-650 "LGROBP.spad" 1012561 1012580 1015198 1015203) (-649 "LFCAT.spad" 1011620 1011628 1012551 1012556) (-648 "LF.spad" 1010575 1010591 1011610 1011615) (-647 "LEXTRIPK.spad" 1006198 1006213 1010565 1010570) (-646 "LEXP.spad" 1004217 1004244 1006178 1006193) (-645 "LETAST.spad" 1003916 1003924 1004207 1004212) (-644 "LEADCDET.spad" 1002322 1002339 1003906 1003911) (-643 "LAZM3PK.spad" 1001066 1001088 1002312 1002317) (-642 "LAUPOL.spad" 999651 999664 1000551 1000620) (-641 "LAPLACE.spad" 999234 999250 999641 999646) (-640 "LALG.spad" 999010 999020 999214 999229) (-639 "LALG.spad" 998794 998806 999000 999005) (-638 "LA.spad" 998234 998248 998716 998755) (-637 "KVTFROM.spad" 997977 997987 998224 998229) (-636 "KTVLOGIC.spad" 997521 997529 997967 997972) (-635 "KRCFROM.spad" 997267 997277 997511 997516) (-634 "KOVACIC.spad" 995998 996015 997257 997262) (-633 "KONVERT.spad" 995720 995730 995988 995993) (-632 "KOERCE.spad" 995457 995467 995710 995715) (-631 "KERNEL2.spad" 995160 995172 995447 995452) (-630 "KERNEL.spad" 993800 993810 994929 994934) (-629 "KDAGG.spad" 992909 992931 993780 993795) (-628 "KDAGG.spad" 992026 992050 992899 992904) (-627 "KAFILE.spad" 990856 990872 991091 991118) (-626 "JVMOP.spad" 990769 990777 990846 990851) (-625 "JVMMDACC.spad" 989823 989831 990759 990764) (-624 "JVMFDACC.spad" 989139 989147 989813 989818) (-623 "JVMCSTTG.spad" 987868 987876 989129 989134) (-622 "JVMCFACC.spad" 987314 987322 987858 987863) (-621 "JVMBCODE.spad" 987225 987233 987304 987309) (-620 "JORDAN.spad" 985033 985045 986494 986639) (-619 "JOINAST.spad" 984735 984743 985023 985028) (-618 "IXAGG.spad" 982868 982892 984725 984730) (-617 "IXAGG.spad" 980856 980882 982715 982720) (-616 "IVECTOR.spad" 979452 979467 979607 979634) (-615 "ITUPLE.spad" 978628 978638 979442 979447) (-614 "ITRIGMNP.spad" 977475 977494 978618 978623) (-613 "ITFUN3.spad" 976981 976995 977465 977470) (-612 "ITFUN2.spad" 976725 976737 976971 976976) (-611 "ITFORM.spad" 976080 976088 976715 976720) (-610 "ITAYLOR.spad" 974074 974089 975944 976041) (-609 "ISUPS.spad" 966472 966487 973009 973106) (-608 "ISUMP.spad" 965973 965989 966462 966467) (-607 "ISTRING.spad" 964879 964892 964960 964987) (-606 "ISAST.spad" 964598 964606 964869 964874) (-605 "IRURPK.spad" 963315 963334 964588 964593) (-604 "IRSN.spad" 961319 961327 963305 963310) (-603 "IRRF2F.spad" 959812 959822 961275 961280) (-602 "IRREDFFX.spad" 959413 959424 959802 959807) (-601 "IROOT.spad" 957752 957762 959403 959408) (-600 "IRFORM.spad" 957076 957084 957742 957747) (-599 "IR2F.spad" 956290 956306 957066 957071) (-598 "IR2.spad" 955318 955334 956280 956285) (-597 "IR.spad" 953121 953135 955167 955194) (-596 "IPRNTPK.spad" 952881 952889 953111 953116) (-595 "IPF.spad" 952446 952458 952686 952779) (-594 "IPADIC.spad" 952215 952241 952372 952441) (-593 "IP4ADDR.spad" 951772 951780 952205 952210) (-592 "IOMODE.spad" 951294 951302 951762 951767) (-591 "IOBFILE.spad" 950679 950687 951284 951289) (-590 "IOBCON.spad" 950544 950552 950669 950674) (-589 "INVLAPLA.spad" 950193 950209 950534 950539) (-588 "INTTR.spad" 943587 943604 950183 950188) (-587 "INTTOOLS.spad" 941330 941346 943149 943154) (-586 "INTSLPE.spad" 940658 940666 941320 941325) (-585 "INTRVL.spad" 940224 940234 940572 940653) (-584 "INTRF.spad" 938656 938670 940214 940219) (-583 "INTRET.spad" 938088 938098 938646 938651) (-582 "INTRAT.spad" 936823 936840 938078 938083) (-581 "INTPM.spad" 935190 935206 936448 936453) (-580 "INTPAF.spad" 933066 933084 935119 935124) (-579 "INTPACK.spad" 923632 923640 933056 933061) (-578 "INTHERTR.spad" 922906 922923 923622 923627) (-577 "INTHERAL.spad" 922576 922600 922896 922901) (-576 "INTHEORY.spad" 919015 919023 922566 922571) (-575 "INTG0.spad" 912779 912797 918944 918949) (-574 "INTFTBL.spad" 908233 908241 912769 912774) (-573 "INTFACT.spad" 907300 907310 908223 908228) (-572 "INTEF.spad" 905711 905727 907290 907295) (-571 "INTDOM.spad" 904334 904342 905637 905706) (-570 "INTDOM.spad" 903019 903029 904324 904329) (-569 "INTCAT.spad" 901286 901296 902933 903014) (-568 "INTBIT.spad" 900793 900801 901276 901281) (-567 "INTALG.spad" 899981 900008 900783 900788) (-566 "INTAF.spad" 899481 899497 899971 899976) (-565 "INTABL.spad" 897521 897552 897684 897711) (-564 "INT8.spad" 897401 897409 897511 897516) (-563 "INT64.spad" 897280 897288 897391 897396) (-562 "INT32.spad" 897159 897167 897270 897275) (-561 "INT16.spad" 897038 897046 897149 897154) (-560 "INT.spad" 896481 896489 896892 897033) (-559 "INS.spad" 893984 893992 896383 896476) (-558 "INS.spad" 891573 891583 893974 893979) (-557 "INPSIGN.spad" 891043 891056 891563 891568) (-556 "INPRODPF.spad" 890139 890158 891033 891038) (-555 "INPRODFF.spad" 889227 889251 890129 890134) (-554 "INNMFACT.spad" 888202 888219 889217 889222) (-553 "INMODGCD.spad" 887706 887736 888192 888197) (-552 "INFSP.spad" 886003 886025 887696 887701) (-551 "INFPROD0.spad" 885083 885102 885993 885998) (-550 "INFORM1.spad" 884708 884718 885073 885078) (-549 "INFORM.spad" 881915 881923 884698 884703) (-548 "INFINITY.spad" 881467 881475 881905 881910) (-547 "INETCLTS.spad" 881444 881452 881457 881462) (-546 "INEP.spad" 879990 880012 881434 881439) (-545 "INDE.spad" 879639 879656 879900 879905) (-544 "INCRMAPS.spad" 879076 879086 879629 879634) (-543 "INBFILE.spad" 878172 878180 879066 879071) (-542 "INBFF.spad" 874022 874033 878162 878167) (-541 "INBCON.spad" 872288 872296 874012 874017) (-540 "INBCON.spad" 870552 870562 872278 872283) (-539 "INAST.spad" 870213 870221 870542 870547) (-538 "IMPTAST.spad" 869921 869929 870203 870208) (-537 "IMATRIX.spad" 868737 868763 869249 869276) (-536 "IMATQF.spad" 867831 867875 868693 868698) (-535 "IMATLIN.spad" 866452 866476 867787 867792) (-534 "ILIST.spad" 864936 864951 865461 865488) (-533 "IIARRAY2.spad" 864211 864249 864414 864441) (-532 "IFF.spad" 863621 863637 863892 863985) (-531 "IFAST.spad" 863235 863243 863611 863616) (-530 "IFARRAY.spad" 860546 860561 862244 862271) (-529 "IFAMON.spad" 860408 860425 860502 860507) (-528 "IEVALAB.spad" 859821 859833 860398 860403) (-527 "IEVALAB.spad" 859232 859246 859811 859816) (-526 "IDPOAMS.spad" 858910 858922 859144 859149) (-525 "IDPOAM.spad" 858552 858564 858822 858827) (-524 "IDPO.spad" 858287 858299 858464 858469) (-523 "IDPC.spad" 857016 857028 858277 858282) (-522 "IDPAM.spad" 856683 856695 856928 856933) (-521 "IDPAG.spad" 856352 856364 856595 856600) (-520 "IDENT.spad" 856002 856010 856342 856347) (-519 "IDECOMP.spad" 853241 853259 855992 855997) (-518 "IDEAL.spad" 848187 848226 853173 853178) (-517 "ICDEN.spad" 847400 847416 848177 848182) (-516 "ICARD.spad" 846591 846599 847390 847395) (-515 "IBPTOOLS.spad" 845198 845215 846581 846586) (-514 "IBITS.spad" 844354 844367 844787 844814) (-513 "IBATOOL.spad" 841339 841358 844344 844349) (-512 "IBACHIN.spad" 839846 839861 841329 841334) (-511 "IARRAY2.spad" 838713 838739 839324 839351) (-510 "IARRAY1.spad" 837576 837591 837722 837749) (-509 "IAN.spad" 835796 835804 837389 837482) (-508 "IALGFACT.spad" 835407 835440 835786 835791) (-507 "HYPCAT.spad" 834831 834839 835397 835402) (-506 "HYPCAT.spad" 834253 834263 834821 834826) (-505 "HOSTNAME.spad" 834069 834077 834243 834248) (-504 "HOMOTOP.spad" 833812 833822 834059 834064) (-503 "HOAGG.spad" 831094 831104 833802 833807) (-502 "HOAGG.spad" 828109 828121 830819 830824) (-501 "HEXADEC.spad" 826069 826077 826434 826527) (-500 "HEUGCD.spad" 825160 825171 826059 826064) (-499 "HELLFDIV.spad" 824766 824790 825150 825155) (-498 "HEAP.spad" 824029 824039 824244 824271) (-497 "HEADAST.spad" 823570 823578 824019 824024) (-496 "HDP.spad" 811065 811081 811442 811541) (-495 "HDMP.spad" 808207 808222 808823 808950) (-494 "HB.spad" 806482 806490 808197 808202) (-493 "HASHTBL.spad" 804474 804505 804685 804712) (-492 "HASAST.spad" 804190 804198 804464 804469) (-491 "HACKPI.spad" 803681 803689 804092 804185) (-490 "GTSET.spad" 802575 802591 803282 803309) (-489 "GSTBL.spad" 800616 800651 800790 800805) (-488 "GSERIES.spad" 797848 797875 798667 798816) (-487 "GROUP.spad" 797121 797129 797828 797843) (-486 "GROUP.spad" 796402 796412 797111 797116) (-485 "GROEBSOL.spad" 794896 794917 796392 796397) (-484 "GRMOD.spad" 793475 793487 794886 794891) (-483 "GRMOD.spad" 792052 792066 793465 793470) (-482 "GRIMAGE.spad" 784965 784973 792042 792047) (-481 "GRDEF.spad" 783344 783352 784955 784960) (-480 "GRAY.spad" 781815 781823 783334 783339) (-479 "GRALG.spad" 780908 780920 781805 781810) (-478 "GRALG.spad" 779999 780013 780898 780903) (-477 "GPOLSET.spad" 779424 779447 779636 779663) (-476 "GOSPER.spad" 778701 778719 779414 779419) (-475 "GMODPOL.spad" 777849 777876 778669 778696) (-474 "GHENSEL.spad" 776932 776946 777839 777844) (-473 "GENUPS.spad" 773225 773238 776922 776927) (-472 "GENUFACT.spad" 772802 772812 773215 773220) (-471 "GENPGCD.spad" 772404 772421 772792 772797) (-470 "GENMFACT.spad" 771856 771875 772394 772399) (-469 "GENEEZ.spad" 769815 769828 771846 771851) (-468 "GDMP.spad" 766799 766816 767573 767700) (-467 "GCNAALG.spad" 760722 760749 766593 766660) (-466 "GCDDOM.spad" 759914 759922 760648 760717) (-465 "GCDDOM.spad" 759168 759178 759904 759909) (-464 "GBINTERN.spad" 755188 755226 759158 759163) (-463 "GBF.spad" 750971 751009 755178 755183) (-462 "GBEUCLID.spad" 748853 748891 750961 750966) (-461 "GB.spad" 746379 746417 748809 748814) (-460 "GAUSSFAC.spad" 745692 745700 746369 746374) (-459 "GALUTIL.spad" 744018 744028 745648 745653) (-458 "GALPOLYU.spad" 742472 742485 744008 744013) (-457 "GALFACTU.spad" 740685 740704 742462 742467) (-456 "GALFACT.spad" 730898 730909 740675 740680) (-455 "FVFUN.spad" 727921 727929 730888 730893) (-454 "FVC.spad" 726973 726981 727911 727916) (-453 "FUNDESC.spad" 726651 726659 726963 726968) (-452 "FUNCTION.spad" 726500 726512 726641 726646) (-451 "FTEM.spad" 725665 725673 726490 726495) (-450 "FT.spad" 723965 723973 725655 725660) (-449 "FSUPFACT.spad" 722862 722881 723898 723903) (-448 "FST.spad" 720948 720956 722852 722857) (-447 "FSRED.spad" 720428 720444 720938 720943) (-446 "FSPRMELT.spad" 719294 719310 720385 720390) (-445 "FSPECF.spad" 717385 717401 719284 719289) (-444 "FSINT.spad" 717045 717061 717375 717380) (-443 "FSERIES.spad" 716236 716248 716865 716964) (-442 "FSCINT.spad" 715553 715569 716226 716231) (-441 "FSAGG2.spad" 714288 714304 715543 715548) (-440 "FSAGG.spad" 713405 713415 714244 714283) (-439 "FSAGG.spad" 712484 712496 713325 713330) (-438 "FS2UPS.spad" 706999 707033 712474 712479) (-437 "FS2EXPXP.spad" 706140 706163 706989 706994) (-436 "FS2.spad" 705795 705811 706130 706135) (-435 "FS.spad" 700063 700073 705570 705790) (-434 "FS.spad" 694103 694115 699612 699617) (-433 "FRUTIL.spad" 693057 693067 694093 694098) (-432 "FRNAALG.spad" 688334 688344 692999 693052) (-431 "FRNAALG.spad" 683623 683635 688290 688295) (-430 "FRNAAF2.spad" 683071 683089 683613 683618) (-429 "FRMOD.spad" 682478 682508 682999 683004) (-428 "FRIDEAL2.spad" 682082 682114 682468 682473) (-427 "FRIDEAL.spad" 681307 681328 682062 682077) (-426 "FRETRCT.spad" 680826 680836 681297 681302) (-425 "FRETRCT.spad" 680202 680214 680675 680680) (-424 "FRAMALG.spad" 678582 678595 680158 680197) (-423 "FRAMALG.spad" 676994 677009 678572 678577) (-422 "FRAC2.spad" 676599 676611 676984 676989) (-421 "FRAC.spad" 673558 673568 673945 674118) (-420 "FR2.spad" 672894 672906 673548 673553) (-419 "FR.spad" 666516 666526 671789 671858) (-418 "FPS.spad" 663355 663363 666406 666511) (-417 "FPS.spad" 660222 660232 663275 663280) (-416 "FPC.spad" 659268 659276 660124 660217) (-415 "FPC.spad" 658400 658410 659258 659263) (-414 "FPATMAB.spad" 658162 658172 658390 658395) (-413 "FPARFRAC.spad" 657004 657021 658152 658157) (-412 "FORTRAN.spad" 655510 655553 656994 656999) (-411 "FORTFN.spad" 652680 652688 655500 655505) (-410 "FORTCAT.spad" 652364 652372 652670 652675) (-409 "FORT.spad" 651313 651321 652354 652359) (-408 "FORMULA1.spad" 650792 650802 651303 651308) (-407 "FORMULA.spad" 648266 648274 650782 650787) (-406 "FORDER.spad" 647957 647981 648256 648261) (-405 "FOP.spad" 647158 647166 647947 647952) (-404 "FNLA.spad" 646582 646604 647126 647153) (-403 "FNCAT.spad" 645177 645185 646572 646577) (-402 "FNAME.spad" 645069 645077 645167 645172) (-401 "FMTC.spad" 644867 644875 644995 645064) (-400 "FMONOID.spad" 644548 644558 644823 644828) (-399 "FMONCAT.spad" 641717 641727 644538 644543) (-398 "FMFUN.spad" 638747 638755 641707 641712) (-397 "FMCAT.spad" 636423 636441 638715 638742) (-396 "FMC.spad" 635475 635483 636413 636418) (-395 "FM1.spad" 634840 634852 635409 635436) (-394 "FM.spad" 634455 634467 634694 634721) (-393 "FLOATRP.spad" 632198 632212 634445 634450) (-392 "FLOATCP.spad" 629637 629651 632188 632193) (-391 "FLOAT.spad" 622951 622959 629503 629632) (-390 "FLINEXP.spad" 622673 622683 622941 622946) (-389 "FLINEXP.spad" 622336 622348 622606 622611) (-388 "FLASORT.spad" 621662 621674 622326 622331) (-387 "FLALG.spad" 619332 619351 621588 621657) (-386 "FLAGG2.spad" 618049 618065 619322 619327) (-385 "FLAGG.spad" 615115 615125 618029 618044) (-384 "FLAGG.spad" 612082 612094 614998 615003) (-383 "FINRALG.spad" 610167 610180 612038 612077) (-382 "FINRALG.spad" 608178 608193 610051 610056) (-381 "FINITE.spad" 607330 607338 608168 608173) (-380 "FINAALG.spad" 596515 596525 607272 607325) (-379 "FINAALG.spad" 585712 585724 596471 596476) (-378 "FILECAT.spad" 584246 584263 585702 585707) (-377 "FILE.spad" 583829 583839 584236 584241) (-376 "FIELD.spad" 583235 583243 583731 583824) (-375 "FIELD.spad" 582727 582737 583225 583230) (-374 "FGROUP.spad" 581390 581400 582707 582722) (-373 "FGLMICPK.spad" 580185 580200 581380 581385) (-372 "FFX.spad" 579568 579583 579901 579994) (-371 "FFSLPE.spad" 579079 579100 579558 579563) (-370 "FFPOLY2.spad" 578139 578156 579069 579074) (-369 "FFPOLY.spad" 569481 569492 578129 578134) (-368 "FFP.spad" 568886 568906 569197 569290) (-367 "FFNBX.spad" 567406 567426 568602 568695) (-366 "FFNBP.spad" 565927 565944 567122 567215) (-365 "FFNB.spad" 564392 564413 565608 565701) (-364 "FFINTBAS.spad" 561906 561925 564382 564387) (-363 "FFIELDC.spad" 559491 559499 561808 561901) (-362 "FFIELDC.spad" 557162 557172 559481 559486) (-361 "FFHOM.spad" 555934 555951 557152 557157) (-360 "FFF.spad" 553377 553388 555924 555929) (-359 "FFCGX.spad" 552232 552252 553093 553186) (-358 "FFCGP.spad" 551129 551149 551948 552041) (-357 "FFCG.spad" 549921 549942 550810 550903) (-356 "FFCAT2.spad" 549668 549708 549911 549916) (-355 "FFCAT.spad" 542833 542855 549507 549663) (-354 "FFCAT.spad" 536077 536101 542753 542758) (-353 "FF.spad" 535525 535541 535758 535851) (-352 "FEXPR.spad" 527225 527271 535272 535311) (-351 "FEVALAB.spad" 526933 526943 527215 527220) (-350 "FEVALAB.spad" 526417 526429 526701 526706) (-349 "FDIVCAT.spad" 524513 524537 526407 526412) (-348 "FDIVCAT.spad" 522607 522633 524503 524508) (-347 "FDIV2.spad" 522263 522303 522597 522602) (-346 "FDIV.spad" 521721 521745 522253 522258) (-345 "FCTRDATA.spad" 520729 520737 521711 521716) (-344 "FCPAK1.spad" 519264 519272 520719 520724) (-343 "FCOMP.spad" 518643 518653 519254 519259) (-342 "FC.spad" 508650 508658 518633 518638) (-341 "FAXF.spad" 501685 501699 508552 508645) (-340 "FAXF.spad" 494772 494788 501641 501646) (-339 "FARRAY.spad" 492748 492758 493781 493808) (-338 "FAMR.spad" 490892 490904 492646 492743) (-337 "FAMR.spad" 489020 489034 490776 490781) (-336 "FAMONOID.spad" 488704 488714 488974 488979) (-335 "FAMONC.spad" 487024 487036 488694 488699) (-334 "FAGROUP.spad" 486664 486674 486920 486947) (-333 "FACUTIL.spad" 484876 484893 486654 486659) (-332 "FACTFUNC.spad" 484078 484088 484866 484871) (-331 "EXPUPXS.spad" 480830 480853 482129 482278) (-330 "EXPRTUBE.spad" 478118 478126 480820 480825) (-329 "EXPRODE.spad" 475286 475302 478108 478113) (-328 "EXPR2UPS.spad" 471408 471421 475276 475281) (-327 "EXPR2.spad" 471113 471125 471398 471403) (-326 "EXPR.spad" 466198 466208 466912 467207) (-325 "EXPEXPAN.spad" 462942 462967 463574 463667) (-324 "EXITAST.spad" 462678 462686 462932 462937) (-323 "EXIT.spad" 462349 462357 462668 462673) (-322 "EVALCYC.spad" 461809 461823 462339 462344) (-321 "EVALAB.spad" 461389 461399 461799 461804) (-320 "EVALAB.spad" 460967 460979 461379 461384) (-319 "EUCDOM.spad" 458557 458565 460893 460962) (-318 "EUCDOM.spad" 456209 456219 458547 458552) (-317 "ESTOOLS2.spad" 455804 455818 456199 456204) (-316 "ESTOOLS1.spad" 455481 455492 455794 455799) (-315 "ESTOOLS.spad" 447359 447367 455471 455476) (-314 "ESCONT1.spad" 447100 447112 447349 447354) (-313 "ESCONT.spad" 443893 443901 447090 447095) (-312 "ES2.spad" 443406 443422 443883 443888) (-311 "ES1.spad" 442976 442992 443396 443401) (-310 "ES.spad" 435847 435855 442966 442971) (-309 "ES.spad" 428621 428631 435742 435747) (-308 "ERROR.spad" 425948 425956 428611 428616) (-307 "EQTBL.spad" 423942 423964 424151 424178) (-306 "EQ2.spad" 423660 423672 423932 423937) (-305 "EQ.spad" 418436 418446 421231 421343) (-304 "EP.spad" 414762 414772 418426 418431) (-303 "ENV.spad" 413440 413448 414752 414757) (-302 "ENTIRER.spad" 413108 413116 413384 413435) (-301 "EMR.spad" 412396 412437 413034 413103) (-300 "ELTAGG.spad" 410650 410669 412386 412391) (-299 "ELTAGG.spad" 408868 408889 410606 410611) (-298 "ELTAB.spad" 408343 408356 408858 408863) (-297 "ELFUTS.spad" 407778 407797 408333 408338) (-296 "ELEMFUN.spad" 407467 407475 407768 407773) (-295 "ELEMFUN.spad" 407154 407164 407457 407462) (-294 "ELAGG.spad" 405125 405135 407134 407149) (-293 "ELAGG.spad" 403033 403045 405044 405049) (-292 "ELABOR.spad" 402379 402387 403023 403028) (-291 "ELABEXPR.spad" 401311 401319 402369 402374) (-290 "EFUPXS.spad" 398087 398117 401267 401272) (-289 "EFULS.spad" 394923 394946 398043 398048) (-288 "EFSTRUC.spad" 392938 392954 394913 394918) (-287 "EF.spad" 387714 387730 392928 392933) (-286 "EAB.spad" 386014 386022 387704 387709) (-285 "E04UCFA.spad" 385550 385558 386004 386009) (-284 "E04NAFA.spad" 385127 385135 385540 385545) (-283 "E04MBFA.spad" 384707 384715 385117 385122) (-282 "E04JAFA.spad" 384243 384251 384697 384702) (-281 "E04GCFA.spad" 383779 383787 384233 384238) (-280 "E04FDFA.spad" 383315 383323 383769 383774) (-279 "E04DGFA.spad" 382851 382859 383305 383310) (-278 "E04AGNT.spad" 378725 378733 382841 382846) (-277 "DVARCAT.spad" 375615 375625 378715 378720) (-276 "DVARCAT.spad" 372503 372515 375605 375610) (-275 "DSMP.spad" 369799 369813 370104 370231) (-274 "DSEXT.spad" 369101 369111 369789 369794) (-273 "DSEXT.spad" 368307 368319 368997 369002) (-272 "DROPT1.spad" 367972 367982 368297 368302) (-271 "DROPT0.spad" 362837 362845 367962 367967) (-270 "DROPT.spad" 356796 356804 362827 362832) (-269 "DRAWPT.spad" 354969 354977 356786 356791) (-268 "DRAWHACK.spad" 354277 354287 354959 354964) (-267 "DRAWCX.spad" 351755 351763 354267 354272) (-266 "DRAWCURV.spad" 351302 351317 351745 351750) (-265 "DRAWCFUN.spad" 340834 340842 351292 351297) (-264 "DRAW.spad" 333710 333723 340824 340829) (-263 "DQAGG.spad" 331888 331898 333678 333705) (-262 "DPOLCAT.spad" 327245 327261 331756 331883) (-261 "DPOLCAT.spad" 322688 322706 327201 327206) (-260 "DPMO.spad" 314211 314227 314349 314562) (-259 "DPMM.spad" 305747 305765 305872 306085) (-258 "DOMTMPLT.spad" 305518 305526 305737 305742) (-257 "DOMCTOR.spad" 305273 305281 305508 305513) (-256 "DOMAIN.spad" 304384 304392 305263 305268) (-255 "DMP.spad" 301572 301587 302142 302269) (-254 "DMEXT.spad" 301439 301449 301540 301567) (-253 "DLP.spad" 300799 300809 301429 301434) (-252 "DLIST.spad" 299204 299214 299808 299835) (-251 "DLAGG.spad" 297621 297631 299194 299199) (-250 "DIVRING.spad" 297163 297171 297565 297616) (-249 "DIVRING.spad" 296749 296759 297153 297158) (-248 "DISPLAY.spad" 294939 294947 296739 296744) (-247 "DIRPROD2.spad" 293757 293775 294929 294934) (-246 "DIRPROD.spad" 280989 281005 281629 281728) (-245 "DIRPCAT.spad" 280182 280198 280885 280984) (-244 "DIRPCAT.spad" 279002 279020 279707 279712) (-243 "DIOSP.spad" 277827 277835 278992 278997) (-242 "DIOPS.spad" 276823 276833 277807 277822) (-241 "DIOPS.spad" 275793 275805 276779 276784) (-240 "DIFRING.spad" 275631 275639 275773 275788) (-239 "DIFFSPC.spad" 275210 275218 275621 275626) (-238 "DIFFSPC.spad" 274787 274797 275200 275205) (-237 "DIFFMOD.spad" 274276 274286 274755 274782) (-236 "DIFFDOM.spad" 273441 273452 274266 274271) (-235 "DIFFDOM.spad" 272604 272617 273431 273436) (-234 "DIFEXT.spad" 272423 272433 272584 272599) (-233 "DIAGG.spad" 272053 272063 272403 272418) (-232 "DIAGG.spad" 271691 271703 272043 272048) (-231 "DHMATRIX.spad" 269874 269884 271019 271046) (-230 "DFSFUN.spad" 263514 263522 269864 269869) (-229 "DFLOAT.spad" 260121 260129 263404 263509) (-228 "DFINTTLS.spad" 258352 258368 260111 260116) (-227 "DERHAM.spad" 256266 256298 258332 258347) (-226 "DEQUEUE.spad" 255461 255471 255744 255771) (-225 "DEGRED.spad" 255078 255092 255451 255456) (-224 "DEFINTRF.spad" 252660 252670 255068 255073) (-223 "DEFINTEF.spad" 251198 251214 252650 252655) (-222 "DEFAST.spad" 250582 250590 251188 251193) (-221 "DECIMAL.spad" 248546 248554 248907 249000) (-220 "DDFACT.spad" 246367 246384 248536 248541) (-219 "DBLRESP.spad" 245967 245991 246357 246362) (-218 "DBASIS.spad" 245593 245608 245957 245962) (-217 "DBASE.spad" 244257 244267 245583 245588) (-216 "DATAARY.spad" 243743 243756 244247 244252) (-215 "D03FAFA.spad" 243571 243579 243733 243738) (-214 "D03EEFA.spad" 243391 243399 243561 243566) (-213 "D03AGNT.spad" 242477 242485 243381 243386) (-212 "D02EJFA.spad" 241939 241947 242467 242472) (-211 "D02CJFA.spad" 241417 241425 241929 241934) (-210 "D02BHFA.spad" 240907 240915 241407 241412) (-209 "D02BBFA.spad" 240397 240405 240897 240902) (-208 "D02AGNT.spad" 235267 235275 240387 240392) (-207 "D01WGTS.spad" 233586 233594 235257 235262) (-206 "D01TRNS.spad" 233563 233571 233576 233581) (-205 "D01GBFA.spad" 233085 233093 233553 233558) (-204 "D01FCFA.spad" 232607 232615 233075 233080) (-203 "D01ASFA.spad" 232075 232083 232597 232602) (-202 "D01AQFA.spad" 231529 231537 232065 232070) (-201 "D01APFA.spad" 230969 230977 231519 231524) (-200 "D01ANFA.spad" 230463 230471 230959 230964) (-199 "D01AMFA.spad" 229973 229981 230453 230458) (-198 "D01ALFA.spad" 229513 229521 229963 229968) (-197 "D01AKFA.spad" 229039 229047 229503 229508) (-196 "D01AJFA.spad" 228562 228570 229029 229034) (-195 "D01AGNT.spad" 224629 224637 228552 228557) (-194 "CYCLOTOM.spad" 224135 224143 224619 224624) (-193 "CYCLES.spad" 220927 220935 224125 224130) (-192 "CVMP.spad" 220344 220354 220917 220922) (-191 "CTRIGMNP.spad" 218844 218860 220334 220339) (-190 "CTORKIND.spad" 218447 218455 218834 218839) (-189 "CTORCAT.spad" 217688 217696 218437 218442) (-188 "CTORCAT.spad" 216927 216937 217678 217683) (-187 "CTORCALL.spad" 216516 216526 216917 216922) (-186 "CTOR.spad" 216207 216215 216506 216511) (-185 "CSTTOOLS.spad" 215452 215465 216197 216202) (-184 "CRFP.spad" 209224 209237 215442 215447) (-183 "CRCEAST.spad" 208944 208952 209214 209219) (-182 "CRAPACK.spad" 208011 208021 208934 208939) (-181 "CPMATCH.spad" 207512 207527 207933 207938) (-180 "CPIMA.spad" 207217 207236 207502 207507) (-179 "COORDSYS.spad" 202226 202236 207207 207212) (-178 "CONTOUR.spad" 201653 201661 202216 202221) (-177 "CONTFRAC.spad" 197403 197413 201555 201648) (-176 "CONDUIT.spad" 197161 197169 197393 197398) (-175 "COMRING.spad" 196835 196843 197099 197156) (-174 "COMPPROP.spad" 196353 196361 196825 196830) (-173 "COMPLPAT.spad" 196120 196135 196343 196348) (-172 "COMPLEX2.spad" 195835 195847 196110 196115) (-171 "COMPLEX.spad" 191146 191156 191390 191651) (-170 "COMPILER.spad" 190695 190703 191136 191141) (-169 "COMPFACT.spad" 190297 190311 190685 190690) (-168 "COMPCAT.spad" 188369 188379 190031 190292) (-167 "COMPCAT.spad" 186166 186178 187830 187835) (-166 "COMMUPC.spad" 185914 185932 186156 186161) (-165 "COMMONOP.spad" 185447 185455 185904 185909) (-164 "COMMAAST.spad" 185210 185218 185437 185442) (-163 "COMM.spad" 185021 185029 185200 185205) (-162 "COMBOPC.spad" 183944 183952 185011 185016) (-161 "COMBINAT.spad" 182711 182721 183934 183939) (-160 "COMBF.spad" 180133 180149 182701 182706) (-159 "COLOR.spad" 178970 178978 180123 180128) (-158 "COLONAST.spad" 178636 178644 178960 178965) (-157 "CMPLXRT.spad" 178347 178364 178626 178631) (-156 "CLLCTAST.spad" 178009 178017 178337 178342) (-155 "CLIP.spad" 174117 174125 177999 178004) (-154 "CLIF.spad" 172772 172788 174073 174112) (-153 "CLAGG.spad" 169309 169319 172762 172767) (-152 "CLAGG.spad" 165714 165726 169169 169174) (-151 "CINTSLPE.spad" 165069 165082 165704 165709) (-150 "CHVAR.spad" 163207 163229 165059 165064) (-149 "CHARZ.spad" 163122 163130 163187 163202) (-148 "CHARPOL.spad" 162648 162658 163112 163117) (-147 "CHARNZ.spad" 162410 162418 162628 162643) (-146 "CHAR.spad" 159778 159786 162400 162405) (-145 "CFCAT.spad" 159106 159114 159768 159773) (-144 "CDEN.spad" 158326 158340 159096 159101) (-143 "CCLASS.spad" 156422 156430 157684 157723) (-142 "CATEGORY.spad" 155496 155504 156412 156417) (-141 "CATCTOR.spad" 155387 155395 155486 155491) (-140 "CATAST.spad" 155013 155021 155377 155382) (-139 "CASEAST.spad" 154727 154735 155003 155008) (-138 "CARTEN2.spad" 154117 154144 154717 154722) (-137 "CARTEN.spad" 149484 149508 154107 154112) (-136 "CARD.spad" 146779 146787 149458 149479) (-135 "CAPSLAST.spad" 146561 146569 146769 146774) (-134 "CACHSET.spad" 146185 146193 146551 146556) (-133 "CABMON.spad" 145740 145748 146175 146180) (-132 "BYTEORD.spad" 145415 145423 145730 145735) (-131 "BYTEBUF.spad" 143116 143124 144402 144429) (-130 "BYTE.spad" 142591 142599 143106 143111) (-129 "BTREE.spad" 141535 141545 142069 142096) (-128 "BTOURN.spad" 140411 140421 141013 141040) (-127 "BTCAT.spad" 139803 139813 140379 140406) (-126 "BTCAT.spad" 139215 139227 139793 139798) (-125 "BTAGG.spad" 138681 138689 139183 139210) (-124 "BTAGG.spad" 138167 138177 138671 138676) (-123 "BSTREE.spad" 136779 136789 137645 137672) (-122 "BRILL.spad" 134984 134995 136769 136774) (-121 "BRAGG.spad" 133940 133950 134974 134979) (-120 "BRAGG.spad" 132860 132872 133896 133901) (-119 "BPADICRT.spad" 130685 130697 130932 131025) (-118 "BPADIC.spad" 130357 130369 130611 130680) (-117 "BOUNDZRO.spad" 130013 130030 130347 130352) (-116 "BOP1.spad" 127471 127481 130003 130008) (-115 "BOP.spad" 122613 122621 127461 127466) (-114 "BOOLEAN.spad" 122051 122059 122603 122608) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2289938 2289943 2289948 2289953) (-2 NIL 2289918 2289923 2289928 2289933) (-1 NIL 2289898 2289903 2289908 2289913) (0 NIL 2289878 2289883 2289888 2289893) (-1327 "ZMOD.spad" 2289687 2289700 2289816 2289873) (-1326 "ZLINDEP.spad" 2288785 2288796 2289677 2289682) (-1325 "ZDSOLVE.spad" 2278745 2278767 2288775 2288780) (-1324 "YSTREAM.spad" 2278240 2278251 2278735 2278740) (-1323 "YDIAGRAM.spad" 2277874 2277883 2278230 2278235) (-1322 "XRPOLY.spad" 2277094 2277114 2277730 2277799) (-1321 "XPR.spad" 2274889 2274902 2276812 2276911) (-1320 "XPOLYC.spad" 2274208 2274224 2274815 2274884) (-1319 "XPOLY.spad" 2273763 2273774 2274064 2274133) (-1318 "XPBWPOLY.spad" 2272202 2272222 2273537 2273606) (-1317 "XFALG.spad" 2269250 2269266 2272128 2272197) (-1316 "XF.spad" 2267713 2267728 2269152 2269245) (-1315 "XF.spad" 2266156 2266173 2267597 2267602) (-1314 "XEXPPKG.spad" 2265415 2265441 2266146 2266151) (-1313 "XDPOLY.spad" 2265029 2265045 2265271 2265340) (-1312 "XALG.spad" 2264697 2264708 2264985 2265024) (-1311 "WUTSET.spad" 2260667 2260684 2264298 2264325) (-1310 "WP.spad" 2259874 2259918 2260525 2260592) (-1309 "WHILEAST.spad" 2259672 2259681 2259864 2259869) (-1308 "WHEREAST.spad" 2259343 2259352 2259662 2259667) (-1307 "WFFINTBS.spad" 2257006 2257028 2259333 2259338) (-1306 "WEIER.spad" 2255228 2255239 2256996 2257001) (-1305 "VSPACE.spad" 2254901 2254912 2255196 2255223) (-1304 "VSPACE.spad" 2254594 2254607 2254891 2254896) (-1303 "VOID.spad" 2254271 2254280 2254584 2254589) (-1302 "VIEWDEF.spad" 2249472 2249481 2254261 2254266) (-1301 "VIEW3D.spad" 2233433 2233442 2249462 2249467) (-1300 "VIEW2D.spad" 2221332 2221341 2233423 2233428) (-1299 "VIEW.spad" 2219052 2219061 2221322 2221327) (-1298 "VECTOR2.spad" 2217691 2217704 2219042 2219047) (-1297 "VECTOR.spad" 2216191 2216202 2216442 2216469) (-1296 "VECTCAT.spad" 2214103 2214114 2216159 2216186) (-1295 "VECTCAT.spad" 2211822 2211835 2213880 2213885) (-1294 "VARIABLE.spad" 2211602 2211617 2211812 2211817) (-1293 "UTYPE.spad" 2211246 2211255 2211592 2211597) (-1292 "UTSODETL.spad" 2210541 2210565 2211202 2211207) (-1291 "UTSODE.spad" 2208757 2208777 2210531 2210536) (-1290 "UTSCAT.spad" 2206236 2206252 2208655 2208752) (-1289 "UTSCAT.spad" 2203335 2203353 2205756 2205761) (-1288 "UTS2.spad" 2202930 2202965 2203325 2203330) (-1287 "UTS.spad" 2197808 2197836 2201328 2201425) (-1286 "URAGG.spad" 2192529 2192540 2197798 2197803) (-1285 "URAGG.spad" 2187214 2187227 2192485 2192490) (-1284 "UPXSSING.spad" 2184832 2184858 2186268 2186401) (-1283 "UPXSCONS.spad" 2182510 2182530 2182883 2183032) (-1282 "UPXSCCA.spad" 2181081 2181101 2182356 2182505) (-1281 "UPXSCCA.spad" 2179794 2179816 2181071 2181076) (-1280 "UPXSCAT.spad" 2178383 2178399 2179640 2179789) (-1279 "UPXS2.spad" 2177926 2177979 2178373 2178378) (-1278 "UPXS.spad" 2175141 2175169 2175977 2176126) (-1277 "UPSQFREE.spad" 2173556 2173570 2175131 2175136) (-1276 "UPSCAT.spad" 2171351 2171375 2173454 2173551) (-1275 "UPSCAT.spad" 2168831 2168857 2170936 2170941) (-1274 "UPOLYC2.spad" 2168302 2168321 2168821 2168826) (-1273 "UPOLYC.spad" 2163382 2163393 2168144 2168297) (-1272 "UPOLYC.spad" 2158348 2158361 2163112 2163117) (-1271 "UPMP.spad" 2157280 2157293 2158338 2158343) (-1270 "UPDIVP.spad" 2156845 2156859 2157270 2157275) (-1269 "UPDECOMP.spad" 2155106 2155120 2156835 2156840) (-1268 "UPCDEN.spad" 2154323 2154339 2155096 2155101) (-1267 "UP2.spad" 2153687 2153708 2154313 2154318) (-1266 "UP.spad" 2150715 2150730 2151102 2151255) (-1265 "UNISEG2.spad" 2150212 2150225 2150671 2150676) (-1264 "UNISEG.spad" 2149565 2149576 2150131 2150136) (-1263 "UNIFACT.spad" 2148668 2148680 2149555 2149560) (-1262 "ULSCONS.spad" 2139580 2139600 2139950 2140099) (-1261 "ULSCCAT.spad" 2137317 2137337 2139426 2139575) (-1260 "ULSCCAT.spad" 2135162 2135184 2137273 2137278) (-1259 "ULSCAT.spad" 2133402 2133418 2135008 2135157) (-1258 "ULS2.spad" 2132916 2132969 2133392 2133397) (-1257 "ULS.spad" 2122487 2122515 2123432 2123861) (-1256 "UINT8.spad" 2122364 2122373 2122477 2122482) (-1255 "UINT64.spad" 2122240 2122249 2122354 2122359) (-1254 "UINT32.spad" 2122116 2122125 2122230 2122235) (-1253 "UINT16.spad" 2121992 2122001 2122106 2122111) (-1252 "UFD.spad" 2121057 2121066 2121918 2121987) (-1251 "UFD.spad" 2120184 2120195 2121047 2121052) (-1250 "UDVO.spad" 2119065 2119074 2120174 2120179) (-1249 "UDPO.spad" 2116646 2116657 2119021 2119026) (-1248 "TYPEAST.spad" 2116565 2116574 2116636 2116641) (-1247 "TYPE.spad" 2116497 2116506 2116555 2116560) (-1246 "TWOFACT.spad" 2115149 2115164 2116487 2116492) (-1245 "TUPLE.spad" 2114640 2114651 2115045 2115050) (-1244 "TUBETOOL.spad" 2111507 2111516 2114630 2114635) (-1243 "TUBE.spad" 2110154 2110171 2111497 2111502) (-1242 "TSETCAT.spad" 2098225 2098242 2110122 2110149) (-1241 "TSETCAT.spad" 2086282 2086301 2098181 2098186) (-1240 "TS.spad" 2084875 2084891 2085841 2085938) (-1239 "TRMANIP.spad" 2079239 2079256 2084563 2084568) (-1238 "TRIMAT.spad" 2078202 2078227 2079229 2079234) (-1237 "TRIGMNIP.spad" 2076729 2076746 2078192 2078197) (-1236 "TRIGCAT.spad" 2076241 2076250 2076719 2076724) (-1235 "TRIGCAT.spad" 2075751 2075762 2076231 2076236) (-1234 "TREE.spad" 2074197 2074208 2075229 2075256) (-1233 "TRANFUN.spad" 2074036 2074045 2074187 2074192) (-1232 "TRANFUN.spad" 2073873 2073884 2074026 2074031) (-1231 "TOPSP.spad" 2073547 2073556 2073863 2073868) (-1230 "TOOLSIGN.spad" 2073210 2073221 2073537 2073542) (-1229 "TEXTFILE.spad" 2071771 2071780 2073200 2073205) (-1228 "TEX1.spad" 2071327 2071338 2071761 2071766) (-1227 "TEX.spad" 2068521 2068530 2071317 2071322) (-1226 "TEMUTL.spad" 2068076 2068085 2068511 2068516) (-1225 "TBCMPPK.spad" 2066177 2066200 2068066 2068071) (-1224 "TBAGG.spad" 2065235 2065258 2066157 2066172) (-1223 "TBAGG.spad" 2064301 2064326 2065225 2065230) (-1222 "TANEXP.spad" 2063709 2063720 2064291 2064296) (-1221 "TALGOP.spad" 2063433 2063444 2063699 2063704) (-1220 "TABLEAU.spad" 2062914 2062925 2063423 2063428) (-1219 "TABLE.spad" 2060847 2060870 2061117 2061144) (-1218 "TABLBUMP.spad" 2057626 2057637 2060837 2060842) (-1217 "SYSTEM.spad" 2056854 2056863 2057616 2057621) (-1216 "SYSSOLP.spad" 2054337 2054348 2056844 2056849) (-1215 "SYSPTR.spad" 2054236 2054245 2054327 2054332) (-1214 "SYSNNI.spad" 2053459 2053470 2054226 2054231) (-1213 "SYSINT.spad" 2052863 2052874 2053449 2053454) (-1212 "SYNTAX.spad" 2049197 2049206 2052853 2052858) (-1211 "SYMTAB.spad" 2047265 2047274 2049187 2049192) (-1210 "SYMS.spad" 2043294 2043303 2047255 2047260) (-1209 "SYMPOLY.spad" 2042273 2042284 2042355 2042482) (-1208 "SYMFUNC.spad" 2041774 2041785 2042263 2042268) (-1207 "SYMBOL.spad" 2039269 2039278 2041764 2041769) (-1206 "SWITCH.spad" 2036040 2036049 2039259 2039264) (-1205 "SUTS.spad" 2033019 2033047 2034438 2034535) (-1204 "SUPXS.spad" 2030221 2030249 2031070 2031219) (-1203 "SUPFRACF.spad" 2029326 2029344 2030211 2030216) (-1202 "SUP2.spad" 2028718 2028731 2029316 2029321) (-1201 "SUP.spad" 2025360 2025371 2026133 2026286) (-1200 "SUMRF.spad" 2024334 2024345 2025350 2025355) (-1199 "SUMFS.spad" 2023963 2023980 2024324 2024329) (-1198 "SULS.spad" 2013521 2013549 2014479 2014908) (-1197 "SUCHTAST.spad" 2013290 2013299 2013511 2013516) (-1196 "SUCH.spad" 2012980 2012995 2013280 2013285) (-1195 "SUBSPACE.spad" 2005111 2005126 2012970 2012975) (-1194 "SUBRESP.spad" 2004281 2004295 2005067 2005072) (-1193 "STTFNC.spad" 2000749 2000765 2004271 2004276) (-1192 "STTF.spad" 1996848 1996864 2000739 2000744) (-1191 "STTAYLOR.spad" 1989493 1989504 1996723 1996728) (-1190 "STRTBL.spad" 1987508 1987525 1987657 1987684) (-1189 "STRING.spad" 1986274 1986283 1986495 1986522) (-1188 "STREAM3.spad" 1985847 1985862 1986264 1986269) (-1187 "STREAM2.spad" 1984975 1984988 1985837 1985842) (-1186 "STREAM1.spad" 1984681 1984692 1984965 1984970) (-1185 "STREAM.spad" 1981467 1981478 1984074 1984089) (-1184 "STINPROD.spad" 1980403 1980419 1981457 1981462) (-1183 "STEPAST.spad" 1979637 1979646 1980393 1980398) (-1182 "STEP.spad" 1978846 1978855 1979627 1979632) (-1181 "STBL.spad" 1976894 1976922 1977061 1977076) (-1180 "STAGG.spad" 1975593 1975604 1976884 1976889) (-1179 "STAGG.spad" 1974290 1974303 1975583 1975588) (-1178 "STACK.spad" 1973518 1973529 1973768 1973795) (-1177 "SRING.spad" 1973278 1973287 1973508 1973513) (-1176 "SREGSET.spad" 1970977 1970994 1972879 1972906) (-1175 "SRDCMPK.spad" 1969554 1969574 1970967 1970972) (-1174 "SRAGG.spad" 1964737 1964746 1969522 1969549) (-1173 "SRAGG.spad" 1959940 1959951 1964727 1964732) (-1172 "SQMATRIX.spad" 1957435 1957453 1958351 1958438) (-1171 "SPLTREE.spad" 1951901 1951914 1956697 1956724) (-1170 "SPLNODE.spad" 1948521 1948534 1951891 1951896) (-1169 "SPFCAT.spad" 1947330 1947339 1948511 1948516) (-1168 "SPECOUT.spad" 1945882 1945891 1947320 1947325) (-1167 "SPADXPT.spad" 1937973 1937982 1945872 1945877) (-1166 "spad-parser.spad" 1937438 1937447 1937963 1937968) (-1165 "SPADAST.spad" 1937139 1937148 1937428 1937433) (-1164 "SPACEC.spad" 1921354 1921365 1937129 1937134) (-1163 "SPACE3.spad" 1921130 1921141 1921344 1921349) (-1162 "SORTPAK.spad" 1920679 1920692 1921086 1921091) (-1161 "SOLVETRA.spad" 1918442 1918453 1920669 1920674) (-1160 "SOLVESER.spad" 1916898 1916909 1918432 1918437) (-1159 "SOLVERAD.spad" 1912924 1912935 1916888 1916893) (-1158 "SOLVEFOR.spad" 1911386 1911404 1912914 1912919) (-1157 "SNTSCAT.spad" 1910986 1911003 1911354 1911381) (-1156 "SMTS.spad" 1909268 1909294 1910545 1910642) (-1155 "SMP.spad" 1906671 1906691 1907061 1907188) (-1154 "SMITH.spad" 1905516 1905541 1906661 1906666) (-1153 "SMATCAT.spad" 1903634 1903664 1905460 1905511) (-1152 "SMATCAT.spad" 1901684 1901716 1903512 1903517) (-1151 "SKAGG.spad" 1900653 1900664 1901652 1901679) (-1150 "SINT.spad" 1899593 1899602 1900519 1900648) (-1149 "SIMPAN.spad" 1899321 1899330 1899583 1899588) (-1148 "SIGNRF.spad" 1898446 1898457 1899311 1899316) (-1147 "SIGNEF.spad" 1897732 1897749 1898436 1898441) (-1146 "SIGAST.spad" 1897149 1897158 1897722 1897727) (-1145 "SIG.spad" 1896511 1896520 1897139 1897144) (-1144 "SHP.spad" 1894455 1894470 1896467 1896472) (-1143 "SHDP.spad" 1881810 1881837 1882327 1882426) (-1142 "SGROUP.spad" 1881418 1881427 1881800 1881805) (-1141 "SGROUP.spad" 1881024 1881035 1881408 1881413) (-1140 "SGCF.spad" 1874163 1874172 1881014 1881019) (-1139 "SFRTCAT.spad" 1873109 1873126 1874131 1874158) (-1138 "SFRGCD.spad" 1872172 1872192 1873099 1873104) (-1137 "SFQCMPK.spad" 1866985 1867005 1872162 1872167) (-1136 "SFORT.spad" 1866424 1866438 1866975 1866980) (-1135 "SEXOF.spad" 1866267 1866307 1866414 1866419) (-1134 "SEXCAT.spad" 1864095 1864135 1866257 1866262) (-1133 "SEX.spad" 1863987 1863996 1864085 1864090) (-1132 "SETMN.spad" 1862447 1862464 1863977 1863982) (-1131 "SETCAT.spad" 1861932 1861941 1862437 1862442) (-1130 "SETCAT.spad" 1861415 1861426 1861922 1861927) (-1129 "SETAGG.spad" 1857964 1857975 1861395 1861410) (-1128 "SETAGG.spad" 1854521 1854534 1857954 1857959) (-1127 "SET.spad" 1852794 1852805 1853891 1853930) (-1126 "SEQAST.spad" 1852497 1852506 1852784 1852789) (-1125 "SEGXCAT.spad" 1851653 1851666 1852487 1852492) (-1124 "SEGCAT.spad" 1850578 1850589 1851643 1851648) (-1123 "SEGBIND2.spad" 1850276 1850289 1850568 1850573) (-1122 "SEGBIND.spad" 1850034 1850045 1850223 1850228) (-1121 "SEGAST.spad" 1849764 1849773 1850024 1850029) (-1120 "SEG2.spad" 1849199 1849212 1849720 1849725) (-1119 "SEG.spad" 1849012 1849023 1849118 1849123) (-1118 "SDVAR.spad" 1848288 1848299 1849002 1849007) (-1117 "SDPOL.spad" 1845543 1845554 1845834 1845961) (-1116 "SCPKG.spad" 1843632 1843643 1845533 1845538) (-1115 "SCOPE.spad" 1842809 1842818 1843622 1843627) (-1114 "SCACHE.spad" 1841505 1841516 1842799 1842804) (-1113 "SASTCAT.spad" 1841414 1841423 1841495 1841500) (-1112 "SAOS.spad" 1841286 1841295 1841404 1841409) (-1111 "SAERFFC.spad" 1840999 1841019 1841276 1841281) (-1110 "SAEFACT.spad" 1840700 1840720 1840989 1840994) (-1109 "SAE.spad" 1838134 1838150 1838745 1838880) (-1108 "RURPK.spad" 1835793 1835809 1838124 1838129) (-1107 "RULESET.spad" 1835246 1835270 1835783 1835788) (-1106 "RULECOLD.spad" 1835098 1835111 1835236 1835241) (-1105 "RULE.spad" 1833346 1833370 1835088 1835093) (-1104 "RTVALUE.spad" 1833081 1833090 1833336 1833341) (-1103 "RSTRCAST.spad" 1832798 1832807 1833071 1833076) (-1102 "RSETGCD.spad" 1829240 1829260 1832788 1832793) (-1101 "RSETCAT.spad" 1819208 1819225 1829208 1829235) (-1100 "RSETCAT.spad" 1809196 1809215 1819198 1819203) (-1099 "RSDCMPK.spad" 1807696 1807716 1809186 1809191) (-1098 "RRCC.spad" 1806080 1806110 1807686 1807691) (-1097 "RRCC.spad" 1804462 1804494 1806070 1806075) (-1096 "RPTAST.spad" 1804164 1804173 1804452 1804457) (-1095 "RPOLCAT.spad" 1783668 1783683 1804032 1804159) (-1094 "RPOLCAT.spad" 1762867 1762884 1783233 1783238) (-1093 "ROUTINE.spad" 1758268 1758277 1761016 1761043) (-1092 "ROMAN.spad" 1757596 1757605 1758134 1758263) (-1091 "ROIRC.spad" 1756676 1756708 1757586 1757591) (-1090 "RNS.spad" 1755652 1755661 1756578 1756671) (-1089 "RNS.spad" 1754714 1754725 1755642 1755647) (-1088 "RNGBIND.spad" 1753874 1753888 1754669 1754674) (-1087 "RNG.spad" 1753609 1753618 1753864 1753869) (-1086 "RMODULE.spad" 1753390 1753401 1753599 1753604) (-1085 "RMCAT2.spad" 1752810 1752867 1753380 1753385) (-1084 "RMATRIX.spad" 1751580 1751599 1751923 1751962) (-1083 "RMATCAT.spad" 1747159 1747190 1751536 1751575) (-1082 "RMATCAT.spad" 1742628 1742661 1747007 1747012) (-1081 "RLINSET.spad" 1742332 1742343 1742618 1742623) (-1080 "RINTERP.spad" 1742220 1742240 1742322 1742327) (-1079 "RING.spad" 1741690 1741699 1742200 1742215) (-1078 "RING.spad" 1741168 1741179 1741680 1741685) (-1077 "RIDIST.spad" 1740560 1740569 1741158 1741163) (-1076 "RGCHAIN.spad" 1739081 1739097 1739975 1740002) (-1075 "RGBCSPC.spad" 1738870 1738882 1739071 1739076) (-1074 "RGBCMDL.spad" 1738432 1738444 1738860 1738865) (-1073 "RFFACTOR.spad" 1737894 1737905 1738422 1738427) (-1072 "RFFACT.spad" 1737629 1737641 1737884 1737889) (-1071 "RFDIST.spad" 1736625 1736634 1737619 1737624) (-1070 "RF.spad" 1734299 1734310 1736615 1736620) (-1069 "RETSOL.spad" 1733718 1733731 1734289 1734294) (-1068 "RETRACT.spad" 1733146 1733157 1733708 1733713) (-1067 "RETRACT.spad" 1732572 1732585 1733136 1733141) (-1066 "RETAST.spad" 1732384 1732393 1732562 1732567) (-1065 "RESULT.spad" 1729946 1729955 1730533 1730560) (-1064 "RESRING.spad" 1729293 1729340 1729884 1729941) (-1063 "RESLATC.spad" 1728617 1728628 1729283 1729288) (-1062 "REPSQ.spad" 1728348 1728359 1728607 1728612) (-1061 "REPDB.spad" 1728055 1728066 1728338 1728343) (-1060 "REP2.spad" 1717769 1717780 1727897 1727902) (-1059 "REP1.spad" 1711989 1712000 1717719 1717724) (-1058 "REP.spad" 1709543 1709552 1711979 1711984) (-1057 "REGSET.spad" 1707335 1707352 1709144 1709171) (-1056 "REF.spad" 1706670 1706681 1707290 1707295) (-1055 "REDORDER.spad" 1705876 1705893 1706660 1706665) (-1054 "RECLOS.spad" 1704635 1704655 1705339 1705432) (-1053 "REALSOLV.spad" 1703775 1703784 1704625 1704630) (-1052 "REAL0Q.spad" 1701073 1701088 1703765 1703770) (-1051 "REAL0.spad" 1697917 1697932 1701063 1701068) (-1050 "REAL.spad" 1697789 1697798 1697907 1697912) (-1049 "RDUCEAST.spad" 1697510 1697519 1697779 1697784) (-1048 "RDIV.spad" 1697165 1697190 1697500 1697505) (-1047 "RDIST.spad" 1696732 1696743 1697155 1697160) (-1046 "RDETRS.spad" 1695596 1695614 1696722 1696727) (-1045 "RDETR.spad" 1693735 1693753 1695586 1695591) (-1044 "RDEEFS.spad" 1692834 1692851 1693725 1693730) (-1043 "RDEEF.spad" 1691844 1691861 1692824 1692829) (-1042 "RCFIELD.spad" 1689062 1689071 1691746 1691839) (-1041 "RCFIELD.spad" 1686366 1686377 1689052 1689057) (-1040 "RCAGG.spad" 1684302 1684313 1686356 1686361) (-1039 "RCAGG.spad" 1682165 1682178 1684221 1684226) (-1038 "RATRET.spad" 1681525 1681536 1682155 1682160) (-1037 "RATFACT.spad" 1681217 1681229 1681515 1681520) (-1036 "RANDSRC.spad" 1680536 1680545 1681207 1681212) (-1035 "RADUTIL.spad" 1680292 1680301 1680526 1680531) (-1034 "RADIX.spad" 1677071 1677085 1678617 1678710) (-1033 "RADFF.spad" 1674774 1674811 1674893 1675049) (-1032 "RADCAT.spad" 1674369 1674378 1674764 1674769) (-1031 "RADCAT.spad" 1673962 1673973 1674359 1674364) (-1030 "QUEUE.spad" 1673181 1673192 1673440 1673467) (-1029 "QUATCT2.spad" 1672801 1672820 1673171 1673176) (-1028 "QUATCAT.spad" 1670971 1670982 1672731 1672796) (-1027 "QUATCAT.spad" 1668889 1668902 1670651 1670656) (-1026 "QUAT.spad" 1667341 1667352 1667684 1667749) (-1025 "QUAGG.spad" 1666174 1666185 1667309 1667336) (-1024 "QQUTAST.spad" 1665942 1665951 1666164 1666169) (-1023 "QFORM.spad" 1665560 1665575 1665932 1665937) (-1022 "QFCAT2.spad" 1665252 1665269 1665550 1665555) (-1021 "QFCAT.spad" 1663954 1663965 1665154 1665247) (-1020 "QFCAT.spad" 1662238 1662251 1663440 1663445) (-1019 "QEQUAT.spad" 1661796 1661805 1662228 1662233) (-1018 "QCMPACK.spad" 1656710 1656730 1661786 1661791) (-1017 "QALGSET2.spad" 1654705 1654724 1656700 1656705) (-1016 "QALGSET.spad" 1650809 1650842 1654619 1654624) (-1015 "PWFFINTB.spad" 1648224 1648246 1650799 1650804) (-1014 "PUSHVAR.spad" 1647562 1647582 1648214 1648219) (-1013 "PTRANFN.spad" 1643697 1643708 1647552 1647557) (-1012 "PTPACK.spad" 1640784 1640795 1643687 1643692) (-1011 "PTFUNC2.spad" 1640606 1640621 1640774 1640779) (-1010 "PTCAT.spad" 1639860 1639871 1640574 1640601) (-1009 "PSQFR.spad" 1639174 1639199 1639850 1639855) (-1008 "PSEUDLIN.spad" 1638059 1638070 1639164 1639169) (-1007 "PSETPK.spad" 1624763 1624780 1637937 1637942) (-1006 "PSETCAT.spad" 1619162 1619186 1624743 1624758) (-1005 "PSETCAT.spad" 1613535 1613561 1619118 1619123) (-1004 "PSCURVE.spad" 1612533 1612542 1613525 1613530) (-1003 "PSCAT.spad" 1611315 1611345 1612431 1612528) (-1002 "PSCAT.spad" 1610187 1610219 1611305 1611310) (-1001 "PRTITION.spad" 1608884 1608893 1610177 1610182) (-1000 "PRTDAST.spad" 1608602 1608611 1608874 1608879) (-999 "PRS.spad" 1598220 1598237 1608558 1608563) (-998 "PRQAGG.spad" 1597655 1597665 1598188 1598215) (-997 "PROPLOG.spad" 1597259 1597267 1597645 1597650) (-996 "PROPFUN2.spad" 1596882 1596895 1597249 1597254) (-995 "PROPFUN1.spad" 1596288 1596299 1596872 1596877) (-994 "PROPFRML.spad" 1594856 1594867 1596278 1596283) (-993 "PROPERTY.spad" 1594352 1594360 1594846 1594851) (-992 "PRODUCT.spad" 1592034 1592046 1592318 1592373) (-991 "PRINT.spad" 1591786 1591794 1592024 1592029) (-990 "PRIMES.spad" 1590047 1590057 1591776 1591781) (-989 "PRIMELT.spad" 1588168 1588182 1590037 1590042) (-988 "PRIMCAT.spad" 1587811 1587819 1588158 1588163) (-987 "PRIMARR2.spad" 1586578 1586590 1587801 1587806) (-986 "PRIMARR.spad" 1585417 1585427 1585587 1585614) (-985 "PREASSOC.spad" 1584799 1584811 1585407 1585412) (-984 "PR.spad" 1583164 1583176 1583863 1583990) (-983 "PPCURVE.spad" 1582301 1582309 1583154 1583159) (-982 "PORTNUM.spad" 1582092 1582100 1582291 1582296) (-981 "POLYROOT.spad" 1580941 1580963 1582048 1582053) (-980 "POLYLIFT.spad" 1580206 1580229 1580931 1580936) (-979 "POLYCATQ.spad" 1578332 1578354 1580196 1580201) (-978 "POLYCAT.spad" 1571834 1571855 1578200 1578327) (-977 "POLYCAT.spad" 1564632 1564655 1571000 1571005) (-976 "POLY2UP.spad" 1564084 1564098 1564622 1564627) (-975 "POLY2.spad" 1563681 1563693 1564074 1564079) (-974 "POLY.spad" 1560944 1560954 1561459 1561586) (-973 "POLUTIL.spad" 1559909 1559938 1560900 1560905) (-972 "POLTOPOL.spad" 1558657 1558672 1559899 1559904) (-971 "POINT.spad" 1557321 1557331 1557408 1557435) (-970 "PNTHEORY.spad" 1554023 1554031 1557311 1557316) (-969 "PMTOOLS.spad" 1552798 1552812 1554013 1554018) (-968 "PMSYM.spad" 1552347 1552357 1552788 1552793) (-967 "PMQFCAT.spad" 1551938 1551952 1552337 1552342) (-966 "PMPREDFS.spad" 1551400 1551422 1551928 1551933) (-965 "PMPRED.spad" 1550887 1550901 1551390 1551395) (-964 "PMPLCAT.spad" 1549964 1549982 1550816 1550821) (-963 "PMLSAGG.spad" 1549549 1549563 1549954 1549959) (-962 "PMKERNEL.spad" 1549128 1549140 1549539 1549544) (-961 "PMINS.spad" 1548708 1548718 1549118 1549123) (-960 "PMFS.spad" 1548285 1548303 1548698 1548703) (-959 "PMDOWN.spad" 1547575 1547589 1548275 1548280) (-958 "PMASSFS.spad" 1546550 1546566 1547565 1547570) (-957 "PMASS.spad" 1545568 1545576 1546540 1546545) (-956 "PLOTTOOL.spad" 1545348 1545356 1545558 1545563) (-955 "PLOT3D.spad" 1541812 1541820 1545338 1545343) (-954 "PLOT1.spad" 1540985 1540995 1541802 1541807) (-953 "PLOT.spad" 1535908 1535916 1540975 1540980) (-952 "PLEQN.spad" 1523310 1523337 1535898 1535903) (-951 "PINTERPA.spad" 1523094 1523110 1523300 1523305) (-950 "PINTERP.spad" 1522716 1522735 1523084 1523089) (-949 "PID.spad" 1521690 1521698 1522642 1522711) (-948 "PICOERCE.spad" 1521347 1521357 1521680 1521685) (-947 "PI.spad" 1520964 1520972 1521321 1521342) (-946 "PGROEB.spad" 1519573 1519587 1520954 1520959) (-945 "PGE.spad" 1511246 1511254 1519563 1519568) (-944 "PGCD.spad" 1510200 1510217 1511236 1511241) (-943 "PFRPAC.spad" 1509349 1509359 1510190 1510195) (-942 "PFR.spad" 1506052 1506062 1509251 1509344) (-941 "PFOTOOLS.spad" 1505310 1505326 1506042 1506047) (-940 "PFOQ.spad" 1504680 1504698 1505300 1505305) (-939 "PFO.spad" 1504099 1504126 1504670 1504675) (-938 "PFECAT.spad" 1501809 1501817 1504025 1504094) (-937 "PFECAT.spad" 1499547 1499557 1501765 1501770) (-936 "PFBRU.spad" 1497435 1497447 1499537 1499542) (-935 "PFBR.spad" 1494995 1495018 1497425 1497430) (-934 "PF.spad" 1494569 1494581 1494800 1494893) (-933 "PERMGRP.spad" 1489339 1489349 1494559 1494564) (-932 "PERMCAT.spad" 1488000 1488010 1489319 1489334) (-931 "PERMAN.spad" 1486556 1486570 1487990 1487995) (-930 "PERM.spad" 1482363 1482373 1486386 1486401) (-929 "PENDTREE.spad" 1481583 1481593 1481863 1481868) (-928 "PDSPC.spad" 1480396 1480406 1481573 1481578) (-927 "PDSPC.spad" 1479207 1479219 1480386 1480391) (-926 "PDRING.spad" 1479049 1479059 1479187 1479202) (-925 "PDMOD.spad" 1478865 1478877 1479017 1479044) (-924 "PDEPROB.spad" 1477880 1477888 1478855 1478860) (-923 "PDEPACK.spad" 1472016 1472024 1477870 1477875) (-922 "PDECOMP.spad" 1471486 1471503 1472006 1472011) (-921 "PDECAT.spad" 1469842 1469850 1471476 1471481) (-920 "PDDOM.spad" 1469280 1469293 1469832 1469837) (-919 "PDDOM.spad" 1468716 1468731 1469270 1469275) (-918 "PCOMP.spad" 1468569 1468582 1468706 1468711) (-917 "PBWLB.spad" 1467165 1467182 1468559 1468564) (-916 "PATTERN2.spad" 1466903 1466915 1467155 1467160) (-915 "PATTERN1.spad" 1465247 1465263 1466893 1466898) (-914 "PATTERN.spad" 1459818 1459828 1465237 1465242) (-913 "PATRES2.spad" 1459490 1459504 1459808 1459813) (-912 "PATRES.spad" 1457073 1457085 1459480 1459485) (-911 "PATMATCH.spad" 1455261 1455292 1456772 1456777) (-910 "PATMAB.spad" 1454690 1454700 1455251 1455256) (-909 "PATLRES.spad" 1453776 1453790 1454680 1454685) (-908 "PATAB.spad" 1453540 1453550 1453766 1453771) (-907 "PARTPERM.spad" 1451596 1451604 1453530 1453535) (-906 "PARSURF.spad" 1451030 1451058 1451586 1451591) (-905 "PARSU2.spad" 1450827 1450843 1451020 1451025) (-904 "script-parser.spad" 1450347 1450355 1450817 1450822) (-903 "PARSCURV.spad" 1449781 1449809 1450337 1450342) (-902 "PARSC2.spad" 1449572 1449588 1449771 1449776) (-901 "PARPCURV.spad" 1449034 1449062 1449562 1449567) (-900 "PARPC2.spad" 1448825 1448841 1449024 1449029) (-899 "PARAMAST.spad" 1447953 1447961 1448815 1448820) (-898 "PAN2EXPR.spad" 1447365 1447373 1447943 1447948) (-897 "PALETTE.spad" 1446351 1446359 1447355 1447360) (-896 "PAIR.spad" 1445358 1445371 1445927 1445932) (-895 "PADICRC.spad" 1442562 1442580 1443725 1443818) (-894 "PADICRAT.spad" 1440421 1440433 1440634 1440727) (-893 "PADICCT.spad" 1438970 1438982 1440347 1440416) (-892 "PADIC.spad" 1438673 1438685 1438896 1438965) (-891 "PADEPAC.spad" 1437362 1437381 1438663 1438668) (-890 "PADE.spad" 1436114 1436130 1437352 1437357) (-889 "OWP.spad" 1435362 1435392 1435972 1436039) (-888 "OVERSET.spad" 1434935 1434943 1435352 1435357) (-887 "OVAR.spad" 1434716 1434739 1434925 1434930) (-886 "OUTFORM.spad" 1424124 1424132 1434706 1434711) (-885 "OUTBFILE.spad" 1423558 1423566 1424114 1424119) (-884 "OUTBCON.spad" 1422628 1422636 1423548 1423553) (-883 "OUTBCON.spad" 1421696 1421706 1422618 1422623) (-882 "OUT.spad" 1420814 1420822 1421686 1421691) (-881 "OSI.spad" 1420289 1420297 1420804 1420809) (-880 "OSGROUP.spad" 1420207 1420215 1420279 1420284) (-879 "ORTHPOL.spad" 1418686 1418696 1420118 1420123) (-878 "OREUP.spad" 1418130 1418158 1418357 1418396) (-877 "ORESUP.spad" 1417422 1417446 1417801 1417840) (-876 "OREPCTO.spad" 1415311 1415323 1417342 1417347) (-875 "OREPCAT.spad" 1409498 1409508 1415267 1415306) (-874 "OREPCAT.spad" 1403575 1403587 1409346 1409351) (-873 "ORDTYPE.spad" 1402812 1402820 1403565 1403570) (-872 "ORDTYPE.spad" 1402047 1402057 1402802 1402807) (-871 "ORDSTRCT.spad" 1401817 1401832 1401980 1401985) (-870 "ORDSET.spad" 1401517 1401525 1401807 1401812) (-869 "ORDRING.spad" 1401334 1401342 1401497 1401512) (-868 "ORDMON.spad" 1401189 1401197 1401324 1401329) (-867 "ORDFUNS.spad" 1400321 1400337 1401179 1401184) (-866 "ORDFIN.spad" 1400141 1400149 1400311 1400316) (-865 "ORDCOMP2.spad" 1399434 1399446 1400131 1400136) (-864 "ORDCOMP.spad" 1397887 1397897 1398969 1398998) (-863 "OPTPROB.spad" 1396525 1396533 1397877 1397882) (-862 "OPTPACK.spad" 1388934 1388942 1396515 1396520) (-861 "OPTCAT.spad" 1386613 1386621 1388924 1388929) (-860 "OPSIG.spad" 1386275 1386283 1386603 1386608) (-859 "OPQUERY.spad" 1385856 1385864 1386265 1386270) (-858 "OPERCAT.spad" 1385322 1385332 1385846 1385851) (-857 "OPERCAT.spad" 1384786 1384798 1385312 1385317) (-856 "OP.spad" 1384528 1384538 1384608 1384675) (-855 "ONECOMP2.spad" 1383952 1383964 1384518 1384523) (-854 "ONECOMP.spad" 1382685 1382695 1383487 1383516) (-853 "OMSERVER.spad" 1381691 1381699 1382675 1382680) (-852 "OMSAGG.spad" 1381479 1381489 1381647 1381686) (-851 "OMPKG.spad" 1380111 1380119 1381469 1381474) (-850 "OMLO.spad" 1379544 1379556 1379997 1380036) (-849 "OMEXPR.spad" 1379378 1379388 1379534 1379539) (-848 "OMERRK.spad" 1378428 1378436 1379368 1379373) (-847 "OMERR.spad" 1377973 1377981 1378418 1378423) (-846 "OMENC.spad" 1377325 1377333 1377963 1377968) (-845 "OMDEV.spad" 1371658 1371666 1377315 1377320) (-844 "OMCONN.spad" 1371067 1371075 1371648 1371653) (-843 "OM.spad" 1370064 1370072 1371057 1371062) (-842 "OINTDOM.spad" 1369827 1369835 1369990 1370059) (-841 "OFMONOID.spad" 1367966 1367976 1369783 1369788) (-840 "ODVAR.spad" 1367227 1367237 1367956 1367961) (-839 "ODR.spad" 1366871 1366897 1367039 1367188) (-838 "ODPOL.spad" 1364082 1364092 1364422 1364549) (-837 "ODP.spad" 1351581 1351601 1351954 1352053) (-836 "ODETOOLS.spad" 1350230 1350249 1351571 1351576) (-835 "ODESYS.spad" 1347924 1347941 1350220 1350225) (-834 "ODERTRIC.spad" 1343957 1343974 1347881 1347886) (-833 "ODERED.spad" 1343356 1343380 1343947 1343952) (-832 "ODERAT.spad" 1340989 1341006 1343346 1343351) (-831 "ODEPRRIC.spad" 1338082 1338104 1340979 1340984) (-830 "ODEPROB.spad" 1337339 1337347 1338072 1338077) (-829 "ODEPRIM.spad" 1334737 1334759 1337329 1337334) (-828 "ODEPAL.spad" 1334123 1334147 1334727 1334732) (-827 "ODEPACK.spad" 1320853 1320861 1334113 1334118) (-826 "ODEINT.spad" 1320288 1320304 1320843 1320848) (-825 "ODEIFTBL.spad" 1317691 1317699 1320278 1320283) (-824 "ODEEF.spad" 1313186 1313202 1317681 1317686) (-823 "ODECONST.spad" 1312731 1312749 1313176 1313181) (-822 "ODECAT.spad" 1311329 1311337 1312721 1312726) (-821 "OCTCT2.spad" 1310967 1310988 1311319 1311324) (-820 "OCT.spad" 1309055 1309065 1309769 1309808) (-819 "OCAMON.spad" 1308903 1308911 1309045 1309050) (-818 "OC.spad" 1306699 1306709 1308859 1308898) (-817 "OC.spad" 1304217 1304229 1306379 1306384) (-816 "OASGP.spad" 1304032 1304040 1304207 1304212) (-815 "OAMONS.spad" 1303554 1303562 1304022 1304027) (-814 "OAMON.spad" 1303312 1303320 1303544 1303549) (-813 "OAMON.spad" 1303068 1303078 1303302 1303307) (-812 "OAGROUP.spad" 1302606 1302614 1303058 1303063) (-811 "OAGROUP.spad" 1302142 1302152 1302596 1302601) (-810 "NUMTUBE.spad" 1301733 1301749 1302132 1302137) (-809 "NUMQUAD.spad" 1289709 1289717 1301723 1301728) (-808 "NUMODE.spad" 1281061 1281069 1289699 1289704) (-807 "NUMINT.spad" 1278627 1278635 1281051 1281056) (-806 "NUMFMT.spad" 1277467 1277475 1278617 1278622) (-805 "NUMERIC.spad" 1269581 1269591 1277272 1277277) (-804 "NTSCAT.spad" 1268089 1268105 1269549 1269576) (-803 "NTPOLFN.spad" 1267634 1267644 1268000 1268005) (-802 "NSUP2.spad" 1267026 1267038 1267624 1267629) (-801 "NSUP.spad" 1260021 1260031 1264441 1264594) (-800 "NSMP.spad" 1256120 1256139 1256412 1256539) (-799 "NREP.spad" 1254522 1254536 1256110 1256115) (-798 "NPCOEF.spad" 1253768 1253788 1254512 1254517) (-797 "NORMRETR.spad" 1253366 1253405 1253758 1253763) (-796 "NORMPK.spad" 1251308 1251327 1253356 1253361) (-795 "NORMMA.spad" 1250996 1251022 1251298 1251303) (-794 "NONE1.spad" 1250672 1250682 1250986 1250991) (-793 "NONE.spad" 1250413 1250421 1250662 1250667) (-792 "NODE1.spad" 1249900 1249916 1250403 1250408) (-791 "NNI.spad" 1248795 1248803 1249874 1249895) (-790 "NLINSOL.spad" 1247421 1247431 1248785 1248790) (-789 "NIPROB.spad" 1245962 1245970 1247411 1247416) (-788 "NFINTBAS.spad" 1243522 1243539 1245952 1245957) (-787 "NETCLT.spad" 1243496 1243507 1243512 1243517) (-786 "NCODIV.spad" 1241720 1241736 1243486 1243491) (-785 "NCNTFRAC.spad" 1241362 1241376 1241710 1241715) (-784 "NCEP.spad" 1239528 1239542 1241352 1241357) (-783 "NASRING.spad" 1239132 1239140 1239518 1239523) (-782 "NASRING.spad" 1238734 1238744 1239122 1239127) (-781 "NARNG.spad" 1238134 1238142 1238724 1238729) (-780 "NARNG.spad" 1237532 1237542 1238124 1238129) (-779 "NAGSP.spad" 1236609 1236617 1237522 1237527) (-778 "NAGS.spad" 1226326 1226334 1236599 1236604) (-777 "NAGF07.spad" 1224757 1224765 1226316 1226321) (-776 "NAGF04.spad" 1219159 1219167 1224747 1224752) (-775 "NAGF02.spad" 1213252 1213260 1219149 1219154) (-774 "NAGF01.spad" 1209021 1209029 1213242 1213247) (-773 "NAGE04.spad" 1202729 1202737 1209011 1209016) (-772 "NAGE02.spad" 1193381 1193389 1202719 1202724) (-771 "NAGE01.spad" 1189375 1189383 1193371 1193376) (-770 "NAGD03.spad" 1187371 1187379 1189365 1189370) (-769 "NAGD02.spad" 1180102 1180110 1187361 1187366) (-768 "NAGD01.spad" 1174387 1174395 1180092 1180097) (-767 "NAGC06.spad" 1170254 1170262 1174377 1174382) (-766 "NAGC05.spad" 1168747 1168755 1170244 1170249) (-765 "NAGC02.spad" 1168022 1168030 1168737 1168742) (-764 "NAALG.spad" 1167587 1167597 1167990 1168017) (-763 "NAALG.spad" 1167172 1167184 1167577 1167582) (-762 "MULTSQFR.spad" 1164130 1164147 1167162 1167167) (-761 "MULTFACT.spad" 1163513 1163530 1164120 1164125) (-760 "MTSCAT.spad" 1161607 1161628 1163411 1163508) (-759 "MTHING.spad" 1161266 1161276 1161597 1161602) (-758 "MSYSCMD.spad" 1160700 1160708 1161256 1161261) (-757 "MSETAGG.spad" 1160545 1160555 1160668 1160695) (-756 "MSET.spad" 1158458 1158468 1160206 1160245) (-755 "MRING.spad" 1155435 1155447 1158166 1158233) (-754 "MRF2.spad" 1154997 1155011 1155425 1155430) (-753 "MRATFAC.spad" 1154543 1154560 1154987 1154992) (-752 "MPRFF.spad" 1152583 1152602 1154533 1154538) (-751 "MPOLY.spad" 1149982 1149997 1150341 1150468) (-750 "MPCPF.spad" 1149246 1149265 1149972 1149977) (-749 "MPC3.spad" 1149063 1149103 1149236 1149241) (-748 "MPC2.spad" 1148716 1148749 1149053 1149058) (-747 "MONOTOOL.spad" 1147067 1147084 1148706 1148711) (-746 "MONOID.spad" 1146386 1146394 1147057 1147062) (-745 "MONOID.spad" 1145703 1145713 1146376 1146381) (-744 "MONOGEN.spad" 1144451 1144464 1145563 1145698) (-743 "MONOGEN.spad" 1143221 1143236 1144335 1144340) (-742 "MONADWU.spad" 1141299 1141307 1143211 1143216) (-741 "MONADWU.spad" 1139375 1139385 1141289 1141294) (-740 "MONAD.spad" 1138535 1138543 1139365 1139370) (-739 "MONAD.spad" 1137693 1137703 1138525 1138530) (-738 "MOEBIUS.spad" 1136429 1136443 1137673 1137688) (-737 "MODULE.spad" 1136299 1136309 1136397 1136424) (-736 "MODULE.spad" 1136189 1136201 1136289 1136294) (-735 "MODRING.spad" 1135524 1135563 1136169 1136184) (-734 "MODOP.spad" 1134181 1134193 1135346 1135413) (-733 "MODMONOM.spad" 1133912 1133930 1134171 1134176) (-732 "MODMON.spad" 1130536 1130552 1131255 1131408) (-731 "MODFIELD.spad" 1129898 1129937 1130438 1130531) (-730 "MMLFORM.spad" 1128758 1128766 1129888 1129893) (-729 "MMAP.spad" 1128500 1128534 1128748 1128753) (-728 "MLO.spad" 1126959 1126969 1128456 1128495) (-727 "MLIFT.spad" 1125571 1125588 1126949 1126954) (-726 "MKUCFUNC.spad" 1125106 1125124 1125561 1125566) (-725 "MKRECORD.spad" 1124694 1124707 1125096 1125101) (-724 "MKFUNC.spad" 1124101 1124111 1124684 1124689) (-723 "MKFLCFN.spad" 1123069 1123079 1124091 1124096) (-722 "MKBCFUNC.spad" 1122564 1122582 1123059 1123064) (-721 "MINT.spad" 1122003 1122011 1122466 1122559) (-720 "MHROWRED.spad" 1120514 1120524 1121993 1121998) (-719 "MFLOAT.spad" 1119034 1119042 1120404 1120509) (-718 "MFINFACT.spad" 1118434 1118456 1119024 1119029) (-717 "MESH.spad" 1116229 1116237 1118424 1118429) (-716 "MDDFACT.spad" 1114448 1114458 1116219 1116224) (-715 "MDAGG.spad" 1113739 1113749 1114428 1114443) (-714 "MCMPLX.spad" 1109104 1109112 1109718 1109919) (-713 "MCDEN.spad" 1108314 1108326 1109094 1109099) (-712 "MCALCFN.spad" 1105412 1105438 1108304 1108309) (-711 "MAYBE.spad" 1104712 1104723 1105402 1105407) (-710 "MATSTOR.spad" 1102028 1102038 1104702 1104707) (-709 "MATRIX.spad" 1100594 1100604 1101078 1101105) (-708 "MATLIN.spad" 1097962 1097986 1100478 1100483) (-707 "MATCAT2.spad" 1097244 1097292 1097952 1097957) (-706 "MATCAT.spad" 1088806 1088828 1097212 1097239) (-705 "MATCAT.spad" 1080240 1080264 1088648 1088653) (-704 "MAPPKG3.spad" 1079155 1079169 1080230 1080235) (-703 "MAPPKG2.spad" 1078493 1078505 1079145 1079150) (-702 "MAPPKG1.spad" 1077321 1077331 1078483 1078488) (-701 "MAPPAST.spad" 1076660 1076668 1077311 1077316) (-700 "MAPHACK3.spad" 1076472 1076486 1076650 1076655) (-699 "MAPHACK2.spad" 1076241 1076253 1076462 1076467) (-698 "MAPHACK1.spad" 1075885 1075895 1076231 1076236) (-697 "MAGMA.spad" 1073691 1073708 1075875 1075880) (-696 "MACROAST.spad" 1073286 1073294 1073681 1073686) (-695 "M3D.spad" 1070871 1070881 1072529 1072534) (-694 "LZSTAGG.spad" 1068125 1068135 1070861 1070866) (-693 "LZSTAGG.spad" 1065377 1065389 1068115 1068120) (-692 "LWORD.spad" 1062122 1062139 1065367 1065372) (-691 "LSTAST.spad" 1061906 1061914 1062112 1062117) (-690 "LSQM.spad" 1060015 1060029 1060409 1060460) (-689 "LSPP.spad" 1059550 1059567 1060005 1060010) (-688 "LSMP1.spad" 1057393 1057407 1059540 1059545) (-687 "LSMP.spad" 1056250 1056278 1057383 1057388) (-686 "LSAGG.spad" 1055919 1055929 1056218 1056245) (-685 "LSAGG.spad" 1055608 1055620 1055909 1055914) (-684 "LPOLY.spad" 1054570 1054589 1055464 1055533) (-683 "LPEFRAC.spad" 1053841 1053851 1054560 1054565) (-682 "LOGIC.spad" 1053443 1053451 1053831 1053836) (-681 "LOGIC.spad" 1053043 1053053 1053433 1053438) (-680 "LODOOPS.spad" 1051973 1051985 1053033 1053038) (-679 "LODOF.spad" 1051019 1051036 1051930 1051935) (-678 "LODOCAT.spad" 1049685 1049695 1050975 1051014) (-677 "LODOCAT.spad" 1048349 1048361 1049641 1049646) (-676 "LODO2.spad" 1047613 1047625 1048020 1048059) (-675 "LODO1.spad" 1047004 1047014 1047284 1047323) (-674 "LODO.spad" 1046379 1046395 1046675 1046714) (-673 "LODEEF.spad" 1045181 1045199 1046369 1046374) (-672 "LO.spad" 1044582 1044596 1045115 1045142) (-671 "LNAGG.spad" 1040769 1040779 1044572 1044577) (-670 "LNAGG.spad" 1036920 1036932 1040725 1040730) (-669 "LMOPS.spad" 1033688 1033705 1036910 1036915) (-668 "LMODULE.spad" 1033472 1033482 1033678 1033683) (-667 "LMDICT.spad" 1032643 1032653 1032891 1032918) (-666 "LLINSET.spad" 1032350 1032360 1032633 1032638) (-665 "LITERAL.spad" 1032256 1032267 1032340 1032345) (-664 "LIST3.spad" 1031567 1031581 1032246 1032251) (-663 "LIST2MAP.spad" 1028494 1028506 1031557 1031562) (-662 "LIST2.spad" 1027196 1027208 1028484 1028489) (-661 "LIST.spad" 1024757 1024767 1026169 1026196) (-660 "LINSET.spad" 1024536 1024546 1024747 1024752) (-659 "LINFORM.spad" 1023999 1024011 1024504 1024531) (-658 "LINEXP.spad" 1022742 1022752 1023989 1023994) (-657 "LINELT.spad" 1022113 1022125 1022625 1022652) (-656 "LINDEP.spad" 1020962 1020974 1022025 1022030) (-655 "LINBASIS.spad" 1020598 1020613 1020952 1020957) (-654 "LIMITRF.spad" 1018545 1018555 1020588 1020593) (-653 "LIMITPS.spad" 1017455 1017468 1018535 1018540) (-652 "LIECAT.spad" 1016939 1016949 1017381 1017450) (-651 "LIECAT.spad" 1016451 1016463 1016895 1016900) (-650 "LIE.spad" 1014446 1014458 1015720 1015865) (-649 "LIB.spad" 1012161 1012169 1012607 1012622) (-648 "LGROBP.spad" 1009514 1009533 1012151 1012156) (-647 "LFCAT.spad" 1008573 1008581 1009504 1009509) (-646 "LF.spad" 1007528 1007544 1008563 1008568) (-645 "LEXTRIPK.spad" 1003151 1003166 1007518 1007523) (-644 "LEXP.spad" 1001170 1001197 1003131 1003146) (-643 "LETAST.spad" 1000869 1000877 1001160 1001165) (-642 "LEADCDET.spad" 999275 999292 1000859 1000864) (-641 "LAZM3PK.spad" 998019 998041 999265 999270) (-640 "LAUPOL.spad" 996604 996617 997504 997573) (-639 "LAPLACE.spad" 996187 996203 996594 996599) (-638 "LALG.spad" 995963 995973 996167 996182) (-637 "LALG.spad" 995747 995759 995953 995958) (-636 "LA.spad" 995187 995201 995669 995708) (-635 "KVTFROM.spad" 994930 994940 995177 995182) (-634 "KTVLOGIC.spad" 994474 994482 994920 994925) (-633 "KRCFROM.spad" 994220 994230 994464 994469) (-632 "KOVACIC.spad" 992951 992968 994210 994215) (-631 "KONVERT.spad" 992673 992683 992941 992946) (-630 "KOERCE.spad" 992410 992420 992663 992668) (-629 "KERNEL2.spad" 992113 992125 992400 992405) (-628 "KERNEL.spad" 990753 990763 991882 991887) (-627 "KDAGG.spad" 989862 989884 990733 990748) (-626 "KDAGG.spad" 988979 989003 989852 989857) (-625 "KAFILE.spad" 987809 987825 988044 988071) (-624 "JVMOP.spad" 987722 987730 987799 987804) (-623 "JVMMDACC.spad" 986776 986784 987712 987717) (-622 "JVMFDACC.spad" 986092 986100 986766 986771) (-621 "JVMCSTTG.spad" 984821 984829 986082 986087) (-620 "JVMCFACC.spad" 984267 984275 984811 984816) (-619 "JVMBCODE.spad" 984178 984186 984257 984262) (-618 "JORDAN.spad" 981986 981998 983447 983592) (-617 "JOINAST.spad" 981688 981696 981976 981981) (-616 "IXAGG.spad" 979821 979845 981678 981683) (-615 "IXAGG.spad" 977809 977835 979668 979673) (-614 "IVECTOR.spad" 976405 976420 976560 976587) (-613 "ITUPLE.spad" 975581 975591 976395 976400) (-612 "ITRIGMNP.spad" 974428 974447 975571 975576) (-611 "ITFUN3.spad" 973934 973948 974418 974423) (-610 "ITFUN2.spad" 973678 973690 973924 973929) (-609 "ITFORM.spad" 973033 973041 973668 973673) (-608 "ITAYLOR.spad" 971027 971042 972897 972994) (-607 "ISUPS.spad" 963425 963440 969962 970059) (-606 "ISUMP.spad" 962926 962942 963415 963420) (-605 "ISTRING.spad" 961832 961845 961913 961940) (-604 "ISAST.spad" 961551 961559 961822 961827) (-603 "IRURPK.spad" 960268 960287 961541 961546) (-602 "IRSN.spad" 958272 958280 960258 960263) (-601 "IRRF2F.spad" 956765 956775 958228 958233) (-600 "IRREDFFX.spad" 956366 956377 956755 956760) (-599 "IROOT.spad" 954705 954715 956356 956361) (-598 "IRFORM.spad" 954029 954037 954695 954700) (-597 "IR2F.spad" 953243 953259 954019 954024) (-596 "IR2.spad" 952271 952287 953233 953238) (-595 "IR.spad" 950074 950088 952120 952147) (-594 "IPRNTPK.spad" 949834 949842 950064 950069) (-593 "IPF.spad" 949399 949411 949639 949732) (-592 "IPADIC.spad" 949168 949194 949325 949394) (-591 "IP4ADDR.spad" 948725 948733 949158 949163) (-590 "IOMODE.spad" 948247 948255 948715 948720) (-589 "IOBFILE.spad" 947632 947640 948237 948242) (-588 "IOBCON.spad" 947497 947505 947622 947627) (-587 "INVLAPLA.spad" 947146 947162 947487 947492) (-586 "INTTR.spad" 940540 940557 947136 947141) (-585 "INTTOOLS.spad" 938283 938299 940102 940107) (-584 "INTSLPE.spad" 937611 937619 938273 938278) (-583 "INTRVL.spad" 937177 937187 937525 937606) (-582 "INTRF.spad" 935609 935623 937167 937172) (-581 "INTRET.spad" 935041 935051 935599 935604) (-580 "INTRAT.spad" 933776 933793 935031 935036) (-579 "INTPM.spad" 932143 932159 933401 933406) (-578 "INTPAF.spad" 930019 930037 932072 932077) (-577 "INTPACK.spad" 920585 920593 930009 930014) (-576 "INTHERTR.spad" 919859 919876 920575 920580) (-575 "INTHERAL.spad" 919529 919553 919849 919854) (-574 "INTHEORY.spad" 915968 915976 919519 919524) (-573 "INTG0.spad" 909732 909750 915897 915902) (-572 "INTFTBL.spad" 905186 905194 909722 909727) (-571 "INTFACT.spad" 904253 904263 905176 905181) (-570 "INTEF.spad" 902664 902680 904243 904248) (-569 "INTDOM.spad" 901287 901295 902590 902659) (-568 "INTDOM.spad" 899972 899982 901277 901282) (-567 "INTCAT.spad" 898239 898249 899886 899967) (-566 "INTBIT.spad" 897746 897754 898229 898234) (-565 "INTALG.spad" 896934 896961 897736 897741) (-564 "INTAF.spad" 896434 896450 896924 896929) (-563 "INTABL.spad" 894474 894505 894637 894664) (-562 "INT8.spad" 894354 894362 894464 894469) (-561 "INT64.spad" 894233 894241 894344 894349) (-560 "INT32.spad" 894112 894120 894223 894228) (-559 "INT16.spad" 893991 893999 894102 894107) (-558 "INT.spad" 893434 893442 893845 893986) (-557 "INS.spad" 890937 890945 893336 893429) (-556 "INS.spad" 888526 888536 890927 890932) (-555 "INPSIGN.spad" 887996 888009 888516 888521) (-554 "INPRODPF.spad" 887092 887111 887986 887991) (-553 "INPRODFF.spad" 886180 886204 887082 887087) (-552 "INNMFACT.spad" 885155 885172 886170 886175) (-551 "INMODGCD.spad" 884659 884689 885145 885150) (-550 "INFSP.spad" 882956 882978 884649 884654) (-549 "INFPROD0.spad" 882036 882055 882946 882951) (-548 "INFORM1.spad" 881661 881671 882026 882031) (-547 "INFORM.spad" 878868 878876 881651 881656) (-546 "INFINITY.spad" 878420 878428 878858 878863) (-545 "INETCLTS.spad" 878397 878405 878410 878415) (-544 "INEP.spad" 876943 876965 878387 878392) (-543 "INDE.spad" 876592 876609 876853 876858) (-542 "INCRMAPS.spad" 876029 876039 876582 876587) (-541 "INBFILE.spad" 875125 875133 876019 876024) (-540 "INBFF.spad" 870975 870986 875115 875120) (-539 "INBCON.spad" 869241 869249 870965 870970) (-538 "INBCON.spad" 867505 867515 869231 869236) (-537 "INAST.spad" 867166 867174 867495 867500) (-536 "IMPTAST.spad" 866874 866882 867156 867161) (-535 "IMATRIX.spad" 865690 865716 866202 866229) (-534 "IMATQF.spad" 864784 864828 865646 865651) (-533 "IMATLIN.spad" 863405 863429 864740 864745) (-532 "ILIST.spad" 861889 861904 862414 862441) (-531 "IIARRAY2.spad" 861164 861202 861367 861394) (-530 "IFF.spad" 860574 860590 860845 860938) (-529 "IFAST.spad" 860188 860196 860564 860569) (-528 "IFARRAY.spad" 857499 857514 859197 859224) (-527 "IFAMON.spad" 857361 857378 857455 857460) (-526 "IEVALAB.spad" 856774 856786 857351 857356) (-525 "IEVALAB.spad" 856185 856199 856764 856769) (-524 "IDPOAMS.spad" 855863 855875 856097 856102) (-523 "IDPOAM.spad" 855505 855517 855775 855780) (-522 "IDPO.spad" 855240 855252 855417 855422) (-521 "IDPC.spad" 853969 853981 855230 855235) (-520 "IDPAM.spad" 853636 853648 853881 853886) (-519 "IDPAG.spad" 853305 853317 853548 853553) (-518 "IDENT.spad" 852955 852963 853295 853300) (-517 "IDECOMP.spad" 850194 850212 852945 852950) (-516 "IDEAL.spad" 845140 845179 850126 850131) (-515 "ICDEN.spad" 844353 844369 845130 845135) (-514 "ICARD.spad" 843544 843552 844343 844348) (-513 "IBPTOOLS.spad" 842151 842168 843534 843539) (-512 "IBITS.spad" 841307 841320 841740 841767) (-511 "IBATOOL.spad" 838292 838311 841297 841302) (-510 "IBACHIN.spad" 836799 836814 838282 838287) (-509 "IARRAY2.spad" 835666 835692 836277 836304) (-508 "IARRAY1.spad" 834529 834544 834675 834702) (-507 "IAN.spad" 832749 832757 834342 834435) (-506 "IALGFACT.spad" 832360 832393 832739 832744) (-505 "HYPCAT.spad" 831784 831792 832350 832355) (-504 "HYPCAT.spad" 831206 831216 831774 831779) (-503 "HOSTNAME.spad" 831022 831030 831196 831201) (-502 "HOMOTOP.spad" 830765 830775 831012 831017) (-501 "HOAGG.spad" 828047 828057 830755 830760) (-500 "HOAGG.spad" 825062 825074 827772 827777) (-499 "HEXADEC.spad" 823022 823030 823387 823480) (-498 "HEUGCD.spad" 822113 822124 823012 823017) (-497 "HELLFDIV.spad" 821719 821743 822103 822108) (-496 "HEAP.spad" 820982 820992 821197 821224) (-495 "HEADAST.spad" 820523 820531 820972 820977) (-494 "HDP.spad" 808018 808034 808395 808494) (-493 "HDMP.spad" 805160 805175 805776 805903) (-492 "HB.spad" 803435 803443 805150 805155) (-491 "HASHTBL.spad" 801427 801458 801638 801665) (-490 "HASAST.spad" 801143 801151 801417 801422) (-489 "HACKPI.spad" 800634 800642 801045 801138) (-488 "GTSET.spad" 799528 799544 800235 800262) (-487 "GSTBL.spad" 797569 797604 797743 797758) (-486 "GSERIES.spad" 794801 794828 795620 795769) (-485 "GROUP.spad" 794074 794082 794781 794796) (-484 "GROUP.spad" 793355 793365 794064 794069) (-483 "GROEBSOL.spad" 791849 791870 793345 793350) (-482 "GRMOD.spad" 790428 790440 791839 791844) (-481 "GRMOD.spad" 789005 789019 790418 790423) (-480 "GRIMAGE.spad" 781918 781926 788995 789000) (-479 "GRDEF.spad" 780297 780305 781908 781913) (-478 "GRAY.spad" 778768 778776 780287 780292) (-477 "GRALG.spad" 777861 777873 778758 778763) (-476 "GRALG.spad" 776952 776966 777851 777856) (-475 "GPOLSET.spad" 776377 776400 776589 776616) (-474 "GOSPER.spad" 775654 775672 776367 776372) (-473 "GMODPOL.spad" 774802 774829 775622 775649) (-472 "GHENSEL.spad" 773885 773899 774792 774797) (-471 "GENUPS.spad" 770178 770191 773875 773880) (-470 "GENUFACT.spad" 769755 769765 770168 770173) (-469 "GENPGCD.spad" 769357 769374 769745 769750) (-468 "GENMFACT.spad" 768809 768828 769347 769352) (-467 "GENEEZ.spad" 766768 766781 768799 768804) (-466 "GDMP.spad" 763752 763769 764526 764653) (-465 "GCNAALG.spad" 757675 757702 763546 763613) (-464 "GCDDOM.spad" 756867 756875 757601 757670) (-463 "GCDDOM.spad" 756121 756131 756857 756862) (-462 "GBINTERN.spad" 752141 752179 756111 756116) (-461 "GBF.spad" 747924 747962 752131 752136) (-460 "GBEUCLID.spad" 745806 745844 747914 747919) (-459 "GB.spad" 743332 743370 745762 745767) (-458 "GAUSSFAC.spad" 742645 742653 743322 743327) (-457 "GALUTIL.spad" 740971 740981 742601 742606) (-456 "GALPOLYU.spad" 739425 739438 740961 740966) (-455 "GALFACTU.spad" 737638 737657 739415 739420) (-454 "GALFACT.spad" 727851 727862 737628 737633) (-453 "FVFUN.spad" 724874 724882 727841 727846) (-452 "FVC.spad" 723926 723934 724864 724869) (-451 "FUNDESC.spad" 723604 723612 723916 723921) (-450 "FUNCTION.spad" 723453 723465 723594 723599) (-449 "FTEM.spad" 722618 722626 723443 723448) (-448 "FT.spad" 720918 720926 722608 722613) (-447 "FSUPFACT.spad" 719815 719834 720851 720856) (-446 "FST.spad" 717901 717909 719805 719810) (-445 "FSRED.spad" 717381 717397 717891 717896) (-444 "FSPRMELT.spad" 716247 716263 717338 717343) (-443 "FSPECF.spad" 714338 714354 716237 716242) (-442 "FSINT.spad" 713998 714014 714328 714333) (-441 "FSERIES.spad" 713189 713201 713818 713917) (-440 "FSCINT.spad" 712506 712522 713179 713184) (-439 "FSAGG2.spad" 711241 711257 712496 712501) (-438 "FSAGG.spad" 710358 710368 711197 711236) (-437 "FSAGG.spad" 709437 709449 710278 710283) (-436 "FS2UPS.spad" 703952 703986 709427 709432) (-435 "FS2EXPXP.spad" 703093 703116 703942 703947) (-434 "FS2.spad" 702748 702764 703083 703088) (-433 "FS.spad" 697016 697026 702523 702743) (-432 "FS.spad" 691056 691068 696565 696570) (-431 "FRUTIL.spad" 690010 690020 691046 691051) (-430 "FRNAALG.spad" 685287 685297 689952 690005) (-429 "FRNAALG.spad" 680576 680588 685243 685248) (-428 "FRNAAF2.spad" 680024 680042 680566 680571) (-427 "FRMOD.spad" 679431 679461 679952 679957) (-426 "FRIDEAL2.spad" 679035 679067 679421 679426) (-425 "FRIDEAL.spad" 678260 678281 679015 679030) (-424 "FRETRCT.spad" 677779 677789 678250 678255) (-423 "FRETRCT.spad" 677155 677167 677628 677633) (-422 "FRAMALG.spad" 675535 675548 677111 677150) (-421 "FRAMALG.spad" 673947 673962 675525 675530) (-420 "FRAC2.spad" 673552 673564 673937 673942) (-419 "FRAC.spad" 670511 670521 670898 671071) (-418 "FR2.spad" 669847 669859 670501 670506) (-417 "FR.spad" 663469 663479 668742 668811) (-416 "FPS.spad" 660308 660316 663359 663464) (-415 "FPS.spad" 657175 657185 660228 660233) (-414 "FPC.spad" 656221 656229 657077 657170) (-413 "FPC.spad" 655353 655363 656211 656216) (-412 "FPATMAB.spad" 655115 655125 655343 655348) (-411 "FPARFRAC.spad" 653957 653974 655105 655110) (-410 "FORTRAN.spad" 652463 652506 653947 653952) (-409 "FORTFN.spad" 649633 649641 652453 652458) (-408 "FORTCAT.spad" 649317 649325 649623 649628) (-407 "FORT.spad" 648266 648274 649307 649312) (-406 "FORDER.spad" 647957 647981 648256 648261) (-405 "FOP.spad" 647158 647166 647947 647952) (-404 "FNLA.spad" 646582 646604 647126 647153) (-403 "FNCAT.spad" 645177 645185 646572 646577) (-402 "FNAME.spad" 645069 645077 645167 645172) (-401 "FMTC.spad" 644867 644875 644995 645064) (-400 "FMONOID.spad" 644548 644558 644823 644828) (-399 "FMONCAT.spad" 641717 641727 644538 644543) (-398 "FMFUN.spad" 638747 638755 641707 641712) (-397 "FMCAT.spad" 636423 636441 638715 638742) (-396 "FMC.spad" 635475 635483 636413 636418) (-395 "FM1.spad" 634840 634852 635409 635436) (-394 "FM.spad" 634455 634467 634694 634721) (-393 "FLOATRP.spad" 632198 632212 634445 634450) (-392 "FLOATCP.spad" 629637 629651 632188 632193) (-391 "FLOAT.spad" 622951 622959 629503 629632) (-390 "FLINEXP.spad" 622673 622683 622941 622946) (-389 "FLINEXP.spad" 622336 622348 622606 622611) (-388 "FLASORT.spad" 621662 621674 622326 622331) (-387 "FLALG.spad" 619332 619351 621588 621657) (-386 "FLAGG2.spad" 618049 618065 619322 619327) (-385 "FLAGG.spad" 615115 615125 618029 618044) (-384 "FLAGG.spad" 612082 612094 614998 615003) (-383 "FINRALG.spad" 610167 610180 612038 612077) (-382 "FINRALG.spad" 608178 608193 610051 610056) (-381 "FINITE.spad" 607330 607338 608168 608173) (-380 "FINAALG.spad" 596515 596525 607272 607325) (-379 "FINAALG.spad" 585712 585724 596471 596476) (-378 "FILECAT.spad" 584246 584263 585702 585707) (-377 "FILE.spad" 583829 583839 584236 584241) (-376 "FIELD.spad" 583235 583243 583731 583824) (-375 "FIELD.spad" 582727 582737 583225 583230) (-374 "FGROUP.spad" 581390 581400 582707 582722) (-373 "FGLMICPK.spad" 580185 580200 581380 581385) (-372 "FFX.spad" 579568 579583 579901 579994) (-371 "FFSLPE.spad" 579079 579100 579558 579563) (-370 "FFPOLY2.spad" 578139 578156 579069 579074) (-369 "FFPOLY.spad" 569481 569492 578129 578134) (-368 "FFP.spad" 568886 568906 569197 569290) (-367 "FFNBX.spad" 567406 567426 568602 568695) (-366 "FFNBP.spad" 565927 565944 567122 567215) (-365 "FFNB.spad" 564392 564413 565608 565701) (-364 "FFINTBAS.spad" 561906 561925 564382 564387) (-363 "FFIELDC.spad" 559491 559499 561808 561901) (-362 "FFIELDC.spad" 557162 557172 559481 559486) (-361 "FFHOM.spad" 555934 555951 557152 557157) (-360 "FFF.spad" 553377 553388 555924 555929) (-359 "FFCGX.spad" 552232 552252 553093 553186) (-358 "FFCGP.spad" 551129 551149 551948 552041) (-357 "FFCG.spad" 549921 549942 550810 550903) (-356 "FFCAT2.spad" 549668 549708 549911 549916) (-355 "FFCAT.spad" 542833 542855 549507 549663) (-354 "FFCAT.spad" 536077 536101 542753 542758) (-353 "FF.spad" 535525 535541 535758 535851) (-352 "FEXPR.spad" 527225 527271 535272 535311) (-351 "FEVALAB.spad" 526933 526943 527215 527220) (-350 "FEVALAB.spad" 526417 526429 526701 526706) (-349 "FDIVCAT.spad" 524513 524537 526407 526412) (-348 "FDIVCAT.spad" 522607 522633 524503 524508) (-347 "FDIV2.spad" 522263 522303 522597 522602) (-346 "FDIV.spad" 521721 521745 522253 522258) (-345 "FCTRDATA.spad" 520729 520737 521711 521716) (-344 "FCPAK1.spad" 519264 519272 520719 520724) (-343 "FCOMP.spad" 518643 518653 519254 519259) (-342 "FC.spad" 508650 508658 518633 518638) (-341 "FAXF.spad" 501685 501699 508552 508645) (-340 "FAXF.spad" 494772 494788 501641 501646) (-339 "FARRAY.spad" 492748 492758 493781 493808) (-338 "FAMR.spad" 490892 490904 492646 492743) (-337 "FAMR.spad" 489020 489034 490776 490781) (-336 "FAMONOID.spad" 488704 488714 488974 488979) (-335 "FAMONC.spad" 487024 487036 488694 488699) (-334 "FAGROUP.spad" 486664 486674 486920 486947) (-333 "FACUTIL.spad" 484876 484893 486654 486659) (-332 "FACTFUNC.spad" 484078 484088 484866 484871) (-331 "EXPUPXS.spad" 480830 480853 482129 482278) (-330 "EXPRTUBE.spad" 478118 478126 480820 480825) (-329 "EXPRODE.spad" 475286 475302 478108 478113) (-328 "EXPR2UPS.spad" 471408 471421 475276 475281) (-327 "EXPR2.spad" 471113 471125 471398 471403) (-326 "EXPR.spad" 466198 466208 466912 467207) (-325 "EXPEXPAN.spad" 462942 462967 463574 463667) (-324 "EXITAST.spad" 462678 462686 462932 462937) (-323 "EXIT.spad" 462349 462357 462668 462673) (-322 "EVALCYC.spad" 461809 461823 462339 462344) (-321 "EVALAB.spad" 461389 461399 461799 461804) (-320 "EVALAB.spad" 460967 460979 461379 461384) (-319 "EUCDOM.spad" 458557 458565 460893 460962) (-318 "EUCDOM.spad" 456209 456219 458547 458552) (-317 "ESTOOLS2.spad" 455804 455818 456199 456204) (-316 "ESTOOLS1.spad" 455481 455492 455794 455799) (-315 "ESTOOLS.spad" 447359 447367 455471 455476) (-314 "ESCONT1.spad" 447100 447112 447349 447354) (-313 "ESCONT.spad" 443893 443901 447090 447095) (-312 "ES2.spad" 443406 443422 443883 443888) (-311 "ES1.spad" 442976 442992 443396 443401) (-310 "ES.spad" 435847 435855 442966 442971) (-309 "ES.spad" 428621 428631 435742 435747) (-308 "ERROR.spad" 425948 425956 428611 428616) (-307 "EQTBL.spad" 423942 423964 424151 424178) (-306 "EQ2.spad" 423660 423672 423932 423937) (-305 "EQ.spad" 418436 418446 421231 421343) (-304 "EP.spad" 414762 414772 418426 418431) (-303 "ENV.spad" 413440 413448 414752 414757) (-302 "ENTIRER.spad" 413108 413116 413384 413435) (-301 "EMR.spad" 412396 412437 413034 413103) (-300 "ELTAGG.spad" 410650 410669 412386 412391) (-299 "ELTAGG.spad" 408868 408889 410606 410611) (-298 "ELTAB.spad" 408343 408356 408858 408863) (-297 "ELFUTS.spad" 407778 407797 408333 408338) (-296 "ELEMFUN.spad" 407467 407475 407768 407773) (-295 "ELEMFUN.spad" 407154 407164 407457 407462) (-294 "ELAGG.spad" 405125 405135 407134 407149) (-293 "ELAGG.spad" 403033 403045 405044 405049) (-292 "ELABOR.spad" 402379 402387 403023 403028) (-291 "ELABEXPR.spad" 401311 401319 402369 402374) (-290 "EFUPXS.spad" 398087 398117 401267 401272) (-289 "EFULS.spad" 394923 394946 398043 398048) (-288 "EFSTRUC.spad" 392938 392954 394913 394918) (-287 "EF.spad" 387714 387730 392928 392933) (-286 "EAB.spad" 386014 386022 387704 387709) (-285 "E04UCFA.spad" 385550 385558 386004 386009) (-284 "E04NAFA.spad" 385127 385135 385540 385545) (-283 "E04MBFA.spad" 384707 384715 385117 385122) (-282 "E04JAFA.spad" 384243 384251 384697 384702) (-281 "E04GCFA.spad" 383779 383787 384233 384238) (-280 "E04FDFA.spad" 383315 383323 383769 383774) (-279 "E04DGFA.spad" 382851 382859 383305 383310) (-278 "E04AGNT.spad" 378725 378733 382841 382846) (-277 "DVARCAT.spad" 375615 375625 378715 378720) (-276 "DVARCAT.spad" 372503 372515 375605 375610) (-275 "DSMP.spad" 369799 369813 370104 370231) (-274 "DSEXT.spad" 369101 369111 369789 369794) (-273 "DSEXT.spad" 368307 368319 368997 369002) (-272 "DROPT1.spad" 367972 367982 368297 368302) (-271 "DROPT0.spad" 362837 362845 367962 367967) (-270 "DROPT.spad" 356796 356804 362827 362832) (-269 "DRAWPT.spad" 354969 354977 356786 356791) (-268 "DRAWHACK.spad" 354277 354287 354959 354964) (-267 "DRAWCX.spad" 351755 351763 354267 354272) (-266 "DRAWCURV.spad" 351302 351317 351745 351750) (-265 "DRAWCFUN.spad" 340834 340842 351292 351297) (-264 "DRAW.spad" 333710 333723 340824 340829) (-263 "DQAGG.spad" 331888 331898 333678 333705) (-262 "DPOLCAT.spad" 327245 327261 331756 331883) (-261 "DPOLCAT.spad" 322688 322706 327201 327206) (-260 "DPMO.spad" 314211 314227 314349 314562) (-259 "DPMM.spad" 305747 305765 305872 306085) (-258 "DOMTMPLT.spad" 305518 305526 305737 305742) (-257 "DOMCTOR.spad" 305273 305281 305508 305513) (-256 "DOMAIN.spad" 304384 304392 305263 305268) (-255 "DMP.spad" 301572 301587 302142 302269) (-254 "DMEXT.spad" 301439 301449 301540 301567) (-253 "DLP.spad" 300799 300809 301429 301434) (-252 "DLIST.spad" 299204 299214 299808 299835) (-251 "DLAGG.spad" 297621 297631 299194 299199) (-250 "DIVRING.spad" 297163 297171 297565 297616) (-249 "DIVRING.spad" 296749 296759 297153 297158) (-248 "DISPLAY.spad" 294939 294947 296739 296744) (-247 "DIRPROD2.spad" 293757 293775 294929 294934) (-246 "DIRPROD.spad" 280989 281005 281629 281728) (-245 "DIRPCAT.spad" 280182 280198 280885 280984) (-244 "DIRPCAT.spad" 279002 279020 279707 279712) (-243 "DIOSP.spad" 277827 277835 278992 278997) (-242 "DIOPS.spad" 276823 276833 277807 277822) (-241 "DIOPS.spad" 275793 275805 276779 276784) (-240 "DIFRING.spad" 275631 275639 275773 275788) (-239 "DIFFSPC.spad" 275210 275218 275621 275626) (-238 "DIFFSPC.spad" 274787 274797 275200 275205) (-237 "DIFFMOD.spad" 274276 274286 274755 274782) (-236 "DIFFDOM.spad" 273441 273452 274266 274271) (-235 "DIFFDOM.spad" 272604 272617 273431 273436) (-234 "DIFEXT.spad" 272423 272433 272584 272599) (-233 "DIAGG.spad" 272053 272063 272403 272418) (-232 "DIAGG.spad" 271691 271703 272043 272048) (-231 "DHMATRIX.spad" 269874 269884 271019 271046) (-230 "DFSFUN.spad" 263514 263522 269864 269869) (-229 "DFLOAT.spad" 260121 260129 263404 263509) (-228 "DFINTTLS.spad" 258352 258368 260111 260116) (-227 "DERHAM.spad" 256266 256298 258332 258347) (-226 "DEQUEUE.spad" 255461 255471 255744 255771) (-225 "DEGRED.spad" 255078 255092 255451 255456) (-224 "DEFINTRF.spad" 252660 252670 255068 255073) (-223 "DEFINTEF.spad" 251198 251214 252650 252655) (-222 "DEFAST.spad" 250582 250590 251188 251193) (-221 "DECIMAL.spad" 248546 248554 248907 249000) (-220 "DDFACT.spad" 246367 246384 248536 248541) (-219 "DBLRESP.spad" 245967 245991 246357 246362) (-218 "DBASIS.spad" 245593 245608 245957 245962) (-217 "DBASE.spad" 244257 244267 245583 245588) (-216 "DATAARY.spad" 243743 243756 244247 244252) (-215 "D03FAFA.spad" 243571 243579 243733 243738) (-214 "D03EEFA.spad" 243391 243399 243561 243566) (-213 "D03AGNT.spad" 242477 242485 243381 243386) (-212 "D02EJFA.spad" 241939 241947 242467 242472) (-211 "D02CJFA.spad" 241417 241425 241929 241934) (-210 "D02BHFA.spad" 240907 240915 241407 241412) (-209 "D02BBFA.spad" 240397 240405 240897 240902) (-208 "D02AGNT.spad" 235267 235275 240387 240392) (-207 "D01WGTS.spad" 233586 233594 235257 235262) (-206 "D01TRNS.spad" 233563 233571 233576 233581) (-205 "D01GBFA.spad" 233085 233093 233553 233558) (-204 "D01FCFA.spad" 232607 232615 233075 233080) (-203 "D01ASFA.spad" 232075 232083 232597 232602) (-202 "D01AQFA.spad" 231529 231537 232065 232070) (-201 "D01APFA.spad" 230969 230977 231519 231524) (-200 "D01ANFA.spad" 230463 230471 230959 230964) (-199 "D01AMFA.spad" 229973 229981 230453 230458) (-198 "D01ALFA.spad" 229513 229521 229963 229968) (-197 "D01AKFA.spad" 229039 229047 229503 229508) (-196 "D01AJFA.spad" 228562 228570 229029 229034) (-195 "D01AGNT.spad" 224629 224637 228552 228557) (-194 "CYCLOTOM.spad" 224135 224143 224619 224624) (-193 "CYCLES.spad" 220927 220935 224125 224130) (-192 "CVMP.spad" 220344 220354 220917 220922) (-191 "CTRIGMNP.spad" 218844 218860 220334 220339) (-190 "CTORKIND.spad" 218447 218455 218834 218839) (-189 "CTORCAT.spad" 217688 217696 218437 218442) (-188 "CTORCAT.spad" 216927 216937 217678 217683) (-187 "CTORCALL.spad" 216516 216526 216917 216922) (-186 "CTOR.spad" 216207 216215 216506 216511) (-185 "CSTTOOLS.spad" 215452 215465 216197 216202) (-184 "CRFP.spad" 209224 209237 215442 215447) (-183 "CRCEAST.spad" 208944 208952 209214 209219) (-182 "CRAPACK.spad" 208011 208021 208934 208939) (-181 "CPMATCH.spad" 207512 207527 207933 207938) (-180 "CPIMA.spad" 207217 207236 207502 207507) (-179 "COORDSYS.spad" 202226 202236 207207 207212) (-178 "CONTOUR.spad" 201653 201661 202216 202221) (-177 "CONTFRAC.spad" 197403 197413 201555 201648) (-176 "CONDUIT.spad" 197161 197169 197393 197398) (-175 "COMRING.spad" 196835 196843 197099 197156) (-174 "COMPPROP.spad" 196353 196361 196825 196830) (-173 "COMPLPAT.spad" 196120 196135 196343 196348) (-172 "COMPLEX2.spad" 195835 195847 196110 196115) (-171 "COMPLEX.spad" 191146 191156 191390 191651) (-170 "COMPILER.spad" 190695 190703 191136 191141) (-169 "COMPFACT.spad" 190297 190311 190685 190690) (-168 "COMPCAT.spad" 188369 188379 190031 190292) (-167 "COMPCAT.spad" 186166 186178 187830 187835) (-166 "COMMUPC.spad" 185914 185932 186156 186161) (-165 "COMMONOP.spad" 185447 185455 185904 185909) (-164 "COMMAAST.spad" 185210 185218 185437 185442) (-163 "COMM.spad" 185021 185029 185200 185205) (-162 "COMBOPC.spad" 183944 183952 185011 185016) (-161 "COMBINAT.spad" 182711 182721 183934 183939) (-160 "COMBF.spad" 180133 180149 182701 182706) (-159 "COLOR.spad" 178970 178978 180123 180128) (-158 "COLONAST.spad" 178636 178644 178960 178965) (-157 "CMPLXRT.spad" 178347 178364 178626 178631) (-156 "CLLCTAST.spad" 178009 178017 178337 178342) (-155 "CLIP.spad" 174117 174125 177999 178004) (-154 "CLIF.spad" 172772 172788 174073 174112) (-153 "CLAGG.spad" 169309 169319 172762 172767) (-152 "CLAGG.spad" 165714 165726 169169 169174) (-151 "CINTSLPE.spad" 165069 165082 165704 165709) (-150 "CHVAR.spad" 163207 163229 165059 165064) (-149 "CHARZ.spad" 163122 163130 163187 163202) (-148 "CHARPOL.spad" 162648 162658 163112 163117) (-147 "CHARNZ.spad" 162410 162418 162628 162643) (-146 "CHAR.spad" 159778 159786 162400 162405) (-145 "CFCAT.spad" 159106 159114 159768 159773) (-144 "CDEN.spad" 158326 158340 159096 159101) (-143 "CCLASS.spad" 156422 156430 157684 157723) (-142 "CATEGORY.spad" 155496 155504 156412 156417) (-141 "CATCTOR.spad" 155387 155395 155486 155491) (-140 "CATAST.spad" 155013 155021 155377 155382) (-139 "CASEAST.spad" 154727 154735 155003 155008) (-138 "CARTEN2.spad" 154117 154144 154717 154722) (-137 "CARTEN.spad" 149484 149508 154107 154112) (-136 "CARD.spad" 146779 146787 149458 149479) (-135 "CAPSLAST.spad" 146561 146569 146769 146774) (-134 "CACHSET.spad" 146185 146193 146551 146556) (-133 "CABMON.spad" 145740 145748 146175 146180) (-132 "BYTEORD.spad" 145415 145423 145730 145735) (-131 "BYTEBUF.spad" 143116 143124 144402 144429) (-130 "BYTE.spad" 142591 142599 143106 143111) (-129 "BTREE.spad" 141535 141545 142069 142096) (-128 "BTOURN.spad" 140411 140421 141013 141040) (-127 "BTCAT.spad" 139803 139813 140379 140406) (-126 "BTCAT.spad" 139215 139227 139793 139798) (-125 "BTAGG.spad" 138681 138689 139183 139210) (-124 "BTAGG.spad" 138167 138177 138671 138676) (-123 "BSTREE.spad" 136779 136789 137645 137672) (-122 "BRILL.spad" 134984 134995 136769 136774) (-121 "BRAGG.spad" 133940 133950 134974 134979) (-120 "BRAGG.spad" 132860 132872 133896 133901) (-119 "BPADICRT.spad" 130685 130697 130932 131025) (-118 "BPADIC.spad" 130357 130369 130611 130680) (-117 "BOUNDZRO.spad" 130013 130030 130347 130352) (-116 "BOP1.spad" 127471 127481 130003 130008) (-115 "BOP.spad" 122613 122621 127461 127466) (-114 "BOOLEAN.spad" 122051 122059 122603 122608) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index eec51301..4088ab8c 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,309 +1,309 @@ -(205700 . 3518066236) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-421 |#2|) |#3|) . T)) -((((-421 (-560))) |has| #1=(-421 |#2|) (-1070 (-421 (-560)))) (((-560)) |has| #1# (-1070 (-560))) ((#1#) . T)) -((((-421 |#2|)) . T)) -((((-560)) |has| #1=(-421 |#2|) (-660 (-560))) ((#1#) . T)) -((((-421 |#2|)) . T)) -((((-421 |#2|) |#3|) . T)) -(|has| (-421 |#2|) (-149)) -((((-421 |#2|) |#3|) . T)) -(|has| (-421 |#2|) (-147)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -(|has| (-421 |#2|) (-240)) -((($) -4043 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))) -(-4043 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))) -((((-421 |#2|)) . T)) -((($ (-1209)) -4043 (|has| (-421 |#2|) (-928 (-1209))) (|has| (-421 |#2|) (-930 (-1209))))) -((((-1209)) -4043 (|has| (-421 |#2|) (-928 (-1209))) (|has| (-421 |#2|) (-930 (-1209))))) -((((-1209)) |has| (-421 |#2|) (-928 (-1209)))) -((((-421 |#2|)) . T)) +(205664 . 3518758390) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-419 |#2|) |#3|) . T)) +((((-419 (-558))) |has| #1=(-419 |#2|) (-1068 (-419 (-558)))) (((-558)) |has| #1# (-1068 (-558))) ((#1#) . T)) +((((-419 |#2|)) . T)) +((((-558)) |has| #1=(-419 |#2|) (-658 (-558))) ((#1#) . T)) +((((-419 |#2|)) . T)) +((((-419 |#2|) |#3|) . T)) +(|has| (-419 |#2|) (-149)) +((((-419 |#2|) |#3|) . T)) +(|has| (-419 |#2|) (-147)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +(|has| (-419 |#2|) (-240)) +((($) -4039 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) +(-4039 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) +((((-419 |#2|)) . T)) +((($ (-1207)) -4039 (|has| (-419 |#2|) (-926 (-1207))) (|has| (-419 |#2|) (-928 (-1207))))) +((((-1207)) -4039 (|has| (-419 |#2|) (-926 (-1207))) (|has| (-419 |#2|) (-928 (-1207))))) +((((-1207)) |has| (-419 |#2|) (-926 (-1207)))) +((((-419 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-421 |#2|) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-560)) |has| #1=(-421 |#2|) (-660 (-560))) ((#1#) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(((#1=(-419 |#2|) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-558)) |has| #1=(-419 |#2|) (-658 (-558))) ((#1#) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3|) . T)) -((((-560) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1174 |#2| |#1|)) . T) ((|#1|) . T)) -((((-888)) . T)) -((((-1174 |#2| |#1|)) . T) ((|#1|) . T) (((-560)) . T)) +((((-1172 |#2| |#1|)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-1172 |#2| |#1|)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-888)) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-886)) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((|#1| |#2|) . T)) -((((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) (((-1266 (-560)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -((((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((|#1| |#2|) . T)) +((((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((|#1| |#2|) . T)) +((((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) (((-1264 (-558)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -(((#1=(-421 (-560)) #1#) . T) (($ $) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +(((#1=(-419 (-558)) #1#) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-630 $) $) . T)) -((((-421 (-560))) . T) (((-560)) . T) (((-630 $)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T) (((-630 $)) . T)) -((((-888)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +((($ $) . T) (((-628 $) $) . T)) +((((-419 (-558))) . T) (((-558)) . T) (((-628 $)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-628 $)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-560)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-793)) . T)) -((((-793)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-791)) . T)) +((((-791)) . T)) +((((-886)) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-711 (-352 (-4036) (-4036 (QUOTE X) (QUOTE HESS)) (-721)))) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-709 (-352 (-4032) (-4032 (QUOTE X) (QUOTE HESS)) (-719)))) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) (((|#1| |#1|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-1036 2)) . T) (((-421 (-560))) . T) (((-888)) . T)) -((((-560)) . T)) -((((-560)) . T)) +((((-886)) . T)) +((((-1034 2)) . T) (((-419 (-558))) . T) (((-886)) . T)) +((((-558)) . T)) +((((-558)) . T)) ((($) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-560) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T)) -((((-888)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-558) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T)) +((((-886)) . T)) ((((-114)) . T)) ((((-114)) . T)) -((((-560) (-114)) . T)) -((((-560) (-114)) . T)) -((((-560) (-114)) . T) (((-1266 (-560)) $) . T)) -((((-549)) . T)) +((((-558) (-114)) . T)) +((((-558) (-114)) . T)) +((((-558) (-114)) . T) (((-1264 (-558)) $) . T)) +((((-547)) . T)) ((((-114)) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-114)) . T)) ((((-114)) . T)) -((((-549)) . T)) -((((-888)) . T)) -((((-1209)) . T)) -((((-888)) . T)) +((((-547)) . T)) +((((-886)) . T)) +((((-1207)) . T)) +((((-886)) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) +((((-558)) . T) (($) . T)) (((|#1|) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T)) -((((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-118 |#1|)) . T) (((-421 (-560))) . T)) -((((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-118 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-118 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-118 |#1|) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) +((((-118 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-118 |#1|)) . T) (((-419 (-558))) . T)) +((((-118 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-118 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-118 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-118 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-118 |#1|) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) ((((-118 |#1|)) . T)) -((((-1209) #1=(-118 |#1|)) |has| #1# (-528 (-1209) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) +((((-1207) #1=(-118 |#1|)) |has| #1# (-526 (-1207) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) (((#1=(-118 |#1|)) |has| #1# (-321 #1#))) (((#1=(-118 |#1|) $) |has| #1# (-298 #1# #1#))) ((((-118 |#1|)) . T)) -((($) . T) (((-118 |#1|)) . T) (((-421 (-560))) . T)) +((($) . T) (((-118 |#1|)) . T) (((-419 (-558))) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T)) -((((-560)) . T) (((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) +((((-558)) . T) (((-118 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-1191)) . T) (((-988 (-130))) . T) (((-888)) . T)) +((((-1189)) . T) (((-986 (-130))) . T) (((-886)) . T)) ((((-130)) . T)) -((((-560) (-130)) . T)) -((((-1266 (-560)) $) . T) (((-560) (-130)) . T)) -((((-560) (-130)) . T)) +((((-558) (-130)) . T)) +((((-1264 (-558)) $) . T) (((-558) (-130)) . T)) +((((-558) (-130)) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-793)) . T)) -((((-793)) . T)) -((((-888)) . T)) -((((-560) |#3|) . T)) -((((-560) (-793)) . T) ((|#3| (-793)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-791)) . T)) +((((-791)) . T)) +((((-886)) . T)) +((((-558) |#3|) . T)) +((((-558) (-791)) . T) ((|#3| (-791)) . T)) +((((-886)) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| (-793)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-520)) . T)) -((((-186)) . T) (((-888)) . T)) -((((-888)) . T)) +(((|#3| (-791)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-518)) . T)) +((((-186)) . T) (((-886)) . T)) +((((-886)) . T)) ((((-146)) . T)) ((((-146)) . T)) ((((-146)) . T)) @@ -311,9 +311,9 @@ ((((-146)) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-663 (-146))) . T) (((-1191)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-661 (-146))) . T) (((-1189)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -321,694 +321,694 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-560)) . T)) +(((|#2|) . T) (((-558)) . T)) (((|#2|) . T) (($) . T)) -((((-888)) . T)) -(((|#2|) . T) (($) . T) (((-560)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(|has| |#1| (-845)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-363))) -((((-888)) . T)) +((((-886)) . T)) +(((|#2|) . T) (($) . T) (((-558)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(|has| |#1| (-843)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-363))) +((((-886)) . T)) (|has| |#1| (-149)) (((|#1|) . T)) -((((-1209)) |has| |#1| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -(((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1207)) |has| |#1| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +(((|#1|) . T)) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(((|#1|) . T)) +((((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T)) -((((-560)) |has| |#1| (-912 (-560))) (((-391)) |has| |#1| (-912 (-391)))) -(((|#1|) . T)) -((((-560)) . T) (($) -4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1070 (-421 (-560))))) ((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-1203 |#1|)) . T)) -(((|#1| (-1203 |#1|)) . T)) -((($) -4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -(((|#1| (-1203 |#1|)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T)) +((((-558)) |has| |#1| (-910 (-558))) (((-391)) |has| |#1| (-910 (-391)))) +(((|#1|) . T)) +((((-558)) . T) (($) -4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1068 (-419 (-558))))) ((|#1|) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-1201 |#1|)) . T)) +(((|#1| (-1201 |#1|)) . T)) +((($) -4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +(((|#1| (-1201 |#1|)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-4043 (|has| |#1| (-381)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-171 (-229))) |has| |#1| . #1=((-1052))) (((-171 (-391))) |has| |#1| . #1#) (((-549)) |has| |#1| (-633 (-549))) (((-1203 |#1|)) . T) (((-916 (-560))) |has| |#1| (-633 (-916 (-560)))) (((-916 (-391))) |has| |#1| (-633 (-916 (-391))))) -(-12 (|has| |#1| (-319)) (|has| |#1| (-940))) -(-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) -(|has| |#1| (-1235)) -(|has| |#1| (-1235)) -(|has| |#1| (-1235)) -(|has| |#1| (-1235)) -(|has| |#1| (-1235)) -(|has| |#1| (-1235)) -(((|#1|) . T)) -((((-888)) . T)) -((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) -((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) -((((-888)) . T)) -((($) . T) (((-421 (-560))) . T) (((-421 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-421 (-560))) . T) (((-421 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T) ((#2=(-421 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-421 (-560))) . T) (((-421 |#1|)) . T) ((|#1|) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (((-421 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T) (((-560)) . T)) -((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-520)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-663 |#1|)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1036 10)) . T) (((-421 (-560))) . T) (((-888)) . T)) -((((-560)) . T)) -((((-560)) . T)) +(-4039 (|has| |#1| (-381)) (|has| |#1| (-363))) +(((|#1|) . T)) +((((-171 (-229))) |has| |#1| . #1=((-1050))) (((-171 (-391))) |has| |#1| . #1#) (((-547)) |has| |#1| (-631 (-547))) (((-1201 |#1|)) . T) (((-914 (-558))) |has| |#1| (-631 (-914 (-558)))) (((-914 (-391))) |has| |#1| (-631 (-914 (-391))))) +(-12 (|has| |#1| (-319)) (|has| |#1| (-938))) +(-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(((|#1|) . T)) +((((-886)) . T)) +((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T) ((#2=(-419 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-558)) . T)) +((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-518)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-661 |#1|)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1034 10)) . T) (((-419 (-558))) . T) (((-886)) . T)) +((((-558)) . T)) +((((-558)) . T)) ((($) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-560) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-558) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-326 |#1|)) . T)) -((((-888)) . T)) -((((-326 |#1|)) . T) (((-560)) . T) (($) . T)) +((((-886)) . T)) +((((-326 |#1|)) . T) (((-558)) . T) (($) . T)) ((((-326 |#1|)) . T) (($) . T)) -((((-326 |#1|)) . T) (((-560)) . T)) +((((-326 |#1|)) . T) (((-558)) . T)) ((((-326 |#1|)) . T)) ((($) . T)) -((((-560)) . T) (((-421 (-560))) . T)) +((((-558)) . T) (((-419 (-558))) . T)) ((((-391)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-549)) . T) (((-229)) . T) (((-391)) . T) (((-916 (-391))) . T)) -((((-888)) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T) (((-560)) . T)) -(((|#1| (-1299 |#1|) (-1299 |#1|)) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -(((|#1| (-1299 |#1|) (-1299 |#1|)) . T)) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(((|#2| |#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -((((-888)) -4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-888))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) (((-1299 |#2|)) . T)) -(((|#2|) |has| |#2| (-1081))) -((((-1209)) -12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -(((|#2|) |has| |#2| (-1081))) -(-4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081)))) -((($) -4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))))) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -((((-560)) -4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) ((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-547)) . T) (((-229)) . T) (((-391)) . T) (((-914 (-391))) . T)) +((((-886)) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T) (((-558)) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(((|#2| |#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +((((-886)) -4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) (((-1297 |#2|)) . T)) +(((|#2|) |has| |#2| (-1079))) +((((-1207)) -12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +(((|#2|) |has| |#2| (-1079))) +(-4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) +((($) -4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))))) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +((((-558)) -4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) ((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1081))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1133))) -((((-560)) -4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ((|#2|) |has| |#2| (-1133)) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -(((|#2|) |has| |#2| (-1133)) (((-560)) -12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -((((-560) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1131))) +((((-558)) -4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1131)) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +(((|#2|) |has| |#2| (-1131)) (((-558)) -12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +((((-558) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) -((((-560) |#2|) . T)) -((((-560) |#2|) . T)) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) +((((-558) |#2|) . T)) +((((-558) |#2|) . T)) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) -((((-663 |#1|)) . T)) -((((-663 |#1|)) . T)) +((((-661 |#1|)) . T)) +((((-661 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-663 |#1|)) . T) (((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-661 |#1|)) . T) (((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) |has| |#2| (-633 (-549))) (((-916 (-391))) |has| |#2| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#2| (-633 (-916 (-560))))) +((((-547)) |has| |#2| (-631 (-547))) (((-914 (-391))) |has| |#2| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#2| (-631 (-914 (-558))))) ((($) . T)) -(((|#2| (-246 (-4473 |#1|) (-793))) . T)) +(((|#2| (-246 (-4469 |#1|) (-791))) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((|#2| (-246 (-4473 |#1|) (-793))) . T)) +(-4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((|#2| (-246 (-4469 |#1|) (-791))) . T)) (((|#2|) . T)) -((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-940))) -((($ $) . T) ((#1=(-889 |#1|) $) . T) ((#1# |#2|) . T)) -((((-889 |#1|)) . T)) -((($ (-889 |#1|)) . T)) -((((-889 |#1|)) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-940)) -((((-421 (-560))) |has| |#2| (-1070 (-421 (-560)))) (((-560)) |has| |#2| (-1070 (-560))) ((|#2|) . T) (((-889 |#1|)) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ((|#2|) . T) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) (((-889 |#1|)) . T)) -(((|#2| (-246 (-4473 |#1|) (-793)) (-889 |#1|)) . T)) -((((-888)) . T)) -((((-520)) . T)) -((((-186)) . T) (((-888)) . T)) -((((-793) (-1214)) . T)) -((((-888)) . T)) -(((|#4| |#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1081)))) -(((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1081)))) -(((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1081)))) -((((-888)) . T) (((-1299 |#4|)) . T)) -(((|#4|) |has| |#4| (-1081))) -((((-1209)) -12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081))))) -(((|#4|) |has| |#4| (-1081))) -(-4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081)))) -((($) -4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081))))) -(|has| |#4| (-1081)) -(|has| |#4| (-1081)) -(|has| |#4| (-1081)) -(|has| |#4| (-1081)) -(((|#3|) . T) ((|#2|) . T) (((-560)) . T) ((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1081))) (($) |has| |#4| (-1081))) -(-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-938))) +((($ $) . T) ((#1=(-887 |#1|) $) . T) ((#1# |#2|) . T)) +((((-887 |#1|)) . T)) +((($ (-887 |#1|)) . T)) +((((-887 |#1|)) . T)) +(|has| |#2| (-938)) +(|has| |#2| (-938)) +((((-419 (-558))) |has| |#2| (-1068 (-419 (-558)))) (((-558)) |has| |#2| (-1068 (-558))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ((|#2|) . T) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (((-887 |#1|)) . T)) +(((|#2| (-246 (-4469 |#1|) (-791)) (-887 |#1|)) . T)) +((((-886)) . T)) +((((-518)) . T)) +((((-186)) . T) (((-886)) . T)) +((((-791) (-1212)) . T)) +((((-886)) . T)) +(((|#4| |#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1079)))) +(((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)) (|has| |#4| (-1079)))) +(((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1079)))) +((((-886)) . T) (((-1297 |#4|)) . T)) +(((|#4|) |has| |#4| (-1079))) +((((-1207)) -12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079))))) +(((|#4|) |has| |#4| (-1079))) +(-4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079)))) +((($) -4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))))) +(|has| |#4| (-1079)) +(|has| |#4| (-1079)) +(|has| |#4| (-1079)) +(|has| |#4| (-1079)) +(((|#3|) . T) ((|#2|) . T) (((-558)) . T) ((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079))) +(-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (|has| |#4| (-381)) -(((|#4|) |has| |#4| (-1081))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1081))) (($) |has| |#4| (-1081)) (((-560)) -12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081)))) -(((|#4|) |has| |#4| (-1081)) (((-560)) -12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081)))) -(((|#4|) |has| |#4| (-1133))) -((((-560)) -4043 (-12 (|has| |#4| (-1070 (-560))) (|has| |#4| (-1133))) (|has| |#4| (-1081))) ((|#4|) |has| |#4| (-1133)) (((-421 (-560))) -12 (|has| |#4| (-1070 (-421 (-560)))) (|has| |#4| (-1133)))) -(((|#4|) |has| |#4| (-1133)) (((-560)) -12 (|has| |#4| (-1070 (-560))) (|has| |#4| (-1133))) (((-421 (-560))) -12 (|has| |#4| (-1070 (-421 (-560)))) (|has| |#4| (-1133)))) -((((-560) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +(((|#4|) |has| |#4| (-1079))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079)) (((-558)) -12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079)))) +(((|#4|) |has| |#4| (-1079)) (((-558)) -12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079)))) +(((|#4|) |has| |#4| (-1131))) +((((-558)) -4039 (-12 (|has| |#4| (-1068 (-558))) (|has| |#4| (-1131))) (|has| |#4| (-1079))) ((|#4|) |has| |#4| (-1131)) (((-419 (-558))) -12 (|has| |#4| (-1068 (-419 (-558)))) (|has| |#4| (-1131)))) +(((|#4|) |has| |#4| (-1131)) (((-558)) -12 (|has| |#4| (-1068 (-558))) (|has| |#4| (-1131))) (((-419 (-558))) -12 (|has| |#4| (-1068 (-419 (-558)))) (|has| |#4| (-1131)))) +((((-558) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-560) |#4|) . T)) -((((-560) |#4|) . T)) -(((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)))) -(((|#4|) -4043 (|has| |#4| (-175)) (|has| |#4| (-376)))) -(|has| |#4| (-817)) -(|has| |#4| (-817)) -(-4043 (|has| |#4| (-817)) (|has| |#4| (-872))) -(-4043 (|has| |#4| (-817)) (|has| |#4| (-872))) -(|has| |#4| (-817)) -(|has| |#4| (-817)) +((((-558) |#4|) . T)) +((((-558) |#4|) . T)) +(((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)))) +(((|#4|) -4039 (|has| |#4| (-175)) (|has| |#4| (-376)))) +(|has| |#4| (-815)) +(|has| |#4| (-815)) +(-4039 (|has| |#4| (-815)) (|has| |#4| (-870))) +(-4039 (|has| |#4| (-815)) (|has| |#4| (-870))) +(|has| |#4| (-815)) +(|has| |#4| (-815)) (((|#4|) |has| |#4| (-376))) (((|#1| |#4|) . T)) -(((|#3| |#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1081)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081)))) -((((-888)) . T) (((-1299 |#3|)) . T)) -(((|#3|) |has| |#3| (-1081))) -((((-1209)) -12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))))) -(((|#3|) |has| |#3| (-1081))) -(-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) -((($) -4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))))) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -(((|#2|) . T) (((-560)) . T) ((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1081))) (($) |has| |#3| (-1081))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) +(((|#3| |#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1079)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079)))) +((((-886)) . T) (((-1297 |#3|)) . T)) +(((|#3|) |has| |#3| (-1079))) +((((-1207)) -12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))))) +(((|#3|) |has| |#3| (-1079))) +(-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) +((($) -4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))))) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +(((|#2|) . T) (((-558)) . T) ((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1081))) -(((|#2|) . T) ((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081))) (($) |has| |#3| (-1081)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081)))) -(((|#3|) |has| |#3| (-1081)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081)))) -(((|#3|) |has| |#3| (-1133))) -((((-560)) -4043 (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (|has| |#3| (-1081))) ((|#3|) |has| |#3| (-1133)) (((-421 (-560))) -12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133)))) -(((|#3|) |has| |#3| (-1133)) (((-560)) -12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (((-421 (-560))) -12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133)))) -((((-560) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) +(((|#3|) |has| |#3| (-1079))) +(((|#2|) . T) ((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079)))) +(((|#3|) |has| |#3| (-1079)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079)))) +(((|#3|) |has| |#3| (-1131))) +((((-558)) -4039 (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1131)) (((-419 (-558))) -12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131)))) +(((|#3|) |has| |#3| (-1131)) (((-558)) -12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (((-419 (-558))) -12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131)))) +((((-558) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) (((|#3|) . T)) -((((-560) |#3|) . T)) -((((-560) |#3|) . T)) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-817)) -(|has| |#3| (-817)) -(-4043 (|has| |#3| (-817)) (|has| |#3| (-872))) -(-4043 (|has| |#3| (-817)) (|has| |#3| (-872))) -(|has| |#3| (-817)) -(|has| |#3| (-817)) +((((-558) |#3|) . T)) +((((-558) |#3|) . T)) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(|has| |#3| (-815)) +(|has| |#3| (-815)) +(-4039 (|has| |#3| (-815)) (|has| |#3| (-870))) +(-4039 (|has| |#3| (-815)) (|has| |#3| (-870))) +(|has| |#3| (-815)) +(|has| |#3| (-815)) (((|#3|) |has| |#3| (-376))) (((|#1| |#3|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-888)) . T)) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-886)) . T)) (|has| |#1| (-240)) ((($) . T)) -(((|#1| (-545 |#3|) |#3|) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#3| (-912 (-560)))) (((-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#3| (-912 (-391))))) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) ((|#3|) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ |#3|) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) ((|#3|) . T)) +(((|#1| (-543 |#3|) |#3|) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#3| (-910 (-558)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391))))) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) ((|#3|) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ |#3|) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| . #1=((-240))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-545 |#3|)) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(((|#1| (-543 |#3|)) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -(((|#1| (-545 |#3|)) . T)) -((((-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#3| (-633 (-916 (-560))))) (((-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#3| (-633 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549))))) -((((-1157 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#2|) . T)) -((((-1157 |#1| |#2|)) . T) (((-560)) . T) ((|#3|) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-545 |#3|)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1| (-543 |#3|)) . T)) +((((-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#3| (-631 (-914 (-558))))) (((-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#3| (-631 (-914 (-391))))) (((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547))))) +((((-1155 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#2|) . T)) +((((-1155 |#1| |#2|)) . T) (((-558)) . T) ((|#3|) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-543 |#3|)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-560)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) |has| |#1| (-376))) -((((-1209)) |has| |#1| (-928 (-1209)))) -((($ (-1209)) |has| |#1| (-928 (-1209)))) -((((-1209)) |has| |#1| (-928 (-1209)))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1081)))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1081)))) -(((|#1| |#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1081)))) -((((-560)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1081))) (($) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)))) -(-4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(|has| |#1| (-487)) -(-4043 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)) (|has| |#1| (-1144))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1081))) (($) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) (((-560)) -4043 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)) (|has| |#1| (-1144)) (|has| |#1| (-1133))) -((((-114)) |has| |#1| (-1133)) (((-888)) -4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)) (|has| |#1| (-1144)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-928 (-1209))) (|has| |#1| (-1081)) (|has| |#1| (-1144)) (|has| |#1| (-1133))) -((((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|))) +((((-1207)) |has| |#1| (-926 (-1207)))) +((($ (-1207)) |has| |#1| (-926 (-1207)))) +((((-1207)) |has| |#1| (-926 (-1207)))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1079)))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1079)))) +(((|#1| |#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1079)))) +((((-558)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1079))) (($) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)))) +(-4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(|has| |#1| (-485)) +(-4039 (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)) (|has| |#1| (-1142))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1079))) (($) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) (((-558)) -4039 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1131))) +((((-114)) |has| |#1| (-1131)) (((-886)) -4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-926 (-1207))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1131))) +((((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|))) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -(|has| (-1286 |#1| |#2| |#3| |#4|) (-147)) -(|has| (-1286 |#1| |#2| |#3| |#4|) (-149)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-1286 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-1286 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1209) #1=(-1286 |#1| |#2| |#3| |#4|)) |has| #1# (-528 (-1209) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) -(((#1=(-1286 |#1| |#2| |#3| |#4|)) |has| #1# (-321 #1#))) -(((#1=(-1286 |#1| |#2| |#3| |#4|) $) |has| #1# (-298 #1# #1#))) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1286 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1280 |#2| |#3| |#4|)) . T) (((-560)) . T) (((-1286 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-1280 |#2| |#3| |#4|)) . T) (((-1286 |#1| |#2| |#3| |#4|)) . T)) -((((-1286 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(((|#1|) |has| |#1| (-571))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) -((((-888)) . T)) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1081)) (|has| |#1| (-1144))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1081)) (|has| |#1| (-1144))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +(|has| (-1284 |#1| |#2| |#3| |#4|) (-147)) +(|has| (-1284 |#1| |#2| |#3| |#4|) (-149)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-1284 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1207) #1=(-1284 |#1| |#2| |#3| |#4|)) |has| #1# (-526 (-1207) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) +(((#1=(-1284 |#1| |#2| |#3| |#4|)) |has| #1# (-321 #1#))) +(((#1=(-1284 |#1| |#2| |#3| |#4|) $) |has| #1# (-298 #1# #1#))) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1278 |#2| |#3| |#4|)) . T) (((-558)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1278 |#2| |#3| |#4|)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(((|#1|) |has| |#1| (-569))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +((((-886)) . T)) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-630 $) $) . T) (($ $) . T)) +((((-628 $) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)) (((-421 (-560))) |has| |#1| (-571))) -((((-560)) -4043 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) (($) -4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) ((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-1081))) (((-421 (-560))) |has| |#1| (-571))) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)) (((-421 (-560))) |has| |#1| (-571))) -(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)) (((-421 (-560))) |has| |#1| (-571))) -(|has| |#1| (-571)) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-571)) (($) |has| |#1| (-571))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-571)) (($) |has| |#1| (-571))) -(((|#1| |#1|) |has| |#1| (-175)) ((#1=(-421 (-560)) #1#) |has| |#1| (-571)) (($ $) |has| |#1| (-571))) -(|has| |#1| (-571)) -(((|#1|) |has| |#1| (-1081))) -((($) -4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1081))) ((|#1|) -4043 (|has| |#1| (-175)) (|has| |#1| (-1081))) (((-421 (-560))) |has| |#1| (-571)) (((-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) -(((|#1|) |has| |#1| (-1081)) (((-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) -(((|#1|) . T)) -((((-560)) |has| |#1| (-912 (-560))) (((-391)) |has| |#1| (-912 (-391)))) -(((|#1|) . T)) -(|has| |#1| (-487)) -((((-1209)) |has| |#1| (-1081))) -((($ (-1209)) |has| |#1| (-1081))) -((((-1209)) |has| |#1| (-1081))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549))) (((-916 (-560))) |has| |#1| (-633 (-916 (-560)))) (((-916 (-391))) |has| |#1| (-633 (-916 (-391))))) -((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) (((-630 $)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) -4043 (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-421 (-976 |#1|))) |has| |#1| (-571)) (((-976 |#1|)) |has| |#1| (-1081)) (((-1209)) . T)) -((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) (((-560)) -4043 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1070 (-560))) (|has| |#1| (-1081))) ((|#1|) . T) (((-630 $)) . T) (($) |has| |#1| (-571)) (((-421 (-560))) -4043 (|has| |#1| (-571)) (|has| |#1| (-1070 (-421 (-560))))) (((-421 (-976 |#1|))) |has| |#1| (-571)) (((-976 |#1|)) |has| |#1| (-1081)) (((-1209)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) +((((-558)) -4039 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (($) -4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-1079))) (((-419 (-558))) |has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) +(|has| |#1| (-569)) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-569)) (($) |has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-569)) (($) |has| |#1| (-569))) +(((|#1| |#1|) |has| |#1| (-175)) ((#1=(-419 (-558)) #1#) |has| |#1| (-569)) (($ $) |has| |#1| (-569))) +(|has| |#1| (-569)) +(((|#1|) |has| |#1| (-1079))) +((($) -4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -4039 (|has| |#1| (-175)) (|has| |#1| (-1079))) (((-419 (-558))) |has| |#1| (-569)) (((-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) +(((|#1|) |has| |#1| (-1079)) (((-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) +(((|#1|) . T)) +((((-558)) |has| |#1| (-910 (-558))) (((-391)) |has| |#1| (-910 (-391)))) +(((|#1|) . T)) +(|has| |#1| (-485)) +((((-1207)) |has| |#1| (-1079))) +((($ (-1207)) |has| |#1| (-1079))) +((((-1207)) |has| |#1| (-1079))) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547))) (((-914 (-558))) |has| |#1| (-631 (-914 (-558)))) (((-914 (-391))) |has| |#1| (-631 (-914 (-391))))) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) (((-628 $)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) -4039 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-419 (-974 |#1|))) |has| |#1| (-569)) (((-974 |#1|)) |has| |#1| (-1079)) (((-1207)) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) (((-558)) -4039 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1068 (-558))) (|has| |#1| (-1079))) ((|#1|) . T) (((-628 $)) . T) (($) |has| |#1| (-569)) (((-419 (-558))) -4039 (|has| |#1| (-569)) (|has| |#1| (-1068 (-419 (-558))))) (((-419 (-974 |#1|))) |has| |#1| (-569)) (((-974 |#1|)) |has| |#1| (-1079)) (((-1207)) . T)) (((|#1|) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -((((-888)) . T)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +((((-886)) . T)) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-421 (-560))) . T)) -(((|#1| (-421 (-560))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-419 (-558))) . T)) +(((|#1| (-419 (-558))) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T)) -(((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-421 (-560)) (-1114)) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-421 (-560)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-560)) . T)) -(((#1=(-560) #1#) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-888)) . T)) -((((-560)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-793)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-560)) . T)) -((((-888)) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +(((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1| (-419 (-558)) (-1112)) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-419 (-558)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-558)) . T)) +(((#1=(-558) #1#) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-886)) . T)) +((((-558)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-791)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-558)) . T)) +((((-886)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1209)) . T)) -((($ (-1209)) . T)) -((((-1209)) . T)) +((((-1207)) . T)) +((($ (-1207)) . T)) +((((-1207)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) -(((|#3|) . T) (((-560)) . T) (($) . T)) +(((|#3|) . T) (((-558)) . T) (($) . T)) (((|#3|) . T) (($) . T)) (((|#3|) . T)) ((($) . T)) -((($ $) . T) (((-630 $) $) . T)) -(((|#3|) . T) (((-630 $)) . T)) -(((|#3|) . T) (((-560)) . T) (((-630 $)) . T)) -((((-888)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -(((#1=(-936 |#1|) #1#) . T) (($ $) . T) ((#2=(-421 (-560)) #2#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((($ $) . T) (((-628 $) $) . T)) +(((|#3|) . T) (((-628 $)) . T)) +(((|#3|) . T) (((-558)) . T) (((-628 $)) . T)) +((((-886)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +(((#1=(-934 |#1|) #1#) . T) (($ $) . T) ((#2=(-419 (-558)) #2#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -(((#1=(-936 |#1|) #1#) . T) (($ $) . T) ((#2=(-421 (-560)) #2#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +(((#1=(-934 |#1|) #1#) . T) (($ $) . T) ((#2=(-419 (-558)) #2#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-936 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((((-934 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1020,18 +1020,18 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1040,37 +1040,37 @@ ((($) |has| |#1| (-381))) (|has| |#1| (-381)) (((|#1|) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-936 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -(((#1=(-936 |#1|) #1#) . T) (($ $) . T) ((#2=(-421 (-560)) #2#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-936 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-934 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +(((#1=(-934 |#1|) #1#) . T) (($ $) . T) ((#2=(-419 (-558)) #2#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-934 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-936 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((((-934 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1082,18 +1082,18 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1105,18 +1105,18 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1128,18 +1128,18 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| |#1| (-149)) (|has| |#1| (-381)) (|has| |#1| (-381)) @@ -1150,576 +1150,574 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) ((((-402) |#1|) . T)) ((((-229)) . T)) ((($) . T)) -((((-560)) . T) (((-421 (-560))) . T)) +((((-558)) . T) (((-419 (-558))) . T)) ((((-391)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-549)) . T) (((-1191)) . T) (((-229)) . T) (((-391)) . T) (((-916 (-391))) . T)) -((((-229)) . T) (((-888)) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-547)) . T) (((-1189)) . T) (((-229)) . T) (((-391)) . T) (((-914 (-391))) . T)) +((((-229)) . T) (((-886)) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-560)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-558)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +((((-886)) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1191)) . T)) -((((-1191)) . T)) -((((-1191)) . T) (((-888)) . T)) +((((-1189)) . T)) +((((-1189)) . T)) +((((-1189)) . T) (((-886)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-888)) . T)) -(((|#3|) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#3|) . T) (((-558)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-421 |#2|)) . T)) +((((-886)) . T)) +((((-419 |#2|)) . T)) ((($) . T)) -((((-888)) . T)) -(|has| |#1| (-1254)) -((((-549)) |has| |#1| (-633 (-549))) (((-229)) . #1=(|has| |#1| (-1052))) (((-391)) . #1#)) -(|has| |#1| (-1052)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-1254))) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) +((((-886)) . T)) +(|has| |#1| (-1252)) +((((-547)) |has| |#1| (-631 (-547))) (((-229)) . #1=(|has| |#1| (-1050))) (((-391)) . #1#)) +(|has| |#1| (-1050)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-1252))) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-298 $ $)) ((|#1| $) |has| |#1| (-298 |#1| |#1|))) ((($) |has| |#1| (-321 $)) ((|#1|) |has| |#1| (-321 |#1|))) -((((-1209) $) |has| |#1| (-528 (-1209) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|))) +((((-1207) $) |has| |#1| (-526 (-1207) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|))) (((|#1|) . T)) (|has| |#1| (-240)) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) (((|#1|) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -((((-1209)) |has| |#1| (-928 (-1209)))) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +((((-1207)) |has| |#1| (-926 (-1207)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#1|) . T) (((-560)) . T) (($) . T)) -(-12 (|has| |#1| (-559)) (|has| |#1| (-845))) -((((-888)) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#1|) . T) (((-558)) . T) (($) . T)) +(-12 (|has| |#1| (-557)) (|has| |#1| (-843))) +((((-886)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1|) . T)) -((((-1209)) |has| |#1| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) +((((-1207)) |has| |#1| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) (((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) (|has| |#1| (-240)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-421 (-560))) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) +((($) . T) ((|#1|) . T) (((-419 (-558))) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) (((|#1|) . T)) -((((-560)) |has| |#1| (-912 (-560))) (((-391)) |has| |#1| (-912 (-391)))) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(-4043 (|has| |#1| (-844)) (|has| |#1| (-872))) -(-4043 (|has| |#1| (-844)) (|has| |#1| (-872))) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) +((((-558)) |has| |#1| (-910 (-558))) (((-391)) |has| |#1| (-910 (-391)))) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +(-4039 (|has| |#1| (-842)) (|has| |#1| (-870))) +(-4039 (|has| |#1| (-842)) (|has| |#1| (-870))) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) (((|#1|) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-1052)) -((((-549)) |has| |#1| (-633 (-549))) (((-916 (-560))) |has| |#1| (-633 (-916 (-560)))) (((-916 (-391))) |has| |#1| (-633 (-916 (-391)))) (((-391)) . #1=(|has| |#1| (-1052))) (((-229)) . #1#)) -((((-560)) . T) ((|#1|) . T) (($) . T) (((-421 (-560))) . T) (((-1209)) |has| |#1| (-1070 (-1209)))) -((((-421 (-560))) |has| |#1| . #1=((-1070 (-560)))) (((-560)) |has| |#1| . #1#) (((-1209)) |has| |#1| (-1070 (-1209))) ((|#1|) . T)) -(|has| |#1| (-1184)) +(|has| |#1| (-938)) +(|has| |#1| (-1050)) +((((-547)) |has| |#1| (-631 (-547))) (((-914 (-558))) |has| |#1| (-631 (-914 (-558)))) (((-914 (-391))) |has| |#1| (-631 (-914 (-391)))) (((-391)) . #1=(|has| |#1| (-1050))) (((-229)) . #1#)) +((((-558)) . T) ((|#1|) . T) (($) . T) (((-419 (-558))) . T) (((-1207)) |has| |#1| (-1068 (-1207)))) +((((-419 (-558))) |has| |#1| . #1=((-1068 (-558)))) (((-558)) |has| |#1| . #1#) (((-1207)) |has| |#1| (-1068 (-1207))) ((|#1|) . T)) +(|has| |#1| (-1182)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-560)) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-402) (-1191)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-560) (-421 (-976 |#1|))) . T)) -((((-421 (-976 |#1|))) . T)) -((((-421 (-976 |#1|))) . T)) -((((-421 (-976 |#1|))) . T)) -((((-1174 |#2| (-421 (-976 |#1|)))) . T) (((-421 (-976 |#1|))) . T)) -((((-888)) . T)) -((((-1174 |#2| (-421 (-976 |#1|)))) . T) (((-421 (-976 |#1|))) . T) (((-560)) . T)) -((((-421 (-976 |#1|))) . T)) -((((-421 (-976 |#1|))) . T)) -(((#1=(-421 (-976 |#1|)) #1#) . T)) -((((-421 (-976 |#1|))) . T)) -((((-421 (-976 |#1|))) . T)) -((((-549)) |has| |#2| (-633 (-549))) (((-916 (-391))) |has| |#2| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#2| (-633 (-916 (-560))))) +(((|#1|) . T) (((-558)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-402) (-1189)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-558) (-419 (-974 |#1|))) . T)) +((((-419 (-974 |#1|))) . T)) +((((-419 (-974 |#1|))) . T)) +((((-419 (-974 |#1|))) . T)) +((((-1172 |#2| (-419 (-974 |#1|)))) . T) (((-419 (-974 |#1|))) . T)) +((((-886)) . T)) +((((-1172 |#2| (-419 (-974 |#1|)))) . T) (((-419 (-974 |#1|))) . T) (((-558)) . T)) +((((-419 (-974 |#1|))) . T)) +((((-419 (-974 |#1|))) . T)) +(((#1=(-419 (-974 |#1|)) #1#) . T)) +((((-419 (-974 |#1|))) . T)) +((((-419 (-974 |#1|))) . T)) +((((-547)) |has| |#2| (-631 (-547))) (((-914 (-391))) |has| |#2| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#2| (-631 (-914 (-558))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) +(-4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-940))) -((($ $) . T) ((#1=(-889 |#1|) $) . T) ((#1# |#2|) . T)) -((((-889 |#1|)) . T)) -((($ (-889 |#1|)) . T)) -((((-889 |#1|)) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-940)) -((((-421 (-560))) |has| |#2| (-1070 (-421 (-560)))) (((-560)) |has| |#2| (-1070 (-560))) ((|#2|) . T) (((-889 |#1|)) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ((|#2|) . T) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) (((-889 |#1|)) . T)) -(((|#2| |#3| (-889 |#1|)) . T)) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-938))) +((($ $) . T) ((#1=(-887 |#1|) $) . T) ((#1# |#2|) . T)) +((((-887 |#1|)) . T)) +((($ (-887 |#1|)) . T)) +((((-887 |#1|)) . T)) +(|has| |#2| (-938)) +(|has| |#2| (-938)) +((((-419 (-558))) |has| |#2| (-1068 (-419 (-558)))) (((-558)) |has| |#2| (-1068 (-558))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ((|#2|) . T) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (((-887 |#1|)) . T)) +(((|#2| |#3| (-887 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-888)) . T)) -(((|#2|) . T) (((-560)) . T) ((|#6|) . T)) +((((-886)) . T)) +(((|#2|) . T) (((-558)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-663 |#4|)) . T) (((-888)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +((((-661 |#4|)) . T) (((-886)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-549)) |has| |#4| (-633 (-549)))) +((((-547)) |has| |#4| (-631 (-547)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-888)) . T)) +((((-886)) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -((((-888)) . T)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +((((-886)) . T)) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-421 (-560))) . T)) -(((|#1| (-421 (-560))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-419 (-558))) . T)) +(((|#1| (-419 (-558))) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T)) -(((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-421 (-560)) (-1114)) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-421 (-560)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +(((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1| (-419 (-558)) (-1112)) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-419 (-558)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-549)) |has| |#4| (-633 (-549)))) +((((-547)) |has| |#4| (-631 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-888)) . T) (((-663 |#4|)) . T)) +((((-886)) . T) (((-661 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-549)) . T) (((-421 (-1203 (-560)))) . T) (((-229)) . T) (((-391)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((((-391)) . T) (((-229)) . T) (((-888)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((((-547)) . T) (((-419 (-1201 (-558)))) . T) (((-229)) . T) (((-391)) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((((-391)) . T) (((-229)) . T) (((-886)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-549)) |has| |#2| (-633 (-549))) (((-916 (-391))) |has| |#2| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#2| (-633 (-916 (-560))))) +((((-547)) |has| |#2| (-631 (-547))) (((-914 (-391))) |has| |#2| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#2| (-631 (-914 (-558))))) ((($) . T)) -(((|#2| (-496 (-4473 |#1|) (-793))) . T)) +(((|#2| (-494 (-4469 |#1|) (-791))) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((|#2| (-496 (-4473 |#1|) (-793))) . T)) +(-4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((|#2| (-494 (-4469 |#1|) (-791))) . T)) (((|#2|) . T)) -((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-940))) -((($ $) . T) ((#1=(-889 |#1|) $) . T) ((#1# |#2|) . T)) -((((-889 |#1|)) . T)) -((($ (-889 |#1|)) . T)) -((((-889 |#1|)) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-940)) -((((-421 (-560))) |has| |#2| (-1070 (-421 (-560)))) (((-560)) |has| |#2| (-1070 (-560))) ((|#2|) . T) (((-889 |#1|)) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ((|#2|) . T) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) (((-889 |#1|)) . T)) -(((|#2| (-496 (-4473 |#1|) (-793)) (-889 |#1|)) . T)) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(((|#2| |#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -((((-888)) -4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-888))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) (((-1299 |#2|)) . T)) -(((|#2|) |has| |#2| (-1081))) -((((-1209)) -12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -(((|#2|) |has| |#2| (-1081))) -(-4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081)))) -((($) -4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))))) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -((((-560)) -4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) ((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-938))) +((($ $) . T) ((#1=(-887 |#1|) $) . T) ((#1# |#2|) . T)) +((((-887 |#1|)) . T)) +((($ (-887 |#1|)) . T)) +((((-887 |#1|)) . T)) +(|has| |#2| (-938)) +(|has| |#2| (-938)) +((((-419 (-558))) |has| |#2| (-1068 (-419 (-558)))) (((-558)) |has| |#2| (-1068 (-558))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ((|#2|) . T) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (((-887 |#1|)) . T)) +(((|#2| (-494 (-4469 |#1|) (-791)) (-887 |#1|)) . T)) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(((|#2| |#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +((((-886)) -4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) (((-1297 |#2|)) . T)) +(((|#2|) |has| |#2| (-1079))) +((((-1207)) -12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +(((|#2|) |has| |#2| (-1079))) +(-4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) +((($) -4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))))) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +((((-558)) -4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) ((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1081))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1133))) -((((-560)) -4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ((|#2|) |has| |#2| (-1133)) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -(((|#2|) |has| |#2| (-1133)) (((-560)) -12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -((((-560) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1131))) +((((-558)) -4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1131)) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +(((|#2|) |has| |#2| (-1131)) (((-558)) -12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +((((-558) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) -((((-560) |#2|) . T)) -((((-560) |#2|) . T)) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) +((((-558) |#2|) . T)) +((((-558) |#2|) . T)) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) (((|#1|) . T)) (((|#1|) . T)) -((((-560)) . T)) -((((-888)) . T)) +((((-558)) . T)) +((((-886)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1036 16)) . T) (((-421 (-560))) . T) (((-888)) . T)) -((((-560)) . T)) -((((-560)) . T)) +((((-1034 16)) . T) (((-419 (-558))) . T) (((-886)) . T)) +((((-558)) . T)) +((((-558)) . T)) ((($) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-560) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T)) -((((-1191)) . T) (((-888)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-558) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T)) +((((-1189)) . T) (((-886)) . T)) ((($) . T)) ((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -(((#1=(-421 (-560)) #1#) . T) (($ $) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +(((#1=(-419 (-558)) #1#) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-630 $) $) . T)) -((((-421 (-560))) . T) (((-560)) . T) (((-630 $)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T) (((-630 $)) . T)) -((((-888)) . T)) +((($ $) . T) (((-628 $) $) . T)) +((((-419 (-558))) . T) (((-558)) . T) (((-628 $)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-628 $)) . T)) +((((-886)) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -(((|#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) . T)) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) ((((-114)) . T)) ((((-114)) . T)) -((((-560) (-114)) . T)) -((((-560) (-114)) . T)) -((((-560) (-114)) . T) (((-1266 (-560)) $) . T)) -((((-549)) . T)) +((((-558) (-114)) . T)) +((((-558) (-114)) . T)) +((((-558) (-114)) . T) (((-1264 (-558)) $) . T)) +((((-547)) . T)) ((((-114)) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-114)) . T)) ((((-114)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1191)) . T) (((-1209)) . T) (((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1189)) . T) (((-1207)) . T) (((-886)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) -((((-560)) . T)) +((((-886)) . T)) +((((-558)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) -(-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) -((((-888)) -12 (|has| |#1| (-1133)) (|has| |#2| (-1133)))) +((((-886)) . T)) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) +((((-886)) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-595 |#1|)) . T)) -((((-595 |#1|)) . T)) -((((-595 |#1|)) . T)) -((((-595 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-595 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -(((#1=(-595 |#1|) #1#) . T) (($ $) . T) ((#2=(-421 (-560)) #2#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-595 |#1|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-593 |#1|)) . T)) +((((-593 |#1|)) . T)) +((((-593 |#1|)) . T)) +((((-593 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-593 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +(((#1=(-593 |#1|) #1#) . T) (($ $) . T) ((#2=(-419 (-558)) #2#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-593 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-595 |#1|)) . T)) +((((-593 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1| |#4| |#5|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -(((|#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((((-793) |#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-593)) . T)) -((((-1135)) . T)) -((((-663 $)) . T) (((-1191)) . T) (((-1209)) . T) (((-560)) . T) (((-229)) . T) (((-888)) . T)) -((((-560) $) . T) (((-663 (-560)) $) . T)) -((((-888)) . T)) -((((-1191) (-1209) (-560) (-229) (-888)) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-791) |#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-591)) . T)) +((((-1133)) . T)) +((((-661 $)) . T) (((-1189)) . T) (((-1207)) . T) (((-558)) . T) (((-229)) . T) (((-886)) . T)) +((((-558) $) . T) (((-661 (-558)) $) . T)) +((((-886)) . T)) +((((-1189) (-1207) (-558) (-229) (-886)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1727,224 +1725,224 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -((((-560)) . T)) -((($) . T) (((-560)) . T)) -((((-560)) . T)) -((((-1191)) . T) (((-549)) . T) (((-560)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-560)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-558)) . T) (($) . T)) +((((-558)) . T)) +((($) . T) (((-558)) . T)) +((((-558)) . T)) +((((-1189)) . T) (((-547)) . T) (((-558)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-558)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-888)) . T)) -((((-560)) . T) (($) . T)) +((((-886)) . T)) +((((-558)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -((((-560)) . T)) +((((-558)) . T) (($) . T)) +((((-558)) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) +((((-558)) . T) (($) . T)) (((|#1|) . T)) -((((-560)) . T)) +((((-558)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-149)) ((($) . T)) -((((-888)) . T)) +((((-886)) . T)) ((($) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T)) -((((-421 (-560))) . T)) -((((-888)) . T)) -((((-560)) . T) (((-421 (-560))) . T)) -((((-421 (-560))) . T)) -((((-421 (-560))) . T)) -((((-421 (-560))) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T) (((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T)) +((((-419 (-558))) . T)) +((((-886)) . T)) +((((-558)) . T) (((-419 (-558))) . T)) +((((-419 (-558))) . T)) +((((-419 (-558))) . T)) +((((-419 (-558))) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T) (((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-560) (-146)) . T)) -((((-560) (-146)) . T)) -((((-560) (-146)) . T) (((-1266 (-560)) $) . T)) +((((-558) (-146)) . T)) +((((-558) (-146)) . T)) +((((-558) (-146)) . T) (((-1264 (-558)) $) . T)) ((((-146)) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-146)) . T)) ((((-146)) . T)) -(|has| |#1| (-15 * (|#1| (-560) |#1|))) -((((-888)) . T)) -((($) |has| |#1| (-15 * (|#1| (-560) |#1|)))) -(|has| |#1| (-15 * (|#1| (-560) |#1|))) -((($ $) . T) (((-560) |#1|) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -((($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -(((|#1| (-560) (-1114)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-558) |#1|))) +((((-886)) . T)) +((($) |has| |#1| (-15 * (|#1| (-558) |#1|)))) +(|has| |#1| (-15 * (|#1| (-558) |#1|))) +((($ $) . T) (((-558) |#1|) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +((($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(((|#1| (-558) (-1112)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -(((|#1| (-560)) . T)) -(((|#1| (-560)) . T)) -((($) |has| |#1| (-571))) -((($) |has| |#1| (-571))) -((($) |has| |#1| (-571))) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -((($) |has| |#1| (-571)) ((|#1|) . T)) -((($) |has| |#1| (-571)) ((|#1|) . T)) -((($ $) |has| |#1| (-571)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-571)) (((-560)) . T)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +(((|#1| (-558)) . T)) +(((|#1| (-558)) . T)) +((($) |has| |#1| (-569))) +((($) |has| |#1| (-569))) +((($) |has| |#1| (-569))) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +((($) |has| |#1| (-569)) ((|#1|) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T)) +((($ $) |has| |#1| (-569)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-569)) (((-558)) . T)) (((|#1|) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (($) . T) (((-560)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T) (((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-558)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T) (((-886)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T) (((-1266 (-560)) $) . T)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-558) |#1|) . T)) +((((-558) |#1|) . T)) +((((-558) |#1|) . T) (((-1264 (-558)) $) . T)) +((((-547)) |has| |#1| (-631 (-547)))) (((|#1|) . T)) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) (((|#1|) . T)) -((((-1214)) . T)) -((((-1250)) . T) (((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-560) |#1|) |has| |#2| (-432 |#1|))) -(((|#1|) -4043 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|)))) -(((|#1|) |has| |#2| (-432 |#1|))) +((((-1212)) . T)) +((((-1248)) . T) (((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-558) |#1|) |has| |#2| (-430 |#1|))) +(((|#1|) -4039 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) |has| |#2| (-430 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-888)) . T)) -(((|#1|) . T) (((-560)) . T)) +(((|#2|) . T) (((-886)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-130)) . T) (((-888)) . T)) -((((-888)) . T)) -((((-130)) . T) (((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-130)) . T) (((-621)) . T)) -((((-130)) . T) (((-621)) . T)) -((((-130)) . T) (((-621)) . T) (((-888)) . T)) -((((-1191) |#1|) . T)) -((((-1191) |#1|) . T)) -((((-1191) |#1|) . T)) -((((-1191) |#1|) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((#1=(-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) #1#) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-1191) |#1|) . T)) -((((-888)) . T)) -((((-402) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-549)) |has| |#1| (-633 (-549))) (((-916 (-391))) |has| |#1| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#1| (-633 (-916 (-560))))) -(((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) +((((-130)) . T) (((-886)) . T)) +((((-886)) . T)) +((((-130)) . T) (((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-130)) . T) (((-619)) . T)) +((((-130)) . T) (((-619)) . T)) +((((-130)) . T) (((-619)) . T) (((-886)) . T)) +((((-1189) |#1|) . T)) +((((-1189) |#1|) . T)) +((((-1189) |#1|) . T)) +((((-1189) |#1|) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((#1=(-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) #1#) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-1189) |#1|) . T)) +((((-886)) . T)) +((((-402) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-547)) |has| |#1| (-631 (-547))) (((-914 (-391))) |has| |#1| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#1| (-631 (-914 (-558))))) +(((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-560)) . T) (($) . T)) +(((|#2|) . T) (((-558)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-560)) . T)) +(((|#2|) . T) (((-558)) . T)) (((|#2|) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(((|#2|) . T) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) +(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) (((|#1|) . T)) -((((-421 |#2|)) . T)) +((((-419 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) @@ -1952,349 +1950,349 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-240)) -(((|#2|) . T) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#1|) . T) (($) . T) (((-560)) . T)) +(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#1|) . T) (($) . T) (((-558)) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) -((($) -4043 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(-4043 (|has| |#2| (-240)) (|has| |#2| (-239))) +((((-886)) . T)) +((($) . T) (((-558)) . T)) +((($) -4039 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-4039 (|has| |#2| (-240)) (|has| |#2| (-239))) (((|#2|) . T)) -((($ (-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) -((((-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) -((((-1209)) |has| |#2| (-928 (-1209)))) +((($ (-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) +((((-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) +((((-1207)) |has| |#2| (-926 (-1207)))) (((|#2|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((((-1191) (-51)) . T)) -((((-888)) . T)) -((((-1209) (-51)) . T) (((-1191) (-51)) . T)) -((((-1191) (-51)) . T)) -((((-1191) (-51)) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4376 (-1191)) (|:| -2300 #1#))) . T)) -(((#1=(-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) #1#) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) . T)) -((((-1191) (-51)) . T)) -((((-560) |#1|) |has| |#2| (-432 |#1|))) -(((|#1|) -4043 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|)))) -(((|#1|) |has| |#2| (-432 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-888)) . T)) -(((|#1|) . T) (((-560)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-1189) (-51)) . T)) +((((-886)) . T)) +((((-1207) (-51)) . T) (((-1189) (-51)) . T)) +((((-1189) (-51)) . T)) +((((-1189) (-51)) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4372 (-1189)) (|:| -2296 #1#))) . T)) +(((#1=(-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) #1#) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) . T)) +((((-1189) (-51)) . T)) +((((-558) |#1|) |has| |#2| (-430 |#1|))) +(((|#1|) -4039 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) |has| |#2| (-430 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-886)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-889 |#1|)) . T)) -((((-888)) . T)) -(((|#1| (-657 |#2|)) . T)) -((((-657 |#2|)) . T)) +((((-887 |#1|)) . T)) +((((-886)) . T)) +(((|#1| (-655 |#2|)) . T)) +((((-655 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-659 |#1| |#2|) |#1|) . T)) +((((-657 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-845)) +(|has| |#1| (-843)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1214)) . T)) -(((|#1|) . T) (((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((((-1212)) . T)) +(((|#1|) . T) (((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-547)) |has| |#1| (-631 (-547)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) +((((-886)) . T)) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +(|has| |#1| (-812)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((((-560)) . T) ((|#2|) . T)) +((((-886)) . T)) +((((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#1|) . T) (((-560)) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#1|) . T) (((-560)) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((|#1|) . T) (((-560)) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -((((-694 |#1|)) . T)) -((((-694 |#1|)) . T)) -(((|#2| (-694 |#1|)) . T)) +((((-692 |#1|)) . T)) +((((-692 |#1|)) . T)) +(((|#2| (-692 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((((-560)) . T) ((|#2|) . T)) +((((-886)) . T)) +((((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-560) |#2|) . T)) +((((-558) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4513 "*")))) +(((|#2|) |has| |#2| (-6 (-4509 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-711 |#2|)) . T) (((-888)) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T)) +((((-709 |#2|)) . T) (((-886)) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1209)) |has| |#2| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) +((((-1207)) |has| |#2| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) (((|#2|) . T)) -(-4043 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -4043 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-4039 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -4039 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) +((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) (((|#2|) . T)) -((((-560)) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) -(((|#2|) . T) (((-560)) |has| |#2| (-1070 (-560))) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) +((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1068 (-558))) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-1250)) . T) (((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -(((|#1| (-1299 |#1|) (-1299 |#1|)) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -(((|#1| (-1299 |#1|) (-1299 |#1|)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-721)) . T)) -((((-721)) . T)) -((((-721)) . T)) -((((-721)) . T)) -((((-721)) . T)) -((((-721)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-1248)) . T) (((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-719)) . T)) +((((-719)) . T)) +((((-719)) . T)) +((((-719)) . T)) +((((-719)) . T)) +((((-719)) . T)) ((((-391)) . T)) -((((-721)) . T)) -(((#1=(-721) (-1203 #1#)) . T)) -(((#1=(-721) (-1203 #1#)) . T)) -(((#1=(-721) (-1203 #1#)) . T)) -((((-721)) . T)) -((((-171 (-229))) . T) (((-171 (-391))) . T) (((-1203 (-721))) . T) (((-916 (-391))) . T)) -((((-721)) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -((((-888)) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T) (((-560)) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -(((#1=(-421 (-560)) #1#) . T) ((#2=(-721) #2#) . T) (($ $) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T) (((-560)) . T)) -((((-421 (-560))) . T) (((-721)) . T) (($) . T)) -((((-721)) . T) (((-421 (-560))) . T) (((-560)) . T)) -((((-391)) . T) (((-560)) . T) (((-421 (-560))) . T)) +((((-719)) . T)) +(((#1=(-719) (-1201 #1#)) . T)) +(((#1=(-719) (-1201 #1#)) . T)) +(((#1=(-719) (-1201 #1#)) . T)) +((((-719)) . T)) +((((-171 (-229))) . T) (((-171 (-391))) . T) (((-1201 (-719))) . T) (((-914 (-391))) . T)) +((((-719)) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +((((-886)) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T) (((-558)) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +(((#1=(-419 (-558)) #1#) . T) ((#2=(-719) #2#) . T) (($ $) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T) (((-558)) . T)) +((((-419 (-558))) . T) (((-719)) . T) (($) . T)) +((((-719)) . T) (((-419 (-558))) . T) (((-558)) . T)) +((((-391)) . T) (((-558)) . T) (((-419 (-558))) . T)) ((((-391)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-229)) . T) (((-391)) . T) (((-916 (-391))) . T)) -((((-888)) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-391)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-229)) . T) (((-391)) . T) (((-914 (-391))) . T)) +((((-886)) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-391)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) ((($) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-560)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-558)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-558)) . T) (($) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-560)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) -((((-560)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (((-560)) . T) (($) . T)) +((((-558)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (((-558)) . T) (($) . T)) (|has| |#1| (-381)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-888)) . T)) -((((-421 $) (-421 $)) |has| |#1| (-571)) (($ $) . T) ((|#1| |#1|) . T)) +((((-886)) . T)) +((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-376)) -(((|#1| (-793) (-1114)) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (((-1114)) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ (-1114)) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) (((-1114)) . T)) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-793)) . T)) +(((|#1| (-791) (-1112)) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (((-1112)) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ (-1112)) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) (((-1112)) . T)) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-791)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -(((|#2|) . T) (((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) (((-1114)) . T) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560)))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -((((-1114)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-793)) . T)) -(((#1=(-1114) |#1|) . T) ((#1# $) . T) (($ $) . T)) +(((|#2|) . T) (((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (((-1112)) . T) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558)))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1112)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-791)) . T)) +(((#1=(-1112) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1184)) +(|has| |#1| (-1182)) (((|#1|) . T)) -((((-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) . T)) -((((-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) . T)) -((((-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) . T) (((-888)) . T)) +((((-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) . T)) +((((-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) . T)) +((((-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) . T) (((-886)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2305,46 +2303,46 @@ (|has| |#1| (-149)) (((|#2| |#2|) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-115)) . T) ((|#1|) . T) (((-560)) . T)) +((((-115)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-888)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T)) -((((-560)) . T)) +((((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) +((((-558)) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) -((((-888)) . T)) -((((-549)) |has| |#2| (-633 (-549))) (((-916 (-391))) |has| |#2| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#2| (-633 (-916 (-560))))) +((((-886)) . T)) +((($) . T) (((-558)) . T)) +((((-886)) . T)) +((((-547)) |has| |#2| (-631 (-547))) (((-914 (-391))) |has| |#2| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#2| (-631 (-914 (-558))))) ((($) . T)) -(((|#2| (-545 (-889 |#1|))) . T)) +(((|#2| (-543 (-887 |#1|))) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -4043 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940)))) -(((|#2| (-545 (-889 |#1|))) . T)) +(-4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -4039 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938)))) +(((|#2| (-543 (-887 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(-4043 (|has| |#2| (-466)) (|has| |#2| (-940))) -((($ $) . T) ((#1=(-889 |#1|) $) . T) ((#1# |#2|) . T)) -((((-889 |#1|)) . T)) -((($ (-889 |#1|)) . T)) -((((-889 |#1|)) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-940)) -((((-421 (-560))) |has| |#2| (-1070 (-421 (-560)))) (((-560)) |has| |#2| (-1070 (-560))) ((|#2|) . T) (((-889 |#1|)) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ((|#2|) . T) (($) -4043 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) (((-889 |#1|)) . T)) -(((|#2| (-545 (-889 |#1|)) (-889 |#1|)) . T)) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(-4039 (|has| |#2| (-464)) (|has| |#2| (-938))) +((($ $) . T) ((#1=(-887 |#1|) $) . T) ((#1# |#2|) . T)) +((((-887 |#1|)) . T)) +((($ (-887 |#1|)) . T)) +((((-887 |#1|)) . T)) +(|has| |#2| (-938)) +(|has| |#2| (-938)) +((((-419 (-558))) |has| |#2| (-1068 (-419 (-558)))) (((-558)) |has| |#2| (-1068 (-558))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ((|#2|) . T) (($) -4039 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (((-887 |#1|)) . T)) +(((|#2| (-543 (-887 |#1|)) (-887 |#1|)) . T)) (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2355,208 +2353,208 @@ (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-560)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-888)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-547)) |has| |#1| (-631 (-547)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -(((|#1| (-545 |#2|) |#2|) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#2| (-912 (-560)))) (((-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#2| (-912 (-391))))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1| (-543 |#2|) |#2|) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#2| (-910 (-558)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-545 |#2|)) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(((|#1| (-543 |#2|)) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-1157 |#1| |#2|)) . T) (((-976 |#1|)) |has| |#2| (-633 (-1209))) (((-888)) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T)) -((((-1157 |#1| |#2|)) . T) ((|#2|) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-560)) . T)) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -((((-1157 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-545 |#2|)) . T)) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-1155 |#1| |#2|)) . T) (((-974 |#1|)) |has| |#2| (-631 (-1207))) (((-886)) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((((-1155 |#1| |#2|)) . T) ((|#2|) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-558)) . T)) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1155 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-543 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-976 |#1|)) |has| |#2| (-633 (-1209))) (((-1191)) -12 (|has| |#1| (-1070 (-560))) (|has| |#2| (-633 (-1209)))) (((-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) (((-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549))))) -(((|#1| (-545 |#2|) |#2|) . T)) +((((-974 |#1|)) |has| |#2| (-631 (-1207))) (((-1189)) -12 (|has| |#1| (-1068 (-558))) (|has| |#2| (-631 (-1207)))) (((-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) (((-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) (((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547))))) +(((|#1| (-543 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1203 |#1|)) . T) (((-888)) . T)) -((((-421 $) (-421 $)) |has| |#1| (-571)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1201 |#1|)) . T) (((-886)) . T)) +((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-376)) -(((|#1| (-793) (-1114)) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (((-1114)) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ (-1114)) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) (((-1114)) . T)) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-793)) . T)) +(((|#1| (-791) (-1112)) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (((-1112)) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ (-1112)) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) (((-1112)) . T)) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-791)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((((-1203 |#1|)) . T) (((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) (((-1114)) . T) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560)))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -((((-1203 |#1|)) . T) (((-1114)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-793)) . T)) -(((#1=(-1114) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1201 |#1|)) . T) (((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (((-1112)) . T) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558)))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1201 |#1|)) . T) (((-1112)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-791)) . T)) +(((#1=(-1112) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1184)) +(|has| |#1| (-1182)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-547)) |has| |#1| (-631 (-547)))) (|has| |#1| (-381)) (((|#1|) . T)) -((((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) -((((-1028 |#1|)) . T) ((|#1|) . T)) -((((-1028 |#1|)) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| (-1028 |#1|) (-1070 (-421 (-560)))))) -((((-1028 |#1|)) . T) ((|#1|) . T) (((-560)) -4043 (|has| |#1| (-1070 (-560))) (|has| (-1028 |#1|) (-1070 (-560)))) (((-421 (-560))) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| (-1028 |#1|) (-1070 (-421 (-560)))))) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -((((-888)) . T)) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(-4043 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-817)) (|has| |#2| (-1081))) -(((|#2| |#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081)))) -((((-888)) -4043 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-888))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-817)) (|has| |#2| (-872)) (|has| |#2| (-1081)) (|has| |#2| (-1133))) (((-1299 |#2|)) . T)) -(((|#2|) |has| |#2| (-1081))) -((((-1209)) -12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))))) -(((|#2|) |has| |#2| (-1081))) -(-4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081)))) -((($) -4043 (-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))))) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -(|has| |#2| (-1081)) -((((-560)) -4043 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) ((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1081))) +((((-1026 |#1|)) . T) ((|#1|) . T)) +((((-1026 |#1|)) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| (-1026 |#1|) (-1068 (-419 (-558)))))) +((((-1026 |#1|)) . T) ((|#1|) . T) (((-558)) -4039 (|has| |#1| (-1068 (-558))) (|has| (-1026 |#1|) (-1068 (-558)))) (((-419 (-558))) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| (-1026 |#1|) (-1068 (-419 (-558)))))) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +((((-886)) . T)) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(-4039 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1079))) +(((|#2| |#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079)))) +((((-886)) -4039 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1131))) (((-1297 |#2|)) . T)) +(((|#2|) |has| |#2| (-1079))) +((((-1207)) -12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))))) +(((|#2|) |has| |#2| (-1079))) +(-4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) +((($) -4039 (-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))))) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +(|has| |#2| (-1079)) +((((-558)) -4039 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) ((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1079))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1081))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1081))) (($) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1081)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081)))) -(((|#2|) |has| |#2| (-1133))) -((((-560)) -4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ((|#2|) |has| |#2| (-1133)) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -(((|#2|) |has| |#2| (-1133)) (((-560)) -12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (((-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133)))) -((((-560) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1079)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079)))) +(((|#2|) |has| |#2| (-1131))) +((((-558)) -4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1131)) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +(((|#2|) |has| |#2| (-1131)) (((-558)) -12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (((-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131)))) +((((-558) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) -((((-560) |#2|) . T)) -((((-560) |#2|) . T)) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) -(((|#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(-4043 (|has| |#2| (-817)) (|has| |#2| (-872))) -(|has| |#2| (-817)) -(|has| |#2| (-817)) +((((-558) |#2|) . T)) +((((-558) |#2|) . T)) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) +(((|#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(-4039 (|has| |#2| (-815)) (|has| |#2| (-870))) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-888)) . T)) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-886)) . T)) (|has| |#1| (-240)) ((($) . T)) -(((|#1| (-545 (-842 (-1209))) (-842 (-1209))) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (((-842 (-1209))) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ (-842 (-1209))) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) (((-842 (-1209))) . T)) -((($ $) . T) ((#1=(-1209) $) |has| |#1| . #2=((-240))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-842 (-1209)) |#1|) . T) ((#3# $) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-545 (-842 (-1209)))) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(((|#1| (-543 (-840 (-1207))) (-840 (-1207))) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (((-840 (-1207))) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ (-840 (-1207))) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) (((-840 (-1207))) . T)) +((($ $) . T) ((#1=(-1207) $) |has| |#1| . #2=((-240))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-840 (-1207)) |#1|) . T) ((#3# $) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-543 (-840 (-1207)))) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -(((|#1| (-545 (-842 (-1209)))) . T)) -((((-1157 |#1| (-1209))) . T) (((-842 (-1209))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-1209)) . T)) -((((-1157 |#1| (-1209))) . T) (((-560)) . T) (((-842 (-1209))) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-1209)) . T)) -(((|#1| (-1209) (-842 (-1209)) (-545 (-842 (-1209)))) . T)) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1| (-543 (-840 (-1207)))) . T)) +((((-1155 |#1| (-1207))) . T) (((-840 (-1207))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-1207)) . T)) +((((-1155 |#1| (-1207))) . T) (((-558)) . T) (((-840 (-1207))) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-1207)) . T)) +(((|#1| (-1207) (-840 (-1207)) (-543 (-840 (-1207)))) . T)) (|has| |#2| (-376)) (|has| |#2| (-376)) (|has| |#2| (-376)) (|has| |#2| (-376)) -((((-421 (-560))) . #1=(|has| |#2| (-376))) (($) . #1#)) -((((-421 (-560))) . #1=(|has| |#2| (-376))) (($) . #1#)) -((((-421 (-560))) . #1=(|has| |#2| (-376))) (($) . #1#)) +((((-419 (-558))) . #1=(|has| |#2| (-376))) (($) . #1#)) +((((-419 (-558))) . #1=(|has| |#2| (-376))) (($) . #1#)) +((((-419 (-558))) . #1=(|has| |#2| (-376))) (($) . #1#)) (|has| |#2| (-376)) (|has| |#2| (-376)) (|has| |#2| (-376)) @@ -2564,25 +2562,25 @@ (|has| |#2| (-376)) (((|#2|) . T)) ((($) . T)) -((((-421 (-560))) . #1=(|has| |#2| (-376))) (($) . #1#) ((|#2|) . T) (((-560)) . T)) -((((-421 (-560))) |has| |#2| (-376)) (($) . T)) -(((|#2|) . T) (((-888)) . T)) -((((-421 (-560))) |has| |#2| (-376)) (($) . T) (((-560)) . T)) -((((-421 (-560))) |has| |#2| (-376)) (($) . T)) -((((-421 (-560))) |has| |#2| (-376)) (($) . T)) -(((#1=(-421 (-560)) #1#) |has| |#2| (-376)) (($ $) . T)) +((((-419 (-558))) . #1=(|has| |#2| (-376))) (($) . #1#) ((|#2|) . T) (((-558)) . T)) +((((-419 (-558))) |has| |#2| (-376)) (($) . T)) +(((|#2|) . T) (((-886)) . T)) +((((-419 (-558))) |has| |#2| (-376)) (($) . T) (((-558)) . T)) +((((-419 (-558))) |has| |#2| (-376)) (($) . T)) +((((-419 (-558))) |has| |#2| (-376)) (($) . T)) +(((#1=(-419 (-558)) #1#) |has| |#2| (-376)) (($ $) . T)) ((($) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (|has| |#1| (-240)) ((($) |has| |#1| (-240))) (|has| |#1| (-240)) @@ -2590,34 +2588,34 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) -((((-560)) . T) ((|#2|) |has| |#2| (-175))) +((((-558)) . T) ((|#2|) |has| |#2| (-175))) (((|#2|) . T)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -((($) |has| |#1| (-871))) -(|has| |#1| (-871)) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -((($) |has| |#1| (-871)) (((-560)) -4043 (|has| |#1| (-21)) (|has| |#1| (-871)))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) -4043 (|has| |#1| (-871)) (|has| |#1| (-1070 (-560)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((($) |has| |#1| (-869))) +(|has| |#1| (-869)) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +((($) |has| |#1| (-869)) (((-558)) -4039 (|has| |#1| (-21)) (|has| |#1| (-869)))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) -4039 (|has| |#1| (-869)) (|has| |#1| (-1068 (-558)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2628,452 +2626,452 @@ (|has| |#1| (-149)) (((|#1| |#1|) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-115)) . T) ((|#1|) . T) (((-560)) . T)) +((((-115)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-888)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T)) -((((-888)) . T)) -((((-520)) . T)) -((((-888)) . T)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -(|has| |#1| (-871)) -((($) |has| |#1| (-871))) -(|has| |#1| (-871)) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -((($) |has| |#1| (-871)) (((-560)) -4043 (|has| |#1| (-21)) (|has| |#1| (-871)))) -(-4043 (|has| |#1| (-21)) (|has| |#1| (-871))) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) -4043 (|has| |#1| (-871)) (|has| |#1| (-1070 (-560)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) -(((|#1|) . T)) -((((-888)) |has| |#1| (-632 (-888))) ((|#1|) . T)) +((((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) +((((-886)) . T)) +((((-518)) . T)) +((((-886)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((($) |has| |#1| (-869))) +(|has| |#1| (-869)) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +((($) |has| |#1| (-869)) (((-558)) -4039 (|has| |#1| (-21)) (|has| |#1| (-869)))) +(-4039 (|has| |#1| (-21)) (|has| |#1| (-869))) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) -4039 (|has| |#1| (-869)) (|has| |#1| (-1068 (-558)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) |has| |#1| (-630 (-886))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -((((-560)) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) +((((-558)) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) -((((-1296 |#1|)) . T) (((-560)) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) -(((|#2|) . T) (((-560)) |has| |#2| (-1070 (-560))) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) +((((-1294 |#1|)) . T) (((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1068 (-558))) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) (((|#2|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-916 (-560))) . T) (((-916 (-391))) . T) (((-549)) . T) (((-1209)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-914 (-558))) . T) (((-914 (-391))) . T) (((-547)) . T) (((-1207)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-976 |#1|)) . T)) -(((|#1|) |has| |#1| (-175)) (((-976 |#1|)) . T) (((-560)) . T)) +((((-974 |#1|)) . T)) +(((|#1|) |has| |#1| (-175)) (((-974 |#1|)) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-976 |#1|)) . T) (((-888)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T)) +((((-974 |#1|)) . T) (((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) ((($) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-894 |#1|)) . T)) -((((-894 |#1|)) . T)) -((((-894 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-894 |#1|)) . T) (((-421 (-560))) . T)) -((((-894 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-894 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-894 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-894 |#1|)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-894 |#1|) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-894 |#1|)) . T)) -((((-1209) #1=(-894 |#1|)) |has| #1# (-528 (-1209) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) -(((#1=(-894 |#1|)) |has| #1# (-321 #1#))) -(((#1=(-894 |#1|) $) |has| #1# (-298 #1# #1#))) -((((-894 |#1|)) . T)) -((($) . T) (((-894 |#1|)) . T) (((-421 (-560))) . T)) -((((-894 |#1|)) . T)) -((((-894 |#1|)) . T)) -((((-894 |#1|)) . T)) -((((-560)) . T) (((-894 |#1|)) . T) (($) . T) (((-421 (-560))) . T)) -((((-894 |#1|)) . T)) -((((-894 |#1|)) . T)) -((((-888)) . T)) +((((-558)) . T) (($) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-892 |#1|)) . T)) +((((-892 |#1|)) . T)) +((((-892 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-892 |#1|)) . T) (((-419 (-558))) . T)) +((((-892 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-892 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-892 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-892 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-892 |#1|) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-892 |#1|)) . T)) +((((-1207) #1=(-892 |#1|)) |has| #1# (-526 (-1207) #1#)) ((#1# #1#) |has| #1# (-321 #1#))) +(((#1=(-892 |#1|)) |has| #1# (-321 #1#))) +(((#1=(-892 |#1|) $) |has| #1# (-298 #1# #1#))) +((((-892 |#1|)) . T)) +((($) . T) (((-892 |#1|)) . T) (((-419 (-558))) . T)) +((((-892 |#1|)) . T)) +((((-892 |#1|)) . T)) +((((-892 |#1|)) . T)) +((((-558)) . T) (((-892 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-892 |#1|)) . T)) +((((-892 |#1|)) . T)) +((((-886)) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) (((|#2|) . T)) -((((-1209)) |has| |#2| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) +((((-1207)) |has| |#2| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) (((|#2|) . T)) -(-4043 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -4043 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-4039 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -4039 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) -(((|#2|) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T) (((-421 (-560))) . T)) -(((|#2|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#2|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#2|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#2|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T)) +(((|#2|) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T) (((-419 (-558))) . T)) +(((|#2|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#2|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#2|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#2|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-419 (-558)) #1#) . T) (($ $) . T)) (((|#2|) . T)) -((((-1209) |#2|) |has| |#2| (-528 (-1209) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) +((((-1207) |#2|) |has| |#2| (-526 (-1207) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) (((|#2|) |has| |#2| (-321 |#2|))) (((|#2| $) |has| |#2| (-298 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-421 (-560))) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) +((($) . T) ((|#2|) . T) (((-419 (-558))) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) (((|#2|) . T)) -((((-560)) |has| |#2| (-912 (-560))) (((-391)) |has| |#2| (-912 (-391)))) -(|has| |#2| (-844)) -(|has| |#2| (-844)) -(|has| |#2| (-844)) -(-4043 (|has| |#2| (-844)) (|has| |#2| (-872))) -(-4043 (|has| |#2| (-844)) (|has| |#2| (-872))) -(|has| |#2| (-844)) -(|has| |#2| (-844)) -(|has| |#2| (-844)) +((((-558)) |has| |#2| (-910 (-558))) (((-391)) |has| |#2| (-910 (-391)))) +(|has| |#2| (-842)) +(|has| |#2| (-842)) +(|has| |#2| (-842)) +(-4039 (|has| |#2| (-842)) (|has| |#2| (-870))) +(-4039 (|has| |#2| (-842)) (|has| |#2| (-870))) +(|has| |#2| (-842)) +(|has| |#2| (-842)) +(|has| |#2| (-842)) (((|#2|) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-1052)) -((((-549)) |has| |#2| (-633 (-549))) (((-916 (-560))) |has| |#2| (-633 (-916 (-560)))) (((-916 (-391))) |has| |#2| (-633 (-916 (-391)))) (((-391)) . #1=(|has| |#2| (-1052))) (((-229)) . #1#)) -((((-560)) . T) ((|#2|) . T) (($) . T) (((-421 (-560))) . T) (((-1209)) |has| |#2| (-1070 (-1209)))) -((((-421 (-560))) |has| |#2| . #1=((-1070 (-560)))) (((-560)) |has| |#2| . #1#) (((-1209)) |has| |#2| (-1070 (-1209))) ((|#2|) . T)) -(|has| |#2| (-1184)) +(|has| |#2| (-938)) +(|has| |#2| (-1050)) +((((-547)) |has| |#2| (-631 (-547))) (((-914 (-558))) |has| |#2| (-631 (-914 (-558)))) (((-914 (-391))) |has| |#2| (-631 (-914 (-391)))) (((-391)) . #1=(|has| |#2| (-1050))) (((-229)) . #1#)) +((((-558)) . T) ((|#2|) . T) (($) . T) (((-419 (-558))) . T) (((-1207)) |has| |#2| (-1068 (-1207)))) +((((-419 (-558))) |has| |#2| . #1=((-1068 (-558)))) (((-558)) |has| |#2| . #1#) (((-1207)) |has| |#2| (-1068 (-1207))) ((|#2|) . T)) +(|has| |#2| (-1182)) (((|#2|) . T)) -(-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) -(-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) -((((-888)) -4043 (-12 (|has| |#1| (-632 (-888))) (|has| |#2| (-632 (-888)))) (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))))) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1209)) . T) ((|#1|) . T)) -((((-1209)) . T) ((|#1|) . T)) -((((-888)) . T)) -((((-694 |#1|)) . T)) -((((-694 |#1|)) . T)) -((((-888)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-1236 |#1|)) . T) (((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) +((((-886)) -4039 (-12 (|has| |#1| (-630 (-886))) (|has| |#2| (-630 (-886)))) (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))))) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1207)) . T) ((|#1|) . T)) +((((-1207)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-692 |#1|)) . T)) +((((-692 |#1|)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-1234 |#1|)) . T) (((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-888)) . T)) -(-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) -(-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) +((((-886)) . T)) +(-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) +(-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) (((|#1|) . T)) -((((-888)) . T)) -((((-560)) . T)) +((((-886)) . T)) +((((-558)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-149)) ((($) . T)) -((((-888)) . T)) +((((-886)) . T)) ((($) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($) . T) (((-421 (-560))) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-663 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549))) (((-916 (-391))) |has| |#1| (-633 (-916 (-391)))) (((-916 (-560))) |has| |#1| (-633 (-916 (-560))))) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($) . T) (((-419 (-558))) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-419 (-558)) #1#) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-661 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-547)) |has| |#1| (-631 (-547))) (((-914 (-391))) |has| |#1| (-631 (-914 (-391)))) (((-914 (-558))) |has| |#1| (-631 (-914 (-558))))) ((($) . T)) -(((|#1| (-545 (-1209))) . T)) +(((|#1| (-543 (-1207))) . T)) (((|#1|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(((|#1| (-545 (-1209))) . T)) -(((|#1|) . T)) -((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) -((($ $) . T) ((#1=(-1209) $) . T) ((#1# |#1|) . T)) -((((-1209)) . T)) -((($ (-1209)) . T)) -((((-1209)) . T)) -((((-391)) |has| |#1| (-912 (-391))) (((-560)) |has| |#1| (-912 (-560)))) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T) (((-1209)) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ((|#1|) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) (((-1209)) . T)) -(((|#1| (-545 (-1209)) (-1209)) . T)) -((((-1152)) . T) (((-888)) . T)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(((|#1| (-543 (-1207))) . T)) +(((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) +((($ $) . T) ((#1=(-1207) $) . T) ((#1# |#1|) . T)) +((((-1207)) . T)) +((($ (-1207)) . T)) +((((-1207)) . T)) +((((-391)) |has| |#1| (-910 (-391))) (((-558)) |has| |#1| (-910 (-558)))) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T) (((-1207)) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ((|#1|) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (((-1207)) . T)) +(((|#1| (-543 (-1207)) (-1207)) . T)) +((((-1150)) . T) (((-886)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-888)) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T)) -((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-560)) . T)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-886)) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-558)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-817)) (|has| |#2| (-817))) -(-12 (|has| |#1| (-817)) (|has| |#2| (-817))) -(-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) -(-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) -(-12 (|has| |#1| (-817)) (|has| |#2| (-817))) -(-12 (|has| |#1| (-817)) (|has| |#2| (-817))) -((((-560)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) +(-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +((((-558)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-487)) (|has| |#2| (-487))) -(-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) -(-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) -(-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) -(-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) -(-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) +(-12 (|has| |#1| (-485)) (|has| |#2| (-485))) +(-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +(-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +(-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +(-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) +(-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) -((((-888)) . T)) -((((-888)) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-663 (-949))) . T) (((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-661 (-947))) . T) (((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) ((((-246 |#1| |#2|) |#2|) . T)) -((((-888)) . T)) -((((-560)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-558)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-547)) |has| |#1| (-631 (-547)))) (((|#1|) . T)) -((((-1209)) |has| |#1| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209))))) +((((-1207)) |has| |#1| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207))))) (((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) (|has| |#1| (-240)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-302)) (|has| |#1| (-376))) -((((-560)) . T) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560)))))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-376))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-376))) -((($) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-376))) -(((|#1|) . T) (($) -4043 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376))) -(((|#1|) . T) (($) -4043 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376))) -(((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-302)) (|has| |#1| (-376))) ((#1=(-421 (-560)) #1#) |has| |#1| (-376))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-376))) -(((|#1|) . T)) -((((-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(-4039 (|has| |#1| (-302)) (|has| |#1| (-376))) +((((-558)) . T) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558)))))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) +((($) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T) (($) -4039 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T) (($) -4039 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) +(((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-302)) (|has| |#1| (-376))) ((#1=(-419 (-558)) #1#) |has| |#1| (-376))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T)) +((((-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-376)) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-421 |#2|) |#3|) . T)) -((((-421 (-560))) |has| #1=(-421 |#2|) (-1070 (-421 (-560)))) (((-560)) |has| #1# (-1070 (-560))) ((#1#) . T)) -((((-421 |#2|)) . T)) -((((-560)) |has| #1=(-421 |#2|) (-660 (-560))) ((#1#) . T)) -((((-421 |#2|)) . T)) -((((-421 |#2|) |#3|) . T)) -(|has| (-421 |#2|) (-149)) -((((-421 |#2|) |#3|) . T)) -(|has| (-421 |#2|) (-147)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -(|has| (-421 |#2|) (-240)) -((($) -4043 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))) -(-4043 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))) -((((-421 |#2|)) . T)) -((($ (-1209)) -4043 (|has| (-421 |#2|) (-928 (-1209))) (|has| (-421 |#2|) (-930 (-1209))))) -((((-1209)) -4043 (|has| (-421 |#2|) (-928 (-1209))) (|has| (-421 |#2|) (-930 (-1209))))) -((((-1209)) |has| (-421 |#2|) (-928 (-1209)))) -((((-421 |#2|)) . T)) +((($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-376)) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-419 |#2|) |#3|) . T)) +((((-419 (-558))) |has| #1=(-419 |#2|) (-1068 (-419 (-558)))) (((-558)) |has| #1# (-1068 (-558))) ((#1#) . T)) +((((-419 |#2|)) . T)) +((((-558)) |has| #1=(-419 |#2|) (-658 (-558))) ((#1#) . T)) +((((-419 |#2|)) . T)) +((((-419 |#2|) |#3|) . T)) +(|has| (-419 |#2|) (-149)) +((((-419 |#2|) |#3|) . T)) +(|has| (-419 |#2|) (-147)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +(|has| (-419 |#2|) (-240)) +((($) -4039 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) +(-4039 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) +((((-419 |#2|)) . T)) +((($ (-1207)) -4039 (|has| (-419 |#2|) (-926 (-1207))) (|has| (-419 |#2|) (-928 (-1207))))) +((((-1207)) -4039 (|has| (-419 |#2|) (-926 (-1207))) (|has| (-419 |#2|) (-928 (-1207))))) +((((-1207)) |has| (-419 |#2|) (-926 (-1207)))) +((((-419 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-421 |#2|) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T)) -((((-888)) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -((((-560)) |has| #1=(-421 |#2|) (-660 (-560))) ((#1#) . T) (((-421 (-560))) . T) (($) . T)) -((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T)) +(((#1=(-419 |#2|) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-886)) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-558)) |has| #1=(-419 |#2|) (-658 (-558))) ((#1#) . T) (((-419 (-558))) . T) (($) . T)) +((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3|) . T)) -((((-421 (-560))) . T) (((-888)) . T)) -((((-560)) . T)) -((((-560)) . T)) +((((-419 (-558))) . T) (((-886)) . T)) +((((-558)) . T)) +((((-558)) . T)) ((($) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -((((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((#1=(-560) #1#) . T) ((#2=(-421 (-560)) #2#) . T) (($ $) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-421 (-560))) . T) (((-560)) . T)) -((((-560)) . T) (($) . T) (((-421 (-560))) . T)) -((((-560)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -(((|#1|) . T) (($) . T) (((-560)) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-421 (-560))) . T) (((-560)) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) . T) ((#2=(-560) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-560)) . T) (((-421 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) . T)) -(((|#1|) . T) (((-560)) -4043 (|has| |#1| (-1070 (-560))) (|has| (-421 (-560)) (-1070 (-560)))) (((-421 (-560))) . T)) -(|has| |#1| (-1133)) -((((-888)) |has| |#1| (-1133))) -(|has| |#1| (-1133)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((#1=(-558) #1#) . T) ((#2=(-419 (-558)) #2#) . T) (($ $) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-419 (-558))) . T) (((-558)) . T)) +((((-558)) . T) (($) . T) (((-419 (-558))) . T)) +((((-558)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-558)) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (($) . T) (((-419 (-558))) . T) (((-558)) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) . T) ((#2=(-558) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-558)) . T) (((-419 (-558))) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) . T)) +(((|#1|) . T) (((-558)) -4039 (|has| |#1| (-1068 (-558))) (|has| (-419 (-558)) (-1068 (-558)))) (((-419 (-558))) . T)) +(|has| |#1| (-1131)) +((((-886)) |has| |#1| (-1131))) +(|has| |#1| (-1131)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-663 |#4|)) . T) (((-888)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +((((-661 |#4|)) . T) (((-886)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-549)) |has| |#4| (-633 (-549)))) +((((-547)) |has| |#4| (-631 (-547)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -3082,57 +3080,57 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (((-560)) . T) (($) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-560)) . T)) -((((-1209) (-51)) . T)) -((((-888)) . T)) -((((-1209) (-51)) . T)) -((((-1209) (-51)) . T)) -((((-1209) (-51)) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4376 (-1209)) (|:| -2300 #1#))) . T)) -(((#1=(-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) #1#) |has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) |has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-1209) (-51)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(((|#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|))) . T)) -((((-802 |#1| (-889 |#2|))) . T)) -((((-663 (-802 |#1| (-889 |#2|)))) . T) (((-888)) . T)) -((((-802 |#1| (-889 |#2|))) |has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|))))) -(((#1=(-802 |#1| (-889 |#2|)) #1#) |has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|))))) -((((-802 |#1| (-889 |#2|))) . T)) -((((-549)) |has| (-802 |#1| (-889 |#2|)) (-633 (-549)))) -(((|#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|))) . T)) -(((|#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|))) . T)) -((((-549)) |has| |#3| (-633 (-549)))) +(((|#1|) . T) (((-558)) . T)) +((((-1207) (-51)) . T)) +((((-886)) . T)) +((((-1207) (-51)) . T)) +((((-1207) (-51)) . T)) +((((-1207) (-51)) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4372 (-1207)) (|:| -2296 #1#))) . T)) +(((#1=(-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) #1#) |has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) |has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-1207) (-51)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|))) . T)) +((((-800 |#1| (-887 |#2|))) . T)) +((((-661 (-800 |#1| (-887 |#2|)))) . T) (((-886)) . T)) +((((-800 |#1| (-887 |#2|))) |has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|))))) +(((#1=(-800 |#1| (-887 |#2|)) #1#) |has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|))))) +((((-800 |#1| (-887 |#2|))) . T)) +((((-547)) |has| (-800 |#1| (-887 |#2|)) (-631 (-547)))) +(((|#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|))) . T)) +(((|#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|))) . T)) +((((-547)) |has| |#3| (-631 (-547)))) (((|#3|) |has| |#3| (-376))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-711 |#3|)) . T) (((-888)) . T)) -((((-560)) . T) ((|#3|) . T)) +((((-709 |#3|)) . T) (((-886)) . T)) +((((-558)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)))) (((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) -(|has| |#1| (-1133)) -((((-888)) |has| |#1| (-1133))) -(|has| |#1| (-1133)) -((((-888)) . T)) +(|has| |#1| (-1131)) +((((-886)) |has| |#1| (-1131))) +(|has| |#1| (-1131)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-1209)) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-1207)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3140,212 +3138,212 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -((((-560)) . T)) -((($) . T) (((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-560)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-560)) . T)) -((((-1209) (-51)) . T)) -((((-888)) . T)) -((((-1209) (-51)) . T)) -((((-1209) (-51)) . T)) -((((-1209) (-51)) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4376 (-1209)) (|:| -2300 #1#))) . T)) -(((#1=(-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) #1#) |has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) |has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) . T)) -((((-1209) (-51)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((((-558)) . T) (($) . T)) +((((-558)) . T)) +((($) . T) (((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-558)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-558)) . T)) +((((-1207) (-51)) . T)) +((((-886)) . T)) +((((-1207) (-51)) . T)) +((((-1207) (-51)) . T)) +((((-1207) (-51)) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4372 (-1207)) (|:| -2296 #1#))) . T)) +(((#1=(-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) #1#) |has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) |has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) . T)) +((((-1207) (-51)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) ((((-305 |#3|)) . T)) ((((-305 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#3| |#3|) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-376))) -((((-1209)) -12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))))) -((($ (-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))))) +((((-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))))) +((($ (-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))))) (((|#1|) |has| |#1| (-376))) -(-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) -((($) -4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))) -(-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-4043 (|has| |#1| (-381)) (|has| |#1| (-363))) +(-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) +((($) -4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))) +(-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-381)) (|has| |#1| (-363))) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-4043 (|has| |#1| (-147)) (|has| |#1| (-363))) +(-4039 (|has| |#1| (-147)) (|has| |#1| (-363))) (|has| |#1| (-363)) (((|#1| |#2|) . T)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1070 (-421 (-560))))) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($ $) . T) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1068 (-419 (-558))))) ((|#1|) . T)) (|has| |#1| (-149)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) +((($) . T) (((-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) (((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) (((|#1| |#2|) . T)) -((((-1209)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((((-1207)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -4043 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-888)) . T)) +(-4039 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -4039 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-886)) . T)) (|has| |#1| (-240)) ((($) . T)) -(((|#1| (-545 (-1120 (-1209))) (-1120 (-1209))) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (((-1120 (-1209))) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ (-1120 (-1209))) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) (((-1120 (-1209))) . T)) -((($ $) . T) ((#1=(-1209) $) |has| |#1| . #2=((-240))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1120 (-1209)) |#1|) . T) ((#3# $) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-545 (-1120 (-1209)))) . T)) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(((|#1| (-543 (-1118 (-1207))) (-1118 (-1207))) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (((-1118 (-1207))) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ (-1118 (-1207))) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) (((-1118 (-1207))) . T)) +((($ $) . T) ((#1=(-1207) $) |has| |#1| . #2=((-240))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1118 (-1207)) |#1|) . T) ((#3# $) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-543 (-1118 (-1207)))) . T)) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -(((|#1| (-545 (-1120 (-1209)))) . T)) -((((-1157 |#1| (-1209))) . T) (((-1120 (-1209))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-1209)) . T)) -((((-1157 |#1| (-1209))) . T) (((-560)) . T) (((-1120 (-1209))) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-1209)) . T)) -(((|#1| (-1209) (-1120 (-1209)) (-545 (-1120 (-1209)))) . T)) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1| (-543 (-1118 (-1207)))) . T)) +((((-1155 |#1| (-1207))) . T) (((-1118 (-1207))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-1207)) . T)) +((((-1155 |#1| (-1207))) . T) (((-558)) . T) (((-1118 (-1207))) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-1207)) . T)) +(((|#1| (-1207) (-1118 (-1207)) (-543 (-1118 (-1207)))) . T)) ((($) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-663 |#1|)) |has| |#1| (-871))) -(|has| |#1| (-1133)) -(|has| |#1| (-1133)) -((((-888)) |has| |#1| (-1133))) -(|has| |#1| (-1133)) +(((|#1| (-661 |#1|)) |has| |#1| (-869))) +(|has| |#1| (-1131)) +(|has| |#1| (-1131)) +((((-886)) |has| |#1| (-1131))) +(|has| |#1| (-1131)) (((|#1|) . T)) (((|#1|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -(|has| (-1121 |#1|) (-1133)) -((((-888)) |has| (-1121 |#1|) (-1133))) -(|has| (-1121 |#1|) (-1133)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(|has| (-1119 |#1|) (-1131)) +((((-886)) |has| (-1119 |#1|) (-1131))) +(|has| (-1119 |#1|) (-1131)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) +((((-547)) |has| |#1| (-631 (-547)))) (((|#1|) . T)) (|has| |#1| (-381)) (((|#1|) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-663 $)) . T) (((-1191)) . T) (((-1209)) . T) (((-560)) . T) (((-229)) . T) (((-888)) . T)) -((((-560) $) . T) (((-663 (-560)) $) . T)) -((((-888)) . T)) -((((-1191) (-1209) (-560) (-229) (-888)) . T)) -((((-663 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-560) $) . T) (((-663 (-560)) $) . T)) -((((-888)) . T)) +((((-886)) . T)) +((((-661 $)) . T) (((-1189)) . T) (((-1207)) . T) (((-558)) . T) (((-229)) . T) (((-886)) . T)) +((((-558) $) . T) (((-661 (-558)) $) . T)) +((((-886)) . T)) +((((-1189) (-1207) (-558) (-229) (-886)) . T)) +((((-661 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-558) $) . T) (((-661 (-558)) $) . T)) +((((-886)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-888)) . T)) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081))) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-817)) (|has| |#3| (-1081))) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-817)) (|has| |#3| (-872)) (|has| |#3| (-1081)) (|has| |#3| (-1133))) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-817)) (|has| |#3| (-872)) (|has| |#3| (-1081)) (|has| |#3| (-1133))) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-817)) (|has| |#3| (-1081))) -(-4043 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-817)) (|has| |#3| (-1081))) -(((|#3| |#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1081)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081)))) -((((-888)) -4043 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-632 (-888))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-817)) (|has| |#3| (-872)) (|has| |#3| (-1081)) (|has| |#3| (-1133))) (((-1299 |#3|)) . T)) -(((|#3|) |has| |#3| (-1081))) -((((-1209)) -12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081)))) -((((-1209)) -4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))))) -((($ (-1209)) -4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))))) -(((|#3|) |has| |#3| (-1081))) -(-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) -((($) -4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))))) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -(|has| |#3| (-1081)) -((((-560)) -4043 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081))) ((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1081))) (($) |has| |#3| (-1081))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) +((((-886)) . T)) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079))) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1079))) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1131))) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1131))) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1079))) +(-4039 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1079))) +(((|#3| |#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1079)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079)))) +((((-886)) -4039 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-630 (-886))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1131))) (((-1297 |#3|)) . T)) +(((|#3|) |has| |#3| (-1079))) +((((-1207)) -12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079)))) +((((-1207)) -4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))))) +((($ (-1207)) -4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))))) +(((|#3|) |has| |#3| (-1079))) +(-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) +((($) -4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))))) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +(|has| |#3| (-1079)) +((((-558)) -4039 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079))) ((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1081))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1081))) (($) |has| |#3| (-1081)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081)))) -(((|#3|) |has| |#3| (-1081)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081)))) -(((|#3|) |has| |#3| (-1133))) -((((-560)) -4043 (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (|has| |#3| (-1081))) ((|#3|) |has| |#3| (-1133)) (((-421 (-560))) -12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133)))) -(((|#3|) |has| |#3| (-1133)) (((-560)) -12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (((-421 (-560))) -12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133)))) -((((-560) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133)))) +(((|#3|) |has| |#3| (-1079))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079)))) +(((|#3|) |has| |#3| (-1079)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079)))) +(((|#3|) |has| |#3| (-1131))) +((((-558)) -4039 (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1131)) (((-419 (-558))) -12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131)))) +(((|#3|) |has| |#3| (-1131)) (((-558)) -12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (((-419 (-558))) -12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131)))) +((((-558) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) (((|#3|) . T)) -((((-560) |#3|) . T)) -((((-560) |#3|) . T)) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)))) -(((|#3|) -4043 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-817)) -(|has| |#3| (-817)) -(-4043 (|has| |#3| (-817)) (|has| |#3| (-872))) -(-4043 (|has| |#3| (-817)) (|has| |#3| (-872))) -(|has| |#3| (-817)) -(|has| |#3| (-817)) +((((-558) |#3|) . T)) +((((-558) |#3|) . T)) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)))) +(((|#3|) -4039 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(|has| |#3| (-815)) +(|has| |#3| (-815)) +(-4039 (|has| |#3| (-815)) (|has| |#3| (-870))) +(-4039 (|has| |#3| (-815)) (|has| |#3| (-870))) +(|has| |#3| (-815)) +(|has| |#3| (-815)) (((|#3|) |has| |#3| (-376))) (((|#1| |#3|) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3353,773 +3351,773 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-560)) . T) (($) . T)) -((((-560)) . T)) -((($) . T) (((-560)) . T)) -((((-560)) . T)) -((((-549)) . T) (((-560)) . T) (((-916 (-560))) . T) (((-391)) . T) (((-229)) . T)) -((((-560)) . T)) -((((-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) (((-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) (((-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560)))))) +((((-558)) . T) (($) . T)) +((((-558)) . T)) +((($) . T) (((-558)) . T)) +((((-558)) . T)) +((((-547)) . T) (((-558)) . T) (((-914 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-558)) . T)) +((((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) (((-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) (((-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558)))))) ((($) . T)) -(((|#1| (-545 |#2|)) . T)) +(((|#1| (-543 |#2|)) . T)) (((|#1|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940)))) -(((|#1| (-545 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560)))) -(-4043 (|has| |#1| (-466)) (|has| |#1| (-940))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938)))) +(((|#1| (-543 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +(-4039 (|has| |#1| (-464)) (|has| |#1| (-938))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#2| (-912 (-391)))) (((-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#2| (-912 (-560))))) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) (((-560)) |has| |#1| (-1070 (-560))) ((|#1|) . T) ((|#2|) . T)) -((((-560)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ((|#1|) . T) (($) -4043 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#2|) . T)) -(((|#1| (-545 |#2|) |#2|) . T)) +((((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) (((-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#2| (-910 (-558))))) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) (((-558)) |has| |#1| (-1068 (-558))) ((|#1|) . T) ((|#2|) . T)) +((((-558)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ((|#1|) . T) (($) -4039 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#2|) . T)) +(((|#1| (-543 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-545 |#2|) |#2|) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) +(((|#1| (-543 |#2|) |#2|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -(((|#1| (-545 |#2|)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +(((|#1| (-543 |#2|)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) (((|#1| |#2|) . T)) -((((-888)) . T)) -(((|#1|) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T) (((-888)) . T)) -((((-888)) . T)) -((((-1172 |#1| |#2|)) . T)) -(((#1=(-1172 |#1| |#2|) #1#) |has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|)))) -((((-1172 |#1| |#2|)) |has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|)))) -((((-888)) . T)) -((((-1172 |#1| |#2|)) . T)) -((((-549)) |has| |#2| (-633 (-549)))) -(((|#2|) |has| |#2| (-6 (-4513 "*")))) +((((-886)) . T)) +(((|#1|) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T) (((-886)) . T)) +((((-886)) . T)) +((((-1170 |#1| |#2|)) . T)) +(((#1=(-1170 |#1| |#2|) #1#) |has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|)))) +((((-1170 |#1| |#2|)) |has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|)))) +((((-886)) . T)) +((((-1170 |#1| |#2|)) . T)) +((((-547)) |has| |#2| (-631 (-547)))) +(((|#2|) |has| |#2| (-6 (-4509 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-711 |#2|)) . T) (((-888)) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T)) -(((|#2|) -4043 (|has| |#2| (-6 (-4513 "*"))) (|has| |#2| (-175)))) -(((|#2|) -4043 (|has| |#2| (-6 (-4513 "*"))) (|has| |#2| (-175)))) +((((-709 |#2|)) . T) (((-886)) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T)) +(((|#2|) -4039 (|has| |#2| (-6 (-4509 "*"))) (|has| |#2| (-175)))) +(((|#2|) -4039 (|has| |#2| (-6 (-4509 "*"))) (|has| |#2| (-175)))) (((|#2|) . T)) -((((-1209)) |has| |#2| (-928 (-1209)))) -((((-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) -((($ (-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209))))) +((((-1207)) |has| |#2| (-926 (-1207)))) +((((-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) +((($ (-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207))))) (((|#2|) . T)) -(-4043 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -4043 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-4039 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -4039 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) -(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560)))) +((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) (((|#2|) . T)) -((((-560)) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) -(((|#2|) . T) (((-560)) |has| |#2| (-1070 (-560))) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) +((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1068 (-558))) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-549)) |has| |#4| (-633 (-549)))) +((((-547)) |has| |#4| (-631 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-888)) . T) (((-663 |#4|)) . T)) +((((-886)) . T) (((-661 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-663 |#1|)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-661 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(|has| |#1| (-1133)) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) (((|#1|) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -((((-560) |#1|) . T)) -((((-1266 (-560)) $) . T) (((-560) |#1|) . T)) -((((-560) |#1|) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T)) +((((-1264 (-558)) $) . T) (((-558) |#1|) . T)) +((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-560) (-146)) . T)) -((((-560) (-146)) . T)) -((((-560) (-146)) . T) (((-1266 (-560)) $) . T)) +((((-558) (-146)) . T)) +((((-558) (-146)) . T)) +((((-558) (-146)) . T) (((-1264 (-558)) $) . T)) ((((-146)) . T)) -((((-888)) . T)) +((((-886)) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-1191) |#1|) . T)) -((((-888)) . T)) -((((-1191) |#1|) . T)) -((((-1191) |#1|) . T)) -((((-1191) |#1|) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((#1=(-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) #1#) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) |has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) . T)) -((((-1191) |#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1207 |#1| |#2| |#3|)) . T)) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1207 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|))))) -(((#1=(-1207 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|)))) (((-1209) #1#) -12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-528 (-1209) (-1207 |#1| |#2| |#3|))))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1189) |#1|) . T)) +((((-886)) . T)) +((((-1189) |#1|) . T)) +((((-1189) |#1|) . T)) +((((-1189) |#1|) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((#1=(-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) #1#) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) |has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) . T)) +((((-1189) |#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))))) +(((#1=(-1205 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|)))) (((-1207) #1#) -12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-526 (-1207) (-1205 |#1| |#2| |#3|))))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -((($) -4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -(-4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1207 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-4043 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-149)))) -(-4043 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-147)))) -((((-888)) . T)) -(((|#1|) . T)) -((((-1207 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1207 |#1| |#2| |#3|) (-298 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)))) (($ $) . T) (((-560) |#1|) . T)) -(((|#1| (-560) (-1114)) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#2=(-1207 |#1| |#2| |#3|) #2#) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1207 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1207 |#1| |#2| |#3|)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-560)) . T)) -(((|#1| (-560)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-1207 |#1| |#2| |#3|)) . T)) +(-4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-4039 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-149)))) +(-4039 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-147)))) +((((-886)) . T)) +(((|#1|) . T)) +((((-1205 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) +(((|#1| (-558) (-1112)) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((#2=(-1205 |#1| |#2| |#3|) #2#) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-1205 |#1| |#2| |#3|)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(((|#1| (-558)) . T)) +(((|#1| (-558)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-1205 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-888)) . T)) -((((-421 $) (-421 $)) |has| |#1| (-571)) (($ $) . T) ((|#1| |#1|) . T)) +((((-886)) . T)) +((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (|has| |#1| (-376)) -(((|#1| (-793) (-1114)) . T)) -(|has| |#1| (-940)) -(|has| |#1| (-940)) -((((-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (((-1114)) . T)) -((($ (-1209)) -4043 (|has| |#1| (-928 (-1209))) (|has| |#1| (-930 (-1209)))) (($ (-1114)) . T)) -((((-1209)) |has| |#1| (-928 (-1209))) (((-1114)) . T)) -((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-793)) . T)) +(((|#1| (-791) (-1112)) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (((-1112)) . T)) +((($ (-1207)) -4039 (|has| |#1| (-926 (-1207))) (|has| |#1| (-928 (-1207)))) (($ (-1112)) . T)) +((((-1207)) |has| |#1| (-926 (-1207))) (((-1112)) . T)) +((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-791)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) (((-1114)) . T) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560)))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-940))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -((((-1114)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-793)) . T)) -(((#1=(-1114) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) (((-1112)) . T) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558)))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1112)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-791)) . T)) +(((#1=(-1112) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1184)) -(((|#1|) . T)) -((((-1207 |#1| |#2| |#3|)) . T) (((-1200 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($ $) . T) (((-421 (-560)) |#1|) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -(((|#1| (-421 (-560)) (-1114)) . T)) +(|has| |#1| (-1182)) +(((|#1|) . T)) +((((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($ $) . T) (((-419 (-558)) |#1|) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1112)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(((|#1| (-421 (-560))) . T)) -(((|#1| (-421 (-560))) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) +(((|#1| (-419 (-558))) . T)) +(((|#1| (-419 (-558))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) -((((-888)) . T)) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T)) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-886)) . T)) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -((((-1296 |#2|)) . T) (((-1207 |#1| |#2| |#3|)) . T) (((-1200 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +((((-1294 |#2|)) . T) (((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1| (-1200 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-793)) . T)) -(((|#1| (-793)) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) +(((|#1| (-1198 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-791)) . T)) +(((|#1| (-791)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1| (-793) (-1114)) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((((-793) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-793) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-793) |#1|)))) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T)) -(|has| |#1| (-15 * (|#1| (-793) |#1|))) -(((|#1|) . T)) -((((-888)) . T)) -((((-391)) . T) (((-560)) . T)) -((((-1191)) . T)) -((((-916 (-391))) . T) (((-916 (-560))) . T) (((-1209)) . T) (((-549)) . T)) -((((-888)) . T)) -(((|#1| (-1003)) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1| (-791) (-1112)) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((((-791) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-791) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-791) |#1|)))) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T)) +(|has| |#1| (-15 * (|#1| (-791) |#1|))) +(((|#1|) . T)) +((((-886)) . T)) +((((-391)) . T) (((-558)) . T)) +((((-1189)) . T)) +((((-914 (-391))) . T) (((-914 (-558))) . T) (((-1207)) . T) (((-547)) . T)) +((((-886)) . T)) +(((|#1| (-1001)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((((-888)) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T)) -((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) (((-560)) . T)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1070 (-560))) (((-421 (-560))) |has| |#1| (-1070 (-421 (-560))))) -(((|#1| (-1003)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1191)) . T) (((-520)) . T) (((-229)) . T) (((-560)) . T)) -((((-1191)) . T) (((-520)) . T) (((-229)) . T) (((-560)) . T)) -((((-549)) . T) (((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-886)) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) (((-558)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1068 (-558))) (((-419 (-558))) |has| |#1| (-1068 (-419 (-558))))) +(((|#1| (-1001)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1189)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) +((((-1189)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) +((((-547)) . T) (((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((#1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #1#) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) -((((-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #1#) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) +((((-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-888)) . T)) +((((-886)) . T)) (((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-402) (-1191)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-402) (-1189)) . T)) (((|#1|) . T)) -(|has| |#1| (-1133)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-1133))) +(|has| |#1| (-1131)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1209) $) . T)) -((((-1209)) . T)) -((((-888)) . T)) -((($ (-1209)) . T)) -((((-1209)) . T)) -(((|#1| (-545 #1=(-1209)) #1#) . T)) -((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) -((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T)) +((($ $) . T) (((-1207) $) . T)) +((((-1207)) . T)) +((((-886)) . T)) +((($ (-1207)) . T)) +((((-1207)) . T)) +(((|#1| (-543 #1=(-1207)) #1#) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571)))) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571))) -(((|#1| (-545 (-1209))) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-1209)) . T)) -(|has| |#1| (-1133)) -(|has| |#1| (-1133)) -(|has| |#1| (-1133)) -((((-988 |#1|)) . T)) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-1133))) (((-988 |#1|)) . T)) -((((-988 |#1|)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1289 |#1| |#2| |#3|)) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1289 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|))))) -(((#1=(-1289 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|)))) (((-1209) #1#) -12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-528 (-1209) (-1289 |#1| |#2| |#3|))))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) +(((|#1| (-543 (-1207))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-1207)) . T)) +(|has| |#1| (-1131)) +(|has| |#1| (-1131)) +(|has| |#1| (-1131)) +((((-986 |#1|)) . T)) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-1131))) (((-986 |#1|)) . T)) +((((-986 |#1|)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1287 |#1| |#2| |#3|)) . T)) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1287 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))))) +(((#1=(-1287 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|)))) (((-1207) #1#) -12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-526 (-1207) (-1287 |#1| |#2| |#3|))))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -((($) -4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -(-4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-4043 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-149)))) -(-4043 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-147)))) -((((-888)) . T)) -(((|#1|) . T)) -((((-1289 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1289 |#1| |#2| |#3|) (-298 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)))) (($ $) . T) (((-560) |#1|) . T)) -(((|#1| (-560) (-1114)) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#2=(-1289 |#1| |#2| |#3|) #2#) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1289 |#1| |#2| |#3|)) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-560)) . T)) -(((|#1| (-560)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-1289 |#1| |#2| |#3|)) . T)) +(-4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-4039 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-149)))) +(-4039 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-147)))) +((((-886)) . T)) +(((|#1|) . T)) +((((-1287 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-298 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) +(((|#1| (-558) (-1112)) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((#2=(-1287 |#1| |#2| |#3|) #2#) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-1287 |#1| |#2| |#3|)) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(((|#1| (-558)) . T)) +(((|#1| (-558)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-1287 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1184))) -(((|#2|) . T) (((-1209)) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) (((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) (((-421 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560))))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1052))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-940))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1182))) +(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) (((-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558))))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1050))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-938))) (((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -(-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) (-12 (|has| |#1| (-376)) (|has| |#2| (-872)))) -(-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) (-12 (|has| |#1| (-376)) (|has| |#2| (-872)))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-844))) -((((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-912 (-391)))) (((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-912 (-560))))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-870)))) +(-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-870)))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +((((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-910 (-391)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-910 (-558))))) (((|#2|) |has| |#1| (-376))) -((((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((|#2|) |has| |#1| (-376))) +((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((|#2|) |has| |#1| (-376))) (((|#2|) |has| |#1| (-376))) (((|#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1209) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1209) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1207) |#2|)))) (((|#2|) |has| |#1| (-376))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -((($) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) -(-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) +(-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (((|#2|) |has| |#1| (-376))) -((($ (-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) -((((-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209)))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) +((($ (-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207)))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (((|#2|) |has| |#1| (-376))) -((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1052))) (((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1052))) (((-916 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-391))))) (((-916 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-560))))) (((-549)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-549))))) -(-4043 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) -(-4043 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) -((((-888)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-560) |#1|) . T)) -(((|#1| (-560) (-1114)) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T)) -((((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -(((|#2|) . T) (((-1209)) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175))) -(((|#1| (-560)) . T)) -(((|#1| (-560)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) +((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1050))) (((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1050))) (((-914 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-391))))) (((-914 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-558))))) (((-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547))))) +(-4039 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) +(-4039 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) +((((-886)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-558) |#1|) . T)) +(((|#1| (-558) (-1112)) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(((|#1| (-558)) . T)) +(((|#1| (-558)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) (((|#1| |#2|) . T)) -(((|#1| (-1187 |#1|)) |has| |#1| (-871))) -(|has| |#1| (-1133)) -(|has| |#1| (-1133)) -((((-888)) |has| |#1| (-1133))) -(|has| |#1| (-1133)) +(((|#1| (-1185 |#1|)) |has| |#1| (-869))) +(|has| |#1| (-1131)) +(|has| |#1| (-1131)) +((((-886)) |has| |#1| (-1131))) +(|has| |#1| (-1131)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-888)) . T)) -((((-421 $) (-421 $)) |has| |#2| (-571)) (($ $) . T) ((|#2| |#2|) . T)) +((((-886)) . T)) +((((-419 $) (-419 $)) |has| |#2| (-569)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-376)) -(-4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) -(-4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) +(-4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) +(-4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (|has| |#2| (-376)) -(((|#2| (-793) (-1114)) . T)) -(|has| |#2| (-940)) -(|has| |#2| (-940)) -((((-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209)))) (((-1114)) . T)) -((($ (-1209)) -4043 (|has| |#2| (-928 (-1209))) (|has| |#2| (-930 (-1209)))) (($ (-1114)) . T)) -((((-1209)) |has| |#2| (-928 (-1209))) (((-1114)) . T)) -((((-560)) |has| |#2| (-660 (-560))) ((|#2|) . T)) +(((|#2| (-791) (-1112)) . T)) +(|has| |#2| (-938)) +(|has| |#2| (-938)) +((((-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207)))) (((-1112)) . T)) +((($ (-1207)) -4039 (|has| |#2| (-926 (-1207))) (|has| |#2| (-928 (-1207)))) (($ (-1112)) . T)) +((((-1207)) |has| |#2| (-926 (-1207))) (((-1112)) . T)) +((((-558)) |has| |#2| (-658 (-558))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-793)) . T)) +(((|#2| (-791)) . T)) (|has| |#2| (-149)) (|has| |#2| (-147)) -((((-1296 |#1|)) . T) (((-560)) . T) (($) -4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) (((-1114)) . T) ((|#2|) . T) (((-421 (-560))) -4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560)))))) -((($) -4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((($) -4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((($) . T) (((-560)) |has| |#2| (-660 (-560))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((((-560)) . T) (($) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((($) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((($) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2| |#2|) . T) ((#1=(-421 (-560)) #1#) |has| |#2| (-38 (-421 (-560))))) -((($) -4043 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-940))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560))))) +((((-1294 |#1|)) . T) (((-558)) . T) (($) -4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) (((-1112)) . T) ((|#2|) . T) (((-419 (-558))) -4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558)))))) +((($) -4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#2| (-658 (-558))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((((-558)) . T) (($) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2| |#2|) . T) ((#1=(-419 (-558)) #1#) |has| |#2| (-38 (-419 (-558))))) +((($) -4039 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) (((|#2|) . T)) -((((-1114)) . T) ((|#2|) . T) (((-560)) |has| |#2| (-1070 (-560))) (((-421 (-560))) |has| |#2| (-1070 (-421 (-560))))) -(((|#2| (-793)) . T)) -(((#1=(-1114) |#2|) . T) ((#1# $) . T) (($ $) . T)) +((((-1112)) . T) ((|#2|) . T) (((-558)) |has| |#2| (-1068 (-558))) (((-419 (-558))) |has| |#2| (-1068 (-419 (-558))))) +(((|#2| (-791)) . T)) +(((#1=(-1112) |#2|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1184)) +(|has| |#2| (-1182)) (((|#2|) . T)) -((((-1289 |#1| |#2| |#3|)) . T) (((-1259 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($ $) . T) (((-421 (-560)) |#1|) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -(((|#1| (-421 (-560)) (-1114)) . T)) +((((-1287 |#1| |#2| |#3|)) . T) (((-1257 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($ $) . T) (((-419 (-558)) |#1|) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1112)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(((|#1| (-421 (-560))) . T)) -(((|#1| (-421 (-560))) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) +(((|#1| (-419 (-558))) . T)) +(((|#1| (-419 (-558))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) -((((-888)) . T)) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T)) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-886)) . T)) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -((((-1296 |#2|)) . T) (((-1289 |#1| |#2| |#3|)) . T) (((-1259 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +((((-1294 |#2|)) . T) (((-1287 |#1| |#2| |#3|)) . T) (((-1257 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1| (-1259 |#1| |#2| |#3|)) . T)) +(((|#1| (-1257 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) -((($ $) . T) (((-421 (-560)) |#1|) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))) -(((|#1| (-421 (-560)) (-1114)) . T)) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) +((($ $) . T) (((-419 (-558)) |#1|) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1112)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(((|#1| (-421 (-560))) . T)) -(((|#1| (-421 (-560))) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) +(((|#1| (-419 (-558))) . T)) +(((|#1| (-419 (-558))) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) -((((-888)) . T)) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#1=(-421 (-560)) #1#) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T)) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-886)) . T)) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((#1=(-419 (-558)) #1#) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -4043 (|has| |#1| (-376)) (|has| |#1| (-571)))) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) -(-4043 (|has| |#1| (-376)) (|has| |#1| (-571))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -4039 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-4039 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) (((|#1| |#2|) . T)) -((((-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) -(|has| (-1280 |#2| |#3| |#4|) (-149)) -(|has| (-1280 |#2| |#3| |#4|) (-147)) -((($) . T) ((#1=(-1280 |#2| |#3| |#4|)) |has| #1# (-175)) (((-421 (-560))) |has| #1# (-38 (-421 (-560))))) -((($) . T) ((#1=(-1280 |#2| |#3| |#4|)) |has| #1# (-175)) (((-421 (-560))) |has| #1# (-38 (-421 (-560))))) -((((-888)) . T)) -((($) . T) ((#1=(-1280 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #1# (-38 (-421 (-560))))) -((($) . T) ((#1=(-1280 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #1# (-38 (-421 (-560))))) -((($ $) . T) ((#1=(-1280 |#2| |#3| |#4|) #1#) . T) ((#2=(-421 (-560)) #2#) |has| #1# (-38 (-421 (-560))))) -(((#1=(-1280 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #1# (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -(((#1=(-1280 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #1# (-38 (-421 (-560)))) (($) . T)) -((($) . T) (((-1280 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| (-1280 |#2| |#3| |#4|) (-38 (-421 (-560)))) (((-560)) . T)) -((($) . T) ((#1=(-1280 |#2| |#3| |#4|)) |has| #1# (-175)) (((-421 (-560))) |has| #1# (-38 (-421 (-560))))) -((((-1280 |#2| |#3| |#4|)) . T)) -((((-1280 |#2| |#3| |#4|)) . T)) -((((-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(|has| |#1| (-38 (-421 (-560)))) -(((|#1| (-793)) . T)) -(((|#1| (-793)) . T)) -(|has| |#1| (-571)) -(|has| |#1| (-571)) -(-4043 (|has| |#1| (-175)) (|has| |#1| (-571))) +((((-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +(|has| (-1278 |#2| |#3| |#4|) (-149)) +(|has| (-1278 |#2| |#3| |#4|) (-147)) +((($) . T) ((#1=(-1278 |#2| |#3| |#4|)) |has| #1# (-175)) (((-419 (-558))) |has| #1# (-38 (-419 (-558))))) +((($) . T) ((#1=(-1278 |#2| |#3| |#4|)) |has| #1# (-175)) (((-419 (-558))) |has| #1# (-38 (-419 (-558))))) +((((-886)) . T)) +((($) . T) ((#1=(-1278 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| #1# (-38 (-419 (-558))))) +((($) . T) ((#1=(-1278 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| #1# (-38 (-419 (-558))))) +((($ $) . T) ((#1=(-1278 |#2| |#3| |#4|) #1#) . T) ((#2=(-419 (-558)) #2#) |has| #1# (-38 (-419 (-558))))) +(((#1=(-1278 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| #1# (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +(((#1=(-1278 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| #1# (-38 (-419 (-558)))) (($) . T)) +((($) . T) (((-1278 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1278 |#2| |#3| |#4|) (-38 (-419 (-558)))) (((-558)) . T)) +((($) . T) ((#1=(-1278 |#2| |#3| |#4|)) |has| #1# (-175)) (((-419 (-558))) |has| #1# (-38 (-419 (-558))))) +((((-1278 |#2| |#3| |#4|)) . T)) +((((-1278 |#2| |#3| |#4|)) . T)) +((((-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(|has| |#1| (-38 (-419 (-558)))) +(((|#1| (-791)) . T)) +(((|#1| (-791)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(-4039 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -((($ $) -4043 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#1=(-421 (-560)) #1#) |has| |#1| (-38 (-421 (-560))))) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560))))) -(((|#1| (-793) (-1114)) . T)) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((($ (-1296 |#2|)) . T) (($ (-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((((-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|))))) -((((-793) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-793) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-793) |#1|)))) -((((-888)) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T)) -(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T)) -((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T)) -(|has| |#1| (-15 * (|#1| (-793) |#1|))) -(((|#1|) . T)) -((((-1209)) . T) (((-888)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T) (((-1266 (-560)) $) . T)) -((((-549)) |has| |#1| (-633 (-549)))) -(((|#1|) . T)) -(-4043 (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133)))) -((((-888)) -4043 (|has| |#1| (-632 (-888))) (|has| |#1| (-872)) (|has| |#1| (-1133)))) -(-4043 (|has| |#1| (-102)) (|has| |#1| (-872)) (|has| |#1| (-1133))) -(((|#1|) . T)) -(|has| |#1| (-872)) -(|has| |#1| (-872)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-888)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) -((((-1214)) . T)) -((((-888)) . T) (((-1214)) . T)) -((((-1214)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -4039 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#1=(-419 (-558)) #1#) |has| |#1| (-38 (-419 (-558))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1| (-791) (-1112)) . T)) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((((-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) +((((-791) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-791) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-791) |#1|)))) +((((-886)) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T)) +(|has| |#1| (-15 * (|#1| (-791) |#1|))) +(((|#1|) . T)) +((((-1207)) . T) (((-886)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-558) |#1|) . T)) +((((-558) |#1|) . T)) +((((-558) |#1|) . T) (((-1264 (-558)) $) . T)) +((((-547)) |has| |#1| (-631 (-547)))) +(((|#1|) . T)) +(-4039 (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) -4039 (|has| |#1| (-630 (-886))) (|has| |#1| (-870)) (|has| |#1| (-1131)))) +(-4039 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1131))) +(((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -4127,17 +4125,17 @@ (((|#1| |#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-560)) . T)) +(((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -(((|#4|) . T) (((-888)) . T)) -(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T)) +(((|#4|) . T) (((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-549)) |has| |#4| (-633 (-549)))) +((((-547)) |has| |#4| (-631 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#4|) . T)) -((((-888)) . T) (((-663 |#4|)) . T)) +((((-886)) . T) (((-661 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) @@ -4146,15 +4144,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-888)) . T)) -((($) . T) (((-560)) . T) ((|#2|) . T)) +((((-886)) . T)) +((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) -((((-843 |#1|)) . T)) -(((|#2|) . T) (((-560)) . T) (((-843 |#1|)) . T)) -(((|#2| (-843 |#1|)) . T)) -(((|#2| (-919 |#1|)) . T)) +((((-841 |#1|)) . T)) +(((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) +(((|#2| (-841 |#1|)) . T)) +(((|#2| (-917 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2| |#2|) . T)) @@ -4164,12 +4162,12 @@ (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-888)) . T)) -(((|#2|) . T) (($) . T) (((-560)) . T)) -((((-919 |#1|)) . T) ((|#2|) . T) (((-560)) . T) (((-843 |#1|)) . T)) -((((-919 |#1|)) . T) (((-843 |#1|)) . T)) +((((-886)) . T)) +(((|#2|) . T) (($) . T) (((-558)) . T)) +((((-917 |#1|)) . T) ((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) +((((-917 |#1|)) . T) (((-841 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1209) |#1|) . T)) +((((-1207) |#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -4178,11 +4176,11 @@ (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (($) . T) (((-560)) . T)) -(((|#1|) . T) (((-560)) . T) (((-843 (-1209))) . T)) -((((-843 (-1209))) . T)) -((((-1209) |#1|) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-558)) . T)) +(((|#1|) . T) (((-558)) . T) (((-841 (-1207))) . T)) +((((-841 (-1207))) . T)) +((((-1207) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-175))) @@ -4192,10 +4190,10 @@ (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-560)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) . T) (($) . T)) -((((-888)) . T)) -(((|#1|) . T) (($) . T) (((-560)) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-558)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2| |#2|) . T)) @@ -4205,20 +4203,20 @@ (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-888)) . T)) -(((|#2|) . T) (($) . T) (((-560)) . T)) -(((|#2|) . T) (((-560)) . T) (((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) +((((-886)) . T)) +(((|#2|) . T) (($) . T) (((-558)) . T)) +(((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) +((((-841 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1003)) . T)) -((((-1003)) . T)) -((((-1003)) . T) (((-888)) . T)) -((((-560)) . T)) +((((-1001)) . T)) +((((-1001)) . T)) +((((-1001)) . T) (((-886)) . T)) +((((-558)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-888)) . T)) -((((-560)) . T) (($) . T)) +((((-886)) . T)) +((((-558)) . T) (($) . T)) ((($) . T)) -((((-560)) . T)) -(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1329 . -175) T) ((-1329 . -635) 205682) ((-1329 . -748) T) ((-1329 . -1144) T) ((-1329 . -1089) T) ((-1329 . -1081) T) ((-1329 . -670) 205669) ((-1329 . -668) 205641) ((-1329 . -133) T) ((-1329 . -25) T) ((-1329 . -102) T) ((-1329 . -1249) T) ((-1329 . -632) 205623) ((-1329 . -1133) T) ((-1329 . -23) T) ((-1329 . -21) T) ((-1329 . -1088) 205610) ((-1329 . -1083) 205597) ((-1329 . -111) 205582) ((-1329 . -381) T) ((-1329 . -633) 205564) ((-1329 . -1184) T) ((-1325 . -1133) T) ((-1325 . -632) 205530) ((-1325 . -1249) T) ((-1325 . -102) T) ((-1325 . -504) 205511) ((-1325 . -635) 205492) ((-1324 . -1322) 205471) ((-1324 . -1070) 205448) ((-1324 . -635) 205397) ((-1324 . -1081) T) ((-1324 . -1089) T) ((-1324 . -1144) T) ((-1324 . -748) T) ((-1324 . -21) T) ((-1324 . -668) 205356) ((-1324 . -23) T) ((-1324 . -1133) T) ((-1324 . -632) 205338) ((-1324 . -1249) T) ((-1324 . -102) T) ((-1324 . -25) T) ((-1324 . -133) T) ((-1324 . -670) 205312) ((-1324 . -1314) 205296) ((-1324 . -739) 205266) ((-1324 . -662) 205236) ((-1324 . -1088) 205220) ((-1324 . -1083) 205204) ((-1324 . -111) 205183) ((-1324 . -38) 205153) ((-1324 . -1319) 205132) ((-1323 . -1081) T) ((-1323 . -1089) T) ((-1323 . -1144) T) ((-1323 . -748) T) ((-1323 . -21) T) ((-1323 . -668) 205091) ((-1323 . -23) T) ((-1323 . -1133) T) ((-1323 . -632) 205073) ((-1323 . -1249) T) ((-1323 . -102) T) ((-1323 . -25) T) ((-1323 . -133) T) ((-1323 . -670) 205047) ((-1323 . -635) 205003) ((-1323 . -1314) 204987) ((-1323 . -739) 204957) ((-1323 . -662) 204927) ((-1323 . -1088) 204911) ((-1323 . -1083) 204895) ((-1323 . -111) 204874) ((-1323 . -38) 204844) ((-1323 . -397) 204823) ((-1323 . -1070) 204807) ((-1321 . -1322) 204783) ((-1321 . -1070) 204757) ((-1321 . -635) 204703) ((-1321 . -1081) T) ((-1321 . -1089) T) ((-1321 . -1144) T) ((-1321 . -748) T) ((-1321 . -21) T) ((-1321 . -668) 204662) ((-1321 . -23) T) ((-1321 . -1133) T) ((-1321 . -632) 204644) ((-1321 . -1249) T) ((-1321 . -102) T) ((-1321 . -25) T) ((-1321 . -133) T) ((-1321 . -670) 204618) ((-1321 . -1314) 204602) ((-1321 . -739) 204572) ((-1321 . -662) 204542) ((-1321 . -1088) 204526) ((-1321 . -1083) 204510) ((-1321 . -111) 204489) ((-1321 . -38) 204459) ((-1321 . -1319) 204435) ((-1320 . -1322) 204414) ((-1320 . -1070) 204371) ((-1320 . -635) 204300) ((-1320 . -1081) T) ((-1320 . -1089) T) ((-1320 . -1144) T) ((-1320 . -748) T) ((-1320 . -21) T) ((-1320 . -668) 204259) ((-1320 . -23) T) ((-1320 . -1133) T) ((-1320 . -632) 204241) ((-1320 . -1249) T) ((-1320 . -102) T) ((-1320 . -25) T) ((-1320 . -133) T) ((-1320 . -670) 204215) ((-1320 . -1314) 204199) ((-1320 . -739) 204169) ((-1320 . -662) 204139) ((-1320 . -1088) 204123) ((-1320 . -1083) 204107) ((-1320 . -111) 204086) ((-1320 . -38) 204056) ((-1320 . -1319) 204035) ((-1320 . -397) 204007) ((-1315 . -397) 203979) ((-1315 . -635) 203928) ((-1315 . -1070) 203905) ((-1315 . -662) 203875) ((-1315 . -739) 203845) ((-1315 . -670) 203819) ((-1315 . -668) 203778) ((-1315 . -133) T) ((-1315 . -25) T) ((-1315 . -102) T) ((-1315 . -1249) T) ((-1315 . -632) 203760) ((-1315 . -1133) T) ((-1315 . -23) T) ((-1315 . -21) T) ((-1315 . -1088) 203744) ((-1315 . -1083) 203728) ((-1315 . -111) 203707) ((-1315 . -1322) 203686) ((-1315 . -1081) T) ((-1315 . -1089) T) ((-1315 . -1144) T) ((-1315 . -748) T) ((-1315 . -1314) 203670) ((-1315 . -38) 203640) ((-1315 . -1319) 203619) ((-1313 . -1244) 203588) ((-1313 . -632) 203550) ((-1313 . -153) 203534) ((-1313 . -34) T) ((-1313 . -1249) T) ((-1313 . -102) T) ((-1313 . -321) 203472) ((-1313 . -528) 203405) ((-1313 . -1133) T) ((-1313 . -503) 203389) ((-1313 . -633) 203350) ((-1313 . -1008) 203319) ((-1312 . -1081) T) ((-1312 . -1089) T) ((-1312 . -1144) T) ((-1312 . -748) T) ((-1312 . -21) T) ((-1312 . -668) 203264) ((-1312 . -23) T) ((-1312 . -1133) T) ((-1312 . -632) 203233) ((-1312 . -1249) T) ((-1312 . -102) T) ((-1312 . -25) T) ((-1312 . -133) T) ((-1312 . -670) 203193) ((-1312 . -635) 203135) ((-1312 . -504) 203119) ((-1312 . -38) 203089) ((-1312 . -111) 203054) ((-1312 . -1083) 203024) ((-1312 . -1088) 202994) ((-1312 . -662) 202964) ((-1312 . -739) 202934) ((-1311 . -1115) T) ((-1311 . -504) 202915) ((-1311 . -632) 202881) ((-1311 . -635) 202862) ((-1311 . -1133) T) ((-1311 . -1249) T) ((-1311 . -102) T) ((-1311 . -93) T) ((-1310 . -1115) T) ((-1310 . -504) 202843) ((-1310 . -632) 202809) ((-1310 . -635) 202790) ((-1310 . -1133) T) ((-1310 . -1249) T) ((-1310 . -102) T) ((-1310 . -93) T) ((-1305 . -632) 202772) ((-1303 . -1133) T) ((-1303 . -632) 202754) ((-1303 . -1249) T) ((-1303 . -102) T) ((-1302 . -1133) T) ((-1302 . -632) 202736) ((-1302 . -1249) T) ((-1302 . -102) T) ((-1299 . -1298) 202720) ((-1299 . -385) 202704) ((-1299 . -875) 202683) ((-1299 . -872) 202662) ((-1299 . -153) 202646) ((-1299 . -34) T) ((-1299 . -1249) T) ((-1299 . -102) 202576) ((-1299 . -632) 202488) ((-1299 . -321) 202426) ((-1299 . -528) 202359) ((-1299 . -1133) 202309) ((-1299 . -503) 202293) ((-1299 . -633) 202254) ((-1299 . -298) 202206) ((-1299 . -618) 202183) ((-1299 . -300) 202160) ((-1299 . -673) 202144) ((-1299 . -19) 202128) ((-1296 . -1133) T) ((-1296 . -632) 202094) ((-1296 . -1249) T) ((-1296 . -102) T) ((-1289 . -1292) 202078) ((-1289 . -240) 202037) ((-1289 . -635) 201919) ((-1289 . -670) 201844) ((-1289 . -668) 201754) ((-1289 . -133) T) ((-1289 . -25) T) ((-1289 . -102) T) ((-1289 . -632) 201736) ((-1289 . -1133) T) ((-1289 . -23) T) ((-1289 . -21) T) ((-1289 . -748) T) ((-1289 . -1144) T) ((-1289 . -1089) T) ((-1289 . -1081) T) ((-1289 . -236) 201689) ((-1289 . -1249) T) ((-1289 . -239) 201648) ((-1289 . -298) 201613) ((-1289 . -928) 201526) ((-1289 . -922) 201414) ((-1289 . -930) 201327) ((-1289 . -1005) 201296) ((-1289 . -38) 201193) ((-1289 . -111) 201062) ((-1289 . -1083) 200945) ((-1289 . -1088) 200828) ((-1289 . -662) 200725) ((-1289 . -739) 200622) ((-1289 . -147) 200601) ((-1289 . -149) 200580) ((-1289 . -175) 200531) ((-1289 . -571) 200510) ((-1289 . -302) 200489) ((-1289 . -47) 200466) ((-1289 . -1278) 200443) ((-1289 . -35) 200409) ((-1289 . -95) 200375) ((-1289 . -296) 200341) ((-1289 . -507) 200307) ((-1289 . -1238) 200273) ((-1289 . -1235) 200239) ((-1289 . -1034) 200205) ((-1286 . -338) 200149) ((-1286 . -1070) 200115) ((-1286 . -426) 200081) ((-1286 . -38) 199973) ((-1286 . -635) 199847) ((-1286 . -670) 199752) ((-1286 . -668) 199642) ((-1286 . -748) T) ((-1286 . -1144) T) ((-1286 . -1089) T) ((-1286 . -1081) T) ((-1286 . -111) 199534) ((-1286 . -1083) 199439) ((-1286 . -1088) 199344) ((-1286 . -21) T) ((-1286 . -23) T) ((-1286 . -1133) T) ((-1286 . -632) 199326) ((-1286 . -1249) T) ((-1286 . -102) T) ((-1286 . -25) T) ((-1286 . -133) T) ((-1286 . -662) 199218) ((-1286 . -739) 199110) ((-1286 . -147) 199071) ((-1286 . -149) 199032) ((-1286 . -175) T) ((-1286 . -571) T) ((-1286 . -302) T) ((-1286 . -47) 198976) ((-1285 . -1284) 198955) ((-1285 . -376) 198934) ((-1285 . -1254) 198913) ((-1285 . -951) 198892) ((-1285 . -571) 198843) ((-1285 . -175) 198774) ((-1285 . -635) 198587) ((-1285 . -739) 198428) ((-1285 . -662) 198269) ((-1285 . -38) 198110) ((-1285 . -466) 198089) ((-1285 . -319) 198068) ((-1285 . -670) 197965) ((-1285 . -668) 197847) ((-1285 . -748) T) ((-1285 . -1144) T) ((-1285 . -1089) T) ((-1285 . -1081) T) ((-1285 . -111) 197668) ((-1285 . -1083) 197503) ((-1285 . -1088) 197338) ((-1285 . -21) T) ((-1285 . -23) T) ((-1285 . -1133) T) ((-1285 . -632) 197320) ((-1285 . -1249) T) ((-1285 . -102) T) ((-1285 . -25) T) ((-1285 . -133) T) ((-1285 . -302) 197271) ((-1285 . -250) 197250) ((-1285 . -1034) 197216) ((-1285 . -1235) 197182) ((-1285 . -1238) 197148) ((-1285 . -507) 197114) ((-1285 . -296) 197080) ((-1285 . -95) 197046) ((-1285 . -35) 197012) ((-1285 . -1278) 196982) ((-1285 . -47) 196952) ((-1285 . -149) 196931) ((-1285 . -147) 196910) ((-1285 . -1005) 196872) ((-1285 . -930) 196778) ((-1285 . -922) 196682) ((-1285 . -928) 196588) ((-1285 . -298) 196546) ((-1285 . -239) 196498) ((-1285 . -236) 196444) ((-1285 . -240) 196396) ((-1285 . -1282) 196380) ((-1285 . -1070) 196364) ((-1280 . -1284) 196325) ((-1280 . -376) 196304) ((-1280 . -1254) 196283) ((-1280 . -951) 196262) ((-1280 . -571) 196213) ((-1280 . -175) 196144) ((-1280 . -635) 195887) ((-1280 . -739) 195728) ((-1280 . -662) 195569) ((-1280 . -38) 195410) ((-1280 . -466) 195389) ((-1280 . -319) 195368) ((-1280 . -670) 195265) ((-1280 . -668) 195147) ((-1280 . -748) T) ((-1280 . -1144) T) ((-1280 . -1089) T) ((-1280 . -1081) T) ((-1280 . -111) 194968) ((-1280 . -1083) 194803) ((-1280 . -1088) 194638) ((-1280 . -21) T) ((-1280 . -23) T) ((-1280 . -1133) T) ((-1280 . -632) 194620) ((-1280 . -1249) T) ((-1280 . -102) T) ((-1280 . -25) T) ((-1280 . -133) T) ((-1280 . -302) 194571) ((-1280 . -250) 194550) ((-1280 . -1034) 194516) ((-1280 . -1235) 194482) ((-1280 . -1238) 194448) ((-1280 . -507) 194414) ((-1280 . -296) 194380) ((-1280 . -95) 194346) ((-1280 . -35) 194312) ((-1280 . -1278) 194282) ((-1280 . -47) 194252) ((-1280 . -149) 194231) ((-1280 . -147) 194210) ((-1280 . -1005) 194172) ((-1280 . -930) 194078) ((-1280 . -922) 193959) ((-1280 . -928) 193865) ((-1280 . -298) 193823) ((-1280 . -239) 193775) ((-1280 . -236) 193721) ((-1280 . -240) 193673) ((-1280 . -1282) 193657) ((-1280 . -1070) 193592) ((-1268 . -1275) 193576) ((-1268 . -1184) 193554) ((-1268 . -633) NIL) ((-1268 . -321) 193541) ((-1268 . -528) 193488) ((-1268 . -338) 193465) ((-1268 . -1070) 193345) ((-1268 . -426) 193329) ((-1268 . -38) 193158) ((-1268 . -111) 192967) ((-1268 . -1083) 192790) ((-1268 . -1088) 192613) ((-1268 . -668) 192523) ((-1268 . -670) 192412) ((-1268 . -662) 192241) ((-1268 . -739) 192070) ((-1268 . -635) 191818) ((-1268 . -147) 191797) ((-1268 . -149) 191776) ((-1268 . -47) 191753) ((-1268 . -390) 191737) ((-1268 . -660) 191685) ((-1268 . -928) 191628) ((-1268 . -922) 191531) ((-1268 . -930) 191438) ((-1268 . -912) NIL) ((-1268 . -940) 191417) ((-1268 . -1254) 191396) ((-1268 . -980) 191365) ((-1268 . -951) 191344) ((-1268 . -571) 191255) ((-1268 . -302) 191166) ((-1268 . -175) 191057) ((-1268 . -466) 190988) ((-1268 . -319) 190967) ((-1268 . -298) 190894) ((-1268 . -240) T) ((-1268 . -133) T) ((-1268 . -25) T) ((-1268 . -102) T) ((-1268 . -632) 190876) ((-1268 . -1133) T) ((-1268 . -23) T) ((-1268 . -21) T) ((-1268 . -748) T) ((-1268 . -1144) T) ((-1268 . -1089) T) ((-1268 . -1081) T) ((-1268 . -236) 190863) ((-1268 . -1249) T) ((-1268 . -239) T) ((-1268 . -274) 190847) ((-1268 . -234) 190831) ((-1266 . -1126) 190815) ((-1266 . -637) 190799) ((-1266 . -1133) 190777) ((-1266 . -632) 190744) ((-1266 . -1249) 190722) ((-1266 . -102) 190700) ((-1266 . -1127) 190657) ((-1264 . -1263) 190636) ((-1264 . -1034) 190602) ((-1264 . -1235) 190568) ((-1264 . -1238) 190534) ((-1264 . -507) 190500) ((-1264 . -296) 190466) ((-1264 . -95) 190432) ((-1264 . -35) 190398) ((-1264 . -1278) 190375) ((-1264 . -47) 190352) ((-1264 . -635) 190100) ((-1264 . -739) 189914) ((-1264 . -662) 189728) ((-1264 . -670) 189536) ((-1264 . -668) 189391) ((-1264 . -1088) 189199) ((-1264 . -1083) 189007) ((-1264 . -111) 188796) ((-1264 . -38) 188610) ((-1264 . -1005) 188579) ((-1264 . -298) 188479) ((-1264 . -1261) 188463) ((-1264 . -748) T) ((-1264 . -1144) T) ((-1264 . -1089) T) ((-1264 . -1081) T) ((-1264 . -21) T) ((-1264 . -23) T) ((-1264 . -1133) T) ((-1264 . -632) 188445) ((-1264 . -1249) T) ((-1264 . -102) T) ((-1264 . -25) T) ((-1264 . -133) T) ((-1264 . -147) 188370) ((-1264 . -149) 188295) ((-1264 . -633) 187966) ((-1264 . -234) 187936) ((-1264 . -928) 187787) ((-1264 . -930) 187584) ((-1264 . -922) 187379) ((-1264 . -274) 187349) ((-1264 . -239) 187208) ((-1264 . -236) 187061) ((-1264 . -240) 186966) ((-1264 . -376) 186945) ((-1264 . -1254) 186924) ((-1264 . -951) 186903) ((-1264 . -571) 186854) ((-1264 . -175) 186785) ((-1264 . -466) 186764) ((-1264 . -319) 186743) ((-1264 . -302) 186694) ((-1264 . -250) 186673) ((-1264 . -351) 186643) ((-1264 . -528) 186503) ((-1264 . -321) 186442) ((-1264 . -390) 186412) ((-1264 . -660) 186320) ((-1264 . -414) 186290) ((-1264 . -912) 186163) ((-1264 . -844) 186116) ((-1264 . -814) 186069) ((-1264 . -816) 186022) ((-1264 . -872) 185921) ((-1264 . -875) 185820) ((-1264 . -818) 185773) ((-1264 . -821) 185726) ((-1264 . -871) 185679) ((-1264 . -910) 185649) ((-1264 . -940) 185602) ((-1264 . -1052) 185554) ((-1264 . -1070) 185340) ((-1264 . -1184) 185292) ((-1264 . -1023) 185262) ((-1259 . -1263) 185223) ((-1259 . -1034) 185189) ((-1259 . -1235) 185155) ((-1259 . -1238) 185121) ((-1259 . -507) 185087) ((-1259 . -296) 185053) ((-1259 . -95) 185019) ((-1259 . -35) 184985) ((-1259 . -1278) 184962) ((-1259 . -47) 184939) ((-1259 . -635) 184734) ((-1259 . -739) 184530) ((-1259 . -662) 184326) ((-1259 . -670) 184178) ((-1259 . -668) 184015) ((-1259 . -1088) 183805) ((-1259 . -1083) 183595) ((-1259 . -111) 183364) ((-1259 . -38) 183160) ((-1259 . -1005) 183129) ((-1259 . -298) 182957) ((-1259 . -1261) 182941) ((-1259 . -748) T) ((-1259 . -1144) T) ((-1259 . -1089) T) ((-1259 . -1081) T) ((-1259 . -21) T) ((-1259 . -23) T) ((-1259 . -1133) T) ((-1259 . -632) 182923) ((-1259 . -1249) T) ((-1259 . -102) T) ((-1259 . -25) T) ((-1259 . -133) T) ((-1259 . -147) 182830) ((-1259 . -149) 182737) ((-1259 . -633) NIL) ((-1259 . -234) 182689) ((-1259 . -928) 182522) ((-1259 . -930) 182283) ((-1259 . -922) 182019) ((-1259 . -274) 181971) ((-1259 . -239) 181794) ((-1259 . -236) 181611) ((-1259 . -240) 181498) ((-1259 . -376) 181477) ((-1259 . -1254) 181456) ((-1259 . -951) 181435) ((-1259 . -571) 181386) ((-1259 . -175) 181317) ((-1259 . -466) 181296) ((-1259 . -319) 181275) ((-1259 . -302) 181226) ((-1259 . -250) 181205) ((-1259 . -351) 181157) ((-1259 . -528) 180926) ((-1259 . -321) 180811) ((-1259 . -390) 180763) ((-1259 . -660) 180715) ((-1259 . -414) 180667) ((-1259 . -912) NIL) ((-1259 . -844) NIL) ((-1259 . -814) NIL) ((-1259 . -816) NIL) ((-1259 . -872) NIL) ((-1259 . -875) NIL) ((-1259 . -818) NIL) ((-1259 . -821) NIL) ((-1259 . -871) NIL) ((-1259 . -910) 180619) ((-1259 . -940) NIL) ((-1259 . -1052) NIL) ((-1259 . -1070) 180585) ((-1259 . -1184) NIL) ((-1259 . -1023) 180537) ((-1258 . -868) T) ((-1258 . -875) T) ((-1258 . -872) T) ((-1258 . -1133) T) ((-1258 . -632) 180519) ((-1258 . -1249) T) ((-1258 . -102) T) ((-1258 . -381) T) ((-1258 . -684) T) ((-1257 . -868) T) ((-1257 . -875) T) ((-1257 . -872) T) ((-1257 . -1133) T) ((-1257 . -632) 180501) ((-1257 . -1249) T) ((-1257 . -102) T) ((-1257 . -381) T) ((-1257 . -684) T) ((-1256 . -868) T) ((-1256 . -875) T) ((-1256 . -872) T) ((-1256 . -1133) T) ((-1256 . -632) 180483) ((-1256 . -1249) T) ((-1256 . -102) T) ((-1256 . -381) T) ((-1256 . -684) T) ((-1255 . -868) T) ((-1255 . -875) T) ((-1255 . -872) T) ((-1255 . -1133) T) ((-1255 . -632) 180465) ((-1255 . -1249) T) ((-1255 . -102) T) ((-1255 . -381) T) ((-1255 . -684) T) ((-1250 . -1115) T) ((-1250 . -504) 180446) ((-1250 . -632) 180412) ((-1250 . -635) 180393) ((-1250 . -1133) T) ((-1250 . -1249) T) ((-1250 . -102) T) ((-1250 . -93) T) ((-1247 . -504) 180370) ((-1247 . -632) 180282) ((-1247 . -635) 180259) ((-1247 . -1133) 180237) ((-1247 . -1249) 180215) ((-1247 . -102) 180193) ((-1242 . -762) 180169) ((-1242 . -35) 180135) ((-1242 . -95) 180101) ((-1242 . -296) 180067) ((-1242 . -507) 180033) ((-1242 . -1238) 179999) ((-1242 . -1235) 179965) ((-1242 . -1034) 179931) ((-1242 . -47) 179900) ((-1242 . -38) 179797) ((-1242 . -662) 179694) ((-1242 . -739) 179591) ((-1242 . -635) 179473) ((-1242 . -302) 179452) ((-1242 . -571) 179431) ((-1242 . -111) 179300) ((-1242 . -1083) 179183) ((-1242 . -1088) 179066) ((-1242 . -175) 179017) ((-1242 . -149) 178996) ((-1242 . -147) 178975) ((-1242 . -670) 178900) ((-1242 . -668) 178810) ((-1242 . -1005) 178772) ((-1242 . -930) 178753) ((-1242 . -1249) T) ((-1242 . -922) 178732) ((-1242 . -1081) T) ((-1242 . -1089) T) ((-1242 . -1144) T) ((-1242 . -748) T) ((-1242 . -21) T) ((-1242 . -23) T) ((-1242 . -1133) T) ((-1242 . -632) 178714) ((-1242 . -102) T) ((-1242 . -25) T) ((-1242 . -133) T) ((-1242 . -928) 178695) ((-1242 . -528) 178662) ((-1242 . -321) 178649) ((-1236 . -1042) 178633) ((-1236 . -34) T) ((-1236 . -1249) T) ((-1236 . -102) 178583) ((-1236 . -632) 178515) ((-1236 . -321) 178453) ((-1236 . -528) 178386) ((-1236 . -1133) 178364) ((-1236 . -503) 178348) ((-1231 . -378) 178322) ((-1231 . -102) T) ((-1231 . -1249) T) ((-1231 . -632) 178304) ((-1231 . -1133) T) ((-1229 . -1133) T) ((-1229 . -632) 178286) ((-1229 . -1249) T) ((-1229 . -102) T) ((-1229 . -635) 178268) ((-1223 . -860) 178252) ((-1223 . -102) T) ((-1223 . -1249) T) ((-1223 . -632) 178234) ((-1223 . -1133) T) ((-1221 . -1226) 178213) ((-1221 . -233) 178163) ((-1221 . -107) 178113) ((-1221 . -321) 177917) ((-1221 . -528) 177709) ((-1221 . -503) 177646) ((-1221 . -153) 177596) ((-1221 . -633) NIL) ((-1221 . -242) 177546) ((-1221 . -629) 177525) ((-1221 . -300) 177504) ((-1221 . -1249) T) ((-1221 . -298) 177483) ((-1221 . -1133) T) ((-1221 . -632) 177465) ((-1221 . -102) T) ((-1221 . -34) T) ((-1221 . -618) 177444) ((-1219 . -1249) T) ((-1217 . -1133) T) ((-1217 . -632) 177426) ((-1217 . -1249) T) ((-1217 . -102) T) ((-1216 . -868) T) ((-1216 . -875) T) ((-1216 . -872) T) ((-1216 . -1133) T) ((-1216 . -632) 177408) ((-1216 . -1249) T) ((-1216 . -102) T) ((-1216 . -381) T) ((-1216 . -684) T) ((-1215 . -868) T) ((-1215 . -875) T) ((-1215 . -872) T) ((-1215 . -1133) T) ((-1215 . -632) 177390) ((-1215 . -1249) T) ((-1215 . -102) T) ((-1215 . -381) T) ((-1214 . -1295) T) ((-1214 . -1133) T) ((-1214 . -632) 177357) ((-1214 . -1249) T) ((-1214 . -102) T) ((-1214 . -1070) 177293) ((-1214 . -635) 177229) ((-1213 . -632) 177211) ((-1212 . -632) 177193) ((-1211 . -338) 177169) ((-1211 . -1070) 177065) ((-1211 . -426) 177049) ((-1211 . -38) 176946) ((-1211 . -635) 176799) ((-1211 . -670) 176724) ((-1211 . -668) 176634) ((-1211 . -748) T) ((-1211 . -1144) T) ((-1211 . -1089) T) ((-1211 . -1081) T) ((-1211 . -111) 176503) ((-1211 . -1083) 176386) ((-1211 . -1088) 176269) ((-1211 . -21) T) ((-1211 . -23) T) ((-1211 . -1133) T) ((-1211 . -632) 176251) ((-1211 . -1249) T) ((-1211 . -102) T) ((-1211 . -25) T) ((-1211 . -133) T) ((-1211 . -662) 176148) ((-1211 . -739) 176045) ((-1211 . -147) 176024) ((-1211 . -149) 176003) ((-1211 . -175) 175954) ((-1211 . -571) 175933) ((-1211 . -302) 175912) ((-1211 . -47) 175888) ((-1209 . -872) T) ((-1209 . -632) 175870) ((-1209 . -1133) T) ((-1209 . -102) T) ((-1209 . -1249) T) ((-1209 . -875) T) ((-1209 . -633) 175792) ((-1209 . -845) T) ((-1209 . -635) 175773) ((-1209 . -912) 175740) ((-1208 . -632) 175722) ((-1207 . -1292) 175706) ((-1207 . -240) 175665) ((-1207 . -635) 175547) ((-1207 . -670) 175472) ((-1207 . -668) 175382) ((-1207 . -133) T) ((-1207 . -25) T) ((-1207 . -102) T) ((-1207 . -632) 175364) ((-1207 . -1133) T) ((-1207 . -23) T) ((-1207 . -21) T) ((-1207 . -748) T) ((-1207 . -1144) T) ((-1207 . -1089) T) ((-1207 . -1081) T) ((-1207 . -236) 175317) ((-1207 . -1249) T) ((-1207 . -239) 175276) ((-1207 . -298) 175241) ((-1207 . -928) 175154) ((-1207 . -922) 175042) ((-1207 . -930) 174955) ((-1207 . -1005) 174924) ((-1207 . -38) 174821) ((-1207 . -111) 174690) ((-1207 . -1083) 174573) ((-1207 . -1088) 174456) ((-1207 . -662) 174353) ((-1207 . -739) 174250) ((-1207 . -147) 174229) ((-1207 . -149) 174208) ((-1207 . -175) 174159) ((-1207 . -571) 174138) ((-1207 . -302) 174117) ((-1207 . -47) 174094) ((-1207 . -1278) 174071) ((-1207 . -35) 174037) ((-1207 . -95) 174003) ((-1207 . -296) 173969) ((-1207 . -507) 173935) ((-1207 . -1238) 173901) ((-1207 . -1235) 173867) ((-1207 . -1034) 173833) ((-1206 . -1284) 173794) ((-1206 . -376) 173773) ((-1206 . -1254) 173752) ((-1206 . -951) 173731) ((-1206 . -571) 173682) ((-1206 . -175) 173613) ((-1206 . -635) 173356) ((-1206 . -739) 173197) ((-1206 . -662) 173038) ((-1206 . -38) 172879) ((-1206 . -466) 172858) ((-1206 . -319) 172837) ((-1206 . -670) 172734) ((-1206 . -668) 172616) ((-1206 . -748) T) ((-1206 . -1144) T) ((-1206 . -1089) T) ((-1206 . -1081) T) ((-1206 . -111) 172437) ((-1206 . -1083) 172272) ((-1206 . -1088) 172107) ((-1206 . -21) T) ((-1206 . -23) T) ((-1206 . -1133) T) ((-1206 . -632) 172089) ((-1206 . -1249) T) ((-1206 . -102) T) ((-1206 . -25) T) ((-1206 . -133) T) ((-1206 . -302) 172040) ((-1206 . -250) 172019) ((-1206 . -1034) 171985) ((-1206 . -1235) 171951) ((-1206 . -1238) 171917) ((-1206 . -507) 171883) ((-1206 . -296) 171849) ((-1206 . -95) 171815) ((-1206 . -35) 171781) ((-1206 . -1278) 171751) ((-1206 . -47) 171721) ((-1206 . -149) 171700) ((-1206 . -147) 171679) ((-1206 . -1005) 171641) ((-1206 . -930) 171547) ((-1206 . -922) 171428) ((-1206 . -928) 171334) ((-1206 . -298) 171292) ((-1206 . -239) 171244) ((-1206 . -236) 171190) ((-1206 . -240) 171142) ((-1206 . -1282) 171126) ((-1206 . -1070) 171061) ((-1203 . -1275) 171045) ((-1203 . -1184) 171023) ((-1203 . -633) NIL) ((-1203 . -321) 171010) ((-1203 . -528) 170957) ((-1203 . -338) 170934) ((-1203 . -1070) 170814) ((-1203 . -426) 170798) ((-1203 . -38) 170627) ((-1203 . -111) 170436) ((-1203 . -1083) 170259) ((-1203 . -1088) 170082) ((-1203 . -668) 169992) ((-1203 . -670) 169881) ((-1203 . -662) 169710) ((-1203 . -739) 169539) ((-1203 . -635) 169308) ((-1203 . -147) 169287) ((-1203 . -149) 169266) ((-1203 . -47) 169243) ((-1203 . -390) 169227) ((-1203 . -660) 169175) ((-1203 . -928) 169118) ((-1203 . -922) 169021) ((-1203 . -930) 168928) ((-1203 . -912) NIL) ((-1203 . -940) 168907) ((-1203 . -1254) 168886) ((-1203 . -980) 168855) ((-1203 . -951) 168834) ((-1203 . -571) 168745) ((-1203 . -302) 168656) ((-1203 . -175) 168547) ((-1203 . -466) 168478) ((-1203 . -319) 168457) ((-1203 . -298) 168384) ((-1203 . -240) T) ((-1203 . -133) T) ((-1203 . -25) T) ((-1203 . -102) T) ((-1203 . -632) 168366) ((-1203 . -1133) T) ((-1203 . -23) T) ((-1203 . -21) T) ((-1203 . -748) T) ((-1203 . -1144) T) ((-1203 . -1089) T) ((-1203 . -1081) T) ((-1203 . -236) 168353) ((-1203 . -1249) T) ((-1203 . -239) T) ((-1203 . -274) 168337) ((-1203 . -234) 168321) ((-1200 . -1263) 168282) ((-1200 . -1034) 168248) ((-1200 . -1235) 168214) ((-1200 . -1238) 168180) ((-1200 . -507) 168146) ((-1200 . -296) 168112) ((-1200 . -95) 168078) ((-1200 . -35) 168044) ((-1200 . -1278) 168021) ((-1200 . -47) 167998) ((-1200 . -635) 167793) ((-1200 . -739) 167589) ((-1200 . -662) 167385) ((-1200 . -670) 167237) ((-1200 . -668) 167074) ((-1200 . -1088) 166864) ((-1200 . -1083) 166654) ((-1200 . -111) 166423) ((-1200 . -38) 166219) ((-1200 . -1005) 166188) ((-1200 . -298) 166016) ((-1200 . -1261) 166000) ((-1200 . -748) T) ((-1200 . -1144) T) ((-1200 . -1089) T) ((-1200 . -1081) T) ((-1200 . -21) T) ((-1200 . -23) T) ((-1200 . -1133) T) ((-1200 . -632) 165982) ((-1200 . -1249) T) ((-1200 . -102) T) ((-1200 . -25) T) ((-1200 . -133) T) ((-1200 . -147) 165889) ((-1200 . -149) 165796) ((-1200 . -633) NIL) ((-1200 . -234) 165748) ((-1200 . -928) 165581) ((-1200 . -930) 165342) ((-1200 . -922) 165078) ((-1200 . -274) 165030) ((-1200 . -239) 164853) ((-1200 . -236) 164670) ((-1200 . -240) 164557) ((-1200 . -376) 164536) ((-1200 . -1254) 164515) ((-1200 . -951) 164494) ((-1200 . -571) 164445) ((-1200 . -175) 164376) ((-1200 . -466) 164355) ((-1200 . -319) 164334) ((-1200 . -302) 164285) ((-1200 . -250) 164264) ((-1200 . -351) 164216) ((-1200 . -528) 163985) ((-1200 . -321) 163870) ((-1200 . -390) 163822) ((-1200 . -660) 163774) ((-1200 . -414) 163726) ((-1200 . -912) NIL) ((-1200 . -844) NIL) ((-1200 . -814) NIL) ((-1200 . -816) NIL) ((-1200 . -872) NIL) ((-1200 . -875) NIL) ((-1200 . -818) NIL) ((-1200 . -821) NIL) ((-1200 . -871) NIL) ((-1200 . -910) 163678) ((-1200 . -940) NIL) ((-1200 . -1052) NIL) ((-1200 . -1070) 163644) ((-1200 . -1184) NIL) ((-1200 . -1023) 163596) ((-1199 . -1115) T) ((-1199 . -504) 163577) ((-1199 . -632) 163543) ((-1199 . -635) 163524) ((-1199 . -1133) T) ((-1199 . -1249) T) ((-1199 . -102) T) ((-1199 . -93) T) ((-1198 . -1133) T) ((-1198 . -632) 163506) ((-1198 . -1249) T) ((-1198 . -102) T) ((-1197 . -1133) T) ((-1197 . -632) 163488) ((-1197 . -1249) T) ((-1197 . -102) T) ((-1192 . -1226) 163464) ((-1192 . -233) 163411) ((-1192 . -107) 163358) ((-1192 . -321) 163153) ((-1192 . -528) 162936) ((-1192 . -503) 162870) ((-1192 . -153) 162817) ((-1192 . -633) NIL) ((-1192 . -242) 162764) ((-1192 . -629) 162740) ((-1192 . -300) 162716) ((-1192 . -1249) T) ((-1192 . -298) 162692) ((-1192 . -1133) T) ((-1192 . -632) 162674) ((-1192 . -102) T) ((-1192 . -34) T) ((-1192 . -618) 162650) ((-1191 . -1176) T) ((-1191 . -385) 162632) ((-1191 . -875) T) ((-1191 . -872) T) ((-1191 . -153) 162614) ((-1191 . -34) T) ((-1191 . -1249) T) ((-1191 . -102) T) ((-1191 . -632) 162596) ((-1191 . -321) NIL) ((-1191 . -528) NIL) ((-1191 . -1133) T) ((-1191 . -503) 162578) ((-1191 . -633) NIL) ((-1191 . -298) 162528) ((-1191 . -618) 162503) ((-1191 . -300) 162478) ((-1191 . -673) 162460) ((-1191 . -19) 162442) ((-1191 . -845) T) ((-1187 . -696) 162426) ((-1187 . -673) 162410) ((-1187 . -300) 162387) ((-1187 . -298) 162339) ((-1187 . -618) 162316) ((-1187 . -633) 162277) ((-1187 . -503) 162261) ((-1187 . -1133) 162239) ((-1187 . -528) 162172) ((-1187 . -321) 162110) ((-1187 . -632) 162042) ((-1187 . -102) 161992) ((-1187 . -1249) T) ((-1187 . -34) T) ((-1187 . -153) 161976) ((-1187 . -1288) 161960) ((-1187 . -1042) 161944) ((-1187 . -1182) 161928) ((-1187 . -635) 161905) ((-1185 . -1115) T) ((-1185 . -504) 161886) ((-1185 . -632) 161852) ((-1185 . -635) 161833) ((-1185 . -1133) T) ((-1185 . -1249) T) ((-1185 . -102) T) ((-1185 . -93) T) ((-1183 . -1226) 161812) ((-1183 . -233) 161762) ((-1183 . -107) 161712) ((-1183 . -321) 161516) ((-1183 . -528) 161308) ((-1183 . -503) 161245) ((-1183 . -153) 161195) ((-1183 . -633) NIL) ((-1183 . -242) 161145) ((-1183 . -629) 161124) ((-1183 . -300) 161103) ((-1183 . -1249) T) ((-1183 . -298) 161082) ((-1183 . -1133) T) ((-1183 . -632) 161064) ((-1183 . -102) T) ((-1183 . -34) T) ((-1183 . -618) 161043) ((-1180 . -1153) 161027) ((-1180 . -503) 161011) ((-1180 . -1133) 160989) ((-1180 . -528) 160922) ((-1180 . -321) 160860) ((-1180 . -632) 160792) ((-1180 . -102) 160742) ((-1180 . -1249) T) ((-1180 . -34) T) ((-1180 . -107) 160726) ((-1178 . -1141) 160695) ((-1178 . -1244) 160664) ((-1178 . -632) 160626) ((-1178 . -153) 160610) ((-1178 . -34) T) ((-1178 . -1249) T) ((-1178 . -102) T) ((-1178 . -321) 160548) ((-1178 . -528) 160481) ((-1178 . -1133) T) ((-1178 . -503) 160465) ((-1178 . -633) 160426) ((-1178 . -1008) 160395) ((-1178 . -1103) 160364) ((-1174 . -1155) 160309) ((-1174 . -503) 160293) ((-1174 . -528) 160226) ((-1174 . -321) 160164) ((-1174 . -34) T) ((-1174 . -1085) 160104) ((-1174 . -1070) 160000) ((-1174 . -635) 159918) ((-1174 . -426) 159902) ((-1174 . -660) 159850) ((-1174 . -670) 159788) ((-1174 . -390) 159772) ((-1174 . -240) 159751) ((-1174 . -236) 159696) ((-1174 . -239) 159647) ((-1174 . -274) 159631) ((-1174 . -922) 159552) ((-1174 . -930) 159475) ((-1174 . -928) 159434) ((-1174 . -234) 159418) ((-1174 . -739) 159350) ((-1174 . -662) 159282) ((-1174 . -668) 159241) ((-1174 . -133) T) ((-1174 . -25) T) ((-1174 . -102) T) ((-1174 . -1249) T) ((-1174 . -632) 159203) ((-1174 . -1133) T) ((-1174 . -23) T) ((-1174 . -21) T) ((-1174 . -1088) 159187) ((-1174 . -1083) 159171) ((-1174 . -111) 159150) ((-1174 . -1081) T) ((-1174 . -1089) T) ((-1174 . -1144) T) ((-1174 . -748) T) ((-1174 . -38) 159110) ((-1174 . -633) 159071) ((-1173 . -1042) 159042) ((-1173 . -34) T) ((-1173 . -1249) T) ((-1173 . -102) T) ((-1173 . -632) 159024) ((-1173 . -321) 158950) ((-1173 . -528) 158869) ((-1173 . -1133) T) ((-1173 . -503) 158840) ((-1172 . -1133) T) ((-1172 . -632) 158822) ((-1172 . -1249) T) ((-1172 . -102) T) ((-1167 . -1169) T) ((-1167 . -1295) T) ((-1167 . -93) T) ((-1167 . -102) T) ((-1167 . -1249) T) ((-1167 . -632) 158788) ((-1167 . -1133) T) ((-1167 . -635) 158769) ((-1167 . -504) 158750) ((-1167 . -1115) T) ((-1165 . -1166) 158734) ((-1165 . -102) T) ((-1165 . -1249) T) ((-1165 . -632) 158716) ((-1165 . -1133) T) ((-1158 . -762) 158695) ((-1158 . -35) 158661) ((-1158 . -95) 158627) ((-1158 . -296) 158593) ((-1158 . -507) 158559) ((-1158 . -1238) 158525) ((-1158 . -1235) 158491) ((-1158 . -1034) 158457) ((-1158 . -47) 158429) ((-1158 . -38) 158326) ((-1158 . -662) 158223) ((-1158 . -739) 158120) ((-1158 . -635) 158002) ((-1158 . -302) 157981) ((-1158 . -571) 157960) ((-1158 . -111) 157829) ((-1158 . -1083) 157712) ((-1158 . -1088) 157595) ((-1158 . -175) 157546) ((-1158 . -149) 157525) ((-1158 . -147) 157504) ((-1158 . -670) 157429) ((-1158 . -668) 157339) ((-1158 . -1005) 157306) ((-1158 . -930) 157290) ((-1158 . -1249) T) ((-1158 . -922) 157272) ((-1158 . -1081) T) ((-1158 . -1089) T) ((-1158 . -1144) T) ((-1158 . -748) T) ((-1158 . -21) T) ((-1158 . -23) T) ((-1158 . -1133) T) ((-1158 . -632) 157254) ((-1158 . -102) T) ((-1158 . -25) T) ((-1158 . -133) T) ((-1158 . -928) 157238) ((-1158 . -528) 157208) ((-1158 . -321) 157195) ((-1157 . -980) 157162) ((-1157 . -635) 156954) ((-1157 . -1070) 156837) ((-1157 . -1254) 156816) ((-1157 . -940) 156795) ((-1157 . -912) 156654) ((-1157 . -930) 156638) ((-1157 . -922) 156620) ((-1157 . -928) 156604) ((-1157 . -528) 156556) ((-1157 . -466) 156507) ((-1157 . -660) 156455) ((-1157 . -670) 156344) ((-1157 . -390) 156328) ((-1157 . -47) 156300) ((-1157 . -38) 156149) ((-1157 . -662) 155998) ((-1157 . -739) 155847) ((-1157 . -302) 155778) ((-1157 . -571) 155709) ((-1157 . -111) 155538) ((-1157 . -1083) 155381) ((-1157 . -1088) 155224) ((-1157 . -175) 155135) ((-1157 . -149) 155114) ((-1157 . -147) 155093) ((-1157 . -668) 155003) ((-1157 . -133) T) ((-1157 . -25) T) ((-1157 . -102) T) ((-1157 . -1249) T) ((-1157 . -632) 154985) ((-1157 . -1133) T) ((-1157 . -23) T) ((-1157 . -21) T) ((-1157 . -1081) T) ((-1157 . -1089) T) ((-1157 . -1144) T) ((-1157 . -748) T) ((-1157 . -426) 154969) ((-1157 . -338) 154941) ((-1157 . -321) 154928) ((-1157 . -633) 154676) ((-1152 . -559) T) ((-1152 . -1254) T) ((-1152 . -1184) T) ((-1152 . -1070) 154658) ((-1152 . -633) 154573) ((-1152 . -1052) T) ((-1152 . -912) 154555) ((-1152 . -871) T) ((-1152 . -821) T) ((-1152 . -818) T) ((-1152 . -875) T) ((-1152 . -872) T) ((-1152 . -816) T) ((-1152 . -814) T) ((-1152 . -844) T) ((-1152 . -670) 154527) ((-1152 . -660) 154509) ((-1152 . -951) T) ((-1152 . -571) T) ((-1152 . -302) T) ((-1152 . -175) T) ((-1152 . -635) 154481) ((-1152 . -739) 154468) ((-1152 . -662) 154455) ((-1152 . -1088) 154442) ((-1152 . -1083) 154429) ((-1152 . -111) 154414) ((-1152 . -38) 154401) ((-1152 . -466) T) ((-1152 . -319) T) ((-1152 . -239) T) ((-1152 . -236) 154388) ((-1152 . -240) T) ((-1152 . -145) T) ((-1152 . -1081) T) ((-1152 . -1089) T) ((-1152 . -1144) T) ((-1152 . -748) T) ((-1152 . -21) T) ((-1152 . -668) 154360) ((-1152 . -23) T) ((-1152 . -1133) T) ((-1152 . -632) 154342) ((-1152 . -1249) T) ((-1152 . -102) T) ((-1152 . -25) T) ((-1152 . -133) T) ((-1152 . -149) T) ((-1152 . -868) T) ((-1152 . -381) T) ((-1152 . -113) T) ((-1152 . -684) T) ((-1152 . -845) T) ((-1148 . -1115) T) ((-1148 . -504) 154323) ((-1148 . -632) 154289) ((-1148 . -635) 154270) ((-1148 . -1133) T) ((-1148 . -1249) T) ((-1148 . -102) T) ((-1148 . -93) T) ((-1147 . -1133) T) ((-1147 . -632) 154252) ((-1147 . -1249) T) ((-1147 . -102) T) ((-1145 . -245) 154231) ((-1145 . -1307) 154201) ((-1145 . -821) 154180) ((-1145 . -818) 154159) ((-1145 . -875) 154110) ((-1145 . -872) 154061) ((-1145 . -816) 154040) ((-1145 . -817) 154019) ((-1145 . -739) 153961) ((-1145 . -662) 153883) ((-1145 . -300) 153860) ((-1145 . -298) 153837) ((-1145 . -503) 153821) ((-1145 . -528) 153754) ((-1145 . -321) 153692) ((-1145 . -34) T) ((-1145 . -618) 153669) ((-1145 . -1070) 153496) ((-1145 . -635) 153294) ((-1145 . -426) 153263) ((-1145 . -660) 153169) ((-1145 . -670) 153002) ((-1145 . -390) 152971) ((-1145 . -381) 152950) ((-1145 . -240) 152902) ((-1145 . -668) 152681) ((-1145 . -748) 152659) ((-1145 . -1144) 152637) ((-1145 . -1089) 152615) ((-1145 . -1081) 152593) ((-1145 . -236) 152484) ((-1145 . -239) 152381) ((-1145 . -274) 152350) ((-1145 . -922) 152217) ((-1145 . -930) 152086) ((-1145 . -928) 152018) ((-1145 . -234) 151987) ((-1145 . -632) 151680) ((-1145 . -1088) 151601) ((-1145 . -1083) 151502) ((-1145 . -111) 151418) ((-1145 . -133) 151289) ((-1145 . -25) 151122) ((-1145 . -102) 150854) ((-1145 . -1249) T) ((-1145 . -1133) 150606) ((-1145 . -23) 150458) ((-1145 . -21) 150369) ((-1138 . -410) T) ((-1138 . -1249) T) ((-1138 . -632) 150351) ((-1137 . -1136) 150315) ((-1137 . -102) T) ((-1137 . -632) 150297) ((-1137 . -1133) T) ((-1137 . -298) 150253) ((-1137 . -1249) T) ((-1137 . -637) 150168) ((-1135 . -1136) 150120) ((-1135 . -102) T) ((-1135 . -632) 150102) ((-1135 . -1133) T) ((-1135 . -298) 150058) ((-1135 . -1249) T) ((-1135 . -637) 149961) ((-1134 . -381) T) ((-1134 . -102) T) ((-1134 . -1249) T) ((-1134 . -632) 149943) ((-1134 . -1133) T) ((-1129 . -440) 149927) ((-1129 . -1131) 149911) ((-1129 . -381) 149890) ((-1129 . -242) 149874) ((-1129 . -633) 149835) ((-1129 . -153) 149819) ((-1129 . -503) 149803) ((-1129 . -1133) T) ((-1129 . -528) 149736) ((-1129 . -321) 149674) ((-1129 . -632) 149656) ((-1129 . -102) T) ((-1129 . -1249) T) ((-1129 . -34) T) ((-1129 . -107) 149640) ((-1129 . -233) 149624) ((-1128 . -1115) T) ((-1128 . -504) 149605) ((-1128 . -632) 149571) ((-1128 . -635) 149552) ((-1128 . -1133) T) ((-1128 . -1249) T) ((-1128 . -102) T) ((-1128 . -93) T) ((-1124 . -1249) T) ((-1124 . -1133) 149522) ((-1124 . -632) 149481) ((-1124 . -102) 149451) ((-1123 . -1115) T) ((-1123 . -504) 149432) ((-1123 . -632) 149398) ((-1123 . -635) 149379) ((-1123 . -1133) T) ((-1123 . -1249) T) ((-1123 . -102) T) ((-1123 . -93) T) ((-1121 . -1126) 149363) ((-1121 . -637) 149347) ((-1121 . -1133) 149325) ((-1121 . -632) 149292) ((-1121 . -1249) 149270) ((-1121 . -102) 149248) ((-1121 . -1127) 149206) ((-1120 . -277) 149190) ((-1120 . -635) 149174) ((-1120 . -1070) 149158) ((-1120 . -875) T) ((-1120 . -102) T) ((-1120 . -1133) T) ((-1120 . -632) 149140) ((-1120 . -872) T) ((-1120 . -236) 149127) ((-1120 . -1249) T) ((-1120 . -239) T) ((-1119 . -262) 149064) ((-1119 . -635) 148800) ((-1119 . -1070) 148627) ((-1119 . -633) NIL) ((-1119 . -338) 148588) ((-1119 . -426) 148572) ((-1119 . -38) 148421) ((-1119 . -111) 148250) ((-1119 . -1083) 148093) ((-1119 . -1088) 147936) ((-1119 . -668) 147846) ((-1119 . -670) 147735) ((-1119 . -662) 147584) ((-1119 . -739) 147433) ((-1119 . -147) 147412) ((-1119 . -149) 147391) ((-1119 . -175) 147302) ((-1119 . -571) 147233) ((-1119 . -302) 147164) ((-1119 . -47) 147125) ((-1119 . -390) 147109) ((-1119 . -660) 147057) ((-1119 . -466) 147008) ((-1119 . -528) 146875) ((-1119 . -928) 146810) ((-1119 . -922) 146705) ((-1119 . -930) 146604) ((-1119 . -912) NIL) ((-1119 . -940) 146583) ((-1119 . -1254) 146562) ((-1119 . -980) 146507) ((-1119 . -321) 146494) ((-1119 . -240) 146473) ((-1119 . -133) T) ((-1119 . -25) T) ((-1119 . -102) T) ((-1119 . -632) 146455) ((-1119 . -1133) T) ((-1119 . -23) T) ((-1119 . -21) T) ((-1119 . -748) T) ((-1119 . -1144) T) ((-1119 . -1089) T) ((-1119 . -1081) T) ((-1119 . -236) 146400) ((-1119 . -1249) T) ((-1119 . -239) 146351) ((-1119 . -274) 146335) ((-1119 . -234) 146319) ((-1117 . -632) 146301) ((-1114 . -872) T) ((-1114 . -632) 146283) ((-1114 . -1133) T) ((-1114 . -102) T) ((-1114 . -1249) T) ((-1114 . -875) T) ((-1114 . -633) 146264) ((-1111 . -746) 146243) ((-1111 . -1070) 146139) ((-1111 . -426) 146123) ((-1111 . -660) 146071) ((-1111 . -670) 145945) ((-1111 . -390) 145929) ((-1111 . -383) 145908) ((-1111 . -149) 145887) ((-1111 . -635) 145705) ((-1111 . -739) 145573) ((-1111 . -662) 145441) ((-1111 . -668) 145336) ((-1111 . -1088) 145246) ((-1111 . -1083) 145156) ((-1111 . -111) 145052) ((-1111 . -38) 144920) ((-1111 . -424) 144899) ((-1111 . -416) 144878) ((-1111 . -147) 144829) ((-1111 . -1184) 144808) ((-1111 . -363) 144787) ((-1111 . -381) 144738) ((-1111 . -250) 144689) ((-1111 . -302) 144640) ((-1111 . -319) 144591) ((-1111 . -466) 144542) ((-1111 . -571) 144493) ((-1111 . -951) 144444) ((-1111 . -1254) 144395) ((-1111 . -376) 144346) ((-1111 . -240) 144271) ((-1111 . -236) 144144) ((-1111 . -239) 144023) ((-1111 . -274) 143993) ((-1111 . -922) 143862) ((-1111 . -930) 143733) ((-1111 . -928) 143666) ((-1111 . -234) 143636) ((-1111 . -633) 143620) ((-1111 . -21) T) ((-1111 . -23) T) ((-1111 . -1133) T) ((-1111 . -632) 143602) ((-1111 . -1249) T) ((-1111 . -102) T) ((-1111 . -25) T) ((-1111 . -133) T) ((-1111 . -1081) T) ((-1111 . -1089) T) ((-1111 . -1144) T) ((-1111 . -748) T) ((-1111 . -175) T) ((-1109 . -1133) T) ((-1109 . -632) 143584) ((-1109 . -1249) T) ((-1109 . -102) T) ((-1109 . -298) 143563) ((-1108 . -1133) T) ((-1108 . -632) 143545) ((-1108 . -1249) T) ((-1108 . -102) T) ((-1107 . -1133) T) ((-1107 . -632) 143527) ((-1107 . -1249) T) ((-1107 . -102) T) ((-1107 . -298) 143506) ((-1107 . -1070) 143483) ((-1107 . -635) 143460) ((-1106 . -1249) T) ((-1105 . -1115) T) ((-1105 . -504) 143441) ((-1105 . -632) 143407) ((-1105 . -635) 143388) ((-1105 . -1133) T) ((-1105 . -1249) T) ((-1105 . -102) T) ((-1105 . -93) T) ((-1098 . -1115) T) ((-1098 . -504) 143369) ((-1098 . -632) 143335) ((-1098 . -635) 143316) ((-1098 . -1133) T) ((-1098 . -1249) T) ((-1098 . -102) T) ((-1098 . -93) T) ((-1095 . -1226) 143291) ((-1095 . -233) 143237) ((-1095 . -107) 143183) ((-1095 . -321) 143034) ((-1095 . -528) 142878) ((-1095 . -503) 142809) ((-1095 . -153) 142755) ((-1095 . -633) NIL) ((-1095 . -242) 142701) ((-1095 . -629) 142676) ((-1095 . -300) 142651) ((-1095 . -1249) T) ((-1095 . -298) 142626) ((-1095 . -1133) T) ((-1095 . -632) 142608) ((-1095 . -102) T) ((-1095 . -34) T) ((-1095 . -618) 142583) ((-1094 . -559) T) ((-1094 . -1254) T) ((-1094 . -1184) T) ((-1094 . -1070) 142565) ((-1094 . -633) 142480) ((-1094 . -1052) T) ((-1094 . -912) 142462) ((-1094 . -871) T) ((-1094 . -821) T) ((-1094 . -818) T) ((-1094 . -875) T) ((-1094 . -872) T) ((-1094 . -816) T) ((-1094 . -814) T) ((-1094 . -844) T) ((-1094 . -670) 142434) ((-1094 . -660) 142416) ((-1094 . -951) T) ((-1094 . -571) T) ((-1094 . -302) T) ((-1094 . -175) T) ((-1094 . -635) 142388) ((-1094 . -739) 142375) ((-1094 . -662) 142362) ((-1094 . -1088) 142349) ((-1094 . -1083) 142336) ((-1094 . -111) 142321) ((-1094 . -38) 142308) ((-1094 . -466) T) ((-1094 . -319) T) ((-1094 . -239) T) ((-1094 . -236) 142295) ((-1094 . -240) T) ((-1094 . -145) T) ((-1094 . -1081) T) ((-1094 . -1089) T) ((-1094 . -1144) T) ((-1094 . -748) T) ((-1094 . -21) T) ((-1094 . -668) 142267) ((-1094 . -23) T) ((-1094 . -1133) T) ((-1094 . -632) 142249) ((-1094 . -1249) T) ((-1094 . -102) T) ((-1094 . -25) T) ((-1094 . -133) T) ((-1094 . -149) T) ((-1094 . -637) 142230) ((-1093 . -1100) 142209) ((-1093 . -102) T) ((-1093 . -1249) T) ((-1093 . -632) 142191) ((-1093 . -1133) T) ((-1090 . -1249) T) ((-1090 . -1133) 142169) ((-1090 . -632) 142136) ((-1090 . -102) 142114) ((-1086 . -1085) 142054) ((-1086 . -662) 141996) ((-1086 . -739) 141938) ((-1086 . -34) T) ((-1086 . -321) 141876) ((-1086 . -528) 141809) ((-1086 . -503) 141793) ((-1086 . -670) 141777) ((-1086 . -668) 141746) ((-1086 . -133) T) ((-1086 . -25) T) ((-1086 . -102) T) ((-1086 . -1249) T) ((-1086 . -632) 141708) ((-1086 . -1133) T) ((-1086 . -23) T) ((-1086 . -21) T) ((-1086 . -1088) 141692) ((-1086 . -1083) 141676) ((-1086 . -111) 141655) ((-1086 . -1307) 141625) ((-1086 . -633) 141586) ((-1078 . -1103) 141515) ((-1078 . -1008) 141444) ((-1078 . -633) 141386) ((-1078 . -503) 141351) ((-1078 . -1133) T) ((-1078 . -528) 141252) ((-1078 . -321) 141160) ((-1078 . -632) 141103) ((-1078 . -102) T) ((-1078 . -1249) T) ((-1078 . -34) T) ((-1078 . -153) 141068) ((-1078 . -1244) 140997) ((-1068 . -1115) T) ((-1068 . -504) 140978) ((-1068 . -632) 140944) ((-1068 . -635) 140925) ((-1068 . -1133) T) ((-1068 . -1249) T) ((-1068 . -102) T) ((-1068 . -93) T) ((-1067 . -1226) 140900) ((-1067 . -233) 140846) ((-1067 . -107) 140792) ((-1067 . -321) 140643) ((-1067 . -528) 140487) ((-1067 . -503) 140418) ((-1067 . -153) 140364) ((-1067 . -633) NIL) ((-1067 . -242) 140310) ((-1067 . -629) 140285) ((-1067 . -300) 140260) ((-1067 . -1249) T) ((-1067 . -298) 140235) ((-1067 . -1133) T) ((-1067 . -632) 140217) ((-1067 . -102) T) ((-1067 . -34) T) ((-1067 . -618) 140192) ((-1066 . -175) T) ((-1066 . -635) 140161) ((-1066 . -748) T) ((-1066 . -1144) T) ((-1066 . -1089) T) ((-1066 . -1081) T) ((-1066 . -670) 140135) ((-1066 . -668) 140094) ((-1066 . -133) T) ((-1066 . -25) T) ((-1066 . -102) T) ((-1066 . -1249) T) ((-1066 . -632) 140076) ((-1066 . -1133) T) ((-1066 . -23) T) ((-1066 . -21) T) ((-1066 . -1088) 140050) ((-1066 . -1083) 140024) ((-1066 . -111) 139991) ((-1066 . -38) 139975) ((-1066 . -662) 139959) ((-1066 . -739) 139943) ((-1059 . -1103) 139912) ((-1059 . -1008) 139881) ((-1059 . -633) 139842) ((-1059 . -503) 139826) ((-1059 . -1133) T) ((-1059 . -528) 139759) ((-1059 . -321) 139697) ((-1059 . -632) 139659) ((-1059 . -102) T) ((-1059 . -1249) T) ((-1059 . -34) T) ((-1059 . -153) 139643) ((-1059 . -1244) 139612) ((-1058 . -1249) T) ((-1058 . -1133) 139590) ((-1058 . -632) 139557) ((-1058 . -102) 139535) ((-1056 . -1044) T) ((-1056 . -1034) T) ((-1056 . -814) T) ((-1056 . -816) T) ((-1056 . -872) T) ((-1056 . -875) T) ((-1056 . -818) T) ((-1056 . -821) T) ((-1056 . -871) T) ((-1056 . -1070) 139415) ((-1056 . -426) 139377) ((-1056 . -250) T) ((-1056 . -302) T) ((-1056 . -319) T) ((-1056 . -466) T) ((-1056 . -38) 139314) ((-1056 . -662) 139251) ((-1056 . -739) 139188) ((-1056 . -635) 139125) ((-1056 . -571) T) ((-1056 . -951) T) ((-1056 . -1254) T) ((-1056 . -376) T) ((-1056 . -111) 139041) ((-1056 . -1083) 138978) ((-1056 . -1088) 138915) ((-1056 . -175) T) ((-1056 . -149) T) ((-1056 . -670) 138852) ((-1056 . -668) 138789) ((-1056 . -133) T) ((-1056 . -25) T) ((-1056 . -102) T) ((-1056 . -1249) T) ((-1056 . -632) 138771) ((-1056 . -1133) T) ((-1056 . -23) T) ((-1056 . -21) T) ((-1056 . -1081) T) ((-1056 . -1089) T) ((-1056 . -1144) T) ((-1056 . -748) T) ((-1051 . -1115) T) ((-1051 . -504) 138752) ((-1051 . -632) 138718) ((-1051 . -635) 138699) ((-1051 . -1133) T) ((-1051 . -1249) T) ((-1051 . -102) T) ((-1051 . -93) T) ((-1036 . -1023) 138681) ((-1036 . -1184) T) ((-1036 . -635) 138631) ((-1036 . -1070) 138591) ((-1036 . -633) 138521) ((-1036 . -1052) T) ((-1036 . -940) NIL) ((-1036 . -910) 138503) ((-1036 . -871) T) ((-1036 . -821) T) ((-1036 . -818) T) ((-1036 . -875) T) ((-1036 . -872) T) ((-1036 . -816) T) ((-1036 . -814) T) ((-1036 . -844) T) ((-1036 . -912) 138485) ((-1036 . -414) 138467) ((-1036 . -660) 138449) ((-1036 . -390) 138431) ((-1036 . -298) NIL) ((-1036 . -321) NIL) ((-1036 . -528) NIL) ((-1036 . -351) 138413) ((-1036 . -250) T) ((-1036 . -111) 138347) ((-1036 . -1083) 138297) ((-1036 . -1088) 138247) ((-1036 . -302) T) ((-1036 . -739) 138197) ((-1036 . -662) 138147) ((-1036 . -670) 138097) ((-1036 . -668) 138047) ((-1036 . -38) 137997) ((-1036 . -319) T) ((-1036 . -466) T) ((-1036 . -175) T) ((-1036 . -571) T) ((-1036 . -951) T) ((-1036 . -1254) T) ((-1036 . -376) T) ((-1036 . -240) T) ((-1036 . -236) 137984) ((-1036 . -239) T) ((-1036 . -274) 137966) ((-1036 . -922) NIL) ((-1036 . -930) NIL) ((-1036 . -928) NIL) ((-1036 . -234) 137948) ((-1036 . -149) T) ((-1036 . -147) NIL) ((-1036 . -133) T) ((-1036 . -25) T) ((-1036 . -102) T) ((-1036 . -1249) T) ((-1036 . -632) 137908) ((-1036 . -1133) T) ((-1036 . -23) T) ((-1036 . -21) T) ((-1036 . -1081) T) ((-1036 . -1089) T) ((-1036 . -1144) T) ((-1036 . -748) T) ((-1035 . -355) 137882) ((-1035 . -175) T) ((-1035 . -635) 137812) ((-1035 . -748) T) ((-1035 . -1144) T) ((-1035 . -1089) T) ((-1035 . -1081) T) ((-1035 . -670) 137719) ((-1035 . -668) 137649) ((-1035 . -133) T) ((-1035 . -25) T) ((-1035 . -102) T) ((-1035 . -1249) T) ((-1035 . -632) 137631) ((-1035 . -1133) T) ((-1035 . -23) T) ((-1035 . -21) T) ((-1035 . -1088) 137576) ((-1035 . -1083) 137521) ((-1035 . -111) 137450) ((-1035 . -633) 137434) ((-1035 . -234) 137411) ((-1035 . -928) 137363) ((-1035 . -930) 137272) ((-1035 . -922) 137179) ((-1035 . -274) 137156) ((-1035 . -239) 137093) ((-1035 . -236) 137024) ((-1035 . -240) 136996) ((-1035 . -376) T) ((-1035 . -1254) T) ((-1035 . -951) T) ((-1035 . -571) T) ((-1035 . -739) 136941) ((-1035 . -662) 136886) ((-1035 . -38) 136831) ((-1035 . -466) T) ((-1035 . -319) T) ((-1035 . -302) T) ((-1035 . -250) T) ((-1035 . -381) NIL) ((-1035 . -363) NIL) ((-1035 . -1184) NIL) ((-1035 . -147) 136803) ((-1035 . -416) NIL) ((-1035 . -424) 136775) ((-1035 . -149) 136747) ((-1035 . -383) 136719) ((-1035 . -390) 136696) ((-1035 . -660) 136635) ((-1035 . -426) 136612) ((-1035 . -1070) 136500) ((-1035 . -746) 136472) ((-1032 . -1027) 136456) ((-1032 . -503) 136440) ((-1032 . -1133) 136418) ((-1032 . -528) 136351) ((-1032 . -321) 136289) ((-1032 . -632) 136221) ((-1032 . -102) 136171) ((-1032 . -1249) T) ((-1032 . -34) T) ((-1032 . -107) 136155) ((-1028 . -1030) 136139) ((-1028 . -875) 136118) ((-1028 . -872) 136097) ((-1028 . -1070) 135993) ((-1028 . -426) 135977) ((-1028 . -660) 135925) ((-1028 . -670) 135827) ((-1028 . -390) 135811) ((-1028 . -298) 135769) ((-1028 . -321) 135734) ((-1028 . -528) 135646) ((-1028 . -351) 135630) ((-1028 . -38) 135578) ((-1028 . -111) 135460) ((-1028 . -1083) 135356) ((-1028 . -1088) 135252) ((-1028 . -668) 135175) ((-1028 . -662) 135123) ((-1028 . -739) 135071) ((-1028 . -635) 134961) ((-1028 . -302) 134912) ((-1028 . -250) 134891) ((-1028 . -240) 134870) ((-1028 . -236) 134815) ((-1028 . -239) 134766) ((-1028 . -274) 134750) ((-1028 . -922) 134671) ((-1028 . -930) 134594) ((-1028 . -928) 134553) ((-1028 . -234) 134537) ((-1028 . -633) 134498) ((-1028 . -149) 134477) ((-1028 . -147) 134456) ((-1028 . -133) T) ((-1028 . -25) T) ((-1028 . -102) T) ((-1028 . -1249) T) ((-1028 . -632) 134438) ((-1028 . -1133) T) ((-1028 . -23) T) ((-1028 . -21) T) ((-1028 . -1081) T) ((-1028 . -1089) T) ((-1028 . -1144) T) ((-1028 . -748) T) ((-1026 . -1115) T) ((-1026 . -504) 134419) ((-1026 . -632) 134385) ((-1026 . -635) 134366) ((-1026 . -1133) T) ((-1026 . -1249) T) ((-1026 . -102) T) ((-1026 . -93) T) ((-1025 . -21) T) ((-1025 . -668) 134348) ((-1025 . -23) T) ((-1025 . -1133) T) ((-1025 . -632) 134330) ((-1025 . -1249) T) ((-1025 . -102) T) ((-1025 . -25) T) ((-1025 . -133) T) ((-1025 . -298) 134297) ((-1021 . -632) 134279) ((-1018 . -1133) T) ((-1018 . -632) 134261) ((-1018 . -1249) T) ((-1018 . -102) T) ((-1003 . -821) T) ((-1003 . -818) T) ((-1003 . -875) T) ((-1003 . -872) T) ((-1003 . -816) T) ((-1003 . -23) T) ((-1003 . -1133) T) ((-1003 . -632) 134221) ((-1003 . -1249) T) ((-1003 . -102) T) ((-1003 . -25) T) ((-1003 . -133) T) ((-1002 . -1115) T) ((-1002 . -504) 134202) ((-1002 . -632) 134168) ((-1002 . -635) 134149) ((-1002 . -1133) T) ((-1002 . -1249) T) ((-1002 . -102) T) ((-1002 . -93) T) ((-998 . -1249) T) ((-997 . -1249) T) ((-996 . -999) T) ((-996 . -102) T) ((-996 . -632) 134131) ((-996 . -1133) T) ((-996 . -684) T) ((-996 . -1249) T) ((-996 . -113) T) ((-996 . -635) 134115) ((-995 . -632) 134097) ((-994 . -1133) T) ((-994 . -632) 134079) ((-994 . -1249) T) ((-994 . -102) T) ((-994 . -381) 134032) ((-994 . -748) 133931) ((-994 . -1144) 133830) ((-994 . -23) 133641) ((-994 . -25) 133452) ((-994 . -133) 133307) ((-994 . -487) 133260) ((-994 . -21) 133215) ((-994 . -668) 133159) ((-994 . -817) 133112) ((-994 . -816) 133065) ((-994 . -872) 132964) ((-994 . -875) 132863) ((-994 . -818) 132816) ((-994 . -821) 132769) ((-988 . -19) 132753) ((-988 . -673) 132737) ((-988 . -300) 132714) ((-988 . -298) 132666) ((-988 . -618) 132643) ((-988 . -633) 132604) ((-988 . -503) 132588) ((-988 . -1133) 132538) ((-988 . -528) 132471) ((-988 . -321) 132409) ((-988 . -632) 132321) ((-988 . -102) 132251) ((-988 . -1249) T) ((-988 . -34) T) ((-988 . -153) 132235) ((-988 . -872) 132214) ((-988 . -875) 132193) ((-988 . -385) 132177) ((-986 . -338) 132156) ((-986 . -1070) 132052) ((-986 . -426) 132036) ((-986 . -38) 131933) ((-986 . -635) 131786) ((-986 . -670) 131711) ((-986 . -668) 131621) ((-986 . -748) T) ((-986 . -1144) T) ((-986 . -1089) T) ((-986 . -1081) T) ((-986 . -111) 131490) ((-986 . -1083) 131373) ((-986 . -1088) 131256) ((-986 . -21) T) ((-986 . -23) T) ((-986 . -1133) T) ((-986 . -632) 131238) ((-986 . -1249) T) ((-986 . -102) T) ((-986 . -25) T) ((-986 . -133) T) ((-986 . -662) 131135) ((-986 . -739) 131032) ((-986 . -147) 131011) ((-986 . -149) 130990) ((-986 . -175) 130941) ((-986 . -571) 130920) ((-986 . -302) 130899) ((-986 . -47) 130878) ((-984 . -1133) T) ((-984 . -632) 130844) ((-984 . -1249) T) ((-984 . -102) T) ((-976 . -980) 130805) ((-976 . -635) 130594) ((-976 . -1070) 130474) ((-976 . -1254) 130453) ((-976 . -940) 130432) ((-976 . -912) 130357) ((-976 . -930) 130338) ((-976 . -922) 130317) ((-976 . -928) 130298) ((-976 . -528) 130245) ((-976 . -466) 130196) ((-976 . -660) 130144) ((-976 . -670) 130033) ((-976 . -390) 130017) ((-976 . -47) 129986) ((-976 . -38) 129835) ((-976 . -662) 129684) ((-976 . -739) 129533) ((-976 . -302) 129464) ((-976 . -571) 129395) ((-976 . -111) 129224) ((-976 . -1083) 129067) ((-976 . -1088) 128910) ((-976 . -175) 128821) ((-976 . -149) 128800) ((-976 . -147) 128779) ((-976 . -668) 128689) ((-976 . -133) T) ((-976 . -25) T) ((-976 . -102) T) ((-976 . -1249) T) ((-976 . -632) 128671) ((-976 . -1133) T) ((-976 . -23) T) ((-976 . -21) T) ((-976 . -1081) T) ((-976 . -1089) T) ((-976 . -1144) T) ((-976 . -748) T) ((-976 . -426) 128655) ((-976 . -338) 128624) ((-976 . -321) 128611) ((-976 . -633) 128472) ((-973 . -1012) 128456) ((-973 . -19) 128440) ((-973 . -673) 128424) ((-973 . -300) 128401) ((-973 . -298) 128353) ((-973 . -618) 128330) ((-973 . -633) 128291) ((-973 . -503) 128275) ((-973 . -1133) 128225) ((-973 . -528) 128158) ((-973 . -321) 128096) ((-973 . -632) 128008) ((-973 . -102) 127938) ((-973 . -1249) T) ((-973 . -34) T) ((-973 . -153) 127922) ((-973 . -872) 127901) ((-973 . -875) 127880) ((-973 . -385) 127864) ((-973 . -1298) 127848) ((-973 . -637) 127825) ((-957 . -1006) T) ((-957 . -632) 127807) ((-955 . -985) T) ((-955 . -632) 127789) ((-949 . -818) T) ((-949 . -875) T) ((-949 . -872) T) ((-949 . -1133) T) ((-949 . -632) 127771) ((-949 . -1249) T) ((-949 . -102) T) ((-949 . -25) T) ((-949 . -748) T) ((-949 . -1144) T) ((-944 . -376) T) ((-944 . -1254) T) ((-944 . -951) T) ((-944 . -571) T) ((-944 . -175) T) ((-944 . -635) 127708) ((-944 . -739) 127660) ((-944 . -662) 127612) ((-944 . -38) 127564) ((-944 . -466) T) ((-944 . -319) T) ((-944 . -670) 127516) ((-944 . -668) 127453) ((-944 . -748) T) ((-944 . -1144) T) ((-944 . -1089) T) ((-944 . -1081) T) ((-944 . -111) 127391) ((-944 . -1083) 127343) ((-944 . -1088) 127295) ((-944 . -21) T) ((-944 . -23) T) ((-944 . -1133) T) ((-944 . -632) 127277) ((-944 . -1249) T) ((-944 . -102) T) ((-944 . -25) T) ((-944 . -133) T) ((-944 . -302) T) ((-944 . -250) T) ((-936 . -363) T) ((-936 . -1184) T) ((-936 . -381) T) ((-936 . -147) T) ((-936 . -376) T) ((-936 . -1254) T) ((-936 . -951) T) ((-936 . -571) T) ((-936 . -175) T) ((-936 . -635) 127227) ((-936 . -739) 127192) ((-936 . -662) 127157) ((-936 . -38) 127122) ((-936 . -466) T) ((-936 . -319) T) ((-936 . -111) 127078) ((-936 . -1083) 127043) ((-936 . -1088) 127008) ((-936 . -668) 126958) ((-936 . -670) 126923) ((-936 . -302) T) ((-936 . -250) T) ((-936 . -416) T) ((-936 . -239) T) ((-936 . -1249) T) ((-936 . -236) 126910) ((-936 . -1081) T) ((-936 . -1089) T) ((-936 . -1144) T) ((-936 . -748) T) ((-936 . -21) T) ((-936 . -23) T) ((-936 . -1133) T) ((-936 . -632) 126892) ((-936 . -102) T) ((-936 . -25) T) ((-936 . -133) T) ((-936 . -240) T) ((-936 . -341) 126879) ((-936 . -149) 126861) ((-936 . -1070) 126848) ((-936 . -1307) 126835) ((-936 . -1318) 126822) ((-936 . -633) 126804) ((-935 . -1133) T) ((-935 . -632) 126786) ((-935 . -1249) T) ((-935 . -102) T) ((-932 . -934) 126770) ((-932 . -875) 126721) ((-932 . -872) 126672) ((-932 . -748) T) ((-932 . -1133) T) ((-932 . -632) 126654) ((-932 . -102) T) ((-932 . -1144) T) ((-932 . -487) T) ((-932 . -1249) T) ((-932 . -298) 126633) ((-931 . -121) 126617) ((-931 . -503) 126601) ((-931 . -1133) 126579) ((-931 . -528) 126512) ((-931 . -321) 126450) ((-931 . -632) 126361) ((-931 . -102) 126311) ((-931 . -1249) T) ((-931 . -34) T) ((-931 . -1042) 126295) ((-926 . -1133) T) ((-926 . -632) 126277) ((-926 . -1249) T) ((-926 . -102) T) ((-919 . -872) T) ((-919 . -632) 126259) ((-919 . -1133) T) ((-919 . -102) T) ((-919 . -1249) T) ((-919 . -875) T) ((-919 . -1070) 126236) ((-919 . -635) 126213) ((-916 . -1133) T) ((-916 . -632) 126195) ((-916 . -1249) T) ((-916 . -102) T) ((-916 . -1070) 126163) ((-916 . -635) 126131) ((-914 . -1133) T) ((-914 . -632) 126113) ((-914 . -1249) T) ((-914 . -102) T) ((-911 . -1133) T) ((-911 . -632) 126095) ((-911 . -1249) T) ((-911 . -102) T) ((-901 . -1115) T) ((-901 . -504) 126076) ((-901 . -632) 126042) ((-901 . -635) 126023) ((-901 . -1133) T) ((-901 . -1249) T) ((-901 . -102) T) ((-901 . -93) T) ((-901 . -1295) T) ((-899 . -1133) T) ((-899 . -632) 126005) ((-899 . -1249) T) ((-899 . -102) T) ((-898 . -1249) T) ((-898 . -632) 125877) ((-898 . -1133) 125828) ((-898 . -102) 125779) ((-897 . -1023) 125763) ((-897 . -1184) 125741) ((-897 . -1070) 125607) ((-897 . -635) 125505) ((-897 . -633) 125312) ((-897 . -1052) 125290) ((-897 . -940) 125269) ((-897 . -910) 125253) ((-897 . -871) 125232) ((-897 . -821) 125211) ((-897 . -818) 125190) ((-897 . -875) 125141) ((-897 . -872) 125092) ((-897 . -816) 125071) ((-897 . -814) 125050) ((-897 . -844) 125029) ((-897 . -912) 124954) ((-897 . -414) 124938) ((-897 . -660) 124886) ((-897 . -670) 124802) ((-897 . -390) 124786) ((-897 . -298) 124744) ((-897 . -321) 124709) ((-897 . -528) 124621) ((-897 . -351) 124605) ((-897 . -250) T) ((-897 . -111) 124543) ((-897 . -1083) 124495) ((-897 . -1088) 124447) ((-897 . -302) T) ((-897 . -739) 124399) ((-897 . -662) 124351) ((-897 . -668) 124288) ((-897 . -38) 124240) ((-897 . -319) T) ((-897 . -466) T) ((-897 . -175) T) ((-897 . -571) T) ((-897 . -951) T) ((-897 . -1254) T) ((-897 . -376) T) ((-897 . -240) 124219) ((-897 . -236) 124164) ((-897 . -239) 124115) ((-897 . -274) 124099) ((-897 . -922) 124020) ((-897 . -930) 123943) ((-897 . -928) 123902) ((-897 . -234) 123886) ((-897 . -149) 123865) ((-897 . -147) 123844) ((-897 . -133) T) ((-897 . -25) T) ((-897 . -102) T) ((-897 . -1249) T) ((-897 . -632) 123826) ((-897 . -1133) T) ((-897 . -23) T) ((-897 . -21) T) ((-897 . -1081) T) ((-897 . -1089) T) ((-897 . -1144) T) ((-897 . -748) T) ((-896 . -1023) 123803) ((-896 . -1184) NIL) ((-896 . -1070) 123780) ((-896 . -635) 123710) ((-896 . -633) NIL) ((-896 . -1052) NIL) ((-896 . -940) NIL) ((-896 . -910) 123687) ((-896 . -871) NIL) ((-896 . -821) NIL) ((-896 . -818) NIL) ((-896 . -875) NIL) ((-896 . -872) NIL) ((-896 . -816) NIL) ((-896 . -814) NIL) ((-896 . -844) NIL) ((-896 . -912) NIL) ((-896 . -414) 123664) ((-896 . -660) 123641) ((-896 . -670) 123586) ((-896 . -390) 123563) ((-896 . -298) 123514) ((-896 . -321) 123471) ((-896 . -528) 123379) ((-896 . -351) 123356) ((-896 . -250) T) ((-896 . -111) 123285) ((-896 . -1083) 123230) ((-896 . -1088) 123175) ((-896 . -302) T) ((-896 . -739) 123120) ((-896 . -662) 123065) ((-896 . -668) 122995) ((-896 . -38) 122940) ((-896 . -319) T) ((-896 . -466) T) ((-896 . -175) T) ((-896 . -571) T) ((-896 . -951) T) ((-896 . -1254) T) ((-896 . -376) T) ((-896 . -240) NIL) ((-896 . -236) NIL) ((-896 . -239) NIL) ((-896 . -274) 122917) ((-896 . -922) NIL) ((-896 . -930) NIL) ((-896 . -928) NIL) ((-896 . -234) 122894) ((-896 . -149) T) ((-896 . -147) NIL) ((-896 . -133) T) ((-896 . -25) T) ((-896 . -102) T) ((-896 . -1249) T) ((-896 . -632) 122876) ((-896 . -1133) T) ((-896 . -23) T) ((-896 . -21) T) ((-896 . -1081) T) ((-896 . -1089) T) ((-896 . -1144) T) ((-896 . -748) T) ((-894 . -895) 122860) ((-894 . -951) T) ((-894 . -571) T) ((-894 . -302) T) ((-894 . -175) T) ((-894 . -635) 122832) ((-894 . -739) 122819) ((-894 . -662) 122806) ((-894 . -1088) 122793) ((-894 . -1083) 122780) ((-894 . -111) 122765) ((-894 . -38) 122752) ((-894 . -466) T) ((-894 . -319) T) ((-894 . -1081) T) ((-894 . -1089) T) ((-894 . -1144) T) ((-894 . -748) T) ((-894 . -21) T) ((-894 . -668) 122724) ((-894 . -23) T) ((-894 . -1133) T) ((-894 . -632) 122706) ((-894 . -1249) T) ((-894 . -102) T) ((-894 . -25) T) ((-894 . -133) T) ((-894 . -670) 122693) ((-894 . -149) T) ((-891 . -1081) T) ((-891 . -1089) T) ((-891 . -1144) T) ((-891 . -748) T) ((-891 . -21) T) ((-891 . -668) 122638) ((-891 . -23) T) ((-891 . -1133) T) ((-891 . -632) 122600) ((-891 . -1249) T) ((-891 . -102) T) ((-891 . -25) T) ((-891 . -133) T) ((-891 . -670) 122560) ((-891 . -635) 122495) ((-891 . -504) 122472) ((-891 . -38) 122442) ((-891 . -111) 122407) ((-891 . -1083) 122377) ((-891 . -1088) 122347) ((-891 . -662) 122317) ((-891 . -739) 122287) ((-890 . -1133) T) ((-890 . -632) 122269) ((-890 . -1249) T) ((-890 . -102) T) ((-889 . -868) T) ((-889 . -875) T) ((-889 . -872) T) ((-889 . -1133) T) ((-889 . -632) 122251) ((-889 . -1249) T) ((-889 . -102) T) ((-889 . -381) T) ((-889 . -633) 122173) ((-888 . -1133) T) ((-888 . -632) 122155) ((-888 . -1249) T) ((-888 . -102) T) ((-887 . -886) T) ((-887 . -176) T) ((-887 . -632) 122137) ((-883 . -872) T) ((-883 . -632) 122119) ((-883 . -1133) T) ((-883 . -102) T) ((-883 . -1249) T) ((-883 . -875) T) ((-880 . -877) 122103) ((-880 . -1070) 121999) ((-880 . -635) 121896) ((-880 . -426) 121880) ((-880 . -739) 121850) ((-880 . -662) 121820) ((-880 . -670) 121794) ((-880 . -668) 121753) ((-880 . -133) T) ((-880 . -25) T) ((-880 . -102) T) ((-880 . -1249) T) ((-880 . -632) 121735) ((-880 . -1133) T) ((-880 . -23) T) ((-880 . -21) T) ((-880 . -1088) 121719) ((-880 . -1083) 121703) ((-880 . -111) 121682) ((-880 . -1081) T) ((-880 . -1089) T) ((-880 . -1144) T) ((-880 . -748) T) ((-880 . -38) 121652) ((-879 . -877) 121636) ((-879 . -1070) 121532) ((-879 . -635) 121450) ((-879 . -426) 121434) ((-879 . -739) 121404) ((-879 . -662) 121374) ((-879 . -670) 121348) ((-879 . -668) 121307) ((-879 . -133) T) ((-879 . -25) T) ((-879 . -102) T) ((-879 . -1249) T) ((-879 . -632) 121289) ((-879 . -1133) T) ((-879 . -23) T) ((-879 . -21) T) ((-879 . -1088) 121273) ((-879 . -1083) 121257) ((-879 . -111) 121236) ((-879 . -1081) T) ((-879 . -1089) T) ((-879 . -1144) T) ((-879 . -748) T) ((-879 . -38) 121206) ((-873 . -875) T) ((-873 . -1249) T) ((-873 . -102) T) ((-873 . -504) 121190) ((-873 . -632) 121138) ((-873 . -635) 121122) ((-866 . -1133) T) ((-866 . -632) 121104) ((-866 . -1249) T) ((-866 . -102) T) ((-866 . -426) 121088) ((-866 . -635) 120956) ((-866 . -1070) 120852) ((-866 . -21) 120804) ((-866 . -668) 120721) ((-866 . -23) 120673) ((-866 . -25) 120625) ((-866 . -133) 120577) ((-866 . -871) 120556) ((-866 . -670) 120529) ((-866 . -1089) 120508) ((-866 . -1081) 120487) ((-866 . -821) 120466) ((-866 . -818) 120445) ((-866 . -875) 120424) ((-866 . -872) 120403) ((-866 . -816) 120382) ((-866 . -814) 120361) ((-866 . -1144) 120340) ((-866 . -748) 120319) ((-865 . -1133) T) ((-865 . -632) 120301) ((-865 . -1249) T) ((-865 . -102) T) ((-862 . -860) 120283) ((-862 . -102) T) ((-862 . -1249) T) ((-862 . -632) 120265) ((-862 . -1133) T) ((-858 . -1081) T) ((-858 . -1089) T) ((-858 . -1144) T) ((-858 . -748) T) ((-858 . -21) T) ((-858 . -668) 120210) ((-858 . -23) T) ((-858 . -1133) T) ((-858 . -632) 120192) ((-858 . -1249) T) ((-858 . -102) T) ((-858 . -25) T) ((-858 . -133) T) ((-858 . -670) 120152) ((-858 . -635) 120106) ((-858 . -1070) 120075) ((-858 . -298) 120054) ((-858 . -149) 120033) ((-858 . -147) 120012) ((-858 . -38) 119982) ((-858 . -111) 119947) ((-858 . -1083) 119917) ((-858 . -1088) 119887) ((-858 . -662) 119857) ((-858 . -739) 119827) ((-856 . -1133) T) ((-856 . -632) 119809) ((-856 . -1249) T) ((-856 . -102) T) ((-856 . -426) 119793) ((-856 . -635) 119661) ((-856 . -1070) 119557) ((-856 . -21) 119509) ((-856 . -668) 119426) ((-856 . -23) 119378) ((-856 . -25) 119330) ((-856 . -133) 119282) ((-856 . -871) 119261) ((-856 . -670) 119234) ((-856 . -1089) 119213) ((-856 . -1081) 119192) ((-856 . -821) 119171) ((-856 . -818) 119150) ((-856 . -875) 119129) ((-856 . -872) 119108) ((-856 . -816) 119087) ((-856 . -814) 119066) ((-856 . -1144) 119045) ((-856 . -748) 119024) ((-852 . -730) 119008) ((-852 . -635) 118963) ((-852 . -739) 118933) ((-852 . -662) 118903) ((-852 . -670) 118877) ((-852 . -668) 118836) ((-852 . -133) T) ((-852 . -25) T) ((-852 . -102) T) ((-852 . -1249) T) ((-852 . -632) 118818) ((-852 . -1133) T) ((-852 . -23) T) ((-852 . -21) T) ((-852 . -1088) 118802) ((-852 . -1083) 118786) ((-852 . -111) 118765) ((-852 . -1081) T) ((-852 . -1089) T) ((-852 . -1144) T) ((-852 . -748) T) ((-852 . -38) 118735) ((-852 . -240) 118714) ((-852 . -236) 118687) ((-852 . -239) 118666) ((-850 . -1133) T) ((-850 . -632) 118648) ((-850 . -1249) T) ((-850 . -102) T) ((-849 . -1133) T) ((-849 . -632) 118630) ((-849 . -1249) T) ((-849 . -102) T) ((-848 . -1133) T) ((-848 . -632) 118612) ((-848 . -1249) T) ((-848 . -102) T) ((-843 . -399) 118596) ((-843 . -635) 118580) ((-843 . -1070) 118564) ((-843 . -875) T) ((-843 . -872) T) ((-843 . -1144) T) ((-843 . -102) T) ((-843 . -1249) T) ((-843 . -632) 118546) ((-843 . -1133) T) ((-843 . -748) T) ((-843 . -870) T) ((-843 . -882) T) ((-842 . -277) 118530) ((-842 . -635) 118514) ((-842 . -1070) 118498) ((-842 . -875) T) ((-842 . -102) T) ((-842 . -1133) T) ((-842 . -632) 118480) ((-842 . -872) T) ((-842 . -236) 118467) ((-842 . -1249) T) ((-842 . -239) T) ((-841 . -111) 118409) ((-841 . -1083) 118360) ((-841 . -1088) 118311) ((-841 . -21) T) ((-841 . -668) 118247) ((-841 . -23) T) ((-841 . -1133) T) ((-841 . -632) 118216) ((-841 . -1249) T) ((-841 . -102) T) ((-841 . -25) T) ((-841 . -133) T) ((-841 . -670) 118167) ((-841 . -240) T) ((-841 . -635) 118081) ((-841 . -748) T) ((-841 . -1144) T) ((-841 . -1089) T) ((-841 . -1081) T) ((-841 . -236) 118068) ((-841 . -239) T) ((-841 . -504) 118052) ((-841 . -376) 118031) ((-841 . -1254) 118010) ((-841 . -951) 117989) ((-841 . -571) 117968) ((-841 . -175) 117947) ((-841 . -739) 117889) ((-841 . -662) 117831) ((-841 . -38) 117773) ((-841 . -466) 117752) ((-841 . -319) 117731) ((-841 . -302) 117710) ((-841 . -250) 117689) ((-840 . -262) 117628) ((-840 . -635) 117365) ((-840 . -1070) 117193) ((-840 . -633) NIL) ((-840 . -338) 117155) ((-840 . -426) 117139) ((-840 . -38) 116988) ((-840 . -111) 116817) ((-840 . -1083) 116660) ((-840 . -1088) 116503) ((-840 . -668) 116413) ((-840 . -670) 116302) ((-840 . -662) 116151) ((-840 . -739) 116000) ((-840 . -147) 115979) ((-840 . -149) 115958) ((-840 . -175) 115869) ((-840 . -571) 115800) ((-840 . -302) 115731) ((-840 . -47) 115693) ((-840 . -390) 115677) ((-840 . -660) 115625) ((-840 . -466) 115576) ((-840 . -528) 115444) ((-840 . -928) 115380) ((-840 . -922) 115276) ((-840 . -930) 115176) ((-840 . -912) NIL) ((-840 . -940) 115155) ((-840 . -1254) 115134) ((-840 . -980) 115081) ((-840 . -321) 115068) ((-840 . -240) 115047) ((-840 . -133) T) ((-840 . -25) T) ((-840 . -102) T) ((-840 . -632) 115029) ((-840 . -1133) T) ((-840 . -23) T) ((-840 . -21) T) ((-840 . -748) T) ((-840 . -1144) T) ((-840 . -1089) T) ((-840 . -1081) T) ((-840 . -236) 114974) ((-840 . -1249) T) ((-840 . -239) 114925) ((-840 . -274) 114909) ((-840 . -234) 114893) ((-839 . -245) 114872) ((-839 . -1307) 114842) ((-839 . -821) 114821) ((-839 . -818) 114800) ((-839 . -875) 114751) ((-839 . -872) 114702) ((-839 . -816) 114681) ((-839 . -817) 114660) ((-839 . -739) 114602) ((-839 . -662) 114524) ((-839 . -300) 114501) ((-839 . -298) 114478) ((-839 . -503) 114462) ((-839 . -528) 114395) ((-839 . -321) 114333) ((-839 . -34) T) ((-839 . -618) 114310) ((-839 . -1070) 114137) ((-839 . -635) 113935) ((-839 . -426) 113904) ((-839 . -660) 113810) ((-839 . -670) 113643) ((-839 . -390) 113612) ((-839 . -381) 113591) ((-839 . -240) 113543) ((-839 . -668) 113322) ((-839 . -748) 113300) ((-839 . -1144) 113278) ((-839 . -1089) 113256) ((-839 . -1081) 113234) ((-839 . -236) 113125) ((-839 . -239) 113022) ((-839 . -274) 112991) ((-839 . -922) 112858) ((-839 . -930) 112727) ((-839 . -928) 112659) ((-839 . -234) 112628) ((-839 . -632) 112321) ((-839 . -1088) 112242) ((-839 . -1083) 112143) ((-839 . -111) 112059) ((-839 . -133) 111930) ((-839 . -25) 111763) ((-839 . -102) 111495) ((-839 . -1249) T) ((-839 . -1133) 111247) ((-839 . -23) 111099) ((-839 . -21) 111010) ((-832 . -1133) T) ((-832 . -632) 110992) ((-832 . -1249) T) ((-832 . -102) T) ((-822 . -820) 110976) ((-822 . -875) 110955) ((-822 . -872) 110934) ((-822 . -1070) 110714) ((-822 . -635) 110560) ((-822 . -426) 110523) ((-822 . -298) 110481) ((-822 . -321) 110446) ((-822 . -528) 110358) ((-822 . -351) 110342) ((-822 . -381) 110321) ((-822 . -633) 110282) ((-822 . -149) 110261) ((-822 . -147) 110240) ((-822 . -739) 110224) ((-822 . -662) 110208) ((-822 . -670) 110182) ((-822 . -668) 110141) ((-822 . -133) T) ((-822 . -25) T) ((-822 . -102) T) ((-822 . -1249) T) ((-822 . -632) 110123) ((-822 . -1133) T) ((-822 . -23) T) ((-822 . -21) T) ((-822 . -1088) 110107) ((-822 . -1083) 110091) ((-822 . -111) 110070) ((-822 . -1081) T) ((-822 . -1089) T) ((-822 . -1144) T) ((-822 . -748) T) ((-822 . -38) 110054) ((-803 . -1275) 110038) ((-803 . -1184) 110016) ((-803 . -633) NIL) ((-803 . -321) 110003) ((-803 . -528) 109950) ((-803 . -338) 109927) ((-803 . -1070) 109786) ((-803 . -426) 109770) ((-803 . -38) 109599) ((-803 . -111) 109408) ((-803 . -1083) 109231) ((-803 . -1088) 109054) ((-803 . -668) 108964) ((-803 . -670) 108853) ((-803 . -662) 108682) ((-803 . -739) 108511) ((-803 . -635) 108259) ((-803 . -147) 108238) ((-803 . -149) 108217) ((-803 . -47) 108194) ((-803 . -390) 108178) ((-803 . -660) 108126) ((-803 . -928) 108069) ((-803 . -922) 107972) ((-803 . -930) 107879) ((-803 . -912) NIL) ((-803 . -940) 107858) ((-803 . -1254) 107837) ((-803 . -980) 107806) ((-803 . -951) 107785) ((-803 . -571) 107696) ((-803 . -302) 107607) ((-803 . -175) 107498) ((-803 . -466) 107429) ((-803 . -319) 107408) ((-803 . -298) 107335) ((-803 . -240) T) ((-803 . -133) T) ((-803 . -25) T) ((-803 . -102) T) ((-803 . -632) 107296) ((-803 . -1133) T) ((-803 . -23) T) ((-803 . -21) T) ((-803 . -748) T) ((-803 . -1144) T) ((-803 . -1089) T) ((-803 . -1081) T) ((-803 . -236) 107283) ((-803 . -1249) T) ((-803 . -239) T) ((-803 . -274) 107267) ((-803 . -234) 107251) ((-802 . -1097) 107218) ((-802 . -633) 106852) ((-802 . -321) 106839) ((-802 . -528) 106791) ((-802 . -338) 106763) ((-802 . -1070) 106620) ((-802 . -426) 106604) ((-802 . -38) 106453) ((-802 . -635) 106219) ((-802 . -670) 106108) ((-802 . -668) 106018) ((-802 . -748) T) ((-802 . -1144) T) ((-802 . -1089) T) ((-802 . -1081) T) ((-802 . -111) 105847) ((-802 . -1083) 105690) ((-802 . -1088) 105533) ((-802 . -21) T) ((-802 . -23) T) ((-802 . -1133) T) ((-802 . -632) 105447) ((-802 . -1249) T) ((-802 . -102) T) ((-802 . -25) T) ((-802 . -133) T) ((-802 . -662) 105296) ((-802 . -739) 105145) ((-802 . -147) 105124) ((-802 . -149) 105103) ((-802 . -175) 105014) ((-802 . -571) 104945) ((-802 . -302) 104876) ((-802 . -47) 104848) ((-802 . -390) 104832) ((-802 . -660) 104780) ((-802 . -466) 104731) ((-802 . -928) 104715) ((-802 . -922) 104697) ((-802 . -930) 104681) ((-802 . -912) 104540) ((-802 . -940) 104519) ((-802 . -1254) 104498) ((-802 . -980) 104465) ((-795 . -1133) T) ((-795 . -632) 104447) ((-795 . -1249) T) ((-795 . -102) T) ((-793 . -817) T) ((-793 . -133) T) ((-793 . -25) T) ((-793 . -102) T) ((-793 . -1249) T) ((-793 . -632) 104429) ((-793 . -1133) T) ((-793 . -23) T) ((-793 . -816) T) ((-793 . -872) T) ((-793 . -875) T) ((-793 . -818) T) ((-793 . -821) T) ((-793 . -748) T) ((-793 . -1144) T) ((-791 . -1133) T) ((-791 . -632) 104411) ((-791 . -1249) T) ((-791 . -102) T) ((-758 . -759) 104395) ((-758 . -1131) 104379) ((-758 . -242) 104363) ((-758 . -633) 104324) ((-758 . -153) 104308) ((-758 . -503) 104292) ((-758 . -1133) T) ((-758 . -528) 104225) ((-758 . -321) 104163) ((-758 . -632) 104145) ((-758 . -102) T) ((-758 . -1249) T) ((-758 . -34) T) ((-758 . -107) 104129) ((-758 . -717) 104113) ((-757 . -1081) T) ((-757 . -1089) T) ((-757 . -1144) T) ((-757 . -748) T) ((-757 . -21) T) ((-757 . -668) 104058) ((-757 . -23) T) ((-757 . -1133) T) ((-757 . -632) 104040) ((-757 . -1249) T) ((-757 . -102) T) ((-757 . -25) T) ((-757 . -133) T) ((-757 . -670) 104000) ((-757 . -635) 103956) ((-757 . -1070) 103927) ((-757 . -149) 103906) ((-757 . -147) 103885) ((-757 . -38) 103855) ((-757 . -111) 103820) ((-757 . -1083) 103790) ((-757 . -1088) 103760) ((-757 . -662) 103730) ((-757 . -739) 103700) ((-757 . -381) 103653) ((-753 . -980) 103606) ((-753 . -635) 103391) ((-753 . -1070) 103267) ((-753 . -1254) 103246) ((-753 . -940) 103225) ((-753 . -912) NIL) ((-753 . -930) 103202) ((-753 . -922) 103177) ((-753 . -928) 103154) ((-753 . -528) 103097) ((-753 . -466) 103048) ((-753 . -660) 102996) ((-753 . -670) 102885) ((-753 . -390) 102869) ((-753 . -47) 102834) ((-753 . -38) 102683) ((-753 . -662) 102532) ((-753 . -739) 102381) ((-753 . -302) 102312) ((-753 . -571) 102243) ((-753 . -111) 102072) ((-753 . -1083) 101915) ((-753 . -1088) 101758) ((-753 . -175) 101669) ((-753 . -149) 101648) ((-753 . -147) 101627) ((-753 . -668) 101537) ((-753 . -133) T) ((-753 . -25) T) ((-753 . -102) T) ((-753 . -1249) T) ((-753 . -632) 101519) ((-753 . -1133) T) ((-753 . -23) T) ((-753 . -21) T) ((-753 . -1081) T) ((-753 . -1089) T) ((-753 . -1144) T) ((-753 . -748) T) ((-753 . -426) 101503) ((-753 . -338) 101468) ((-753 . -321) 101455) ((-753 . -633) 101316) ((-740 . -487) T) ((-740 . -1144) T) ((-740 . -102) T) ((-740 . -1249) T) ((-740 . -632) 101298) ((-740 . -1133) T) ((-740 . -748) T) ((-737 . -1081) T) ((-737 . -1089) T) ((-737 . -1144) T) ((-737 . -748) T) ((-737 . -21) T) ((-737 . -668) 101270) ((-737 . -23) T) ((-737 . -1133) T) ((-737 . -632) 101252) ((-737 . -1249) T) ((-737 . -102) T) ((-737 . -25) T) ((-737 . -133) T) ((-737 . -670) 101239) ((-737 . -635) 101221) ((-736 . -1081) T) ((-736 . -1089) T) ((-736 . -1144) T) ((-736 . -748) T) ((-736 . -21) T) ((-736 . -668) 101166) ((-736 . -23) T) ((-736 . -1133) T) ((-736 . -632) 101148) ((-736 . -1249) T) ((-736 . -102) T) ((-736 . -25) T) ((-736 . -133) T) ((-736 . -670) 101108) ((-736 . -635) 101062) ((-736 . -1070) 101031) ((-736 . -298) 101010) ((-736 . -149) 100989) ((-736 . -147) 100968) ((-736 . -38) 100938) ((-736 . -111) 100903) ((-736 . -1083) 100873) ((-736 . -1088) 100843) ((-736 . -662) 100813) ((-736 . -739) 100783) ((-735 . -872) T) ((-735 . -632) 100718) ((-735 . -1133) T) ((-735 . -102) T) ((-735 . -1249) T) ((-735 . -875) T) ((-735 . -504) 100668) ((-735 . -635) 100618) ((-734 . -1275) 100602) ((-734 . -1184) 100580) ((-734 . -633) NIL) ((-734 . -321) 100567) ((-734 . -528) 100514) ((-734 . -338) 100491) ((-734 . -1070) 100371) ((-734 . -426) 100355) ((-734 . -38) 100184) ((-734 . -111) 99993) ((-734 . -1083) 99816) ((-734 . -1088) 99639) ((-734 . -668) 99549) ((-734 . -670) 99438) ((-734 . -662) 99267) ((-734 . -739) 99096) ((-734 . -635) 98852) ((-734 . -147) 98831) ((-734 . -149) 98810) ((-734 . -47) 98787) ((-734 . -390) 98771) ((-734 . -660) 98719) ((-734 . -928) 98662) ((-734 . -922) 98565) ((-734 . -930) 98472) ((-734 . -912) NIL) ((-734 . -940) 98451) ((-734 . -1254) 98430) ((-734 . -980) 98399) ((-734 . -951) 98378) ((-734 . -571) 98289) ((-734 . -302) 98200) ((-734 . -175) 98091) ((-734 . -466) 98022) ((-734 . -319) 98001) ((-734 . -298) 97928) ((-734 . -240) T) ((-734 . -133) T) ((-734 . -25) T) ((-734 . -102) T) ((-734 . -632) 97910) ((-734 . -1133) T) ((-734 . -23) T) ((-734 . -21) T) ((-734 . -748) T) ((-734 . -1144) T) ((-734 . -1089) T) ((-734 . -1081) T) ((-734 . -236) 97897) ((-734 . -1249) T) ((-734 . -239) T) ((-734 . -274) 97881) ((-734 . -234) 97865) ((-734 . -381) 97844) ((-733 . -376) T) ((-733 . -1254) T) ((-733 . -951) T) ((-733 . -571) T) ((-733 . -175) T) ((-733 . -635) 97794) ((-733 . -739) 97759) ((-733 . -662) 97724) ((-733 . -38) 97689) ((-733 . -466) T) ((-733 . -319) T) ((-733 . -670) 97654) ((-733 . -668) 97604) ((-733 . -748) T) ((-733 . -1144) T) ((-733 . -1089) T) ((-733 . -1081) T) ((-733 . -111) 97560) ((-733 . -1083) 97525) ((-733 . -1088) 97490) ((-733 . -21) T) ((-733 . -23) T) ((-733 . -1133) T) ((-733 . -632) 97472) ((-733 . -1249) T) ((-733 . -102) T) ((-733 . -25) T) ((-733 . -133) T) ((-733 . -302) T) ((-733 . -250) T) ((-732 . -1133) T) ((-732 . -632) 97454) ((-732 . -1249) T) ((-732 . -102) T) ((-723 . -401) T) ((-723 . -1070) 97436) ((-723 . -875) T) ((-723 . -872) T) ((-723 . -38) 97423) ((-723 . -635) 97395) ((-723 . -748) T) ((-723 . -1144) T) ((-723 . -1089) T) ((-723 . -1081) T) ((-723 . -111) 97380) ((-723 . -1083) 97367) ((-723 . -1088) 97354) ((-723 . -21) T) ((-723 . -668) 97326) ((-723 . -23) T) ((-723 . -1133) T) ((-723 . -632) 97308) ((-723 . -1249) T) ((-723 . -102) T) ((-723 . -25) T) ((-723 . -133) T) ((-723 . -670) 97280) ((-723 . -662) 97267) ((-723 . -739) 97254) ((-723 . -175) T) ((-723 . -302) T) ((-723 . -571) T) ((-723 . -559) T) ((-723 . -1254) T) ((-723 . -1184) T) ((-723 . -633) 97169) ((-723 . -1052) T) ((-723 . -912) 97151) ((-723 . -871) T) ((-723 . -821) T) ((-723 . -818) T) ((-723 . -816) T) ((-723 . -814) T) ((-723 . -844) T) ((-723 . -660) 97133) ((-723 . -951) T) ((-723 . -466) T) ((-723 . -319) T) ((-723 . -239) T) ((-723 . -236) 97120) ((-723 . -240) T) ((-723 . -145) T) ((-723 . -149) T) ((-721 . -418) T) ((-721 . -149) T) ((-721 . -635) 97055) ((-721 . -670) 97020) ((-721 . -668) 96970) ((-721 . -133) T) ((-721 . -25) T) ((-721 . -102) T) ((-721 . -1249) T) ((-721 . -632) 96952) ((-721 . -1133) T) ((-721 . -23) T) ((-721 . -21) T) ((-721 . -748) T) ((-721 . -1144) T) ((-721 . -1089) T) ((-721 . -1081) T) ((-721 . -633) 96897) ((-721 . -376) T) ((-721 . -1254) T) ((-721 . -951) T) ((-721 . -571) T) ((-721 . -175) T) ((-721 . -739) 96862) ((-721 . -662) 96827) ((-721 . -38) 96792) ((-721 . -466) T) ((-721 . -319) T) ((-721 . -111) 96748) ((-721 . -1083) 96713) ((-721 . -1088) 96678) ((-721 . -302) T) ((-721 . -250) T) ((-721 . -871) T) ((-721 . -821) T) ((-721 . -818) T) ((-721 . -875) T) ((-721 . -872) T) ((-721 . -816) T) ((-721 . -814) T) ((-721 . -912) 96660) ((-721 . -1034) T) ((-721 . -1052) T) ((-721 . -1070) 96605) ((-721 . -1092) T) ((-721 . -401) T) ((-716 . -401) T) ((-716 . -1070) 96550) ((-716 . -875) T) ((-716 . -872) T) ((-716 . -38) 96500) ((-716 . -635) 96435) ((-716 . -748) T) ((-716 . -1144) T) ((-716 . -1089) T) ((-716 . -1081) T) ((-716 . -111) 96369) ((-716 . -1083) 96319) ((-716 . -1088) 96269) ((-716 . -21) T) ((-716 . -668) 96204) ((-716 . -23) T) ((-716 . -1133) T) ((-716 . -632) 96186) ((-716 . -1249) T) ((-716 . -102) T) ((-716 . -25) T) ((-716 . -133) T) ((-716 . -670) 96136) ((-716 . -662) 96086) ((-716 . -739) 96036) ((-716 . -175) T) ((-716 . -302) T) ((-716 . -571) T) ((-716 . -168) 96018) ((-716 . -35) NIL) ((-716 . -95) NIL) ((-716 . -296) NIL) ((-716 . -507) NIL) ((-716 . -1238) NIL) ((-716 . -1235) NIL) ((-716 . -1034) NIL) ((-716 . -940) NIL) ((-716 . -633) 95926) ((-716 . -910) 95908) ((-716 . -381) NIL) ((-716 . -363) NIL) ((-716 . -1184) NIL) ((-716 . -416) NIL) ((-716 . -424) 95875) ((-716 . -383) 95842) ((-716 . -746) 95809) ((-716 . -426) 95791) ((-716 . -912) 95773) ((-716 . -414) 95755) ((-716 . -660) 95737) ((-716 . -390) 95719) ((-716 . -298) NIL) ((-716 . -321) NIL) ((-716 . -528) NIL) ((-716 . -351) 95701) ((-716 . -250) T) ((-716 . -1254) T) ((-716 . -376) T) ((-716 . -951) T) ((-716 . -466) T) ((-716 . -319) T) ((-716 . -240) NIL) ((-716 . -236) NIL) ((-716 . -239) NIL) ((-716 . -274) 95683) ((-716 . -922) NIL) ((-716 . -930) NIL) ((-716 . -928) NIL) ((-716 . -234) 95665) ((-716 . -149) T) ((-716 . -147) NIL) ((-713 . -1295) T) ((-713 . -1070) 95649) ((-713 . -635) 95633) ((-713 . -632) 95615) ((-711 . -708) 95573) ((-711 . -503) 95557) ((-711 . -1133) 95535) ((-711 . -528) 95468) ((-711 . -321) 95406) ((-711 . -632) 95338) ((-711 . -102) 95288) ((-711 . -1249) T) ((-711 . -34) T) ((-711 . -57) 95246) ((-711 . -633) 95207) ((-703 . -1115) T) ((-703 . -504) 95188) ((-703 . -632) 95138) ((-703 . -635) 95119) ((-703 . -1133) T) ((-703 . -1249) T) ((-703 . -102) T) ((-703 . -93) T) ((-699 . -872) T) ((-699 . -632) 95101) ((-699 . -1133) T) ((-699 . -102) T) ((-699 . -1249) T) ((-699 . -875) T) ((-699 . -1070) 95085) ((-699 . -635) 95069) ((-698 . -1115) T) ((-698 . -504) 95050) ((-698 . -632) 95016) ((-698 . -635) 94997) ((-698 . -1133) T) ((-698 . -1249) T) ((-698 . -102) T) ((-698 . -93) T) ((-697 . -503) 94981) ((-697 . -1133) 94959) ((-697 . -528) 94892) ((-697 . -321) 94830) ((-697 . -632) 94762) ((-697 . -102) 94712) ((-697 . -1249) T) ((-697 . -34) T) ((-694 . -872) T) ((-694 . -632) 94694) ((-694 . -1133) T) ((-694 . -102) T) ((-694 . -1249) T) ((-694 . -875) T) ((-694 . -1070) 94678) ((-694 . -635) 94662) ((-693 . -1115) T) ((-693 . -504) 94643) ((-693 . -632) 94609) ((-693 . -635) 94590) ((-693 . -1133) T) ((-693 . -1249) T) ((-693 . -102) T) ((-693 . -93) T) ((-692 . -1155) 94535) ((-692 . -503) 94519) ((-692 . -528) 94452) ((-692 . -321) 94390) ((-692 . -34) T) ((-692 . -1085) 94330) ((-692 . -1070) 94226) ((-692 . -635) 94144) ((-692 . -426) 94128) ((-692 . -660) 94076) ((-692 . -670) 94014) ((-692 . -390) 93998) ((-692 . -240) 93977) ((-692 . -236) 93922) ((-692 . -239) 93873) ((-692 . -274) 93857) ((-692 . -922) 93778) ((-692 . -930) 93701) ((-692 . -928) 93660) ((-692 . -234) 93644) ((-692 . -739) 93628) ((-692 . -662) 93612) ((-692 . -668) 93571) ((-692 . -133) T) ((-692 . -25) T) ((-692 . -102) T) ((-692 . -1249) T) ((-692 . -632) 93533) ((-692 . -1133) T) ((-692 . -23) T) ((-692 . -21) T) ((-692 . -1088) 93517) ((-692 . -1083) 93501) ((-692 . -111) 93480) ((-692 . -1081) T) ((-692 . -1089) T) ((-692 . -1144) T) ((-692 . -748) T) ((-692 . -38) 93440) ((-692 . -432) 93424) ((-692 . -766) 93408) ((-692 . -742) T) ((-692 . -783) T) ((-692 . -380) 93392) ((-692 . -298) 93369) ((-686 . -387) 93348) ((-686 . -739) 93332) ((-686 . -662) 93316) ((-686 . -670) 93300) ((-686 . -668) 93269) ((-686 . -133) T) ((-686 . -25) T) ((-686 . -102) T) ((-686 . -1249) T) ((-686 . -632) 93251) ((-686 . -1133) T) ((-686 . -23) T) ((-686 . -21) T) ((-686 . -1088) 93235) ((-686 . -1083) 93219) ((-686 . -111) 93198) ((-686 . -654) 93182) ((-686 . -397) 93154) ((-686 . -635) 93131) ((-686 . -1070) 93108) ((-678 . -680) 93092) ((-678 . -38) 93062) ((-678 . -635) 92980) ((-678 . -670) 92954) ((-678 . -668) 92913) ((-678 . -748) T) ((-678 . -1144) T) ((-678 . -1089) T) ((-678 . -1081) T) ((-678 . -111) 92892) ((-678 . -1083) 92876) ((-678 . -1088) 92860) ((-678 . -21) T) ((-678 . -23) T) ((-678 . -1133) T) ((-678 . -632) 92842) ((-678 . -102) T) ((-678 . -25) T) ((-678 . -133) T) ((-678 . -662) 92812) ((-678 . -739) 92782) ((-678 . -426) 92766) ((-678 . -1070) 92662) ((-678 . -877) 92646) ((-678 . -1249) T) ((-678 . -298) 92607) ((-677 . -680) 92591) ((-677 . -38) 92561) ((-677 . -635) 92479) ((-677 . -670) 92453) ((-677 . -668) 92412) ((-677 . -748) T) ((-677 . -1144) T) ((-677 . -1089) T) ((-677 . -1081) T) ((-677 . -111) 92391) ((-677 . -1083) 92375) ((-677 . -1088) 92359) ((-677 . -21) T) ((-677 . -23) T) ((-677 . -1133) T) ((-677 . -632) 92341) ((-677 . -102) T) ((-677 . -25) T) ((-677 . -133) T) ((-677 . -662) 92311) ((-677 . -739) 92281) ((-677 . -426) 92265) ((-677 . -1070) 92161) ((-677 . -877) 92145) ((-677 . -1249) T) ((-677 . -298) 92124) ((-676 . -680) 92108) ((-676 . -38) 92078) ((-676 . -635) 91996) ((-676 . -670) 91970) ((-676 . -668) 91929) ((-676 . -748) T) ((-676 . -1144) T) ((-676 . -1089) T) ((-676 . -1081) T) ((-676 . -111) 91908) ((-676 . -1083) 91892) ((-676 . -1088) 91876) ((-676 . -21) T) ((-676 . -23) T) ((-676 . -1133) T) ((-676 . -632) 91858) ((-676 . -102) T) ((-676 . -25) T) ((-676 . -133) T) ((-676 . -662) 91828) ((-676 . -739) 91798) ((-676 . -426) 91782) ((-676 . -1070) 91678) ((-676 . -877) 91662) ((-676 . -1249) T) ((-676 . -298) 91641) ((-674 . -739) 91625) ((-674 . -662) 91609) ((-674 . -670) 91593) ((-674 . -668) 91562) ((-674 . -133) T) ((-674 . -25) T) ((-674 . -102) T) ((-674 . -1249) T) ((-674 . -632) 91544) ((-674 . -1133) T) ((-674 . -23) T) ((-674 . -21) T) ((-674 . -1088) 91528) ((-674 . -1083) 91512) ((-674 . -111) 91491) ((-674 . -814) 91470) ((-674 . -816) 91449) ((-674 . -872) 91428) ((-674 . -875) 91407) ((-674 . -818) 91386) ((-674 . -821) 91365) ((-671 . -1133) T) ((-671 . -632) 91347) ((-671 . -1249) T) ((-671 . -102) T) ((-671 . -1070) 91331) ((-671 . -635) 91315) ((-669 . -717) 91299) ((-669 . -107) 91283) ((-669 . -34) T) ((-669 . -1249) T) ((-669 . -102) 91233) ((-669 . -632) 91165) ((-669 . -321) 91103) ((-669 . -528) 91036) ((-669 . -1133) 91014) ((-669 . -503) 90998) ((-669 . -153) 90982) ((-669 . -633) 90943) ((-669 . -242) 90927) ((-667 . -1115) T) ((-667 . -504) 90908) ((-667 . -632) 90861) ((-667 . -635) 90842) ((-667 . -1133) T) ((-667 . -1249) T) ((-667 . -102) T) ((-667 . -93) T) ((-663 . -688) 90826) ((-663 . -1288) 90810) ((-663 . -1042) 90794) ((-663 . -1182) 90778) ((-663 . -872) 90757) ((-663 . -875) 90736) ((-663 . -385) 90720) ((-663 . -673) 90704) ((-663 . -300) 90681) ((-663 . -298) 90633) ((-663 . -618) 90610) ((-663 . -633) 90571) ((-663 . -503) 90555) ((-663 . -1133) 90505) ((-663 . -528) 90438) ((-663 . -321) 90376) ((-663 . -632) 90288) ((-663 . -102) 90218) ((-663 . -1249) T) ((-663 . -34) T) ((-663 . -153) 90202) ((-663 . -294) 90186) ((-663 . -845) 90165) ((-661 . -1307) 90149) ((-661 . -111) 90128) ((-661 . -1083) 90112) ((-661 . -1088) 90096) ((-661 . -21) T) ((-661 . -668) 90065) ((-661 . -23) T) ((-661 . -1133) T) ((-661 . -632) 90047) ((-661 . -1249) T) ((-661 . -102) T) ((-661 . -25) T) ((-661 . -133) T) ((-661 . -670) 90031) ((-661 . -662) 90015) ((-661 . -739) 89999) ((-661 . -298) 89966) ((-659 . -1307) 89950) ((-659 . -111) 89929) ((-659 . -1083) 89913) ((-659 . -1088) 89897) ((-659 . -21) T) ((-659 . -668) 89866) ((-659 . -23) T) ((-659 . -1133) T) ((-659 . -632) 89848) ((-659 . -1249) T) ((-659 . -102) T) ((-659 . -25) T) ((-659 . -133) T) ((-659 . -670) 89832) ((-659 . -662) 89816) ((-659 . -739) 89800) ((-659 . -635) 89777) ((-659 . -523) 89749) ((-657 . -868) T) ((-657 . -875) T) ((-657 . -872) T) ((-657 . -1133) T) ((-657 . -632) 89731) ((-657 . -1249) T) ((-657 . -102) T) ((-657 . -381) T) ((-657 . -635) 89708) ((-652 . -766) 89692) ((-652 . -742) T) ((-652 . -783) T) ((-652 . -111) 89671) ((-652 . -1083) 89655) ((-652 . -1088) 89639) ((-652 . -21) T) ((-652 . -668) 89608) ((-652 . -23) T) ((-652 . -1133) T) ((-652 . -632) 89577) ((-652 . -1249) T) ((-652 . -102) T) ((-652 . -25) T) ((-652 . -133) T) ((-652 . -670) 89561) ((-652 . -662) 89545) ((-652 . -739) 89529) ((-652 . -432) 89494) ((-652 . -380) 89426) ((-652 . -298) 89384) ((-651 . -1226) 89359) ((-651 . -233) 89305) ((-651 . -107) 89251) ((-651 . -321) 89102) ((-651 . -528) 88946) ((-651 . -503) 88877) ((-651 . -153) 88823) ((-651 . -633) NIL) ((-651 . -242) 88769) ((-651 . -629) 88744) ((-651 . -300) 88719) ((-651 . -1249) T) ((-651 . -298) 88672) ((-651 . -1133) T) ((-651 . -632) 88654) ((-651 . -102) T) ((-651 . -34) T) ((-651 . -618) 88629) ((-646 . -487) T) ((-646 . -1144) T) ((-646 . -102) T) ((-646 . -1249) T) ((-646 . -632) 88611) ((-646 . -1133) T) ((-646 . -748) T) ((-645 . -1115) T) ((-645 . -504) 88592) ((-645 . -632) 88558) ((-645 . -635) 88539) ((-645 . -1133) T) ((-645 . -1249) T) ((-645 . -102) T) ((-645 . -93) T) ((-642 . -234) 88523) ((-642 . -928) 88482) ((-642 . -930) 88405) ((-642 . -922) 88326) ((-642 . -274) 88310) ((-642 . -239) 88261) ((-642 . -1249) T) ((-642 . -236) 88206) ((-642 . -1081) T) ((-642 . -1089) T) ((-642 . -1144) T) ((-642 . -748) T) ((-642 . -21) T) ((-642 . -668) 88178) ((-642 . -23) T) ((-642 . -1133) T) ((-642 . -632) 88160) ((-642 . -102) T) ((-642 . -25) T) ((-642 . -133) T) ((-642 . -670) 88147) ((-642 . -635) 88042) ((-642 . -240) 88021) ((-642 . -571) T) ((-642 . -302) T) ((-642 . -175) T) ((-642 . -739) 88008) ((-642 . -662) 87995) ((-642 . -1088) 87982) ((-642 . -1083) 87969) ((-642 . -111) 87954) ((-642 . -38) 87941) ((-642 . -633) 87918) ((-642 . -426) 87902) ((-642 . -1070) 87785) ((-642 . -149) 87764) ((-642 . -147) 87743) ((-642 . -319) 87722) ((-642 . -466) 87701) ((-642 . -951) 87680) ((-638 . -38) 87664) ((-638 . -635) 87633) ((-638 . -670) 87607) ((-638 . -668) 87566) ((-638 . -748) T) ((-638 . -1144) T) ((-638 . -1089) T) ((-638 . -1081) T) ((-638 . -111) 87545) ((-638 . -1083) 87529) ((-638 . -1088) 87513) ((-638 . -21) T) ((-638 . -23) T) ((-638 . -1133) T) ((-638 . -632) 87495) ((-638 . -1249) T) ((-638 . -102) T) ((-638 . -25) T) ((-638 . -133) T) ((-638 . -662) 87479) ((-638 . -739) 87463) ((-638 . -871) 87442) ((-638 . -821) 87421) ((-638 . -818) 87400) ((-638 . -875) 87379) ((-638 . -872) 87358) ((-638 . -816) 87337) ((-638 . -814) 87316) ((-636 . -999) T) ((-636 . -102) T) ((-636 . -632) 87298) ((-636 . -1133) T) ((-636 . -684) T) ((-636 . -1249) T) ((-636 . -113) T) ((-630 . -134) T) ((-630 . -102) T) ((-630 . -1249) T) ((-630 . -632) 87280) ((-630 . -1133) T) ((-630 . -872) T) ((-630 . -875) T) ((-630 . -910) 87264) ((-630 . -633) 87125) ((-627 . -378) 87065) ((-627 . -102) T) ((-627 . -1249) T) ((-627 . -632) 87047) ((-627 . -1133) T) ((-627 . -1226) 87023) ((-627 . -233) 86970) ((-627 . -107) 86917) ((-627 . -321) 86712) ((-627 . -528) 86495) ((-627 . -503) 86429) ((-627 . -153) 86376) ((-627 . -633) NIL) ((-627 . -242) 86323) ((-627 . -629) 86299) ((-627 . -300) 86275) ((-627 . -298) 86251) ((-627 . -34) T) ((-627 . -618) 86227) ((-626 . -1133) T) ((-626 . -632) 86179) ((-626 . -1249) T) ((-626 . -102) T) ((-626 . -504) 86146) ((-626 . -635) 86113) ((-625 . -1133) T) ((-625 . -632) 86095) ((-625 . -1249) T) ((-625 . -102) T) ((-625 . -684) T) ((-624 . -1133) T) ((-624 . -632) 86077) ((-624 . -1249) T) ((-624 . -102) T) ((-624 . -684) T) ((-623 . -1133) T) ((-623 . -632) 86044) ((-623 . -1249) T) ((-623 . -102) T) ((-622 . -1133) T) ((-622 . -632) 86026) ((-622 . -1249) T) ((-622 . -102) T) ((-622 . -684) T) ((-621 . -1133) T) ((-621 . -632) 85993) ((-621 . -1249) T) ((-621 . -102) T) ((-621 . -504) 85975) ((-621 . -635) 85957) ((-620 . -766) 85941) ((-620 . -742) T) ((-620 . -783) T) ((-620 . -111) 85920) ((-620 . -1083) 85904) ((-620 . -1088) 85888) ((-620 . -21) T) ((-620 . -668) 85857) ((-620 . -23) T) ((-620 . -1133) T) ((-620 . -632) 85826) ((-620 . -1249) T) ((-620 . -102) T) ((-620 . -25) T) ((-620 . -133) T) ((-620 . -670) 85810) ((-620 . -662) 85794) ((-620 . -739) 85778) ((-620 . -432) 85743) ((-620 . -380) 85675) ((-620 . -298) 85633) ((-619 . -1115) T) ((-619 . -504) 85614) ((-619 . -632) 85564) ((-619 . -635) 85545) ((-619 . -1133) T) ((-619 . -1249) T) ((-619 . -102) T) ((-619 . -93) T) ((-616 . -1298) 85529) ((-616 . -385) 85513) ((-616 . -875) 85492) ((-616 . -872) 85471) ((-616 . -153) 85455) ((-616 . -34) T) ((-616 . -1249) T) ((-616 . -102) 85385) ((-616 . -632) 85297) ((-616 . -321) 85235) ((-616 . -528) 85168) ((-616 . -1133) 85118) ((-616 . -503) 85102) ((-616 . -633) 85063) ((-616 . -298) 85015) ((-616 . -618) 84992) ((-616 . -300) 84969) ((-616 . -673) 84953) ((-616 . -19) 84937) ((-615 . -632) 84919) ((-612 . -1249) T) ((-611 . -1133) T) ((-611 . -632) 84885) ((-611 . -1249) T) ((-611 . -102) T) ((-611 . -504) 84866) ((-611 . -635) 84847) ((-610 . -1081) T) ((-610 . -1089) T) ((-610 . -1144) T) ((-610 . -748) T) ((-610 . -21) T) ((-610 . -668) 84806) ((-610 . -23) T) ((-610 . -1133) T) ((-610 . -632) 84788) ((-610 . -1249) T) ((-610 . -102) T) ((-610 . -25) T) ((-610 . -133) T) ((-610 . -670) 84762) ((-610 . -635) 84720) ((-610 . -111) 84673) ((-610 . -1083) 84633) ((-610 . -1088) 84593) ((-610 . -571) 84572) ((-610 . -302) 84551) ((-610 . -175) 84530) ((-610 . -739) 84503) ((-610 . -662) 84476) ((-610 . -38) 84449) ((-609 . -1278) 84426) ((-609 . -47) 84403) ((-609 . -38) 84300) ((-609 . -662) 84197) ((-609 . -739) 84094) ((-609 . -635) 83976) ((-609 . -302) 83955) ((-609 . -571) 83934) ((-609 . -111) 83803) ((-609 . -1083) 83686) ((-609 . -1088) 83569) ((-609 . -175) 83520) ((-609 . -149) 83499) ((-609 . -147) 83478) ((-609 . -670) 83403) ((-609 . -668) 83313) ((-609 . -1005) 83282) ((-609 . -930) 83195) ((-609 . -922) 83106) ((-609 . -928) 83019) ((-609 . -298) 82984) ((-609 . -239) 82943) ((-609 . -1249) T) ((-609 . -236) 82896) ((-609 . -1081) T) ((-609 . -1089) T) ((-609 . -1144) T) ((-609 . -748) T) ((-609 . -21) T) ((-609 . -23) T) ((-609 . -1133) T) ((-609 . -632) 82878) ((-609 . -102) T) ((-609 . -25) T) ((-609 . -133) T) ((-609 . -240) 82837) ((-607 . -1176) T) ((-607 . -385) 82819) ((-607 . -875) T) ((-607 . -872) T) ((-607 . -153) 82801) ((-607 . -34) T) ((-607 . -1249) T) ((-607 . -102) T) ((-607 . -632) 82783) ((-607 . -321) NIL) ((-607 . -528) NIL) ((-607 . -1133) T) ((-607 . -503) 82765) ((-607 . -633) NIL) ((-607 . -298) 82715) ((-607 . -618) 82690) ((-607 . -300) 82665) ((-607 . -673) 82647) ((-607 . -19) 82629) ((-606 . -1115) T) ((-606 . -504) 82610) ((-606 . -632) 82576) ((-606 . -635) 82557) ((-606 . -1133) T) ((-606 . -1249) T) ((-606 . -102) T) ((-606 . -93) T) ((-600 . -1133) T) ((-600 . -632) 82523) ((-600 . -1249) T) ((-600 . -102) T) ((-600 . -504) 82504) ((-600 . -635) 82485) ((-597 . -739) 82460) ((-597 . -662) 82435) ((-597 . -670) 82410) ((-597 . -668) 82370) ((-597 . -133) T) ((-597 . -25) T) ((-597 . -102) T) ((-597 . -1249) T) ((-597 . -632) 82352) ((-597 . -1133) T) ((-597 . -23) T) ((-597 . -21) T) ((-597 . -1088) 82327) ((-597 . -1083) 82302) ((-597 . -111) 82270) ((-597 . -1070) 82254) ((-597 . -635) 82238) ((-595 . -363) T) ((-595 . -1184) T) ((-595 . -381) T) ((-595 . -147) T) ((-595 . -376) T) ((-595 . -1254) T) ((-595 . -951) T) ((-595 . -571) T) ((-595 . -175) T) ((-595 . -635) 82188) ((-595 . -739) 82153) ((-595 . -662) 82118) ((-595 . -38) 82083) ((-595 . -466) T) ((-595 . -319) T) ((-595 . -111) 82039) ((-595 . -1083) 82004) ((-595 . -1088) 81969) ((-595 . -668) 81919) ((-595 . -670) 81884) ((-595 . -302) T) ((-595 . -250) T) ((-595 . -416) T) ((-595 . -239) T) ((-595 . -1249) T) ((-595 . -236) 81871) ((-595 . -1081) T) ((-595 . -1089) T) ((-595 . -1144) T) ((-595 . -748) T) ((-595 . -21) T) ((-595 . -23) T) ((-595 . -1133) T) ((-595 . -632) 81853) ((-595 . -102) T) ((-595 . -25) T) ((-595 . -133) T) ((-595 . -240) T) ((-595 . -341) 81840) ((-595 . -149) 81822) ((-595 . -1070) 81809) ((-595 . -1307) 81796) ((-595 . -1318) 81783) ((-595 . -633) 81765) ((-594 . -895) 81749) ((-594 . -951) T) ((-594 . -571) T) ((-594 . -302) T) ((-594 . -175) T) ((-594 . -635) 81721) ((-594 . -739) 81708) ((-594 . -662) 81695) ((-594 . -1088) 81682) ((-594 . -1083) 81669) ((-594 . -111) 81654) ((-594 . -38) 81641) ((-594 . -466) T) ((-594 . -319) T) ((-594 . -1081) T) ((-594 . -1089) T) ((-594 . -1144) T) ((-594 . -748) T) ((-594 . -21) T) ((-594 . -668) 81613) ((-594 . -23) T) ((-594 . -1133) T) ((-594 . -632) 81595) ((-594 . -1249) T) ((-594 . -102) T) ((-594 . -25) T) ((-594 . -133) T) ((-594 . -670) 81582) ((-594 . -149) T) ((-593 . -1133) T) ((-593 . -632) 81564) ((-593 . -1249) T) ((-593 . -102) T) ((-592 . -1133) T) ((-592 . -632) 81546) ((-592 . -1249) T) ((-592 . -102) T) ((-591 . -590) T) ((-591 . -886) T) ((-591 . -176) T) ((-591 . -541) T) ((-591 . -632) 81528) ((-585 . -569) 81512) ((-585 . -35) T) ((-585 . -95) T) ((-585 . -296) T) ((-585 . -507) T) ((-585 . -1238) T) ((-585 . -1235) T) ((-585 . -1070) 81494) ((-585 . -1034) T) ((-585 . -875) T) ((-585 . -872) T) ((-585 . -571) T) ((-585 . -302) T) ((-585 . -175) T) ((-585 . -635) 81466) ((-585 . -739) 81453) ((-585 . -662) 81440) ((-585 . -670) 81427) ((-585 . -668) 81399) ((-585 . -133) T) ((-585 . -25) T) ((-585 . -102) T) ((-585 . -1249) T) ((-585 . -632) 81381) ((-585 . -1133) T) ((-585 . -23) T) ((-585 . -21) T) ((-585 . -1088) 81368) ((-585 . -1083) 81355) ((-585 . -111) 81340) ((-585 . -1081) T) ((-585 . -1089) T) ((-585 . -1144) T) ((-585 . -748) T) ((-585 . -38) 81327) ((-585 . -466) T) ((-565 . -1226) 81306) ((-565 . -233) 81256) ((-565 . -107) 81206) ((-565 . -321) 81010) ((-565 . -528) 80802) ((-565 . -503) 80739) ((-565 . -153) 80689) ((-565 . -633) NIL) ((-565 . -242) 80639) ((-565 . -629) 80618) ((-565 . -300) 80597) ((-565 . -1249) T) ((-565 . -298) 80576) ((-565 . -1133) T) ((-565 . -632) 80558) ((-565 . -102) T) ((-565 . -34) T) ((-565 . -618) 80537) ((-564 . -868) T) ((-564 . -875) T) ((-564 . -872) T) ((-564 . -1133) T) ((-564 . -632) 80519) ((-564 . -1249) T) ((-564 . -102) T) ((-564 . -381) T) ((-563 . -868) T) ((-563 . -875) T) ((-563 . -872) T) ((-563 . -1133) T) ((-563 . -632) 80501) ((-563 . -1249) T) ((-563 . -102) T) ((-563 . -381) T) ((-562 . -868) T) ((-562 . -875) T) ((-562 . -872) T) ((-562 . -1133) T) ((-562 . -632) 80483) ((-562 . -1249) T) ((-562 . -102) T) ((-562 . -381) T) ((-561 . -868) T) ((-561 . -875) T) ((-561 . -872) T) ((-561 . -1133) T) ((-561 . -632) 80465) ((-561 . -1249) T) ((-561 . -102) T) ((-561 . -381) T) ((-560 . -559) T) ((-560 . -1254) T) ((-560 . -1184) T) ((-560 . -1070) 80447) ((-560 . -633) 80346) ((-560 . -1052) T) ((-560 . -912) 80328) ((-560 . -871) T) ((-560 . -821) T) ((-560 . -818) T) ((-560 . -875) T) ((-560 . -872) T) ((-560 . -816) T) ((-560 . -814) T) ((-560 . -844) T) ((-560 . -670) 80300) ((-560 . -660) 80282) ((-560 . -951) T) ((-560 . -571) T) ((-560 . -302) T) ((-560 . -175) T) ((-560 . -635) 80254) ((-560 . -739) 80241) ((-560 . -662) 80228) ((-560 . -1088) 80215) ((-560 . -1083) 80202) ((-560 . -111) 80187) ((-560 . -38) 80174) ((-560 . -466) T) ((-560 . -319) T) ((-560 . -239) T) ((-560 . -236) 80161) ((-560 . -240) T) ((-560 . -145) T) ((-560 . -1081) T) ((-560 . -1089) T) ((-560 . -1144) T) ((-560 . -748) T) ((-560 . -21) T) ((-560 . -668) 80133) ((-560 . -23) T) ((-560 . -1133) T) ((-560 . -632) 80115) ((-560 . -1249) T) ((-560 . -102) T) ((-560 . -25) T) ((-560 . -133) T) ((-560 . -149) T) ((-560 . -845) T) ((-549 . -1136) 80067) ((-549 . -102) T) ((-549 . -632) 80049) ((-549 . -1133) T) ((-549 . -298) 80005) ((-549 . -1249) T) ((-549 . -637) 79908) ((-549 . -633) 79889) ((-547 . -789) 79871) ((-547 . -541) T) ((-547 . -176) T) ((-547 . -886) T) ((-547 . -590) T) ((-547 . -632) 79853) ((-545 . -817) T) ((-545 . -133) T) ((-545 . -25) T) ((-545 . -102) T) ((-545 . -1249) T) ((-545 . -632) 79835) ((-545 . -1133) T) ((-545 . -23) T) ((-545 . -816) T) ((-545 . -872) T) ((-545 . -875) T) ((-545 . -818) T) ((-545 . -821) T) ((-545 . -523) 79812) ((-543 . -541) T) ((-543 . -176) T) ((-543 . -632) 79794) ((-539 . -1115) T) ((-539 . -504) 79775) ((-539 . -632) 79741) ((-539 . -635) 79722) ((-539 . -1133) T) ((-539 . -1249) T) ((-539 . -102) T) ((-539 . -93) T) ((-538 . -1115) T) ((-538 . -504) 79703) ((-538 . -632) 79669) ((-538 . -635) 79650) ((-538 . -1133) T) ((-538 . -1249) T) ((-538 . -102) T) ((-538 . -93) T) ((-537 . -708) 79600) ((-537 . -503) 79584) ((-537 . -1133) 79562) ((-537 . -528) 79495) ((-537 . -321) 79433) ((-537 . -632) 79365) ((-537 . -102) 79315) ((-537 . -1249) T) ((-537 . -34) T) ((-537 . -57) 79265) ((-534 . -688) 79249) ((-534 . -1288) 79233) ((-534 . -1042) 79217) ((-534 . -1182) 79201) ((-534 . -872) 79180) ((-534 . -875) 79159) ((-534 . -385) 79143) ((-534 . -673) 79127) ((-534 . -300) 79104) ((-534 . -298) 79056) ((-534 . -618) 79033) ((-534 . -633) 78994) ((-534 . -503) 78978) ((-534 . -1133) 78928) ((-534 . -528) 78861) ((-534 . -321) 78799) ((-534 . -632) 78711) ((-534 . -102) 78641) ((-534 . -1249) T) ((-534 . -34) T) ((-534 . -153) 78625) ((-534 . -294) 78609) ((-533 . -57) 78583) ((-533 . -34) T) ((-533 . -1249) T) ((-533 . -102) 78533) ((-533 . -632) 78465) ((-533 . -321) 78403) ((-533 . -528) 78336) ((-533 . -1133) 78314) ((-533 . -503) 78298) ((-532 . -341) 78275) ((-532 . -240) T) ((-532 . -236) 78262) ((-532 . -239) T) ((-532 . -381) T) ((-532 . -1184) T) ((-532 . -363) T) ((-532 . -149) 78244) ((-532 . -635) 78174) ((-532 . -670) 78119) ((-532 . -668) 78049) ((-532 . -133) T) ((-532 . -25) T) ((-532 . -102) T) ((-532 . -1249) T) ((-532 . -632) 78031) ((-532 . -1133) T) ((-532 . -23) T) ((-532 . -21) T) ((-532 . -748) T) ((-532 . -1144) T) ((-532 . -1089) T) ((-532 . -1081) T) ((-532 . -376) T) ((-532 . -1254) T) ((-532 . -951) T) ((-532 . -571) T) ((-532 . -175) T) ((-532 . -739) 77976) ((-532 . -662) 77921) ((-532 . -38) 77886) ((-532 . -466) T) ((-532 . -319) T) ((-532 . -111) 77815) ((-532 . -1083) 77760) ((-532 . -1088) 77705) ((-532 . -302) T) ((-532 . -250) T) ((-532 . -416) T) ((-532 . -147) T) ((-532 . -1070) 77682) ((-532 . -1307) 77659) ((-532 . -1318) 77636) ((-531 . -1115) T) ((-531 . -504) 77617) ((-531 . -632) 77583) ((-531 . -635) 77564) ((-531 . -1133) T) ((-531 . -1249) T) ((-531 . -102) T) ((-531 . -93) T) ((-530 . -19) 77548) ((-530 . -673) 77532) ((-530 . -300) 77509) ((-530 . -298) 77461) ((-530 . -618) 77438) ((-530 . -633) 77399) ((-530 . -503) 77383) ((-530 . -1133) 77333) ((-530 . -528) 77266) ((-530 . -321) 77204) ((-530 . -632) 77116) ((-530 . -102) 77046) ((-530 . -1249) T) ((-530 . -34) T) ((-530 . -153) 77030) ((-530 . -872) 77009) ((-530 . -875) 76988) ((-530 . -385) 76972) ((-530 . -294) 76956) ((-529 . -335) 76935) ((-529 . -635) 76919) ((-529 . -1070) 76903) ((-529 . -23) T) ((-529 . -1133) T) ((-529 . -632) 76885) ((-529 . -1249) T) ((-529 . -102) T) ((-529 . -25) T) ((-529 . -133) T) ((-526 . -817) T) ((-526 . -133) T) ((-526 . -25) T) ((-526 . -102) T) ((-526 . -1249) T) ((-526 . -632) 76867) ((-526 . -1133) T) ((-526 . -23) T) ((-526 . -816) T) ((-526 . -872) T) ((-526 . -875) T) ((-526 . -818) T) ((-526 . -821) T) ((-526 . -523) 76846) ((-525 . -816) T) ((-525 . -872) T) ((-525 . -875) T) ((-525 . -818) T) ((-525 . -25) T) ((-525 . -102) T) ((-525 . -1249) T) ((-525 . -632) 76828) ((-525 . -1133) T) ((-525 . -23) T) ((-525 . -523) 76807) ((-524 . -523) 76786) ((-524 . -632) 76726) ((-524 . -1133) 76677) ((-524 . -1249) T) ((-524 . -102) T) ((-522 . -23) T) ((-522 . -1133) T) ((-522 . -632) 76659) ((-522 . -1249) T) ((-522 . -102) T) ((-522 . -25) T) ((-522 . -523) 76638) ((-521 . -21) T) ((-521 . -668) 76620) ((-521 . -23) T) ((-521 . -1133) T) ((-521 . -632) 76602) ((-521 . -1249) T) ((-521 . -102) T) ((-521 . -25) T) ((-521 . -133) T) ((-521 . -523) 76581) ((-520 . -1133) T) ((-520 . -632) 76531) ((-520 . -1249) T) ((-520 . -102) T) ((-518 . -1133) T) ((-518 . -632) 76513) ((-518 . -1249) T) ((-518 . -102) T) ((-516 . -872) T) ((-516 . -632) 76495) ((-516 . -1133) T) ((-516 . -102) T) ((-516 . -1249) T) ((-516 . -875) T) ((-514 . -125) T) ((-514 . -385) 76477) ((-514 . -875) T) ((-514 . -872) T) ((-514 . -153) 76459) ((-514 . -34) T) ((-514 . -102) T) ((-514 . -632) 76441) ((-514 . -321) NIL) ((-514 . -528) NIL) ((-514 . -1133) T) ((-514 . -503) 76423) ((-514 . -633) 76405) ((-514 . -298) 76355) ((-514 . -618) 76330) ((-514 . -300) 76305) ((-514 . -673) 76287) ((-514 . -19) 76269) ((-514 . -684) T) ((-514 . -1249) T) ((-514 . -113) T) ((-511 . -57) 76219) ((-511 . -34) T) ((-511 . -1249) T) ((-511 . -102) 76169) ((-511 . -632) 76101) ((-511 . -321) 76039) ((-511 . -528) 75972) ((-511 . -1133) 75950) ((-511 . -503) 75934) ((-510 . -19) 75918) ((-510 . -673) 75902) ((-510 . -300) 75879) ((-510 . -298) 75831) ((-510 . -618) 75808) ((-510 . -633) 75769) ((-510 . -503) 75753) ((-510 . -1133) 75703) ((-510 . -528) 75636) ((-510 . -321) 75574) ((-510 . -632) 75486) ((-510 . -102) 75416) ((-510 . -1249) T) ((-510 . -34) T) ((-510 . -153) 75400) ((-510 . -872) 75379) ((-510 . -875) 75358) ((-510 . -385) 75342) ((-509 . -310) T) ((-509 . -102) T) ((-509 . -1249) T) ((-509 . -632) 75324) ((-509 . -1133) T) ((-509 . -635) 75257) ((-509 . -1070) 75200) ((-509 . -528) 75166) ((-509 . -321) 75153) ((-509 . -27) T) ((-509 . -1034) T) ((-509 . -250) T) ((-509 . -111) 75109) ((-509 . -1083) 75074) ((-509 . -1088) 75039) ((-509 . -302) T) ((-509 . -739) 75004) ((-509 . -662) 74969) ((-509 . -670) 74919) ((-509 . -668) 74869) ((-509 . -133) T) ((-509 . -25) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -1081) T) ((-509 . -1089) T) ((-509 . -1144) T) ((-509 . -748) T) ((-509 . -38) 74834) ((-509 . -319) T) ((-509 . -466) T) ((-509 . -175) T) ((-509 . -571) T) ((-509 . -951) T) ((-509 . -1254) T) ((-509 . -376) T) ((-509 . -660) 74794) ((-509 . -1052) T) ((-509 . -633) 74739) ((-509 . -149) T) ((-509 . -240) T) ((-509 . -236) 74726) ((-509 . -239) T) ((-505 . -1133) T) ((-505 . -632) 74692) ((-505 . -1249) T) ((-505 . -102) T) ((-501 . -1023) 74674) ((-501 . -1184) T) ((-501 . -635) 74624) ((-501 . -1070) 74584) ((-501 . -633) 74514) ((-501 . -1052) T) ((-501 . -940) NIL) ((-501 . -910) 74496) ((-501 . -871) T) ((-501 . -821) T) ((-501 . -818) T) ((-501 . -875) T) ((-501 . -872) T) ((-501 . -816) T) ((-501 . -814) T) ((-501 . -844) T) ((-501 . -912) 74478) ((-501 . -414) 74460) ((-501 . -660) 74442) ((-501 . -390) 74424) ((-501 . -298) NIL) ((-501 . -321) NIL) ((-501 . -528) NIL) ((-501 . -351) 74406) ((-501 . -250) T) ((-501 . -111) 74340) ((-501 . -1083) 74290) ((-501 . -1088) 74240) ((-501 . -302) T) ((-501 . -739) 74190) ((-501 . -662) 74140) ((-501 . -670) 74090) ((-501 . -668) 74040) ((-501 . -38) 73990) ((-501 . -319) T) ((-501 . -466) T) ((-501 . -175) T) ((-501 . -571) T) ((-501 . -951) T) ((-501 . -1254) T) ((-501 . -376) T) ((-501 . -240) T) ((-501 . -236) 73977) ((-501 . -239) T) ((-501 . -274) 73959) ((-501 . -922) NIL) ((-501 . -930) NIL) ((-501 . -928) NIL) ((-501 . -234) 73941) ((-501 . -149) T) ((-501 . -147) NIL) ((-501 . -133) T) ((-501 . -25) T) ((-501 . -102) T) ((-501 . -1249) T) ((-501 . -632) 73882) ((-501 . -1133) T) ((-501 . -23) T) ((-501 . -21) T) ((-501 . -1081) T) ((-501 . -1089) T) ((-501 . -1144) T) ((-501 . -748) T) ((-499 . -349) 73851) ((-499 . -133) T) ((-499 . -25) T) ((-499 . -102) T) ((-499 . -1249) T) ((-499 . -632) 73833) ((-499 . -1133) T) ((-499 . -23) T) ((-499 . -668) 73815) ((-499 . -21) T) ((-498 . -1000) 73799) ((-498 . -503) 73783) ((-498 . -1133) 73761) ((-498 . -528) 73694) ((-498 . -321) 73632) ((-498 . -632) 73564) ((-498 . -102) 73514) ((-498 . -1249) T) ((-498 . -34) T) ((-498 . -107) 73498) ((-497 . -1115) T) ((-497 . -504) 73479) ((-497 . -632) 73445) ((-497 . -635) 73426) ((-497 . -1133) T) ((-497 . -1249) T) ((-497 . -102) T) ((-497 . -93) T) ((-496 . -245) 73405) ((-496 . -1307) 73375) ((-496 . -821) 73354) ((-496 . -818) 73333) ((-496 . -875) 73284) ((-496 . -872) 73235) ((-496 . -816) 73214) ((-496 . -817) 73193) ((-496 . -739) 73135) ((-496 . -662) 73057) ((-496 . -300) 73034) ((-496 . -298) 73011) ((-496 . -503) 72995) ((-496 . -528) 72928) ((-496 . -321) 72866) ((-496 . -34) T) ((-496 . -618) 72843) ((-496 . -1070) 72670) ((-496 . -635) 72468) ((-496 . -426) 72437) ((-496 . -660) 72343) ((-496 . -670) 72176) ((-496 . -390) 72145) ((-496 . -381) 72124) ((-496 . -240) 72076) ((-496 . -668) 71855) ((-496 . -748) 71833) ((-496 . -1144) 71811) ((-496 . -1089) 71789) ((-496 . -1081) 71767) ((-496 . -236) 71658) ((-496 . -239) 71555) ((-496 . -274) 71524) ((-496 . -922) 71391) ((-496 . -930) 71260) ((-496 . -928) 71192) ((-496 . -234) 71161) ((-496 . -632) 70854) ((-496 . -1088) 70775) ((-496 . -1083) 70676) ((-496 . -111) 70592) ((-496 . -133) 70463) ((-496 . -25) 70296) ((-496 . -102) 70028) ((-496 . -1249) T) ((-496 . -1133) 69780) ((-496 . -23) 69632) ((-496 . -21) 69543) ((-495 . -980) 69488) ((-495 . -635) 69273) ((-495 . -1070) 69149) ((-495 . -1254) 69128) ((-495 . -940) 69107) ((-495 . -912) NIL) ((-495 . -930) 69084) ((-495 . -922) 69059) ((-495 . -928) 69036) ((-495 . -528) 68979) ((-495 . -466) 68930) ((-495 . -660) 68878) ((-495 . -670) 68767) ((-495 . -390) 68751) ((-495 . -47) 68708) ((-495 . -38) 68557) ((-495 . -662) 68406) ((-495 . -739) 68255) ((-495 . -302) 68186) ((-495 . -571) 68117) ((-495 . -111) 67946) ((-495 . -1083) 67789) ((-495 . -1088) 67632) ((-495 . -175) 67543) ((-495 . -149) 67522) ((-495 . -147) 67501) ((-495 . -668) 67411) ((-495 . -133) T) ((-495 . -25) T) ((-495 . -102) T) ((-495 . -1249) T) ((-495 . -632) 67393) ((-495 . -1133) T) ((-495 . -23) T) ((-495 . -21) T) ((-495 . -1081) T) ((-495 . -1089) T) ((-495 . -1144) T) ((-495 . -748) T) ((-495 . -426) 67377) ((-495 . -338) 67334) ((-495 . -321) 67321) ((-495 . -633) 67182) ((-493 . -1226) 67161) ((-493 . -233) 67111) ((-493 . -107) 67061) ((-493 . -321) 66865) ((-493 . -528) 66657) ((-493 . -503) 66594) ((-493 . -153) 66544) ((-493 . -633) NIL) ((-493 . -242) 66494) ((-493 . -629) 66473) ((-493 . -300) 66452) ((-493 . -1249) T) ((-493 . -298) 66431) ((-493 . -1133) T) ((-493 . -632) 66413) ((-493 . -102) T) ((-493 . -34) T) ((-493 . -618) 66392) ((-492 . -1115) T) ((-492 . -504) 66373) ((-492 . -632) 66339) ((-492 . -635) 66320) ((-492 . -1133) T) ((-492 . -1249) T) ((-492 . -102) T) ((-492 . -93) T) ((-491 . -376) T) ((-491 . -1254) T) ((-491 . -951) T) ((-491 . -571) T) ((-491 . -175) T) ((-491 . -635) 66270) ((-491 . -739) 66235) ((-491 . -662) 66200) ((-491 . -38) 66165) ((-491 . -466) T) ((-491 . -319) T) ((-491 . -670) 66130) ((-491 . -668) 66080) ((-491 . -748) T) ((-491 . -1144) T) ((-491 . -1089) T) ((-491 . -1081) T) ((-491 . -111) 66036) ((-491 . -1083) 66001) ((-491 . -1088) 65966) ((-491 . -21) T) ((-491 . -23) T) ((-491 . -1133) T) ((-491 . -632) 65918) ((-491 . -1249) T) ((-491 . -102) T) ((-491 . -25) T) ((-491 . -133) T) ((-491 . -302) T) ((-491 . -250) T) ((-491 . -149) T) ((-491 . -1070) 65878) ((-491 . -1052) T) ((-491 . -633) 65800) ((-490 . -1244) 65769) ((-490 . -632) 65731) ((-490 . -153) 65715) ((-490 . -34) T) ((-490 . -1249) T) ((-490 . -102) T) ((-490 . -321) 65653) ((-490 . -528) 65586) ((-490 . -1133) T) ((-490 . -503) 65570) ((-490 . -633) 65531) ((-490 . -1008) 65500) ((-489 . -1226) 65479) ((-489 . -233) 65429) ((-489 . -107) 65379) ((-489 . -321) 65183) ((-489 . -528) 64975) ((-489 . -503) 64912) ((-489 . -153) 64862) ((-489 . -633) NIL) ((-489 . -242) 64812) ((-489 . -629) 64791) ((-489 . -300) 64770) ((-489 . -1249) T) ((-489 . -298) 64749) ((-489 . -1133) T) ((-489 . -632) 64731) ((-489 . -102) T) ((-489 . -34) T) ((-489 . -618) 64710) ((-488 . -1282) 64694) ((-488 . -240) 64646) ((-488 . -236) 64592) ((-488 . -239) 64544) ((-488 . -298) 64502) ((-488 . -928) 64408) ((-488 . -922) 64289) ((-488 . -930) 64195) ((-488 . -1005) 64157) ((-488 . -38) 63998) ((-488 . -111) 63819) ((-488 . -1083) 63654) ((-488 . -1088) 63489) ((-488 . -668) 63371) ((-488 . -670) 63268) ((-488 . -662) 63109) ((-488 . -739) 62950) ((-488 . -635) 62776) ((-488 . -147) 62755) ((-488 . -149) 62734) ((-488 . -47) 62704) ((-488 . -1278) 62674) ((-488 . -35) 62640) ((-488 . -95) 62606) ((-488 . -296) 62572) ((-488 . -507) 62538) ((-488 . -1238) 62504) ((-488 . -1235) 62470) ((-488 . -1034) 62436) ((-488 . -250) 62415) ((-488 . -302) 62366) ((-488 . -133) T) ((-488 . -25) T) ((-488 . -102) T) ((-488 . -1249) T) ((-488 . -632) 62348) ((-488 . -1133) T) ((-488 . -23) T) ((-488 . -21) T) ((-488 . -1081) T) ((-488 . -1089) T) ((-488 . -1144) T) ((-488 . -748) T) ((-488 . -319) 62327) ((-488 . -466) 62306) ((-488 . -175) 62237) ((-488 . -571) 62188) ((-488 . -951) 62167) ((-488 . -1254) 62146) ((-488 . -376) 62125) ((-482 . -1133) T) ((-482 . -632) 62107) ((-482 . -1249) T) ((-482 . -102) T) ((-477 . -1008) 62076) ((-477 . -633) 62037) ((-477 . -503) 62021) ((-477 . -1133) T) ((-477 . -528) 61954) ((-477 . -321) 61892) ((-477 . -632) 61854) ((-477 . -102) T) ((-477 . -1249) T) ((-477 . -34) T) ((-477 . -153) 61838) ((-475 . -739) 61809) ((-475 . -662) 61780) ((-475 . -670) 61751) ((-475 . -668) 61707) ((-475 . -133) T) ((-475 . -25) T) ((-475 . -102) T) ((-475 . -1249) T) ((-475 . -632) 61689) ((-475 . -1133) T) ((-475 . -23) T) ((-475 . -21) T) ((-475 . -1088) 61660) ((-475 . -1083) 61631) ((-475 . -111) 61592) ((-468 . -980) 61559) ((-468 . -635) 61344) ((-468 . -1070) 61220) ((-468 . -1254) 61199) ((-468 . -940) 61178) ((-468 . -912) NIL) ((-468 . -930) 61155) ((-468 . -922) 61130) ((-468 . -928) 61107) ((-468 . -528) 61050) ((-468 . -466) 61001) ((-468 . -660) 60949) ((-468 . -670) 60838) ((-468 . -390) 60822) ((-468 . -47) 60801) ((-468 . -38) 60650) ((-468 . -662) 60499) ((-468 . -739) 60348) ((-468 . -302) 60279) ((-468 . -571) 60210) ((-468 . -111) 60039) ((-468 . -1083) 59882) ((-468 . -1088) 59725) ((-468 . -175) 59636) ((-468 . -149) 59615) ((-468 . -147) 59594) ((-468 . -668) 59504) ((-468 . -133) T) ((-468 . -25) T) ((-468 . -102) T) ((-468 . -1249) T) ((-468 . -632) 59486) ((-468 . -1133) T) ((-468 . -23) T) ((-468 . -21) T) ((-468 . -1081) T) ((-468 . -1089) T) ((-468 . -1144) T) ((-468 . -748) T) ((-468 . -426) 59470) ((-468 . -338) 59449) ((-468 . -321) 59436) ((-468 . -633) 59297) ((-467 . -432) 59267) ((-467 . -766) 59237) ((-467 . -742) T) ((-467 . -783) T) ((-467 . -111) 59200) ((-467 . -1083) 59170) ((-467 . -1088) 59140) ((-467 . -21) T) ((-467 . -668) 59055) ((-467 . -23) T) ((-467 . -1133) T) ((-467 . -632) 59037) ((-467 . -102) T) ((-467 . -25) T) ((-467 . -133) T) ((-467 . -670) 58967) ((-467 . -662) 58937) ((-467 . -739) 58907) ((-467 . -380) 58877) ((-467 . -1249) T) ((-467 . -298) 58840) ((-453 . -1133) T) ((-453 . -632) 58822) ((-453 . -1249) T) ((-453 . -102) T) ((-452 . -1133) T) ((-452 . -632) 58804) ((-452 . -1249) T) ((-452 . -102) T) ((-451 . -378) 58778) ((-451 . -102) T) ((-451 . -1249) T) ((-451 . -632) 58760) ((-451 . -1133) T) ((-450 . -1133) T) ((-450 . -632) 58742) ((-450 . -1249) T) ((-450 . -102) T) ((-448 . -632) 58724) ((-443 . -38) 58708) ((-443 . -635) 58677) ((-443 . -670) 58651) ((-443 . -668) 58610) ((-443 . -748) T) ((-443 . -1144) T) ((-443 . -1089) T) ((-443 . -1081) T) ((-443 . -111) 58589) ((-443 . -1083) 58573) ((-443 . -1088) 58557) ((-443 . -21) T) ((-443 . -23) T) ((-443 . -1133) T) ((-443 . -632) 58539) ((-443 . -1249) T) ((-443 . -102) T) ((-443 . -25) T) ((-443 . -133) T) ((-443 . -662) 58523) ((-443 . -739) 58507) ((-429 . -748) T) ((-429 . -1133) T) ((-429 . -632) 58489) ((-429 . -1249) T) ((-429 . -102) T) ((-429 . -1144) T) ((-427 . -487) T) ((-427 . -1144) T) ((-427 . -102) T) ((-427 . -1249) T) ((-427 . -632) 58471) ((-427 . -1133) T) ((-427 . -748) T) ((-421 . -1023) 58455) ((-421 . -1184) 58433) ((-421 . -1070) 58299) ((-421 . -635) 58197) ((-421 . -633) 58004) ((-421 . -1052) 57982) ((-421 . -940) 57961) ((-421 . -910) 57945) ((-421 . -871) 57924) ((-421 . -821) 57903) ((-421 . -818) 57882) ((-421 . -875) 57833) ((-421 . -872) 57784) ((-421 . -816) 57763) ((-421 . -814) 57742) ((-421 . -844) 57721) ((-421 . -912) 57646) ((-421 . -414) 57630) ((-421 . -660) 57578) ((-421 . -670) 57494) ((-421 . -390) 57478) ((-421 . -298) 57436) ((-421 . -321) 57401) ((-421 . -528) 57313) ((-421 . -351) 57297) ((-421 . -250) T) ((-421 . -111) 57235) ((-421 . -1083) 57187) ((-421 . -1088) 57139) ((-421 . -302) T) ((-421 . -739) 57091) ((-421 . -662) 57043) ((-421 . -668) 56980) ((-421 . -38) 56932) ((-421 . -319) T) ((-421 . -466) T) ((-421 . -175) T) ((-421 . -571) T) ((-421 . -951) T) ((-421 . -1254) T) ((-421 . -376) T) ((-421 . -240) 56911) ((-421 . -236) 56856) ((-421 . -239) 56807) ((-421 . -274) 56791) ((-421 . -922) 56712) ((-421 . -930) 56635) ((-421 . -928) 56594) ((-421 . -234) 56578) ((-421 . -149) 56557) ((-421 . -147) 56536) ((-421 . -133) T) ((-421 . -25) T) ((-421 . -102) T) ((-421 . -1249) T) ((-421 . -632) 56518) ((-421 . -1133) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -1081) T) ((-421 . -1089) T) ((-421 . -1144) T) ((-421 . -748) T) ((-421 . -845) 56471) ((-419 . -571) T) ((-419 . -302) T) ((-419 . -175) T) ((-419 . -635) 56379) ((-419 . -739) 56353) ((-419 . -662) 56327) ((-419 . -670) 56301) ((-419 . -668) 56260) ((-419 . -133) T) ((-419 . -25) T) ((-419 . -102) T) ((-419 . -1249) T) ((-419 . -632) 56242) ((-419 . -1133) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -1088) 56216) ((-419 . -1083) 56190) ((-419 . -111) 56157) ((-419 . -1081) T) ((-419 . -1089) T) ((-419 . -1144) T) ((-419 . -748) T) ((-419 . -38) 56131) ((-419 . -234) 56115) ((-419 . -928) 56074) ((-419 . -930) 55997) ((-419 . -922) 55918) ((-419 . -274) 55902) ((-419 . -239) 55853) ((-419 . -236) 55798) ((-419 . -240) 55777) ((-419 . -351) 55761) ((-419 . -528) 55603) ((-419 . -321) 55542) ((-419 . -298) 55470) ((-419 . -426) 55454) ((-419 . -1070) 55350) ((-419 . -466) 55300) ((-419 . -1052) 55278) ((-419 . -633) 55185) ((-419 . -1254) 55163) ((-413 . -1133) T) ((-413 . -632) 55145) ((-413 . -1249) T) ((-413 . -102) T) ((-413 . -239) T) ((-413 . -236) 55132) ((-413 . -633) 55109) ((-412 . -410) T) ((-412 . -1249) T) ((-412 . -632) 55091) ((-407 . -1133) T) ((-407 . -632) 55073) ((-407 . -1249) T) ((-407 . -102) T) ((-407 . -635) 55055) ((-404 . -766) 55039) ((-404 . -742) T) ((-404 . -783) T) ((-404 . -111) 55018) ((-404 . -1083) 55002) ((-404 . -1088) 54986) ((-404 . -21) T) ((-404 . -668) 54955) ((-404 . -23) T) ((-404 . -1133) T) ((-404 . -632) 54937) ((-404 . -1249) T) ((-404 . -102) T) ((-404 . -25) T) ((-404 . -133) T) ((-404 . -670) 54921) ((-404 . -662) 54905) ((-404 . -739) 54889) ((-402 . -403) T) ((-402 . -102) T) ((-402 . -1249) T) ((-402 . -632) 54855) ((-402 . -1133) T) ((-402 . -635) 54836) ((-402 . -504) 54817) ((-400 . -399) 54801) ((-400 . -635) 54785) ((-400 . -1070) 54769) ((-400 . -875) 54748) ((-400 . -872) 54727) ((-400 . -1144) T) ((-400 . -102) T) ((-400 . -1249) T) ((-400 . -632) 54709) ((-400 . -1133) T) ((-400 . -748) T) ((-395 . -397) 54688) ((-395 . -635) 54672) ((-395 . -1070) 54656) ((-395 . -662) 54626) ((-395 . -739) 54596) ((-395 . -670) 54580) ((-395 . -668) 54549) ((-395 . -133) T) ((-395 . -25) T) ((-395 . -102) T) ((-395 . -1249) T) ((-395 . -632) 54531) ((-395 . -1133) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -1088) 54515) ((-395 . -1083) 54499) ((-395 . -111) 54478) ((-394 . -111) 54457) ((-394 . -1083) 54441) ((-394 . -1088) 54425) ((-394 . -21) T) ((-394 . -668) 54394) ((-394 . -23) T) ((-394 . -1133) T) ((-394 . -632) 54376) ((-394 . -1249) T) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -133) T) ((-394 . -670) 54360) ((-394 . -523) 54339) ((-394 . -739) 54309) ((-394 . -662) 54279) ((-391 . -418) T) ((-391 . -149) T) ((-391 . -635) 54229) ((-391 . -670) 54194) ((-391 . -668) 54144) ((-391 . -133) T) ((-391 . -25) T) ((-391 . -102) T) ((-391 . -1249) T) ((-391 . -632) 54111) ((-391 . -1133) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -748) T) ((-391 . -1144) T) ((-391 . -1089) T) ((-391 . -1081) T) ((-391 . -633) 54025) ((-391 . -376) T) ((-391 . -1254) T) ((-391 . -951) T) ((-391 . -571) T) ((-391 . -175) T) ((-391 . -739) 53990) ((-391 . -662) 53955) ((-391 . -38) 53920) ((-391 . -466) T) ((-391 . -319) T) ((-391 . -111) 53876) ((-391 . -1083) 53841) ((-391 . -1088) 53806) ((-391 . -302) T) ((-391 . -250) T) ((-391 . -871) T) ((-391 . -821) T) ((-391 . -818) T) ((-391 . -875) T) ((-391 . -872) T) ((-391 . -816) T) ((-391 . -814) T) ((-391 . -912) 53788) ((-391 . -1034) T) ((-391 . -1052) T) ((-391 . -1070) 53748) ((-391 . -1092) T) ((-391 . -240) T) ((-391 . -236) 53735) ((-391 . -239) T) ((-391 . -845) T) ((-391 . -1235) T) ((-391 . -1238) T) ((-391 . -507) T) ((-391 . -296) T) ((-391 . -95) T) ((-391 . -35) T) ((-391 . -637) 53717) ((-377 . -378) 53694) ((-377 . -102) T) ((-377 . -1249) T) ((-377 . -632) 53676) ((-377 . -1133) T) ((-374 . -487) T) ((-374 . -1144) T) ((-374 . -102) T) ((-374 . -1249) T) ((-374 . -632) 53658) ((-374 . -1133) T) ((-374 . -748) T) ((-374 . -1070) 53642) ((-374 . -635) 53626) ((-372 . -341) 53610) ((-372 . -240) 53589) ((-372 . -236) 53562) ((-372 . -239) 53541) ((-372 . -381) 53520) ((-372 . -1184) 53499) ((-372 . -363) 53478) ((-372 . -149) 53457) ((-372 . -635) 53394) ((-372 . -670) 53346) ((-372 . -668) 53283) ((-372 . -133) T) ((-372 . -25) T) ((-372 . -102) T) ((-372 . -1249) T) ((-372 . -632) 53265) ((-372 . -1133) T) ((-372 . -23) T) ((-372 . -21) T) ((-372 . -748) T) ((-372 . -1144) T) ((-372 . -1089) T) ((-372 . -1081) T) ((-372 . -376) T) ((-372 . -1254) T) ((-372 . -951) T) ((-372 . -571) T) ((-372 . -175) T) ((-372 . -739) 53217) ((-372 . -662) 53169) ((-372 . -38) 53134) ((-372 . -466) T) ((-372 . -319) T) ((-372 . -111) 53072) ((-372 . -1083) 53024) ((-372 . -1088) 52976) ((-372 . -302) T) ((-372 . -250) T) ((-372 . -416) 52927) ((-372 . -147) 52878) ((-372 . -1070) 52862) ((-372 . -1307) 52846) ((-372 . -1318) 52830) ((-368 . -341) 52814) ((-368 . -240) 52793) ((-368 . -236) 52766) ((-368 . -239) 52745) ((-368 . -381) 52724) ((-368 . -1184) 52703) ((-368 . -363) 52682) ((-368 . -149) 52661) ((-368 . -635) 52598) ((-368 . -670) 52550) ((-368 . -668) 52487) ((-368 . -133) T) ((-368 . -25) T) ((-368 . -102) T) ((-368 . -1249) T) ((-368 . -632) 52469) ((-368 . -1133) T) ((-368 . -23) T) ((-368 . -21) T) ((-368 . -748) T) ((-368 . -1144) T) ((-368 . -1089) T) ((-368 . -1081) T) ((-368 . -376) T) ((-368 . -1254) T) ((-368 . -951) T) ((-368 . -571) T) ((-368 . -175) T) ((-368 . -739) 52421) ((-368 . -662) 52373) ((-368 . -38) 52338) ((-368 . -466) T) ((-368 . -319) T) ((-368 . -111) 52276) ((-368 . -1083) 52228) ((-368 . -1088) 52180) ((-368 . -302) T) ((-368 . -250) T) ((-368 . -416) 52131) ((-368 . -147) 52082) ((-368 . -1070) 52066) ((-368 . -1307) 52050) ((-368 . -1318) 52034) ((-367 . -341) 52018) ((-367 . -240) 51997) ((-367 . -236) 51970) ((-367 . -239) 51949) ((-367 . -381) 51928) ((-367 . -1184) 51907) ((-367 . -363) 51886) ((-367 . -149) 51865) ((-367 . -635) 51802) ((-367 . -670) 51754) ((-367 . -668) 51691) ((-367 . -133) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -1249) T) ((-367 . -632) 51673) ((-367 . -1133) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -748) T) ((-367 . -1144) T) ((-367 . -1089) T) ((-367 . -1081) T) ((-367 . -376) T) ((-367 . -1254) T) ((-367 . -951) T) ((-367 . -571) T) ((-367 . -175) T) ((-367 . -739) 51625) ((-367 . -662) 51577) ((-367 . -38) 51542) ((-367 . -466) T) ((-367 . -319) T) ((-367 . -111) 51480) ((-367 . -1083) 51432) ((-367 . -1088) 51384) ((-367 . -302) T) ((-367 . -250) T) ((-367 . -416) 51335) ((-367 . -147) 51286) ((-367 . -1070) 51270) ((-367 . -1307) 51254) ((-367 . -1318) 51238) ((-366 . -341) 51222) ((-366 . -240) 51201) ((-366 . -236) 51174) ((-366 . -239) 51153) ((-366 . -381) 51132) ((-366 . -1184) 51111) ((-366 . -363) 51090) ((-366 . -149) 51069) ((-366 . -635) 51006) ((-366 . -670) 50958) ((-366 . -668) 50895) ((-366 . -133) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -1249) T) ((-366 . -632) 50877) ((-366 . -1133) T) ((-366 . -23) T) ((-366 . -21) T) ((-366 . -748) T) ((-366 . -1144) T) ((-366 . -1089) T) ((-366 . -1081) T) ((-366 . -376) T) ((-366 . -1254) T) ((-366 . -951) T) ((-366 . -571) T) ((-366 . -175) T) ((-366 . -739) 50829) ((-366 . -662) 50781) ((-366 . -38) 50746) ((-366 . -466) T) ((-366 . -319) T) ((-366 . -111) 50684) ((-366 . -1083) 50636) ((-366 . -1088) 50588) ((-366 . -302) T) ((-366 . -250) T) ((-366 . -416) 50539) ((-366 . -147) 50490) ((-366 . -1070) 50474) ((-366 . -1307) 50458) ((-366 . -1318) 50442) ((-365 . -341) 50419) ((-365 . -240) T) ((-365 . -236) 50406) ((-365 . -239) T) ((-365 . -381) T) ((-365 . -1184) T) ((-365 . -363) T) ((-365 . -149) 50388) ((-365 . -635) 50318) ((-365 . -670) 50263) ((-365 . -668) 50193) ((-365 . -133) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -1249) T) ((-365 . -632) 50175) ((-365 . -1133) T) ((-365 . -23) T) ((-365 . -21) T) ((-365 . -748) T) ((-365 . -1144) T) ((-365 . -1089) T) ((-365 . -1081) T) ((-365 . -376) T) ((-365 . -1254) T) ((-365 . -951) T) ((-365 . -571) T) ((-365 . -175) T) ((-365 . -739) 50120) ((-365 . -662) 50065) ((-365 . -38) 50030) ((-365 . -466) T) ((-365 . -319) T) ((-365 . -111) 49959) ((-365 . -1083) 49904) ((-365 . -1088) 49849) ((-365 . -302) T) ((-365 . -250) T) ((-365 . -416) T) ((-365 . -147) T) ((-365 . -1070) 49826) ((-365 . -1307) 49803) ((-365 . -1318) 49780) ((-359 . -341) 49764) ((-359 . -240) 49743) ((-359 . -236) 49716) ((-359 . -239) 49695) ((-359 . -381) 49674) ((-359 . -1184) 49653) ((-359 . -363) 49632) ((-359 . -149) 49611) ((-359 . -635) 49548) ((-359 . -670) 49500) ((-359 . -668) 49437) ((-359 . -133) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -1249) T) ((-359 . -632) 49419) ((-359 . -1133) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -748) T) ((-359 . -1144) T) ((-359 . -1089) T) ((-359 . -1081) T) ((-359 . -376) T) ((-359 . -1254) T) ((-359 . -951) T) ((-359 . -571) T) ((-359 . -175) T) ((-359 . -739) 49371) ((-359 . -662) 49323) ((-359 . -38) 49288) ((-359 . -466) T) ((-359 . -319) T) ((-359 . -111) 49226) ((-359 . -1083) 49178) ((-359 . -1088) 49130) ((-359 . -302) T) ((-359 . -250) T) ((-359 . -416) 49081) ((-359 . -147) 49032) ((-359 . -1070) 49016) ((-359 . -1307) 49000) ((-359 . -1318) 48984) ((-358 . -341) 48968) ((-358 . -240) 48947) ((-358 . -236) 48920) ((-358 . -239) 48899) ((-358 . -381) 48878) ((-358 . -1184) 48857) ((-358 . -363) 48836) ((-358 . -149) 48815) ((-358 . -635) 48752) ((-358 . -670) 48704) ((-358 . -668) 48641) ((-358 . -133) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -1249) T) ((-358 . -632) 48623) ((-358 . -1133) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -748) T) ((-358 . -1144) T) ((-358 . -1089) T) ((-358 . -1081) T) ((-358 . -376) T) ((-358 . -1254) T) ((-358 . -951) T) ((-358 . -571) T) ((-358 . -175) T) ((-358 . -739) 48575) ((-358 . -662) 48527) ((-358 . -38) 48492) ((-358 . -466) T) ((-358 . -319) T) ((-358 . -111) 48430) ((-358 . -1083) 48382) ((-358 . -1088) 48334) ((-358 . -302) T) ((-358 . -250) T) ((-358 . -416) 48285) ((-358 . -147) 48236) ((-358 . -1070) 48220) ((-358 . -1307) 48204) ((-358 . -1318) 48188) ((-357 . -341) 48165) ((-357 . -240) T) ((-357 . -236) 48152) ((-357 . -239) T) ((-357 . -381) T) ((-357 . -1184) T) ((-357 . -363) T) ((-357 . -149) 48134) ((-357 . -635) 48064) ((-357 . -670) 48009) ((-357 . -668) 47939) ((-357 . -133) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -1249) T) ((-357 . -632) 47921) ((-357 . -1133) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -748) T) ((-357 . -1144) T) ((-357 . -1089) T) ((-357 . -1081) T) ((-357 . -376) T) ((-357 . -1254) T) ((-357 . -951) T) ((-357 . -571) T) ((-357 . -175) T) ((-357 . -739) 47866) ((-357 . -662) 47811) ((-357 . -38) 47776) ((-357 . -466) T) ((-357 . -319) T) ((-357 . -111) 47705) ((-357 . -1083) 47650) ((-357 . -1088) 47595) ((-357 . -302) T) ((-357 . -250) T) ((-357 . -416) T) ((-357 . -147) T) ((-357 . -1070) 47572) ((-357 . -1307) 47549) ((-357 . -1318) 47526) ((-353 . -341) 47503) ((-353 . -240) T) ((-353 . -236) 47490) ((-353 . -239) T) ((-353 . -381) T) ((-353 . -1184) T) ((-353 . -363) T) ((-353 . -149) 47472) ((-353 . -635) 47402) ((-353 . -670) 47347) ((-353 . -668) 47277) ((-353 . -133) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -1249) T) ((-353 . -632) 47259) ((-353 . -1133) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -748) T) ((-353 . -1144) T) ((-353 . -1089) T) ((-353 . -1081) T) ((-353 . -376) T) ((-353 . -1254) T) ((-353 . -951) T) ((-353 . -571) T) ((-353 . -175) T) ((-353 . -739) 47204) ((-353 . -662) 47149) ((-353 . -38) 47114) ((-353 . -466) T) ((-353 . -319) T) ((-353 . -111) 47043) ((-353 . -1083) 46988) ((-353 . -1088) 46933) ((-353 . -302) T) ((-353 . -250) T) ((-353 . -416) T) ((-353 . -147) T) ((-353 . -1070) 46910) ((-353 . -1307) 46887) ((-353 . -1318) 46864) ((-352 . -310) T) ((-352 . -102) T) ((-352 . -1249) T) ((-352 . -632) 46846) ((-352 . -1133) T) ((-352 . -635) 46798) ((-352 . -1070) 46765) ((-352 . -528) 46731) ((-352 . -321) 46718) ((-352 . -38) 46702) ((-352 . -670) 46676) ((-352 . -668) 46635) ((-352 . -748) T) ((-352 . -1144) T) ((-352 . -1089) T) ((-352 . -1081) T) ((-352 . -111) 46614) ((-352 . -1083) 46598) ((-352 . -1088) 46582) ((-352 . -21) T) ((-352 . -23) T) ((-352 . -25) T) ((-352 . -133) T) ((-352 . -662) 46566) ((-352 . -739) 46550) ((-352 . -928) 46531) ((-352 . -922) 46510) ((-352 . -930) 46491) ((-346 . -349) 46460) ((-346 . -133) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -1249) T) ((-346 . -632) 46442) ((-346 . -1133) T) ((-346 . -23) T) ((-346 . -668) 46424) ((-346 . -21) T) ((-345 . -1133) T) ((-345 . -632) 46406) ((-345 . -1249) T) ((-345 . -102) T) ((-343 . -872) T) ((-343 . -632) 46388) ((-343 . -1133) T) ((-343 . -102) T) ((-343 . -1249) T) ((-343 . -875) T) ((-342 . -1133) T) ((-342 . -632) 46370) ((-342 . -1249) T) ((-342 . -102) T) ((-339 . -19) 46354) ((-339 . -673) 46338) ((-339 . -300) 46315) ((-339 . -298) 46267) ((-339 . -618) 46244) ((-339 . -633) 46205) ((-339 . -503) 46189) ((-339 . -1133) 46139) ((-339 . -528) 46072) ((-339 . -321) 46010) ((-339 . -632) 45922) ((-339 . -102) 45852) ((-339 . -1249) T) ((-339 . -34) T) ((-339 . -153) 45836) ((-339 . -872) 45815) ((-339 . -875) 45794) ((-339 . -385) 45778) ((-339 . -294) 45762) ((-336 . -335) 45739) ((-336 . -635) 45723) ((-336 . -1070) 45707) ((-336 . -23) T) ((-336 . -1133) T) ((-336 . -632) 45689) ((-336 . -1249) T) ((-336 . -102) T) ((-336 . -25) T) ((-336 . -133) T) ((-334 . -21) T) ((-334 . -668) 45671) ((-334 . -23) T) ((-334 . -1133) T) ((-334 . -632) 45653) ((-334 . -1249) T) ((-334 . -102) T) ((-334 . -25) T) ((-334 . -133) T) ((-334 . -739) 45635) ((-334 . -662) 45617) ((-334 . -670) 45599) ((-334 . -1088) 45581) ((-334 . -1083) 45563) ((-334 . -111) 45538) ((-334 . -335) 45515) ((-334 . -635) 45499) ((-334 . -1070) 45483) ((-334 . -872) 45462) ((-334 . -875) 45441) ((-331 . -1282) 45425) ((-331 . -240) 45377) ((-331 . -236) 45323) ((-331 . -239) 45275) ((-331 . -298) 45233) ((-331 . -928) 45139) ((-331 . -922) 45043) ((-331 . -930) 44949) ((-331 . -1005) 44911) ((-331 . -38) 44752) ((-331 . -111) 44573) ((-331 . -1083) 44408) ((-331 . -1088) 44243) ((-331 . -668) 44125) ((-331 . -670) 44022) ((-331 . -662) 43863) ((-331 . -739) 43704) ((-331 . -635) 43530) ((-331 . -147) 43509) ((-331 . -149) 43488) ((-331 . -47) 43458) ((-331 . -1278) 43428) ((-331 . -35) 43394) ((-331 . -95) 43360) ((-331 . -296) 43326) ((-331 . -507) 43292) ((-331 . -1238) 43258) ((-331 . -1235) 43224) ((-331 . -1034) 43190) ((-331 . -250) 43169) ((-331 . -302) 43120) ((-331 . -133) T) ((-331 . -25) T) ((-331 . -102) T) ((-331 . -1249) T) ((-331 . -632) 43102) ((-331 . -1133) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -1081) T) ((-331 . -1089) T) ((-331 . -1144) T) ((-331 . -748) T) ((-331 . -319) 43081) ((-331 . -466) 43060) ((-331 . -175) 42991) ((-331 . -571) 42942) ((-331 . -951) 42921) ((-331 . -1254) 42900) ((-331 . -376) 42879) ((-331 . -816) T) ((-331 . -872) T) ((-331 . -875) T) ((-331 . -818) T) ((-326 . -435) 42863) ((-326 . -635) 42427) ((-326 . -1070) 42090) ((-326 . -633) 41951) ((-326 . -910) 41935) ((-326 . -930) 41901) ((-326 . -922) 41865) ((-326 . -928) 41831) ((-326 . -487) 41810) ((-326 . -426) 41794) ((-326 . -912) 41719) ((-326 . -414) 41703) ((-326 . -660) 41609) ((-326 . -670) 41338) ((-326 . -390) 41307) ((-326 . -250) 41286) ((-326 . -111) 41182) ((-326 . -1083) 41092) ((-326 . -1088) 41002) ((-326 . -302) 40981) ((-326 . -739) 40891) ((-326 . -662) 40801) ((-326 . -668) 40456) ((-326 . -38) 40366) ((-326 . -319) 40345) ((-326 . -466) 40324) ((-326 . -175) 40303) ((-326 . -571) 40282) ((-326 . -951) 40261) ((-326 . -1254) 40240) ((-326 . -376) 40219) ((-326 . -321) 40206) ((-326 . -528) 40172) ((-326 . -310) T) ((-326 . -149) 40151) ((-326 . -147) 40130) ((-326 . -1081) 40020) ((-326 . -1089) 39910) ((-326 . -1144) 39759) ((-326 . -748) 39608) ((-326 . -133) 39479) ((-326 . -25) 39331) ((-326 . -102) T) ((-326 . -1249) T) ((-326 . -632) 39313) ((-326 . -1133) T) ((-326 . -23) 39165) ((-326 . -21) 39036) ((-326 . -29) 39006) ((-326 . -1034) 38985) ((-326 . -27) 38964) ((-326 . -1235) 38943) ((-326 . -1238) 38922) ((-326 . -507) 38901) ((-326 . -296) 38880) ((-326 . -95) 38859) ((-326 . -35) 38838) ((-326 . -162) 38817) ((-326 . -145) 38796) ((-326 . -649) 38775) ((-326 . -990) 38754) ((-326 . -1171) 38733) ((-325 . -1023) 38694) ((-325 . -1184) NIL) ((-325 . -1070) 38624) ((-325 . -635) 38507) ((-325 . -633) NIL) ((-325 . -1052) NIL) ((-325 . -940) NIL) ((-325 . -910) 38468) ((-325 . -871) NIL) ((-325 . -821) NIL) ((-325 . -818) NIL) ((-325 . -875) NIL) ((-325 . -872) NIL) ((-325 . -816) NIL) ((-325 . -814) NIL) ((-325 . -844) NIL) ((-325 . -912) NIL) ((-325 . -414) 38429) ((-325 . -660) 38390) ((-325 . -670) 38319) ((-325 . -390) 38280) ((-325 . -298) 38215) ((-325 . -321) 38156) ((-325 . -528) 38048) ((-325 . -351) 38009) ((-325 . -250) T) ((-325 . -111) 37922) ((-325 . -1083) 37851) ((-325 . -1088) 37780) ((-325 . -302) T) ((-325 . -739) 37709) ((-325 . -662) 37638) ((-325 . -668) 37552) ((-325 . -38) 37481) ((-325 . -319) T) ((-325 . -466) T) ((-325 . -175) T) ((-325 . -571) T) ((-325 . -951) T) ((-325 . -1254) T) ((-325 . -376) T) ((-325 . -240) NIL) ((-325 . -236) NIL) ((-325 . -239) NIL) ((-325 . -274) 37442) ((-325 . -922) NIL) ((-325 . -930) NIL) ((-325 . -928) NIL) ((-325 . -234) 37403) ((-325 . -149) 37359) ((-325 . -147) 37315) ((-325 . -133) T) ((-325 . -25) T) ((-325 . -102) T) ((-325 . -1249) T) ((-325 . -632) 37297) ((-325 . -1133) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -1081) T) ((-325 . -1089) T) ((-325 . -1144) T) ((-325 . -748) T) ((-324 . -1115) T) ((-324 . -504) 37278) ((-324 . -632) 37244) ((-324 . -635) 37225) ((-324 . -1133) T) ((-324 . -1249) T) ((-324 . -102) T) ((-324 . -93) T) ((-323 . -1133) T) ((-323 . -632) 37207) ((-323 . -1249) T) ((-323 . -102) T) ((-307 . -1226) 37186) ((-307 . -233) 37136) ((-307 . -107) 37086) ((-307 . -321) 36890) ((-307 . -528) 36682) ((-307 . -503) 36619) ((-307 . -153) 36569) ((-307 . -633) NIL) ((-307 . -242) 36519) ((-307 . -629) 36498) ((-307 . -300) 36477) ((-307 . -1249) T) ((-307 . -298) 36456) ((-307 . -1133) T) ((-307 . -632) 36438) ((-307 . -102) T) ((-307 . -34) T) ((-307 . -618) 36417) ((-305 . -1249) T) ((-305 . -528) 36366) ((-305 . -1133) 36148) ((-305 . -632) 35889) ((-305 . -102) 35671) ((-305 . -25) 35535) ((-305 . -21) 35418) ((-305 . -668) 35153) ((-305 . -23) 35036) ((-305 . -133) 34919) ((-305 . -1144) 34800) ((-305 . -748) 34702) ((-305 . -487) 34681) ((-305 . -1081) 34623) ((-305 . -1089) 34565) ((-305 . -670) 34425) ((-305 . -635) 34356) ((-305 . -111) 34272) ((-305 . -1083) 34193) ((-305 . -1088) 34114) ((-305 . -739) 34056) ((-305 . -662) 33998) ((-305 . -928) 33957) ((-305 . -922) 33914) ((-305 . -930) 33873) ((-305 . -1307) 33843) ((-303 . -632) 33825) ((-301 . -319) T) ((-301 . -466) T) ((-301 . -38) 33812) ((-301 . -635) 33784) ((-301 . -748) T) ((-301 . -1144) T) ((-301 . -1089) T) ((-301 . -1081) T) ((-301 . -111) 33769) ((-301 . -1083) 33756) ((-301 . -1088) 33743) ((-301 . -21) T) ((-301 . -668) 33715) ((-301 . -23) T) ((-301 . -1133) T) ((-301 . -632) 33697) ((-301 . -1249) T) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -133) T) ((-301 . -670) 33684) ((-301 . -662) 33671) ((-301 . -739) 33658) ((-301 . -175) T) ((-301 . -302) T) ((-301 . -571) T) ((-301 . -951) T) ((-301 . -298) 33637) ((-292 . -632) 33619) ((-291 . -632) 33601) ((-290 . -1015) 33585) ((-289 . -1015) 33569) ((-286 . -872) T) ((-286 . -632) 33551) ((-286 . -1133) T) ((-286 . -102) T) ((-286 . -1249) T) ((-286 . -875) T) ((-285 . -863) T) ((-285 . -102) T) ((-285 . -1249) T) ((-285 . -632) 33533) ((-285 . -1133) T) ((-284 . -863) T) ((-284 . -102) T) ((-284 . -1249) T) ((-284 . -632) 33515) ((-284 . -1133) T) ((-283 . -863) T) ((-283 . -102) T) ((-283 . -1249) T) ((-283 . -632) 33497) ((-283 . -1133) T) ((-282 . -863) T) ((-282 . -102) T) ((-282 . -1249) T) ((-282 . -632) 33479) ((-282 . -1133) T) ((-281 . -863) T) ((-281 . -102) T) ((-281 . -1249) T) ((-281 . -632) 33461) ((-281 . -1133) T) ((-280 . -863) T) ((-280 . -102) T) ((-280 . -1249) T) ((-280 . -632) 33443) ((-280 . -1133) T) ((-279 . -863) T) ((-279 . -102) T) ((-279 . -1249) T) ((-279 . -632) 33425) ((-279 . -1133) T) ((-275 . -262) 33387) ((-275 . -635) 33140) ((-275 . -1070) 32984) ((-275 . -633) 32732) ((-275 . -338) 32704) ((-275 . -426) 32688) ((-275 . -38) 32537) ((-275 . -111) 32366) ((-275 . -1083) 32209) ((-275 . -1088) 32052) ((-275 . -668) 31962) ((-275 . -670) 31851) ((-275 . -662) 31700) ((-275 . -739) 31549) ((-275 . -147) 31528) ((-275 . -149) 31507) ((-275 . -175) 31418) ((-275 . -571) 31349) ((-275 . -302) 31280) ((-275 . -47) 31252) ((-275 . -390) 31236) ((-275 . -660) 31184) ((-275 . -466) 31135) ((-275 . -528) 31020) ((-275 . -928) 30966) ((-275 . -922) 30872) ((-275 . -930) 30782) ((-275 . -912) 30641) ((-275 . -940) 30620) ((-275 . -1254) 30599) ((-275 . -980) 30566) ((-275 . -321) 30553) ((-275 . -240) 30532) ((-275 . -133) T) ((-275 . -25) T) ((-275 . -102) T) ((-275 . -632) 30514) ((-275 . -1133) T) ((-275 . -23) T) ((-275 . -21) T) ((-275 . -748) T) ((-275 . -1144) T) ((-275 . -1089) T) ((-275 . -1081) T) ((-275 . -236) 30459) ((-275 . -1249) T) ((-275 . -239) 30410) ((-275 . -274) 30394) ((-275 . -234) 30378) ((-270 . -1133) T) ((-270 . -632) 30360) ((-270 . -1249) T) ((-270 . -102) T) ((-260 . -245) 30339) ((-260 . -1307) 30309) ((-260 . -821) 30288) ((-260 . -818) 30267) ((-260 . -875) 30218) ((-260 . -872) 30169) ((-260 . -816) 30148) ((-260 . -817) 30127) ((-260 . -739) 30069) ((-260 . -662) 29991) ((-260 . -300) 29968) ((-260 . -298) 29945) ((-260 . -503) 29929) ((-260 . -528) 29862) ((-260 . -321) 29800) ((-260 . -34) T) ((-260 . -618) 29777) ((-260 . -1070) 29604) ((-260 . -635) 29402) ((-260 . -426) 29371) ((-260 . -660) 29277) ((-260 . -670) 29097) ((-260 . -390) 29066) ((-260 . -381) 29045) ((-260 . -240) 28997) ((-260 . -668) 28845) ((-260 . -748) 28823) ((-260 . -1144) 28801) ((-260 . -1089) 28779) ((-260 . -1081) 28757) ((-260 . -236) 28648) ((-260 . -239) 28545) ((-260 . -274) 28514) ((-260 . -922) 28381) ((-260 . -930) 28250) ((-260 . -928) 28182) ((-260 . -234) 28151) ((-260 . -632) 28112) ((-260 . -1088) 28033) ((-260 . -1083) 27934) ((-260 . -111) 27850) ((-260 . -133) T) ((-260 . -25) T) ((-260 . -102) T) ((-260 . -1249) T) ((-260 . -1133) T) ((-260 . -23) T) ((-260 . -21) T) ((-259 . -245) 27829) ((-259 . -1307) 27799) ((-259 . -821) 27778) ((-259 . -818) 27757) ((-259 . -875) 27708) ((-259 . -872) 27659) ((-259 . -816) 27638) ((-259 . -817) 27617) ((-259 . -739) 27559) ((-259 . -662) 27481) ((-259 . -300) 27458) ((-259 . -298) 27435) ((-259 . -503) 27419) ((-259 . -528) 27352) ((-259 . -321) 27290) ((-259 . -34) T) ((-259 . -618) 27267) ((-259 . -1070) 27094) ((-259 . -635) 26892) ((-259 . -426) 26861) ((-259 . -660) 26767) ((-259 . -670) 26574) ((-259 . -390) 26543) ((-259 . -381) 26522) ((-259 . -240) 26474) ((-259 . -668) 26309) ((-259 . -748) 26287) ((-259 . -1144) 26265) ((-259 . -1089) 26243) ((-259 . -1081) 26221) ((-259 . -236) 26112) ((-259 . -239) 26009) ((-259 . -274) 25978) ((-259 . -922) 25845) ((-259 . -930) 25714) ((-259 . -928) 25646) ((-259 . -234) 25615) ((-259 . -632) 25576) ((-259 . -1088) 25497) ((-259 . -1083) 25398) ((-259 . -111) 25314) ((-259 . -133) T) ((-259 . -25) T) ((-259 . -102) T) ((-259 . -1249) T) ((-259 . -1133) T) ((-259 . -23) T) ((-259 . -21) T) ((-258 . -1133) T) ((-258 . -632) 25296) ((-258 . -1249) T) ((-258 . -102) T) ((-258 . -298) 25270) ((-257 . -189) T) ((-257 . -1133) T) ((-257 . -632) 25237) ((-257 . -1249) T) ((-257 . -102) T) ((-257 . -860) 25219) ((-256 . -1133) T) ((-256 . -632) 25201) ((-256 . -1249) T) ((-256 . -102) T) ((-255 . -980) 25146) ((-255 . -635) 24931) ((-255 . -1070) 24807) ((-255 . -1254) 24786) ((-255 . -940) 24765) ((-255 . -912) NIL) ((-255 . -930) 24742) ((-255 . -922) 24717) ((-255 . -928) 24694) ((-255 . -528) 24637) ((-255 . -466) 24588) ((-255 . -660) 24536) ((-255 . -670) 24425) ((-255 . -390) 24409) ((-255 . -47) 24366) ((-255 . -38) 24215) ((-255 . -662) 24064) ((-255 . -739) 23913) ((-255 . -302) 23844) ((-255 . -571) 23775) ((-255 . -111) 23604) ((-255 . -1083) 23447) ((-255 . -1088) 23290) ((-255 . -175) 23201) ((-255 . -149) 23180) ((-255 . -147) 23159) ((-255 . -668) 23069) ((-255 . -133) T) ((-255 . -25) T) ((-255 . -102) T) ((-255 . -1249) T) ((-255 . -632) 23051) ((-255 . -1133) T) ((-255 . -23) T) ((-255 . -21) T) ((-255 . -1081) T) ((-255 . -1089) T) ((-255 . -1144) T) ((-255 . -748) T) ((-255 . -426) 23035) ((-255 . -338) 22992) ((-255 . -321) 22979) ((-255 . -633) 22840) ((-252 . -688) 22824) ((-252 . -1288) 22808) ((-252 . -1042) 22792) ((-252 . -1182) 22776) ((-252 . -872) 22755) ((-252 . -875) 22734) ((-252 . -385) 22718) ((-252 . -673) 22702) ((-252 . -300) 22679) ((-252 . -298) 22631) ((-252 . -618) 22608) ((-252 . -633) 22569) ((-252 . -503) 22553) ((-252 . -1133) 22503) ((-252 . -528) 22436) ((-252 . -321) 22374) ((-252 . -632) 22266) ((-252 . -102) 22196) ((-252 . -1249) T) ((-252 . -34) T) ((-252 . -153) 22180) ((-252 . -294) 22164) ((-252 . -504) 22141) ((-252 . -635) 22118) ((-246 . -245) 22097) ((-246 . -1307) 22067) ((-246 . -821) 22046) ((-246 . -818) 22025) ((-246 . -875) 21976) ((-246 . -872) 21927) ((-246 . -816) 21906) ((-246 . -817) 21885) ((-246 . -739) 21827) ((-246 . -662) 21749) ((-246 . -300) 21726) ((-246 . -298) 21703) ((-246 . -503) 21687) ((-246 . -528) 21620) ((-246 . -321) 21558) ((-246 . -34) T) ((-246 . -618) 21535) ((-246 . -1070) 21362) ((-246 . -635) 21160) ((-246 . -426) 21129) ((-246 . -660) 21035) ((-246 . -670) 20868) ((-246 . -390) 20837) ((-246 . -381) 20816) ((-246 . -240) 20768) ((-246 . -668) 20547) ((-246 . -748) 20525) ((-246 . -1144) 20503) ((-246 . -1089) 20481) ((-246 . -1081) 20459) ((-246 . -236) 20350) ((-246 . -239) 20247) ((-246 . -274) 20216) ((-246 . -922) 20083) ((-246 . -930) 19952) ((-246 . -928) 19884) ((-246 . -234) 19853) ((-246 . -632) 19546) ((-246 . -1088) 19467) ((-246 . -1083) 19368) ((-246 . -111) 19284) ((-246 . -133) 19155) ((-246 . -25) 18988) ((-246 . -102) 18720) ((-246 . -1249) T) ((-246 . -1133) 18472) ((-246 . -23) 18324) ((-246 . -21) 18235) ((-231 . -708) 18193) ((-231 . -503) 18177) ((-231 . -1133) 18155) ((-231 . -528) 18088) ((-231 . -321) 18026) ((-231 . -632) 17958) ((-231 . -102) 17908) ((-231 . -1249) T) ((-231 . -34) T) ((-231 . -57) 17866) ((-229 . -418) T) ((-229 . -149) T) ((-229 . -635) 17816) ((-229 . -670) 17781) ((-229 . -668) 17731) ((-229 . -133) T) ((-229 . -25) T) ((-229 . -102) T) ((-229 . -1249) T) ((-229 . -632) 17713) ((-229 . -1133) T) ((-229 . -23) T) ((-229 . -21) T) ((-229 . -748) T) ((-229 . -1144) T) ((-229 . -1089) T) ((-229 . -1081) T) ((-229 . -633) 17643) ((-229 . -376) T) ((-229 . -1254) T) ((-229 . -951) T) ((-229 . -571) T) ((-229 . -175) T) ((-229 . -739) 17608) ((-229 . -662) 17573) ((-229 . -38) 17538) ((-229 . -466) T) ((-229 . -319) T) ((-229 . -111) 17494) ((-229 . -1083) 17459) ((-229 . -1088) 17424) ((-229 . -302) T) ((-229 . -250) T) ((-229 . -871) T) ((-229 . -821) T) ((-229 . -818) T) ((-229 . -875) T) ((-229 . -872) T) ((-229 . -816) T) ((-229 . -814) T) ((-229 . -912) 17406) ((-229 . -1034) T) ((-229 . -1052) T) ((-229 . -1070) 17366) ((-229 . -1092) T) ((-229 . -240) T) ((-229 . -236) 17353) ((-229 . -239) T) ((-229 . -845) T) ((-229 . -1235) T) ((-229 . -1238) T) ((-229 . -507) T) ((-229 . -296) T) ((-229 . -95) T) ((-229 . -35) T) ((-227 . -640) 17330) ((-227 . -635) 17292) ((-227 . -670) 17259) ((-227 . -668) 17211) ((-227 . -748) T) ((-227 . -1144) T) ((-227 . -1089) T) ((-227 . -1081) T) ((-227 . -21) T) ((-227 . -23) T) ((-227 . -1133) T) ((-227 . -632) 17193) ((-227 . -1249) T) ((-227 . -102) T) ((-227 . -25) T) ((-227 . -133) T) ((-227 . -1070) 17170) ((-226 . -263) 17154) ((-226 . -1153) 17138) ((-226 . -107) 17122) ((-226 . -34) T) ((-226 . -1249) T) ((-226 . -102) 17072) ((-226 . -632) 17004) ((-226 . -321) 16942) ((-226 . -528) 16875) ((-226 . -1133) 16853) ((-226 . -503) 16837) ((-226 . -1027) 16821) ((-222 . -1115) T) ((-222 . -504) 16802) ((-222 . -632) 16768) ((-222 . -635) 16749) ((-222 . -1133) T) ((-222 . -1249) T) ((-222 . -102) T) ((-222 . -93) T) ((-221 . -1023) 16731) ((-221 . -1184) T) ((-221 . -635) 16681) ((-221 . -1070) 16641) ((-221 . -633) 16571) ((-221 . -1052) T) ((-221 . -940) NIL) ((-221 . -910) 16553) ((-221 . -871) T) ((-221 . -821) T) ((-221 . -818) T) ((-221 . -875) T) ((-221 . -872) T) ((-221 . -816) T) ((-221 . -814) T) ((-221 . -844) T) ((-221 . -912) 16535) ((-221 . -414) 16517) ((-221 . -660) 16499) ((-221 . -390) 16481) ((-221 . -298) NIL) ((-221 . -321) NIL) ((-221 . -528) NIL) ((-221 . -351) 16463) ((-221 . -250) T) ((-221 . -111) 16397) ((-221 . -1083) 16347) ((-221 . -1088) 16297) ((-221 . -302) T) ((-221 . -739) 16247) ((-221 . -662) 16197) ((-221 . -670) 16147) ((-221 . -668) 16097) ((-221 . -38) 16047) ((-221 . -319) T) ((-221 . -466) T) ((-221 . -175) T) ((-221 . -571) T) ((-221 . -951) T) ((-221 . -1254) T) ((-221 . -376) T) ((-221 . -240) T) ((-221 . -236) 16034) ((-221 . -239) T) ((-221 . -274) 16016) ((-221 . -922) NIL) ((-221 . -930) NIL) ((-221 . -928) NIL) ((-221 . -234) 15998) ((-221 . -149) T) ((-221 . -147) NIL) ((-221 . -133) T) ((-221 . -25) T) ((-221 . -102) T) ((-221 . -1249) T) ((-221 . -632) 15939) ((-221 . -1133) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -1081) T) ((-221 . -1089) T) ((-221 . -1144) T) ((-221 . -748) T) ((-218 . -868) T) ((-218 . -875) T) ((-218 . -872) T) ((-218 . -1133) T) ((-218 . -632) 15921) ((-218 . -1249) T) ((-218 . -102) T) ((-218 . -381) T) ((-217 . -1133) T) ((-217 . -632) 15903) ((-217 . -1249) T) ((-217 . -102) T) ((-217 . -635) 15880) ((-216 . -1133) T) ((-216 . -632) 15862) ((-216 . -1249) T) ((-216 . -102) T) ((-215 . -923) T) ((-215 . -102) T) ((-215 . -1249) T) ((-215 . -632) 15844) ((-215 . -1133) T) ((-214 . -923) T) ((-214 . -102) T) ((-214 . -1249) T) ((-214 . -632) 15826) ((-214 . -1133) T) ((-212 . -824) T) ((-212 . -102) T) ((-212 . -1249) T) ((-212 . -632) 15808) ((-212 . -1133) T) ((-211 . -824) T) ((-211 . -102) T) ((-211 . -1249) T) ((-211 . -632) 15790) ((-211 . -1133) T) ((-210 . -824) T) ((-210 . -102) T) ((-210 . -1249) T) ((-210 . -632) 15772) ((-210 . -1133) T) ((-209 . -824) T) ((-209 . -102) T) ((-209 . -1249) T) ((-209 . -632) 15754) ((-209 . -1133) T) ((-206 . -809) T) ((-206 . -102) T) ((-206 . -1249) T) ((-206 . -632) 15736) ((-206 . -1133) T) ((-205 . -809) T) ((-205 . -102) T) ((-205 . -1249) T) ((-205 . -632) 15718) ((-205 . -1133) T) ((-204 . -809) T) ((-204 . -102) T) ((-204 . -1249) T) ((-204 . -632) 15700) ((-204 . -1133) T) ((-203 . -809) T) ((-203 . -102) T) ((-203 . -1249) T) ((-203 . -632) 15682) ((-203 . -1133) T) ((-202 . -809) T) ((-202 . -102) T) ((-202 . -1249) T) ((-202 . -632) 15664) ((-202 . -1133) T) ((-201 . -809) T) ((-201 . -102) T) ((-201 . -1249) T) ((-201 . -632) 15646) ((-201 . -1133) T) ((-200 . -809) T) ((-200 . -102) T) ((-200 . -1249) T) ((-200 . -632) 15628) ((-200 . -1133) T) ((-199 . -809) T) ((-199 . -102) T) ((-199 . -1249) T) ((-199 . -632) 15610) ((-199 . -1133) T) ((-198 . -809) T) ((-198 . -102) T) ((-198 . -1249) T) ((-198 . -632) 15592) ((-198 . -1133) T) ((-197 . -809) T) ((-197 . -102) T) ((-197 . -1249) T) ((-197 . -632) 15574) ((-197 . -1133) T) ((-196 . -809) T) ((-196 . -102) T) ((-196 . -1249) T) ((-196 . -632) 15556) ((-196 . -1133) T) ((-190 . -1133) T) ((-190 . -632) 15538) ((-190 . -1249) T) ((-190 . -102) T) ((-187 . -1133) T) ((-187 . -632) 15520) ((-187 . -1249) T) ((-187 . -102) T) ((-186 . -189) T) ((-186 . -1133) T) ((-186 . -632) 15502) ((-186 . -1249) T) ((-186 . -102) T) ((-186 . -860) 15484) ((-183 . -1115) T) ((-183 . -504) 15465) ((-183 . -632) 15431) ((-183 . -635) 15412) ((-183 . -1133) T) ((-183 . -1249) T) ((-183 . -102) T) ((-183 . -93) T) ((-178 . -632) 15394) ((-177 . -38) 15326) ((-177 . -635) 15243) ((-177 . -670) 15175) ((-177 . -668) 15092) ((-177 . -748) T) ((-177 . -1144) T) ((-177 . -1089) T) ((-177 . -1081) T) ((-177 . -111) 15003) ((-177 . -1083) 14935) ((-177 . -1088) 14867) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1133) T) ((-177 . -632) 14849) ((-177 . -1249) T) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -133) T) ((-177 . -662) 14781) ((-177 . -739) 14713) ((-177 . -376) T) ((-177 . -1254) T) ((-177 . -951) T) ((-177 . -571) T) ((-177 . -175) T) ((-177 . -466) T) ((-177 . -319) T) ((-177 . -302) T) ((-177 . -250) T) ((-174 . -1133) T) ((-174 . -632) 14695) ((-174 . -1249) T) ((-174 . -102) T) ((-171 . -168) 14679) ((-171 . -35) 14657) ((-171 . -95) 14635) ((-171 . -296) 14613) ((-171 . -507) 14591) ((-171 . -1238) 14569) ((-171 . -1235) 14547) ((-171 . -1034) 14498) ((-171 . -940) 14451) ((-171 . -633) 14212) ((-171 . -910) 14196) ((-171 . -381) 14147) ((-171 . -363) 14126) ((-171 . -1184) 14105) ((-171 . -416) 14084) ((-171 . -424) 14055) ((-171 . -38) 13883) ((-171 . -111) 13779) ((-171 . -1083) 13689) ((-171 . -1088) 13599) ((-171 . -662) 13427) ((-171 . -739) 13255) ((-171 . -383) 13226) ((-171 . -746) 13197) ((-171 . -1070) 13093) ((-171 . -635) 12871) ((-171 . -426) 12855) ((-171 . -912) 12780) ((-171 . -414) 12764) ((-171 . -660) 12712) ((-171 . -670) 12586) ((-171 . -668) 12481) ((-171 . -390) 12465) ((-171 . -298) 12423) ((-171 . -321) 12388) ((-171 . -528) 12300) ((-171 . -351) 12284) ((-171 . -250) 12235) ((-171 . -1254) 12140) ((-171 . -376) 12091) ((-171 . -951) 12022) ((-171 . -571) 11933) ((-171 . -302) 11844) ((-171 . -466) 11775) ((-171 . -319) 11706) ((-171 . -240) 11657) ((-171 . -236) 11582) ((-171 . -239) 11513) ((-171 . -274) 11497) ((-171 . -922) 11418) ((-171 . -930) 11341) ((-171 . -928) 11300) ((-171 . -234) 11284) ((-171 . -175) T) ((-171 . -149) 11263) ((-171 . -1081) T) ((-171 . -1089) T) ((-171 . -1144) T) ((-171 . -748) T) ((-171 . -21) T) ((-171 . -23) T) ((-171 . -1133) T) ((-171 . -632) 11245) ((-171 . -1249) T) ((-171 . -102) T) ((-171 . -25) T) ((-171 . -133) T) ((-171 . -147) 11196) ((-171 . -845) 11175) ((-170 . -1249) T) ((-164 . -1115) T) ((-164 . -504) 11156) ((-164 . -632) 11122) ((-164 . -635) 11103) ((-164 . -1133) T) ((-164 . -1249) T) ((-164 . -102) T) ((-164 . -93) T) ((-163 . -1133) T) ((-163 . -632) 11085) ((-163 . -1249) T) ((-163 . -102) T) ((-159 . -25) T) ((-159 . -102) T) ((-159 . -1249) T) ((-159 . -632) 11067) ((-159 . -1133) T) ((-158 . -1115) T) ((-158 . -504) 11048) ((-158 . -632) 11014) ((-158 . -635) 10995) ((-158 . -1133) T) ((-158 . -1249) T) ((-158 . -102) T) ((-158 . -93) T) ((-156 . -1115) T) ((-156 . -504) 10976) ((-156 . -632) 10942) ((-156 . -635) 10923) ((-156 . -1133) T) ((-156 . -1249) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1081) T) ((-154 . -1089) T) ((-154 . -1144) T) ((-154 . -748) T) ((-154 . -21) T) ((-154 . -668) 10882) ((-154 . -23) T) ((-154 . -1133) T) ((-154 . -632) 10864) ((-154 . -1249) T) ((-154 . -102) T) ((-154 . -25) T) ((-154 . -133) T) ((-154 . -670) 10838) ((-154 . -635) 10807) ((-154 . -38) 10791) ((-154 . -111) 10770) ((-154 . -1083) 10754) ((-154 . -1088) 10738) ((-154 . -662) 10722) ((-154 . -739) 10706) ((-154 . -1307) 10690) ((-146 . -868) T) ((-146 . -875) T) ((-146 . -872) T) ((-146 . -1133) T) ((-146 . -632) 10672) ((-146 . -1249) T) ((-146 . -102) T) ((-146 . -381) T) ((-143 . -1133) T) ((-143 . -632) 10654) ((-143 . -1249) T) ((-143 . -102) T) ((-143 . -633) 10613) ((-143 . -440) 10595) ((-143 . -1131) 10577) ((-143 . -381) T) ((-143 . -242) 10559) ((-143 . -153) 10541) ((-143 . -503) 10523) ((-143 . -528) NIL) ((-143 . -321) NIL) ((-143 . -34) T) ((-143 . -107) 10505) ((-143 . -233) 10487) ((-142 . -632) 10469) ((-141 . -189) T) ((-141 . -1133) T) ((-141 . -632) 10436) ((-141 . -1249) T) ((-141 . -102) T) ((-141 . -860) 10418) ((-140 . -1115) T) ((-140 . -504) 10399) ((-140 . -632) 10365) ((-140 . -635) 10346) ((-140 . -1133) T) ((-140 . -1249) T) ((-140 . -102) T) ((-140 . -93) T) ((-139 . -1115) T) ((-139 . -504) 10327) ((-139 . -632) 10293) ((-139 . -635) 10274) ((-139 . -1133) T) ((-139 . -1249) T) ((-139 . -102) T) ((-139 . -93) T) ((-137 . -479) 10251) ((-137 . -635) 10235) ((-137 . -1070) 10219) ((-137 . -1133) T) ((-137 . -632) 10201) ((-137 . -1249) T) ((-137 . -102) T) ((-137 . -484) 10156) ((-137 . -298) 10133) ((-136 . -872) T) ((-136 . -632) 10115) ((-136 . -1133) T) ((-136 . -102) T) ((-136 . -1249) T) ((-136 . -875) T) ((-136 . -23) T) ((-136 . -25) T) ((-136 . -748) T) ((-136 . -1144) T) ((-136 . -1070) 10097) ((-136 . -635) 10079) ((-135 . -1115) T) ((-135 . -504) 10060) ((-135 . -632) 10026) ((-135 . -635) 10007) ((-135 . -1133) T) ((-135 . -1249) T) ((-135 . -102) T) ((-135 . -93) T) ((-132 . -1133) T) ((-132 . -632) 9989) ((-132 . -1249) T) ((-132 . -102) T) ((-131 . -19) 9971) ((-131 . -673) 9953) ((-131 . -300) 9928) ((-131 . -298) 9878) ((-131 . -618) 9853) ((-131 . -633) NIL) ((-131 . -503) 9835) ((-131 . -1133) T) ((-131 . -528) NIL) ((-131 . -321) NIL) ((-131 . -632) 9779) ((-131 . -102) T) ((-131 . -1249) T) ((-131 . -34) T) ((-131 . -153) 9761) ((-131 . -872) T) ((-131 . -875) T) ((-131 . -385) 9743) ((-130 . -868) T) ((-130 . -875) T) ((-130 . -872) T) ((-130 . -1133) T) ((-130 . -632) 9725) ((-130 . -1249) T) ((-130 . -102) T) ((-130 . -381) T) ((-130 . -684) T) ((-129 . -127) 9709) ((-129 . -1042) 9693) ((-129 . -34) T) ((-129 . -1249) T) ((-129 . -102) 9643) ((-129 . -632) 9575) ((-129 . -321) 9513) ((-129 . -528) 9446) ((-129 . -1133) 9424) ((-129 . -503) 9408) ((-129 . -121) 9392) ((-128 . -127) 9376) ((-128 . -1042) 9360) ((-128 . -34) T) ((-128 . -1249) T) ((-128 . -102) 9310) ((-128 . -632) 9242) ((-128 . -321) 9180) ((-128 . -528) 9113) ((-128 . -1133) 9091) ((-128 . -503) 9075) ((-128 . -121) 9059) ((-123 . -127) 9043) ((-123 . -1042) 9027) ((-123 . -34) T) ((-123 . -1249) T) ((-123 . -102) 8977) ((-123 . -632) 8909) ((-123 . -321) 8847) ((-123 . -528) 8780) ((-123 . -1133) 8758) ((-123 . -503) 8742) ((-123 . -121) 8726) ((-119 . -1023) 8703) ((-119 . -1184) NIL) ((-119 . -1070) 8680) ((-119 . -635) 8610) ((-119 . -633) NIL) ((-119 . -1052) NIL) ((-119 . -940) NIL) ((-119 . -910) 8587) ((-119 . -871) NIL) ((-119 . -821) NIL) ((-119 . -818) NIL) ((-119 . -875) NIL) ((-119 . -872) NIL) ((-119 . -816) NIL) ((-119 . -814) NIL) ((-119 . -844) NIL) ((-119 . -912) NIL) ((-119 . -414) 8564) ((-119 . -660) 8541) ((-119 . -670) 8486) ((-119 . -390) 8463) ((-119 . -298) 8414) ((-119 . -321) 8371) ((-119 . -528) 8279) ((-119 . -351) 8256) ((-119 . -250) T) ((-119 . -111) 8185) ((-119 . -1083) 8130) ((-119 . -1088) 8075) ((-119 . -302) T) ((-119 . -739) 8020) ((-119 . -662) 7965) ((-119 . -668) 7895) ((-119 . -38) 7840) ((-119 . -319) T) ((-119 . -466) T) ((-119 . -175) T) ((-119 . -571) T) ((-119 . -951) T) ((-119 . -1254) T) ((-119 . -376) T) ((-119 . -240) NIL) ((-119 . -236) NIL) ((-119 . -239) NIL) ((-119 . -274) 7817) ((-119 . -922) NIL) ((-119 . -930) NIL) ((-119 . -928) NIL) ((-119 . -234) 7794) ((-119 . -149) T) ((-119 . -147) NIL) ((-119 . -133) T) ((-119 . -25) T) ((-119 . -102) T) ((-119 . -1249) T) ((-119 . -632) 7776) ((-119 . -1133) T) ((-119 . -23) T) ((-119 . -21) T) ((-119 . -1081) T) ((-119 . -1089) T) ((-119 . -1144) T) ((-119 . -748) T) ((-118 . -895) 7760) ((-118 . -951) T) ((-118 . -571) T) ((-118 . -302) T) ((-118 . -175) T) ((-118 . -635) 7732) ((-118 . -739) 7719) ((-118 . -662) 7706) ((-118 . -1088) 7693) ((-118 . -1083) 7680) ((-118 . -111) 7665) ((-118 . -38) 7652) ((-118 . -466) T) ((-118 . -319) T) ((-118 . -1081) T) ((-118 . -1089) T) ((-118 . -1144) T) ((-118 . -748) T) ((-118 . -21) T) ((-118 . -668) 7624) ((-118 . -23) T) ((-118 . -1133) T) ((-118 . -632) 7606) ((-118 . -1249) T) ((-118 . -102) T) ((-118 . -25) T) ((-118 . -133) T) ((-118 . -670) 7593) ((-118 . -149) T) ((-115 . -872) T) ((-115 . -632) 7575) ((-115 . -1133) T) ((-115 . -102) T) ((-115 . -1249) T) ((-115 . -875) T) ((-115 . -860) 7556) ((-114 . -868) T) ((-114 . -875) T) ((-114 . -872) T) ((-114 . -1133) T) ((-114 . -632) 7538) ((-114 . -1249) T) ((-114 . -102) T) ((-114 . -381) T) ((-114 . -999) T) ((-114 . -684) T) ((-114 . -113) T) ((-114 . -633) 7520) ((-110 . -125) T) ((-110 . -385) 7502) ((-110 . -875) T) ((-110 . -872) T) ((-110 . -153) 7484) ((-110 . -34) T) ((-110 . -102) T) ((-110 . -632) 7466) ((-110 . -321) NIL) ((-110 . -528) NIL) ((-110 . -1133) T) ((-110 . -503) 7448) ((-110 . -633) 7430) ((-110 . -298) 7380) ((-110 . -618) 7355) ((-110 . -300) 7330) ((-110 . -673) 7312) ((-110 . -19) 7294) ((-110 . -684) T) ((-110 . -1249) T) ((-110 . -113) T) ((-109 . -632) 7276) ((-108 . -1023) 7258) ((-108 . -1184) T) ((-108 . -635) 7208) ((-108 . -1070) 7168) ((-108 . -633) 7098) ((-108 . -1052) T) ((-108 . -940) NIL) ((-108 . -910) 7080) ((-108 . -871) T) ((-108 . -821) T) ((-108 . -818) T) ((-108 . -875) T) ((-108 . -872) T) ((-108 . -816) T) ((-108 . -814) T) ((-108 . -844) T) ((-108 . -912) 7062) ((-108 . -414) 7044) ((-108 . -660) 7026) ((-108 . -390) 7008) ((-108 . -298) NIL) ((-108 . -321) NIL) ((-108 . -528) NIL) ((-108 . -351) 6990) ((-108 . -250) T) ((-108 . -111) 6924) ((-108 . -1083) 6874) ((-108 . -1088) 6824) ((-108 . -302) T) ((-108 . -739) 6774) ((-108 . -662) 6724) ((-108 . -670) 6674) ((-108 . -668) 6624) ((-108 . -38) 6574) ((-108 . -319) T) ((-108 . -466) T) ((-108 . -175) T) ((-108 . -571) T) ((-108 . -951) T) ((-108 . -1254) T) ((-108 . -376) T) ((-108 . -240) T) ((-108 . -236) 6561) ((-108 . -239) T) ((-108 . -274) 6543) ((-108 . -922) NIL) ((-108 . -930) NIL) ((-108 . -928) NIL) ((-108 . -234) 6525) ((-108 . -149) T) ((-108 . -147) NIL) ((-108 . -133) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -1249) T) ((-108 . -632) 6467) ((-108 . -1133) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1081) T) ((-108 . -1089) T) ((-108 . -1144) T) ((-108 . -748) T) ((-105 . -1133) T) ((-105 . -632) 6449) ((-105 . -1249) T) ((-105 . -102) T) ((-103 . -127) 6433) ((-103 . -1042) 6417) ((-103 . -34) T) ((-103 . -1249) T) ((-103 . -102) 6367) ((-103 . -632) 6299) ((-103 . -321) 6237) ((-103 . -528) 6170) ((-103 . -1133) 6148) ((-103 . -503) 6132) ((-103 . -121) 6116) ((-99 . -487) T) ((-99 . -1144) T) ((-99 . -102) T) ((-99 . -1249) T) ((-99 . -632) 6098) ((-99 . -1133) T) ((-99 . -748) T) ((-99 . -298) 6077) ((-97 . -1133) T) ((-97 . -632) 6059) ((-97 . -1249) T) ((-97 . -102) T) ((-96 . -1115) T) ((-96 . -504) 6040) ((-96 . -632) 6006) ((-96 . -635) 5987) ((-96 . -1133) T) ((-96 . -1249) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1153) 5971) ((-91 . -503) 5955) ((-91 . -1133) 5933) ((-91 . -528) 5866) ((-91 . -321) 5804) ((-91 . -632) 5736) ((-91 . -102) 5686) ((-91 . -1249) T) ((-91 . -34) T) ((-91 . -107) 5670) ((-89 . -411) T) ((-89 . -632) 5652) ((-89 . -1249) T) ((-89 . -410) T) ((-88 . -398) T) ((-88 . -632) 5634) ((-88 . -1249) T) ((-88 . -410) T) ((-87 . -454) T) ((-87 . -632) 5616) ((-87 . -1249) T) ((-87 . -410) T) ((-86 . -455) T) ((-86 . -632) 5598) ((-86 . -1249) T) ((-86 . -410) T) ((-85 . -398) T) ((-85 . -632) 5580) ((-85 . -1249) T) ((-85 . -410) T) ((-84 . -398) T) ((-84 . -632) 5562) ((-84 . -1249) T) ((-84 . -410) T) ((-83 . -455) T) ((-83 . -632) 5544) ((-83 . -1249) T) ((-83 . -410) T) ((-82 . -455) T) ((-82 . -632) 5526) ((-82 . -1249) T) ((-82 . -410) T) ((-81 . -455) T) ((-81 . -632) 5508) ((-81 . -1249) T) ((-81 . -410) T) ((-81 . -635) 5449) ((-80 . -455) T) ((-80 . -632) 5431) ((-80 . -1249) T) ((-80 . -410) T) ((-79 . -455) T) ((-79 . -632) 5413) ((-79 . -1249) T) ((-79 . -410) T) ((-78 . -411) T) ((-78 . -632) 5395) ((-78 . -1249) T) ((-78 . -410) T) ((-77 . -455) T) ((-77 . -632) 5377) ((-77 . -1249) T) ((-77 . -410) T) ((-76 . -455) T) ((-76 . -632) 5359) ((-76 . -1249) T) ((-76 . -410) T) ((-75 . -411) T) ((-75 . -632) 5341) ((-75 . -1249) T) ((-75 . -410) T) ((-74 . -455) T) ((-74 . -632) 5323) ((-74 . -1249) T) ((-74 . -410) T) ((-73 . -396) T) ((-73 . -632) 5305) ((-73 . -1249) T) ((-73 . -410) T) ((-72 . -410) T) ((-72 . -1249) T) ((-72 . -632) 5287) ((-71 . -455) T) ((-71 . -632) 5269) ((-71 . -1249) T) ((-71 . -410) T) ((-70 . -396) T) ((-70 . -632) 5251) ((-70 . -1249) T) ((-70 . -410) T) ((-69 . -410) T) ((-69 . -1249) T) ((-69 . -632) 5233) ((-68 . -396) T) ((-68 . -632) 5215) ((-68 . -1249) T) ((-68 . -410) T) ((-67 . -396) T) ((-67 . -632) 5197) ((-67 . -1249) T) ((-67 . -410) T) ((-66 . -411) T) ((-66 . -632) 5179) ((-66 . -1249) T) ((-66 . -410) T) ((-65 . -398) T) ((-65 . -632) 5161) ((-65 . -1249) T) ((-65 . -410) T) ((-65 . -635) 5090) ((-64 . -455) T) ((-64 . -632) 5072) ((-64 . -1249) T) ((-64 . -410) T) ((-63 . -410) T) ((-63 . -1249) T) ((-63 . -632) 5054) ((-62 . -455) T) ((-62 . -632) 5036) ((-62 . -1249) T) ((-62 . -410) T) ((-61 . -411) T) ((-61 . -632) 5018) ((-61 . -1249) T) ((-61 . -410) T) ((-60 . -57) 4980) ((-60 . -34) T) ((-60 . -1249) T) ((-60 . -102) 4930) ((-60 . -632) 4862) ((-60 . -321) 4800) ((-60 . -528) 4733) ((-60 . -1133) 4711) ((-60 . -503) 4695) ((-58 . -19) 4679) ((-58 . -673) 4663) ((-58 . -300) 4640) ((-58 . -298) 4592) ((-58 . -618) 4569) ((-58 . -633) 4530) ((-58 . -503) 4514) ((-58 . -1133) 4464) ((-58 . -528) 4397) ((-58 . -321) 4335) ((-58 . -632) 4247) ((-58 . -102) 4177) ((-58 . -1249) T) ((-58 . -34) T) ((-58 . -153) 4161) ((-58 . -872) 4140) ((-58 . -875) 4119) ((-58 . -385) 4103) ((-55 . -1133) T) ((-55 . -632) 4085) ((-55 . -1249) T) ((-55 . -102) T) ((-55 . -1070) 4067) ((-55 . -635) 4049) ((-51 . -1133) T) ((-51 . -632) 4031) ((-51 . -1249) T) ((-51 . -102) T) ((-50 . -640) 4015) ((-50 . -635) 3984) ((-50 . -670) 3958) ((-50 . -668) 3917) ((-50 . -748) T) ((-50 . -1144) T) ((-50 . -1089) T) ((-50 . -1081) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1133) T) ((-50 . -632) 3899) ((-50 . -1249) T) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -133) T) ((-50 . -1070) 3883) ((-49 . -1133) T) ((-49 . -632) 3865) ((-49 . -1249) T) ((-49 . -102) T) ((-48 . -310) T) ((-48 . -102) T) ((-48 . -1249) T) ((-48 . -632) 3847) ((-48 . -1133) T) ((-48 . -635) 3780) ((-48 . -1070) 3723) ((-48 . -528) 3689) ((-48 . -321) 3676) ((-48 . -27) T) ((-48 . -1034) T) ((-48 . -250) T) ((-48 . -111) 3632) ((-48 . -1083) 3597) ((-48 . -1088) 3562) ((-48 . -302) T) ((-48 . -739) 3527) ((-48 . -662) 3492) ((-48 . -670) 3442) ((-48 . -668) 3392) ((-48 . -133) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1081) T) ((-48 . -1089) T) ((-48 . -1144) T) ((-48 . -748) T) ((-48 . -38) 3357) ((-48 . -319) T) ((-48 . -466) T) ((-48 . -175) T) ((-48 . -571) T) ((-48 . -951) T) ((-48 . -1254) T) ((-48 . -376) T) ((-48 . -660) 3317) ((-48 . -1052) T) ((-48 . -633) 3262) ((-48 . -149) T) ((-48 . -240) T) ((-48 . -236) 3249) ((-48 . -239) T) ((-45 . -36) 3228) ((-45 . -618) 3153) ((-45 . -321) 2957) ((-45 . -528) 2749) ((-45 . -503) 2686) ((-45 . -298) 2586) ((-45 . -300) 2511) ((-45 . -629) 2490) ((-45 . -242) 2440) ((-45 . -107) 2390) ((-45 . -233) 2340) ((-45 . -1226) 2319) ((-45 . -294) 2269) ((-45 . -153) 2219) ((-45 . -34) T) ((-45 . -1249) T) ((-45 . -102) T) ((-45 . -632) 2201) ((-45 . -1133) T) ((-45 . -633) NIL) ((-45 . -673) 2151) ((-45 . -385) 2101) ((-45 . -875) NIL) ((-45 . -872) NIL) ((-45 . -1182) 2051) ((-45 . -1042) 2001) ((-45 . -1288) 1951) ((-45 . -688) 1901) ((-44 . -432) 1885) ((-44 . -766) 1869) ((-44 . -742) T) ((-44 . -783) T) ((-44 . -111) 1848) ((-44 . -1083) 1832) ((-44 . -1088) 1816) ((-44 . -21) T) ((-44 . -668) 1759) ((-44 . -23) T) ((-44 . -1133) T) ((-44 . -632) 1741) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -133) T) ((-44 . -670) 1699) ((-44 . -662) 1683) ((-44 . -739) 1667) ((-44 . -380) 1651) ((-44 . -1249) T) ((-44 . -298) 1628) ((-40 . -355) 1602) ((-40 . -175) T) ((-40 . -635) 1532) ((-40 . -748) T) ((-40 . -1144) T) ((-40 . -1089) T) ((-40 . -1081) T) ((-40 . -670) 1439) ((-40 . -668) 1369) ((-40 . -133) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -1249) T) ((-40 . -632) 1351) ((-40 . -1133) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1088) 1296) ((-40 . -1083) 1241) ((-40 . -111) 1170) ((-40 . -633) 1154) ((-40 . -234) 1131) ((-40 . -928) 1083) ((-40 . -930) 992) ((-40 . -922) 899) ((-40 . -274) 876) ((-40 . -239) 813) ((-40 . -236) 744) ((-40 . -240) 716) ((-40 . -376) T) ((-40 . -1254) T) ((-40 . -951) T) ((-40 . -571) T) ((-40 . -739) 661) ((-40 . -662) 606) ((-40 . -38) 551) ((-40 . -466) T) ((-40 . -319) T) ((-40 . -302) T) ((-40 . -250) T) ((-40 . -381) NIL) ((-40 . -363) NIL) ((-40 . -1184) NIL) ((-40 . -147) 523) ((-40 . -416) NIL) ((-40 . -424) 495) ((-40 . -149) 467) ((-40 . -383) 439) ((-40 . -390) 416) ((-40 . -660) 355) ((-40 . -426) 332) ((-40 . -1070) 220) ((-40 . -746) 192) ((-31 . -1115) T) ((-31 . -504) 173) ((-31 . -632) 139) ((-31 . -635) 120) ((-31 . -1133) T) ((-31 . -1249) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -985) T) ((-30 . -632) 102) ((0 . |EnumerationCategory|) T) ((0 . -632) 84) ((0 . -1133) T) ((0 . -102) T) ((0 . -1249) T) ((-2 . |RecordCategory|) T) ((-2 . -632) 66) ((-2 . -1133) T) ((-2 . -102) T) ((-2 . -1249) T) ((-3 . |UnionCategory|) T) ((-3 . -632) 48) ((-3 . -1133) T) ((-3 . -102) T) ((-3 . -1249) T) ((-1 . -1133) T) ((-1 . -632) 30) ((-1 . -1249) T) ((-1 . -102) T))
\ No newline at end of file +((((-558)) . T)) +(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1327 . -175) T) ((-1327 . -633) 205646) ((-1327 . -746) T) ((-1327 . -1142) T) ((-1327 . -1087) T) ((-1327 . -1079) T) ((-1327 . -668) 205633) ((-1327 . -666) 205605) ((-1327 . -133) T) ((-1327 . -25) T) ((-1327 . -102) T) ((-1327 . -1247) T) ((-1327 . -630) 205587) ((-1327 . -1131) T) ((-1327 . -23) T) ((-1327 . -21) T) ((-1327 . -1086) 205574) ((-1327 . -1081) 205561) ((-1327 . -111) 205546) ((-1327 . -381) T) ((-1327 . -631) 205528) ((-1327 . -1182) T) ((-1323 . -1131) T) ((-1323 . -630) 205494) ((-1323 . -1247) T) ((-1323 . -102) T) ((-1323 . -502) 205475) ((-1323 . -633) 205456) ((-1322 . -1320) 205435) ((-1322 . -1068) 205412) ((-1322 . -633) 205361) ((-1322 . -1079) T) ((-1322 . -1087) T) ((-1322 . -1142) T) ((-1322 . -746) T) ((-1322 . -21) T) ((-1322 . -666) 205320) ((-1322 . -23) T) ((-1322 . -1131) T) ((-1322 . -630) 205302) ((-1322 . -1247) T) ((-1322 . -102) T) ((-1322 . -25) T) ((-1322 . -133) T) ((-1322 . -668) 205276) ((-1322 . -1312) 205260) ((-1322 . -737) 205230) ((-1322 . -660) 205200) ((-1322 . -1086) 205184) ((-1322 . -1081) 205168) ((-1322 . -111) 205147) ((-1322 . -38) 205117) ((-1322 . -1317) 205096) ((-1321 . -1079) T) ((-1321 . -1087) T) ((-1321 . -1142) T) ((-1321 . -746) T) ((-1321 . -21) T) ((-1321 . -666) 205055) ((-1321 . -23) T) ((-1321 . -1131) T) ((-1321 . -630) 205037) ((-1321 . -1247) T) ((-1321 . -102) T) ((-1321 . -25) T) ((-1321 . -133) T) ((-1321 . -668) 205011) ((-1321 . -633) 204967) ((-1321 . -1312) 204951) ((-1321 . -737) 204921) ((-1321 . -660) 204891) ((-1321 . -1086) 204875) ((-1321 . -1081) 204859) ((-1321 . -111) 204838) ((-1321 . -38) 204808) ((-1321 . -397) 204787) ((-1321 . -1068) 204771) ((-1319 . -1320) 204747) ((-1319 . -1068) 204721) ((-1319 . -633) 204667) ((-1319 . -1079) T) ((-1319 . -1087) T) ((-1319 . -1142) T) ((-1319 . -746) T) ((-1319 . -21) T) ((-1319 . -666) 204626) ((-1319 . -23) T) ((-1319 . -1131) T) ((-1319 . -630) 204608) ((-1319 . -1247) T) ((-1319 . -102) T) ((-1319 . -25) T) ((-1319 . -133) T) ((-1319 . -668) 204582) ((-1319 . -1312) 204566) ((-1319 . -737) 204536) ((-1319 . -660) 204506) ((-1319 . -1086) 204490) ((-1319 . -1081) 204474) ((-1319 . -111) 204453) ((-1319 . -38) 204423) ((-1319 . -1317) 204399) ((-1318 . -1320) 204378) ((-1318 . -1068) 204335) ((-1318 . -633) 204264) ((-1318 . -1079) T) ((-1318 . -1087) T) ((-1318 . -1142) T) ((-1318 . -746) T) ((-1318 . -21) T) ((-1318 . -666) 204223) ((-1318 . -23) T) ((-1318 . -1131) T) ((-1318 . -630) 204205) ((-1318 . -1247) T) ((-1318 . -102) T) ((-1318 . -25) T) ((-1318 . -133) T) ((-1318 . -668) 204179) ((-1318 . -1312) 204163) ((-1318 . -737) 204133) ((-1318 . -660) 204103) ((-1318 . -1086) 204087) ((-1318 . -1081) 204071) ((-1318 . -111) 204050) ((-1318 . -38) 204020) ((-1318 . -1317) 203999) ((-1318 . -397) 203971) ((-1313 . -397) 203943) ((-1313 . -633) 203892) ((-1313 . -1068) 203869) ((-1313 . -660) 203839) ((-1313 . -737) 203809) ((-1313 . -668) 203783) ((-1313 . -666) 203742) ((-1313 . -133) T) ((-1313 . -25) T) ((-1313 . -102) T) ((-1313 . -1247) T) ((-1313 . -630) 203724) ((-1313 . -1131) T) ((-1313 . -23) T) ((-1313 . -21) T) ((-1313 . -1086) 203708) ((-1313 . -1081) 203692) ((-1313 . -111) 203671) ((-1313 . -1320) 203650) ((-1313 . -1079) T) ((-1313 . -1087) T) ((-1313 . -1142) T) ((-1313 . -746) T) ((-1313 . -1312) 203634) ((-1313 . -38) 203604) ((-1313 . -1317) 203583) ((-1311 . -1242) 203552) ((-1311 . -630) 203514) ((-1311 . -153) 203498) ((-1311 . -34) T) ((-1311 . -1247) T) ((-1311 . -102) T) ((-1311 . -321) 203436) ((-1311 . -526) 203369) ((-1311 . -1131) T) ((-1311 . -501) 203353) ((-1311 . -631) 203314) ((-1311 . -1006) 203283) ((-1310 . -1079) T) ((-1310 . -1087) T) ((-1310 . -1142) T) ((-1310 . -746) T) ((-1310 . -21) T) ((-1310 . -666) 203228) ((-1310 . -23) T) ((-1310 . -1131) T) ((-1310 . -630) 203197) ((-1310 . -1247) T) ((-1310 . -102) T) ((-1310 . -25) T) ((-1310 . -133) T) ((-1310 . -668) 203157) ((-1310 . -633) 203099) ((-1310 . -502) 203083) ((-1310 . -38) 203053) ((-1310 . -111) 203018) ((-1310 . -1081) 202988) ((-1310 . -1086) 202958) ((-1310 . -660) 202928) ((-1310 . -737) 202898) ((-1309 . -1113) T) ((-1309 . -502) 202879) ((-1309 . -630) 202845) ((-1309 . -633) 202826) ((-1309 . -1131) T) ((-1309 . -1247) T) ((-1309 . -102) T) ((-1309 . -93) T) ((-1308 . -1113) T) ((-1308 . -502) 202807) ((-1308 . -630) 202773) ((-1308 . -633) 202754) ((-1308 . -1131) T) ((-1308 . -1247) T) ((-1308 . -102) T) ((-1308 . -93) T) ((-1303 . -630) 202736) ((-1301 . -1131) T) ((-1301 . -630) 202718) ((-1301 . -1247) T) ((-1301 . -102) T) ((-1300 . -1131) T) ((-1300 . -630) 202700) ((-1300 . -1247) T) ((-1300 . -102) T) ((-1297 . -1296) 202684) ((-1297 . -385) 202668) ((-1297 . -873) 202647) ((-1297 . -870) 202626) ((-1297 . -153) 202610) ((-1297 . -34) T) ((-1297 . -1247) T) ((-1297 . -102) 202540) ((-1297 . -630) 202452) ((-1297 . -321) 202390) ((-1297 . -526) 202323) ((-1297 . -1131) 202273) ((-1297 . -501) 202257) ((-1297 . -631) 202218) ((-1297 . -298) 202170) ((-1297 . -616) 202147) ((-1297 . -300) 202124) ((-1297 . -671) 202108) ((-1297 . -19) 202092) ((-1294 . -1131) T) ((-1294 . -630) 202058) ((-1294 . -1247) T) ((-1294 . -102) T) ((-1287 . -1290) 202042) ((-1287 . -240) 202001) ((-1287 . -633) 201883) ((-1287 . -668) 201808) ((-1287 . -666) 201718) ((-1287 . -133) T) ((-1287 . -25) T) ((-1287 . -102) T) ((-1287 . -630) 201700) ((-1287 . -1131) T) ((-1287 . -23) T) ((-1287 . -21) T) ((-1287 . -746) T) ((-1287 . -1142) T) ((-1287 . -1087) T) ((-1287 . -1079) T) ((-1287 . -236) 201653) ((-1287 . -1247) T) ((-1287 . -239) 201612) ((-1287 . -298) 201577) ((-1287 . -926) 201490) ((-1287 . -920) 201378) ((-1287 . -928) 201291) ((-1287 . -1003) 201260) ((-1287 . -38) 201157) ((-1287 . -111) 201026) ((-1287 . -1081) 200909) ((-1287 . -1086) 200792) ((-1287 . -660) 200689) ((-1287 . -737) 200586) ((-1287 . -147) 200565) ((-1287 . -149) 200544) ((-1287 . -175) 200495) ((-1287 . -569) 200474) ((-1287 . -302) 200453) ((-1287 . -47) 200430) ((-1287 . -1276) 200407) ((-1287 . -35) 200373) ((-1287 . -95) 200339) ((-1287 . -296) 200305) ((-1287 . -505) 200271) ((-1287 . -1236) 200237) ((-1287 . -1233) 200203) ((-1287 . -1032) 200169) ((-1284 . -338) 200113) ((-1284 . -1068) 200079) ((-1284 . -424) 200045) ((-1284 . -38) 199937) ((-1284 . -633) 199811) ((-1284 . -668) 199716) ((-1284 . -666) 199606) ((-1284 . -746) T) ((-1284 . -1142) T) ((-1284 . -1087) T) ((-1284 . -1079) T) ((-1284 . -111) 199498) ((-1284 . -1081) 199403) ((-1284 . -1086) 199308) ((-1284 . -21) T) ((-1284 . -23) T) ((-1284 . -1131) T) ((-1284 . -630) 199290) ((-1284 . -1247) T) ((-1284 . -102) T) ((-1284 . -25) T) ((-1284 . -133) T) ((-1284 . -660) 199182) ((-1284 . -737) 199074) ((-1284 . -147) 199035) ((-1284 . -149) 198996) ((-1284 . -175) T) ((-1284 . -569) T) ((-1284 . -302) T) ((-1284 . -47) 198940) ((-1283 . -1282) 198919) ((-1283 . -376) 198898) ((-1283 . -1252) 198877) ((-1283 . -949) 198856) ((-1283 . -569) 198807) ((-1283 . -175) 198738) ((-1283 . -633) 198551) ((-1283 . -737) 198392) ((-1283 . -660) 198233) ((-1283 . -38) 198074) ((-1283 . -464) 198053) ((-1283 . -319) 198032) ((-1283 . -668) 197929) ((-1283 . -666) 197811) ((-1283 . -746) T) ((-1283 . -1142) T) ((-1283 . -1087) T) ((-1283 . -1079) T) ((-1283 . -111) 197632) ((-1283 . -1081) 197467) ((-1283 . -1086) 197302) ((-1283 . -21) T) ((-1283 . -23) T) ((-1283 . -1131) T) ((-1283 . -630) 197284) ((-1283 . -1247) T) ((-1283 . -102) T) ((-1283 . -25) T) ((-1283 . -133) T) ((-1283 . -302) 197235) ((-1283 . -250) 197214) ((-1283 . -1032) 197180) ((-1283 . -1233) 197146) ((-1283 . -1236) 197112) ((-1283 . -505) 197078) ((-1283 . -296) 197044) ((-1283 . -95) 197010) ((-1283 . -35) 196976) ((-1283 . -1276) 196946) ((-1283 . -47) 196916) ((-1283 . -149) 196895) ((-1283 . -147) 196874) ((-1283 . -1003) 196836) ((-1283 . -928) 196742) ((-1283 . -920) 196646) ((-1283 . -926) 196552) ((-1283 . -298) 196510) ((-1283 . -239) 196462) ((-1283 . -236) 196408) ((-1283 . -240) 196360) ((-1283 . -1280) 196344) ((-1283 . -1068) 196328) ((-1278 . -1282) 196289) ((-1278 . -376) 196268) ((-1278 . -1252) 196247) ((-1278 . -949) 196226) ((-1278 . -569) 196177) ((-1278 . -175) 196108) ((-1278 . -633) 195851) ((-1278 . -737) 195692) ((-1278 . -660) 195533) ((-1278 . -38) 195374) ((-1278 . -464) 195353) ((-1278 . -319) 195332) ((-1278 . -668) 195229) ((-1278 . -666) 195111) ((-1278 . -746) T) ((-1278 . -1142) T) ((-1278 . -1087) T) ((-1278 . -1079) T) ((-1278 . -111) 194932) ((-1278 . -1081) 194767) ((-1278 . -1086) 194602) ((-1278 . -21) T) ((-1278 . -23) T) ((-1278 . -1131) T) ((-1278 . -630) 194584) ((-1278 . -1247) T) ((-1278 . -102) T) ((-1278 . -25) T) ((-1278 . -133) T) ((-1278 . -302) 194535) ((-1278 . -250) 194514) ((-1278 . -1032) 194480) ((-1278 . -1233) 194446) ((-1278 . -1236) 194412) ((-1278 . -505) 194378) ((-1278 . -296) 194344) ((-1278 . -95) 194310) ((-1278 . -35) 194276) ((-1278 . -1276) 194246) ((-1278 . -47) 194216) ((-1278 . -149) 194195) ((-1278 . -147) 194174) ((-1278 . -1003) 194136) ((-1278 . -928) 194042) ((-1278 . -920) 193923) ((-1278 . -926) 193829) ((-1278 . -298) 193787) ((-1278 . -239) 193739) ((-1278 . -236) 193685) ((-1278 . -240) 193637) ((-1278 . -1280) 193621) ((-1278 . -1068) 193556) ((-1266 . -1273) 193540) ((-1266 . -1182) 193518) ((-1266 . -631) NIL) ((-1266 . -321) 193505) ((-1266 . -526) 193452) ((-1266 . -338) 193429) ((-1266 . -1068) 193309) ((-1266 . -424) 193293) ((-1266 . -38) 193122) ((-1266 . -111) 192931) ((-1266 . -1081) 192754) ((-1266 . -1086) 192577) ((-1266 . -666) 192487) ((-1266 . -668) 192376) ((-1266 . -660) 192205) ((-1266 . -737) 192034) ((-1266 . -633) 191782) ((-1266 . -147) 191761) ((-1266 . -149) 191740) ((-1266 . -47) 191717) ((-1266 . -390) 191701) ((-1266 . -658) 191649) ((-1266 . -926) 191592) ((-1266 . -920) 191495) ((-1266 . -928) 191402) ((-1266 . -910) NIL) ((-1266 . -938) 191381) ((-1266 . -1252) 191360) ((-1266 . -978) 191329) ((-1266 . -949) 191308) ((-1266 . -569) 191219) ((-1266 . -302) 191130) ((-1266 . -175) 191021) ((-1266 . -464) 190952) ((-1266 . -319) 190931) ((-1266 . -298) 190858) ((-1266 . -240) T) ((-1266 . -133) T) ((-1266 . -25) T) ((-1266 . -102) T) ((-1266 . -630) 190840) ((-1266 . -1131) T) ((-1266 . -23) T) ((-1266 . -21) T) ((-1266 . -746) T) ((-1266 . -1142) T) ((-1266 . -1087) T) ((-1266 . -1079) T) ((-1266 . -236) 190827) ((-1266 . -1247) T) ((-1266 . -239) T) ((-1266 . -274) 190811) ((-1266 . -234) 190795) ((-1264 . -1124) 190779) ((-1264 . -635) 190763) ((-1264 . -1131) 190741) ((-1264 . -630) 190708) ((-1264 . -1247) 190686) ((-1264 . -102) 190664) ((-1264 . -1125) 190621) ((-1262 . -1261) 190600) ((-1262 . -1032) 190566) ((-1262 . -1233) 190532) ((-1262 . -1236) 190498) ((-1262 . -505) 190464) ((-1262 . -296) 190430) ((-1262 . -95) 190396) ((-1262 . -35) 190362) ((-1262 . -1276) 190339) ((-1262 . -47) 190316) ((-1262 . -633) 190064) ((-1262 . -737) 189878) ((-1262 . -660) 189692) ((-1262 . -668) 189500) ((-1262 . -666) 189355) ((-1262 . -1086) 189163) ((-1262 . -1081) 188971) ((-1262 . -111) 188760) ((-1262 . -38) 188574) ((-1262 . -1003) 188543) ((-1262 . -298) 188443) ((-1262 . -1259) 188427) ((-1262 . -746) T) ((-1262 . -1142) T) ((-1262 . -1087) T) ((-1262 . -1079) T) ((-1262 . -21) T) ((-1262 . -23) T) ((-1262 . -1131) T) ((-1262 . -630) 188409) ((-1262 . -1247) T) ((-1262 . -102) T) ((-1262 . -25) T) ((-1262 . -133) T) ((-1262 . -147) 188334) ((-1262 . -149) 188259) ((-1262 . -631) 187930) ((-1262 . -234) 187900) ((-1262 . -926) 187751) ((-1262 . -928) 187548) ((-1262 . -920) 187343) ((-1262 . -274) 187313) ((-1262 . -239) 187172) ((-1262 . -236) 187025) ((-1262 . -240) 186930) ((-1262 . -376) 186909) ((-1262 . -1252) 186888) ((-1262 . -949) 186867) ((-1262 . -569) 186818) ((-1262 . -175) 186749) ((-1262 . -464) 186728) ((-1262 . -319) 186707) ((-1262 . -302) 186658) ((-1262 . -250) 186637) ((-1262 . -351) 186607) ((-1262 . -526) 186467) ((-1262 . -321) 186406) ((-1262 . -390) 186376) ((-1262 . -658) 186284) ((-1262 . -412) 186254) ((-1262 . -910) 186127) ((-1262 . -842) 186080) ((-1262 . -812) 186033) ((-1262 . -814) 185986) ((-1262 . -870) 185885) ((-1262 . -873) 185784) ((-1262 . -816) 185737) ((-1262 . -819) 185690) ((-1262 . -869) 185643) ((-1262 . -908) 185613) ((-1262 . -938) 185566) ((-1262 . -1050) 185518) ((-1262 . -1068) 185304) ((-1262 . -1182) 185256) ((-1262 . -1021) 185226) ((-1257 . -1261) 185187) ((-1257 . -1032) 185153) ((-1257 . -1233) 185119) ((-1257 . -1236) 185085) ((-1257 . -505) 185051) ((-1257 . -296) 185017) ((-1257 . -95) 184983) ((-1257 . -35) 184949) ((-1257 . -1276) 184926) ((-1257 . -47) 184903) ((-1257 . -633) 184698) ((-1257 . -737) 184494) ((-1257 . -660) 184290) ((-1257 . -668) 184142) ((-1257 . -666) 183979) ((-1257 . -1086) 183769) ((-1257 . -1081) 183559) ((-1257 . -111) 183328) ((-1257 . -38) 183124) ((-1257 . -1003) 183093) ((-1257 . -298) 182921) ((-1257 . -1259) 182905) ((-1257 . -746) T) ((-1257 . -1142) T) ((-1257 . -1087) T) ((-1257 . -1079) T) ((-1257 . -21) T) ((-1257 . -23) T) ((-1257 . -1131) T) ((-1257 . -630) 182887) ((-1257 . -1247) T) ((-1257 . -102) T) ((-1257 . -25) T) ((-1257 . -133) T) ((-1257 . -147) 182794) ((-1257 . -149) 182701) ((-1257 . -631) NIL) ((-1257 . -234) 182653) ((-1257 . -926) 182486) ((-1257 . -928) 182247) ((-1257 . -920) 181983) ((-1257 . -274) 181935) ((-1257 . -239) 181758) ((-1257 . -236) 181575) ((-1257 . -240) 181462) ((-1257 . -376) 181441) ((-1257 . -1252) 181420) ((-1257 . -949) 181399) ((-1257 . -569) 181350) ((-1257 . -175) 181281) ((-1257 . -464) 181260) ((-1257 . -319) 181239) ((-1257 . -302) 181190) ((-1257 . -250) 181169) ((-1257 . -351) 181121) ((-1257 . -526) 180890) ((-1257 . -321) 180775) ((-1257 . -390) 180727) ((-1257 . -658) 180679) ((-1257 . -412) 180631) ((-1257 . -910) NIL) ((-1257 . -842) NIL) ((-1257 . -812) NIL) ((-1257 . -814) NIL) ((-1257 . -870) NIL) ((-1257 . -873) NIL) ((-1257 . -816) NIL) ((-1257 . -819) NIL) ((-1257 . -869) NIL) ((-1257 . -908) 180583) ((-1257 . -938) NIL) ((-1257 . -1050) NIL) ((-1257 . -1068) 180549) ((-1257 . -1182) NIL) ((-1257 . -1021) 180501) ((-1256 . -866) T) ((-1256 . -873) T) ((-1256 . -870) T) ((-1256 . -1131) T) ((-1256 . -630) 180483) ((-1256 . -1247) T) ((-1256 . -102) T) ((-1256 . -381) T) ((-1256 . -682) T) ((-1255 . -866) T) ((-1255 . -873) T) ((-1255 . -870) T) ((-1255 . -1131) T) ((-1255 . -630) 180465) ((-1255 . -1247) T) ((-1255 . -102) T) ((-1255 . -381) T) ((-1255 . -682) T) ((-1254 . -866) T) ((-1254 . -873) T) ((-1254 . -870) T) ((-1254 . -1131) T) ((-1254 . -630) 180447) ((-1254 . -1247) T) ((-1254 . -102) T) ((-1254 . -381) T) ((-1254 . -682) T) ((-1253 . -866) T) ((-1253 . -873) T) ((-1253 . -870) T) ((-1253 . -1131) T) ((-1253 . -630) 180429) ((-1253 . -1247) T) ((-1253 . -102) T) ((-1253 . -381) T) ((-1253 . -682) T) ((-1248 . -1113) T) ((-1248 . -502) 180410) ((-1248 . -630) 180376) ((-1248 . -633) 180357) ((-1248 . -1131) T) ((-1248 . -1247) T) ((-1248 . -102) T) ((-1248 . -93) T) ((-1245 . -502) 180334) ((-1245 . -630) 180246) ((-1245 . -633) 180223) ((-1245 . -1131) 180201) ((-1245 . -1247) 180179) ((-1245 . -102) 180157) ((-1240 . -760) 180133) ((-1240 . -35) 180099) ((-1240 . -95) 180065) ((-1240 . -296) 180031) ((-1240 . -505) 179997) ((-1240 . -1236) 179963) ((-1240 . -1233) 179929) ((-1240 . -1032) 179895) ((-1240 . -47) 179864) ((-1240 . -38) 179761) ((-1240 . -660) 179658) ((-1240 . -737) 179555) ((-1240 . -633) 179437) ((-1240 . -302) 179416) ((-1240 . -569) 179395) ((-1240 . -111) 179264) ((-1240 . -1081) 179147) ((-1240 . -1086) 179030) ((-1240 . -175) 178981) ((-1240 . -149) 178960) ((-1240 . -147) 178939) ((-1240 . -668) 178864) ((-1240 . -666) 178774) ((-1240 . -1003) 178736) ((-1240 . -928) 178717) ((-1240 . -1247) T) ((-1240 . -920) 178696) ((-1240 . -1079) T) ((-1240 . -1087) T) ((-1240 . -1142) T) ((-1240 . -746) T) ((-1240 . -21) T) ((-1240 . -23) T) ((-1240 . -1131) T) ((-1240 . -630) 178678) ((-1240 . -102) T) ((-1240 . -25) T) ((-1240 . -133) T) ((-1240 . -926) 178659) ((-1240 . -526) 178626) ((-1240 . -321) 178613) ((-1234 . -1040) 178597) ((-1234 . -34) T) ((-1234 . -1247) T) ((-1234 . -102) 178547) ((-1234 . -630) 178479) ((-1234 . -321) 178417) ((-1234 . -526) 178350) ((-1234 . -1131) 178328) ((-1234 . -501) 178312) ((-1229 . -378) 178286) ((-1229 . -102) T) ((-1229 . -1247) T) ((-1229 . -630) 178268) ((-1229 . -1131) T) ((-1227 . -1131) T) ((-1227 . -630) 178250) ((-1227 . -1247) T) ((-1227 . -102) T) ((-1227 . -633) 178232) ((-1221 . -858) 178216) ((-1221 . -102) T) ((-1221 . -1247) T) ((-1221 . -630) 178198) ((-1221 . -1131) T) ((-1219 . -1224) 178177) ((-1219 . -233) 178127) ((-1219 . -107) 178077) ((-1219 . -321) 177881) ((-1219 . -526) 177673) ((-1219 . -501) 177610) ((-1219 . -153) 177560) ((-1219 . -631) NIL) ((-1219 . -242) 177510) ((-1219 . -627) 177489) ((-1219 . -300) 177468) ((-1219 . -1247) T) ((-1219 . -298) 177447) ((-1219 . -1131) T) ((-1219 . -630) 177429) ((-1219 . -102) T) ((-1219 . -34) T) ((-1219 . -616) 177408) ((-1217 . -1247) T) ((-1215 . -1131) T) ((-1215 . -630) 177390) ((-1215 . -1247) T) ((-1215 . -102) T) ((-1214 . -866) T) ((-1214 . -873) T) ((-1214 . -870) T) ((-1214 . -1131) T) ((-1214 . -630) 177372) ((-1214 . -1247) T) ((-1214 . -102) T) ((-1214 . -381) T) ((-1214 . -682) T) ((-1213 . -866) T) ((-1213 . -873) T) ((-1213 . -870) T) ((-1213 . -1131) T) ((-1213 . -630) 177354) ((-1213 . -1247) T) ((-1213 . -102) T) ((-1213 . -381) T) ((-1212 . -1293) T) ((-1212 . -1131) T) ((-1212 . -630) 177321) ((-1212 . -1247) T) ((-1212 . -102) T) ((-1212 . -1068) 177257) ((-1212 . -633) 177193) ((-1211 . -630) 177175) ((-1210 . -630) 177157) ((-1209 . -338) 177133) ((-1209 . -1068) 177029) ((-1209 . -424) 177013) ((-1209 . -38) 176910) ((-1209 . -633) 176763) ((-1209 . -668) 176688) ((-1209 . -666) 176598) ((-1209 . -746) T) ((-1209 . -1142) T) ((-1209 . -1087) T) ((-1209 . -1079) T) ((-1209 . -111) 176467) ((-1209 . -1081) 176350) ((-1209 . -1086) 176233) ((-1209 . -21) T) ((-1209 . -23) T) ((-1209 . -1131) T) ((-1209 . -630) 176215) ((-1209 . -1247) T) ((-1209 . -102) T) ((-1209 . -25) T) ((-1209 . -133) T) ((-1209 . -660) 176112) ((-1209 . -737) 176009) ((-1209 . -147) 175988) ((-1209 . -149) 175967) ((-1209 . -175) 175918) ((-1209 . -569) 175897) ((-1209 . -302) 175876) ((-1209 . -47) 175852) ((-1207 . -870) T) ((-1207 . -630) 175834) ((-1207 . -1131) T) ((-1207 . -102) T) ((-1207 . -1247) T) ((-1207 . -873) T) ((-1207 . -631) 175756) ((-1207 . -843) T) ((-1207 . -633) 175737) ((-1207 . -910) 175704) ((-1206 . -630) 175686) ((-1205 . -1290) 175670) ((-1205 . -240) 175629) ((-1205 . -633) 175511) ((-1205 . -668) 175436) ((-1205 . -666) 175346) ((-1205 . -133) T) ((-1205 . -25) T) ((-1205 . -102) T) ((-1205 . -630) 175328) ((-1205 . -1131) T) ((-1205 . -23) T) ((-1205 . -21) T) ((-1205 . -746) T) ((-1205 . -1142) T) ((-1205 . -1087) T) ((-1205 . -1079) T) ((-1205 . -236) 175281) ((-1205 . -1247) T) ((-1205 . -239) 175240) ((-1205 . -298) 175205) ((-1205 . -926) 175118) ((-1205 . -920) 175006) ((-1205 . -928) 174919) ((-1205 . -1003) 174888) ((-1205 . -38) 174785) ((-1205 . -111) 174654) ((-1205 . -1081) 174537) ((-1205 . -1086) 174420) ((-1205 . -660) 174317) ((-1205 . -737) 174214) ((-1205 . -147) 174193) ((-1205 . -149) 174172) ((-1205 . -175) 174123) ((-1205 . -569) 174102) ((-1205 . -302) 174081) ((-1205 . -47) 174058) ((-1205 . -1276) 174035) ((-1205 . -35) 174001) ((-1205 . -95) 173967) ((-1205 . -296) 173933) ((-1205 . -505) 173899) ((-1205 . -1236) 173865) ((-1205 . -1233) 173831) ((-1205 . -1032) 173797) ((-1204 . -1282) 173758) ((-1204 . -376) 173737) ((-1204 . -1252) 173716) ((-1204 . -949) 173695) ((-1204 . -569) 173646) ((-1204 . -175) 173577) ((-1204 . -633) 173320) ((-1204 . -737) 173161) ((-1204 . -660) 173002) ((-1204 . -38) 172843) ((-1204 . -464) 172822) ((-1204 . -319) 172801) ((-1204 . -668) 172698) ((-1204 . -666) 172580) ((-1204 . -746) T) ((-1204 . -1142) T) ((-1204 . -1087) T) ((-1204 . -1079) T) ((-1204 . -111) 172401) ((-1204 . -1081) 172236) ((-1204 . -1086) 172071) ((-1204 . -21) T) ((-1204 . -23) T) ((-1204 . -1131) T) ((-1204 . -630) 172053) ((-1204 . -1247) T) ((-1204 . -102) T) ((-1204 . -25) T) ((-1204 . -133) T) ((-1204 . -302) 172004) ((-1204 . -250) 171983) ((-1204 . -1032) 171949) ((-1204 . -1233) 171915) ((-1204 . -1236) 171881) ((-1204 . -505) 171847) ((-1204 . -296) 171813) ((-1204 . -95) 171779) ((-1204 . -35) 171745) ((-1204 . -1276) 171715) ((-1204 . -47) 171685) ((-1204 . -149) 171664) ((-1204 . -147) 171643) ((-1204 . -1003) 171605) ((-1204 . -928) 171511) ((-1204 . -920) 171392) ((-1204 . -926) 171298) ((-1204 . -298) 171256) ((-1204 . -239) 171208) ((-1204 . -236) 171154) ((-1204 . -240) 171106) ((-1204 . -1280) 171090) ((-1204 . -1068) 171025) ((-1201 . -1273) 171009) ((-1201 . -1182) 170987) ((-1201 . -631) NIL) ((-1201 . -321) 170974) ((-1201 . -526) 170921) ((-1201 . -338) 170898) ((-1201 . -1068) 170778) ((-1201 . -424) 170762) ((-1201 . -38) 170591) ((-1201 . -111) 170400) ((-1201 . -1081) 170223) ((-1201 . -1086) 170046) ((-1201 . -666) 169956) ((-1201 . -668) 169845) ((-1201 . -660) 169674) ((-1201 . -737) 169503) ((-1201 . -633) 169272) ((-1201 . -147) 169251) ((-1201 . -149) 169230) ((-1201 . -47) 169207) ((-1201 . -390) 169191) ((-1201 . -658) 169139) ((-1201 . -926) 169082) ((-1201 . -920) 168985) ((-1201 . -928) 168892) ((-1201 . -910) NIL) ((-1201 . -938) 168871) ((-1201 . -1252) 168850) ((-1201 . -978) 168819) ((-1201 . -949) 168798) ((-1201 . -569) 168709) ((-1201 . -302) 168620) ((-1201 . -175) 168511) ((-1201 . -464) 168442) ((-1201 . -319) 168421) ((-1201 . -298) 168348) ((-1201 . -240) T) ((-1201 . -133) T) ((-1201 . -25) T) ((-1201 . -102) T) ((-1201 . -630) 168330) ((-1201 . -1131) T) ((-1201 . -23) T) ((-1201 . -21) T) ((-1201 . -746) T) ((-1201 . -1142) T) ((-1201 . -1087) T) ((-1201 . -1079) T) ((-1201 . -236) 168317) ((-1201 . -1247) T) ((-1201 . -239) T) ((-1201 . -274) 168301) ((-1201 . -234) 168285) ((-1198 . -1261) 168246) ((-1198 . -1032) 168212) ((-1198 . -1233) 168178) ((-1198 . -1236) 168144) ((-1198 . -505) 168110) ((-1198 . -296) 168076) ((-1198 . -95) 168042) ((-1198 . -35) 168008) ((-1198 . -1276) 167985) ((-1198 . -47) 167962) ((-1198 . -633) 167757) ((-1198 . -737) 167553) ((-1198 . -660) 167349) ((-1198 . -668) 167201) ((-1198 . -666) 167038) ((-1198 . -1086) 166828) ((-1198 . -1081) 166618) ((-1198 . -111) 166387) ((-1198 . -38) 166183) ((-1198 . -1003) 166152) ((-1198 . -298) 165980) ((-1198 . -1259) 165964) ((-1198 . -746) T) ((-1198 . -1142) T) ((-1198 . -1087) T) ((-1198 . -1079) T) ((-1198 . -21) T) ((-1198 . -23) T) ((-1198 . -1131) T) ((-1198 . -630) 165946) ((-1198 . -1247) T) ((-1198 . -102) T) ((-1198 . -25) T) ((-1198 . -133) T) ((-1198 . -147) 165853) ((-1198 . -149) 165760) ((-1198 . -631) NIL) ((-1198 . -234) 165712) ((-1198 . -926) 165545) ((-1198 . -928) 165306) ((-1198 . -920) 165042) ((-1198 . -274) 164994) ((-1198 . -239) 164817) ((-1198 . -236) 164634) ((-1198 . -240) 164521) ((-1198 . -376) 164500) ((-1198 . -1252) 164479) ((-1198 . -949) 164458) ((-1198 . -569) 164409) ((-1198 . -175) 164340) ((-1198 . -464) 164319) ((-1198 . -319) 164298) ((-1198 . -302) 164249) ((-1198 . -250) 164228) ((-1198 . -351) 164180) ((-1198 . -526) 163949) ((-1198 . -321) 163834) ((-1198 . -390) 163786) ((-1198 . -658) 163738) ((-1198 . -412) 163690) ((-1198 . -910) NIL) ((-1198 . -842) NIL) ((-1198 . -812) NIL) ((-1198 . -814) NIL) ((-1198 . -870) NIL) ((-1198 . -873) NIL) ((-1198 . -816) NIL) ((-1198 . -819) NIL) ((-1198 . -869) NIL) ((-1198 . -908) 163642) ((-1198 . -938) NIL) ((-1198 . -1050) NIL) ((-1198 . -1068) 163608) ((-1198 . -1182) NIL) ((-1198 . -1021) 163560) ((-1197 . -1113) T) ((-1197 . -502) 163541) ((-1197 . -630) 163507) ((-1197 . -633) 163488) ((-1197 . -1131) T) ((-1197 . -1247) T) ((-1197 . -102) T) ((-1197 . -93) T) ((-1196 . -1131) T) ((-1196 . -630) 163470) ((-1196 . -1247) T) ((-1196 . -102) T) ((-1195 . -1131) T) ((-1195 . -630) 163452) ((-1195 . -1247) T) ((-1195 . -102) T) ((-1190 . -1224) 163428) ((-1190 . -233) 163375) ((-1190 . -107) 163322) ((-1190 . -321) 163117) ((-1190 . -526) 162900) ((-1190 . -501) 162834) ((-1190 . -153) 162781) ((-1190 . -631) NIL) ((-1190 . -242) 162728) ((-1190 . -627) 162704) ((-1190 . -300) 162680) ((-1190 . -1247) T) ((-1190 . -298) 162656) ((-1190 . -1131) T) ((-1190 . -630) 162638) ((-1190 . -102) T) ((-1190 . -34) T) ((-1190 . -616) 162614) ((-1189 . -1174) T) ((-1189 . -385) 162596) ((-1189 . -873) T) ((-1189 . -870) T) ((-1189 . -153) 162578) ((-1189 . -34) T) ((-1189 . -1247) T) ((-1189 . -102) T) ((-1189 . -630) 162560) ((-1189 . -321) NIL) ((-1189 . -526) NIL) ((-1189 . -1131) T) ((-1189 . -501) 162542) ((-1189 . -631) NIL) ((-1189 . -298) 162492) ((-1189 . -616) 162467) ((-1189 . -300) 162442) ((-1189 . -671) 162424) ((-1189 . -19) 162406) ((-1189 . -843) T) ((-1185 . -694) 162390) ((-1185 . -671) 162374) ((-1185 . -300) 162351) ((-1185 . -298) 162303) ((-1185 . -616) 162280) ((-1185 . -631) 162241) ((-1185 . -501) 162225) ((-1185 . -1131) 162203) ((-1185 . -526) 162136) ((-1185 . -321) 162074) ((-1185 . -630) 162006) ((-1185 . -102) 161956) ((-1185 . -1247) T) ((-1185 . -34) T) ((-1185 . -153) 161940) ((-1185 . -1286) 161924) ((-1185 . -1040) 161908) ((-1185 . -1180) 161892) ((-1185 . -633) 161869) ((-1183 . -1113) T) ((-1183 . -502) 161850) ((-1183 . -630) 161816) ((-1183 . -633) 161797) ((-1183 . -1131) T) ((-1183 . -1247) T) ((-1183 . -102) T) ((-1183 . -93) T) ((-1181 . -1224) 161776) ((-1181 . -233) 161726) ((-1181 . -107) 161676) ((-1181 . -321) 161480) ((-1181 . -526) 161272) ((-1181 . -501) 161209) ((-1181 . -153) 161159) ((-1181 . -631) NIL) ((-1181 . -242) 161109) ((-1181 . -627) 161088) ((-1181 . -300) 161067) ((-1181 . -1247) T) ((-1181 . -298) 161046) ((-1181 . -1131) T) ((-1181 . -630) 161028) ((-1181 . -102) T) ((-1181 . -34) T) ((-1181 . -616) 161007) ((-1178 . -1151) 160991) ((-1178 . -501) 160975) ((-1178 . -1131) 160953) ((-1178 . -526) 160886) ((-1178 . -321) 160824) ((-1178 . -630) 160756) ((-1178 . -102) 160706) ((-1178 . -1247) T) ((-1178 . -34) T) ((-1178 . -107) 160690) ((-1176 . -1139) 160659) ((-1176 . -1242) 160628) ((-1176 . -630) 160590) ((-1176 . -153) 160574) ((-1176 . -34) T) ((-1176 . -1247) T) ((-1176 . -102) T) ((-1176 . -321) 160512) ((-1176 . -526) 160445) ((-1176 . -1131) T) ((-1176 . -501) 160429) ((-1176 . -631) 160390) ((-1176 . -1006) 160359) ((-1176 . -1101) 160328) ((-1172 . -1153) 160273) ((-1172 . -501) 160257) ((-1172 . -526) 160190) ((-1172 . -321) 160128) ((-1172 . -34) T) ((-1172 . -1083) 160068) ((-1172 . -1068) 159964) ((-1172 . -633) 159882) ((-1172 . -424) 159866) ((-1172 . -658) 159814) ((-1172 . -668) 159752) ((-1172 . -390) 159736) ((-1172 . -240) 159715) ((-1172 . -236) 159660) ((-1172 . -239) 159611) ((-1172 . -274) 159595) ((-1172 . -920) 159516) ((-1172 . -928) 159439) ((-1172 . -926) 159398) ((-1172 . -234) 159382) ((-1172 . -737) 159314) ((-1172 . -660) 159246) ((-1172 . -666) 159205) ((-1172 . -133) T) ((-1172 . -25) T) ((-1172 . -102) T) ((-1172 . -1247) T) ((-1172 . -630) 159167) ((-1172 . -1131) T) ((-1172 . -23) T) ((-1172 . -21) T) ((-1172 . -1086) 159151) ((-1172 . -1081) 159135) ((-1172 . -111) 159114) ((-1172 . -1079) T) ((-1172 . -1087) T) ((-1172 . -1142) T) ((-1172 . -746) T) ((-1172 . -38) 159074) ((-1172 . -631) 159035) ((-1171 . -1040) 159006) ((-1171 . -34) T) ((-1171 . -1247) T) ((-1171 . -102) T) ((-1171 . -630) 158988) ((-1171 . -321) 158914) ((-1171 . -526) 158833) ((-1171 . -1131) T) ((-1171 . -501) 158804) ((-1170 . -1131) T) ((-1170 . -630) 158786) ((-1170 . -1247) T) ((-1170 . -102) T) ((-1165 . -1167) T) ((-1165 . -1293) T) ((-1165 . -93) T) ((-1165 . -102) T) ((-1165 . -1247) T) ((-1165 . -630) 158752) ((-1165 . -1131) T) ((-1165 . -633) 158733) ((-1165 . -502) 158714) ((-1165 . -1113) T) ((-1163 . -1164) 158698) ((-1163 . -102) T) ((-1163 . -1247) T) ((-1163 . -630) 158680) ((-1163 . -1131) T) ((-1156 . -760) 158659) ((-1156 . -35) 158625) ((-1156 . -95) 158591) ((-1156 . -296) 158557) ((-1156 . -505) 158523) ((-1156 . -1236) 158489) ((-1156 . -1233) 158455) ((-1156 . -1032) 158421) ((-1156 . -47) 158393) ((-1156 . -38) 158290) ((-1156 . -660) 158187) ((-1156 . -737) 158084) ((-1156 . -633) 157966) ((-1156 . -302) 157945) ((-1156 . -569) 157924) ((-1156 . -111) 157793) ((-1156 . -1081) 157676) ((-1156 . -1086) 157559) ((-1156 . -175) 157510) ((-1156 . -149) 157489) ((-1156 . -147) 157468) ((-1156 . -668) 157393) ((-1156 . -666) 157303) ((-1156 . -1003) 157270) ((-1156 . -928) 157254) ((-1156 . -1247) T) ((-1156 . -920) 157236) ((-1156 . -1079) T) ((-1156 . -1087) T) ((-1156 . -1142) T) ((-1156 . -746) T) ((-1156 . -21) T) ((-1156 . -23) T) ((-1156 . -1131) T) ((-1156 . -630) 157218) ((-1156 . -102) T) ((-1156 . -25) T) ((-1156 . -133) T) ((-1156 . -926) 157202) ((-1156 . -526) 157172) ((-1156 . -321) 157159) ((-1155 . -978) 157126) ((-1155 . -633) 156918) ((-1155 . -1068) 156801) ((-1155 . -1252) 156780) ((-1155 . -938) 156759) ((-1155 . -910) 156618) ((-1155 . -928) 156602) ((-1155 . -920) 156584) ((-1155 . -926) 156568) ((-1155 . -526) 156520) ((-1155 . -464) 156471) ((-1155 . -658) 156419) ((-1155 . -668) 156308) ((-1155 . -390) 156292) ((-1155 . -47) 156264) ((-1155 . -38) 156113) ((-1155 . -660) 155962) ((-1155 . -737) 155811) ((-1155 . -302) 155742) ((-1155 . -569) 155673) ((-1155 . -111) 155502) ((-1155 . -1081) 155345) ((-1155 . -1086) 155188) ((-1155 . -175) 155099) ((-1155 . -149) 155078) ((-1155 . -147) 155057) ((-1155 . -666) 154967) ((-1155 . -133) T) ((-1155 . -25) T) ((-1155 . -102) T) ((-1155 . -1247) T) ((-1155 . -630) 154949) ((-1155 . -1131) T) ((-1155 . -23) T) ((-1155 . -21) T) ((-1155 . -1079) T) ((-1155 . -1087) T) ((-1155 . -1142) T) ((-1155 . -746) T) ((-1155 . -424) 154933) ((-1155 . -338) 154905) ((-1155 . -321) 154892) ((-1155 . -631) 154640) ((-1150 . -557) T) ((-1150 . -1252) T) ((-1150 . -1182) T) ((-1150 . -1068) 154622) ((-1150 . -631) 154537) ((-1150 . -1050) T) ((-1150 . -910) 154519) ((-1150 . -869) T) ((-1150 . -819) T) ((-1150 . -816) T) ((-1150 . -873) T) ((-1150 . -870) T) ((-1150 . -814) T) ((-1150 . -812) T) ((-1150 . -842) T) ((-1150 . -668) 154491) ((-1150 . -658) 154473) ((-1150 . -949) T) ((-1150 . -569) T) ((-1150 . -302) T) ((-1150 . -175) T) ((-1150 . -633) 154445) ((-1150 . -737) 154432) ((-1150 . -660) 154419) ((-1150 . -1086) 154406) ((-1150 . -1081) 154393) ((-1150 . -111) 154378) ((-1150 . -38) 154365) ((-1150 . -464) T) ((-1150 . -319) T) ((-1150 . -239) T) ((-1150 . -236) 154352) ((-1150 . -240) T) ((-1150 . -145) T) ((-1150 . -1079) T) ((-1150 . -1087) T) ((-1150 . -1142) T) ((-1150 . -746) T) ((-1150 . -21) T) ((-1150 . -666) 154324) ((-1150 . -23) T) ((-1150 . -1131) T) ((-1150 . -630) 154306) ((-1150 . -1247) T) ((-1150 . -102) T) ((-1150 . -25) T) ((-1150 . -133) T) ((-1150 . -149) T) ((-1150 . -866) T) ((-1150 . -381) T) ((-1150 . -113) T) ((-1150 . -682) T) ((-1150 . -843) T) ((-1146 . -1113) T) ((-1146 . -502) 154287) ((-1146 . -630) 154253) ((-1146 . -633) 154234) ((-1146 . -1131) T) ((-1146 . -1247) T) ((-1146 . -102) T) ((-1146 . -93) T) ((-1145 . -1131) T) ((-1145 . -630) 154216) ((-1145 . -1247) T) ((-1145 . -102) T) ((-1143 . -245) 154195) ((-1143 . -1305) 154165) ((-1143 . -819) 154144) ((-1143 . -816) 154123) ((-1143 . -873) 154074) ((-1143 . -870) 154025) ((-1143 . -814) 154004) ((-1143 . -815) 153983) ((-1143 . -737) 153925) ((-1143 . -660) 153847) ((-1143 . -300) 153824) ((-1143 . -298) 153801) ((-1143 . -501) 153785) ((-1143 . -526) 153718) ((-1143 . -321) 153656) ((-1143 . -34) T) ((-1143 . -616) 153633) ((-1143 . -1068) 153460) ((-1143 . -633) 153258) ((-1143 . -424) 153227) ((-1143 . -658) 153133) ((-1143 . -668) 152966) ((-1143 . -390) 152935) ((-1143 . -381) 152914) ((-1143 . -240) 152866) ((-1143 . -666) 152645) ((-1143 . -746) 152623) ((-1143 . -1142) 152601) ((-1143 . -1087) 152579) ((-1143 . -1079) 152557) ((-1143 . -236) 152448) ((-1143 . -239) 152345) ((-1143 . -274) 152314) ((-1143 . -920) 152181) ((-1143 . -928) 152050) ((-1143 . -926) 151982) ((-1143 . -234) 151951) ((-1143 . -630) 151644) ((-1143 . -1086) 151565) ((-1143 . -1081) 151466) ((-1143 . -111) 151382) ((-1143 . -133) 151253) ((-1143 . -25) 151086) ((-1143 . -102) 150818) ((-1143 . -1247) T) ((-1143 . -1131) 150570) ((-1143 . -23) 150422) ((-1143 . -21) 150333) ((-1136 . -408) T) ((-1136 . -1247) T) ((-1136 . -630) 150315) ((-1135 . -1134) 150279) ((-1135 . -102) T) ((-1135 . -630) 150261) ((-1135 . -1131) T) ((-1135 . -298) 150217) ((-1135 . -1247) T) ((-1135 . -635) 150132) ((-1133 . -1134) 150084) ((-1133 . -102) T) ((-1133 . -630) 150066) ((-1133 . -1131) T) ((-1133 . -298) 150022) ((-1133 . -1247) T) ((-1133 . -635) 149925) ((-1132 . -381) T) ((-1132 . -102) T) ((-1132 . -1247) T) ((-1132 . -630) 149907) ((-1132 . -1131) T) ((-1127 . -438) 149891) ((-1127 . -1129) 149875) ((-1127 . -381) 149854) ((-1127 . -242) 149838) ((-1127 . -631) 149799) ((-1127 . -153) 149783) ((-1127 . -501) 149767) ((-1127 . -1131) T) ((-1127 . -526) 149700) ((-1127 . -321) 149638) ((-1127 . -630) 149620) ((-1127 . -102) T) ((-1127 . -1247) T) ((-1127 . -34) T) ((-1127 . -107) 149604) ((-1127 . -233) 149588) ((-1126 . -1113) T) ((-1126 . -502) 149569) ((-1126 . -630) 149535) ((-1126 . -633) 149516) ((-1126 . -1131) T) ((-1126 . -1247) T) ((-1126 . -102) T) ((-1126 . -93) T) ((-1122 . -1247) T) ((-1122 . -1131) 149486) ((-1122 . -630) 149445) ((-1122 . -102) 149415) ((-1121 . -1113) T) ((-1121 . -502) 149396) ((-1121 . -630) 149362) ((-1121 . -633) 149343) ((-1121 . -1131) T) ((-1121 . -1247) T) ((-1121 . -102) T) ((-1121 . -93) T) ((-1119 . -1124) 149327) ((-1119 . -635) 149311) ((-1119 . -1131) 149289) ((-1119 . -630) 149256) ((-1119 . -1247) 149234) ((-1119 . -102) 149212) ((-1119 . -1125) 149170) ((-1118 . -277) 149154) ((-1118 . -633) 149138) ((-1118 . -1068) 149122) ((-1118 . -873) T) ((-1118 . -102) T) ((-1118 . -1131) T) ((-1118 . -630) 149104) ((-1118 . -870) T) ((-1118 . -236) 149091) ((-1118 . -1247) T) ((-1118 . -239) T) ((-1117 . -262) 149028) ((-1117 . -633) 148764) ((-1117 . -1068) 148591) ((-1117 . -631) NIL) ((-1117 . -338) 148552) ((-1117 . -424) 148536) ((-1117 . -38) 148385) ((-1117 . -111) 148214) ((-1117 . -1081) 148057) ((-1117 . -1086) 147900) ((-1117 . -666) 147810) ((-1117 . -668) 147699) ((-1117 . -660) 147548) ((-1117 . -737) 147397) ((-1117 . -147) 147376) ((-1117 . -149) 147355) ((-1117 . -175) 147266) ((-1117 . -569) 147197) ((-1117 . -302) 147128) ((-1117 . -47) 147089) ((-1117 . -390) 147073) ((-1117 . -658) 147021) ((-1117 . -464) 146972) ((-1117 . -526) 146839) ((-1117 . -926) 146774) ((-1117 . -920) 146669) ((-1117 . -928) 146568) ((-1117 . -910) NIL) ((-1117 . -938) 146547) ((-1117 . -1252) 146526) ((-1117 . -978) 146471) ((-1117 . -321) 146458) ((-1117 . -240) 146437) ((-1117 . -133) T) ((-1117 . -25) T) ((-1117 . -102) T) ((-1117 . -630) 146419) ((-1117 . -1131) T) ((-1117 . -23) T) ((-1117 . -21) T) ((-1117 . -746) T) ((-1117 . -1142) T) ((-1117 . -1087) T) ((-1117 . -1079) T) ((-1117 . -236) 146364) ((-1117 . -1247) T) ((-1117 . -239) 146315) ((-1117 . -274) 146299) ((-1117 . -234) 146283) ((-1115 . -630) 146265) ((-1112 . -870) T) ((-1112 . -630) 146247) ((-1112 . -1131) T) ((-1112 . -102) T) ((-1112 . -1247) T) ((-1112 . -873) T) ((-1112 . -631) 146228) ((-1109 . -744) 146207) ((-1109 . -1068) 146103) ((-1109 . -424) 146087) ((-1109 . -658) 146035) ((-1109 . -668) 145909) ((-1109 . -390) 145893) ((-1109 . -383) 145872) ((-1109 . -149) 145851) ((-1109 . -633) 145669) ((-1109 . -737) 145537) ((-1109 . -660) 145405) ((-1109 . -666) 145300) ((-1109 . -1086) 145210) ((-1109 . -1081) 145120) ((-1109 . -111) 145016) ((-1109 . -38) 144884) ((-1109 . -422) 144863) ((-1109 . -414) 144842) ((-1109 . -147) 144793) ((-1109 . -1182) 144772) ((-1109 . -363) 144751) ((-1109 . -381) 144702) ((-1109 . -250) 144653) ((-1109 . -302) 144604) ((-1109 . -319) 144555) ((-1109 . -464) 144506) ((-1109 . -569) 144457) ((-1109 . -949) 144408) ((-1109 . -1252) 144359) ((-1109 . -376) 144310) ((-1109 . -240) 144235) ((-1109 . -236) 144108) ((-1109 . -239) 143987) ((-1109 . -274) 143957) ((-1109 . -920) 143826) ((-1109 . -928) 143697) ((-1109 . -926) 143630) ((-1109 . -234) 143600) ((-1109 . -631) 143584) ((-1109 . -21) T) ((-1109 . -23) T) ((-1109 . -1131) T) ((-1109 . -630) 143566) ((-1109 . -1247) T) ((-1109 . -102) T) ((-1109 . -25) T) ((-1109 . -133) T) ((-1109 . -1079) T) ((-1109 . -1087) T) ((-1109 . -1142) T) ((-1109 . -746) T) ((-1109 . -175) T) ((-1107 . -1131) T) ((-1107 . -630) 143548) ((-1107 . -1247) T) ((-1107 . -102) T) ((-1107 . -298) 143527) ((-1106 . -1131) T) ((-1106 . -630) 143509) ((-1106 . -1247) T) ((-1106 . -102) T) ((-1105 . -1131) T) ((-1105 . -630) 143491) ((-1105 . -1247) T) ((-1105 . -102) T) ((-1105 . -298) 143470) ((-1105 . -1068) 143447) ((-1105 . -633) 143424) ((-1104 . -1247) T) ((-1103 . -1113) T) ((-1103 . -502) 143405) ((-1103 . -630) 143371) ((-1103 . -633) 143352) ((-1103 . -1131) T) ((-1103 . -1247) T) ((-1103 . -102) T) ((-1103 . -93) T) ((-1096 . -1113) T) ((-1096 . -502) 143333) ((-1096 . -630) 143299) ((-1096 . -633) 143280) ((-1096 . -1131) T) ((-1096 . -1247) T) ((-1096 . -102) T) ((-1096 . -93) T) ((-1093 . -1224) 143255) ((-1093 . -233) 143201) ((-1093 . -107) 143147) ((-1093 . -321) 142998) ((-1093 . -526) 142842) ((-1093 . -501) 142773) ((-1093 . -153) 142719) ((-1093 . -631) NIL) ((-1093 . -242) 142665) ((-1093 . -627) 142640) ((-1093 . -300) 142615) ((-1093 . -1247) T) ((-1093 . -298) 142590) ((-1093 . -1131) T) ((-1093 . -630) 142572) ((-1093 . -102) T) ((-1093 . -34) T) ((-1093 . -616) 142547) ((-1092 . -557) T) ((-1092 . -1252) T) ((-1092 . -1182) T) ((-1092 . -1068) 142529) ((-1092 . -631) 142444) ((-1092 . -1050) T) ((-1092 . -910) 142426) ((-1092 . -869) T) ((-1092 . -819) T) ((-1092 . -816) T) ((-1092 . -873) T) ((-1092 . -870) T) ((-1092 . -814) T) ((-1092 . -812) T) ((-1092 . -842) T) ((-1092 . -668) 142398) ((-1092 . -658) 142380) ((-1092 . -949) T) ((-1092 . -569) T) ((-1092 . -302) T) ((-1092 . -175) T) ((-1092 . -633) 142352) ((-1092 . -737) 142339) ((-1092 . -660) 142326) ((-1092 . -1086) 142313) ((-1092 . -1081) 142300) ((-1092 . -111) 142285) ((-1092 . -38) 142272) ((-1092 . -464) T) ((-1092 . -319) T) ((-1092 . -239) T) ((-1092 . -236) 142259) ((-1092 . -240) T) ((-1092 . -145) T) ((-1092 . -1079) T) ((-1092 . -1087) T) ((-1092 . -1142) T) ((-1092 . -746) T) ((-1092 . -21) T) ((-1092 . -666) 142231) ((-1092 . -23) T) ((-1092 . -1131) T) ((-1092 . -630) 142213) ((-1092 . -1247) T) ((-1092 . -102) T) ((-1092 . -25) T) ((-1092 . -133) T) ((-1092 . -149) T) ((-1092 . -635) 142194) ((-1091 . -1098) 142173) ((-1091 . -102) T) ((-1091 . -1247) T) ((-1091 . -630) 142155) ((-1091 . -1131) T) ((-1088 . -1247) T) ((-1088 . -1131) 142133) ((-1088 . -630) 142100) ((-1088 . -102) 142078) ((-1084 . -1083) 142018) ((-1084 . -660) 141960) ((-1084 . -737) 141902) ((-1084 . -34) T) ((-1084 . -321) 141840) ((-1084 . -526) 141773) ((-1084 . -501) 141757) ((-1084 . -668) 141741) ((-1084 . -666) 141710) ((-1084 . -133) T) ((-1084 . -25) T) ((-1084 . -102) T) ((-1084 . -1247) T) ((-1084 . -630) 141672) ((-1084 . -1131) T) ((-1084 . -23) T) ((-1084 . -21) T) ((-1084 . -1086) 141656) ((-1084 . -1081) 141640) ((-1084 . -111) 141619) ((-1084 . -1305) 141589) ((-1084 . -631) 141550) ((-1076 . -1101) 141479) ((-1076 . -1006) 141408) ((-1076 . -631) 141350) ((-1076 . -501) 141315) ((-1076 . -1131) T) ((-1076 . -526) 141216) ((-1076 . -321) 141124) ((-1076 . -630) 141067) ((-1076 . -102) T) ((-1076 . -1247) T) ((-1076 . -34) T) ((-1076 . -153) 141032) ((-1076 . -1242) 140961) ((-1066 . -1113) T) ((-1066 . -502) 140942) ((-1066 . -630) 140908) ((-1066 . -633) 140889) ((-1066 . -1131) T) ((-1066 . -1247) T) ((-1066 . -102) T) ((-1066 . -93) T) ((-1065 . -1224) 140864) ((-1065 . -233) 140810) ((-1065 . -107) 140756) ((-1065 . -321) 140607) ((-1065 . -526) 140451) ((-1065 . -501) 140382) ((-1065 . -153) 140328) ((-1065 . -631) NIL) ((-1065 . -242) 140274) ((-1065 . -627) 140249) ((-1065 . -300) 140224) ((-1065 . -1247) T) ((-1065 . -298) 140199) ((-1065 . -1131) T) ((-1065 . -630) 140181) ((-1065 . -102) T) ((-1065 . -34) T) ((-1065 . -616) 140156) ((-1064 . -175) T) ((-1064 . -633) 140125) ((-1064 . -746) T) ((-1064 . -1142) T) ((-1064 . -1087) T) ((-1064 . -1079) T) ((-1064 . -668) 140099) ((-1064 . -666) 140058) ((-1064 . -133) T) ((-1064 . -25) T) ((-1064 . -102) T) ((-1064 . -1247) T) ((-1064 . -630) 140040) ((-1064 . -1131) T) ((-1064 . -23) T) ((-1064 . -21) T) ((-1064 . -1086) 140014) ((-1064 . -1081) 139988) ((-1064 . -111) 139955) ((-1064 . -38) 139939) ((-1064 . -660) 139923) ((-1064 . -737) 139907) ((-1057 . -1101) 139876) ((-1057 . -1006) 139845) ((-1057 . -631) 139806) ((-1057 . -501) 139790) ((-1057 . -1131) T) ((-1057 . -526) 139723) ((-1057 . -321) 139661) ((-1057 . -630) 139623) ((-1057 . -102) T) ((-1057 . -1247) T) ((-1057 . -34) T) ((-1057 . -153) 139607) ((-1057 . -1242) 139576) ((-1056 . -1247) T) ((-1056 . -1131) 139554) ((-1056 . -630) 139521) ((-1056 . -102) 139499) ((-1054 . -1042) T) ((-1054 . -1032) T) ((-1054 . -812) T) ((-1054 . -814) T) ((-1054 . -870) T) ((-1054 . -873) T) ((-1054 . -816) T) ((-1054 . -819) T) ((-1054 . -869) T) ((-1054 . -1068) 139379) ((-1054 . -424) 139341) ((-1054 . -250) T) ((-1054 . -302) T) ((-1054 . -319) T) ((-1054 . -464) T) ((-1054 . -38) 139278) ((-1054 . -660) 139215) ((-1054 . -737) 139152) ((-1054 . -633) 139089) ((-1054 . -569) T) ((-1054 . -949) T) ((-1054 . -1252) T) ((-1054 . -376) T) ((-1054 . -111) 139005) ((-1054 . -1081) 138942) ((-1054 . -1086) 138879) ((-1054 . -175) T) ((-1054 . -149) T) ((-1054 . -668) 138816) ((-1054 . -666) 138753) ((-1054 . -133) T) ((-1054 . -25) T) ((-1054 . -102) T) ((-1054 . -1247) T) ((-1054 . -630) 138735) ((-1054 . -1131) T) ((-1054 . -23) T) ((-1054 . -21) T) ((-1054 . -1079) T) ((-1054 . -1087) T) ((-1054 . -1142) T) ((-1054 . -746) T) ((-1049 . -1113) T) ((-1049 . -502) 138716) ((-1049 . -630) 138682) ((-1049 . -633) 138663) ((-1049 . -1131) T) ((-1049 . -1247) T) ((-1049 . -102) T) ((-1049 . -93) T) ((-1034 . -1021) 138645) ((-1034 . -1182) T) ((-1034 . -633) 138595) ((-1034 . -1068) 138555) ((-1034 . -631) 138485) ((-1034 . -1050) T) ((-1034 . -938) NIL) ((-1034 . -908) 138467) ((-1034 . -869) T) ((-1034 . -819) T) ((-1034 . -816) T) ((-1034 . -873) T) ((-1034 . -870) T) ((-1034 . -814) T) ((-1034 . -812) T) ((-1034 . -842) T) ((-1034 . -910) 138449) ((-1034 . -412) 138431) ((-1034 . -658) 138413) ((-1034 . -390) 138395) ((-1034 . -298) NIL) ((-1034 . -321) NIL) ((-1034 . -526) NIL) ((-1034 . -351) 138377) ((-1034 . -250) T) ((-1034 . -111) 138311) ((-1034 . -1081) 138261) ((-1034 . -1086) 138211) ((-1034 . -302) T) ((-1034 . -737) 138161) ((-1034 . -660) 138111) ((-1034 . -668) 138061) ((-1034 . -666) 138011) ((-1034 . -38) 137961) ((-1034 . -319) T) ((-1034 . -464) T) ((-1034 . -175) T) ((-1034 . -569) T) ((-1034 . -949) T) ((-1034 . -1252) T) ((-1034 . -376) T) ((-1034 . -240) T) ((-1034 . -236) 137948) ((-1034 . -239) T) ((-1034 . -274) 137930) ((-1034 . -920) NIL) ((-1034 . -928) NIL) ((-1034 . -926) NIL) ((-1034 . -234) 137912) ((-1034 . -149) T) ((-1034 . -147) NIL) ((-1034 . -133) T) ((-1034 . -25) T) ((-1034 . -102) T) ((-1034 . -1247) T) ((-1034 . -630) 137872) ((-1034 . -1131) T) ((-1034 . -23) T) ((-1034 . -21) T) ((-1034 . -1079) T) ((-1034 . -1087) T) ((-1034 . -1142) T) ((-1034 . -746) T) ((-1033 . -355) 137846) ((-1033 . -175) T) ((-1033 . -633) 137776) ((-1033 . -746) T) ((-1033 . -1142) T) ((-1033 . -1087) T) ((-1033 . -1079) T) ((-1033 . -668) 137683) ((-1033 . -666) 137613) ((-1033 . -133) T) ((-1033 . -25) T) ((-1033 . -102) T) ((-1033 . -1247) T) ((-1033 . -630) 137595) ((-1033 . -1131) T) ((-1033 . -23) T) ((-1033 . -21) T) ((-1033 . -1086) 137540) ((-1033 . -1081) 137485) ((-1033 . -111) 137414) ((-1033 . -631) 137398) ((-1033 . -234) 137375) ((-1033 . -926) 137327) ((-1033 . -928) 137236) ((-1033 . -920) 137143) ((-1033 . -274) 137120) ((-1033 . -239) 137057) ((-1033 . -236) 136988) ((-1033 . -240) 136960) ((-1033 . -376) T) ((-1033 . -1252) T) ((-1033 . -949) T) ((-1033 . -569) T) ((-1033 . -737) 136905) ((-1033 . -660) 136850) ((-1033 . -38) 136795) ((-1033 . -464) T) ((-1033 . -319) T) ((-1033 . -302) T) ((-1033 . -250) T) ((-1033 . -381) NIL) ((-1033 . -363) NIL) ((-1033 . -1182) NIL) ((-1033 . -147) 136767) ((-1033 . -414) NIL) ((-1033 . -422) 136739) ((-1033 . -149) 136711) ((-1033 . -383) 136683) ((-1033 . -390) 136660) ((-1033 . -658) 136599) ((-1033 . -424) 136576) ((-1033 . -1068) 136464) ((-1033 . -744) 136436) ((-1030 . -1025) 136420) ((-1030 . -501) 136404) ((-1030 . -1131) 136382) ((-1030 . -526) 136315) ((-1030 . -321) 136253) ((-1030 . -630) 136185) ((-1030 . -102) 136135) ((-1030 . -1247) T) ((-1030 . -34) T) ((-1030 . -107) 136119) ((-1026 . -1028) 136103) ((-1026 . -873) 136082) ((-1026 . -870) 136061) ((-1026 . -1068) 135957) ((-1026 . -424) 135941) ((-1026 . -658) 135889) ((-1026 . -668) 135791) ((-1026 . -390) 135775) ((-1026 . -298) 135733) ((-1026 . -321) 135698) ((-1026 . -526) 135610) ((-1026 . -351) 135594) ((-1026 . -38) 135542) ((-1026 . -111) 135424) ((-1026 . -1081) 135320) ((-1026 . -1086) 135216) ((-1026 . -666) 135139) ((-1026 . -660) 135087) ((-1026 . -737) 135035) ((-1026 . -633) 134925) ((-1026 . -302) 134876) ((-1026 . -250) 134855) ((-1026 . -240) 134834) ((-1026 . -236) 134779) ((-1026 . -239) 134730) ((-1026 . -274) 134714) ((-1026 . -920) 134635) ((-1026 . -928) 134558) ((-1026 . -926) 134517) ((-1026 . -234) 134501) ((-1026 . -631) 134462) ((-1026 . -149) 134441) ((-1026 . -147) 134420) ((-1026 . -133) T) ((-1026 . -25) T) ((-1026 . -102) T) ((-1026 . -1247) T) ((-1026 . -630) 134402) ((-1026 . -1131) T) ((-1026 . -23) T) ((-1026 . -21) T) ((-1026 . -1079) T) ((-1026 . -1087) T) ((-1026 . -1142) T) ((-1026 . -746) T) ((-1024 . -1113) T) ((-1024 . -502) 134383) ((-1024 . -630) 134349) ((-1024 . -633) 134330) ((-1024 . -1131) T) ((-1024 . -1247) T) ((-1024 . -102) T) ((-1024 . -93) T) ((-1023 . -21) T) ((-1023 . -666) 134312) ((-1023 . -23) T) ((-1023 . -1131) T) ((-1023 . -630) 134294) ((-1023 . -1247) T) ((-1023 . -102) T) ((-1023 . -25) T) ((-1023 . -133) T) ((-1023 . -298) 134261) ((-1019 . -630) 134243) ((-1016 . -1131) T) ((-1016 . -630) 134225) ((-1016 . -1247) T) ((-1016 . -102) T) ((-1001 . -819) T) ((-1001 . -816) T) ((-1001 . -873) T) ((-1001 . -870) T) ((-1001 . -814) T) ((-1001 . -23) T) ((-1001 . -1131) T) ((-1001 . -630) 134185) ((-1001 . -1247) T) ((-1001 . -102) T) ((-1001 . -25) T) ((-1001 . -133) T) ((-1000 . -1113) T) ((-1000 . -502) 134166) ((-1000 . -630) 134132) ((-1000 . -633) 134113) ((-1000 . -1131) T) ((-1000 . -1247) T) ((-1000 . -102) T) ((-1000 . -93) T) ((-996 . -1247) T) ((-995 . -1247) T) ((-994 . -997) T) ((-994 . -102) T) ((-994 . -630) 134095) ((-994 . -1131) T) ((-994 . -682) T) ((-994 . -1247) T) ((-994 . -113) T) ((-994 . -633) 134079) ((-993 . -630) 134061) ((-992 . -1131) T) ((-992 . -630) 134043) ((-992 . -1247) T) ((-992 . -102) T) ((-992 . -381) 133996) ((-992 . -746) 133895) ((-992 . -1142) 133794) ((-992 . -23) 133605) ((-992 . -25) 133416) ((-992 . -133) 133271) ((-992 . -485) 133224) ((-992 . -21) 133179) ((-992 . -666) 133123) ((-992 . -815) 133076) ((-992 . -814) 133029) ((-992 . -870) 132928) ((-992 . -873) 132827) ((-992 . -816) 132780) ((-992 . -819) 132733) ((-986 . -19) 132717) ((-986 . -671) 132701) ((-986 . -300) 132678) ((-986 . -298) 132630) ((-986 . -616) 132607) ((-986 . -631) 132568) ((-986 . -501) 132552) ((-986 . -1131) 132502) ((-986 . -526) 132435) ((-986 . -321) 132373) ((-986 . -630) 132285) ((-986 . -102) 132215) ((-986 . -1247) T) ((-986 . -34) T) ((-986 . -153) 132199) ((-986 . -870) 132178) ((-986 . -873) 132157) ((-986 . -385) 132141) ((-984 . -338) 132120) ((-984 . -1068) 132016) ((-984 . -424) 132000) ((-984 . -38) 131897) ((-984 . -633) 131750) ((-984 . -668) 131675) ((-984 . -666) 131585) ((-984 . -746) T) ((-984 . -1142) T) ((-984 . -1087) T) ((-984 . -1079) T) ((-984 . -111) 131454) ((-984 . -1081) 131337) ((-984 . -1086) 131220) ((-984 . -21) T) ((-984 . -23) T) ((-984 . -1131) T) ((-984 . -630) 131202) ((-984 . -1247) T) ((-984 . -102) T) ((-984 . -25) T) ((-984 . -133) T) ((-984 . -660) 131099) ((-984 . -737) 130996) ((-984 . -147) 130975) ((-984 . -149) 130954) ((-984 . -175) 130905) ((-984 . -569) 130884) ((-984 . -302) 130863) ((-984 . -47) 130842) ((-982 . -1131) T) ((-982 . -630) 130808) ((-982 . -1247) T) ((-982 . -102) T) ((-974 . -978) 130769) ((-974 . -633) 130558) ((-974 . -1068) 130438) ((-974 . -1252) 130417) ((-974 . -938) 130396) ((-974 . -910) 130321) ((-974 . -928) 130302) ((-974 . -920) 130281) ((-974 . -926) 130262) ((-974 . -526) 130209) ((-974 . -464) 130160) ((-974 . -658) 130108) ((-974 . -668) 129997) ((-974 . -390) 129981) ((-974 . -47) 129950) ((-974 . -38) 129799) ((-974 . -660) 129648) ((-974 . -737) 129497) ((-974 . -302) 129428) ((-974 . -569) 129359) ((-974 . -111) 129188) ((-974 . -1081) 129031) ((-974 . -1086) 128874) ((-974 . -175) 128785) ((-974 . -149) 128764) ((-974 . -147) 128743) ((-974 . -666) 128653) ((-974 . -133) T) ((-974 . -25) T) ((-974 . -102) T) ((-974 . -1247) T) ((-974 . -630) 128635) ((-974 . -1131) T) ((-974 . -23) T) ((-974 . -21) T) ((-974 . -1079) T) ((-974 . -1087) T) ((-974 . -1142) T) ((-974 . -746) T) ((-974 . -424) 128619) ((-974 . -338) 128588) ((-974 . -321) 128575) ((-974 . -631) 128436) ((-971 . -1010) 128420) ((-971 . -19) 128404) ((-971 . -671) 128388) ((-971 . -300) 128365) ((-971 . -298) 128317) ((-971 . -616) 128294) ((-971 . -631) 128255) ((-971 . -501) 128239) ((-971 . -1131) 128189) ((-971 . -526) 128122) ((-971 . -321) 128060) ((-971 . -630) 127972) ((-971 . -102) 127902) ((-971 . -1247) T) ((-971 . -34) T) ((-971 . -153) 127886) ((-971 . -870) 127865) ((-971 . -873) 127844) ((-971 . -385) 127828) ((-971 . -1296) 127812) ((-971 . -635) 127789) ((-955 . -1004) T) ((-955 . -630) 127771) ((-953 . -983) T) ((-953 . -630) 127753) ((-947 . -816) T) ((-947 . -873) T) ((-947 . -870) T) ((-947 . -1131) T) ((-947 . -630) 127735) ((-947 . -1247) T) ((-947 . -102) T) ((-947 . -25) T) ((-947 . -746) T) ((-947 . -1142) T) ((-942 . -376) T) ((-942 . -1252) T) ((-942 . -949) T) ((-942 . -569) T) ((-942 . -175) T) ((-942 . -633) 127672) ((-942 . -737) 127624) ((-942 . -660) 127576) ((-942 . -38) 127528) ((-942 . -464) T) ((-942 . -319) T) ((-942 . -668) 127480) ((-942 . -666) 127417) ((-942 . -746) T) ((-942 . -1142) T) ((-942 . -1087) T) ((-942 . -1079) T) ((-942 . -111) 127355) ((-942 . -1081) 127307) ((-942 . -1086) 127259) ((-942 . -21) T) ((-942 . -23) T) ((-942 . -1131) T) ((-942 . -630) 127241) ((-942 . -1247) T) ((-942 . -102) T) ((-942 . -25) T) ((-942 . -133) T) ((-942 . -302) T) ((-942 . -250) T) ((-934 . -363) T) ((-934 . -1182) T) ((-934 . -381) T) ((-934 . -147) T) ((-934 . -376) T) ((-934 . -1252) T) ((-934 . -949) T) ((-934 . -569) T) ((-934 . -175) T) ((-934 . -633) 127191) ((-934 . -737) 127156) ((-934 . -660) 127121) ((-934 . -38) 127086) ((-934 . -464) T) ((-934 . -319) T) ((-934 . -111) 127042) ((-934 . -1081) 127007) ((-934 . -1086) 126972) ((-934 . -666) 126922) ((-934 . -668) 126887) ((-934 . -302) T) ((-934 . -250) T) ((-934 . -414) T) ((-934 . -239) T) ((-934 . -1247) T) ((-934 . -236) 126874) ((-934 . -1079) T) ((-934 . -1087) T) ((-934 . -1142) T) ((-934 . -746) T) ((-934 . -21) T) ((-934 . -23) T) ((-934 . -1131) T) ((-934 . -630) 126856) ((-934 . -102) T) ((-934 . -25) T) ((-934 . -133) T) ((-934 . -240) T) ((-934 . -341) 126843) ((-934 . -149) 126825) ((-934 . -1068) 126812) ((-934 . -1305) 126799) ((-934 . -1316) 126786) ((-934 . -631) 126768) ((-933 . -1131) T) ((-933 . -630) 126750) ((-933 . -1247) T) ((-933 . -102) T) ((-930 . -932) 126734) ((-930 . -873) 126685) ((-930 . -870) 126636) ((-930 . -746) T) ((-930 . -1131) T) ((-930 . -630) 126618) ((-930 . -102) T) ((-930 . -1142) T) ((-930 . -485) T) ((-930 . -1247) T) ((-930 . -298) 126597) ((-929 . -121) 126581) ((-929 . -501) 126565) ((-929 . -1131) 126543) ((-929 . -526) 126476) ((-929 . -321) 126414) ((-929 . -630) 126325) ((-929 . -102) 126275) ((-929 . -1247) T) ((-929 . -34) T) ((-929 . -1040) 126259) ((-924 . -1131) T) ((-924 . -630) 126241) ((-924 . -1247) T) ((-924 . -102) T) ((-917 . -870) T) ((-917 . -630) 126223) ((-917 . -1131) T) ((-917 . -102) T) ((-917 . -1247) T) ((-917 . -873) T) ((-917 . -1068) 126200) ((-917 . -633) 126177) ((-914 . -1131) T) ((-914 . -630) 126159) ((-914 . -1247) T) ((-914 . -102) T) ((-914 . -1068) 126127) ((-914 . -633) 126095) ((-912 . -1131) T) ((-912 . -630) 126077) ((-912 . -1247) T) ((-912 . -102) T) ((-909 . -1131) T) ((-909 . -630) 126059) ((-909 . -1247) T) ((-909 . -102) T) ((-899 . -1113) T) ((-899 . -502) 126040) ((-899 . -630) 126006) ((-899 . -633) 125987) ((-899 . -1131) T) ((-899 . -1247) T) ((-899 . -102) T) ((-899 . -93) T) ((-899 . -1293) T) ((-897 . -1131) T) ((-897 . -630) 125969) ((-897 . -1247) T) ((-897 . -102) T) ((-896 . -1247) T) ((-896 . -630) 125841) ((-896 . -1131) 125792) ((-896 . -102) 125743) ((-895 . -1021) 125727) ((-895 . -1182) 125705) ((-895 . -1068) 125571) ((-895 . -633) 125469) ((-895 . -631) 125276) ((-895 . -1050) 125254) ((-895 . -938) 125233) ((-895 . -908) 125217) ((-895 . -869) 125196) ((-895 . -819) 125175) ((-895 . -816) 125154) ((-895 . -873) 125105) ((-895 . -870) 125056) ((-895 . -814) 125035) ((-895 . -812) 125014) ((-895 . -842) 124993) ((-895 . -910) 124918) ((-895 . -412) 124902) ((-895 . -658) 124850) ((-895 . -668) 124766) ((-895 . -390) 124750) ((-895 . -298) 124708) ((-895 . -321) 124673) ((-895 . -526) 124585) ((-895 . -351) 124569) ((-895 . -250) T) ((-895 . -111) 124507) ((-895 . -1081) 124459) ((-895 . -1086) 124411) ((-895 . -302) T) ((-895 . -737) 124363) ((-895 . -660) 124315) ((-895 . -666) 124252) ((-895 . -38) 124204) ((-895 . -319) T) ((-895 . -464) T) ((-895 . -175) T) ((-895 . -569) T) ((-895 . -949) T) ((-895 . -1252) T) ((-895 . -376) T) ((-895 . -240) 124183) ((-895 . -236) 124128) ((-895 . -239) 124079) ((-895 . -274) 124063) ((-895 . -920) 123984) ((-895 . -928) 123907) ((-895 . -926) 123866) ((-895 . -234) 123850) ((-895 . -149) 123829) ((-895 . -147) 123808) ((-895 . -133) T) ((-895 . -25) T) ((-895 . -102) T) ((-895 . -1247) T) ((-895 . -630) 123790) ((-895 . -1131) T) ((-895 . -23) T) ((-895 . -21) T) ((-895 . -1079) T) ((-895 . -1087) T) ((-895 . -1142) T) ((-895 . -746) T) ((-894 . -1021) 123767) ((-894 . -1182) NIL) ((-894 . -1068) 123744) ((-894 . -633) 123674) ((-894 . -631) NIL) ((-894 . -1050) NIL) ((-894 . -938) NIL) ((-894 . -908) 123651) ((-894 . -869) NIL) ((-894 . -819) NIL) ((-894 . -816) NIL) ((-894 . -873) NIL) ((-894 . -870) NIL) ((-894 . -814) NIL) ((-894 . -812) NIL) ((-894 . -842) NIL) ((-894 . -910) NIL) ((-894 . -412) 123628) ((-894 . -658) 123605) ((-894 . -668) 123550) ((-894 . -390) 123527) ((-894 . -298) 123478) ((-894 . -321) 123435) ((-894 . -526) 123343) ((-894 . -351) 123320) ((-894 . -250) T) ((-894 . -111) 123249) ((-894 . -1081) 123194) ((-894 . -1086) 123139) ((-894 . -302) T) ((-894 . -737) 123084) ((-894 . -660) 123029) ((-894 . -666) 122959) ((-894 . -38) 122904) ((-894 . -319) T) ((-894 . -464) T) ((-894 . -175) T) ((-894 . -569) T) ((-894 . -949) T) ((-894 . -1252) T) ((-894 . -376) T) ((-894 . -240) NIL) ((-894 . -236) NIL) ((-894 . -239) NIL) ((-894 . -274) 122881) ((-894 . -920) NIL) ((-894 . -928) NIL) ((-894 . -926) NIL) ((-894 . -234) 122858) ((-894 . -149) T) ((-894 . -147) NIL) ((-894 . -133) T) ((-894 . -25) T) ((-894 . -102) T) ((-894 . -1247) T) ((-894 . -630) 122840) ((-894 . -1131) T) ((-894 . -23) T) ((-894 . -21) T) ((-894 . -1079) T) ((-894 . -1087) T) ((-894 . -1142) T) ((-894 . -746) T) ((-892 . -893) 122824) ((-892 . -949) T) ((-892 . -569) T) ((-892 . -302) T) ((-892 . -175) T) ((-892 . -633) 122796) ((-892 . -737) 122783) ((-892 . -660) 122770) ((-892 . -1086) 122757) ((-892 . -1081) 122744) ((-892 . -111) 122729) ((-892 . -38) 122716) ((-892 . -464) T) ((-892 . -319) T) ((-892 . -1079) T) ((-892 . -1087) T) ((-892 . -1142) T) ((-892 . -746) T) ((-892 . -21) T) ((-892 . -666) 122688) ((-892 . -23) T) ((-892 . -1131) T) ((-892 . -630) 122670) ((-892 . -1247) T) ((-892 . -102) T) ((-892 . -25) T) ((-892 . -133) T) ((-892 . -668) 122657) ((-892 . -149) T) ((-889 . -1079) T) ((-889 . -1087) T) ((-889 . -1142) T) ((-889 . -746) T) ((-889 . -21) T) ((-889 . -666) 122602) ((-889 . -23) T) ((-889 . -1131) T) ((-889 . -630) 122564) ((-889 . -1247) T) ((-889 . -102) T) ((-889 . -25) T) ((-889 . -133) T) ((-889 . -668) 122524) ((-889 . -633) 122459) ((-889 . -502) 122436) ((-889 . -38) 122406) ((-889 . -111) 122371) ((-889 . -1081) 122341) ((-889 . -1086) 122311) ((-889 . -660) 122281) ((-889 . -737) 122251) ((-888 . -1131) T) ((-888 . -630) 122233) ((-888 . -1247) T) ((-888 . -102) T) ((-887 . -866) T) ((-887 . -873) T) ((-887 . -870) T) ((-887 . -1131) T) ((-887 . -630) 122215) ((-887 . -1247) T) ((-887 . -102) T) ((-887 . -381) T) ((-887 . -631) 122137) ((-886 . -1131) T) ((-886 . -630) 122119) ((-886 . -1247) T) ((-886 . -102) T) ((-885 . -884) T) ((-885 . -176) T) ((-885 . -630) 122101) ((-881 . -870) T) ((-881 . -630) 122083) ((-881 . -1131) T) ((-881 . -102) T) ((-881 . -1247) T) ((-881 . -873) T) ((-878 . -875) 122067) ((-878 . -1068) 121963) ((-878 . -633) 121860) ((-878 . -424) 121844) ((-878 . -737) 121814) ((-878 . -660) 121784) ((-878 . -668) 121758) ((-878 . -666) 121717) ((-878 . -133) T) ((-878 . -25) T) ((-878 . -102) T) ((-878 . -1247) T) ((-878 . -630) 121699) ((-878 . -1131) T) ((-878 . -23) T) ((-878 . -21) T) ((-878 . -1086) 121683) ((-878 . -1081) 121667) ((-878 . -111) 121646) ((-878 . -1079) T) ((-878 . -1087) T) ((-878 . -1142) T) ((-878 . -746) T) ((-878 . -38) 121616) ((-877 . -875) 121600) ((-877 . -1068) 121496) ((-877 . -633) 121414) ((-877 . -424) 121398) ((-877 . -737) 121368) ((-877 . -660) 121338) ((-877 . -668) 121312) ((-877 . -666) 121271) ((-877 . -133) T) ((-877 . -25) T) ((-877 . -102) T) ((-877 . -1247) T) ((-877 . -630) 121253) ((-877 . -1131) T) ((-877 . -23) T) ((-877 . -21) T) ((-877 . -1086) 121237) ((-877 . -1081) 121221) ((-877 . -111) 121200) ((-877 . -1079) T) ((-877 . -1087) T) ((-877 . -1142) T) ((-877 . -746) T) ((-877 . -38) 121170) ((-871 . -873) T) ((-871 . -1247) T) ((-871 . -102) T) ((-871 . -502) 121154) ((-871 . -630) 121102) ((-871 . -633) 121086) ((-864 . -1131) T) ((-864 . -630) 121068) ((-864 . -1247) T) ((-864 . -102) T) ((-864 . -424) 121052) ((-864 . -633) 120920) ((-864 . -1068) 120816) ((-864 . -21) 120768) ((-864 . -666) 120685) ((-864 . -23) 120637) ((-864 . -25) 120589) ((-864 . -133) 120541) ((-864 . -869) 120520) ((-864 . -668) 120493) ((-864 . -1087) 120472) ((-864 . -1079) 120451) ((-864 . -819) 120430) ((-864 . -816) 120409) ((-864 . -873) 120388) ((-864 . -870) 120367) ((-864 . -814) 120346) ((-864 . -812) 120325) ((-864 . -1142) 120304) ((-864 . -746) 120283) ((-863 . -1131) T) ((-863 . -630) 120265) ((-863 . -1247) T) ((-863 . -102) T) ((-860 . -858) 120247) ((-860 . -102) T) ((-860 . -1247) T) ((-860 . -630) 120229) ((-860 . -1131) T) ((-856 . -1079) T) ((-856 . -1087) T) ((-856 . -1142) T) ((-856 . -746) T) ((-856 . -21) T) ((-856 . -666) 120174) ((-856 . -23) T) ((-856 . -1131) T) ((-856 . -630) 120156) ((-856 . -1247) T) ((-856 . -102) T) ((-856 . -25) T) ((-856 . -133) T) ((-856 . -668) 120116) ((-856 . -633) 120070) ((-856 . -1068) 120039) ((-856 . -298) 120018) ((-856 . -149) 119997) ((-856 . -147) 119976) ((-856 . -38) 119946) ((-856 . -111) 119911) ((-856 . -1081) 119881) ((-856 . -1086) 119851) ((-856 . -660) 119821) ((-856 . -737) 119791) ((-854 . -1131) T) ((-854 . -630) 119773) ((-854 . -1247) T) ((-854 . -102) T) ((-854 . -424) 119757) ((-854 . -633) 119625) ((-854 . -1068) 119521) ((-854 . -21) 119473) ((-854 . -666) 119390) ((-854 . -23) 119342) ((-854 . -25) 119294) ((-854 . -133) 119246) ((-854 . -869) 119225) ((-854 . -668) 119198) ((-854 . -1087) 119177) ((-854 . -1079) 119156) ((-854 . -819) 119135) ((-854 . -816) 119114) ((-854 . -873) 119093) ((-854 . -870) 119072) ((-854 . -814) 119051) ((-854 . -812) 119030) ((-854 . -1142) 119009) ((-854 . -746) 118988) ((-850 . -728) 118972) ((-850 . -633) 118927) ((-850 . -737) 118897) ((-850 . -660) 118867) ((-850 . -668) 118841) ((-850 . -666) 118800) ((-850 . -133) T) ((-850 . -25) T) ((-850 . -102) T) ((-850 . -1247) T) ((-850 . -630) 118782) ((-850 . -1131) T) ((-850 . -23) T) ((-850 . -21) T) ((-850 . -1086) 118766) ((-850 . -1081) 118750) ((-850 . -111) 118729) ((-850 . -1079) T) ((-850 . -1087) T) ((-850 . -1142) T) ((-850 . -746) T) ((-850 . -38) 118699) ((-850 . -240) 118678) ((-850 . -236) 118651) ((-850 . -239) 118630) ((-848 . -1131) T) ((-848 . -630) 118612) ((-848 . -1247) T) ((-848 . -102) T) ((-847 . -1131) T) ((-847 . -630) 118594) ((-847 . -1247) T) ((-847 . -102) T) ((-846 . -1131) T) ((-846 . -630) 118576) ((-846 . -1247) T) ((-846 . -102) T) ((-841 . -399) 118560) ((-841 . -633) 118544) ((-841 . -1068) 118528) ((-841 . -873) T) ((-841 . -870) T) ((-841 . -1142) T) ((-841 . -102) T) ((-841 . -1247) T) ((-841 . -630) 118510) ((-841 . -1131) T) ((-841 . -746) T) ((-841 . -868) T) ((-841 . -880) T) ((-840 . -277) 118494) ((-840 . -633) 118478) ((-840 . -1068) 118462) ((-840 . -873) T) ((-840 . -102) T) ((-840 . -1131) T) ((-840 . -630) 118444) ((-840 . -870) T) ((-840 . -236) 118431) ((-840 . -1247) T) ((-840 . -239) T) ((-839 . -111) 118373) ((-839 . -1081) 118324) ((-839 . -1086) 118275) ((-839 . -21) T) ((-839 . -666) 118211) ((-839 . -23) T) ((-839 . -1131) T) ((-839 . -630) 118180) ((-839 . -1247) T) ((-839 . -102) T) ((-839 . -25) T) ((-839 . -133) T) ((-839 . -668) 118131) ((-839 . -240) T) ((-839 . -633) 118045) ((-839 . -746) T) ((-839 . -1142) T) ((-839 . -1087) T) ((-839 . -1079) T) ((-839 . -236) 118032) ((-839 . -239) T) ((-839 . -502) 118016) ((-839 . -376) 117995) ((-839 . -1252) 117974) ((-839 . -949) 117953) ((-839 . -569) 117932) ((-839 . -175) 117911) ((-839 . -737) 117853) ((-839 . -660) 117795) ((-839 . -38) 117737) ((-839 . -464) 117716) ((-839 . -319) 117695) ((-839 . -302) 117674) ((-839 . -250) 117653) ((-838 . -262) 117592) ((-838 . -633) 117329) ((-838 . -1068) 117157) ((-838 . -631) NIL) ((-838 . -338) 117119) ((-838 . -424) 117103) ((-838 . -38) 116952) ((-838 . -111) 116781) ((-838 . -1081) 116624) ((-838 . -1086) 116467) ((-838 . -666) 116377) ((-838 . -668) 116266) ((-838 . -660) 116115) ((-838 . -737) 115964) ((-838 . -147) 115943) ((-838 . -149) 115922) ((-838 . -175) 115833) ((-838 . -569) 115764) ((-838 . -302) 115695) ((-838 . -47) 115657) ((-838 . -390) 115641) ((-838 . -658) 115589) ((-838 . -464) 115540) ((-838 . -526) 115408) ((-838 . -926) 115344) ((-838 . -920) 115240) ((-838 . -928) 115140) ((-838 . -910) NIL) ((-838 . -938) 115119) ((-838 . -1252) 115098) ((-838 . -978) 115045) ((-838 . -321) 115032) ((-838 . -240) 115011) ((-838 . -133) T) ((-838 . -25) T) ((-838 . -102) T) ((-838 . -630) 114993) ((-838 . -1131) T) ((-838 . -23) T) ((-838 . -21) T) ((-838 . -746) T) ((-838 . -1142) T) ((-838 . -1087) T) ((-838 . -1079) T) ((-838 . -236) 114938) ((-838 . -1247) T) ((-838 . -239) 114889) ((-838 . -274) 114873) ((-838 . -234) 114857) ((-837 . -245) 114836) ((-837 . -1305) 114806) ((-837 . -819) 114785) ((-837 . -816) 114764) ((-837 . -873) 114715) ((-837 . -870) 114666) ((-837 . -814) 114645) ((-837 . -815) 114624) ((-837 . -737) 114566) ((-837 . -660) 114488) ((-837 . -300) 114465) ((-837 . -298) 114442) ((-837 . -501) 114426) ((-837 . -526) 114359) ((-837 . -321) 114297) ((-837 . -34) T) ((-837 . -616) 114274) ((-837 . -1068) 114101) ((-837 . -633) 113899) ((-837 . -424) 113868) ((-837 . -658) 113774) ((-837 . -668) 113607) ((-837 . -390) 113576) ((-837 . -381) 113555) ((-837 . -240) 113507) ((-837 . -666) 113286) ((-837 . -746) 113264) ((-837 . -1142) 113242) ((-837 . -1087) 113220) ((-837 . -1079) 113198) ((-837 . -236) 113089) ((-837 . -239) 112986) ((-837 . -274) 112955) ((-837 . -920) 112822) ((-837 . -928) 112691) ((-837 . -926) 112623) ((-837 . -234) 112592) ((-837 . -630) 112285) ((-837 . -1086) 112206) ((-837 . -1081) 112107) ((-837 . -111) 112023) ((-837 . -133) 111894) ((-837 . -25) 111727) ((-837 . -102) 111459) ((-837 . -1247) T) ((-837 . -1131) 111211) ((-837 . -23) 111063) ((-837 . -21) 110974) ((-830 . -1131) T) ((-830 . -630) 110956) ((-830 . -1247) T) ((-830 . -102) T) ((-820 . -818) 110940) ((-820 . -873) 110919) ((-820 . -870) 110898) ((-820 . -1068) 110678) ((-820 . -633) 110524) ((-820 . -424) 110487) ((-820 . -298) 110445) ((-820 . -321) 110410) ((-820 . -526) 110322) ((-820 . -351) 110306) ((-820 . -381) 110285) ((-820 . -631) 110246) ((-820 . -149) 110225) ((-820 . -147) 110204) ((-820 . -737) 110188) ((-820 . -660) 110172) ((-820 . -668) 110146) ((-820 . -666) 110105) ((-820 . -133) T) ((-820 . -25) T) ((-820 . -102) T) ((-820 . -1247) T) ((-820 . -630) 110087) ((-820 . -1131) T) ((-820 . -23) T) ((-820 . -21) T) ((-820 . -1086) 110071) ((-820 . -1081) 110055) ((-820 . -111) 110034) ((-820 . -1079) T) ((-820 . -1087) T) ((-820 . -1142) T) ((-820 . -746) T) ((-820 . -38) 110018) ((-801 . -1273) 110002) ((-801 . -1182) 109980) ((-801 . -631) NIL) ((-801 . -321) 109967) ((-801 . -526) 109914) ((-801 . -338) 109891) ((-801 . -1068) 109750) ((-801 . -424) 109734) ((-801 . -38) 109563) ((-801 . -111) 109372) ((-801 . -1081) 109195) ((-801 . -1086) 109018) ((-801 . -666) 108928) ((-801 . -668) 108817) ((-801 . -660) 108646) ((-801 . -737) 108475) ((-801 . -633) 108223) ((-801 . -147) 108202) ((-801 . -149) 108181) ((-801 . -47) 108158) ((-801 . -390) 108142) ((-801 . -658) 108090) ((-801 . -926) 108033) ((-801 . -920) 107936) ((-801 . -928) 107843) ((-801 . -910) NIL) ((-801 . -938) 107822) ((-801 . -1252) 107801) ((-801 . -978) 107770) ((-801 . -949) 107749) ((-801 . -569) 107660) ((-801 . -302) 107571) ((-801 . -175) 107462) ((-801 . -464) 107393) ((-801 . -319) 107372) ((-801 . -298) 107299) ((-801 . -240) T) ((-801 . -133) T) ((-801 . -25) T) ((-801 . -102) T) ((-801 . -630) 107260) ((-801 . -1131) T) ((-801 . -23) T) ((-801 . -21) T) ((-801 . -746) T) ((-801 . -1142) T) ((-801 . -1087) T) ((-801 . -1079) T) ((-801 . -236) 107247) ((-801 . -1247) T) ((-801 . -239) T) ((-801 . -274) 107231) ((-801 . -234) 107215) ((-800 . -1095) 107182) ((-800 . -631) 106816) ((-800 . -321) 106803) ((-800 . -526) 106755) ((-800 . -338) 106727) ((-800 . -1068) 106584) ((-800 . -424) 106568) ((-800 . -38) 106417) ((-800 . -633) 106183) ((-800 . -668) 106072) ((-800 . -666) 105982) ((-800 . -746) T) ((-800 . -1142) T) ((-800 . -1087) T) ((-800 . -1079) T) ((-800 . -111) 105811) ((-800 . -1081) 105654) ((-800 . -1086) 105497) ((-800 . -21) T) ((-800 . -23) T) ((-800 . -1131) T) ((-800 . -630) 105411) ((-800 . -1247) T) ((-800 . -102) T) ((-800 . -25) T) ((-800 . -133) T) ((-800 . -660) 105260) ((-800 . -737) 105109) ((-800 . -147) 105088) ((-800 . -149) 105067) ((-800 . -175) 104978) ((-800 . -569) 104909) ((-800 . -302) 104840) ((-800 . -47) 104812) ((-800 . -390) 104796) ((-800 . -658) 104744) ((-800 . -464) 104695) ((-800 . -926) 104679) ((-800 . -920) 104661) ((-800 . -928) 104645) ((-800 . -910) 104504) ((-800 . -938) 104483) ((-800 . -1252) 104462) ((-800 . -978) 104429) ((-793 . -1131) T) ((-793 . -630) 104411) ((-793 . -1247) T) ((-793 . -102) T) ((-791 . -815) T) ((-791 . -133) T) ((-791 . -25) T) ((-791 . -102) T) ((-791 . -1247) T) ((-791 . -630) 104393) ((-791 . -1131) T) ((-791 . -23) T) ((-791 . -814) T) ((-791 . -870) T) ((-791 . -873) T) ((-791 . -816) T) ((-791 . -819) T) ((-791 . -746) T) ((-791 . -1142) T) ((-789 . -1131) T) ((-789 . -630) 104375) ((-789 . -1247) T) ((-789 . -102) T) ((-756 . -757) 104359) ((-756 . -1129) 104343) ((-756 . -242) 104327) ((-756 . -631) 104288) ((-756 . -153) 104272) ((-756 . -501) 104256) ((-756 . -1131) T) ((-756 . -526) 104189) ((-756 . -321) 104127) ((-756 . -630) 104109) ((-756 . -102) T) ((-756 . -1247) T) ((-756 . -34) T) ((-756 . -107) 104093) ((-756 . -715) 104077) ((-755 . -1079) T) ((-755 . -1087) T) ((-755 . -1142) T) ((-755 . -746) T) ((-755 . -21) T) ((-755 . -666) 104022) ((-755 . -23) T) ((-755 . -1131) T) ((-755 . -630) 104004) ((-755 . -1247) T) ((-755 . -102) T) ((-755 . -25) T) ((-755 . -133) T) ((-755 . -668) 103964) ((-755 . -633) 103920) ((-755 . -1068) 103891) ((-755 . -149) 103870) ((-755 . -147) 103849) ((-755 . -38) 103819) ((-755 . -111) 103784) ((-755 . -1081) 103754) ((-755 . -1086) 103724) ((-755 . -660) 103694) ((-755 . -737) 103664) ((-755 . -381) 103617) ((-751 . -978) 103570) ((-751 . -633) 103355) ((-751 . -1068) 103231) ((-751 . -1252) 103210) ((-751 . -938) 103189) ((-751 . -910) NIL) ((-751 . -928) 103166) ((-751 . -920) 103141) ((-751 . -926) 103118) ((-751 . -526) 103061) ((-751 . -464) 103012) ((-751 . -658) 102960) ((-751 . -668) 102849) ((-751 . -390) 102833) ((-751 . -47) 102798) ((-751 . -38) 102647) ((-751 . -660) 102496) ((-751 . -737) 102345) ((-751 . -302) 102276) ((-751 . -569) 102207) ((-751 . -111) 102036) ((-751 . -1081) 101879) ((-751 . -1086) 101722) ((-751 . -175) 101633) ((-751 . -149) 101612) ((-751 . -147) 101591) ((-751 . -666) 101501) ((-751 . -133) T) ((-751 . -25) T) ((-751 . -102) T) ((-751 . -1247) T) ((-751 . -630) 101483) ((-751 . -1131) T) ((-751 . -23) T) ((-751 . -21) T) ((-751 . -1079) T) ((-751 . -1087) T) ((-751 . -1142) T) ((-751 . -746) T) ((-751 . -424) 101467) ((-751 . -338) 101432) ((-751 . -321) 101419) ((-751 . -631) 101280) ((-738 . -485) T) ((-738 . -1142) T) ((-738 . -102) T) ((-738 . -1247) T) ((-738 . -630) 101262) ((-738 . -1131) T) ((-738 . -746) T) ((-735 . -1079) T) ((-735 . -1087) T) ((-735 . -1142) T) ((-735 . -746) T) ((-735 . -21) T) ((-735 . -666) 101234) ((-735 . -23) T) ((-735 . -1131) T) ((-735 . -630) 101216) ((-735 . -1247) T) ((-735 . -102) T) ((-735 . -25) T) ((-735 . -133) T) ((-735 . -668) 101203) ((-735 . -633) 101185) ((-734 . -1079) T) ((-734 . -1087) T) ((-734 . -1142) T) ((-734 . -746) T) ((-734 . -21) T) ((-734 . -666) 101130) ((-734 . -23) T) ((-734 . -1131) T) ((-734 . -630) 101112) ((-734 . -1247) T) ((-734 . -102) T) ((-734 . -25) T) ((-734 . -133) T) ((-734 . -668) 101072) ((-734 . -633) 101026) ((-734 . -1068) 100995) ((-734 . -298) 100974) ((-734 . -149) 100953) ((-734 . -147) 100932) ((-734 . -38) 100902) ((-734 . -111) 100867) ((-734 . -1081) 100837) ((-734 . -1086) 100807) ((-734 . -660) 100777) ((-734 . -737) 100747) ((-733 . -870) T) ((-733 . -630) 100682) ((-733 . -1131) T) ((-733 . -102) T) ((-733 . -1247) T) ((-733 . -873) T) ((-733 . -502) 100632) ((-733 . -633) 100582) ((-732 . -1273) 100566) ((-732 . -1182) 100544) ((-732 . -631) NIL) ((-732 . -321) 100531) ((-732 . -526) 100478) ((-732 . -338) 100455) ((-732 . -1068) 100335) ((-732 . -424) 100319) ((-732 . -38) 100148) ((-732 . -111) 99957) ((-732 . -1081) 99780) ((-732 . -1086) 99603) ((-732 . -666) 99513) ((-732 . -668) 99402) ((-732 . -660) 99231) ((-732 . -737) 99060) ((-732 . -633) 98816) ((-732 . -147) 98795) ((-732 . -149) 98774) ((-732 . -47) 98751) ((-732 . -390) 98735) ((-732 . -658) 98683) ((-732 . -926) 98626) ((-732 . -920) 98529) ((-732 . -928) 98436) ((-732 . -910) NIL) ((-732 . -938) 98415) ((-732 . -1252) 98394) ((-732 . -978) 98363) ((-732 . -949) 98342) ((-732 . -569) 98253) ((-732 . -302) 98164) ((-732 . -175) 98055) ((-732 . -464) 97986) ((-732 . -319) 97965) ((-732 . -298) 97892) ((-732 . -240) T) ((-732 . -133) T) ((-732 . -25) T) ((-732 . -102) T) ((-732 . -630) 97874) ((-732 . -1131) T) ((-732 . -23) T) ((-732 . -21) T) ((-732 . -746) T) ((-732 . -1142) T) ((-732 . -1087) T) ((-732 . -1079) T) ((-732 . -236) 97861) ((-732 . -1247) T) ((-732 . -239) T) ((-732 . -274) 97845) ((-732 . -234) 97829) ((-732 . -381) 97808) ((-731 . -376) T) ((-731 . -1252) T) ((-731 . -949) T) ((-731 . -569) T) ((-731 . -175) T) ((-731 . -633) 97758) ((-731 . -737) 97723) ((-731 . -660) 97688) ((-731 . -38) 97653) ((-731 . -464) T) ((-731 . -319) T) ((-731 . -668) 97618) ((-731 . -666) 97568) ((-731 . -746) T) ((-731 . -1142) T) ((-731 . -1087) T) ((-731 . -1079) T) ((-731 . -111) 97524) ((-731 . -1081) 97489) ((-731 . -1086) 97454) ((-731 . -21) T) ((-731 . -23) T) ((-731 . -1131) T) ((-731 . -630) 97436) ((-731 . -1247) T) ((-731 . -102) T) ((-731 . -25) T) ((-731 . -133) T) ((-731 . -302) T) ((-731 . -250) T) ((-730 . -1131) T) ((-730 . -630) 97418) ((-730 . -1247) T) ((-730 . -102) T) ((-721 . -401) T) ((-721 . -1068) 97400) ((-721 . -873) T) ((-721 . -870) T) ((-721 . -38) 97387) ((-721 . -633) 97359) ((-721 . -746) T) ((-721 . -1142) T) ((-721 . -1087) T) ((-721 . -1079) T) ((-721 . -111) 97344) ((-721 . -1081) 97331) ((-721 . -1086) 97318) ((-721 . -21) T) ((-721 . -666) 97290) ((-721 . -23) T) ((-721 . -1131) T) ((-721 . -630) 97272) ((-721 . -1247) T) ((-721 . -102) T) ((-721 . -25) T) ((-721 . -133) T) ((-721 . -668) 97244) ((-721 . -660) 97231) ((-721 . -737) 97218) ((-721 . -175) T) ((-721 . -302) T) ((-721 . -569) T) ((-721 . -557) T) ((-721 . -1252) T) ((-721 . -1182) T) ((-721 . -631) 97133) ((-721 . -1050) T) ((-721 . -910) 97115) ((-721 . -869) T) ((-721 . -819) T) ((-721 . -816) T) ((-721 . -814) T) ((-721 . -812) T) ((-721 . -842) T) ((-721 . -658) 97097) ((-721 . -949) T) ((-721 . -464) T) ((-721 . -319) T) ((-721 . -239) T) ((-721 . -236) 97084) ((-721 . -240) T) ((-721 . -145) T) ((-721 . -149) T) ((-719 . -416) T) ((-719 . -149) T) ((-719 . -633) 97019) ((-719 . -668) 96984) ((-719 . -666) 96934) ((-719 . -133) T) ((-719 . -25) T) ((-719 . -102) T) ((-719 . -1247) T) ((-719 . -630) 96916) ((-719 . -1131) T) ((-719 . -23) T) ((-719 . -21) T) ((-719 . -746) T) ((-719 . -1142) T) ((-719 . -1087) T) ((-719 . -1079) T) ((-719 . -631) 96861) ((-719 . -376) T) ((-719 . -1252) T) ((-719 . -949) T) ((-719 . -569) T) ((-719 . -175) T) ((-719 . -737) 96826) ((-719 . -660) 96791) ((-719 . -38) 96756) ((-719 . -464) T) ((-719 . -319) T) ((-719 . -111) 96712) ((-719 . -1081) 96677) ((-719 . -1086) 96642) ((-719 . -302) T) ((-719 . -250) T) ((-719 . -869) T) ((-719 . -819) T) ((-719 . -816) T) ((-719 . -873) T) ((-719 . -870) T) ((-719 . -814) T) ((-719 . -812) T) ((-719 . -910) 96624) ((-719 . -1032) T) ((-719 . -1050) T) ((-719 . -1068) 96569) ((-719 . -1090) T) ((-719 . -401) T) ((-714 . -401) T) ((-714 . -1068) 96514) ((-714 . -873) T) ((-714 . -870) T) ((-714 . -38) 96464) ((-714 . -633) 96399) ((-714 . -746) T) ((-714 . -1142) T) ((-714 . -1087) T) ((-714 . -1079) T) ((-714 . -111) 96333) ((-714 . -1081) 96283) ((-714 . -1086) 96233) ((-714 . -21) T) ((-714 . -666) 96168) ((-714 . -23) T) ((-714 . -1131) T) ((-714 . -630) 96150) ((-714 . -1247) T) ((-714 . -102) T) ((-714 . -25) T) ((-714 . -133) T) ((-714 . -668) 96100) ((-714 . -660) 96050) ((-714 . -737) 96000) ((-714 . -175) T) ((-714 . -302) T) ((-714 . -569) T) ((-714 . -168) 95982) ((-714 . -35) NIL) ((-714 . -95) NIL) ((-714 . -296) NIL) ((-714 . -505) NIL) ((-714 . -1236) NIL) ((-714 . -1233) NIL) ((-714 . -1032) NIL) ((-714 . -938) NIL) ((-714 . -631) 95890) ((-714 . -908) 95872) ((-714 . -381) NIL) ((-714 . -363) NIL) ((-714 . -1182) NIL) ((-714 . -414) NIL) ((-714 . -422) 95839) ((-714 . -383) 95806) ((-714 . -744) 95773) ((-714 . -424) 95755) ((-714 . -910) 95737) ((-714 . -412) 95719) ((-714 . -658) 95701) ((-714 . -390) 95683) ((-714 . -298) NIL) ((-714 . -321) NIL) ((-714 . -526) NIL) ((-714 . -351) 95665) ((-714 . -250) T) ((-714 . -1252) T) ((-714 . -376) T) ((-714 . -949) T) ((-714 . -464) T) ((-714 . -319) T) ((-714 . -240) NIL) ((-714 . -236) NIL) ((-714 . -239) NIL) ((-714 . -274) 95647) ((-714 . -920) NIL) ((-714 . -928) NIL) ((-714 . -926) NIL) ((-714 . -234) 95629) ((-714 . -149) T) ((-714 . -147) NIL) ((-711 . -1293) T) ((-711 . -1068) 95613) ((-711 . -633) 95597) ((-711 . -630) 95579) ((-709 . -706) 95537) ((-709 . -501) 95521) ((-709 . -1131) 95499) ((-709 . -526) 95432) ((-709 . -321) 95370) ((-709 . -630) 95302) ((-709 . -102) 95252) ((-709 . -1247) T) ((-709 . -34) T) ((-709 . -57) 95210) ((-709 . -631) 95171) ((-701 . -1113) T) ((-701 . -502) 95152) ((-701 . -630) 95102) ((-701 . -633) 95083) ((-701 . -1131) T) ((-701 . -1247) T) ((-701 . -102) T) ((-701 . -93) T) ((-697 . -870) T) ((-697 . -630) 95065) ((-697 . -1131) T) ((-697 . -102) T) ((-697 . -1247) T) ((-697 . -873) T) ((-697 . -1068) 95049) ((-697 . -633) 95033) ((-696 . -1113) T) ((-696 . -502) 95014) ((-696 . -630) 94980) ((-696 . -633) 94961) ((-696 . -1131) T) ((-696 . -1247) T) ((-696 . -102) T) ((-696 . -93) T) ((-695 . -501) 94945) ((-695 . -1131) 94923) ((-695 . -526) 94856) ((-695 . -321) 94794) ((-695 . -630) 94726) ((-695 . -102) 94676) ((-695 . -1247) T) ((-695 . -34) T) ((-692 . -870) T) ((-692 . -630) 94658) ((-692 . -1131) T) ((-692 . -102) T) ((-692 . -1247) T) ((-692 . -873) T) ((-692 . -1068) 94642) ((-692 . -633) 94626) ((-691 . -1113) T) ((-691 . -502) 94607) ((-691 . -630) 94573) ((-691 . -633) 94554) ((-691 . -1131) T) ((-691 . -1247) T) ((-691 . -102) T) ((-691 . -93) T) ((-690 . -1153) 94499) ((-690 . -501) 94483) ((-690 . -526) 94416) ((-690 . -321) 94354) ((-690 . -34) T) ((-690 . -1083) 94294) ((-690 . -1068) 94190) ((-690 . -633) 94108) ((-690 . -424) 94092) ((-690 . -658) 94040) ((-690 . -668) 93978) ((-690 . -390) 93962) ((-690 . -240) 93941) ((-690 . -236) 93886) ((-690 . -239) 93837) ((-690 . -274) 93821) ((-690 . -920) 93742) ((-690 . -928) 93665) ((-690 . -926) 93624) ((-690 . -234) 93608) ((-690 . -737) 93592) ((-690 . -660) 93576) ((-690 . -666) 93535) ((-690 . -133) T) ((-690 . -25) T) ((-690 . -102) T) ((-690 . -1247) T) ((-690 . -630) 93497) ((-690 . -1131) T) ((-690 . -23) T) ((-690 . -21) T) ((-690 . -1086) 93481) ((-690 . -1081) 93465) ((-690 . -111) 93444) ((-690 . -1079) T) ((-690 . -1087) T) ((-690 . -1142) T) ((-690 . -746) T) ((-690 . -38) 93404) ((-690 . -430) 93388) ((-690 . -764) 93372) ((-690 . -740) T) ((-690 . -781) T) ((-690 . -380) 93356) ((-690 . -298) 93333) ((-684 . -387) 93312) ((-684 . -737) 93296) ((-684 . -660) 93280) ((-684 . -668) 93264) ((-684 . -666) 93233) ((-684 . -133) T) ((-684 . -25) T) ((-684 . -102) T) ((-684 . -1247) T) ((-684 . -630) 93215) ((-684 . -1131) T) ((-684 . -23) T) ((-684 . -21) T) ((-684 . -1086) 93199) ((-684 . -1081) 93183) ((-684 . -111) 93162) ((-684 . -652) 93146) ((-684 . -397) 93118) ((-684 . -633) 93095) ((-684 . -1068) 93072) ((-676 . -678) 93056) ((-676 . -38) 93026) ((-676 . -633) 92944) ((-676 . -668) 92918) ((-676 . -666) 92877) ((-676 . -746) T) ((-676 . -1142) T) ((-676 . -1087) T) ((-676 . -1079) T) ((-676 . -111) 92856) ((-676 . -1081) 92840) ((-676 . -1086) 92824) ((-676 . -21) T) ((-676 . -23) T) ((-676 . -1131) T) ((-676 . -630) 92806) ((-676 . -102) T) ((-676 . -25) T) ((-676 . -133) T) ((-676 . -660) 92776) ((-676 . -737) 92746) ((-676 . -424) 92730) ((-676 . -1068) 92626) ((-676 . -875) 92610) ((-676 . -1247) T) ((-676 . -298) 92571) ((-675 . -678) 92555) ((-675 . -38) 92525) ((-675 . -633) 92443) ((-675 . -668) 92417) ((-675 . -666) 92376) ((-675 . -746) T) ((-675 . -1142) T) ((-675 . -1087) T) ((-675 . -1079) T) ((-675 . -111) 92355) ((-675 . -1081) 92339) ((-675 . -1086) 92323) ((-675 . -21) T) ((-675 . -23) T) ((-675 . -1131) T) ((-675 . -630) 92305) ((-675 . -102) T) ((-675 . -25) T) ((-675 . -133) T) ((-675 . -660) 92275) ((-675 . -737) 92245) ((-675 . -424) 92229) ((-675 . -1068) 92125) ((-675 . -875) 92109) ((-675 . -1247) T) ((-675 . -298) 92088) ((-674 . -678) 92072) ((-674 . -38) 92042) ((-674 . -633) 91960) ((-674 . -668) 91934) ((-674 . -666) 91893) ((-674 . -746) T) ((-674 . -1142) T) ((-674 . -1087) T) ((-674 . -1079) T) ((-674 . -111) 91872) ((-674 . -1081) 91856) ((-674 . -1086) 91840) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1131) T) ((-674 . -630) 91822) ((-674 . -102) T) ((-674 . -25) T) ((-674 . -133) T) ((-674 . -660) 91792) ((-674 . -737) 91762) ((-674 . -424) 91746) ((-674 . -1068) 91642) ((-674 . -875) 91626) ((-674 . -1247) T) ((-674 . -298) 91605) ((-672 . -737) 91589) ((-672 . -660) 91573) ((-672 . -668) 91557) ((-672 . -666) 91526) ((-672 . -133) T) ((-672 . -25) T) ((-672 . -102) T) ((-672 . -1247) T) ((-672 . -630) 91508) ((-672 . -1131) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -1086) 91492) ((-672 . -1081) 91476) ((-672 . -111) 91455) ((-672 . -812) 91434) ((-672 . -814) 91413) ((-672 . -870) 91392) ((-672 . -873) 91371) ((-672 . -816) 91350) ((-672 . -819) 91329) ((-669 . -1131) T) ((-669 . -630) 91311) ((-669 . -1247) T) ((-669 . -102) T) ((-669 . -1068) 91295) ((-669 . -633) 91279) ((-667 . -715) 91263) ((-667 . -107) 91247) ((-667 . -34) T) ((-667 . -1247) T) ((-667 . -102) 91197) ((-667 . -630) 91129) ((-667 . -321) 91067) ((-667 . -526) 91000) ((-667 . -1131) 90978) ((-667 . -501) 90962) ((-667 . -153) 90946) ((-667 . -631) 90907) ((-667 . -242) 90891) ((-665 . -1113) T) ((-665 . -502) 90872) ((-665 . -630) 90825) ((-665 . -633) 90806) ((-665 . -1131) T) ((-665 . -1247) T) ((-665 . -102) T) ((-665 . -93) T) ((-661 . -686) 90790) ((-661 . -1286) 90774) ((-661 . -1040) 90758) ((-661 . -1180) 90742) ((-661 . -870) 90721) ((-661 . -873) 90700) ((-661 . -385) 90684) ((-661 . -671) 90668) ((-661 . -300) 90645) ((-661 . -298) 90597) ((-661 . -616) 90574) ((-661 . -631) 90535) ((-661 . -501) 90519) ((-661 . -1131) 90469) ((-661 . -526) 90402) ((-661 . -321) 90340) ((-661 . -630) 90252) ((-661 . -102) 90182) ((-661 . -1247) T) ((-661 . -34) T) ((-661 . -153) 90166) ((-661 . -294) 90150) ((-661 . -843) 90129) ((-659 . -1305) 90113) ((-659 . -111) 90092) ((-659 . -1081) 90076) ((-659 . -1086) 90060) ((-659 . -21) T) ((-659 . -666) 90029) ((-659 . -23) T) ((-659 . -1131) T) ((-659 . -630) 90011) ((-659 . -1247) T) ((-659 . -102) T) ((-659 . -25) T) ((-659 . -133) T) ((-659 . -668) 89995) ((-659 . -660) 89979) ((-659 . -737) 89963) ((-659 . -298) 89930) ((-657 . -1305) 89914) ((-657 . -111) 89893) ((-657 . -1081) 89877) ((-657 . -1086) 89861) ((-657 . -21) T) ((-657 . -666) 89830) ((-657 . -23) T) ((-657 . -1131) T) ((-657 . -630) 89812) ((-657 . -1247) T) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -133) T) ((-657 . -668) 89796) ((-657 . -660) 89780) ((-657 . -737) 89764) ((-657 . -633) 89741) ((-657 . -521) 89713) ((-655 . -866) T) ((-655 . -873) T) ((-655 . -870) T) ((-655 . -1131) T) ((-655 . -630) 89695) ((-655 . -1247) T) ((-655 . -102) T) ((-655 . -381) T) ((-655 . -633) 89672) ((-650 . -764) 89656) ((-650 . -740) T) ((-650 . -781) T) ((-650 . -111) 89635) ((-650 . -1081) 89619) ((-650 . -1086) 89603) ((-650 . -21) T) ((-650 . -666) 89572) ((-650 . -23) T) ((-650 . -1131) T) ((-650 . -630) 89541) ((-650 . -1247) T) ((-650 . -102) T) ((-650 . -25) T) ((-650 . -133) T) ((-650 . -668) 89525) ((-650 . -660) 89509) ((-650 . -737) 89493) ((-650 . -430) 89458) ((-650 . -380) 89390) ((-650 . -298) 89348) ((-649 . -1224) 89323) ((-649 . -233) 89269) ((-649 . -107) 89215) ((-649 . -321) 89066) ((-649 . -526) 88910) ((-649 . -501) 88841) ((-649 . -153) 88787) ((-649 . -631) NIL) ((-649 . -242) 88733) ((-649 . -627) 88708) ((-649 . -300) 88683) ((-649 . -1247) T) ((-649 . -298) 88636) ((-649 . -1131) T) ((-649 . -630) 88618) ((-649 . -102) T) ((-649 . -34) T) ((-649 . -616) 88593) ((-644 . -485) T) ((-644 . -1142) T) ((-644 . -102) T) ((-644 . -1247) T) ((-644 . -630) 88575) ((-644 . -1131) T) ((-644 . -746) T) ((-643 . -1113) T) ((-643 . -502) 88556) ((-643 . -630) 88522) ((-643 . -633) 88503) ((-643 . -1131) T) ((-643 . -1247) T) ((-643 . -102) T) ((-643 . -93) T) ((-640 . -234) 88487) ((-640 . -926) 88446) ((-640 . -928) 88369) ((-640 . -920) 88290) ((-640 . -274) 88274) ((-640 . -239) 88225) ((-640 . -1247) T) ((-640 . -236) 88170) ((-640 . -1079) T) ((-640 . -1087) T) ((-640 . -1142) T) ((-640 . -746) T) ((-640 . -21) T) ((-640 . -666) 88142) ((-640 . -23) T) ((-640 . -1131) T) ((-640 . -630) 88124) ((-640 . -102) T) ((-640 . -25) T) ((-640 . -133) T) ((-640 . -668) 88111) ((-640 . -633) 88006) ((-640 . -240) 87985) ((-640 . -569) T) ((-640 . -302) T) ((-640 . -175) T) ((-640 . -737) 87972) ((-640 . -660) 87959) ((-640 . -1086) 87946) ((-640 . -1081) 87933) ((-640 . -111) 87918) ((-640 . -38) 87905) ((-640 . -631) 87882) ((-640 . -424) 87866) ((-640 . -1068) 87749) ((-640 . -149) 87728) ((-640 . -147) 87707) ((-640 . -319) 87686) ((-640 . -464) 87665) ((-640 . -949) 87644) ((-636 . -38) 87628) ((-636 . -633) 87597) ((-636 . -668) 87571) ((-636 . -666) 87530) ((-636 . -746) T) ((-636 . -1142) T) ((-636 . -1087) T) ((-636 . -1079) T) ((-636 . -111) 87509) ((-636 . -1081) 87493) ((-636 . -1086) 87477) ((-636 . -21) T) ((-636 . -23) T) ((-636 . -1131) T) ((-636 . -630) 87459) ((-636 . -1247) T) ((-636 . -102) T) ((-636 . -25) T) ((-636 . -133) T) ((-636 . -660) 87443) ((-636 . -737) 87427) ((-636 . -869) 87406) ((-636 . -819) 87385) ((-636 . -816) 87364) ((-636 . -873) 87343) ((-636 . -870) 87322) ((-636 . -814) 87301) ((-636 . -812) 87280) ((-634 . -997) T) ((-634 . -102) T) ((-634 . -630) 87262) ((-634 . -1131) T) ((-634 . -682) T) ((-634 . -1247) T) ((-634 . -113) T) ((-628 . -134) T) ((-628 . -102) T) ((-628 . -1247) T) ((-628 . -630) 87244) ((-628 . -1131) T) ((-628 . -870) T) ((-628 . -873) T) ((-628 . -908) 87228) ((-628 . -631) 87089) ((-625 . -378) 87029) ((-625 . -102) T) ((-625 . -1247) T) ((-625 . -630) 87011) ((-625 . -1131) T) ((-625 . -1224) 86987) ((-625 . -233) 86934) ((-625 . -107) 86881) ((-625 . -321) 86676) ((-625 . -526) 86459) ((-625 . -501) 86393) ((-625 . -153) 86340) ((-625 . -631) NIL) ((-625 . -242) 86287) ((-625 . -627) 86263) ((-625 . -300) 86239) ((-625 . -298) 86215) ((-625 . -34) T) ((-625 . -616) 86191) ((-624 . -1131) T) ((-624 . -630) 86143) ((-624 . -1247) T) ((-624 . -102) T) ((-624 . -502) 86110) ((-624 . -633) 86077) ((-623 . -1131) T) ((-623 . -630) 86059) ((-623 . -1247) T) ((-623 . -102) T) ((-623 . -682) T) ((-622 . -1131) T) ((-622 . -630) 86041) ((-622 . -1247) T) ((-622 . -102) T) ((-622 . -682) T) ((-621 . -1131) T) ((-621 . -630) 86008) ((-621 . -1247) T) ((-621 . -102) T) ((-620 . -1131) T) ((-620 . -630) 85990) ((-620 . -1247) T) ((-620 . -102) T) ((-620 . -682) T) ((-619 . -1131) T) ((-619 . -630) 85957) ((-619 . -1247) T) ((-619 . -102) T) ((-619 . -502) 85939) ((-619 . -633) 85921) ((-618 . -764) 85905) ((-618 . -740) T) ((-618 . -781) T) ((-618 . -111) 85884) ((-618 . -1081) 85868) ((-618 . -1086) 85852) ((-618 . -21) T) ((-618 . -666) 85821) ((-618 . -23) T) ((-618 . -1131) T) ((-618 . -630) 85790) ((-618 . -1247) T) ((-618 . -102) T) ((-618 . -25) T) ((-618 . -133) T) ((-618 . -668) 85774) ((-618 . -660) 85758) ((-618 . -737) 85742) ((-618 . -430) 85707) ((-618 . -380) 85639) ((-618 . -298) 85597) ((-617 . -1113) T) ((-617 . -502) 85578) ((-617 . -630) 85528) ((-617 . -633) 85509) ((-617 . -1131) T) ((-617 . -1247) T) ((-617 . -102) T) ((-617 . -93) T) ((-614 . -1296) 85493) ((-614 . -385) 85477) ((-614 . -873) 85456) ((-614 . -870) 85435) ((-614 . -153) 85419) ((-614 . -34) T) ((-614 . -1247) T) ((-614 . -102) 85349) ((-614 . -630) 85261) ((-614 . -321) 85199) ((-614 . -526) 85132) ((-614 . -1131) 85082) ((-614 . -501) 85066) ((-614 . -631) 85027) ((-614 . -298) 84979) ((-614 . -616) 84956) ((-614 . -300) 84933) ((-614 . -671) 84917) ((-614 . -19) 84901) ((-613 . -630) 84883) ((-610 . -1247) T) ((-609 . -1131) T) ((-609 . -630) 84849) ((-609 . -1247) T) ((-609 . -102) T) ((-609 . -502) 84830) ((-609 . -633) 84811) ((-608 . -1079) T) ((-608 . -1087) T) ((-608 . -1142) T) ((-608 . -746) T) ((-608 . -21) T) ((-608 . -666) 84770) ((-608 . -23) T) ((-608 . -1131) T) ((-608 . -630) 84752) ((-608 . -1247) T) ((-608 . -102) T) ((-608 . -25) T) ((-608 . -133) T) ((-608 . -668) 84726) ((-608 . -633) 84684) ((-608 . -111) 84637) ((-608 . -1081) 84597) ((-608 . -1086) 84557) ((-608 . -569) 84536) ((-608 . -302) 84515) ((-608 . -175) 84494) ((-608 . -737) 84467) ((-608 . -660) 84440) ((-608 . -38) 84413) ((-607 . -1276) 84390) ((-607 . -47) 84367) ((-607 . -38) 84264) ((-607 . -660) 84161) ((-607 . -737) 84058) ((-607 . -633) 83940) ((-607 . -302) 83919) ((-607 . -569) 83898) ((-607 . -111) 83767) ((-607 . -1081) 83650) ((-607 . -1086) 83533) ((-607 . -175) 83484) ((-607 . -149) 83463) ((-607 . -147) 83442) ((-607 . -668) 83367) ((-607 . -666) 83277) ((-607 . -1003) 83246) ((-607 . -928) 83159) ((-607 . -920) 83070) ((-607 . -926) 82983) ((-607 . -298) 82948) ((-607 . -239) 82907) ((-607 . -1247) T) ((-607 . -236) 82860) ((-607 . -1079) T) ((-607 . -1087) T) ((-607 . -1142) T) ((-607 . -746) T) ((-607 . -21) T) ((-607 . -23) T) ((-607 . -1131) T) ((-607 . -630) 82842) ((-607 . -102) T) ((-607 . -25) T) ((-607 . -133) T) ((-607 . -240) 82801) ((-605 . -1174) T) ((-605 . -385) 82783) ((-605 . -873) T) ((-605 . -870) T) ((-605 . -153) 82765) ((-605 . -34) T) ((-605 . -1247) T) ((-605 . -102) T) ((-605 . -630) 82747) ((-605 . -321) NIL) ((-605 . -526) NIL) ((-605 . -1131) T) ((-605 . -501) 82729) ((-605 . -631) NIL) ((-605 . -298) 82679) ((-605 . -616) 82654) ((-605 . -300) 82629) ((-605 . -671) 82611) ((-605 . -19) 82593) ((-604 . -1113) T) ((-604 . -502) 82574) ((-604 . -630) 82540) ((-604 . -633) 82521) ((-604 . -1131) T) ((-604 . -1247) T) ((-604 . -102) T) ((-604 . -93) T) ((-598 . -1131) T) ((-598 . -630) 82487) ((-598 . -1247) T) ((-598 . -102) T) ((-598 . -502) 82468) ((-598 . -633) 82449) ((-595 . -737) 82424) ((-595 . -660) 82399) ((-595 . -668) 82374) ((-595 . -666) 82334) ((-595 . -133) T) ((-595 . -25) T) ((-595 . -102) T) ((-595 . -1247) T) ((-595 . -630) 82316) ((-595 . -1131) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -1086) 82291) ((-595 . -1081) 82266) ((-595 . -111) 82234) ((-595 . -1068) 82218) ((-595 . -633) 82202) ((-593 . -363) T) ((-593 . -1182) T) ((-593 . -381) T) ((-593 . -147) T) ((-593 . -376) T) ((-593 . -1252) T) ((-593 . -949) T) ((-593 . -569) T) ((-593 . -175) T) ((-593 . -633) 82152) ((-593 . -737) 82117) ((-593 . -660) 82082) ((-593 . -38) 82047) ((-593 . -464) T) ((-593 . -319) T) ((-593 . -111) 82003) ((-593 . -1081) 81968) ((-593 . -1086) 81933) ((-593 . -666) 81883) ((-593 . -668) 81848) ((-593 . -302) T) ((-593 . -250) T) ((-593 . -414) T) ((-593 . -239) T) ((-593 . -1247) T) ((-593 . -236) 81835) ((-593 . -1079) T) ((-593 . -1087) T) ((-593 . -1142) T) ((-593 . -746) T) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1131) T) ((-593 . -630) 81817) ((-593 . -102) T) ((-593 . -25) T) ((-593 . -133) T) ((-593 . -240) T) ((-593 . -341) 81804) ((-593 . -149) 81786) ((-593 . -1068) 81773) ((-593 . -1305) 81760) ((-593 . -1316) 81747) ((-593 . -631) 81729) ((-592 . -893) 81713) ((-592 . -949) T) ((-592 . -569) T) ((-592 . -302) T) ((-592 . -175) T) ((-592 . -633) 81685) ((-592 . -737) 81672) ((-592 . -660) 81659) ((-592 . -1086) 81646) ((-592 . -1081) 81633) ((-592 . -111) 81618) ((-592 . -38) 81605) ((-592 . -464) T) ((-592 . -319) T) ((-592 . -1079) T) ((-592 . -1087) T) ((-592 . -1142) T) ((-592 . -746) T) ((-592 . -21) T) ((-592 . -666) 81577) ((-592 . -23) T) ((-592 . -1131) T) ((-592 . -630) 81559) ((-592 . -1247) T) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -133) T) ((-592 . -668) 81546) ((-592 . -149) T) ((-591 . -1131) T) ((-591 . -630) 81528) ((-591 . -1247) T) ((-591 . -102) T) ((-590 . -1131) T) ((-590 . -630) 81510) ((-590 . -1247) T) ((-590 . -102) T) ((-589 . -588) T) ((-589 . -884) T) ((-589 . -176) T) ((-589 . -539) T) ((-589 . -630) 81492) ((-583 . -567) 81476) ((-583 . -35) T) ((-583 . -95) T) ((-583 . -296) T) ((-583 . -505) T) ((-583 . -1236) T) ((-583 . -1233) T) ((-583 . -1068) 81458) ((-583 . -1032) T) ((-583 . -873) T) ((-583 . -870) T) ((-583 . -569) T) ((-583 . -302) T) ((-583 . -175) T) ((-583 . -633) 81430) ((-583 . -737) 81417) ((-583 . -660) 81404) ((-583 . -668) 81391) ((-583 . -666) 81363) ((-583 . -133) T) ((-583 . -25) T) ((-583 . -102) T) ((-583 . -1247) T) ((-583 . -630) 81345) ((-583 . -1131) T) ((-583 . -23) T) ((-583 . -21) T) ((-583 . -1086) 81332) ((-583 . -1081) 81319) ((-583 . -111) 81304) ((-583 . -1079) T) ((-583 . -1087) T) ((-583 . -1142) T) ((-583 . -746) T) ((-583 . -38) 81291) ((-583 . -464) T) ((-563 . -1224) 81270) ((-563 . -233) 81220) ((-563 . -107) 81170) ((-563 . -321) 80974) ((-563 . -526) 80766) ((-563 . -501) 80703) ((-563 . -153) 80653) ((-563 . -631) NIL) ((-563 . -242) 80603) ((-563 . -627) 80582) ((-563 . -300) 80561) ((-563 . -1247) T) ((-563 . -298) 80540) ((-563 . -1131) T) ((-563 . -630) 80522) ((-563 . -102) T) ((-563 . -34) T) ((-563 . -616) 80501) ((-562 . -866) T) ((-562 . -873) T) ((-562 . -870) T) ((-562 . -1131) T) ((-562 . -630) 80483) ((-562 . -1247) T) ((-562 . -102) T) ((-562 . -381) T) ((-561 . -866) T) ((-561 . -873) T) ((-561 . -870) T) ((-561 . -1131) T) ((-561 . -630) 80465) ((-561 . -1247) T) ((-561 . -102) T) ((-561 . -381) T) ((-560 . -866) T) ((-560 . -873) T) ((-560 . -870) T) ((-560 . -1131) T) ((-560 . -630) 80447) ((-560 . -1247) T) ((-560 . -102) T) ((-560 . -381) T) ((-559 . -866) T) ((-559 . -873) T) ((-559 . -870) T) ((-559 . -1131) T) ((-559 . -630) 80429) ((-559 . -1247) T) ((-559 . -102) T) ((-559 . -381) T) ((-558 . -557) T) ((-558 . -1252) T) ((-558 . -1182) T) ((-558 . -1068) 80411) ((-558 . -631) 80310) ((-558 . -1050) T) ((-558 . -910) 80292) ((-558 . -869) T) ((-558 . -819) T) ((-558 . -816) T) ((-558 . -873) T) ((-558 . -870) T) ((-558 . -814) T) ((-558 . -812) T) ((-558 . -842) T) ((-558 . -668) 80264) ((-558 . -658) 80246) ((-558 . -949) T) ((-558 . -569) T) ((-558 . -302) T) ((-558 . -175) T) ((-558 . -633) 80218) ((-558 . -737) 80205) ((-558 . -660) 80192) ((-558 . -1086) 80179) ((-558 . -1081) 80166) ((-558 . -111) 80151) ((-558 . -38) 80138) ((-558 . -464) T) ((-558 . -319) T) ((-558 . -239) T) ((-558 . -236) 80125) ((-558 . -240) T) ((-558 . -145) T) ((-558 . -1079) T) ((-558 . -1087) T) ((-558 . -1142) T) ((-558 . -746) T) ((-558 . -21) T) ((-558 . -666) 80097) ((-558 . -23) T) ((-558 . -1131) T) ((-558 . -630) 80079) ((-558 . -1247) T) ((-558 . -102) T) ((-558 . -25) T) ((-558 . -133) T) ((-558 . -149) T) ((-558 . -843) T) ((-547 . -1134) 80031) ((-547 . -102) T) ((-547 . -630) 80013) ((-547 . -1131) T) ((-547 . -298) 79969) ((-547 . -1247) T) ((-547 . -635) 79872) ((-547 . -631) 79853) ((-545 . -787) 79835) ((-545 . -539) T) ((-545 . -176) T) ((-545 . -884) T) ((-545 . -588) T) ((-545 . -630) 79817) ((-543 . -815) T) ((-543 . -133) T) ((-543 . -25) T) ((-543 . -102) T) ((-543 . -1247) T) ((-543 . -630) 79799) ((-543 . -1131) T) ((-543 . -23) T) ((-543 . -814) T) ((-543 . -870) T) ((-543 . -873) T) ((-543 . -816) T) ((-543 . -819) T) ((-543 . -521) 79776) ((-541 . -539) T) ((-541 . -176) T) ((-541 . -630) 79758) ((-537 . -1113) T) ((-537 . -502) 79739) ((-537 . -630) 79705) ((-537 . -633) 79686) ((-537 . -1131) T) ((-537 . -1247) T) ((-537 . -102) T) ((-537 . -93) T) ((-536 . -1113) T) ((-536 . -502) 79667) ((-536 . -630) 79633) ((-536 . -633) 79614) ((-536 . -1131) T) ((-536 . -1247) T) ((-536 . -102) T) ((-536 . -93) T) ((-535 . -706) 79564) ((-535 . -501) 79548) ((-535 . -1131) 79526) ((-535 . -526) 79459) ((-535 . -321) 79397) ((-535 . -630) 79329) ((-535 . -102) 79279) ((-535 . -1247) T) ((-535 . -34) T) ((-535 . -57) 79229) ((-532 . -686) 79213) ((-532 . -1286) 79197) ((-532 . -1040) 79181) ((-532 . -1180) 79165) ((-532 . -870) 79144) ((-532 . -873) 79123) ((-532 . -385) 79107) ((-532 . -671) 79091) ((-532 . -300) 79068) ((-532 . -298) 79020) ((-532 . -616) 78997) ((-532 . -631) 78958) ((-532 . -501) 78942) ((-532 . -1131) 78892) ((-532 . -526) 78825) ((-532 . -321) 78763) ((-532 . -630) 78675) ((-532 . -102) 78605) ((-532 . -1247) T) ((-532 . -34) T) ((-532 . -153) 78589) ((-532 . -294) 78573) ((-531 . -57) 78547) ((-531 . -34) T) ((-531 . -1247) T) ((-531 . -102) 78497) ((-531 . -630) 78429) ((-531 . -321) 78367) ((-531 . -526) 78300) ((-531 . -1131) 78278) ((-531 . -501) 78262) ((-530 . -341) 78239) ((-530 . -240) T) ((-530 . -236) 78226) ((-530 . -239) T) ((-530 . -381) T) ((-530 . -1182) T) ((-530 . -363) T) ((-530 . -149) 78208) ((-530 . -633) 78138) ((-530 . -668) 78083) ((-530 . -666) 78013) ((-530 . -133) T) ((-530 . -25) T) ((-530 . -102) T) ((-530 . -1247) T) ((-530 . -630) 77995) ((-530 . -1131) T) ((-530 . -23) T) ((-530 . -21) T) ((-530 . -746) T) ((-530 . -1142) T) ((-530 . -1087) T) ((-530 . -1079) T) ((-530 . -376) T) ((-530 . -1252) T) ((-530 . -949) T) ((-530 . -569) T) ((-530 . -175) T) ((-530 . -737) 77940) ((-530 . -660) 77885) ((-530 . -38) 77850) ((-530 . -464) T) ((-530 . -319) T) ((-530 . -111) 77779) ((-530 . -1081) 77724) ((-530 . -1086) 77669) ((-530 . -302) T) ((-530 . -250) T) ((-530 . -414) T) ((-530 . -147) T) ((-530 . -1068) 77646) ((-530 . -1305) 77623) ((-530 . -1316) 77600) ((-529 . -1113) T) ((-529 . -502) 77581) ((-529 . -630) 77547) ((-529 . -633) 77528) ((-529 . -1131) T) ((-529 . -1247) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -19) 77512) ((-528 . -671) 77496) ((-528 . -300) 77473) ((-528 . -298) 77425) ((-528 . -616) 77402) ((-528 . -631) 77363) ((-528 . -501) 77347) ((-528 . -1131) 77297) ((-528 . -526) 77230) ((-528 . -321) 77168) ((-528 . -630) 77080) ((-528 . -102) 77010) ((-528 . -1247) T) ((-528 . -34) T) ((-528 . -153) 76994) ((-528 . -870) 76973) ((-528 . -873) 76952) ((-528 . -385) 76936) ((-528 . -294) 76920) ((-527 . -335) 76899) ((-527 . -633) 76883) ((-527 . -1068) 76867) ((-527 . -23) T) ((-527 . -1131) T) ((-527 . -630) 76849) ((-527 . -1247) T) ((-527 . -102) T) ((-527 . -25) T) ((-527 . -133) T) ((-524 . -815) T) ((-524 . -133) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -1247) T) ((-524 . -630) 76831) ((-524 . -1131) T) ((-524 . -23) T) ((-524 . -814) T) ((-524 . -870) T) ((-524 . -873) T) ((-524 . -816) T) ((-524 . -819) T) ((-524 . -521) 76810) ((-523 . -814) T) ((-523 . -870) T) ((-523 . -873) T) ((-523 . -816) T) ((-523 . -25) T) ((-523 . -102) T) ((-523 . -1247) T) ((-523 . -630) 76792) ((-523 . -1131) T) ((-523 . -23) T) ((-523 . -521) 76771) ((-522 . -521) 76750) ((-522 . -630) 76690) ((-522 . -1131) 76641) ((-522 . -1247) T) ((-522 . -102) T) ((-520 . -23) T) ((-520 . -1131) T) ((-520 . -630) 76623) ((-520 . -1247) T) ((-520 . -102) T) ((-520 . -25) T) ((-520 . -521) 76602) ((-519 . -21) T) ((-519 . -666) 76584) ((-519 . -23) T) ((-519 . -1131) T) ((-519 . -630) 76566) ((-519 . -1247) T) ((-519 . -102) T) ((-519 . -25) T) ((-519 . -133) T) ((-519 . -521) 76545) ((-518 . -1131) T) ((-518 . -630) 76495) ((-518 . -1247) T) ((-518 . -102) T) ((-516 . -1131) T) ((-516 . -630) 76477) ((-516 . -1247) T) ((-516 . -102) T) ((-514 . -870) T) ((-514 . -630) 76459) ((-514 . -1131) T) ((-514 . -102) T) ((-514 . -1247) T) ((-514 . -873) T) ((-512 . -125) T) ((-512 . -385) 76441) ((-512 . -873) T) ((-512 . -870) T) ((-512 . -153) 76423) ((-512 . -34) T) ((-512 . -102) T) ((-512 . -630) 76405) ((-512 . -321) NIL) ((-512 . -526) NIL) ((-512 . -1131) T) ((-512 . -501) 76387) ((-512 . -631) 76369) ((-512 . -298) 76319) ((-512 . -616) 76294) ((-512 . -300) 76269) ((-512 . -671) 76251) ((-512 . -19) 76233) ((-512 . -682) T) ((-512 . -1247) T) ((-512 . -113) T) ((-509 . -57) 76183) ((-509 . -34) T) ((-509 . -1247) T) ((-509 . -102) 76133) ((-509 . -630) 76065) ((-509 . -321) 76003) ((-509 . -526) 75936) ((-509 . -1131) 75914) ((-509 . -501) 75898) ((-508 . -19) 75882) ((-508 . -671) 75866) ((-508 . -300) 75843) ((-508 . -298) 75795) ((-508 . -616) 75772) ((-508 . -631) 75733) ((-508 . -501) 75717) ((-508 . -1131) 75667) ((-508 . -526) 75600) ((-508 . -321) 75538) ((-508 . -630) 75450) ((-508 . -102) 75380) ((-508 . -1247) T) ((-508 . -34) T) ((-508 . -153) 75364) ((-508 . -870) 75343) ((-508 . -873) 75322) ((-508 . -385) 75306) ((-507 . -310) T) ((-507 . -102) T) ((-507 . -1247) T) ((-507 . -630) 75288) ((-507 . -1131) T) ((-507 . -633) 75221) ((-507 . -1068) 75164) ((-507 . -526) 75130) ((-507 . -321) 75117) ((-507 . -27) T) ((-507 . -1032) T) ((-507 . -250) T) ((-507 . -111) 75073) ((-507 . -1081) 75038) ((-507 . -1086) 75003) ((-507 . -302) T) ((-507 . -737) 74968) ((-507 . -660) 74933) ((-507 . -668) 74883) ((-507 . -666) 74833) ((-507 . -133) T) ((-507 . -25) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -1079) T) ((-507 . -1087) T) ((-507 . -1142) T) ((-507 . -746) T) ((-507 . -38) 74798) ((-507 . -319) T) ((-507 . -464) T) ((-507 . -175) T) ((-507 . -569) T) ((-507 . -949) T) ((-507 . -1252) T) ((-507 . -376) T) ((-507 . -658) 74758) ((-507 . -1050) T) ((-507 . -631) 74703) ((-507 . -149) T) ((-507 . -240) T) ((-507 . -236) 74690) ((-507 . -239) T) ((-503 . -1131) T) ((-503 . -630) 74656) ((-503 . -1247) T) ((-503 . -102) T) ((-499 . -1021) 74638) ((-499 . -1182) T) ((-499 . -633) 74588) ((-499 . -1068) 74548) ((-499 . -631) 74478) ((-499 . -1050) T) ((-499 . -938) NIL) ((-499 . -908) 74460) ((-499 . -869) T) ((-499 . -819) T) ((-499 . -816) T) ((-499 . -873) T) ((-499 . -870) T) ((-499 . -814) T) ((-499 . -812) T) ((-499 . -842) T) ((-499 . -910) 74442) ((-499 . -412) 74424) ((-499 . -658) 74406) ((-499 . -390) 74388) ((-499 . -298) NIL) ((-499 . -321) NIL) ((-499 . -526) NIL) ((-499 . -351) 74370) ((-499 . -250) T) ((-499 . -111) 74304) ((-499 . -1081) 74254) ((-499 . -1086) 74204) ((-499 . -302) T) ((-499 . -737) 74154) ((-499 . -660) 74104) ((-499 . -668) 74054) ((-499 . -666) 74004) ((-499 . -38) 73954) ((-499 . -319) T) ((-499 . -464) T) ((-499 . -175) T) ((-499 . -569) T) ((-499 . -949) T) ((-499 . -1252) T) ((-499 . -376) T) ((-499 . -240) T) ((-499 . -236) 73941) ((-499 . -239) T) ((-499 . -274) 73923) ((-499 . -920) NIL) ((-499 . -928) NIL) ((-499 . -926) NIL) ((-499 . -234) 73905) ((-499 . -149) T) ((-499 . -147) NIL) ((-499 . -133) T) ((-499 . -25) T) ((-499 . -102) T) ((-499 . -1247) T) ((-499 . -630) 73846) ((-499 . -1131) T) ((-499 . -23) T) ((-499 . -21) T) ((-499 . -1079) T) ((-499 . -1087) T) ((-499 . -1142) T) ((-499 . -746) T) ((-497 . -349) 73815) ((-497 . -133) T) ((-497 . -25) T) ((-497 . -102) T) ((-497 . -1247) T) ((-497 . -630) 73797) ((-497 . -1131) T) ((-497 . -23) T) ((-497 . -666) 73779) ((-497 . -21) T) ((-496 . -998) 73763) ((-496 . -501) 73747) ((-496 . -1131) 73725) ((-496 . -526) 73658) ((-496 . -321) 73596) ((-496 . -630) 73528) ((-496 . -102) 73478) ((-496 . -1247) T) ((-496 . -34) T) ((-496 . -107) 73462) ((-495 . -1113) T) ((-495 . -502) 73443) ((-495 . -630) 73409) ((-495 . -633) 73390) ((-495 . -1131) T) ((-495 . -1247) T) ((-495 . -102) T) ((-495 . -93) T) ((-494 . -245) 73369) ((-494 . -1305) 73339) ((-494 . -819) 73318) ((-494 . -816) 73297) ((-494 . -873) 73248) ((-494 . -870) 73199) ((-494 . -814) 73178) ((-494 . -815) 73157) ((-494 . -737) 73099) ((-494 . -660) 73021) ((-494 . -300) 72998) ((-494 . -298) 72975) ((-494 . -501) 72959) ((-494 . -526) 72892) ((-494 . -321) 72830) ((-494 . -34) T) ((-494 . -616) 72807) ((-494 . -1068) 72634) ((-494 . -633) 72432) ((-494 . -424) 72401) ((-494 . -658) 72307) ((-494 . -668) 72140) ((-494 . -390) 72109) ((-494 . -381) 72088) ((-494 . -240) 72040) ((-494 . -666) 71819) ((-494 . -746) 71797) ((-494 . -1142) 71775) ((-494 . -1087) 71753) ((-494 . -1079) 71731) ((-494 . -236) 71622) ((-494 . -239) 71519) ((-494 . -274) 71488) ((-494 . -920) 71355) ((-494 . -928) 71224) ((-494 . -926) 71156) ((-494 . -234) 71125) ((-494 . -630) 70818) ((-494 . -1086) 70739) ((-494 . -1081) 70640) ((-494 . -111) 70556) ((-494 . -133) 70427) ((-494 . -25) 70260) ((-494 . -102) 69992) ((-494 . -1247) T) ((-494 . -1131) 69744) ((-494 . -23) 69596) ((-494 . -21) 69507) ((-493 . -978) 69452) ((-493 . -633) 69237) ((-493 . -1068) 69113) ((-493 . -1252) 69092) ((-493 . -938) 69071) ((-493 . -910) NIL) ((-493 . -928) 69048) ((-493 . -920) 69023) ((-493 . -926) 69000) ((-493 . -526) 68943) ((-493 . -464) 68894) ((-493 . -658) 68842) ((-493 . -668) 68731) ((-493 . -390) 68715) ((-493 . -47) 68672) ((-493 . -38) 68521) ((-493 . -660) 68370) ((-493 . -737) 68219) ((-493 . -302) 68150) ((-493 . -569) 68081) ((-493 . -111) 67910) ((-493 . -1081) 67753) ((-493 . -1086) 67596) ((-493 . -175) 67507) ((-493 . -149) 67486) ((-493 . -147) 67465) ((-493 . -666) 67375) ((-493 . -133) T) ((-493 . -25) T) ((-493 . -102) T) ((-493 . -1247) T) ((-493 . -630) 67357) ((-493 . -1131) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1079) T) ((-493 . -1087) T) ((-493 . -1142) T) ((-493 . -746) T) ((-493 . -424) 67341) ((-493 . -338) 67298) ((-493 . -321) 67285) ((-493 . -631) 67146) ((-491 . -1224) 67125) ((-491 . -233) 67075) ((-491 . -107) 67025) ((-491 . -321) 66829) ((-491 . -526) 66621) ((-491 . -501) 66558) ((-491 . -153) 66508) ((-491 . -631) NIL) ((-491 . -242) 66458) ((-491 . -627) 66437) ((-491 . -300) 66416) ((-491 . -1247) T) ((-491 . -298) 66395) ((-491 . -1131) T) ((-491 . -630) 66377) ((-491 . -102) T) ((-491 . -34) T) ((-491 . -616) 66356) ((-490 . -1113) T) ((-490 . -502) 66337) ((-490 . -630) 66303) ((-490 . -633) 66284) ((-490 . -1131) T) ((-490 . -1247) T) ((-490 . -102) T) ((-490 . -93) T) ((-489 . -376) T) ((-489 . -1252) T) ((-489 . -949) T) ((-489 . -569) T) ((-489 . -175) T) ((-489 . -633) 66234) ((-489 . -737) 66199) ((-489 . -660) 66164) ((-489 . -38) 66129) ((-489 . -464) T) ((-489 . -319) T) ((-489 . -668) 66094) ((-489 . -666) 66044) ((-489 . -746) T) ((-489 . -1142) T) ((-489 . -1087) T) ((-489 . -1079) T) ((-489 . -111) 66000) ((-489 . -1081) 65965) ((-489 . -1086) 65930) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1131) T) ((-489 . -630) 65882) ((-489 . -1247) T) ((-489 . -102) T) ((-489 . -25) T) ((-489 . -133) T) ((-489 . -302) T) ((-489 . -250) T) ((-489 . -149) T) ((-489 . -1068) 65842) ((-489 . -1050) T) ((-489 . -631) 65764) ((-488 . -1242) 65733) ((-488 . -630) 65695) ((-488 . -153) 65679) ((-488 . -34) T) ((-488 . -1247) T) ((-488 . -102) T) ((-488 . -321) 65617) ((-488 . -526) 65550) ((-488 . -1131) T) ((-488 . -501) 65534) ((-488 . -631) 65495) ((-488 . -1006) 65464) ((-487 . -1224) 65443) ((-487 . -233) 65393) ((-487 . -107) 65343) ((-487 . -321) 65147) ((-487 . -526) 64939) ((-487 . -501) 64876) ((-487 . -153) 64826) ((-487 . -631) NIL) ((-487 . -242) 64776) ((-487 . -627) 64755) ((-487 . -300) 64734) ((-487 . -1247) T) ((-487 . -298) 64713) ((-487 . -1131) T) ((-487 . -630) 64695) ((-487 . -102) T) ((-487 . -34) T) ((-487 . -616) 64674) ((-486 . -1280) 64658) ((-486 . -240) 64610) ((-486 . -236) 64556) ((-486 . -239) 64508) ((-486 . -298) 64466) ((-486 . -926) 64372) ((-486 . -920) 64253) ((-486 . -928) 64159) ((-486 . -1003) 64121) ((-486 . -38) 63962) ((-486 . -111) 63783) ((-486 . -1081) 63618) ((-486 . -1086) 63453) ((-486 . -666) 63335) ((-486 . -668) 63232) ((-486 . -660) 63073) ((-486 . -737) 62914) ((-486 . -633) 62740) ((-486 . -147) 62719) ((-486 . -149) 62698) ((-486 . -47) 62668) ((-486 . -1276) 62638) ((-486 . -35) 62604) ((-486 . -95) 62570) ((-486 . -296) 62536) ((-486 . -505) 62502) ((-486 . -1236) 62468) ((-486 . -1233) 62434) ((-486 . -1032) 62400) ((-486 . -250) 62379) ((-486 . -302) 62330) ((-486 . -133) T) ((-486 . -25) T) ((-486 . -102) T) ((-486 . -1247) T) ((-486 . -630) 62312) ((-486 . -1131) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1079) T) ((-486 . -1087) T) ((-486 . -1142) T) ((-486 . -746) T) ((-486 . -319) 62291) ((-486 . -464) 62270) ((-486 . -175) 62201) ((-486 . -569) 62152) ((-486 . -949) 62131) ((-486 . -1252) 62110) ((-486 . -376) 62089) ((-480 . -1131) T) ((-480 . -630) 62071) ((-480 . -1247) T) ((-480 . -102) T) ((-475 . -1006) 62040) ((-475 . -631) 62001) ((-475 . -501) 61985) ((-475 . -1131) T) ((-475 . -526) 61918) ((-475 . -321) 61856) ((-475 . -630) 61818) ((-475 . -102) T) ((-475 . -1247) T) ((-475 . -34) T) ((-475 . -153) 61802) ((-473 . -737) 61773) ((-473 . -660) 61744) ((-473 . -668) 61715) ((-473 . -666) 61671) ((-473 . -133) T) ((-473 . -25) T) ((-473 . -102) T) ((-473 . -1247) T) ((-473 . -630) 61653) ((-473 . -1131) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1086) 61624) ((-473 . -1081) 61595) ((-473 . -111) 61556) ((-466 . -978) 61523) ((-466 . -633) 61308) ((-466 . -1068) 61184) ((-466 . -1252) 61163) ((-466 . -938) 61142) ((-466 . -910) NIL) ((-466 . -928) 61119) ((-466 . -920) 61094) ((-466 . -926) 61071) ((-466 . -526) 61014) ((-466 . -464) 60965) ((-466 . -658) 60913) ((-466 . -668) 60802) ((-466 . -390) 60786) ((-466 . -47) 60765) ((-466 . -38) 60614) ((-466 . -660) 60463) ((-466 . -737) 60312) ((-466 . -302) 60243) ((-466 . -569) 60174) ((-466 . -111) 60003) ((-466 . -1081) 59846) ((-466 . -1086) 59689) ((-466 . -175) 59600) ((-466 . -149) 59579) ((-466 . -147) 59558) ((-466 . -666) 59468) ((-466 . -133) T) ((-466 . -25) T) ((-466 . -102) T) ((-466 . -1247) T) ((-466 . -630) 59450) ((-466 . -1131) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1079) T) ((-466 . -1087) T) ((-466 . -1142) T) ((-466 . -746) T) ((-466 . -424) 59434) ((-466 . -338) 59413) ((-466 . -321) 59400) ((-466 . -631) 59261) ((-465 . -430) 59231) ((-465 . -764) 59201) ((-465 . -740) T) ((-465 . -781) T) ((-465 . -111) 59164) ((-465 . -1081) 59134) ((-465 . -1086) 59104) ((-465 . -21) T) ((-465 . -666) 59019) ((-465 . -23) T) ((-465 . -1131) T) ((-465 . -630) 59001) ((-465 . -102) T) ((-465 . -25) T) ((-465 . -133) T) ((-465 . -668) 58931) ((-465 . -660) 58901) ((-465 . -737) 58871) ((-465 . -380) 58841) ((-465 . -1247) T) ((-465 . -298) 58804) ((-451 . -1131) T) ((-451 . -630) 58786) ((-451 . -1247) T) ((-451 . -102) T) ((-450 . -1131) T) ((-450 . -630) 58768) ((-450 . -1247) T) ((-450 . -102) T) ((-449 . -378) 58742) ((-449 . -102) T) ((-449 . -1247) T) ((-449 . -630) 58724) ((-449 . -1131) T) ((-448 . -1131) T) ((-448 . -630) 58706) ((-448 . -1247) T) ((-448 . -102) T) ((-446 . -630) 58688) ((-441 . -38) 58672) ((-441 . -633) 58641) ((-441 . -668) 58615) ((-441 . -666) 58574) ((-441 . -746) T) ((-441 . -1142) T) ((-441 . -1087) T) ((-441 . -1079) T) ((-441 . -111) 58553) ((-441 . -1081) 58537) ((-441 . -1086) 58521) ((-441 . -21) T) ((-441 . -23) T) ((-441 . -1131) T) ((-441 . -630) 58503) ((-441 . -1247) T) ((-441 . -102) T) ((-441 . -25) T) ((-441 . -133) T) ((-441 . -660) 58487) ((-441 . -737) 58471) ((-427 . -746) T) ((-427 . -1131) T) ((-427 . -630) 58453) ((-427 . -1247) T) ((-427 . -102) T) ((-427 . -1142) T) ((-425 . -485) T) ((-425 . -1142) T) ((-425 . -102) T) ((-425 . -1247) T) ((-425 . -630) 58435) ((-425 . -1131) T) ((-425 . -746) T) ((-419 . -1021) 58419) ((-419 . -1182) 58397) ((-419 . -1068) 58263) ((-419 . -633) 58161) ((-419 . -631) 57968) ((-419 . -1050) 57946) ((-419 . -938) 57925) ((-419 . -908) 57909) ((-419 . -869) 57888) ((-419 . -819) 57867) ((-419 . -816) 57846) ((-419 . -873) 57797) ((-419 . -870) 57748) ((-419 . -814) 57727) ((-419 . -812) 57706) ((-419 . -842) 57685) ((-419 . -910) 57610) ((-419 . -412) 57594) ((-419 . -658) 57542) ((-419 . -668) 57458) ((-419 . -390) 57442) ((-419 . -298) 57400) ((-419 . -321) 57365) ((-419 . -526) 57277) ((-419 . -351) 57261) ((-419 . -250) T) ((-419 . -111) 57199) ((-419 . -1081) 57151) ((-419 . -1086) 57103) ((-419 . -302) T) ((-419 . -737) 57055) ((-419 . -660) 57007) ((-419 . -666) 56944) ((-419 . -38) 56896) ((-419 . -319) T) ((-419 . -464) T) ((-419 . -175) T) ((-419 . -569) T) ((-419 . -949) T) ((-419 . -1252) T) ((-419 . -376) T) ((-419 . -240) 56875) ((-419 . -236) 56820) ((-419 . -239) 56771) ((-419 . -274) 56755) ((-419 . -920) 56676) ((-419 . -928) 56599) ((-419 . -926) 56558) ((-419 . -234) 56542) ((-419 . -149) 56521) ((-419 . -147) 56500) ((-419 . -133) T) ((-419 . -25) T) ((-419 . -102) T) ((-419 . -1247) T) ((-419 . -630) 56482) ((-419 . -1131) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -1079) T) ((-419 . -1087) T) ((-419 . -1142) T) ((-419 . -746) T) ((-419 . -843) 56435) ((-417 . -569) T) ((-417 . -302) T) ((-417 . -175) T) ((-417 . -633) 56343) ((-417 . -737) 56317) ((-417 . -660) 56291) ((-417 . -668) 56265) ((-417 . -666) 56224) ((-417 . -133) T) ((-417 . -25) T) ((-417 . -102) T) ((-417 . -1247) T) ((-417 . -630) 56206) ((-417 . -1131) T) ((-417 . -23) T) ((-417 . -21) T) ((-417 . -1086) 56180) ((-417 . -1081) 56154) ((-417 . -111) 56121) ((-417 . -1079) T) ((-417 . -1087) T) ((-417 . -1142) T) ((-417 . -746) T) ((-417 . -38) 56095) ((-417 . -234) 56079) ((-417 . -926) 56038) ((-417 . -928) 55961) ((-417 . -920) 55882) ((-417 . -274) 55866) ((-417 . -239) 55817) ((-417 . -236) 55762) ((-417 . -240) 55741) ((-417 . -351) 55725) ((-417 . -526) 55567) ((-417 . -321) 55506) ((-417 . -298) 55434) ((-417 . -424) 55418) ((-417 . -1068) 55314) ((-417 . -464) 55264) ((-417 . -1050) 55242) ((-417 . -631) 55149) ((-417 . -1252) 55127) ((-411 . -1131) T) ((-411 . -630) 55109) ((-411 . -1247) T) ((-411 . -102) T) ((-411 . -239) T) ((-411 . -236) 55096) ((-411 . -631) 55073) ((-410 . -408) T) ((-410 . -1247) T) ((-410 . -630) 55055) ((-404 . -764) 55039) ((-404 . -740) T) ((-404 . -781) T) ((-404 . -111) 55018) ((-404 . -1081) 55002) ((-404 . -1086) 54986) ((-404 . -21) T) ((-404 . -666) 54955) ((-404 . -23) T) ((-404 . -1131) T) ((-404 . -630) 54937) ((-404 . -1247) T) ((-404 . -102) T) ((-404 . -25) T) ((-404 . -133) T) ((-404 . -668) 54921) ((-404 . -660) 54905) ((-404 . -737) 54889) ((-402 . -403) T) ((-402 . -102) T) ((-402 . -1247) T) ((-402 . -630) 54855) ((-402 . -1131) T) ((-402 . -633) 54836) ((-402 . -502) 54817) ((-400 . -399) 54801) ((-400 . -633) 54785) ((-400 . -1068) 54769) ((-400 . -873) 54748) ((-400 . -870) 54727) ((-400 . -1142) T) ((-400 . -102) T) ((-400 . -1247) T) ((-400 . -630) 54709) ((-400 . -1131) T) ((-400 . -746) T) ((-395 . -397) 54688) ((-395 . -633) 54672) ((-395 . -1068) 54656) ((-395 . -660) 54626) ((-395 . -737) 54596) ((-395 . -668) 54580) ((-395 . -666) 54549) ((-395 . -133) T) ((-395 . -25) T) ((-395 . -102) T) ((-395 . -1247) T) ((-395 . -630) 54531) ((-395 . -1131) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -1086) 54515) ((-395 . -1081) 54499) ((-395 . -111) 54478) ((-394 . -111) 54457) ((-394 . -1081) 54441) ((-394 . -1086) 54425) ((-394 . -21) T) ((-394 . -666) 54394) ((-394 . -23) T) ((-394 . -1131) T) ((-394 . -630) 54376) ((-394 . -1247) T) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -133) T) ((-394 . -668) 54360) ((-394 . -521) 54339) ((-394 . -737) 54309) ((-394 . -660) 54279) ((-391 . -416) T) ((-391 . -149) T) ((-391 . -633) 54229) ((-391 . -668) 54194) ((-391 . -666) 54144) ((-391 . -133) T) ((-391 . -25) T) ((-391 . -102) T) ((-391 . -1247) T) ((-391 . -630) 54111) ((-391 . -1131) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -746) T) ((-391 . -1142) T) ((-391 . -1087) T) ((-391 . -1079) T) ((-391 . -631) 54025) ((-391 . -376) T) ((-391 . -1252) T) ((-391 . -949) T) ((-391 . -569) T) ((-391 . -175) T) ((-391 . -737) 53990) ((-391 . -660) 53955) ((-391 . -38) 53920) ((-391 . -464) T) ((-391 . -319) T) ((-391 . -111) 53876) ((-391 . -1081) 53841) ((-391 . -1086) 53806) ((-391 . -302) T) ((-391 . -250) T) ((-391 . -869) T) ((-391 . -819) T) ((-391 . -816) T) ((-391 . -873) T) ((-391 . -870) T) ((-391 . -814) T) ((-391 . -812) T) ((-391 . -910) 53788) ((-391 . -1032) T) ((-391 . -1050) T) ((-391 . -1068) 53748) ((-391 . -1090) T) ((-391 . -240) T) ((-391 . -236) 53735) ((-391 . -239) T) ((-391 . -843) T) ((-391 . -1233) T) ((-391 . -1236) T) ((-391 . -505) T) ((-391 . -296) T) ((-391 . -95) T) ((-391 . -35) T) ((-391 . -635) 53717) ((-377 . -378) 53694) ((-377 . -102) T) ((-377 . -1247) T) ((-377 . -630) 53676) ((-377 . -1131) T) ((-374 . -485) T) ((-374 . -1142) T) ((-374 . -102) T) ((-374 . -1247) T) ((-374 . -630) 53658) ((-374 . -1131) T) ((-374 . -746) T) ((-374 . -1068) 53642) ((-374 . -633) 53626) ((-372 . -341) 53610) ((-372 . -240) 53589) ((-372 . -236) 53562) ((-372 . -239) 53541) ((-372 . -381) 53520) ((-372 . -1182) 53499) ((-372 . -363) 53478) ((-372 . -149) 53457) ((-372 . -633) 53394) ((-372 . -668) 53346) ((-372 . -666) 53283) ((-372 . -133) T) ((-372 . -25) T) ((-372 . -102) T) ((-372 . -1247) T) ((-372 . -630) 53265) ((-372 . -1131) T) ((-372 . -23) T) ((-372 . -21) T) ((-372 . -746) T) ((-372 . -1142) T) ((-372 . -1087) T) ((-372 . -1079) T) ((-372 . -376) T) ((-372 . -1252) T) ((-372 . -949) T) ((-372 . -569) T) ((-372 . -175) T) ((-372 . -737) 53217) ((-372 . -660) 53169) ((-372 . -38) 53134) ((-372 . -464) T) ((-372 . -319) T) ((-372 . -111) 53072) ((-372 . -1081) 53024) ((-372 . -1086) 52976) ((-372 . -302) T) ((-372 . -250) T) ((-372 . -414) 52927) ((-372 . -147) 52878) ((-372 . -1068) 52862) ((-372 . -1305) 52846) ((-372 . -1316) 52830) ((-368 . -341) 52814) ((-368 . -240) 52793) ((-368 . -236) 52766) ((-368 . -239) 52745) ((-368 . -381) 52724) ((-368 . -1182) 52703) ((-368 . -363) 52682) ((-368 . -149) 52661) ((-368 . -633) 52598) ((-368 . -668) 52550) ((-368 . -666) 52487) ((-368 . -133) T) ((-368 . -25) T) ((-368 . -102) T) ((-368 . -1247) T) ((-368 . -630) 52469) ((-368 . -1131) T) ((-368 . -23) T) ((-368 . -21) T) ((-368 . -746) T) ((-368 . -1142) T) ((-368 . -1087) T) ((-368 . -1079) T) ((-368 . -376) T) ((-368 . -1252) T) ((-368 . -949) T) ((-368 . -569) T) ((-368 . -175) T) ((-368 . -737) 52421) ((-368 . -660) 52373) ((-368 . -38) 52338) ((-368 . -464) T) ((-368 . -319) T) ((-368 . -111) 52276) ((-368 . -1081) 52228) ((-368 . -1086) 52180) ((-368 . -302) T) ((-368 . -250) T) ((-368 . -414) 52131) ((-368 . -147) 52082) ((-368 . -1068) 52066) ((-368 . -1305) 52050) ((-368 . -1316) 52034) ((-367 . -341) 52018) ((-367 . -240) 51997) ((-367 . -236) 51970) ((-367 . -239) 51949) ((-367 . -381) 51928) ((-367 . -1182) 51907) ((-367 . -363) 51886) ((-367 . -149) 51865) ((-367 . -633) 51802) ((-367 . -668) 51754) ((-367 . -666) 51691) ((-367 . -133) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -1247) T) ((-367 . -630) 51673) ((-367 . -1131) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -746) T) ((-367 . -1142) T) ((-367 . -1087) T) ((-367 . -1079) T) ((-367 . -376) T) ((-367 . -1252) T) ((-367 . -949) T) ((-367 . -569) T) ((-367 . -175) T) ((-367 . -737) 51625) ((-367 . -660) 51577) ((-367 . -38) 51542) ((-367 . -464) T) ((-367 . -319) T) ((-367 . -111) 51480) ((-367 . -1081) 51432) ((-367 . -1086) 51384) ((-367 . -302) T) ((-367 . -250) T) ((-367 . -414) 51335) ((-367 . -147) 51286) ((-367 . -1068) 51270) ((-367 . -1305) 51254) ((-367 . -1316) 51238) ((-366 . -341) 51222) ((-366 . -240) 51201) ((-366 . -236) 51174) ((-366 . -239) 51153) ((-366 . -381) 51132) ((-366 . -1182) 51111) ((-366 . -363) 51090) ((-366 . -149) 51069) ((-366 . -633) 51006) ((-366 . -668) 50958) ((-366 . -666) 50895) ((-366 . -133) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -1247) T) ((-366 . -630) 50877) ((-366 . -1131) T) ((-366 . -23) T) ((-366 . -21) T) ((-366 . -746) T) ((-366 . -1142) T) ((-366 . -1087) T) ((-366 . -1079) T) ((-366 . -376) T) ((-366 . -1252) T) ((-366 . -949) T) ((-366 . -569) T) ((-366 . -175) T) ((-366 . -737) 50829) ((-366 . -660) 50781) ((-366 . -38) 50746) ((-366 . -464) T) ((-366 . -319) T) ((-366 . -111) 50684) ((-366 . -1081) 50636) ((-366 . -1086) 50588) ((-366 . -302) T) ((-366 . -250) T) ((-366 . -414) 50539) ((-366 . -147) 50490) ((-366 . -1068) 50474) ((-366 . -1305) 50458) ((-366 . -1316) 50442) ((-365 . -341) 50419) ((-365 . -240) T) ((-365 . -236) 50406) ((-365 . -239) T) ((-365 . -381) T) ((-365 . -1182) T) ((-365 . -363) T) ((-365 . -149) 50388) ((-365 . -633) 50318) ((-365 . -668) 50263) ((-365 . -666) 50193) ((-365 . -133) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -1247) T) ((-365 . -630) 50175) ((-365 . -1131) T) ((-365 . -23) T) ((-365 . -21) T) ((-365 . -746) T) ((-365 . -1142) T) ((-365 . -1087) T) ((-365 . -1079) T) ((-365 . -376) T) ((-365 . -1252) T) ((-365 . -949) T) ((-365 . -569) T) ((-365 . -175) T) ((-365 . -737) 50120) ((-365 . -660) 50065) ((-365 . -38) 50030) ((-365 . -464) T) ((-365 . -319) T) ((-365 . -111) 49959) ((-365 . -1081) 49904) ((-365 . -1086) 49849) ((-365 . -302) T) ((-365 . -250) T) ((-365 . -414) T) ((-365 . -147) T) ((-365 . -1068) 49826) ((-365 . -1305) 49803) ((-365 . -1316) 49780) ((-359 . -341) 49764) ((-359 . -240) 49743) ((-359 . -236) 49716) ((-359 . -239) 49695) ((-359 . -381) 49674) ((-359 . -1182) 49653) ((-359 . -363) 49632) ((-359 . -149) 49611) ((-359 . -633) 49548) ((-359 . -668) 49500) ((-359 . -666) 49437) ((-359 . -133) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -1247) T) ((-359 . -630) 49419) ((-359 . -1131) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -746) T) ((-359 . -1142) T) ((-359 . -1087) T) ((-359 . -1079) T) ((-359 . -376) T) ((-359 . -1252) T) ((-359 . -949) T) ((-359 . -569) T) ((-359 . -175) T) ((-359 . -737) 49371) ((-359 . -660) 49323) ((-359 . -38) 49288) ((-359 . -464) T) ((-359 . -319) T) ((-359 . -111) 49226) ((-359 . -1081) 49178) ((-359 . -1086) 49130) ((-359 . -302) T) ((-359 . -250) T) ((-359 . -414) 49081) ((-359 . -147) 49032) ((-359 . -1068) 49016) ((-359 . -1305) 49000) ((-359 . -1316) 48984) ((-358 . -341) 48968) ((-358 . -240) 48947) ((-358 . -236) 48920) ((-358 . -239) 48899) ((-358 . -381) 48878) ((-358 . -1182) 48857) ((-358 . -363) 48836) ((-358 . -149) 48815) ((-358 . -633) 48752) ((-358 . -668) 48704) ((-358 . -666) 48641) ((-358 . -133) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -1247) T) ((-358 . -630) 48623) ((-358 . -1131) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -746) T) ((-358 . -1142) T) ((-358 . -1087) T) ((-358 . -1079) T) ((-358 . -376) T) ((-358 . -1252) T) ((-358 . -949) T) ((-358 . -569) T) ((-358 . -175) T) ((-358 . -737) 48575) ((-358 . -660) 48527) ((-358 . -38) 48492) ((-358 . -464) T) ((-358 . -319) T) ((-358 . -111) 48430) ((-358 . -1081) 48382) ((-358 . -1086) 48334) ((-358 . -302) T) ((-358 . -250) T) ((-358 . -414) 48285) ((-358 . -147) 48236) ((-358 . -1068) 48220) ((-358 . -1305) 48204) ((-358 . -1316) 48188) ((-357 . -341) 48165) ((-357 . -240) T) ((-357 . -236) 48152) ((-357 . -239) T) ((-357 . -381) T) ((-357 . -1182) T) ((-357 . -363) T) ((-357 . -149) 48134) ((-357 . -633) 48064) ((-357 . -668) 48009) ((-357 . -666) 47939) ((-357 . -133) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -1247) T) ((-357 . -630) 47921) ((-357 . -1131) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -746) T) ((-357 . -1142) T) ((-357 . -1087) T) ((-357 . -1079) T) ((-357 . -376) T) ((-357 . -1252) T) ((-357 . -949) T) ((-357 . -569) T) ((-357 . -175) T) ((-357 . -737) 47866) ((-357 . -660) 47811) ((-357 . -38) 47776) ((-357 . -464) T) ((-357 . -319) T) ((-357 . -111) 47705) ((-357 . -1081) 47650) ((-357 . -1086) 47595) ((-357 . -302) T) ((-357 . -250) T) ((-357 . -414) T) ((-357 . -147) T) ((-357 . -1068) 47572) ((-357 . -1305) 47549) ((-357 . -1316) 47526) ((-353 . -341) 47503) ((-353 . -240) T) ((-353 . -236) 47490) ((-353 . -239) T) ((-353 . -381) T) ((-353 . -1182) T) ((-353 . -363) T) ((-353 . -149) 47472) ((-353 . -633) 47402) ((-353 . -668) 47347) ((-353 . -666) 47277) ((-353 . -133) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -1247) T) ((-353 . -630) 47259) ((-353 . -1131) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -746) T) ((-353 . -1142) T) ((-353 . -1087) T) ((-353 . -1079) T) ((-353 . -376) T) ((-353 . -1252) T) ((-353 . -949) T) ((-353 . -569) T) ((-353 . -175) T) ((-353 . -737) 47204) ((-353 . -660) 47149) ((-353 . -38) 47114) ((-353 . -464) T) ((-353 . -319) T) ((-353 . -111) 47043) ((-353 . -1081) 46988) ((-353 . -1086) 46933) ((-353 . -302) T) ((-353 . -250) T) ((-353 . -414) T) ((-353 . -147) T) ((-353 . -1068) 46910) ((-353 . -1305) 46887) ((-353 . -1316) 46864) ((-352 . -310) T) ((-352 . -102) T) ((-352 . -1247) T) ((-352 . -630) 46846) ((-352 . -1131) T) ((-352 . -633) 46798) ((-352 . -1068) 46765) ((-352 . -526) 46731) ((-352 . -321) 46718) ((-352 . -38) 46702) ((-352 . -668) 46676) ((-352 . -666) 46635) ((-352 . -746) T) ((-352 . -1142) T) ((-352 . -1087) T) ((-352 . -1079) T) ((-352 . -111) 46614) ((-352 . -1081) 46598) ((-352 . -1086) 46582) ((-352 . -21) T) ((-352 . -23) T) ((-352 . -25) T) ((-352 . -133) T) ((-352 . -660) 46566) ((-352 . -737) 46550) ((-352 . -926) 46531) ((-352 . -920) 46510) ((-352 . -928) 46491) ((-346 . -349) 46460) ((-346 . -133) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -1247) T) ((-346 . -630) 46442) ((-346 . -1131) T) ((-346 . -23) T) ((-346 . -666) 46424) ((-346 . -21) T) ((-345 . -1131) T) ((-345 . -630) 46406) ((-345 . -1247) T) ((-345 . -102) T) ((-343 . -870) T) ((-343 . -630) 46388) ((-343 . -1131) T) ((-343 . -102) T) ((-343 . -1247) T) ((-343 . -873) T) ((-342 . -1131) T) ((-342 . -630) 46370) ((-342 . -1247) T) ((-342 . -102) T) ((-339 . -19) 46354) ((-339 . -671) 46338) ((-339 . -300) 46315) ((-339 . -298) 46267) ((-339 . -616) 46244) ((-339 . -631) 46205) ((-339 . -501) 46189) ((-339 . -1131) 46139) ((-339 . -526) 46072) ((-339 . -321) 46010) ((-339 . -630) 45922) ((-339 . -102) 45852) ((-339 . -1247) T) ((-339 . -34) T) ((-339 . -153) 45836) ((-339 . -870) 45815) ((-339 . -873) 45794) ((-339 . -385) 45778) ((-339 . -294) 45762) ((-336 . -335) 45739) ((-336 . -633) 45723) ((-336 . -1068) 45707) ((-336 . -23) T) ((-336 . -1131) T) ((-336 . -630) 45689) ((-336 . -1247) T) ((-336 . -102) T) ((-336 . -25) T) ((-336 . -133) T) ((-334 . -21) T) ((-334 . -666) 45671) ((-334 . -23) T) ((-334 . -1131) T) ((-334 . -630) 45653) ((-334 . -1247) T) ((-334 . -102) T) ((-334 . -25) T) ((-334 . -133) T) ((-334 . -737) 45635) ((-334 . -660) 45617) ((-334 . -668) 45599) ((-334 . -1086) 45581) ((-334 . -1081) 45563) ((-334 . -111) 45538) ((-334 . -335) 45515) ((-334 . -633) 45499) ((-334 . -1068) 45483) ((-334 . -870) 45462) ((-334 . -873) 45441) ((-331 . -1280) 45425) ((-331 . -240) 45377) ((-331 . -236) 45323) ((-331 . -239) 45275) ((-331 . -298) 45233) ((-331 . -926) 45139) ((-331 . -920) 45043) ((-331 . -928) 44949) ((-331 . -1003) 44911) ((-331 . -38) 44752) ((-331 . -111) 44573) ((-331 . -1081) 44408) ((-331 . -1086) 44243) ((-331 . -666) 44125) ((-331 . -668) 44022) ((-331 . -660) 43863) ((-331 . -737) 43704) ((-331 . -633) 43530) ((-331 . -147) 43509) ((-331 . -149) 43488) ((-331 . -47) 43458) ((-331 . -1276) 43428) ((-331 . -35) 43394) ((-331 . -95) 43360) ((-331 . -296) 43326) ((-331 . -505) 43292) ((-331 . -1236) 43258) ((-331 . -1233) 43224) ((-331 . -1032) 43190) ((-331 . -250) 43169) ((-331 . -302) 43120) ((-331 . -133) T) ((-331 . -25) T) ((-331 . -102) T) ((-331 . -1247) T) ((-331 . -630) 43102) ((-331 . -1131) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -1079) T) ((-331 . -1087) T) ((-331 . -1142) T) ((-331 . -746) T) ((-331 . -319) 43081) ((-331 . -464) 43060) ((-331 . -175) 42991) ((-331 . -569) 42942) ((-331 . -949) 42921) ((-331 . -1252) 42900) ((-331 . -376) 42879) ((-331 . -814) T) ((-331 . -870) T) ((-331 . -873) T) ((-331 . -816) T) ((-326 . -433) 42863) ((-326 . -633) 42427) ((-326 . -1068) 42090) ((-326 . -631) 41951) ((-326 . -908) 41935) ((-326 . -928) 41901) ((-326 . -920) 41865) ((-326 . -926) 41831) ((-326 . -485) 41810) ((-326 . -424) 41794) ((-326 . -910) 41719) ((-326 . -412) 41703) ((-326 . -658) 41609) ((-326 . -668) 41338) ((-326 . -390) 41307) ((-326 . -250) 41286) ((-326 . -111) 41182) ((-326 . -1081) 41092) ((-326 . -1086) 41002) ((-326 . -302) 40981) ((-326 . -737) 40891) ((-326 . -660) 40801) ((-326 . -666) 40456) ((-326 . -38) 40366) ((-326 . -319) 40345) ((-326 . -464) 40324) ((-326 . -175) 40303) ((-326 . -569) 40282) ((-326 . -949) 40261) ((-326 . -1252) 40240) ((-326 . -376) 40219) ((-326 . -321) 40206) ((-326 . -526) 40172) ((-326 . -310) T) ((-326 . -149) 40151) ((-326 . -147) 40130) ((-326 . -1079) 40020) ((-326 . -1087) 39910) ((-326 . -1142) 39759) ((-326 . -746) 39608) ((-326 . -133) 39479) ((-326 . -25) 39331) ((-326 . -102) T) ((-326 . -1247) T) ((-326 . -630) 39313) ((-326 . -1131) T) ((-326 . -23) 39165) ((-326 . -21) 39036) ((-326 . -29) 39006) ((-326 . -1032) 38985) ((-326 . -27) 38964) ((-326 . -1233) 38943) ((-326 . -1236) 38922) ((-326 . -505) 38901) ((-326 . -296) 38880) ((-326 . -95) 38859) ((-326 . -35) 38838) ((-326 . -162) 38817) ((-326 . -145) 38796) ((-326 . -647) 38775) ((-326 . -988) 38754) ((-326 . -1169) 38733) ((-325 . -1021) 38694) ((-325 . -1182) NIL) ((-325 . -1068) 38624) ((-325 . -633) 38507) ((-325 . -631) NIL) ((-325 . -1050) NIL) ((-325 . -938) NIL) ((-325 . -908) 38468) ((-325 . -869) NIL) ((-325 . -819) NIL) ((-325 . -816) NIL) ((-325 . -873) NIL) ((-325 . -870) NIL) ((-325 . -814) NIL) ((-325 . -812) NIL) ((-325 . -842) NIL) ((-325 . -910) NIL) ((-325 . -412) 38429) ((-325 . -658) 38390) ((-325 . -668) 38319) ((-325 . -390) 38280) ((-325 . -298) 38215) ((-325 . -321) 38156) ((-325 . -526) 38048) ((-325 . -351) 38009) ((-325 . -250) T) ((-325 . -111) 37922) ((-325 . -1081) 37851) ((-325 . -1086) 37780) ((-325 . -302) T) ((-325 . -737) 37709) ((-325 . -660) 37638) ((-325 . -666) 37552) ((-325 . -38) 37481) ((-325 . -319) T) ((-325 . -464) T) ((-325 . -175) T) ((-325 . -569) T) ((-325 . -949) T) ((-325 . -1252) T) ((-325 . -376) T) ((-325 . -240) NIL) ((-325 . -236) NIL) ((-325 . -239) NIL) ((-325 . -274) 37442) ((-325 . -920) NIL) ((-325 . -928) NIL) ((-325 . -926) NIL) ((-325 . -234) 37403) ((-325 . -149) 37359) ((-325 . -147) 37315) ((-325 . -133) T) ((-325 . -25) T) ((-325 . -102) T) ((-325 . -1247) T) ((-325 . -630) 37297) ((-325 . -1131) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -1079) T) ((-325 . -1087) T) ((-325 . -1142) T) ((-325 . -746) T) ((-324 . -1113) T) ((-324 . -502) 37278) ((-324 . -630) 37244) ((-324 . -633) 37225) ((-324 . -1131) T) ((-324 . -1247) T) ((-324 . -102) T) ((-324 . -93) T) ((-323 . -1131) T) ((-323 . -630) 37207) ((-323 . -1247) T) ((-323 . -102) T) ((-307 . -1224) 37186) ((-307 . -233) 37136) ((-307 . -107) 37086) ((-307 . -321) 36890) ((-307 . -526) 36682) ((-307 . -501) 36619) ((-307 . -153) 36569) ((-307 . -631) NIL) ((-307 . -242) 36519) ((-307 . -627) 36498) ((-307 . -300) 36477) ((-307 . -1247) T) ((-307 . -298) 36456) ((-307 . -1131) T) ((-307 . -630) 36438) ((-307 . -102) T) ((-307 . -34) T) ((-307 . -616) 36417) ((-305 . -1247) T) ((-305 . -526) 36366) ((-305 . -1131) 36148) ((-305 . -630) 35889) ((-305 . -102) 35671) ((-305 . -25) 35535) ((-305 . -21) 35418) ((-305 . -666) 35153) ((-305 . -23) 35036) ((-305 . -133) 34919) ((-305 . -1142) 34800) ((-305 . -746) 34702) ((-305 . -485) 34681) ((-305 . -1079) 34623) ((-305 . -1087) 34565) ((-305 . -668) 34425) ((-305 . -633) 34356) ((-305 . -111) 34272) ((-305 . -1081) 34193) ((-305 . -1086) 34114) ((-305 . -737) 34056) ((-305 . -660) 33998) ((-305 . -926) 33957) ((-305 . -920) 33914) ((-305 . -928) 33873) ((-305 . -1305) 33843) ((-303 . -630) 33825) ((-301 . -319) T) ((-301 . -464) T) ((-301 . -38) 33812) ((-301 . -633) 33784) ((-301 . -746) T) ((-301 . -1142) T) ((-301 . -1087) T) ((-301 . -1079) T) ((-301 . -111) 33769) ((-301 . -1081) 33756) ((-301 . -1086) 33743) ((-301 . -21) T) ((-301 . -666) 33715) ((-301 . -23) T) ((-301 . -1131) T) ((-301 . -630) 33697) ((-301 . -1247) T) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -133) T) ((-301 . -668) 33684) ((-301 . -660) 33671) ((-301 . -737) 33658) ((-301 . -175) T) ((-301 . -302) T) ((-301 . -569) T) ((-301 . -949) T) ((-301 . -298) 33637) ((-292 . -630) 33619) ((-291 . -630) 33601) ((-290 . -1013) 33585) ((-289 . -1013) 33569) ((-286 . -870) T) ((-286 . -630) 33551) ((-286 . -1131) T) ((-286 . -102) T) ((-286 . -1247) T) ((-286 . -873) T) ((-285 . -861) T) ((-285 . -102) T) ((-285 . -1247) T) ((-285 . -630) 33533) ((-285 . -1131) T) ((-284 . -861) T) ((-284 . -102) T) ((-284 . -1247) T) ((-284 . -630) 33515) ((-284 . -1131) T) ((-283 . -861) T) ((-283 . -102) T) ((-283 . -1247) T) ((-283 . -630) 33497) ((-283 . -1131) T) ((-282 . -861) T) ((-282 . -102) T) ((-282 . -1247) T) ((-282 . -630) 33479) ((-282 . -1131) T) ((-281 . -861) T) ((-281 . -102) T) ((-281 . -1247) T) ((-281 . -630) 33461) ((-281 . -1131) T) ((-280 . -861) T) ((-280 . -102) T) ((-280 . -1247) T) ((-280 . -630) 33443) ((-280 . -1131) T) ((-279 . -861) T) ((-279 . -102) T) ((-279 . -1247) T) ((-279 . -630) 33425) ((-279 . -1131) T) ((-275 . -262) 33387) ((-275 . -633) 33140) ((-275 . -1068) 32984) ((-275 . -631) 32732) ((-275 . -338) 32704) ((-275 . -424) 32688) ((-275 . -38) 32537) ((-275 . -111) 32366) ((-275 . -1081) 32209) ((-275 . -1086) 32052) ((-275 . -666) 31962) ((-275 . -668) 31851) ((-275 . -660) 31700) ((-275 . -737) 31549) ((-275 . -147) 31528) ((-275 . -149) 31507) ((-275 . -175) 31418) ((-275 . -569) 31349) ((-275 . -302) 31280) ((-275 . -47) 31252) ((-275 . -390) 31236) ((-275 . -658) 31184) ((-275 . -464) 31135) ((-275 . -526) 31020) ((-275 . -926) 30966) ((-275 . -920) 30872) ((-275 . -928) 30782) ((-275 . -910) 30641) ((-275 . -938) 30620) ((-275 . -1252) 30599) ((-275 . -978) 30566) ((-275 . -321) 30553) ((-275 . -240) 30532) ((-275 . -133) T) ((-275 . -25) T) ((-275 . -102) T) ((-275 . -630) 30514) ((-275 . -1131) T) ((-275 . -23) T) ((-275 . -21) T) ((-275 . -746) T) ((-275 . -1142) T) ((-275 . -1087) T) ((-275 . -1079) T) ((-275 . -236) 30459) ((-275 . -1247) T) ((-275 . -239) 30410) ((-275 . -274) 30394) ((-275 . -234) 30378) ((-270 . -1131) T) ((-270 . -630) 30360) ((-270 . -1247) T) ((-270 . -102) T) ((-260 . -245) 30339) ((-260 . -1305) 30309) ((-260 . -819) 30288) ((-260 . -816) 30267) ((-260 . -873) 30218) ((-260 . -870) 30169) ((-260 . -814) 30148) ((-260 . -815) 30127) ((-260 . -737) 30069) ((-260 . -660) 29991) ((-260 . -300) 29968) ((-260 . -298) 29945) ((-260 . -501) 29929) ((-260 . -526) 29862) ((-260 . -321) 29800) ((-260 . -34) T) ((-260 . -616) 29777) ((-260 . -1068) 29604) ((-260 . -633) 29402) ((-260 . -424) 29371) ((-260 . -658) 29277) ((-260 . -668) 29097) ((-260 . -390) 29066) ((-260 . -381) 29045) ((-260 . -240) 28997) ((-260 . -666) 28845) ((-260 . -746) 28823) ((-260 . -1142) 28801) ((-260 . -1087) 28779) ((-260 . -1079) 28757) ((-260 . -236) 28648) ((-260 . -239) 28545) ((-260 . -274) 28514) ((-260 . -920) 28381) ((-260 . -928) 28250) ((-260 . -926) 28182) ((-260 . -234) 28151) ((-260 . -630) 28112) ((-260 . -1086) 28033) ((-260 . -1081) 27934) ((-260 . -111) 27850) ((-260 . -133) T) ((-260 . -25) T) ((-260 . -102) T) ((-260 . -1247) T) ((-260 . -1131) T) ((-260 . -23) T) ((-260 . -21) T) ((-259 . -245) 27829) ((-259 . -1305) 27799) ((-259 . -819) 27778) ((-259 . -816) 27757) ((-259 . -873) 27708) ((-259 . -870) 27659) ((-259 . -814) 27638) ((-259 . -815) 27617) ((-259 . -737) 27559) ((-259 . -660) 27481) ((-259 . -300) 27458) ((-259 . -298) 27435) ((-259 . -501) 27419) ((-259 . -526) 27352) ((-259 . -321) 27290) ((-259 . -34) T) ((-259 . -616) 27267) ((-259 . -1068) 27094) ((-259 . -633) 26892) ((-259 . -424) 26861) ((-259 . -658) 26767) ((-259 . -668) 26574) ((-259 . -390) 26543) ((-259 . -381) 26522) ((-259 . -240) 26474) ((-259 . -666) 26309) ((-259 . -746) 26287) ((-259 . -1142) 26265) ((-259 . -1087) 26243) ((-259 . -1079) 26221) ((-259 . -236) 26112) ((-259 . -239) 26009) ((-259 . -274) 25978) ((-259 . -920) 25845) ((-259 . -928) 25714) ((-259 . -926) 25646) ((-259 . -234) 25615) ((-259 . -630) 25576) ((-259 . -1086) 25497) ((-259 . -1081) 25398) ((-259 . -111) 25314) ((-259 . -133) T) ((-259 . -25) T) ((-259 . -102) T) ((-259 . -1247) T) ((-259 . -1131) T) ((-259 . -23) T) ((-259 . -21) T) ((-258 . -1131) T) ((-258 . -630) 25296) ((-258 . -1247) T) ((-258 . -102) T) ((-258 . -298) 25270) ((-257 . -189) T) ((-257 . -1131) T) ((-257 . -630) 25237) ((-257 . -1247) T) ((-257 . -102) T) ((-257 . -858) 25219) ((-256 . -1131) T) ((-256 . -630) 25201) ((-256 . -1247) T) ((-256 . -102) T) ((-255 . -978) 25146) ((-255 . -633) 24931) ((-255 . -1068) 24807) ((-255 . -1252) 24786) ((-255 . -938) 24765) ((-255 . -910) NIL) ((-255 . -928) 24742) ((-255 . -920) 24717) ((-255 . -926) 24694) ((-255 . -526) 24637) ((-255 . -464) 24588) ((-255 . -658) 24536) ((-255 . -668) 24425) ((-255 . -390) 24409) ((-255 . -47) 24366) ((-255 . -38) 24215) ((-255 . -660) 24064) ((-255 . -737) 23913) ((-255 . -302) 23844) ((-255 . -569) 23775) ((-255 . -111) 23604) ((-255 . -1081) 23447) ((-255 . -1086) 23290) ((-255 . -175) 23201) ((-255 . -149) 23180) ((-255 . -147) 23159) ((-255 . -666) 23069) ((-255 . -133) T) ((-255 . -25) T) ((-255 . -102) T) ((-255 . -1247) T) ((-255 . -630) 23051) ((-255 . -1131) T) ((-255 . -23) T) ((-255 . -21) T) ((-255 . -1079) T) ((-255 . -1087) T) ((-255 . -1142) T) ((-255 . -746) T) ((-255 . -424) 23035) ((-255 . -338) 22992) ((-255 . -321) 22979) ((-255 . -631) 22840) ((-252 . -686) 22824) ((-252 . -1286) 22808) ((-252 . -1040) 22792) ((-252 . -1180) 22776) ((-252 . -870) 22755) ((-252 . -873) 22734) ((-252 . -385) 22718) ((-252 . -671) 22702) ((-252 . -300) 22679) ((-252 . -298) 22631) ((-252 . -616) 22608) ((-252 . -631) 22569) ((-252 . -501) 22553) ((-252 . -1131) 22503) ((-252 . -526) 22436) ((-252 . -321) 22374) ((-252 . -630) 22266) ((-252 . -102) 22196) ((-252 . -1247) T) ((-252 . -34) T) ((-252 . -153) 22180) ((-252 . -294) 22164) ((-252 . -502) 22141) ((-252 . -633) 22118) ((-246 . -245) 22097) ((-246 . -1305) 22067) ((-246 . -819) 22046) ((-246 . -816) 22025) ((-246 . -873) 21976) ((-246 . -870) 21927) ((-246 . -814) 21906) ((-246 . -815) 21885) ((-246 . -737) 21827) ((-246 . -660) 21749) ((-246 . -300) 21726) ((-246 . -298) 21703) ((-246 . -501) 21687) ((-246 . -526) 21620) ((-246 . -321) 21558) ((-246 . -34) T) ((-246 . -616) 21535) ((-246 . -1068) 21362) ((-246 . -633) 21160) ((-246 . -424) 21129) ((-246 . -658) 21035) ((-246 . -668) 20868) ((-246 . -390) 20837) ((-246 . -381) 20816) ((-246 . -240) 20768) ((-246 . -666) 20547) ((-246 . -746) 20525) ((-246 . -1142) 20503) ((-246 . -1087) 20481) ((-246 . -1079) 20459) ((-246 . -236) 20350) ((-246 . -239) 20247) ((-246 . -274) 20216) ((-246 . -920) 20083) ((-246 . -928) 19952) ((-246 . -926) 19884) ((-246 . -234) 19853) ((-246 . -630) 19546) ((-246 . -1086) 19467) ((-246 . -1081) 19368) ((-246 . -111) 19284) ((-246 . -133) 19155) ((-246 . -25) 18988) ((-246 . -102) 18720) ((-246 . -1247) T) ((-246 . -1131) 18472) ((-246 . -23) 18324) ((-246 . -21) 18235) ((-231 . -706) 18193) ((-231 . -501) 18177) ((-231 . -1131) 18155) ((-231 . -526) 18088) ((-231 . -321) 18026) ((-231 . -630) 17958) ((-231 . -102) 17908) ((-231 . -1247) T) ((-231 . -34) T) ((-231 . -57) 17866) ((-229 . -416) T) ((-229 . -149) T) ((-229 . -633) 17816) ((-229 . -668) 17781) ((-229 . -666) 17731) ((-229 . -133) T) ((-229 . -25) T) ((-229 . -102) T) ((-229 . -1247) T) ((-229 . -630) 17713) ((-229 . -1131) T) ((-229 . -23) T) ((-229 . -21) T) ((-229 . -746) T) ((-229 . -1142) T) ((-229 . -1087) T) ((-229 . -1079) T) ((-229 . -631) 17643) ((-229 . -376) T) ((-229 . -1252) T) ((-229 . -949) T) ((-229 . -569) T) ((-229 . -175) T) ((-229 . -737) 17608) ((-229 . -660) 17573) ((-229 . -38) 17538) ((-229 . -464) T) ((-229 . -319) T) ((-229 . -111) 17494) ((-229 . -1081) 17459) ((-229 . -1086) 17424) ((-229 . -302) T) ((-229 . -250) T) ((-229 . -869) T) ((-229 . -819) T) ((-229 . -816) T) ((-229 . -873) T) ((-229 . -870) T) ((-229 . -814) T) ((-229 . -812) T) ((-229 . -910) 17406) ((-229 . -1032) T) ((-229 . -1050) T) ((-229 . -1068) 17366) ((-229 . -1090) T) ((-229 . -240) T) ((-229 . -236) 17353) ((-229 . -239) T) ((-229 . -843) T) ((-229 . -1233) T) ((-229 . -1236) T) ((-229 . -505) T) ((-229 . -296) T) ((-229 . -95) T) ((-229 . -35) T) ((-227 . -638) 17330) ((-227 . -633) 17292) ((-227 . -668) 17259) ((-227 . -666) 17211) ((-227 . -746) T) ((-227 . -1142) T) ((-227 . -1087) T) ((-227 . -1079) T) ((-227 . -21) T) ((-227 . -23) T) ((-227 . -1131) T) ((-227 . -630) 17193) ((-227 . -1247) T) ((-227 . -102) T) ((-227 . -25) T) ((-227 . -133) T) ((-227 . -1068) 17170) ((-226 . -263) 17154) ((-226 . -1151) 17138) ((-226 . -107) 17122) ((-226 . -34) T) ((-226 . -1247) T) ((-226 . -102) 17072) ((-226 . -630) 17004) ((-226 . -321) 16942) ((-226 . -526) 16875) ((-226 . -1131) 16853) ((-226 . -501) 16837) ((-226 . -1025) 16821) ((-222 . -1113) T) ((-222 . -502) 16802) ((-222 . -630) 16768) ((-222 . -633) 16749) ((-222 . -1131) T) ((-222 . -1247) T) ((-222 . -102) T) ((-222 . -93) T) ((-221 . -1021) 16731) ((-221 . -1182) T) ((-221 . -633) 16681) ((-221 . -1068) 16641) ((-221 . -631) 16571) ((-221 . -1050) T) ((-221 . -938) NIL) ((-221 . -908) 16553) ((-221 . -869) T) ((-221 . -819) T) ((-221 . -816) T) ((-221 . -873) T) ((-221 . -870) T) ((-221 . -814) T) ((-221 . -812) T) ((-221 . -842) T) ((-221 . -910) 16535) ((-221 . -412) 16517) ((-221 . -658) 16499) ((-221 . -390) 16481) ((-221 . -298) NIL) ((-221 . -321) NIL) ((-221 . -526) NIL) ((-221 . -351) 16463) ((-221 . -250) T) ((-221 . -111) 16397) ((-221 . -1081) 16347) ((-221 . -1086) 16297) ((-221 . -302) T) ((-221 . -737) 16247) ((-221 . -660) 16197) ((-221 . -668) 16147) ((-221 . -666) 16097) ((-221 . -38) 16047) ((-221 . -319) T) ((-221 . -464) T) ((-221 . -175) T) ((-221 . -569) T) ((-221 . -949) T) ((-221 . -1252) T) ((-221 . -376) T) ((-221 . -240) T) ((-221 . -236) 16034) ((-221 . -239) T) ((-221 . -274) 16016) ((-221 . -920) NIL) ((-221 . -928) NIL) ((-221 . -926) NIL) ((-221 . -234) 15998) ((-221 . -149) T) ((-221 . -147) NIL) ((-221 . -133) T) ((-221 . -25) T) ((-221 . -102) T) ((-221 . -1247) T) ((-221 . -630) 15939) ((-221 . -1131) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -1079) T) ((-221 . -1087) T) ((-221 . -1142) T) ((-221 . -746) T) ((-218 . -866) T) ((-218 . -873) T) ((-218 . -870) T) ((-218 . -1131) T) ((-218 . -630) 15921) ((-218 . -1247) T) ((-218 . -102) T) ((-218 . -381) T) ((-217 . -1131) T) ((-217 . -630) 15903) ((-217 . -1247) T) ((-217 . -102) T) ((-217 . -633) 15880) ((-216 . -1131) T) ((-216 . -630) 15862) ((-216 . -1247) T) ((-216 . -102) T) ((-215 . -921) T) ((-215 . -102) T) ((-215 . -1247) T) ((-215 . -630) 15844) ((-215 . -1131) T) ((-214 . -921) T) ((-214 . -102) T) ((-214 . -1247) T) ((-214 . -630) 15826) ((-214 . -1131) T) ((-212 . -822) T) ((-212 . -102) T) ((-212 . -1247) T) ((-212 . -630) 15808) ((-212 . -1131) T) ((-211 . -822) T) ((-211 . -102) T) ((-211 . -1247) T) ((-211 . -630) 15790) ((-211 . -1131) T) ((-210 . -822) T) ((-210 . -102) T) ((-210 . -1247) T) ((-210 . -630) 15772) ((-210 . -1131) T) ((-209 . -822) T) ((-209 . -102) T) ((-209 . -1247) T) ((-209 . -630) 15754) ((-209 . -1131) T) ((-206 . -807) T) ((-206 . -102) T) ((-206 . -1247) T) ((-206 . -630) 15736) ((-206 . -1131) T) ((-205 . -807) T) ((-205 . -102) T) ((-205 . -1247) T) ((-205 . -630) 15718) ((-205 . -1131) T) ((-204 . -807) T) ((-204 . -102) T) ((-204 . -1247) T) ((-204 . -630) 15700) ((-204 . -1131) T) ((-203 . -807) T) ((-203 . -102) T) ((-203 . -1247) T) ((-203 . -630) 15682) ((-203 . -1131) T) ((-202 . -807) T) ((-202 . -102) T) ((-202 . -1247) T) ((-202 . -630) 15664) ((-202 . -1131) T) ((-201 . -807) T) ((-201 . -102) T) ((-201 . -1247) T) ((-201 . -630) 15646) ((-201 . -1131) T) ((-200 . -807) T) ((-200 . -102) T) ((-200 . -1247) T) ((-200 . -630) 15628) ((-200 . -1131) T) ((-199 . -807) T) ((-199 . -102) T) ((-199 . -1247) T) ((-199 . -630) 15610) ((-199 . -1131) T) ((-198 . -807) T) ((-198 . -102) T) ((-198 . -1247) T) ((-198 . -630) 15592) ((-198 . -1131) T) ((-197 . -807) T) ((-197 . -102) T) ((-197 . -1247) T) ((-197 . -630) 15574) ((-197 . -1131) T) ((-196 . -807) T) ((-196 . -102) T) ((-196 . -1247) T) ((-196 . -630) 15556) ((-196 . -1131) T) ((-190 . -1131) T) ((-190 . -630) 15538) ((-190 . -1247) T) ((-190 . -102) T) ((-187 . -1131) T) ((-187 . -630) 15520) ((-187 . -1247) T) ((-187 . -102) T) ((-186 . -189) T) ((-186 . -1131) T) ((-186 . -630) 15502) ((-186 . -1247) T) ((-186 . -102) T) ((-186 . -858) 15484) ((-183 . -1113) T) ((-183 . -502) 15465) ((-183 . -630) 15431) ((-183 . -633) 15412) ((-183 . -1131) T) ((-183 . -1247) T) ((-183 . -102) T) ((-183 . -93) T) ((-178 . -630) 15394) ((-177 . -38) 15326) ((-177 . -633) 15243) ((-177 . -668) 15175) ((-177 . -666) 15092) ((-177 . -746) T) ((-177 . -1142) T) ((-177 . -1087) T) ((-177 . -1079) T) ((-177 . -111) 15003) ((-177 . -1081) 14935) ((-177 . -1086) 14867) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1131) T) ((-177 . -630) 14849) ((-177 . -1247) T) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -133) T) ((-177 . -660) 14781) ((-177 . -737) 14713) ((-177 . -376) T) ((-177 . -1252) T) ((-177 . -949) T) ((-177 . -569) T) ((-177 . -175) T) ((-177 . -464) T) ((-177 . -319) T) ((-177 . -302) T) ((-177 . -250) T) ((-174 . -1131) T) ((-174 . -630) 14695) ((-174 . -1247) T) ((-174 . -102) T) ((-171 . -168) 14679) ((-171 . -35) 14657) ((-171 . -95) 14635) ((-171 . -296) 14613) ((-171 . -505) 14591) ((-171 . -1236) 14569) ((-171 . -1233) 14547) ((-171 . -1032) 14498) ((-171 . -938) 14451) ((-171 . -631) 14212) ((-171 . -908) 14196) ((-171 . -381) 14147) ((-171 . -363) 14126) ((-171 . -1182) 14105) ((-171 . -414) 14084) ((-171 . -422) 14055) ((-171 . -38) 13883) ((-171 . -111) 13779) ((-171 . -1081) 13689) ((-171 . -1086) 13599) ((-171 . -660) 13427) ((-171 . -737) 13255) ((-171 . -383) 13226) ((-171 . -744) 13197) ((-171 . -1068) 13093) ((-171 . -633) 12871) ((-171 . -424) 12855) ((-171 . -910) 12780) ((-171 . -412) 12764) ((-171 . -658) 12712) ((-171 . -668) 12586) ((-171 . -666) 12481) ((-171 . -390) 12465) ((-171 . -298) 12423) ((-171 . -321) 12388) ((-171 . -526) 12300) ((-171 . -351) 12284) ((-171 . -250) 12235) ((-171 . -1252) 12140) ((-171 . -376) 12091) ((-171 . -949) 12022) ((-171 . -569) 11933) ((-171 . -302) 11844) ((-171 . -464) 11775) ((-171 . -319) 11706) ((-171 . -240) 11657) ((-171 . -236) 11582) ((-171 . -239) 11513) ((-171 . -274) 11497) ((-171 . -920) 11418) ((-171 . -928) 11341) ((-171 . -926) 11300) ((-171 . -234) 11284) ((-171 . -175) T) ((-171 . -149) 11263) ((-171 . -1079) T) ((-171 . -1087) T) ((-171 . -1142) T) ((-171 . -746) T) ((-171 . -21) T) ((-171 . -23) T) ((-171 . -1131) T) ((-171 . -630) 11245) ((-171 . -1247) T) ((-171 . -102) T) ((-171 . -25) T) ((-171 . -133) T) ((-171 . -147) 11196) ((-171 . -843) 11175) ((-170 . -1247) T) ((-164 . -1113) T) ((-164 . -502) 11156) ((-164 . -630) 11122) ((-164 . -633) 11103) ((-164 . -1131) T) ((-164 . -1247) T) ((-164 . -102) T) ((-164 . -93) T) ((-163 . -1131) T) ((-163 . -630) 11085) ((-163 . -1247) T) ((-163 . -102) T) ((-159 . -25) T) ((-159 . -102) T) ((-159 . -1247) T) ((-159 . -630) 11067) ((-159 . -1131) T) ((-158 . -1113) T) ((-158 . -502) 11048) ((-158 . -630) 11014) ((-158 . -633) 10995) ((-158 . -1131) T) ((-158 . -1247) T) ((-158 . -102) T) ((-158 . -93) T) ((-156 . -1113) T) ((-156 . -502) 10976) ((-156 . -630) 10942) ((-156 . -633) 10923) ((-156 . -1131) T) ((-156 . -1247) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1079) T) ((-154 . -1087) T) ((-154 . -1142) T) ((-154 . -746) T) ((-154 . -21) T) ((-154 . -666) 10882) ((-154 . -23) T) ((-154 . -1131) T) ((-154 . -630) 10864) ((-154 . -1247) T) ((-154 . -102) T) ((-154 . -25) T) ((-154 . -133) T) ((-154 . -668) 10838) ((-154 . -633) 10807) ((-154 . -38) 10791) ((-154 . -111) 10770) ((-154 . -1081) 10754) ((-154 . -1086) 10738) ((-154 . -660) 10722) ((-154 . -737) 10706) ((-154 . -1305) 10690) ((-146 . -866) T) ((-146 . -873) T) ((-146 . -870) T) ((-146 . -1131) T) ((-146 . -630) 10672) ((-146 . -1247) T) ((-146 . -102) T) ((-146 . -381) T) ((-143 . -1131) T) ((-143 . -630) 10654) ((-143 . -1247) T) ((-143 . -102) T) ((-143 . -631) 10613) ((-143 . -438) 10595) ((-143 . -1129) 10577) ((-143 . -381) T) ((-143 . -242) 10559) ((-143 . -153) 10541) ((-143 . -501) 10523) ((-143 . -526) NIL) ((-143 . -321) NIL) ((-143 . -34) T) ((-143 . -107) 10505) ((-143 . -233) 10487) ((-142 . -630) 10469) ((-141 . -189) T) ((-141 . -1131) T) ((-141 . -630) 10436) ((-141 . -1247) T) ((-141 . -102) T) ((-141 . -858) 10418) ((-140 . -1113) T) ((-140 . -502) 10399) ((-140 . -630) 10365) ((-140 . -633) 10346) ((-140 . -1131) T) ((-140 . -1247) T) ((-140 . -102) T) ((-140 . -93) T) ((-139 . -1113) T) ((-139 . -502) 10327) ((-139 . -630) 10293) ((-139 . -633) 10274) ((-139 . -1131) T) ((-139 . -1247) T) ((-139 . -102) T) ((-139 . -93) T) ((-137 . -477) 10251) ((-137 . -633) 10235) ((-137 . -1068) 10219) ((-137 . -1131) T) ((-137 . -630) 10201) ((-137 . -1247) T) ((-137 . -102) T) ((-137 . -482) 10156) ((-137 . -298) 10133) ((-136 . -870) T) ((-136 . -630) 10115) ((-136 . -1131) T) ((-136 . -102) T) ((-136 . -1247) T) ((-136 . -873) T) ((-136 . -23) T) ((-136 . -25) T) ((-136 . -746) T) ((-136 . -1142) T) ((-136 . -1068) 10097) ((-136 . -633) 10079) ((-135 . -1113) T) ((-135 . -502) 10060) ((-135 . -630) 10026) ((-135 . -633) 10007) ((-135 . -1131) T) ((-135 . -1247) T) ((-135 . -102) T) ((-135 . -93) T) ((-132 . -1131) T) ((-132 . -630) 9989) ((-132 . -1247) T) ((-132 . -102) T) ((-131 . -19) 9971) ((-131 . -671) 9953) ((-131 . -300) 9928) ((-131 . -298) 9878) ((-131 . -616) 9853) ((-131 . -631) NIL) ((-131 . -501) 9835) ((-131 . -1131) T) ((-131 . -526) NIL) ((-131 . -321) NIL) ((-131 . -630) 9779) ((-131 . -102) T) ((-131 . -1247) T) ((-131 . -34) T) ((-131 . -153) 9761) ((-131 . -870) T) ((-131 . -873) T) ((-131 . -385) 9743) ((-130 . -866) T) ((-130 . -873) T) ((-130 . -870) T) ((-130 . -1131) T) ((-130 . -630) 9725) ((-130 . -1247) T) ((-130 . -102) T) ((-130 . -381) T) ((-130 . -682) T) ((-129 . -127) 9709) ((-129 . -1040) 9693) ((-129 . -34) T) ((-129 . -1247) T) ((-129 . -102) 9643) ((-129 . -630) 9575) ((-129 . -321) 9513) ((-129 . -526) 9446) ((-129 . -1131) 9424) ((-129 . -501) 9408) ((-129 . -121) 9392) ((-128 . -127) 9376) ((-128 . -1040) 9360) ((-128 . -34) T) ((-128 . -1247) T) ((-128 . -102) 9310) ((-128 . -630) 9242) ((-128 . -321) 9180) ((-128 . -526) 9113) ((-128 . -1131) 9091) ((-128 . -501) 9075) ((-128 . -121) 9059) ((-123 . -127) 9043) ((-123 . -1040) 9027) ((-123 . -34) T) ((-123 . -1247) T) ((-123 . -102) 8977) ((-123 . -630) 8909) ((-123 . -321) 8847) ((-123 . -526) 8780) ((-123 . -1131) 8758) ((-123 . -501) 8742) ((-123 . -121) 8726) ((-119 . -1021) 8703) ((-119 . -1182) NIL) ((-119 . -1068) 8680) ((-119 . -633) 8610) ((-119 . -631) NIL) ((-119 . -1050) NIL) ((-119 . -938) NIL) ((-119 . -908) 8587) ((-119 . -869) NIL) ((-119 . -819) NIL) ((-119 . -816) NIL) ((-119 . -873) NIL) ((-119 . -870) NIL) ((-119 . -814) NIL) ((-119 . -812) NIL) ((-119 . -842) NIL) ((-119 . -910) NIL) ((-119 . -412) 8564) ((-119 . -658) 8541) ((-119 . -668) 8486) ((-119 . -390) 8463) ((-119 . -298) 8414) ((-119 . -321) 8371) ((-119 . -526) 8279) ((-119 . -351) 8256) ((-119 . -250) T) ((-119 . -111) 8185) ((-119 . -1081) 8130) ((-119 . -1086) 8075) ((-119 . -302) T) ((-119 . -737) 8020) ((-119 . -660) 7965) ((-119 . -666) 7895) ((-119 . -38) 7840) ((-119 . -319) T) ((-119 . -464) T) ((-119 . -175) T) ((-119 . -569) T) ((-119 . -949) T) ((-119 . -1252) T) ((-119 . -376) T) ((-119 . -240) NIL) ((-119 . -236) NIL) ((-119 . -239) NIL) ((-119 . -274) 7817) ((-119 . -920) NIL) ((-119 . -928) NIL) ((-119 . -926) NIL) ((-119 . -234) 7794) ((-119 . -149) T) ((-119 . -147) NIL) ((-119 . -133) T) ((-119 . -25) T) ((-119 . -102) T) ((-119 . -1247) T) ((-119 . -630) 7776) ((-119 . -1131) T) ((-119 . -23) T) ((-119 . -21) T) ((-119 . -1079) T) ((-119 . -1087) T) ((-119 . -1142) T) ((-119 . -746) T) ((-118 . -893) 7760) ((-118 . -949) T) ((-118 . -569) T) ((-118 . -302) T) ((-118 . -175) T) ((-118 . -633) 7732) ((-118 . -737) 7719) ((-118 . -660) 7706) ((-118 . -1086) 7693) ((-118 . -1081) 7680) ((-118 . -111) 7665) ((-118 . -38) 7652) ((-118 . -464) T) ((-118 . -319) T) ((-118 . -1079) T) ((-118 . -1087) T) ((-118 . -1142) T) ((-118 . -746) T) ((-118 . -21) T) ((-118 . -666) 7624) ((-118 . -23) T) ((-118 . -1131) T) ((-118 . -630) 7606) ((-118 . -1247) T) ((-118 . -102) T) ((-118 . -25) T) ((-118 . -133) T) ((-118 . -668) 7593) ((-118 . -149) T) ((-115 . -870) T) ((-115 . -630) 7575) ((-115 . -1131) T) ((-115 . -102) T) ((-115 . -1247) T) ((-115 . -873) T) ((-115 . -858) 7556) ((-114 . -866) T) ((-114 . -873) T) ((-114 . -870) T) ((-114 . -1131) T) ((-114 . -630) 7538) ((-114 . -1247) T) ((-114 . -102) T) ((-114 . -381) T) ((-114 . -997) T) ((-114 . -682) T) ((-114 . -113) T) ((-114 . -631) 7520) ((-110 . -125) T) ((-110 . -385) 7502) ((-110 . -873) T) ((-110 . -870) T) ((-110 . -153) 7484) ((-110 . -34) T) ((-110 . -102) T) ((-110 . -630) 7466) ((-110 . -321) NIL) ((-110 . -526) NIL) ((-110 . -1131) T) ((-110 . -501) 7448) ((-110 . -631) 7430) ((-110 . -298) 7380) ((-110 . -616) 7355) ((-110 . -300) 7330) ((-110 . -671) 7312) ((-110 . -19) 7294) ((-110 . -682) T) ((-110 . -1247) T) ((-110 . -113) T) ((-109 . -630) 7276) ((-108 . -1021) 7258) ((-108 . -1182) T) ((-108 . -633) 7208) ((-108 . -1068) 7168) ((-108 . -631) 7098) ((-108 . -1050) T) ((-108 . -938) NIL) ((-108 . -908) 7080) ((-108 . -869) T) ((-108 . -819) T) ((-108 . -816) T) ((-108 . -873) T) ((-108 . -870) T) ((-108 . -814) T) ((-108 . -812) T) ((-108 . -842) T) ((-108 . -910) 7062) ((-108 . -412) 7044) ((-108 . -658) 7026) ((-108 . -390) 7008) ((-108 . -298) NIL) ((-108 . -321) NIL) ((-108 . -526) NIL) ((-108 . -351) 6990) ((-108 . -250) T) ((-108 . -111) 6924) ((-108 . -1081) 6874) ((-108 . -1086) 6824) ((-108 . -302) T) ((-108 . -737) 6774) ((-108 . -660) 6724) ((-108 . -668) 6674) ((-108 . -666) 6624) ((-108 . -38) 6574) ((-108 . -319) T) ((-108 . -464) T) ((-108 . -175) T) ((-108 . -569) T) ((-108 . -949) T) ((-108 . -1252) T) ((-108 . -376) T) ((-108 . -240) T) ((-108 . -236) 6561) ((-108 . -239) T) ((-108 . -274) 6543) ((-108 . -920) NIL) ((-108 . -928) NIL) ((-108 . -926) NIL) ((-108 . -234) 6525) ((-108 . -149) T) ((-108 . -147) NIL) ((-108 . -133) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -1247) T) ((-108 . -630) 6467) ((-108 . -1131) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1079) T) ((-108 . -1087) T) ((-108 . -1142) T) ((-108 . -746) T) ((-105 . -1131) T) ((-105 . -630) 6449) ((-105 . -1247) T) ((-105 . -102) T) ((-103 . -127) 6433) ((-103 . -1040) 6417) ((-103 . -34) T) ((-103 . -1247) T) ((-103 . -102) 6367) ((-103 . -630) 6299) ((-103 . -321) 6237) ((-103 . -526) 6170) ((-103 . -1131) 6148) ((-103 . -501) 6132) ((-103 . -121) 6116) ((-99 . -485) T) ((-99 . -1142) T) ((-99 . -102) T) ((-99 . -1247) T) ((-99 . -630) 6098) ((-99 . -1131) T) ((-99 . -746) T) ((-99 . -298) 6077) ((-97 . -1131) T) ((-97 . -630) 6059) ((-97 . -1247) T) ((-97 . -102) T) ((-96 . -1113) T) ((-96 . -502) 6040) ((-96 . -630) 6006) ((-96 . -633) 5987) ((-96 . -1131) T) ((-96 . -1247) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1151) 5971) ((-91 . -501) 5955) ((-91 . -1131) 5933) ((-91 . -526) 5866) ((-91 . -321) 5804) ((-91 . -630) 5736) ((-91 . -102) 5686) ((-91 . -1247) T) ((-91 . -34) T) ((-91 . -107) 5670) ((-89 . -409) T) ((-89 . -630) 5652) ((-89 . -1247) T) ((-89 . -408) T) ((-88 . -398) T) ((-88 . -630) 5634) ((-88 . -1247) T) ((-88 . -408) T) ((-87 . -452) T) ((-87 . -630) 5616) ((-87 . -1247) T) ((-87 . -408) T) ((-86 . -453) T) ((-86 . -630) 5598) ((-86 . -1247) T) ((-86 . -408) T) ((-85 . -398) T) ((-85 . -630) 5580) ((-85 . -1247) T) ((-85 . -408) T) ((-84 . -398) T) ((-84 . -630) 5562) ((-84 . -1247) T) ((-84 . -408) T) ((-83 . -453) T) ((-83 . -630) 5544) ((-83 . -1247) T) ((-83 . -408) T) ((-82 . -453) T) ((-82 . -630) 5526) ((-82 . -1247) T) ((-82 . -408) T) ((-81 . -453) T) ((-81 . -630) 5508) ((-81 . -1247) T) ((-81 . -408) T) ((-81 . -633) 5449) ((-80 . -453) T) ((-80 . -630) 5431) ((-80 . -1247) T) ((-80 . -408) T) ((-79 . -453) T) ((-79 . -630) 5413) ((-79 . -1247) T) ((-79 . -408) T) ((-78 . -409) T) ((-78 . -630) 5395) ((-78 . -1247) T) ((-78 . -408) T) ((-77 . -453) T) ((-77 . -630) 5377) ((-77 . -1247) T) ((-77 . -408) T) ((-76 . -453) T) ((-76 . -630) 5359) ((-76 . -1247) T) ((-76 . -408) T) ((-75 . -409) T) ((-75 . -630) 5341) ((-75 . -1247) T) ((-75 . -408) T) ((-74 . -453) T) ((-74 . -630) 5323) ((-74 . -1247) T) ((-74 . -408) T) ((-73 . -396) T) ((-73 . -630) 5305) ((-73 . -1247) T) ((-73 . -408) T) ((-72 . -408) T) ((-72 . -1247) T) ((-72 . -630) 5287) ((-71 . -453) T) ((-71 . -630) 5269) ((-71 . -1247) T) ((-71 . -408) T) ((-70 . -396) T) ((-70 . -630) 5251) ((-70 . -1247) T) ((-70 . -408) T) ((-69 . -408) T) ((-69 . -1247) T) ((-69 . -630) 5233) ((-68 . -396) T) ((-68 . -630) 5215) ((-68 . -1247) T) ((-68 . -408) T) ((-67 . -396) T) ((-67 . -630) 5197) ((-67 . -1247) T) ((-67 . -408) T) ((-66 . -409) T) ((-66 . -630) 5179) ((-66 . -1247) T) ((-66 . -408) T) ((-65 . -398) T) ((-65 . -630) 5161) ((-65 . -1247) T) ((-65 . -408) T) ((-65 . -633) 5090) ((-64 . -453) T) ((-64 . -630) 5072) ((-64 . -1247) T) ((-64 . -408) T) ((-63 . -408) T) ((-63 . -1247) T) ((-63 . -630) 5054) ((-62 . -453) T) ((-62 . -630) 5036) ((-62 . -1247) T) ((-62 . -408) T) ((-61 . -409) T) ((-61 . -630) 5018) ((-61 . -1247) T) ((-61 . -408) T) ((-60 . -57) 4980) ((-60 . -34) T) ((-60 . -1247) T) ((-60 . -102) 4930) ((-60 . -630) 4862) ((-60 . -321) 4800) ((-60 . -526) 4733) ((-60 . -1131) 4711) ((-60 . -501) 4695) ((-58 . -19) 4679) ((-58 . -671) 4663) ((-58 . -300) 4640) ((-58 . -298) 4592) ((-58 . -616) 4569) ((-58 . -631) 4530) ((-58 . -501) 4514) ((-58 . -1131) 4464) ((-58 . -526) 4397) ((-58 . -321) 4335) ((-58 . -630) 4247) ((-58 . -102) 4177) ((-58 . -1247) T) ((-58 . -34) T) ((-58 . -153) 4161) ((-58 . -870) 4140) ((-58 . -873) 4119) ((-58 . -385) 4103) ((-55 . -1131) T) ((-55 . -630) 4085) ((-55 . -1247) T) ((-55 . -102) T) ((-55 . -1068) 4067) ((-55 . -633) 4049) ((-51 . -1131) T) ((-51 . -630) 4031) ((-51 . -1247) T) ((-51 . -102) T) ((-50 . -638) 4015) ((-50 . -633) 3984) ((-50 . -668) 3958) ((-50 . -666) 3917) ((-50 . -746) T) ((-50 . -1142) T) ((-50 . -1087) T) ((-50 . -1079) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1131) T) ((-50 . -630) 3899) ((-50 . -1247) T) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -133) T) ((-50 . -1068) 3883) ((-49 . -1131) T) ((-49 . -630) 3865) ((-49 . -1247) T) ((-49 . -102) T) ((-48 . -310) T) ((-48 . -102) T) ((-48 . -1247) T) ((-48 . -630) 3847) ((-48 . -1131) T) ((-48 . -633) 3780) ((-48 . -1068) 3723) ((-48 . -526) 3689) ((-48 . -321) 3676) ((-48 . -27) T) ((-48 . -1032) T) ((-48 . -250) T) ((-48 . -111) 3632) ((-48 . -1081) 3597) ((-48 . -1086) 3562) ((-48 . -302) T) ((-48 . -737) 3527) ((-48 . -660) 3492) ((-48 . -668) 3442) ((-48 . -666) 3392) ((-48 . -133) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1079) T) ((-48 . -1087) T) ((-48 . -1142) T) ((-48 . -746) T) ((-48 . -38) 3357) ((-48 . -319) T) ((-48 . -464) T) ((-48 . -175) T) ((-48 . -569) T) ((-48 . -949) T) ((-48 . -1252) T) ((-48 . -376) T) ((-48 . -658) 3317) ((-48 . -1050) T) ((-48 . -631) 3262) ((-48 . -149) T) ((-48 . -240) T) ((-48 . -236) 3249) ((-48 . -239) T) ((-45 . -36) 3228) ((-45 . -616) 3153) ((-45 . -321) 2957) ((-45 . -526) 2749) ((-45 . -501) 2686) ((-45 . -298) 2586) ((-45 . -300) 2511) ((-45 . -627) 2490) ((-45 . -242) 2440) ((-45 . -107) 2390) ((-45 . -233) 2340) ((-45 . -1224) 2319) ((-45 . -294) 2269) ((-45 . -153) 2219) ((-45 . -34) T) ((-45 . -1247) T) ((-45 . -102) T) ((-45 . -630) 2201) ((-45 . -1131) T) ((-45 . -631) NIL) ((-45 . -671) 2151) ((-45 . -385) 2101) ((-45 . -873) NIL) ((-45 . -870) NIL) ((-45 . -1180) 2051) ((-45 . -1040) 2001) ((-45 . -1286) 1951) ((-45 . -686) 1901) ((-44 . -430) 1885) ((-44 . -764) 1869) ((-44 . -740) T) ((-44 . -781) T) ((-44 . -111) 1848) ((-44 . -1081) 1832) ((-44 . -1086) 1816) ((-44 . -21) T) ((-44 . -666) 1759) ((-44 . -23) T) ((-44 . -1131) T) ((-44 . -630) 1741) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -133) T) ((-44 . -668) 1699) ((-44 . -660) 1683) ((-44 . -737) 1667) ((-44 . -380) 1651) ((-44 . -1247) T) ((-44 . -298) 1628) ((-40 . -355) 1602) ((-40 . -175) T) ((-40 . -633) 1532) ((-40 . -746) T) ((-40 . -1142) T) ((-40 . -1087) T) ((-40 . -1079) T) ((-40 . -668) 1439) ((-40 . -666) 1369) ((-40 . -133) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -1247) T) ((-40 . -630) 1351) ((-40 . -1131) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1086) 1296) ((-40 . -1081) 1241) ((-40 . -111) 1170) ((-40 . -631) 1154) ((-40 . -234) 1131) ((-40 . -926) 1083) ((-40 . -928) 992) ((-40 . -920) 899) ((-40 . -274) 876) ((-40 . -239) 813) ((-40 . -236) 744) ((-40 . -240) 716) ((-40 . -376) T) ((-40 . -1252) T) ((-40 . -949) T) ((-40 . -569) T) ((-40 . -737) 661) ((-40 . -660) 606) ((-40 . -38) 551) ((-40 . -464) T) ((-40 . -319) T) ((-40 . -302) T) ((-40 . -250) T) ((-40 . -381) NIL) ((-40 . -363) NIL) ((-40 . -1182) NIL) ((-40 . -147) 523) ((-40 . -414) NIL) ((-40 . -422) 495) ((-40 . -149) 467) ((-40 . -383) 439) ((-40 . -390) 416) ((-40 . -658) 355) ((-40 . -424) 332) ((-40 . -1068) 220) ((-40 . -744) 192) ((-31 . -1113) T) ((-31 . -502) 173) ((-31 . -630) 139) ((-31 . -633) 120) ((-31 . -1131) T) ((-31 . -1247) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -983) T) ((-30 . -630) 102) ((0 . |EnumerationCategory|) T) ((0 . -630) 84) ((0 . -1131) T) ((0 . -102) T) ((0 . -1247) T) ((-2 . |RecordCategory|) T) ((-2 . -630) 66) ((-2 . -1131) T) ((-2 . -102) T) ((-2 . -1247) T) ((-3 . |UnionCategory|) T) ((-3 . -630) 48) ((-3 . -1131) T) ((-3 . -102) T) ((-3 . -1247) T) ((-1 . -1131) T) ((-1 . -630) 30) ((-1 . -1247) T) ((-1 . -102) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 01f9493e..6cae29df 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3518066230) -(4514 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3518758384) +(4510 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -119,9 +119,8 @@ |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoidCategory| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| - |ScriptFormulaFormat| |ScriptFormulaFormat1| |FortranPackage| - |FortranProgramCategory| |FortranFunctionCategory| |FortranProgram| - |FullPartialFractionExpansion| |FullyPatternMatchable| + |FortranPackage| |FortranProgramCategory| |FortranFunctionCategory| + |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| @@ -561,25 +560,24 @@ |readable?| |exists?| |extension| |directory| |filename| |shallowExpand| |deepExpand| |clearFortranOutputStack| |showFortranOutputStack| |popFortranOutputStack| |pushFortranOutputStack| |topFortranOutputStack| - |setFormula!| |formula| |linkToFortran| |setLegalFortranSourceExtensions| - |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog| - |decreasePrecision| |increasePrecision| |bits| |unitNormalize| |unit| - |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent| - |irreducibleFactor| |factors| |nilFactor| |regularRepresentation| - |traceMatrix| |randomLC| |minimize| |module| |rightRegularRepresentation| - |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix| - |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult| - |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS| - |localAbs| |universe| |complement| |cardinality| |internalIntegrate0| - |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?| - |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor| - |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex| - |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble| - |fortranReal| |external?| |scalarTypeOf| |fortranCarriageReturn| - |fortranLiteral| |fortranLiteralLine| |processTemplate| |makeFR| - |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| - |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?| - |useEisensteinCriterion| |eisensteinIrreducible?| + |linkToFortran| |setLegalFortranSourceExtensions| |fracPart| |polyPart| + |fullPartialFraction| |primeFrobenius| |discreteLog| |decreasePrecision| + |increasePrecision| |bits| |unitNormalize| |unit| |flagFactor| |sqfrFactor| + |primeFactor| |nthFlag| |nthExponent| |irreducibleFactor| |factors| + |nilFactor| |regularRepresentation| |traceMatrix| |randomLC| |minimize| + |module| |rightRegularRepresentation| |leftRegularRepresentation| + |rightTraceMatrix| |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| + |represents| |mergeFactors| |isMult| |applyQuote| |ground| |ground?| + |exprToXXP| |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| + |cardinality| |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| + |bringDown| |newReduc| |logical?| |character?| |doubleComplex?| |complex?| + |double?| |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| + |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| + |fortranDouble| |fortranReal| |external?| |scalarTypeOf| + |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| + |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| + |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| + |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 2f6c090b..9ce05624 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5493 +1,5485 @@ -(3450304 . 3518066244) -((-1947 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1945 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4304 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-1266 (-560)) |#2|) 44 T ELT)) (-2524 (($ $) 80 T ELT)) (-4358 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3925 (((-560) (-1 (-114) |#2|) $) 27 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) |#2| $ (-560)) 96 T ELT)) (-3376 (((-663 |#2|) $) 13 T ELT)) (-4024 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2174 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2531 (($ |#2| $ (-560)) NIL T ELT) (($ $ $ (-560)) 67 T ELT)) (-1480 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-4316 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) 66 T ELT)) (-2532 (($ $ (-560)) 76 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 34 T ELT) (((-793) |#2| $) NIL T ELT)) (-1946 (($ $ $ (-560)) 69 T ELT)) (-3906 (($ $) 68 T ELT)) (-4036 (($ (-663 |#2|)) 73 T ELT)) (-4318 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-663 $)) 85 T ELT)) (-4462 (((-888) $) 92 T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-3540 (((-114) $ $) 95 T ELT)) (-3172 (((-114) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3172 ((-114) |#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -1946 (|#1| |#1| |#1| (-560))) (-15 -1947 ((-114) |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4304 (|#2| |#1| (-1266 (-560)) |#2|)) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4036 (|#1| (-663 |#2|))) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4304 (|#2| |#1| (-560) |#2|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -3376 ((-663 |#2|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3906 (|#1| |#1|))) (-19 |#2|) (-1249)) (T -18)) +(3448043 . 3518758399) +((-1945 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1943 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4300 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-1264 (-558)) |#2|) 44 T ELT)) (-2520 (($ $) 80 T ELT)) (-4354 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3921 (((-558) (-1 (-114) |#2|) $) 27 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) |#2| $ (-558)) 96 T ELT)) (-3372 (((-661 |#2|) $) 13 T ELT)) (-4020 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2170 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2527 (($ |#2| $ (-558)) NIL T ELT) (($ $ $ (-558)) 67 T ELT)) (-1478 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-4312 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) 66 T ELT)) (-2528 (($ $ (-558)) 76 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 34 T ELT) (((-791) |#2| $) NIL T ELT)) (-1944 (($ $ $ (-558)) 69 T ELT)) (-3902 (($ $) 68 T ELT)) (-4032 (($ (-661 |#2|)) 73 T ELT)) (-4314 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-661 $)) 85 T ELT)) (-4458 (((-886) $) 92 T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-3536 (((-114) $ $) 95 T ELT)) (-3168 (((-114) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3168 ((-114) |#1| |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -1944 (|#1| |#1| |#1| (-558))) (-15 -1945 ((-114) |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4300 (|#2| |#1| (-1264 (-558)) |#2|)) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4032 (|#1| (-661 |#2|))) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4300 (|#2| |#1| (-558) |#2|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -3372 ((-661 |#2|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1|))) (-19 |#2|) (-1247)) (T -18)) NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3172 ((-114) |#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -1946 (|#1| |#1| |#1| (-560))) (-15 -1947 ((-114) |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4304 (|#2| |#1| (-1266 (-560)) |#2|)) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4036 (|#1| (-663 |#2|))) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4304 (|#2| |#1| (-560) |#2|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -3376 ((-663 |#2|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3906 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4512)) ELT) (($ $) 97 (-12 (|has| |#1| (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 99 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 109 T ELT)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) 106 T ELT) (((-560) |#1| $) 105 (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) 104 (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 91 (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 92 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 100 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 93 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 95 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) 94 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 96 (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-19 |#1|) (-142) (-1249)) (T -19)) +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3168 ((-114) |#1| |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -1944 (|#1| |#1| |#1| (-558))) (-15 -1945 ((-114) |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4300 (|#2| |#1| (-1264 (-558)) |#2|)) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4032 (|#1| (-661 |#2|))) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4300 (|#2| |#1| (-558) |#2|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -3372 ((-661 |#2|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4508)) ELT) (($ $) 97 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 99 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 109 T ELT)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 91 (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 92 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 100 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 93 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 95 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) 94 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 96 (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-19 |#1|) (-142) (-1247)) (T -19)) NIL -(-13 (-385 |t#1|) (-10 -7 (-6 -4512))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1133) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872))) ((-1249) . T)) -((-1438 (((-3 $ "failed") $ $) 12 T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 25 T ELT))) -(((-20 |#1|) (-10 -8 (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1438 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) (-21)) (T -20)) +(-13 (-385 |t#1|) (-10 -7 (-6 -4508))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1131) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870))) ((-1247) . T)) +((-1436 (((-3 $ "failed") $ $) 12 T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) 16 T ELT) (($ (-558) $) 25 T ELT))) +(((-20 |#1|) (-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1436 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1438 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT))) +(-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1436 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT))) (((-21) (-142)) (T -21)) -((-4353 (*1 *1 *1) (-4 *1 (-21))) (-4353 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-133) (-668 (-560)) (-10 -8 (-15 -4353 ($ $)) (-15 -4353 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-1133) . T) ((-1249) . T)) -((-3692 (((-114) $) 10 T ELT)) (-4240 (($) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-793) $) 19 T ELT))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 -4240 (|#1|)) (-15 * (|#1| (-949) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 -4240 (|#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT))) +((-4349 (*1 *1 *1) (-4 *1 (-21))) (-4349 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-133) (-666 (-558)) (-10 -8 (-15 -4349 ($ $)) (-15 -4349 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-1131) . T) ((-1247) . T)) +((-3688 (((-114) $) 10 T ELT)) (-4236 (($) 15 T ELT)) (* (($ (-947) $) 14 T ELT) (($ (-791) $) 19 T ELT))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 -4236 (|#1|)) (-15 * (|#1| (-947) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 -4236 (|#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT))) (((-23) (-142)) (T -23)) -((-3145 (*1 *1) (-4 *1 (-23))) (-4240 (*1 *1) (-4 *1 (-23))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793))))) -(-13 (-25) (-10 -8 (-15 (-3145) ($) -4468) (-15 -4240 ($) -4468) (-15 -3692 ((-114) $)) (-15 * ($ (-793) $)))) -(((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((* (($ (-949) $) 10 T ELT))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-949) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT))) +((-3141 (*1 *1) (-4 *1 (-23))) (-4236 (*1 *1) (-4 *1 (-23))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-791))))) +(-13 (-25) (-10 -8 (-15 (-3141) ($) -4464) (-15 -4236 ($) -4464) (-15 -3688 ((-114) $)) (-15 * ($ (-791) $)))) +(((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((* (($ (-947) $) 10 T ELT))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-947) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT))) (((-25) (-142)) (T -25)) -((-4355 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949))))) -(-13 (-1133) (-10 -8 (-15 -4355 ($ $ $)) (-15 * ($ (-949) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-1762 (((-663 $) (-976 $)) 32 T ELT) (((-663 $) (-1203 $)) 16 T ELT) (((-663 $) (-1203 $) (-1209)) 20 T ELT)) (-1334 (($ (-976 $)) 30 T ELT) (($ (-1203 $)) 11 T ELT) (($ (-1203 $) (-1209)) 60 T ELT)) (-1335 (((-663 $) (-976 $)) 33 T ELT) (((-663 $) (-1203 $)) 18 T ELT) (((-663 $) (-1203 $) (-1209)) 19 T ELT)) (-3687 (($ (-976 $)) 31 T ELT) (($ (-1203 $)) 13 T ELT) (($ (-1203 $) (-1209)) NIL T ELT))) -(((-26 |#1|) (-10 -8 (-15 -1762 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1762 ((-663 |#1|) (-1203 |#1|))) (-15 -1762 ((-663 |#1|) (-976 |#1|))) (-15 -1334 (|#1| (-1203 |#1|) (-1209))) (-15 -1334 (|#1| (-1203 |#1|))) (-15 -1334 (|#1| (-976 |#1|))) (-15 -1335 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1335 ((-663 |#1|) (-1203 |#1|))) (-15 -1335 ((-663 |#1|) (-976 |#1|))) (-15 -3687 (|#1| (-1203 |#1|) (-1209))) (-15 -3687 (|#1| (-1203 |#1|))) (-15 -3687 (|#1| (-976 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1762 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1762 ((-663 |#1|) (-1203 |#1|))) (-15 -1762 ((-663 |#1|) (-976 |#1|))) (-15 -1334 (|#1| (-1203 |#1|) (-1209))) (-15 -1334 (|#1| (-1203 |#1|))) (-15 -1334 (|#1| (-976 |#1|))) (-15 -1335 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1335 ((-663 |#1|) (-1203 |#1|))) (-15 -1335 ((-663 |#1|) (-976 |#1|))) (-15 -3687 (|#1| (-1203 |#1|) (-1209))) (-15 -3687 (|#1| (-1203 |#1|))) (-15 -3687 (|#1| (-976 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-1762 (((-663 $) (-976 $)) 95 T ELT) (((-663 $) (-1203 $)) 94 T ELT) (((-663 $) (-1203 $) (-1209)) 93 T ELT)) (-1334 (($ (-976 $)) 98 T ELT) (($ (-1203 $)) 97 T ELT) (($ (-1203 $) (-1209)) 96 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-3524 (($ $) 107 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-1335 (((-663 $) (-976 $)) 101 T ELT) (((-663 $) (-1203 $)) 100 T ELT) (((-663 $) (-1203 $) (-1209)) 99 T ELT)) (-3687 (($ (-976 $)) 104 T ELT) (($ (-1203 $)) 103 T ELT) (($ (-1203 $) (-1209)) 102 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 106 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT) (($ $ (-421 (-560))) 105 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) +((-4351 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-947))))) +(-13 (-1131) (-10 -8 (-15 -4351 ($ $ $)) (-15 * ($ (-947) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-1760 (((-661 $) (-974 $)) 32 T ELT) (((-661 $) (-1201 $)) 16 T ELT) (((-661 $) (-1201 $) (-1207)) 20 T ELT)) (-1332 (($ (-974 $)) 30 T ELT) (($ (-1201 $)) 11 T ELT) (($ (-1201 $) (-1207)) 60 T ELT)) (-1333 (((-661 $) (-974 $)) 33 T ELT) (((-661 $) (-1201 $)) 18 T ELT) (((-661 $) (-1201 $) (-1207)) 19 T ELT)) (-3683 (($ (-974 $)) 31 T ELT) (($ (-1201 $)) 13 T ELT) (($ (-1201 $) (-1207)) NIL T ELT))) +(((-26 |#1|) (-10 -8 (-15 -1760 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1760 ((-661 |#1|) (-1201 |#1|))) (-15 -1760 ((-661 |#1|) (-974 |#1|))) (-15 -1332 (|#1| (-1201 |#1|) (-1207))) (-15 -1332 (|#1| (-1201 |#1|))) (-15 -1332 (|#1| (-974 |#1|))) (-15 -1333 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1333 ((-661 |#1|) (-1201 |#1|))) (-15 -1333 ((-661 |#1|) (-974 |#1|))) (-15 -3683 (|#1| (-1201 |#1|) (-1207))) (-15 -3683 (|#1| (-1201 |#1|))) (-15 -3683 (|#1| (-974 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1760 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1760 ((-661 |#1|) (-1201 |#1|))) (-15 -1760 ((-661 |#1|) (-974 |#1|))) (-15 -1332 (|#1| (-1201 |#1|) (-1207))) (-15 -1332 (|#1| (-1201 |#1|))) (-15 -1332 (|#1| (-974 |#1|))) (-15 -1333 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1333 ((-661 |#1|) (-1201 |#1|))) (-15 -1333 ((-661 |#1|) (-974 |#1|))) (-15 -3683 (|#1| (-1201 |#1|) (-1207))) (-15 -3683 (|#1| (-1201 |#1|))) (-15 -3683 (|#1| (-974 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-1760 (((-661 $) (-974 $)) 95 T ELT) (((-661 $) (-1201 $)) 94 T ELT) (((-661 $) (-1201 $) (-1207)) 93 T ELT)) (-1332 (($ (-974 $)) 98 T ELT) (($ (-1201 $)) 97 T ELT) (($ (-1201 $) (-1207)) 96 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-3520 (($ $) 107 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-1333 (((-661 $) (-974 $)) 101 T ELT) (((-661 $) (-1201 $)) 100 T ELT) (((-661 $) (-1201 $) (-1207)) 99 T ELT)) (-3683 (($ (-974 $)) 104 T ELT) (($ (-1201 $)) 103 T ELT) (($ (-1201 $) (-1207)) 102 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 106 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-27) (-142)) (T -27)) -((-3687 (*1 *1 *2) (-12 (-5 *2 (-976 *1)) (-4 *1 (-27)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1209)) (-4 *1 (-27)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1209)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-976 *1)) (-4 *1 (-27)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) (-1334 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1209)) (-4 *1 (-27)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-1762 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1209)) (-4 *1 (-27)) (-5 *2 (-663 *1))))) -(-13 (-376) (-1034) (-10 -8 (-15 -3687 ($ (-976 $))) (-15 -3687 ($ (-1203 $))) (-15 -3687 ($ (-1203 $) (-1209))) (-15 -1335 ((-663 $) (-976 $))) (-15 -1335 ((-663 $) (-1203 $))) (-15 -1335 ((-663 $) (-1203 $) (-1209))) (-15 -1334 ($ (-976 $))) (-15 -1334 ($ (-1203 $))) (-15 -1334 ($ (-1203 $) (-1209))) (-15 -1762 ((-663 $) (-976 $))) (-15 -1762 ((-663 $) (-1203 $))) (-15 -1762 ((-663 $) (-1203 $) (-1209))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1034) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-1762 (((-663 $) (-976 $)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-1203 $) (-1209)) 54 T ELT) (((-663 $) $) 22 T ELT) (((-663 $) $ (-1209)) 45 T ELT)) (-1334 (($ (-976 $)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-1203 $) (-1209)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1209)) 39 T ELT)) (-1335 (((-663 $) (-976 $)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-1203 $) (-1209)) 52 T ELT) (((-663 $) $) 18 T ELT) (((-663 $) $ (-1209)) 47 T ELT)) (-3687 (($ (-976 $)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-1203 $) (-1209)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1209)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1762 ((-663 |#1|) |#1| (-1209))) (-15 -1334 (|#1| |#1| (-1209))) (-15 -1762 ((-663 |#1|) |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1335 ((-663 |#1|) |#1| (-1209))) (-15 -3687 (|#1| |#1| (-1209))) (-15 -1335 ((-663 |#1|) |#1|)) (-15 -3687 (|#1| |#1|)) (-15 -1762 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1762 ((-663 |#1|) (-1203 |#1|))) (-15 -1762 ((-663 |#1|) (-976 |#1|))) (-15 -1334 (|#1| (-1203 |#1|) (-1209))) (-15 -1334 (|#1| (-1203 |#1|))) (-15 -1334 (|#1| (-976 |#1|))) (-15 -1335 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1335 ((-663 |#1|) (-1203 |#1|))) (-15 -1335 ((-663 |#1|) (-976 |#1|))) (-15 -3687 (|#1| (-1203 |#1|) (-1209))) (-15 -3687 (|#1| (-1203 |#1|))) (-15 -3687 (|#1| (-976 |#1|)))) (-29 |#2|) (-571)) (T -28)) -NIL -(-10 -8 (-15 -1762 ((-663 |#1|) |#1| (-1209))) (-15 -1334 (|#1| |#1| (-1209))) (-15 -1762 ((-663 |#1|) |#1|)) (-15 -1334 (|#1| |#1|)) (-15 -1335 ((-663 |#1|) |#1| (-1209))) (-15 -3687 (|#1| |#1| (-1209))) (-15 -1335 ((-663 |#1|) |#1|)) (-15 -3687 (|#1| |#1|)) (-15 -1762 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1762 ((-663 |#1|) (-1203 |#1|))) (-15 -1762 ((-663 |#1|) (-976 |#1|))) (-15 -1334 (|#1| (-1203 |#1|) (-1209))) (-15 -1334 (|#1| (-1203 |#1|))) (-15 -1334 (|#1| (-976 |#1|))) (-15 -1335 ((-663 |#1|) (-1203 |#1|) (-1209))) (-15 -1335 ((-663 |#1|) (-1203 |#1|))) (-15 -1335 ((-663 |#1|) (-976 |#1|))) (-15 -3687 (|#1| (-1203 |#1|) (-1209))) (-15 -3687 (|#1| (-1203 |#1|))) (-15 -3687 (|#1| (-976 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-1762 (((-663 $) (-976 $)) 95 T ELT) (((-663 $) (-1203 $)) 94 T ELT) (((-663 $) (-1203 $) (-1209)) 93 T ELT) (((-663 $) $) 145 T ELT) (((-663 $) $ (-1209)) 143 T ELT)) (-1334 (($ (-976 $)) 98 T ELT) (($ (-1203 $)) 97 T ELT) (($ (-1203 $) (-1209)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1209)) 144 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1209)) $) 214 T ELT)) (-3572 (((-421 (-1203 $)) $ (-630 $)) 246 (|has| |#1| (-571)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1755 (((-663 (-630 $)) $) 177 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-1759 (($ $ (-663 (-630 $)) (-663 $)) 167 T ELT) (($ $ (-663 (-305 $))) 166 T ELT) (($ $ (-305 $)) 165 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-3524 (($ $) 107 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-1335 (((-663 $) (-976 $)) 101 T ELT) (((-663 $) (-1203 $)) 100 T ELT) (((-663 $) (-1203 $) (-1209)) 99 T ELT) (((-663 $) $) 149 T ELT) (((-663 $) $ (-1209)) 147 T ELT)) (-3687 (($ (-976 $)) 104 T ELT) (($ (-1203 $)) 103 T ELT) (($ (-1203 $) (-1209)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1209)) 148 T ELT)) (-3661 (((-3 (-976 |#1|) #1="failed") $) 265 (|has| |#1| (-1081)) ELT) (((-3 (-421 (-976 |#1|)) #1#) $) 248 (|has| |#1| (-571)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-560) #1#) $) 207 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1209) #1#) $) 201 T ELT) (((-3 (-630 $) #1#) $) 152 T ELT) (((-3 (-421 (-560)) #1#) $) 140 (-4043 (-12 (|has| |#1| (-1070 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3660 (((-976 |#1|) $) 264 (|has| |#1| (-1081)) ELT) (((-421 (-976 |#1|)) $) 247 (|has| |#1| (-571)) ELT) ((|#1| $) 209 T ELT) (((-560) $) 208 (|has| |#1| (-1070 (-560))) ELT) (((-1209) $) 200 T ELT) (((-630 $) $) 151 T ELT) (((-421 (-560)) $) 141 (-4043 (-12 (|has| |#1| (-1070 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3049 (($ $ $) 68 T ELT)) (-2507 (((-711 |#1|) (-711 $)) 253 (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 252 (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 139 (-4043 (-3047 (|has| |#1| (-1081)) (|has| |#1| (-660 (-560)))) (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT) (((-711 (-560)) (-711 $)) 138 (-4043 (-3047 (|has| |#1| (-1081)) (|has| |#1| (-660 (-560)))) (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 206 (|has| |#1| (-912 (-391))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 205 (|has| |#1| (-912 (-560))) ELT)) (-3058 (($ (-663 $)) 171 T ELT) (($ $) 170 T ELT)) (-1754 (((-663 (-115)) $) 178 T ELT)) (-4109 (((-115) (-115)) 179 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3160 (((-114) $) 199 (|has| $ (-1070 (-560))) ELT)) (-3483 (($ $) 231 (|has| |#1| (-1081)) ELT)) (-3485 (((-1157 |#1| (-630 $)) $) 230 (|has| |#1| (-1081)) ELT)) (-3498 (($ $ (-560)) 106 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 65 T ELT)) (-1752 (((-1203 $) (-630 $)) 196 (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) 185 T ELT)) (-1757 (((-3 (-630 $) "failed") $) 175 T ELT)) (-2508 (((-711 |#1|) (-1299 $)) 255 (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 254 (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 137 (-4043 (-3047 (|has| |#1| (-1081)) (|has| |#1| (-660 (-560)))) (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT) (((-711 (-560)) (-1299 $)) 136 (-4043 (-3047 (|has| |#1| (-1081)) (|has| |#1| (-660 (-560)))) (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1756 (((-663 (-630 $)) $) 176 T ELT)) (-2463 (($ (-115) (-663 $)) 184 T ELT) (($ (-115) $) 183 T ELT)) (-3310 (((-3 (-663 $) #3="failed") $) 225 (|has| |#1| (-1144)) ELT)) (-3312 (((-3 (-2 (|:| |val| $) (|:| -2646 (-560))) #3#) $) 234 (|has| |#1| (-1081)) ELT)) (-3309 (((-3 (-663 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-2016 (((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-3311 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $ (-1209)) 233 (|has| |#1| (-1081)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $ (-115)) 232 (|has| |#1| (-1081)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $) 226 (|has| |#1| (-1144)) ELT)) (-3118 (((-114) $ (-1209)) 182 T ELT) (((-114) $ (-115)) 181 T ELT)) (-2888 (($ $) 85 T ELT)) (-3088 (((-793) $) 174 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 212 T ELT)) (-2018 ((|#1| $) 213 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1753 (((-114) $ (-1209)) 187 T ELT) (((-114) $ $) 186 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-3161 (((-114) $) 198 (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-1209) (-793) (-1 $ $)) 238 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793) (-1 $ (-663 $))) 237 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 236 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ $))) 235 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-115)) (-663 $) (-1209)) 224 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1209)) 223 (|has| |#1| (-633 (-549))) ELT) (($ $) 222 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1209))) 221 (|has| |#1| (-633 (-549))) ELT) (($ $ (-1209)) 220 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) (-1 $ $)) 195 T ELT) (($ $ (-115) (-1 $ (-663 $))) 194 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 193 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 192 T ELT) (($ $ (-1209) (-1 $ $)) 191 T ELT) (($ $ (-1209) (-1 $ (-663 $))) 190 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) 189 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) 188 T ELT) (($ $ (-663 $) (-663 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-305 $)) 157 T ELT) (($ $ (-663 (-305 $))) 156 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 155 T ELT) (($ $ (-630 $) $) 154 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-4316 (($ (-115) (-663 $)) 164 T ELT) (($ (-115) $ $ $ $) 163 T ELT) (($ (-115) $ $ $) 162 T ELT) (($ (-115) $ $) 161 T ELT) (($ (-115) $) 160 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-1758 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-4274 (($ $ (-663 (-1209)) (-663 (-793))) 260 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) 259 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) 258 (|has| |#1| (-1081)) ELT) (($ $ (-1209)) 256 (|has| |#1| (-1081)) ELT)) (-3482 (($ $) 241 (|has| |#1| (-571)) ELT)) (-3484 (((-1157 |#1| (-630 $)) $) 240 (|has| |#1| (-571)) ELT)) (-3689 (($ $) 197 (|has| $ (-1081)) ELT)) (-4488 (((-549) $) 269 (|has| |#1| (-633 (-549))) ELT) (($ (-419 $)) 239 (|has| |#1| (-571)) ELT) (((-916 (-391)) $) 204 (|has| |#1| (-633 (-916 (-391)))) ELT) (((-916 (-560)) $) 203 (|has| |#1| (-633 (-916 (-560)))) ELT)) (-3496 (($ $ $) 268 (|has| |#1| (-487)) ELT)) (-2838 (($ $ $) 267 (|has| |#1| (-487)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ (-976 |#1|)) 266 (|has| |#1| (-1081)) ELT) (($ (-421 (-976 |#1|))) 249 (|has| |#1| (-571)) ELT) (($ (-421 (-976 (-421 |#1|)))) 245 (|has| |#1| (-571)) ELT) (($ (-976 (-421 |#1|))) 244 (|has| |#1| (-571)) ELT) (($ (-421 |#1|)) 243 (|has| |#1| (-571)) ELT) (($ (-1157 |#1| (-630 $))) 229 (|has| |#1| (-1081)) ELT) (($ |#1|) 211 T ELT) (($ (-1209)) 202 T ELT) (($ (-630 $)) 153 T ELT)) (-3189 (((-713 $) $) 251 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-3075 (($ (-663 $)) 169 T ELT) (($ $) 168 T ELT)) (-2482 (((-114) (-115)) 180 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-2017 (($ (-1209) (-663 $)) 219 T ELT) (($ (-1209) $ $ $ $) 218 T ELT) (($ (-1209) $ $ $) 217 T ELT) (($ (-1209) $ $) 216 T ELT) (($ (-1209) $) 215 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 (-1209)) (-663 (-793))) 263 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) 262 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) 261 (|has| |#1| (-1081)) ELT) (($ $ (-1209)) 257 (|has| |#1| (-1081)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT) (($ (-1157 |#1| (-630 $)) (-1157 |#1| (-630 $))) 242 (|has| |#1| (-571)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT) (($ $ (-421 (-560))) 105 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-175)) ELT) (($ |#1| $) 142 (|has| |#1| (-1081)) ELT))) -(((-29 |#1|) (-142) (-571)) (T -29)) -((-3687 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-1335 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))) (-1334 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-1762 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -3687 ($ $)) (-15 -1335 ((-663 $) $)) (-15 -3687 ($ $ (-1209))) (-15 -1335 ((-663 $) $ (-1209))) (-15 -1334 ($ $)) (-15 -1762 ((-663 $) $)) (-15 -1334 ($ $ (-1209))) (-15 -1762 ((-663 $) $ (-1209))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) . T) ((-635 #2=(-421 (-976 |#1|))) |has| |#1| (-571)) ((-635 (-560)) . T) ((-635 #3=(-630 $)) . T) ((-635 #4=(-976 |#1|)) |has| |#1| (-1081)) ((-635 #5=(-1209)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-916 (-391))) |has| |#1| (-633 (-916 (-391)))) ((-633 (-916 (-560))) |has| |#1| (-633 (-916 (-560)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1081)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-435 |#1|) . T) ((-466) . T) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 |#1|) -4043 (|has| |#1| (-1081)) (|has| |#1| (-175))) ((-668 $) . T) ((-670 #1#) . T) ((-670 #6=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ((-670 |#1|) -4043 (|has| |#1| (-1081)) (|has| |#1| (-175))) ((-670 $) . T) ((-662 #1#) . T) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) . T) ((-660 #6#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ((-660 |#1|) |has| |#1| (-1081)) ((-739 #1#) . T) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) . T) ((-748) . T) ((-922 $ #7=(-1209)) |has| |#1| (-1081)) ((-928 #7#) |has| |#1| (-1081)) ((-930 #7#) |has| |#1| (-1081)) ((-912 (-391)) |has| |#1| (-912 (-391))) ((-912 (-560)) |has| |#1| (-912 (-560))) ((-910 |#1|) . T) ((-951) . T) ((-1034) . T) ((-1070 (-421 (-560))) -4043 (|has| |#1| (-1070 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560))))) ((-1070 #2#) |has| |#1| (-571)) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 #3#) . T) ((-1070 #4#) |has| |#1| (-1081)) ((-1070 #5#) . T) ((-1070 |#1|) . T) ((-1083 #1#) . T) ((-1083 |#1|) |has| |#1| (-175)) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 |#1|) |has| |#1| (-175)) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3383 (((-1121 (-229)) $) NIL T ELT)) (-3384 (((-1121 (-229)) $) NIL T ELT)) (-3622 (($ $ (-229)) 164 T ELT)) (-1336 (($ (-976 (-560)) (-1209) (-1209) (-1121 (-421 (-560))) (-1121 (-421 (-560)))) 103 T ELT)) (-3385 (((-663 (-663 (-973 (-229)))) $) 181 T ELT)) (-4462 (((-888) $) 195 T ELT))) -(((-30) (-13 (-985) (-10 -8 (-15 -1336 ($ (-976 (-560)) (-1209) (-1209) (-1121 (-421 (-560))) (-1121 (-421 (-560))))) (-15 -3622 ($ $ (-229)))))) (T -30)) -((-1336 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-976 (-560))) (-5 *3 (-1209)) (-5 *4 (-1121 (-421 (-560)))) (-5 *1 (-30)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) -(-13 (-985) (-10 -8 (-15 -1336 ($ (-976 (-560)) (-1209) (-1209) (-1121 (-421 (-560))) (-1121 (-421 (-560))))) (-15 -3622 ($ $ (-229))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (((-1167) $) 9 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-31) (-13 (-1115) (-10 -8 (-15 -3181 ((-1167) $)) (-15 -3737 ((-1167) $))))) (T -31)) -((-3181 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-31)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-31))))) -(-13 (-1115) (-10 -8 (-15 -3181 ((-1167) $)) (-15 -3737 ((-1167) $)))) -((-3687 ((|#2| (-1203 |#2|) (-1209)) 39 T ELT)) (-4109 (((-115) (-115)) 53 T ELT)) (-1752 (((-1203 |#2|) (-630 |#2|)) 150 (|has| |#1| (-1070 (-560))) ELT)) (-1339 ((|#2| |#1| (-560)) 138 (|has| |#1| (-1070 (-560))) ELT)) (-1337 ((|#2| (-1203 |#2|) |#2|) 29 T ELT)) (-1338 (((-888) (-663 |#2|)) 87 T ELT)) (-3689 ((|#2| |#2|) 145 (|has| |#1| (-1070 (-560))) ELT)) (-2482 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-421 (-560))) 104 (|has| |#1| (-1070 (-560))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3687 (|#2| (-1203 |#2|) (-1209))) (-15 -4109 ((-115) (-115))) (-15 -2482 ((-114) (-115))) (-15 -1337 (|#2| (-1203 |#2|) |#2|)) (-15 -1338 ((-888) (-663 |#2|))) (IF (|has| |#1| (-1070 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -1752 ((-1203 |#2|) (-630 |#2|))) (-15 -3689 (|#2| |#2|)) (-15 -1339 (|#2| |#1| (-560)))) |%noBranch|)) (-571) (-435 |#1|)) (T -32)) -((-1339 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1070 *4)) (-4 *3 (-571)))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-1070 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1070 (-560))) (-4 *4 (-571)) (-5 *2 (-1203 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-1070 (-560))) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571)) (-5 *2 (-888)) (-5 *1 (-32 *4 *5)))) (-1337 (*1 *2 *3 *2) (-12 (-5 *3 (-1203 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *2)) (-5 *4 (-1209)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-571))))) -(-10 -7 (-15 -3687 (|#2| (-1203 |#2|) (-1209))) (-15 -4109 ((-115) (-115))) (-15 -2482 ((-114) (-115))) (-15 -1337 (|#2| (-1203 |#2|) |#2|)) (-15 -1338 ((-888) (-663 |#2|))) (IF (|has| |#1| (-1070 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -1752 ((-1203 |#2|) (-630 |#2|))) (-15 -3689 (|#2| |#2|)) (-15 -1339 (|#2| |#1| (-560)))) |%noBranch|)) -((-4240 (($) 10 T ELT)) (-1340 (((-114) $ $) 8 T ELT)) (-3909 (((-114) $) 15 T ELT))) -(((-33 |#1|) (-10 -8 (-15 -4240 (|#1|)) (-15 -3909 ((-114) |#1|)) (-15 -1340 ((-114) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4240 (|#1|)) (-15 -3909 ((-114) |#1|)) (-15 -1340 ((-114) |#1| |#1|))) -((-4240 (($) 7 T CONST)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-3906 (($ $) 10 T ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) +((-3683 (*1 *1 *2) (-12 (-5 *2 (-974 *1)) (-4 *1 (-27)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-3683 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-974 *1)) (-4 *1 (-27)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-1332 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-661 *1))))) +(-13 (-376) (-1032) (-10 -8 (-15 -3683 ($ (-974 $))) (-15 -3683 ($ (-1201 $))) (-15 -3683 ($ (-1201 $) (-1207))) (-15 -1333 ((-661 $) (-974 $))) (-15 -1333 ((-661 $) (-1201 $))) (-15 -1333 ((-661 $) (-1201 $) (-1207))) (-15 -1332 ($ (-974 $))) (-15 -1332 ($ (-1201 $))) (-15 -1332 ($ (-1201 $) (-1207))) (-15 -1760 ((-661 $) (-974 $))) (-15 -1760 ((-661 $) (-1201 $))) (-15 -1760 ((-661 $) (-1201 $) (-1207))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1032) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-1760 (((-661 $) (-974 $)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-1201 $) (-1207)) 54 T ELT) (((-661 $) $) 22 T ELT) (((-661 $) $ (-1207)) 45 T ELT)) (-1332 (($ (-974 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1207)) 39 T ELT)) (-1333 (((-661 $) (-974 $)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-1201 $) (-1207)) 52 T ELT) (((-661 $) $) 18 T ELT) (((-661 $) $ (-1207)) 47 T ELT)) (-3683 (($ (-974 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1207)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1760 ((-661 |#1|) |#1| (-1207))) (-15 -1332 (|#1| |#1| (-1207))) (-15 -1760 ((-661 |#1|) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -1333 ((-661 |#1|) |#1| (-1207))) (-15 -3683 (|#1| |#1| (-1207))) (-15 -1333 ((-661 |#1|) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -1760 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1760 ((-661 |#1|) (-1201 |#1|))) (-15 -1760 ((-661 |#1|) (-974 |#1|))) (-15 -1332 (|#1| (-1201 |#1|) (-1207))) (-15 -1332 (|#1| (-1201 |#1|))) (-15 -1332 (|#1| (-974 |#1|))) (-15 -1333 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1333 ((-661 |#1|) (-1201 |#1|))) (-15 -1333 ((-661 |#1|) (-974 |#1|))) (-15 -3683 (|#1| (-1201 |#1|) (-1207))) (-15 -3683 (|#1| (-1201 |#1|))) (-15 -3683 (|#1| (-974 |#1|)))) (-29 |#2|) (-569)) (T -28)) +NIL +(-10 -8 (-15 -1760 ((-661 |#1|) |#1| (-1207))) (-15 -1332 (|#1| |#1| (-1207))) (-15 -1760 ((-661 |#1|) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -1333 ((-661 |#1|) |#1| (-1207))) (-15 -3683 (|#1| |#1| (-1207))) (-15 -1333 ((-661 |#1|) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -1760 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1760 ((-661 |#1|) (-1201 |#1|))) (-15 -1760 ((-661 |#1|) (-974 |#1|))) (-15 -1332 (|#1| (-1201 |#1|) (-1207))) (-15 -1332 (|#1| (-1201 |#1|))) (-15 -1332 (|#1| (-974 |#1|))) (-15 -1333 ((-661 |#1|) (-1201 |#1|) (-1207))) (-15 -1333 ((-661 |#1|) (-1201 |#1|))) (-15 -1333 ((-661 |#1|) (-974 |#1|))) (-15 -3683 (|#1| (-1201 |#1|) (-1207))) (-15 -3683 (|#1| (-1201 |#1|))) (-15 -3683 (|#1| (-974 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-1760 (((-661 $) (-974 $)) 95 T ELT) (((-661 $) (-1201 $)) 94 T ELT) (((-661 $) (-1201 $) (-1207)) 93 T ELT) (((-661 $) $) 145 T ELT) (((-661 $) $ (-1207)) 143 T ELT)) (-1332 (($ (-974 $)) 98 T ELT) (($ (-1201 $)) 97 T ELT) (($ (-1201 $) (-1207)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1207)) 144 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1207)) $) 214 T ELT)) (-3568 (((-419 (-1201 $)) $ (-628 $)) 246 (|has| |#1| (-569)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1753 (((-661 (-628 $)) $) 177 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-1757 (($ $ (-661 (-628 $)) (-661 $)) 167 T ELT) (($ $ (-661 (-305 $))) 166 T ELT) (($ $ (-305 $)) 165 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-3520 (($ $) 107 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-1333 (((-661 $) (-974 $)) 101 T ELT) (((-661 $) (-1201 $)) 100 T ELT) (((-661 $) (-1201 $) (-1207)) 99 T ELT) (((-661 $) $) 149 T ELT) (((-661 $) $ (-1207)) 147 T ELT)) (-3683 (($ (-974 $)) 104 T ELT) (($ (-1201 $)) 103 T ELT) (($ (-1201 $) (-1207)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1207)) 148 T ELT)) (-3657 (((-3 (-974 |#1|) #1="failed") $) 265 (|has| |#1| (-1079)) ELT) (((-3 (-419 (-974 |#1|)) #1#) $) 248 (|has| |#1| (-569)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-558) #1#) $) 207 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1207) #1#) $) 201 T ELT) (((-3 (-628 $) #1#) $) 152 T ELT) (((-3 (-419 (-558)) #1#) $) 140 (-4039 (-12 (|has| |#1| (-1068 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3656 (((-974 |#1|) $) 264 (|has| |#1| (-1079)) ELT) (((-419 (-974 |#1|)) $) 247 (|has| |#1| (-569)) ELT) ((|#1| $) 209 T ELT) (((-558) $) 208 (|has| |#1| (-1068 (-558))) ELT) (((-1207) $) 200 T ELT) (((-628 $) $) 151 T ELT) (((-419 (-558)) $) 141 (-4039 (-12 (|has| |#1| (-1068 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3045 (($ $ $) 68 T ELT)) (-2503 (((-709 |#1|) (-709 $)) 253 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 252 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 139 (-4039 (-3043 (|has| |#1| (-1079)) (|has| |#1| (-658 (-558)))) (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT) (((-709 (-558)) (-709 $)) 138 (-4039 (-3043 (|has| |#1| (-1079)) (|has| |#1| (-658 (-558)))) (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 206 (|has| |#1| (-910 (-391))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 205 (|has| |#1| (-910 (-558))) ELT)) (-3054 (($ (-661 $)) 171 T ELT) (($ $) 170 T ELT)) (-1752 (((-661 (-115)) $) 178 T ELT)) (-4105 (((-115) (-115)) 179 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3156 (((-114) $) 199 (|has| $ (-1068 (-558))) ELT)) (-3479 (($ $) 231 (|has| |#1| (-1079)) ELT)) (-3481 (((-1155 |#1| (-628 $)) $) 230 (|has| |#1| (-1079)) ELT)) (-3494 (($ $ (-558)) 106 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-1750 (((-1201 $) (-628 $)) 196 (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) 185 T ELT)) (-1755 (((-3 (-628 $) "failed") $) 175 T ELT)) (-2504 (((-709 |#1|) (-1297 $)) 255 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 254 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 137 (-4039 (-3043 (|has| |#1| (-1079)) (|has| |#1| (-658 (-558)))) (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT) (((-709 (-558)) (-1297 $)) 136 (-4039 (-3043 (|has| |#1| (-1079)) (|has| |#1| (-658 (-558)))) (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1754 (((-661 (-628 $)) $) 176 T ELT)) (-2459 (($ (-115) (-661 $)) 184 T ELT) (($ (-115) $) 183 T ELT)) (-3306 (((-3 (-661 $) #3="failed") $) 225 (|has| |#1| (-1142)) ELT)) (-3308 (((-3 (-2 (|:| |val| $) (|:| -2642 (-558))) #3#) $) 234 (|has| |#1| (-1079)) ELT)) (-3305 (((-3 (-661 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-2012 (((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-3307 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $ (-1207)) 233 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $ (-115)) 232 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $) 226 (|has| |#1| (-1142)) ELT)) (-3114 (((-114) $ (-1207)) 182 T ELT) (((-114) $ (-115)) 181 T ELT)) (-2884 (($ $) 85 T ELT)) (-3084 (((-791) $) 174 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 212 T ELT)) (-2014 ((|#1| $) 213 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1751 (((-114) $ (-1207)) 187 T ELT) (((-114) $ $) 186 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-3157 (((-114) $) 198 (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-1207) (-791) (-1 $ $)) 238 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791) (-1 $ (-661 $))) 237 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 236 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ $))) 235 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-115)) (-661 $) (-1207)) 224 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1207)) 223 (|has| |#1| (-631 (-547))) ELT) (($ $) 222 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1207))) 221 (|has| |#1| (-631 (-547))) ELT) (($ $ (-1207)) 220 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) (-1 $ $)) 195 T ELT) (($ $ (-115) (-1 $ (-661 $))) 194 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 193 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 192 T ELT) (($ $ (-1207) (-1 $ $)) 191 T ELT) (($ $ (-1207) (-1 $ (-661 $))) 190 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) 189 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) 188 T ELT) (($ $ (-661 $) (-661 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-305 $)) 157 T ELT) (($ $ (-661 (-305 $))) 156 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 155 T ELT) (($ $ (-628 $) $) 154 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-4312 (($ (-115) (-661 $)) 164 T ELT) (($ (-115) $ $ $ $) 163 T ELT) (($ (-115) $ $ $) 162 T ELT) (($ (-115) $ $) 161 T ELT) (($ (-115) $) 160 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-1756 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-4270 (($ $ (-661 (-1207)) (-661 (-791))) 260 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) 259 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) 258 (|has| |#1| (-1079)) ELT) (($ $ (-1207)) 256 (|has| |#1| (-1079)) ELT)) (-3478 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3480 (((-1155 |#1| (-628 $)) $) 240 (|has| |#1| (-569)) ELT)) (-3685 (($ $) 197 (|has| $ (-1079)) ELT)) (-4484 (((-547) $) 269 (|has| |#1| (-631 (-547))) ELT) (($ (-417 $)) 239 (|has| |#1| (-569)) ELT) (((-914 (-391)) $) 204 (|has| |#1| (-631 (-914 (-391)))) ELT) (((-914 (-558)) $) 203 (|has| |#1| (-631 (-914 (-558)))) ELT)) (-3492 (($ $ $) 268 (|has| |#1| (-485)) ELT)) (-2834 (($ $ $) 267 (|has| |#1| (-485)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-974 |#1|)) 266 (|has| |#1| (-1079)) ELT) (($ (-419 (-974 |#1|))) 249 (|has| |#1| (-569)) ELT) (($ (-419 (-974 (-419 |#1|)))) 245 (|has| |#1| (-569)) ELT) (($ (-974 (-419 |#1|))) 244 (|has| |#1| (-569)) ELT) (($ (-419 |#1|)) 243 (|has| |#1| (-569)) ELT) (($ (-1155 |#1| (-628 $))) 229 (|has| |#1| (-1079)) ELT) (($ |#1|) 211 T ELT) (($ (-1207)) 202 T ELT) (($ (-628 $)) 153 T ELT)) (-3185 (((-711 $) $) 251 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-3071 (($ (-661 $)) 169 T ELT) (($ $) 168 T ELT)) (-2478 (((-114) (-115)) 180 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-2013 (($ (-1207) (-661 $)) 219 T ELT) (($ (-1207) $ $ $ $) 218 T ELT) (($ (-1207) $ $ $) 217 T ELT) (($ (-1207) $ $) 216 T ELT) (($ (-1207) $) 215 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 (-1207)) (-661 (-791))) 263 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) 262 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) 261 (|has| |#1| (-1079)) ELT) (($ $ (-1207)) 257 (|has| |#1| (-1079)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT) (($ (-1155 |#1| (-628 $)) (-1155 |#1| (-628 $))) 242 (|has| |#1| (-569)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-175)) ELT) (($ |#1| $) 142 (|has| |#1| (-1079)) ELT))) +(((-29 |#1|) (-142) (-569)) (T -29)) +((-3683 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1333 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) (-3683 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1760 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1760 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3683 ($ $)) (-15 -1333 ((-661 $) $)) (-15 -3683 ($ $ (-1207))) (-15 -1333 ((-661 $) $ (-1207))) (-15 -1332 ($ $)) (-15 -1760 ((-661 $) $)) (-15 -1332 ($ $ (-1207))) (-15 -1760 ((-661 $) $ (-1207))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) . T) ((-633 #2=(-419 (-974 |#1|))) |has| |#1| (-569)) ((-633 (-558)) . T) ((-633 #3=(-628 $)) . T) ((-633 #4=(-974 |#1|)) |has| |#1| (-1079)) ((-633 #5=(-1207)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-914 (-391))) |has| |#1| (-631 (-914 (-391)))) ((-631 (-914 (-558))) |has| |#1| (-631 (-914 (-558)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1079)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-433 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 |#1|) -4039 (|has| |#1| (-1079)) (|has| |#1| (-175))) ((-666 $) . T) ((-668 #1#) . T) ((-668 #6=(-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ((-668 |#1|) -4039 (|has| |#1| (-1079)) (|has| |#1| (-175))) ((-668 $) . T) ((-660 #1#) . T) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) . T) ((-658 #6#) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ((-658 |#1|) |has| |#1| (-1079)) ((-737 #1#) . T) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) . T) ((-746) . T) ((-920 $ #7=(-1207)) |has| |#1| (-1079)) ((-926 #7#) |has| |#1| (-1079)) ((-928 #7#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-558)) |has| |#1| (-910 (-558))) ((-908 |#1|) . T) ((-949) . T) ((-1032) . T) ((-1068 (-419 (-558))) -4039 (|has| |#1| (-1068 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558))))) ((-1068 #2#) |has| |#1| (-569)) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 #3#) . T) ((-1068 #4#) |has| |#1| (-1079)) ((-1068 #5#) . T) ((-1068 |#1|) . T) ((-1081 #1#) . T) ((-1081 |#1|) |has| |#1| (-175)) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 |#1|) |has| |#1| (-175)) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3379 (((-1119 (-229)) $) NIL T ELT)) (-3380 (((-1119 (-229)) $) NIL T ELT)) (-3618 (($ $ (-229)) 164 T ELT)) (-1334 (($ (-974 (-558)) (-1207) (-1207) (-1119 (-419 (-558))) (-1119 (-419 (-558)))) 103 T ELT)) (-3381 (((-661 (-661 (-971 (-229)))) $) 181 T ELT)) (-4458 (((-886) $) 195 T ELT))) +(((-30) (-13 (-983) (-10 -8 (-15 -1334 ($ (-974 (-558)) (-1207) (-1207) (-1119 (-419 (-558))) (-1119 (-419 (-558))))) (-15 -3618 ($ $ (-229)))))) (T -30)) +((-1334 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-974 (-558))) (-5 *3 (-1207)) (-5 *4 (-1119 (-419 (-558)))) (-5 *1 (-30)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) +(-13 (-983) (-10 -8 (-15 -1334 ($ (-974 (-558)) (-1207) (-1207) (-1119 (-419 (-558))) (-1119 (-419 (-558))))) (-15 -3618 ($ $ (-229))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (((-1165) $) 9 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-31) (-13 (-1113) (-10 -8 (-15 -3177 ((-1165) $)) (-15 -3733 ((-1165) $))))) (T -31)) +((-3177 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31))))) +(-13 (-1113) (-10 -8 (-15 -3177 ((-1165) $)) (-15 -3733 ((-1165) $)))) +((-3683 ((|#2| (-1201 |#2|) (-1207)) 39 T ELT)) (-4105 (((-115) (-115)) 53 T ELT)) (-1750 (((-1201 |#2|) (-628 |#2|)) 150 (|has| |#1| (-1068 (-558))) ELT)) (-1337 ((|#2| |#1| (-558)) 138 (|has| |#1| (-1068 (-558))) ELT)) (-1335 ((|#2| (-1201 |#2|) |#2|) 29 T ELT)) (-1336 (((-886) (-661 |#2|)) 87 T ELT)) (-3685 ((|#2| |#2|) 145 (|has| |#1| (-1068 (-558))) ELT)) (-2478 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-419 (-558))) 104 (|has| |#1| (-1068 (-558))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3683 (|#2| (-1201 |#2|) (-1207))) (-15 -4105 ((-115) (-115))) (-15 -2478 ((-114) (-115))) (-15 -1335 (|#2| (-1201 |#2|) |#2|)) (-15 -1336 ((-886) (-661 |#2|))) (IF (|has| |#1| (-1068 (-558))) (PROGN (-15 ** (|#2| |#2| (-419 (-558)))) (-15 -1750 ((-1201 |#2|) (-628 |#2|))) (-15 -3685 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-558)))) |%noBranch|)) (-569) (-433 |#1|)) (T -32)) +((-1337 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1068 *4)) (-4 *3 (-569)))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-1068 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1068 (-558))) (-4 *4 (-569)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1068 (-558))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-886)) (-5 *1 (-32 *4 *5)))) (-1335 (*1 *2 *3 *2) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) +(-10 -7 (-15 -3683 (|#2| (-1201 |#2|) (-1207))) (-15 -4105 ((-115) (-115))) (-15 -2478 ((-114) (-115))) (-15 -1335 (|#2| (-1201 |#2|) |#2|)) (-15 -1336 ((-886) (-661 |#2|))) (IF (|has| |#1| (-1068 (-558))) (PROGN (-15 ** (|#2| |#2| (-419 (-558)))) (-15 -1750 ((-1201 |#2|) (-628 |#2|))) (-15 -3685 (|#2| |#2|)) (-15 -1337 (|#2| |#1| (-558)))) |%noBranch|)) +((-4236 (($) 10 T ELT)) (-1338 (((-114) $ $) 8 T ELT)) (-3905 (((-114) $) 15 T ELT))) +(((-33 |#1|) (-10 -8 (-15 -4236 (|#1|)) (-15 -3905 ((-114) |#1|)) (-15 -1338 ((-114) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4236 (|#1|)) (-15 -3905 ((-114) |#1|)) (-15 -1338 ((-114) |#1| |#1|))) +((-4236 (($) 7 T CONST)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-3902 (($ $) 10 T ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) (((-34) (-142)) (T -34)) -((-1340 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-3906 (*1 *1 *1) (-4 *1 (-34))) (-4079 (*1 *1) (-4 *1 (-34))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4240 (*1 *1) (-4 *1 (-34))) (-4473 (*1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-34)) (-5 *2 (-793))))) -(-13 (-1249) (-10 -8 (-15 -1340 ((-114) $ $)) (-15 -3906 ($ $)) (-15 -4079 ($)) (-15 -3909 ((-114) $)) (-15 -4240 ($) -4468) (IF (|has| $ (-6 -4511)) (-15 -4473 ((-793) $)) |%noBranch|))) -(((-1249) . T)) -((-4004 (($ $) 11 T ELT)) (-4002 (($ $) 10 T ELT)) (-4006 (($ $) 9 T ELT)) (-4007 (($ $) 8 T ELT)) (-4005 (($ $) 7 T ELT)) (-4003 (($ $) 6 T ELT))) +((-1338 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-3902 (*1 *1 *1) (-4 *1 (-34))) (-4075 (*1 *1) (-4 *1 (-34))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4236 (*1 *1) (-4 *1 (-34))) (-4469 (*1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-34)) (-5 *2 (-791))))) +(-13 (-1247) (-10 -8 (-15 -1338 ((-114) $ $)) (-15 -3902 ($ $)) (-15 -4075 ($)) (-15 -3905 ((-114) $)) (-15 -4236 ($) -4464) (IF (|has| $ (-6 -4507)) (-15 -4469 ((-791) $)) |%noBranch|))) +(((-1247) . T)) +((-4000 (($ $) 11 T ELT)) (-3998 (($ $) 10 T ELT)) (-4002 (($ $) 9 T ELT)) (-4003 (($ $) 8 T ELT)) (-4001 (($ $) 7 T ELT)) (-3999 (($ $) 6 T ELT))) (((-35) (-142)) (T -35)) -((-4004 (*1 *1 *1) (-4 *1 (-35))) (-4002 (*1 *1 *1) (-4 *1 (-35))) (-4006 (*1 *1 *1) (-4 *1 (-35))) (-4007 (*1 *1 *1) (-4 *1 (-35))) (-4005 (*1 *1 *1) (-4 *1 (-35))) (-4003 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -4003 ($ $)) (-15 -4005 ($ $)) (-15 -4007 ($ $)) (-15 -4006 ($ $)) (-15 -4002 ($ $)) (-15 -4004 ($ $)))) -((-3053 (((-114) $ $) 19 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-3908 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 133 T ELT)) (-4311 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 156 T ELT)) (-4313 (($ $) 154 T ELT)) (-4113 (($) 77 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 76 T ELT)) (-2427 (((-1305) $ |#1| |#1|) 104 (|has| $ (-6 -4512)) ELT) (((-1305) $ (-560) (-560)) 186 (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 167 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 220 T ELT) (((-114) $) 214 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-1945 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 211 (|has| $ (-6 -4512)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3948 (((-114) $ (-793)) 203 T ELT)) (-3512 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 142 (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 163 (|has| $ (-6 -4512)) ELT)) (-4302 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 165 (|has| $ (-6 -4512)) ELT)) (-4305 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 161 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 197 (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-1266 (-560)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 168 (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #1="last" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 166 (|has| $ (-6 -4512)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #3="first" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 162 (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #4="value" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 141 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 140 (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 49 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 227 T ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 59 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 183 (|has| $ (-6 -4511)) ELT)) (-4312 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 155 T ELT)) (-2460 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 212 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 222 T ELT)) (-4315 (($ $ (-793)) 150 T ELT) (($ $) 148 T ELT)) (-2608 (($ $) 225 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-1479 (($ $) 62 (-4043 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511)))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 50 (|has| $ (-6 -4511)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 231 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 226 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 58 (|has| $ (-6 -4511)) ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 185 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 182 (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 60 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 57 (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 56 (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 184 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 181 (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 180 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 198 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) 196 T ELT)) (-3949 (((-114) $) 200 T ELT)) (-3925 (((-560) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 219 T ELT) (((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 218 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT) (((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) 217 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 30 (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) 84 (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 122 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 131 T ELT)) (-3514 (((-114) $ $) 139 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-4130 (($ (-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 176 T ELT)) (-4235 (((-114) $ (-793)) 202 T ELT)) (-2429 ((|#1| $) 101 (|has| |#1| (-872)) ELT) (((-560) $) 188 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 204 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3343 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-4024 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 29 (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) 85 (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 123 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT) (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 125 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 ((|#1| $) 100 (|has| |#1| (-872)) ELT) (((-560) $) 189 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 205 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 34 (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4512)) ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 118 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 117 T ELT)) (-4048 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 236 T ELT)) (-4232 (((-114) $ (-793)) 201 T ELT)) (-3517 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 136 T ELT)) (-4033 (((-114) $) 132 T ELT)) (-3746 (((-1191) $) 22 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-4314 (($ $ (-793)) 153 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 151 T ELT)) (-2898 (((-663 |#1|) $) 67 T ELT)) (-2461 (((-114) |#1| $) 68 T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 43 T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 44 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) 230 T ELT) (($ $ $ (-560)) 229 T ELT)) (-2531 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) 170 T ELT) (($ $ $ (-560)) 169 T ELT)) (-2432 (((-663 |#1|) $) 98 T ELT) (((-663 (-560)) $) 191 T ELT)) (-2433 (((-114) |#1| $) 97 T ELT) (((-114) (-560) $) 192 T ELT)) (-3747 (((-1152) $) 21 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-4317 ((|#2| $) 102 (|has| |#1| (-872)) ELT) (($ $ (-793)) 147 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 145 T ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #6#) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 179 T ELT)) (-2428 (($ $ |#2|) 103 (|has| $ (-6 -4512)) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 187 (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 45 T ELT)) (-3950 (((-114) $) 199 T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 32 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 120 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 23 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 129 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 128 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 127 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) 126 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 190 (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-2434 (((-663 |#2|) $) 96 T ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 193 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 195 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) 194 T ELT) (($ $ (-1266 (-560))) 177 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #4#) 134 T ELT)) (-3516 (((-560) $ $) 137 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 52 T ELT)) (-1726 (($ $ (-560)) 233 T ELT) (($ $ (-1266 (-560))) 232 T ELT)) (-2532 (($ $ (-560)) 172 T ELT) (($ $ (-1266 (-560))) 171 T ELT)) (-4149 (((-114) $) 135 T ELT)) (-4308 (($ $) 159 T ELT)) (-4306 (($ $) 160 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) 158 T ELT)) (-4310 (($ $) 157 T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) |#2| $) 86 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 124 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 121 (|has| $ (-6 -4511)) ELT)) (-1946 (($ $ $ (-560)) 213 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549)))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 54 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 178 T ELT)) (-4307 (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-4318 (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 175 T ELT) (($ (-663 $)) 174 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4462 (((-888) $) 17 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888)))) ELT)) (-4028 (((-663 $) $) 130 T ELT)) (-3515 (((-114) $ $) 138 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-1389 (((-114) $ $) 20 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 46 T ELT)) (-1341 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") |#1| $) 116 T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 33 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 119 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 206 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3052 (((-114) $ $) 208 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3540 (((-114) $ $) 18 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-3171 (((-114) $ $) 207 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3172 (((-114) $ $) 209 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-36 |#1| |#2|) (-142) (-1133) (-1133)) (T -36)) -((-1341 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-2 (|:| -4376 *3) (|:| -2300 *4)))))) -(-13 (-1226 |t#1| |t#2|) (-688 (-2 (|:| -4376 |t#1|) (|:| -2300 |t#2|))) (-10 -8 (-15 -1341 ((-3 (-2 (|:| -4376 |t#1|) (|:| -2300 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((-102) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-1133)) (|has| |#2| (-102))) ((-632 (-888)) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-1133)) (|has| |#2| (-632 (-888)))) ((-153 #2=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((-633 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ((-233 #1#) . T) ((-242 #1#) . T) ((-298 #3=(-560) #2#) . T) ((-298 (-1266 (-560)) $) . T) ((-298 |#1| |#2|) . T) ((-300 #3# #2#) . T) ((-300 |#1| |#2|) . T) ((-321 #2#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-294 #2#) . T) ((-385 #2#) . T) ((-503 #2#) . T) ((-503 |#2|) . T) ((-618 #3# #2#) . T) ((-618 |#1| |#2|) . T) ((-528 #2# #2#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-629 |#1| |#2|) . T) ((-673 #2#) . T) ((-688 #2#) . T) ((-872) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ((-875) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ((-1042 #2#) . T) ((-1133) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) (|has| |#2| (-1133))) ((-1182 #2#) . T) ((-1226 |#1| |#2|) . T) ((-1249) . T) ((-1288 #2#) . T)) -((-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-38 |#2|) (-175)) (T -37)) -NIL -(-10 -8 (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +((-4000 (*1 *1 *1) (-4 *1 (-35))) (-3998 (*1 *1 *1) (-4 *1 (-35))) (-4002 (*1 *1 *1) (-4 *1 (-35))) (-4003 (*1 *1 *1) (-4 *1 (-35))) (-4001 (*1 *1 *1) (-4 *1 (-35))) (-3999 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3999 ($ $)) (-15 -4001 ($ $)) (-15 -4003 ($ $)) (-15 -4002 ($ $)) (-15 -3998 ($ $)) (-15 -4000 ($ $)))) +((-3049 (((-114) $ $) 19 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-3904 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 133 T ELT)) (-4307 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 156 T ELT)) (-4309 (($ $) 154 T ELT)) (-4109 (($) 77 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 76 T ELT)) (-2423 (((-1303) $ |#1| |#1|) 104 (|has| $ (-6 -4508)) ELT) (((-1303) $ (-558) (-558)) 186 (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 167 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 220 T ELT) (((-114) $) 214 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-1943 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 211 (|has| $ (-6 -4508)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3944 (((-114) $ (-791)) 203 T ELT)) (-3508 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 142 (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 163 (|has| $ (-6 -4508)) ELT)) (-4298 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 165 (|has| $ (-6 -4508)) ELT)) (-4301 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 161 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 197 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-1264 (-558)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 168 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #1="last" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 166 (|has| $ (-6 -4508)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #3="first" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 162 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #4="value" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 141 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 140 (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 49 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 227 T ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 59 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 183 (|has| $ (-6 -4507)) ELT)) (-4308 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 155 T ELT)) (-2456 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 212 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 222 T ELT)) (-4311 (($ $ (-791)) 150 T ELT) (($ $) 148 T ELT)) (-2604 (($ $) 225 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-1477 (($ $) 62 (-4039 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507)))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 50 (|has| $ (-6 -4507)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 231 T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 226 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 58 (|has| $ (-6 -4507)) ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 185 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 182 (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 60 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 57 (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 56 (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 184 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 181 (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 180 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 198 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) 196 T ELT)) (-3945 (((-114) $) 200 T ELT)) (-3921 (((-558) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 219 T ELT) (((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 218 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT) (((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) 217 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 30 (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) 84 (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 122 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 131 T ELT)) (-3510 (((-114) $ $) 139 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-4126 (($ (-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 176 T ELT)) (-4231 (((-114) $ (-791)) 202 T ELT)) (-2425 ((|#1| $) 101 (|has| |#1| (-870)) ELT) (((-558) $) 188 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 204 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3339 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-4020 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 29 (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) 85 (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 123 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT) (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 125 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 ((|#1| $) 100 (|has| |#1| (-870)) ELT) (((-558) $) 189 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 205 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4508)) ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 118 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 117 T ELT)) (-4044 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 236 T ELT)) (-4228 (((-114) $ (-791)) 201 T ELT)) (-3513 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 136 T ELT)) (-4029 (((-114) $) 132 T ELT)) (-3742 (((-1189) $) 22 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-4310 (($ $ (-791)) 153 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 151 T ELT)) (-2894 (((-661 |#1|) $) 67 T ELT)) (-2457 (((-114) |#1| $) 68 T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 43 T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 44 T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) 230 T ELT) (($ $ $ (-558)) 229 T ELT)) (-2527 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) 170 T ELT) (($ $ $ (-558)) 169 T ELT)) (-2428 (((-661 |#1|) $) 98 T ELT) (((-661 (-558)) $) 191 T ELT)) (-2429 (((-114) |#1| $) 97 T ELT) (((-114) (-558) $) 192 T ELT)) (-3743 (((-1150) $) 21 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-4313 ((|#2| $) 102 (|has| |#1| (-870)) ELT) (($ $ (-791)) 147 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 145 T ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #6#) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 179 T ELT)) (-2424 (($ $ |#2|) 103 (|has| $ (-6 -4508)) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 187 (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 45 T ELT)) (-3946 (((-114) $) 199 T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 32 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 120 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) 26 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 25 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 24 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 23 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 129 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 128 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 127 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) 126 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 190 (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-2430 (((-661 |#2|) $) 96 T ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 193 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 195 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) 194 T ELT) (($ $ (-1264 (-558))) 177 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #4#) 134 T ELT)) (-3512 (((-558) $ $) 137 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 52 T ELT)) (-1724 (($ $ (-558)) 233 T ELT) (($ $ (-1264 (-558))) 232 T ELT)) (-2528 (($ $ (-558)) 172 T ELT) (($ $ (-1264 (-558))) 171 T ELT)) (-4145 (((-114) $) 135 T ELT)) (-4304 (($ $) 159 T ELT)) (-4302 (($ $) 160 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) 158 T ELT)) (-4306 (($ $) 157 T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) |#2| $) 86 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 124 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 121 (|has| $ (-6 -4507)) ELT)) (-1944 (($ $ $ (-558)) 213 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547)))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 54 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 178 T ELT)) (-4303 (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-4314 (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 175 T ELT) (($ (-661 $)) 174 T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4458 (((-886) $) 17 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886)))) ELT)) (-4024 (((-661 $) $) 130 T ELT)) (-3511 (((-114) $ $) 138 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-1387 (((-114) $ $) 20 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 46 T ELT)) (-1339 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") |#1| $) 116 T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 33 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 119 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 206 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3048 (((-114) $ $) 208 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3536 (((-114) $ $) 18 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-3167 (((-114) $ $) 207 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3168 (((-114) $ $) 209 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-36 |#1| |#2|) (-142) (-1131) (-1131)) (T -36)) +((-1339 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| -4372 *3) (|:| -2296 *4)))))) +(-13 (-1224 |t#1| |t#2|) (-686 (-2 (|:| -4372 |t#1|) (|:| -2296 |t#2|))) (-10 -8 (-15 -1339 ((-3 (-2 (|:| -4372 |t#1|) (|:| -2296 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((-102) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-1131)) (|has| |#2| (-102))) ((-630 (-886)) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-1131)) (|has| |#2| (-630 (-886)))) ((-153 #2=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((-631 (-547)) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ((-233 #1#) . T) ((-242 #1#) . T) ((-298 #3=(-558) #2#) . T) ((-298 (-1264 (-558)) $) . T) ((-298 |#1| |#2|) . T) ((-300 #3# #2#) . T) ((-300 |#1| |#2|) . T) ((-321 #2#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-294 #2#) . T) ((-385 #2#) . T) ((-501 #2#) . T) ((-501 |#2|) . T) ((-616 #3# #2#) . T) ((-616 |#1| |#2|) . T) ((-526 #2# #2#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-627 |#1| |#2|) . T) ((-671 #2#) . T) ((-686 #2#) . T) ((-870) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ((-873) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ((-1040 #2#) . T) ((-1131) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) (|has| |#2| (-1131))) ((-1180 #2#) . T) ((-1224 |#1| |#2|) . T) ((-1247) . T) ((-1286 #2#) . T)) +((-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-38 |#2|) (-175)) (T -37)) +NIL +(-10 -8 (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) (((-38 |#1|) (-142) (-175)) (T -38)) NIL -(-13 (-1081) (-739 |t#1|) (-635 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3924 (((-419 |#1|) |#1|) 41 T ELT)) (-4248 (((-419 |#1|) |#1|) 30 T ELT) (((-419 |#1|) |#1| (-663 (-48))) 33 T ELT)) (-1342 (((-114) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -4248 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3924 ((-419 |#1|) |#1|)) (-15 -1342 ((-114) |#1|))) (-1275 (-48))) (T -39)) -((-1342 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48))))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48))))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48))))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48)))))) -(-10 -7 (-15 -4248 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3924 ((-419 |#1|) |#1|)) (-15 -1342 ((-114) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1862 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2287 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2285 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2004 (((-711 (-421 |#2|)) (-1299 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-3836 (((-421 |#2|) $) NIL T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1800 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3624 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1876 (((-114)) NIL T ELT)) (-1875 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-3 (-421 |#2|) #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-2014 (($ (-1299 (-421 |#2|)) (-1299 $)) NIL T ELT) (($ (-1299 (-421 |#2|))) 61 T ELT) (($ (-1299 |#2|) |#2|) 131 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3049 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2003 (((-711 (-421 |#2|)) $ (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-1867 (((-1299 $) (-1299 $)) NIL T ELT)) (-4358 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-1854 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1879 (((-114) |#1| |#1|) NIL T ELT)) (-3597 (((-949)) NIL T ELT)) (-3481 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1874 (((-114)) NIL T ELT)) (-1873 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-3048 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4009 (($ $) NIL T ELT)) (-3320 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1895 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1988 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4239 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4288 (((-949) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-856 (-949)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3883 (((-793)) NIL T ELT)) (-1868 (((-1299 $) (-1299 $)) 106 T ELT)) (-3620 (((-421 |#2|) $) NIL T ELT)) (-1855 (((-663 (-976 |#1|)) (-1209)) NIL (|has| |#1| (-376)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2238 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2234 (((-949) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-3566 ((|#3| $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-1299 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1343 (((-1305) (-793)) 84 T ELT)) (-1863 (((-711 (-421 |#2|))) 56 T ELT)) (-1865 (((-711 (-421 |#2|))) 49 T ELT)) (-2888 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1860 (($ (-1299 |#2|) |#2|) 132 T ELT)) (-1864 (((-711 (-421 |#2|))) 50 T ELT)) (-1866 (((-711 (-421 |#2|))) 48 T ELT)) (-1859 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1861 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1872 (((-1299 $)) 47 T ELT)) (-4434 (((-1299 $)) 46 T ELT)) (-1871 (((-114) $) NIL T ELT)) (-1870 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3952 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-2645 (($ (-949)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1857 (((-3 |#2| #3="failed")) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1881 (((-793)) NIL T ELT)) (-2654 (($) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4248 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1799 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4316 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1858 (((-3 |#2| #3#)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4273 (((-421 |#2|) (-1299 $)) NIL T ELT) (((-421 |#2|)) 44 T ELT)) (-1989 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4274 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2653 (((-711 (-421 |#2|)) (-1299 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3689 ((|#3|) 55 T ELT)) (-1889 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3728 (((-1299 (-421 |#2|)) $ (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 (-421 |#2|)) $) 62 T ELT) (((-711 (-421 |#2|)) (-1299 $)) 107 T ELT)) (-4488 (((-1299 (-421 |#2|)) $) NIL T ELT) (($ (-1299 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1869 (((-1299 $) (-1299 $)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3189 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-713 $) $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2852 ((|#3| $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1878 (((-114)) 42 T ELT)) (-1877 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1856 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1880 (((-114)) NIL T ELT)) (-3145 (($) 17 T CONST)) (-3151 (($) 27 T CONST)) (-3156 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1343 ((-1305) (-793))))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) |#3|) (T -40)) -((-1343 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1275 *4)) (-5 *2 (-1305)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1275 (-421 *5))) (-14 *7 *6)))) -(-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1343 ((-1305) (-793))))) -((-1344 ((|#2| |#2|) 47 T ELT)) (-1349 ((|#2| |#2|) 138 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1070 (-560))))) ELT)) (-1348 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1070 (-560))))) ELT)) (-1347 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1070 (-560))))) ELT)) (-1350 ((|#2| (-115) |#2| (-793)) 134 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1070 (-560))))) ELT)) (-1346 (((-1203 |#2|) |#2|) 44 T ELT)) (-1345 ((|#2| |#2| (-663 (-630 |#2|))) 18 T ELT) ((|#2| |#2| (-663 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1344 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -1345 (|#2| |#2| |#2|)) (-15 -1345 (|#2| |#2| (-663 |#2|))) (-15 -1345 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -1346 ((-1203 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1070 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1347 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1350 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|)) (-571) (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 |#1| (-630 $)) $)) (-15 -3484 ((-1157 |#1| (-630 $)) $)) (-15 -4462 ($ (-1157 |#1| (-630 $))))))) (T -41)) -((-1350 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1070 (-560)))) (-4 *5 (-571)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *5 (-630 $)) $)) (-15 -3484 ((-1157 *5 (-630 $)) $)) (-15 -4462 ($ (-1157 *5 (-630 $))))))))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $))))))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $))))))))) (-1347 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $))))))))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1203 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) (-15 -3484 ((-1157 *4 (-630 $)) $)) (-15 -4462 ($ (-1157 *4 (-630 $))))))))) (-1345 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-630 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) (-15 -3484 ((-1157 *4 (-630 $)) $)) (-15 -4462 ($ (-1157 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-1345 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) (-15 -3484 ((-1157 *4 (-630 $)) $)) (-15 -4462 ($ (-1157 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-1345 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $))))))))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $))))))))) (-1344 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) (-15 -3484 ((-1157 *3 (-630 $)) $)) (-15 -4462 ($ (-1157 *3 (-630 $)))))))))) -(-10 -7 (-15 -1344 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -1345 (|#2| |#2| |#2|)) (-15 -1345 (|#2| |#2| (-663 |#2|))) (-15 -1345 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -1346 ((-1203 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1070 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1347 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1350 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|)) -((-4248 (((-419 (-1203 |#3|)) (-1203 |#3|) (-663 (-48))) 23 T ELT) (((-419 |#3|) |#3| (-663 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4248 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4248 ((-419 (-1203 |#3|)) (-1203 |#3|) (-663 (-48))))) (-872) (-817) (-980 (-48) |#2| |#1|)) (T -42)) -((-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-872)) (-4 *6 (-817)) (-4 *7 (-980 (-48) *6 *5)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-872)) (-4 *6 (-817)) (-5 *2 (-419 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-980 (-48) *6 *5))))) -(-10 -7 (-15 -4248 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4248 ((-419 (-1203 |#3|)) (-1203 |#3|) (-663 (-48))))) -((-1354 (((-793) |#2|) 70 T ELT)) (-1352 (((-793) |#2|) 74 T ELT)) (-1367 (((-663 |#2|)) 37 T ELT)) (-1351 (((-793) |#2|) 73 T ELT)) (-1353 (((-793) |#2|) 69 T ELT)) (-1355 (((-793) |#2|) 72 T ELT)) (-1365 (((-663 (-711 |#1|))) 65 T ELT)) (-1360 (((-663 |#2|)) 60 T ELT)) (-1358 (((-663 |#2|) |#2|) 48 T ELT)) (-1362 (((-663 |#2|)) 62 T ELT)) (-1361 (((-663 |#2|)) 61 T ELT)) (-1364 (((-663 (-711 |#1|))) 53 T ELT)) (-1359 (((-663 |#2|)) 59 T ELT)) (-1357 (((-663 |#2|) |#2|) 47 T ELT)) (-1356 (((-663 |#2|)) 55 T ELT)) (-1366 (((-663 (-711 |#1|))) 66 T ELT)) (-1363 (((-663 |#2|)) 64 T ELT)) (-2236 (((-1299 |#2|) (-1299 |#2|)) 99 (|has| |#1| (-319)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1351 ((-793) |#2|)) (-15 -1352 ((-793) |#2|)) (-15 -1353 ((-793) |#2|)) (-15 -1354 ((-793) |#2|)) (-15 -1355 ((-793) |#2|)) (-15 -1356 ((-663 |#2|))) (-15 -1357 ((-663 |#2|) |#2|)) (-15 -1358 ((-663 |#2|) |#2|)) (-15 -1359 ((-663 |#2|))) (-15 -1360 ((-663 |#2|))) (-15 -1361 ((-663 |#2|))) (-15 -1362 ((-663 |#2|))) (-15 -1363 ((-663 |#2|))) (-15 -1364 ((-663 (-711 |#1|)))) (-15 -1365 ((-663 (-711 |#1|)))) (-15 -1366 ((-663 (-711 |#1|)))) (-15 -1367 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -2236 ((-1299 |#2|) (-1299 |#2|))) |%noBranch|)) (-571) (-432 |#1|)) (T -43)) -((-2236 (*1 *2 *2) (-12 (-5 *2 (-1299 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-43 *3 *4)))) (-1367 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1366 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1365 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1364 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1363 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1362 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1361 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1360 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1359 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1356 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1354 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) -(-10 -7 (-15 -1351 ((-793) |#2|)) (-15 -1352 ((-793) |#2|)) (-15 -1353 ((-793) |#2|)) (-15 -1354 ((-793) |#2|)) (-15 -1355 ((-793) |#2|)) (-15 -1356 ((-663 |#2|))) (-15 -1357 ((-663 |#2|) |#2|)) (-15 -1358 ((-663 |#2|) |#2|)) (-15 -1359 ((-663 |#2|))) (-15 -1360 ((-663 |#2|))) (-15 -1361 ((-663 |#2|))) (-15 -1362 ((-663 |#2|))) (-15 -1363 ((-663 |#2|))) (-15 -1364 ((-663 (-711 |#1|)))) (-15 -1365 ((-663 (-711 |#1|)))) (-15 -1366 ((-663 (-711 |#1|)))) (-15 -1367 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -2236 ((-1299 |#2|) (-1299 |#2|))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1994 (((-3 $ #1="failed")) NIL (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (((-1299 (-711 |#1|)) (-1299 $)) NIL T ELT) (((-1299 (-711 |#1|))) 24 T ELT)) (-1944 (((-1299 $)) 52 T ELT)) (-4240 (($) NIL T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (|has| |#1| (-571)) ELT)) (-1918 (((-3 $ #1#)) NIL (|has| |#1| (-571)) ELT)) (-2010 (((-711 |#1|) (-1299 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-1942 ((|#1| $) NIL T ELT)) (-2008 (((-711 |#1|) $ (-1299 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2649 (((-3 $ #1#) $) NIL (|has| |#1| (-571)) ELT)) (-2125 (((-1203 (-976 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2652 (($ $ (-949)) NIL T ELT)) (-1940 ((|#1| $) NIL T ELT)) (-1920 (((-1203 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-2012 ((|#1| (-1299 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1938 (((-1203 |#1|) $) NIL T ELT)) (-1932 (((-114)) 99 T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) NIL T ELT) (($ (-1299 |#1|)) NIL T ELT)) (-3973 (((-3 $ #1#) $) 14 (|has| |#1| (-571)) ELT)) (-3597 (((-949)) 53 T ELT)) (-1929 (((-114)) NIL T ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1927 (((-114)) 101 T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (|has| |#1| (-571)) ELT)) (-1919 (((-3 $ #1#)) NIL (|has| |#1| (-571)) ELT)) (-2011 (((-711 |#1|) (-1299 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-1943 ((|#1| $) NIL T ELT)) (-2009 (((-711 |#1|) $ (-1299 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2650 (((-3 $ #1#) $) NIL (|has| |#1| (-571)) ELT)) (-2129 (((-1203 (-976 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-1941 ((|#1| $) NIL T ELT)) (-1921 (((-1203 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-2013 ((|#1| (-1299 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1939 (((-1203 |#1|) $) NIL T ELT)) (-1933 (((-114)) 98 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1924 (((-114)) 106 T ELT)) (-1926 (((-114)) 105 T ELT)) (-1928 (((-114)) 107 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1931 (((-114)) 100 T ELT)) (-4316 ((|#1| $ (-560)) 55 T ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 48 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#1|) $) 28 T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-4488 (((-1299 |#1|) $) NIL T ELT) (($ (-1299 |#1|)) NIL T ELT)) (-2117 (((-663 (-976 |#1|)) (-1299 $)) NIL T ELT) (((-663 (-976 |#1|))) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-1937 (((-114)) 95 T ELT)) (-4462 (((-888) $) 71 T ELT) (($ (-1299 |#1|)) 22 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 51 T ELT)) (-1922 (((-663 (-1299 |#1|))) NIL (|has| |#1| (-571)) ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-1935 (((-114)) 91 T ELT)) (-3030 (($ (-711 |#1|) $) 18 T ELT)) (-2837 (($ $ $) NIL T ELT)) (-1936 (((-114)) 97 T ELT)) (-1934 (((-114)) 92 T ELT)) (-1930 (((-114)) 90 T ELT)) (-3145 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1174 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-432 |#1|) (-670 (-1174 |#2| |#1|)) (-10 -8 (-15 -4462 ($ (-1299 |#1|))))) (-376) (-949) (-663 (-1209)) (-1299 (-711 |#1|))) (T -44)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-376)) (-14 *6 (-1299 (-711 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-663 (-1209)))))) -(-13 (-432 |#1|) (-670 (-1174 |#2| |#1|)) (-10 -8 (-15 -4462 ($ (-1299 |#1|))))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3908 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4311 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4313 (($ $) NIL T ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT) (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-1945 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872))) ELT)) (-3396 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3948 (((-114) $ (-793)) NIL T ELT)) (-3512 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 33 (|has| $ (-6 -4512)) ELT)) (-4302 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT)) (-4305 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 35 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-1266 (-560)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #1="last" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #3="first" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #4="value" (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4312 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2460 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-4315 (($ $ (-793)) NIL T ELT) (($ $) 29 T ELT)) (-2608 (($ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) NIL T ELT)) (-3949 (((-114) $) NIL T ELT)) (-3925 (((-560) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT) (((-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 20 (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 20 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-4130 (($ (-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL T ELT)) (-4235 (((-114) $ (-793)) NIL T ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT) (((-560) $) 38 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3343 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-4024 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT) (((-560) $) 40 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-4048 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL T ELT)) (-4232 (((-114) $ (-793)) NIL T ELT)) (-3517 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) 49 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4314 (($ $ (-793)) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2898 (((-663 |#1|) $) 22 T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2531 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT) (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT) (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT) (($ $ (-793)) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 27 T ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) #6#) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-3950 (((-114) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT) (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 19 T ELT)) (-3909 (((-114) $) 18 T ELT)) (-4079 (($) 14 T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $ #4#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-1610 (($) 13 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-1726 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-4308 (($ $) NIL T ELT)) (-4306 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) NIL T ELT)) (-4310 (($ $) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4307 (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-4318 (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-1341 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") |#1| $) 51 T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3171 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-872)) ELT)) (-4473 (((-793) $) 25 (|has| $ (-6 -4511)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1133) (-1133)) (T -45)) +(-13 (-1079) (-737 |t#1|) (-633 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3920 (((-417 |#1|) |#1|) 41 T ELT)) (-4244 (((-417 |#1|) |#1|) 30 T ELT) (((-417 |#1|) |#1| (-661 (-48))) 33 T ELT)) (-1340 (((-114) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -4244 ((-417 |#1|) |#1| (-661 (-48)))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3920 ((-417 |#1|) |#1|)) (-15 -1340 ((-114) |#1|))) (-1273 (-48))) (T -39)) +((-1340 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-3920 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) +(-10 -7 (-15 -4244 ((-417 |#1|) |#1| (-661 (-48)))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3920 ((-417 |#1|) |#1|)) (-15 -1340 ((-114) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1860 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2283 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2281 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2000 (((-709 (-419 |#2|)) (-1297 $)) NIL T ELT) (((-709 (-419 |#2|))) NIL T ELT)) (-3832 (((-419 |#2|) $) NIL T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1798 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3620 (((-791)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1874 (((-114)) NIL T ELT)) (-1873 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-2010 (($ (-1297 (-419 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-419 |#2|))) 61 T ELT) (($ (-1297 |#2|) |#2|) 131 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3045 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1999 (((-709 (-419 |#2|)) $ (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) (-709 $)) NIL T ELT)) (-1865 (((-1297 $) (-1297 $)) NIL T ELT)) (-4354 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-1852 (((-661 (-661 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-114) |#1| |#1|) NIL T ELT)) (-3593 (((-947)) NIL T ELT)) (-3477 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1872 (((-114)) NIL T ELT)) (-1871 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-3044 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4005 (($ $) NIL T ELT)) (-3316 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1893 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1984 (($ $ (-791)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4235 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4284 (((-947) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-854 (-947)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3879 (((-791)) NIL T ELT)) (-1866 (((-1297 $) (-1297 $)) 106 T ELT)) (-3616 (((-419 |#2|) $) NIL T ELT)) (-1853 (((-661 (-974 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2234 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2230 (((-947) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3562 ((|#3| $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-1297 $) $) NIL T ELT) (((-709 (-419 |#2|)) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1341 (((-1303) (-791)) 84 T ELT)) (-1861 (((-709 (-419 |#2|))) 56 T ELT)) (-1863 (((-709 (-419 |#2|))) 49 T ELT)) (-2884 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1858 (($ (-1297 |#2|) |#2|) 132 T ELT)) (-1862 (((-709 (-419 |#2|))) 50 T ELT)) (-1864 (((-709 (-419 |#2|))) 48 T ELT)) (-1857 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1859 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1870 (((-1297 $)) 47 T ELT)) (-4430 (((-1297 $)) 46 T ELT)) (-1869 (((-114) $) NIL T ELT)) (-1868 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3948 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2641 (($ (-947)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1855 (((-3 |#2| #3="failed")) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1879 (((-791)) NIL T ELT)) (-2650 (($) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4244 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1797 (((-791) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4312 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1856 (((-3 |#2| #3#)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4269 (((-419 |#2|) (-1297 $)) NIL T ELT) (((-419 |#2|)) 44 T ELT)) (-1985 (((-791) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) "failed") $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4270 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2649 (((-709 (-419 |#2|)) (-1297 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3685 ((|#3|) 55 T ELT)) (-1887 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3724 (((-1297 (-419 |#2|)) $ (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-419 |#2|)) $) 62 T ELT) (((-709 (-419 |#2|)) (-1297 $)) 107 T ELT)) (-4484 (((-1297 (-419 |#2|)) $) NIL T ELT) (($ (-1297 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1867 (((-1297 $) (-1297 $)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3185 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2848 ((|#3| $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1876 (((-114)) 42 T ELT)) (-1875 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1854 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1878 (((-114)) NIL T ELT)) (-3141 (($) 17 T CONST)) (-3147 (($) 27 T CONST)) (-3152 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1341 ((-1303) (-791))))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) |#3|) (T -40)) +((-1341 (*1 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-419 *5))) (-14 *7 *6)))) +(-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1341 ((-1303) (-791))))) +((-1342 ((|#2| |#2|) 47 T ELT)) (-1347 ((|#2| |#2|) 138 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1068 (-558))))) ELT)) (-1346 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1068 (-558))))) ELT)) (-1345 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1068 (-558))))) ELT)) (-1348 ((|#2| (-115) |#2| (-791)) 134 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1068 (-558))))) ELT)) (-1344 (((-1201 |#2|) |#2|) 44 T ELT)) (-1343 ((|#2| |#2| (-661 (-628 |#2|))) 18 T ELT) ((|#2| |#2| (-661 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1342 (|#2| |#2|)) (-15 -1343 (|#2| |#2|)) (-15 -1343 (|#2| |#2| |#2|)) (-15 -1343 (|#2| |#2| (-661 |#2|))) (-15 -1343 (|#2| |#2| (-661 (-628 |#2|)))) (-15 -1344 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1068 (-558)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1345 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -1347 (|#2| |#2|)) (-15 -1348 (|#2| (-115) |#2| (-791)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 |#1| (-628 $)) $)) (-15 -3480 ((-1155 |#1| (-628 $)) $)) (-15 -4458 ($ (-1155 |#1| (-628 $))))))) (T -41)) +((-1348 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1068 (-558)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *5 (-628 $)) $)) (-15 -3480 ((-1155 *5 (-628 $)) $)) (-15 -4458 ($ (-1155 *5 (-628 $))))))))) (-1347 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $))))))))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $))))))))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $))))))))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) (-15 -3480 ((-1155 *4 (-628 $)) $)) (-15 -4458 ($ (-1155 *4 (-628 $))))))))) (-1343 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-628 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) (-15 -3480 ((-1155 *4 (-628 $)) $)) (-15 -4458 ($ (-1155 *4 (-628 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1343 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) (-15 -3480 ((-1155 *4 (-628 $)) $)) (-15 -4458 ($ (-1155 *4 (-628 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1343 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $))))))))) (-1343 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $))))))))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) (-15 -3480 ((-1155 *3 (-628 $)) $)) (-15 -4458 ($ (-1155 *3 (-628 $)))))))))) +(-10 -7 (-15 -1342 (|#2| |#2|)) (-15 -1343 (|#2| |#2|)) (-15 -1343 (|#2| |#2| |#2|)) (-15 -1343 (|#2| |#2| (-661 |#2|))) (-15 -1343 (|#2| |#2| (-661 (-628 |#2|)))) (-15 -1344 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1068 (-558)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1345 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -1347 (|#2| |#2|)) (-15 -1348 (|#2| (-115) |#2| (-791)))) |%noBranch|) |%noBranch|)) +((-4244 (((-417 (-1201 |#3|)) (-1201 |#3|) (-661 (-48))) 23 T ELT) (((-417 |#3|) |#3| (-661 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4244 ((-417 |#3|) |#3| (-661 (-48)))) (-15 -4244 ((-417 (-1201 |#3|)) (-1201 |#3|) (-661 (-48))))) (-870) (-815) (-978 (-48) |#2| |#1|)) (T -42)) +((-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-4 *5 (-870)) (-4 *6 (-815)) (-4 *7 (-978 (-48) *6 *5)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-4 *5 (-870)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-978 (-48) *6 *5))))) +(-10 -7 (-15 -4244 ((-417 |#3|) |#3| (-661 (-48)))) (-15 -4244 ((-417 (-1201 |#3|)) (-1201 |#3|) (-661 (-48))))) +((-1352 (((-791) |#2|) 70 T ELT)) (-1350 (((-791) |#2|) 74 T ELT)) (-1365 (((-661 |#2|)) 37 T ELT)) (-1349 (((-791) |#2|) 73 T ELT)) (-1351 (((-791) |#2|) 69 T ELT)) (-1353 (((-791) |#2|) 72 T ELT)) (-1363 (((-661 (-709 |#1|))) 65 T ELT)) (-1358 (((-661 |#2|)) 60 T ELT)) (-1356 (((-661 |#2|) |#2|) 48 T ELT)) (-1360 (((-661 |#2|)) 62 T ELT)) (-1359 (((-661 |#2|)) 61 T ELT)) (-1362 (((-661 (-709 |#1|))) 53 T ELT)) (-1357 (((-661 |#2|)) 59 T ELT)) (-1355 (((-661 |#2|) |#2|) 47 T ELT)) (-1354 (((-661 |#2|)) 55 T ELT)) (-1364 (((-661 (-709 |#1|))) 66 T ELT)) (-1361 (((-661 |#2|)) 64 T ELT)) (-2232 (((-1297 |#2|) (-1297 |#2|)) 99 (|has| |#1| (-319)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1349 ((-791) |#2|)) (-15 -1350 ((-791) |#2|)) (-15 -1351 ((-791) |#2|)) (-15 -1352 ((-791) |#2|)) (-15 -1353 ((-791) |#2|)) (-15 -1354 ((-661 |#2|))) (-15 -1355 ((-661 |#2|) |#2|)) (-15 -1356 ((-661 |#2|) |#2|)) (-15 -1357 ((-661 |#2|))) (-15 -1358 ((-661 |#2|))) (-15 -1359 ((-661 |#2|))) (-15 -1360 ((-661 |#2|))) (-15 -1361 ((-661 |#2|))) (-15 -1362 ((-661 (-709 |#1|)))) (-15 -1363 ((-661 (-709 |#1|)))) (-15 -1364 ((-661 (-709 |#1|)))) (-15 -1365 ((-661 |#2|))) (IF (|has| |#1| (-319)) (-15 -2232 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) +((-2232 (*1 *2 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-1365 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1364 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1363 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1362 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1361 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1360 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1359 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1358 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1357 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1356 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1354 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1350 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -1349 ((-791) |#2|)) (-15 -1350 ((-791) |#2|)) (-15 -1351 ((-791) |#2|)) (-15 -1352 ((-791) |#2|)) (-15 -1353 ((-791) |#2|)) (-15 -1354 ((-661 |#2|))) (-15 -1355 ((-661 |#2|) |#2|)) (-15 -1356 ((-661 |#2|) |#2|)) (-15 -1357 ((-661 |#2|))) (-15 -1358 ((-661 |#2|))) (-15 -1359 ((-661 |#2|))) (-15 -1360 ((-661 |#2|))) (-15 -1361 ((-661 |#2|))) (-15 -1362 ((-661 (-709 |#1|)))) (-15 -1363 ((-661 (-709 |#1|)))) (-15 -1364 ((-661 (-709 |#1|)))) (-15 -1365 ((-661 |#2|))) (IF (|has| |#1| (-319)) (-15 -2232 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1990 (((-3 $ #1="failed")) NIL (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (((-1297 (-709 |#1|)) (-1297 $)) NIL T ELT) (((-1297 (-709 |#1|))) 24 T ELT)) (-1942 (((-1297 $)) 52 T ELT)) (-4236 (($) NIL T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1916 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-2006 (((-709 |#1|) (-1297 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-1940 ((|#1| $) NIL T ELT)) (-2004 (((-709 |#1|) $ (-1297 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2645 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2121 (((-1201 (-974 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2648 (($ $ (-947)) NIL T ELT)) (-1938 ((|#1| $) NIL T ELT)) (-1918 (((-1201 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-2008 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1936 (((-1201 |#1|) $) NIL T ELT)) (-1930 (((-114)) 99 T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-3969 (((-3 $ #1#) $) 14 (|has| |#1| (-569)) ELT)) (-3593 (((-947)) 53 T ELT)) (-1927 (((-114)) NIL T ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-1925 (((-114)) 101 T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1917 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-2007 (((-709 |#1|) (-1297 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-1941 ((|#1| $) NIL T ELT)) (-2005 (((-709 |#1|) $ (-1297 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2646 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2125 (((-1201 (-974 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-1939 ((|#1| $) NIL T ELT)) (-1919 (((-1201 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-2009 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1937 (((-1201 |#1|) $) NIL T ELT)) (-1931 (((-114)) 98 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1922 (((-114)) 106 T ELT)) (-1924 (((-114)) 105 T ELT)) (-1926 (((-114)) 107 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1929 (((-114)) 100 T ELT)) (-4312 ((|#1| $ (-558)) 55 T ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 48 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 28 T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-4484 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-2113 (((-661 (-974 |#1|)) (-1297 $)) NIL T ELT) (((-661 (-974 |#1|))) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-1935 (((-114)) 95 T ELT)) (-4458 (((-886) $) 71 T ELT) (($ (-1297 |#1|)) 22 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 51 T ELT)) (-1920 (((-661 (-1297 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-1933 (((-114)) 91 T ELT)) (-3026 (($ (-709 |#1|) $) 18 T ELT)) (-2833 (($ $ $) NIL T ELT)) (-1934 (((-114)) 97 T ELT)) (-1932 (((-114)) 92 T ELT)) (-1928 (((-114)) 90 T ELT)) (-3141 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1172 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-668 (-1172 |#2| |#1|)) (-10 -8 (-15 -4458 ($ (-1297 |#1|))))) (-376) (-947) (-661 (-1207)) (-1297 (-709 |#1|))) (T -44)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-709 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-947)) (-14 *5 (-661 (-1207)))))) +(-13 (-430 |#1|) (-668 (-1172 |#2| |#1|)) (-10 -8 (-15 -4458 ($ (-1297 |#1|))))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3904 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4307 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4309 (($ $) NIL T ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT) (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-1943 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870))) ELT)) (-3392 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3944 (((-114) $ (-791)) NIL T ELT)) (-3508 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 33 (|has| $ (-6 -4508)) ELT)) (-4298 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT)) (-4301 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 35 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-1264 (-558)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #1="last" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #3="first" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #4="value" (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4308 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2456 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-4311 (($ $ (-791)) NIL T ELT) (($ $) 29 T ELT)) (-2604 (($ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3921 (((-558) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT) (((-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 20 (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 20 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-4126 (($ (-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL T ELT)) (-4231 (((-114) $ (-791)) NIL T ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-558) $) 38 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3339 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-4020 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-558) $) 40 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-4044 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL T ELT)) (-4228 (((-114) $ (-791)) NIL T ELT)) (-3513 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) 49 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4310 (($ $ (-791)) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2894 (((-661 |#1|) $) 22 T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2527 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT) (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT) (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT) (($ $ (-791)) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 27 T ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) #6#) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT) (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 19 T ELT)) (-3905 (((-114) $) 18 T ELT)) (-4075 (($) 14 T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $ #4#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-1608 (($) 13 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-1724 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-4302 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) NIL T ELT)) (-4306 (($ $) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4303 (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-4314 (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-1339 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") |#1| $) 51 T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3167 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-870)) ELT)) (-4469 (((-791) $) 25 (|has| $ (-6 -4507)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1131) (-1131)) (T -45)) NIL (-36 |#1| |#2|) -((-4453 (((-114) $) 12 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-421 (-560)) $) 25 T ELT) (($ $ (-421 (-560))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4453 ((-114) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) (-47 |#2| |#3|) (-1081) (-816)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4453 ((-114) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| |#2|) 78 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-4464 ((|#2| $) 81 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4193 ((|#1| $ |#2|) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-47 |#1| |#2|) (-142) (-1081) (-816)) (T -47)) -((-3678 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) (-3381 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)))) (-4453 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-114)))) (-3380 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) (-4475 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) (-4465 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *2 (-376))))) -(-13 (-1081) (-111 |t#1| |t#1|) (-10 -8 (-15 -3678 (|t#1| $)) (-15 -3381 ($ $)) (-15 -4464 (|t#2| $)) (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (-15 -4453 ((-114) $)) (-15 -3380 ($ |t#1| |t#2|)) (-15 -4475 ($ $)) (-15 -4193 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -4465 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-571)) (-6 (-571)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-6 (-38 (-421 (-560)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-1762 (((-663 $) (-1203 $) (-1209)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-976 $)) NIL T ELT)) (-1334 (($ (-1203 $) (-1209)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-976 $)) NIL T ELT)) (-3692 (((-114) $) 9 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1755 (((-663 (-630 $)) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1759 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1335 (((-663 $) (-1203 $) (-1209)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-976 $)) NIL T ELT)) (-3687 (($ (-1203 $) (-1209)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-976 $)) NIL T ELT)) (-3661 (((-3 (-630 $) #1="failed") $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT)) (-3660 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-421 (-560)))) (|:| |vec| (-1299 (-421 (-560))))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-4358 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3058 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1754 (((-663 (-115)) $) NIL T ELT)) (-4109 (((-115) (-115)) NIL T ELT)) (-2655 (((-114) $) 11 T ELT)) (-3160 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-3485 (((-1157 (-560) (-630 $)) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3620 (((-1203 $) (-1203 $) (-630 $)) NIL T ELT) (((-1203 $) (-1203 $) (-663 (-630 $))) NIL T ELT) (($ $ (-630 $)) NIL T ELT) (($ $ (-663 (-630 $))) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-1752 (((-1203 $) (-630 $)) NIL (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1757 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-421 (-560)))) (|:| |vec| (-1299 (-421 (-560))))) (-1299 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1756 (((-663 (-630 $)) $) NIL T ELT)) (-2463 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3118 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3088 (((-793) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1753 (((-114) $ $) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1209) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1209) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1758 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3484 (((-1157 (-560) (-630 $)) $) NIL T ELT)) (-3689 (($ $) NIL (|has| $ (-1081)) ELT)) (-4488 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1157 (-560) (-630 $))) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-3075 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2482 (((-114) (-115)) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 6 T CONST)) (-3151 (($) 10 T CONST)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3540 (((-114) $ $) 13 T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-48) (-13 (-310) (-27) (-1070 (-560)) (-1070 (-421 (-560))) (-660 (-560)) (-1052) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -4462 ($ (-1157 (-560) (-630 $)))) (-15 -3485 ((-1157 (-560) (-630 $)) $)) (-15 -3484 ((-1157 (-560) (-630 $)) $)) (-15 -4358 ($ $)) (-15 -3620 ((-1203 $) (-1203 $) (-630 $))) (-15 -3620 ((-1203 $) (-1203 $) (-663 (-630 $)))) (-15 -3620 ($ $ (-630 $))) (-15 -3620 ($ $ (-663 (-630 $))))))) (T -48)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-4358 (*1 *1 *1) (-5 *1 (-48))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48))))) -(-13 (-310) (-27) (-1070 (-560)) (-1070 (-421 (-560))) (-660 (-560)) (-1052) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -4462 ($ (-1157 (-560) (-630 $)))) (-15 -3485 ((-1157 (-560) (-630 $)) $)) (-15 -3484 ((-1157 (-560) (-630 $)) $)) (-15 -4358 ($ $)) (-15 -3620 ((-1203 $) (-1203 $) (-630 $))) (-15 -3620 ((-1203 $) (-1203 $) (-663 (-630 $)))) (-15 -3620 ($ $ (-630 $))) (-15 -3620 ($ $ (-663 (-630 $)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2163 (((-663 (-520)) $) 17 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 7 T ELT)) (-3737 (((-1214) $) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-49) (-13 (-1133) (-10 -8 (-15 -2163 ((-663 (-520)) $)) (-15 -3737 ((-1214) $))))) (T -49)) -((-2163 (*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-49))))) -(-13 (-1133) (-10 -8 (-15 -2163 ((-663 (-520)) $)) (-15 -3737 ((-1214) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 85 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3149 (((-114) $) 30 T ELT)) (-3661 (((-3 |#1| "failed") $) 33 T ELT)) (-3660 ((|#1| $) 34 T ELT)) (-4475 (($ $) 40 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3678 ((|#1| $) 31 T ELT)) (-1599 (($ $) 74 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1598 (((-114) $) 43 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($ (-793)) 72 T ELT)) (-4459 (($ (-663 (-560))) 73 T ELT)) (-4464 (((-793) $) 44 T ELT)) (-4462 (((-888) $) 91 T ELT) (($ (-560)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4193 ((|#1| $ $) 28 T ELT)) (-3614 (((-793)) 71 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 45 T CONST)) (-3151 (($) 17 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 64 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-640 |#1|) (-1070 |#1|) (-10 -8 (-15 -3678 (|#1| $)) (-15 -1599 ($ $)) (-15 -4475 ($ $)) (-15 -4193 (|#1| $ $)) (-15 -2654 ($ (-793))) (-15 -4459 ($ (-663 (-560)))) (-15 -1598 ((-114) $)) (-15 -3149 ((-114) $)) (-15 -4464 ((-793) $)) (-15 -4474 ($ (-1 |#1| |#1|) $)))) (-1081) (-663 (-1209))) (T -50)) -((-3678 (*1 *2 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1209))))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1081)) (-14 *3 (-663 (-1209))))) (-4475 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1081)) (-14 *3 (-663 (-1209))))) (-4193 (*1 *2 *1 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1209))))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) (-14 *4 (-663 (-1209))))) (-4459 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) (-14 *4 (-663 (-1209))))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) (-14 *4 (-663 (-1209))))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) (-14 *4 (-663 (-1209))))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) (-14 *4 (-663 (-1209))))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-50 *3 *4)) (-14 *4 (-663 (-1209)))))) -(-13 (-640 |#1|) (-1070 |#1|) (-10 -8 (-15 -3678 (|#1| $)) (-15 -1599 ($ $)) (-15 -4475 ($ $)) (-15 -4193 (|#1| $ $)) (-15 -2654 ($ (-793))) (-15 -4459 ($ (-663 (-560)))) (-15 -1598 ((-114) $)) (-15 -3149 ((-114) $)) (-15 -4464 ((-793) $)) (-15 -4474 ($ (-1 |#1| |#1|) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1368 (((-795) $) 8 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1369 (((-1135) $) 10 T ELT)) (-4462 (((-888) $) 15 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1370 (($ (-1135) (-795)) 16 T ELT)) (-3540 (((-114) $ $) 12 T ELT))) -(((-51) (-13 (-1133) (-10 -8 (-15 -1370 ($ (-1135) (-795))) (-15 -1369 ((-1135) $)) (-15 -1368 ((-795) $))))) (T -51)) -((-1370 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-795)) (-5 *1 (-51)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-51)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51))))) -(-13 (-1133) (-10 -8 (-15 -1370 ($ (-1135) (-795))) (-15 -1369 ((-1135) $)) (-15 -1368 ((-795) $)))) -((-3149 (((-114) (-51)) 18 T ELT)) (-3661 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3660 ((|#1| (-51)) 21 T ELT)) (-4462 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -4462 ((-51) |#1|)) (-15 -3661 ((-3 |#1| "failed") (-51))) (-15 -3149 ((-114) (-51))) (-15 -3660 (|#1| (-51)))) (-1249)) (T -52)) -((-3660 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1249)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1249)))) (-3661 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1249)))) (-4462 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1249))))) -(-10 -7 (-15 -4462 ((-51) |#1|)) (-15 -3661 ((-3 |#1| "failed") (-51))) (-15 -3149 ((-114) (-51))) (-15 -3660 (|#1| (-51)))) -((-3030 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3030 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1081) (-670 |#1|) (-877 |#1|)) (T -53)) -((-3030 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1081)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-877 *5))))) -(-10 -7 (-15 -3030 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1372 ((|#3| |#3| (-663 (-1209))) 44 T ELT)) (-1371 ((|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3| (-949)) 32 T ELT) ((|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1371 (|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3|)) (-15 -1371 (|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3| (-949))) (-15 -1372 (|#3| |#3| (-663 (-1209))))) (-1133) (-13 (-1081) (-912 |#1|) (-633 (-916 |#1|))) (-13 (-435 |#2|) (-912 |#1|) (-633 (-916 |#1|)))) (T -54)) -((-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) (-1371 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 (-1107 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1133)) (-4 *6 (-13 (-1081) (-912 *5) (-633 (-916 *5)))) (-4 *2 (-13 (-435 *6) (-912 *5) (-633 (-916 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1371 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-1107 *4 *5 *2))) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1371 (|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3|)) (-15 -1371 (|#3| (-663 (-1107 |#1| |#2| |#3|)) |#3| (-949))) (-15 -1372 (|#3| |#3| (-663 (-1209))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 14 T ELT)) (-3661 (((-3 (-793) "failed") $) 32 T ELT)) (-3660 (((-793) $) NIL T ELT)) (-2655 (((-114) $) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) 18 T ELT)) (-4462 (((-888) $) 23 T ELT) (($ (-793)) 29 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1373 (($) 11 T CONST)) (-3540 (((-114) $ $) 20 T ELT))) -(((-55) (-13 (-1133) (-1070 (-793)) (-10 -8 (-15 -1373 ($) -4468) (-15 -3692 ((-114) $)) (-15 -2655 ((-114) $))))) (T -55)) -((-1373 (*1 *1) (-5 *1 (-55))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))) -(-13 (-1133) (-1070 (-793)) (-10 -8 (-15 -1373 ($) -4468) (-15 -3692 ((-114) $)) (-15 -2655 ((-114) $)))) -((-1375 (($ $ (-560) |#3|) 60 T ELT)) (-1374 (($ $ (-560) |#4|) 64 T ELT)) (-3600 ((|#3| $ (-560)) 73 T ELT)) (-3376 (((-663 |#2|) $) 41 T ELT)) (-3749 (((-114) |#2| $) 68 T ELT)) (-2174 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2428 (($ $ |#2|) 46 T ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4316 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) 29 T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 35 T ELT) (((-793) |#2| $) 70 T ELT)) (-3906 (($ $) 45 T ELT)) (-3599 ((|#4| $ (-560)) 76 T ELT)) (-4462 (((-888) $) 82 T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-3540 (((-114) $ $) 67 T ELT)) (-4473 (((-793) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1374 (|#1| |#1| (-560) |#4|)) (-15 -1375 (|#1| |#1| (-560) |#3|)) (-15 -3376 ((-663 |#2|) |#1|)) (-15 -3599 (|#4| |#1| (-560))) (-15 -3600 (|#3| |#1| (-560))) (-15 -4316 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560))) (-15 -2428 (|#1| |#1| |#2|)) (-15 -3749 ((-114) |#2| |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4473 ((-793) |#1|)) (-15 -3906 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1249) (-385 |#2|) (-385 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1374 (|#1| |#1| (-560) |#4|)) (-15 -1375 (|#1| |#1| (-560) |#3|)) (-15 -3376 ((-663 |#2|) |#1|)) (-15 -3599 (|#4| |#1| (-560))) (-15 -3600 (|#3| |#1| (-560))) (-15 -4316 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560))) (-15 -2428 (|#1| |#1| |#2|)) (-15 -3749 ((-114) |#2| |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4473 ((-793) |#1|)) (-15 -3906 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) 48 T ELT)) (-1375 (($ $ (-560) |#2|) 46 T ELT)) (-1374 (($ $ (-560) |#3|) 45 T ELT)) (-4240 (($) 7 T CONST)) (-3600 ((|#2| $ (-560)) 50 T ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) 47 T ELT)) (-3601 ((|#1| $ (-560) (-560)) 52 T ELT)) (-3376 (((-663 |#1|) $) 30 T ELT)) (-3603 (((-793) $) 55 T ELT)) (-4130 (($ (-793) (-793) |#1|) 61 T ELT)) (-3602 (((-793) $) 54 T ELT)) (-3607 (((-560) $) 59 T ELT)) (-3605 (((-560) $) 57 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3606 (((-560) $) 58 T ELT)) (-3604 (((-560) $) 56 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) 60 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) (-560)) 53 T ELT) ((|#1| $ (-560) (-560) |#1|) 51 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-3599 ((|#3| $ (-560)) 49 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-57 |#1| |#2| |#3|) (-142) (-1249) (-385 |t#1|) (-385 |t#1|)) (T -57)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4130 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1249)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2428 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1249)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1249)))) (-3601 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1249)))) (-4316 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3599 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 *3)))) (-4304 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1731 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1249)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1374 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2174 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4474 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4474 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(-13 (-503 |t#1|) (-10 -8 (-6 -4512) (-6 -4511) (-15 -4130 ($ (-793) (-793) |t#1|)) (-15 -2428 ($ $ |t#1|)) (-15 -3607 ((-560) $)) (-15 -3606 ((-560) $)) (-15 -3605 ((-560) $)) (-15 -3604 ((-560) $)) (-15 -3603 ((-793) $)) (-15 -3602 ((-793) $)) (-15 -4316 (|t#1| $ (-560) (-560))) (-15 -3601 (|t#1| $ (-560) (-560))) (-15 -4316 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3600 (|t#2| $ (-560))) (-15 -3599 (|t#3| $ (-560))) (-15 -3376 ((-663 |t#1|) $)) (-15 -4304 (|t#1| $ (-560) (-560) |t#1|)) (-15 -1731 (|t#1| $ (-560) (-560) |t#1|)) (-15 -1375 ($ $ (-560) |t#2|)) (-15 -1374 ($ $ (-560) |t#3|)) (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (-15 -2174 ($ (-1 |t#1| |t#1|) $)) (-15 -4474 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4474 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1376 (($ (-663 |#1|)) 11 T ELT) (($ (-793) |#1|) 14 T ELT)) (-4130 (($ (-793) |#1|) 13 T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 10 T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1376 ($ (-663 |#1|))) (-15 -1376 ($ (-793) |#1|)))) (-1249)) (T -58)) -((-1376 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-58 *3)))) (-1376 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-58 *3)) (-4 *3 (-1249))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1376 ($ (-663 |#1|))) (-15 -1376 ($ (-793) |#1|)))) -((-4357 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4358 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4474 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -4357 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4474 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1249) (-1249)) (T -59)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-59 *5 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -(-10 -7 (-15 -4357 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4474 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-1375 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-1374 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3600 (((-58 |#1|) $ (-560)) NIL T ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3601 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3603 (((-793) $) NIL T ELT)) (-4130 (($ (-793) (-793) |#1|) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3599 (((-58 |#1|) $ (-560)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4512))) (-1249)) (T -60)) -NIL -(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4512))) -((-3661 (((-3 $ #1="failed") (-326 (-391))) 41 T ELT) (((-3 $ #1#) (-326 (-560))) 46 T ELT) (((-3 $ #1#) (-976 (-391))) 50 T ELT) (((-3 $ #1#) (-976 (-560))) 54 T ELT) (((-3 $ #1#) (-421 (-976 (-391)))) 36 T ELT) (((-3 $ #1#) (-421 (-976 (-560)))) 29 T ELT)) (-3660 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-560))) 44 T ELT) (($ (-976 (-391))) 48 T ELT) (($ (-976 (-560))) 52 T ELT) (($ (-421 (-976 (-391)))) 34 T ELT) (($ (-421 (-976 (-560)))) 26 T ELT)) (-3886 (((-1305) $) 76 T ELT)) (-4462 (((-888) $) 69 T ELT) (($ (-663 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 64 T ELT) (($ (-352 (-4036 (QUOTE X)) (-4036) (-721))) 25 T ELT))) -(((-61 |#1|) (-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036 (QUOTE X)) (-4036) (-721)))))) (-1209)) (T -61)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-352 (-4036 (QUOTE X)) (-4036) (-721))) (-5 *1 (-61 *3)) (-14 *3 (-1209))))) -(-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036 (QUOTE X)) (-4036) (-721)))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 74 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 63 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 94 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 84 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 52 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 39 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 70 T ELT) (($ (-1299 (-326 (-560)))) 59 T ELT) (($ (-1299 (-976 (-391)))) 90 T ELT) (($ (-1299 (-976 (-560)))) 80 T ELT) (($ (-1299 (-421 (-976 (-391))))) 48 T ELT) (($ (-1299 (-421 (-976 (-560))))) 32 T ELT)) (-3886 (((-1305) $) 124 T ELT)) (-4462 (((-888) $) 118 T ELT) (($ (-663 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 101 T ELT) (($ (-1299 (-352 (-4036 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4036) (-721)))) 31 T ELT))) -(((-62 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4036) (-721))))))) (-1209)) (T -62)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4036) (-721)))) (-5 *1 (-62 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4036) (-721))))))) -((-3886 (((-1305) $) 54 T ELT) (((-1305)) 55 T ELT)) (-4462 (((-888) $) 51 T ELT))) -(((-63 |#1|) (-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) (-1209)) (T -63)) -((-3886 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-63 *3)) (-14 *3 (-1209))))) -(-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 150 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 140 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 170 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 160 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 129 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 117 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 146 T ELT) (($ (-1299 (-326 (-560)))) 136 T ELT) (($ (-1299 (-976 (-391)))) 166 T ELT) (($ (-1299 (-976 (-560)))) 156 T ELT) (($ (-1299 (-421 (-976 (-391))))) 125 T ELT) (($ (-1299 (-421 (-976 (-560))))) 110 T ELT)) (-3886 (((-1305) $) 103 T ELT)) (-4462 (((-888) $) 97 T ELT) (($ (-663 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 33 T ELT) (($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721)))) 95 T ELT))) -(((-64 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721))))))) (-1209)) (T -64)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721)))) (-5 *1 (-64 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-711 (-326 (-391)))) 111 T ELT) (((-3 $ #1#) (-711 (-326 (-560)))) 99 T ELT) (((-3 $ #1#) (-711 (-976 (-391)))) 133 T ELT) (((-3 $ #1#) (-711 (-976 (-560)))) 122 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-391))))) 87 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-560))))) 73 T ELT)) (-3660 (($ (-711 (-326 (-391)))) 107 T ELT) (($ (-711 (-326 (-560)))) 95 T ELT) (($ (-711 (-976 (-391)))) 129 T ELT) (($ (-711 (-976 (-560)))) 118 T ELT) (($ (-711 (-421 (-976 (-391))))) 83 T ELT) (($ (-711 (-421 (-976 (-560))))) 66 T ELT)) (-3886 (((-1305) $) 141 T ELT)) (-4462 (((-888) $) 135 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 32 T ELT) (($ (-711 (-352 (-4036) (-4036 (QUOTE X) (QUOTE HESS)) (-721)))) 56 T ELT))) -(((-65 |#1|) (-13 (-398) (-635 (-711 (-352 (-4036) (-4036 (QUOTE X) (QUOTE HESS)) (-721))))) (-1209)) (T -65)) -NIL -(-13 (-398) (-635 (-711 (-352 (-4036) (-4036 (QUOTE X) (QUOTE HESS)) (-721))))) -((-3661 (((-3 $ #1="failed") (-326 (-391))) 60 T ELT) (((-3 $ #1#) (-326 (-560))) 65 T ELT) (((-3 $ #1#) (-976 (-391))) 69 T ELT) (((-3 $ #1#) (-976 (-560))) 73 T ELT) (((-3 $ #1#) (-421 (-976 (-391)))) 55 T ELT) (((-3 $ #1#) (-421 (-976 (-560)))) 48 T ELT)) (-3660 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-560))) 63 T ELT) (($ (-976 (-391))) 67 T ELT) (($ (-976 (-560))) 71 T ELT) (($ (-421 (-976 (-391)))) 53 T ELT) (($ (-421 (-976 (-560)))) 45 T ELT)) (-3886 (((-1305) $) 82 T ELT)) (-4462 (((-888) $) 76 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 32 T ELT) (($ (-352 (-4036) (-4036 (QUOTE XC)) (-721))) 40 T ELT))) -(((-66 |#1|) (-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE XC)) (-721)))))) (-1209)) (T -66)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-352 (-4036) (-4036 (QUOTE XC)) (-721))) (-5 *1 (-66 *3)) (-14 *3 (-1209))))) -(-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE XC)) (-721)))))) -((-3886 (((-1305) $) 65 T ELT)) (-4462 (((-888) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 55 T ELT))) -(((-67 |#1|) (-396) (-1209)) (T -67)) +((-4449 (((-114) $) 12 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4449 ((-114) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) (-47 |#2| |#3|) (-1079) (-814)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4449 ((-114) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| |#2|) 78 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4460 ((|#2| $) 81 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4189 ((|#1| $ |#2|) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-47 |#1| |#2|) (-142) (-1079) (-814)) (T -47)) +((-3674 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)))) (-4449 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-114)))) (-3376 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) (-4471 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) (-4189 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) (-4461 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *2 (-376))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (-15 -3674 (|t#1| $)) (-15 -3377 ($ $)) (-15 -4460 (|t#2| $)) (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (-15 -4449 ((-114) $)) (-15 -3376 ($ |t#1| |t#2|)) (-15 -4471 ($ $)) (-15 -4189 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -4461 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-6 (-38 (-419 (-558)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-1760 (((-661 $) (-1201 $) (-1207)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-974 $)) NIL T ELT)) (-1332 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-974 $)) NIL T ELT)) (-3688 (((-114) $) 9 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1753 (((-661 (-628 $)) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1333 (((-661 $) (-1201 $) (-1207)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-974 $)) NIL T ELT)) (-3683 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-974 $)) NIL T ELT)) (-3657 (((-3 (-628 $) #1="failed") $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3656 (((-628 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-419 (-558)))) (|:| |vec| (-1297 (-419 (-558))))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-419 (-558))) (-709 $)) NIL T ELT)) (-4354 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3054 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1752 (((-661 (-115)) $) NIL T ELT)) (-4105 (((-115) (-115)) NIL T ELT)) (-2651 (((-114) $) 11 T ELT)) (-3156 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-3481 (((-1155 (-558) (-628 $)) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3616 (((-1201 $) (-1201 $) (-628 $)) NIL T ELT) (((-1201 $) (-1201 $) (-661 (-628 $))) NIL T ELT) (($ $ (-628 $)) NIL T ELT) (($ $ (-661 (-628 $))) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-1750 (((-1201 $) (-628 $)) NIL (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1755 (((-3 (-628 $) "failed") $) NIL T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-419 (-558)))) (|:| |vec| (-1297 (-419 (-558))))) (-1297 $) $) NIL T ELT) (((-709 (-419 (-558))) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1754 (((-661 (-628 $)) $) NIL T ELT)) (-2459 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3114 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3084 (((-791) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1751 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1756 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3480 (((-1155 (-558) (-628 $)) $) NIL T ELT)) (-3685 (($ $) NIL (|has| $ (-1079)) ELT)) (-4484 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1155 (-558) (-628 $))) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-3071 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2478 (((-114) (-115)) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 6 T CONST)) (-3147 (($) 10 T CONST)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3536 (((-114) $ $) 13 T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT))) +(((-48) (-13 (-310) (-27) (-1068 (-558)) (-1068 (-419 (-558))) (-658 (-558)) (-1050) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4458 ($ (-1155 (-558) (-628 $)))) (-15 -3481 ((-1155 (-558) (-628 $)) $)) (-15 -3480 ((-1155 (-558) (-628 $)) $)) (-15 -4354 ($ $)) (-15 -3616 ((-1201 $) (-1201 $) (-628 $))) (-15 -3616 ((-1201 $) (-1201 $) (-661 (-628 $)))) (-15 -3616 ($ $ (-628 $))) (-15 -3616 ($ $ (-661 (-628 $))))))) (T -48)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-4354 (*1 *1 *1) (-5 *1 (-48))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-628 (-48))) (-5 *1 (-48)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-661 (-628 (-48)))) (-5 *1 (-48)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-628 (-48))) (-5 *1 (-48)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-48)))) (-5 *1 (-48))))) +(-13 (-310) (-27) (-1068 (-558)) (-1068 (-419 (-558))) (-658 (-558)) (-1050) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4458 ($ (-1155 (-558) (-628 $)))) (-15 -3481 ((-1155 (-558) (-628 $)) $)) (-15 -3480 ((-1155 (-558) (-628 $)) $)) (-15 -4354 ($ $)) (-15 -3616 ((-1201 $) (-1201 $) (-628 $))) (-15 -3616 ((-1201 $) (-1201 $) (-661 (-628 $)))) (-15 -3616 ($ $ (-628 $))) (-15 -3616 ($ $ (-661 (-628 $)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2159 (((-661 (-518)) $) 17 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 7 T ELT)) (-3733 (((-1212) $) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-49) (-13 (-1131) (-10 -8 (-15 -2159 ((-661 (-518)) $)) (-15 -3733 ((-1212) $))))) (T -49)) +((-2159 (*1 *2 *1) (-12 (-5 *2 (-661 (-518))) (-5 *1 (-49)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49))))) +(-13 (-1131) (-10 -8 (-15 -2159 ((-661 (-518)) $)) (-15 -3733 ((-1212) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 85 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3145 (((-114) $) 30 T ELT)) (-3657 (((-3 |#1| "failed") $) 33 T ELT)) (-3656 ((|#1| $) 34 T ELT)) (-4471 (($ $) 40 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3674 ((|#1| $) 31 T ELT)) (-1597 (($ $) 74 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1596 (((-114) $) 43 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($ (-791)) 72 T ELT)) (-4455 (($ (-661 (-558))) 73 T ELT)) (-4460 (((-791) $) 44 T ELT)) (-4458 (((-886) $) 91 T ELT) (($ (-558)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4189 ((|#1| $ $) 28 T ELT)) (-3610 (((-791)) 71 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 45 T CONST)) (-3147 (($) 17 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 64 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -3674 (|#1| $)) (-15 -1597 ($ $)) (-15 -4471 ($ $)) (-15 -4189 (|#1| $ $)) (-15 -2650 ($ (-791))) (-15 -4455 ($ (-661 (-558)))) (-15 -1596 ((-114) $)) (-15 -3145 ((-114) $)) (-15 -4460 ((-791) $)) (-15 -4470 ($ (-1 |#1| |#1|) $)))) (-1079) (-661 (-1207))) (T -50)) +((-3674 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1207))))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-661 (-1207))))) (-4471 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-661 (-1207))))) (-4189 (*1 *2 *1 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1207))))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-661 (-1207))))) (-4455 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-661 (-1207))))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-661 (-1207))))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-661 (-1207))))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-661 (-1207))))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) (-14 *4 (-661 (-1207)))))) +(-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -3674 (|#1| $)) (-15 -1597 ($ $)) (-15 -4471 ($ $)) (-15 -4189 (|#1| $ $)) (-15 -2650 ($ (-791))) (-15 -4455 ($ (-661 (-558)))) (-15 -1596 ((-114) $)) (-15 -3145 ((-114) $)) (-15 -4460 ((-791) $)) (-15 -4470 ($ (-1 |#1| |#1|) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1366 (((-793) $) 8 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1367 (((-1133) $) 10 T ELT)) (-4458 (((-886) $) 15 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1368 (($ (-1133) (-793)) 16 T ELT)) (-3536 (((-114) $ $) 12 T ELT))) +(((-51) (-13 (-1131) (-10 -8 (-15 -1368 ($ (-1133) (-793))) (-15 -1367 ((-1133) $)) (-15 -1366 ((-793) $))))) (T -51)) +((-1368 (*1 *1 *2 *3) (-12 (-5 *2 (-1133)) (-5 *3 (-793)) (-5 *1 (-51)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-51)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-51))))) +(-13 (-1131) (-10 -8 (-15 -1368 ($ (-1133) (-793))) (-15 -1367 ((-1133) $)) (-15 -1366 ((-793) $)))) +((-3145 (((-114) (-51)) 18 T ELT)) (-3657 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3656 ((|#1| (-51)) 21 T ELT)) (-4458 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -4458 ((-51) |#1|)) (-15 -3657 ((-3 |#1| "failed") (-51))) (-15 -3145 ((-114) (-51))) (-15 -3656 (|#1| (-51)))) (-1247)) (T -52)) +((-3656 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247)))) (-3657 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-4458 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -4458 ((-51) |#1|)) (-15 -3657 ((-3 |#1| "failed") (-51))) (-15 -3145 ((-114) (-51))) (-15 -3656 (|#1| (-51)))) +((-3026 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3026 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1079) (-668 |#1|) (-875 |#1|)) (T -53)) +((-3026 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-668 *5)) (-4 *5 (-1079)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5))))) +(-10 -7 (-15 -3026 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1370 ((|#3| |#3| (-661 (-1207))) 44 T ELT)) (-1369 ((|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3| (-947)) 32 T ELT) ((|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1369 (|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3|)) (-15 -1369 (|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3| (-947))) (-15 -1370 (|#3| |#3| (-661 (-1207))))) (-1131) (-13 (-1079) (-910 |#1|) (-631 (-914 |#1|))) (-13 (-433 |#2|) (-910 |#1|) (-631 (-914 |#1|)))) (T -54)) +((-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) (-1369 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-661 (-1105 *5 *6 *2))) (-5 *4 (-947)) (-4 *5 (-1131)) (-4 *6 (-13 (-1079) (-910 *5) (-631 (-914 *5)))) (-4 *2 (-13 (-433 *6) (-910 *5) (-631 (-914 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1369 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-1105 *4 *5 *2))) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1369 (|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3|)) (-15 -1369 (|#3| (-661 (-1105 |#1| |#2| |#3|)) |#3| (-947))) (-15 -1370 (|#3| |#3| (-661 (-1207))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 14 T ELT)) (-3657 (((-3 (-791) "failed") $) 32 T ELT)) (-3656 (((-791) $) NIL T ELT)) (-2651 (((-114) $) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) 18 T ELT)) (-4458 (((-886) $) 23 T ELT) (($ (-791)) 29 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1371 (($) 11 T CONST)) (-3536 (((-114) $ $) 20 T ELT))) +(((-55) (-13 (-1131) (-1068 (-791)) (-10 -8 (-15 -1371 ($) -4464) (-15 -3688 ((-114) $)) (-15 -2651 ((-114) $))))) (T -55)) +((-1371 (*1 *1) (-5 *1 (-55))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))) +(-13 (-1131) (-1068 (-791)) (-10 -8 (-15 -1371 ($) -4464) (-15 -3688 ((-114) $)) (-15 -2651 ((-114) $)))) +((-1373 (($ $ (-558) |#3|) 60 T ELT)) (-1372 (($ $ (-558) |#4|) 64 T ELT)) (-3596 ((|#3| $ (-558)) 73 T ELT)) (-3372 (((-661 |#2|) $) 41 T ELT)) (-3745 (((-114) |#2| $) 68 T ELT)) (-2170 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2424 (($ $ |#2|) 46 T ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4312 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) 29 T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 35 T ELT) (((-791) |#2| $) 70 T ELT)) (-3902 (($ $) 45 T ELT)) (-3595 ((|#4| $ (-558)) 76 T ELT)) (-4458 (((-886) $) 82 T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-3536 (((-114) $ $) 67 T ELT)) (-4469 (((-791) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1372 (|#1| |#1| (-558) |#4|)) (-15 -1373 (|#1| |#1| (-558) |#3|)) (-15 -3372 ((-661 |#2|) |#1|)) (-15 -3595 (|#4| |#1| (-558))) (-15 -3596 (|#3| |#1| (-558))) (-15 -4312 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558))) (-15 -2424 (|#1| |#1| |#2|)) (-15 -3745 ((-114) |#2| |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4469 ((-791) |#1|)) (-15 -3902 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1247) (-385 |#2|) (-385 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1372 (|#1| |#1| (-558) |#4|)) (-15 -1373 (|#1| |#1| (-558) |#3|)) (-15 -3372 ((-661 |#2|) |#1|)) (-15 -3595 (|#4| |#1| (-558))) (-15 -3596 (|#3| |#1| (-558))) (-15 -4312 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558))) (-15 -2424 (|#1| |#1| |#2|)) (-15 -3745 ((-114) |#2| |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4469 ((-791) |#1|)) (-15 -3902 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) 48 T ELT)) (-1373 (($ $ (-558) |#2|) 46 T ELT)) (-1372 (($ $ (-558) |#3|) 45 T ELT)) (-4236 (($) 7 T CONST)) (-3596 ((|#2| $ (-558)) 50 T ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3597 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3372 (((-661 |#1|) $) 30 T ELT)) (-3599 (((-791) $) 55 T ELT)) (-4126 (($ (-791) (-791) |#1|) 61 T ELT)) (-3598 (((-791) $) 54 T ELT)) (-3603 (((-558) $) 59 T ELT)) (-3601 (((-558) $) 57 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3602 (((-558) $) 58 T ELT)) (-3600 (((-558) $) 56 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) 60 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-3595 ((|#3| $ (-558)) 49 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-57 |#1| |#2| |#3|) (-142) (-1247) (-385 |t#1|) (-385 |t#1|)) (T -57)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4126 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-791)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2424 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-791)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-791)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-3597 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-4312 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3596 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3595 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-661 *3)))) (-4300 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1729 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1372 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4470 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4508) (-6 -4507) (-15 -4126 ($ (-791) (-791) |t#1|)) (-15 -2424 ($ $ |t#1|)) (-15 -3603 ((-558) $)) (-15 -3602 ((-558) $)) (-15 -3601 ((-558) $)) (-15 -3600 ((-558) $)) (-15 -3599 ((-791) $)) (-15 -3598 ((-791) $)) (-15 -4312 (|t#1| $ (-558) (-558))) (-15 -3597 (|t#1| $ (-558) (-558))) (-15 -4312 (|t#1| $ (-558) (-558) |t#1|)) (-15 -3596 (|t#2| $ (-558))) (-15 -3595 (|t#3| $ (-558))) (-15 -3372 ((-661 |t#1|) $)) (-15 -4300 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1729 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1373 ($ $ (-558) |t#2|)) (-15 -1372 ($ $ (-558) |t#3|)) (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (-15 -2170 ($ (-1 |t#1| |t#1|) $)) (-15 -4470 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4470 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1374 (($ (-661 |#1|)) 11 T ELT) (($ (-791) |#1|) 14 T ELT)) (-4126 (($ (-791) |#1|) 13 T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 10 T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1374 ($ (-661 |#1|))) (-15 -1374 ($ (-791) |#1|)))) (-1247)) (T -58)) +((-1374 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-58 *3)))) (-1374 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-58 *3)) (-4 *3 (-1247))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1374 ($ (-661 |#1|))) (-15 -1374 ($ (-791) |#1|)))) +((-4353 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4354 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4470 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -4353 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4470 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1247) (-1247)) (T -59)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-59 *5 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +(-10 -7 (-15 -4353 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4470 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1373 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-1372 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3596 (((-58 |#1|) $ (-558)) NIL T ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3597 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3599 (((-791) $) NIL T ELT)) (-4126 (($ (-791) (-791) |#1|) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3595 (((-58 |#1|) $ (-558)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4508))) (-1247)) (T -60)) +NIL +(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4508))) +((-3657 (((-3 $ #1="failed") (-326 (-391))) 41 T ELT) (((-3 $ #1#) (-326 (-558))) 46 T ELT) (((-3 $ #1#) (-974 (-391))) 50 T ELT) (((-3 $ #1#) (-974 (-558))) 54 T ELT) (((-3 $ #1#) (-419 (-974 (-391)))) 36 T ELT) (((-3 $ #1#) (-419 (-974 (-558)))) 29 T ELT)) (-3656 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-558))) 44 T ELT) (($ (-974 (-391))) 48 T ELT) (($ (-974 (-558))) 52 T ELT) (($ (-419 (-974 (-391)))) 34 T ELT) (($ (-419 (-974 (-558)))) 26 T ELT)) (-3882 (((-1303) $) 76 T ELT)) (-4458 (((-886) $) 69 T ELT) (($ (-661 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 64 T ELT) (($ (-352 (-4032 (QUOTE X)) (-4032) (-719))) 25 T ELT))) +(((-61 |#1|) (-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032 (QUOTE X)) (-4032) (-719)))))) (-1207)) (T -61)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-352 (-4032 (QUOTE X)) (-4032) (-719))) (-5 *1 (-61 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032 (QUOTE X)) (-4032) (-719)))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 74 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 63 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 94 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 84 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 52 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 39 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 70 T ELT) (($ (-1297 (-326 (-558)))) 59 T ELT) (($ (-1297 (-974 (-391)))) 90 T ELT) (($ (-1297 (-974 (-558)))) 80 T ELT) (($ (-1297 (-419 (-974 (-391))))) 48 T ELT) (($ (-1297 (-419 (-974 (-558))))) 32 T ELT)) (-3882 (((-1303) $) 124 T ELT)) (-4458 (((-886) $) 118 T ELT) (($ (-661 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 101 T ELT) (($ (-1297 (-352 (-4032 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4032) (-719)))) 31 T ELT))) +(((-62 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4032) (-719))))))) (-1207)) (T -62)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4032) (-719)))) (-5 *1 (-62 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4032) (-719))))))) +((-3882 (((-1303) $) 54 T ELT) (((-1303)) 55 T ELT)) (-4458 (((-886) $) 51 T ELT))) +(((-63 |#1|) (-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) (-1207)) (T -63)) +((-3882 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207))))) +(-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 150 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 140 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 170 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 160 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 129 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 117 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 146 T ELT) (($ (-1297 (-326 (-558)))) 136 T ELT) (($ (-1297 (-974 (-391)))) 166 T ELT) (($ (-1297 (-974 (-558)))) 156 T ELT) (($ (-1297 (-419 (-974 (-391))))) 125 T ELT) (($ (-1297 (-419 (-974 (-558))))) 110 T ELT)) (-3882 (((-1303) $) 103 T ELT)) (-4458 (((-886) $) 97 T ELT) (($ (-661 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 33 T ELT) (($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719)))) 95 T ELT))) +(((-64 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719))))))) (-1207)) (T -64)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719)))) (-5 *1 (-64 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-709 (-326 (-391)))) 111 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 99 T ELT) (((-3 $ #1#) (-709 (-974 (-391)))) 133 T ELT) (((-3 $ #1#) (-709 (-974 (-558)))) 122 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-391))))) 87 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-558))))) 73 T ELT)) (-3656 (($ (-709 (-326 (-391)))) 107 T ELT) (($ (-709 (-326 (-558)))) 95 T ELT) (($ (-709 (-974 (-391)))) 129 T ELT) (($ (-709 (-974 (-558)))) 118 T ELT) (($ (-709 (-419 (-974 (-391))))) 83 T ELT) (($ (-709 (-419 (-974 (-558))))) 66 T ELT)) (-3882 (((-1303) $) 141 T ELT)) (-4458 (((-886) $) 135 T ELT) (($ (-661 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 32 T ELT) (($ (-709 (-352 (-4032) (-4032 (QUOTE X) (QUOTE HESS)) (-719)))) 56 T ELT))) +(((-65 |#1|) (-13 (-398) (-633 (-709 (-352 (-4032) (-4032 (QUOTE X) (QUOTE HESS)) (-719))))) (-1207)) (T -65)) +NIL +(-13 (-398) (-633 (-709 (-352 (-4032) (-4032 (QUOTE X) (QUOTE HESS)) (-719))))) +((-3657 (((-3 $ #1="failed") (-326 (-391))) 60 T ELT) (((-3 $ #1#) (-326 (-558))) 65 T ELT) (((-3 $ #1#) (-974 (-391))) 69 T ELT) (((-3 $ #1#) (-974 (-558))) 73 T ELT) (((-3 $ #1#) (-419 (-974 (-391)))) 55 T ELT) (((-3 $ #1#) (-419 (-974 (-558)))) 48 T ELT)) (-3656 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-558))) 63 T ELT) (($ (-974 (-391))) 67 T ELT) (($ (-974 (-558))) 71 T ELT) (($ (-419 (-974 (-391)))) 53 T ELT) (($ (-419 (-974 (-558)))) 45 T ELT)) (-3882 (((-1303) $) 82 T ELT)) (-4458 (((-886) $) 76 T ELT) (($ (-661 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 32 T ELT) (($ (-352 (-4032) (-4032 (QUOTE XC)) (-719))) 40 T ELT))) +(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE XC)) (-719)))))) (-1207)) (T -66)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-352 (-4032) (-4032 (QUOTE XC)) (-719))) (-5 *1 (-66 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE XC)) (-719)))))) +((-3882 (((-1303) $) 65 T ELT)) (-4458 (((-886) $) 59 T ELT) (($ (-709 (-719))) 51 T ELT) (($ (-661 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 55 T ELT))) +(((-67 |#1|) (-396) (-1207)) (T -67)) NIL (-396) -((-3886 (((-1305) $) 66 T ELT)) (-4462 (((-888) $) 60 T ELT) (($ (-711 (-721))) 52 T ELT) (($ (-663 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 57 T ELT))) -(((-68 |#1|) (-396) (-1209)) (T -68)) +((-3882 (((-1303) $) 66 T ELT)) (-4458 (((-886) $) 60 T ELT) (($ (-709 (-719))) 52 T ELT) (($ (-661 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 57 T ELT))) +(((-68 |#1|) (-396) (-1207)) (T -68)) NIL (-396) -((-3886 (((-1305) $) NIL T ELT) (((-1305)) 33 T ELT)) (-4462 (((-888) $) NIL T ELT))) -(((-69 |#1|) (-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) (-1209)) (T -69)) -((-3886 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-69 *3)) (-14 *3 (-1209))))) -(-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) -((-3886 (((-1305) $) 75 T ELT)) (-4462 (((-888) $) 69 T ELT) (($ (-711 (-721))) 61 T ELT) (($ (-663 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 60 T ELT))) -(((-70 |#1|) (-396) (-1209)) (T -70)) +((-3882 (((-1303) $) NIL T ELT) (((-1303)) 33 T ELT)) (-4458 (((-886) $) NIL T ELT))) +(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) (-1207)) (T -69)) +((-3882 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207))))) +(-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) +((-3882 (((-1303) $) 75 T ELT)) (-4458 (((-886) $) 69 T ELT) (($ (-709 (-719))) 61 T ELT) (($ (-661 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 60 T ELT))) +(((-70 |#1|) (-396) (-1207)) (T -70)) NIL (-396) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 109 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 98 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 129 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 119 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 87 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 74 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 105 T ELT) (($ (-1299 (-326 (-560)))) 94 T ELT) (($ (-1299 (-976 (-391)))) 125 T ELT) (($ (-1299 (-976 (-560)))) 115 T ELT) (($ (-1299 (-421 (-976 (-391))))) 83 T ELT) (($ (-1299 (-421 (-976 (-560))))) 67 T ELT)) (-3886 (((-1305) $) 142 T ELT)) (-4462 (((-888) $) 136 T ELT) (($ (-663 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 59 T ELT) (($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))) 60 T ELT))) -(((-71 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))))))) (-1209)) (T -71)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))) (-5 *1 (-71 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))))))) -((-3886 (((-1305) $) 33 T ELT) (((-1305)) 32 T ELT)) (-4462 (((-888) $) 36 T ELT))) -(((-72 |#1|) (-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) (-1209)) (T -72)) -((-3886 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-72 *3)) (-14 *3 (-1209))))) -(-13 (-410) (-10 -7 (-15 -3886 ((-1305))))) -((-3886 (((-1305) $) 65 T ELT)) (-4462 (((-888) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 50 T ELT))) -(((-73 |#1|) (-396) (-1209)) (T -73)) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 109 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 98 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 129 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 119 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 87 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 74 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 105 T ELT) (($ (-1297 (-326 (-558)))) 94 T ELT) (($ (-1297 (-974 (-391)))) 125 T ELT) (($ (-1297 (-974 (-558)))) 115 T ELT) (($ (-1297 (-419 (-974 (-391))))) 83 T ELT) (($ (-1297 (-419 (-974 (-558))))) 67 T ELT)) (-3882 (((-1303) $) 142 T ELT)) (-4458 (((-886) $) 136 T ELT) (($ (-661 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 59 T ELT) (($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))) 60 T ELT))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))))))) (-1207)) (T -71)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))) (-5 *1 (-71 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))))))) +((-3882 (((-1303) $) 33 T ELT) (((-1303)) 32 T ELT)) (-4458 (((-886) $) 36 T ELT))) +(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) (-1207)) (T -72)) +((-3882 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207))))) +(-13 (-408) (-10 -7 (-15 -3882 ((-1303))))) +((-3882 (((-1303) $) 65 T ELT)) (-4458 (((-886) $) 59 T ELT) (($ (-709 (-719))) 51 T ELT) (($ (-661 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 50 T ELT))) +(((-73 |#1|) (-396) (-1207)) (T -73)) NIL (-396) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 127 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 117 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 147 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 137 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 107 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 95 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 123 T ELT) (($ (-1299 (-326 (-560)))) 113 T ELT) (($ (-1299 (-976 (-391)))) 143 T ELT) (($ (-1299 (-976 (-560)))) 133 T ELT) (($ (-1299 (-421 (-976 (-391))))) 103 T ELT) (($ (-1299 (-421 (-976 (-560))))) 88 T ELT)) (-3886 (((-1305) $) 80 T ELT)) (-4462 (((-888) $) 28 T ELT) (($ (-663 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 73 T ELT) (($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) 67 T ELT))) -(((-74 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))))) (-1209)) (T -74)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) (-5 *1 (-74 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-326 (-391))) 47 T ELT) (((-3 $ #1#) (-326 (-560))) 52 T ELT) (((-3 $ #1#) (-976 (-391))) 56 T ELT) (((-3 $ #1#) (-976 (-560))) 60 T ELT) (((-3 $ #1#) (-421 (-976 (-391)))) 42 T ELT) (((-3 $ #1#) (-421 (-976 (-560)))) 35 T ELT)) (-3660 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-560))) 50 T ELT) (($ (-976 (-391))) 54 T ELT) (($ (-976 (-560))) 58 T ELT) (($ (-421 (-976 (-391)))) 40 T ELT) (($ (-421 (-976 (-560)))) 32 T ELT)) (-3886 (((-1305) $) 81 T ELT)) (-4462 (((-888) $) 75 T ELT) (($ (-663 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 70 T ELT) (($ (-352 (-4036) (-4036 (QUOTE X)) (-721))) 31 T ELT))) -(((-75 |#1|) (-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE X)) (-721)))))) (-1209)) (T -75)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-352 (-4036) (-4036 (QUOTE X)) (-721))) (-5 *1 (-75 *3)) (-14 *3 (-1209))))) -(-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE X)) (-721)))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 132 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 121 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 152 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 142 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 110 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 97 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 128 T ELT) (($ (-1299 (-326 (-560)))) 117 T ELT) (($ (-1299 (-976 (-391)))) 148 T ELT) (($ (-1299 (-976 (-560)))) 138 T ELT) (($ (-1299 (-421 (-976 (-391))))) 106 T ELT) (($ (-1299 (-421 (-976 (-560))))) 90 T ELT)) (-3886 (((-1305) $) 82 T ELT)) (-4462 (((-888) $) 74 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) NIL T ELT) (($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE EPS)) (-4036 (QUOTE -4482)) (-721)))) 69 T ELT))) -(((-76 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE EPS)) (-4036 (QUOTE -4482)) (-721))))))) (-1209) (-1209) (-1209)) (T -76)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE X) (QUOTE EPS)) (-4036 (QUOTE -4482)) (-721)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1209)) (-14 *4 (-1209)) (-14 *5 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE EPS)) (-4036 (QUOTE -4482)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 138 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 127 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 158 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 148 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 116 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 103 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 134 T ELT) (($ (-1299 (-326 (-560)))) 123 T ELT) (($ (-1299 (-976 (-391)))) 154 T ELT) (($ (-1299 (-976 (-560)))) 144 T ELT) (($ (-1299 (-421 (-976 (-391))))) 112 T ELT) (($ (-1299 (-421 (-976 (-560))))) 96 T ELT)) (-3886 (((-1305) $) 88 T ELT)) (-4462 (((-888) $) 80 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) NIL T ELT) (($ (-1299 (-352 (-4036 (QUOTE EPS)) (-4036 (QUOTE YA) (QUOTE YB)) (-721)))) 75 T ELT))) -(((-77 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE EPS)) (-4036 (QUOTE YA) (QUOTE YB)) (-721))))))) (-1209) (-1209) (-1209)) (T -77)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE EPS)) (-4036 (QUOTE YA) (QUOTE YB)) (-721)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1209)) (-14 *4 (-1209)) (-14 *5 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE EPS)) (-4036 (QUOTE YA) (QUOTE YB)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-326 (-391))) 83 T ELT) (((-3 $ #1#) (-326 (-560))) 88 T ELT) (((-3 $ #1#) (-976 (-391))) 92 T ELT) (((-3 $ #1#) (-976 (-560))) 96 T ELT) (((-3 $ #1#) (-421 (-976 (-391)))) 78 T ELT) (((-3 $ #1#) (-421 (-976 (-560)))) 71 T ELT)) (-3660 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-560))) 86 T ELT) (($ (-976 (-391))) 90 T ELT) (($ (-976 (-560))) 94 T ELT) (($ (-421 (-976 (-391)))) 76 T ELT) (($ (-421 (-976 (-560)))) 68 T ELT)) (-3886 (((-1305) $) 63 T ELT)) (-4462 (((-888) $) 51 T ELT) (($ (-663 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 55 T ELT) (($ (-352 (-4036) (-4036 (QUOTE X)) (-721))) 48 T ELT))) -(((-78 |#1|) (-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE X)) (-721)))))) (-1209)) (T -78)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-352 (-4036) (-4036 (QUOTE X)) (-721))) (-5 *1 (-78 *3)) (-14 *3 (-1209))))) -(-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036) (-4036 (QUOTE X)) (-721)))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 90 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 79 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 110 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 100 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 68 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 55 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 86 T ELT) (($ (-1299 (-326 (-560)))) 75 T ELT) (($ (-1299 (-976 (-391)))) 106 T ELT) (($ (-1299 (-976 (-560)))) 96 T ELT) (($ (-1299 (-421 (-976 (-391))))) 64 T ELT) (($ (-1299 (-421 (-976 (-560))))) 48 T ELT)) (-3886 (((-1305) $) 126 T ELT)) (-4462 (((-888) $) 120 T ELT) (($ (-663 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 116 T ELT) (($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721)))) 39 T ELT))) -(((-79 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721))))))) (-1209)) (T -79)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721)))) (-5 *1 (-79 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE XC)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 151 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 141 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 171 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 161 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 131 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 119 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 147 T ELT) (($ (-1299 (-326 (-560)))) 137 T ELT) (($ (-1299 (-976 (-391)))) 167 T ELT) (($ (-1299 (-976 (-560)))) 157 T ELT) (($ (-1299 (-421 (-976 (-391))))) 127 T ELT) (($ (-1299 (-421 (-976 (-560))))) 112 T ELT)) (-3886 (((-1305) $) 105 T ELT)) (-4462 (((-888) $) 99 T ELT) (($ (-663 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 95 T ELT) (($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) 91 T ELT))) -(((-80 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))))) (-1209)) (T -80)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) (-5 *1 (-80 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 79 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 68 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 99 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 89 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 57 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 44 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 75 T ELT) (($ (-1299 (-326 (-560)))) 64 T ELT) (($ (-1299 (-976 (-391)))) 95 T ELT) (($ (-1299 (-976 (-560)))) 85 T ELT) (($ (-1299 (-421 (-976 (-391))))) 53 T ELT) (($ (-1299 (-421 (-976 (-560))))) 37 T ELT)) (-3886 (((-1305) $) 125 T ELT)) (-4462 (((-888) $) 119 T ELT) (($ (-663 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 114 T ELT) (($ (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721)))) 36 T ELT))) -(((-81 |#1|) (-13 (-455) (-635 (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))) (-1209)) (T -81)) -NIL -(-13 (-455) (-635 (-1299 (-352 (-4036) (-4036 (QUOTE X)) (-721))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 80 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 69 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 100 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 90 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 58 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 45 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 76 T ELT) (($ (-1299 (-326 (-560)))) 65 T ELT) (($ (-1299 (-976 (-391)))) 96 T ELT) (($ (-1299 (-976 (-560)))) 86 T ELT) (($ (-1299 (-421 (-976 (-391))))) 54 T ELT) (($ (-1299 (-421 (-976 (-560))))) 38 T ELT)) (-3886 (((-1305) $) 126 T ELT)) (-4462 (((-888) $) 120 T ELT) (($ (-663 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 115 T ELT) (($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))) 37 T ELT))) -(((-82 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))))))) (-1209)) (T -82)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))) (-5 *1 (-82 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 99 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 88 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 119 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 109 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 77 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 64 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 95 T ELT) (($ (-1299 (-326 (-560)))) 84 T ELT) (($ (-1299 (-976 (-391)))) 115 T ELT) (($ (-1299 (-976 (-560)))) 105 T ELT) (($ (-1299 (-421 (-976 (-391))))) 73 T ELT) (($ (-1299 (-421 (-976 (-560))))) 57 T ELT)) (-3886 (((-1305) $) 49 T ELT)) (-4462 (((-888) $) 43 T ELT) (($ (-663 (-342))) 33 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 39 T ELT) (($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721)))) 34 T ELT))) -(((-83 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721))))))) (-1209)) (T -83)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721)))) (-5 *1 (-83 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721))))))) -((-3661 (((-3 $ #1="failed") (-711 (-326 (-391)))) 118 T ELT) (((-3 $ #1#) (-711 (-326 (-560)))) 107 T ELT) (((-3 $ #1#) (-711 (-976 (-391)))) 140 T ELT) (((-3 $ #1#) (-711 (-976 (-560)))) 129 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-391))))) 96 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-560))))) 83 T ELT)) (-3660 (($ (-711 (-326 (-391)))) 114 T ELT) (($ (-711 (-326 (-560)))) 103 T ELT) (($ (-711 (-976 (-391)))) 136 T ELT) (($ (-711 (-976 (-560)))) 125 T ELT) (($ (-711 (-421 (-976 (-391))))) 92 T ELT) (($ (-711 (-421 (-976 (-560))))) 76 T ELT)) (-3886 (((-1305) $) 66 T ELT)) (-4462 (((-888) $) 53 T ELT) (($ (-663 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 58 T ELT) (($ (-711 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721)))) 50 T ELT))) -(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721))))))) (-1209)) (T -84)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721)))) (-5 *1 (-84 *3)) (-14 *3 (-1209))))) -(-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE X) (QUOTE -4482)) (-4036) (-721))))))) -((-3661 (((-3 $ #1="failed") (-711 (-326 (-391)))) 113 T ELT) (((-3 $ #1#) (-711 (-326 (-560)))) 101 T ELT) (((-3 $ #1#) (-711 (-976 (-391)))) 135 T ELT) (((-3 $ #1#) (-711 (-976 (-560)))) 124 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-391))))) 89 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-560))))) 75 T ELT)) (-3660 (($ (-711 (-326 (-391)))) 109 T ELT) (($ (-711 (-326 (-560)))) 97 T ELT) (($ (-711 (-976 (-391)))) 131 T ELT) (($ (-711 (-976 (-560)))) 120 T ELT) (($ (-711 (-421 (-976 (-391))))) 85 T ELT) (($ (-711 (-421 (-976 (-560))))) 68 T ELT)) (-3886 (((-1305) $) 60 T ELT)) (-4462 (((-888) $) 54 T ELT) (($ (-663 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 45 T ELT) (($ (-711 (-352 (-4036 (QUOTE X)) (-4036) (-721)))) 46 T ELT))) -(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE X)) (-4036) (-721))))))) (-1209)) (T -85)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-4036 (QUOTE X)) (-4036) (-721)))) (-5 *1 (-85 *3)) (-14 *3 (-1209))))) -(-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE X)) (-4036) (-721))))))) -((-3661 (((-3 $ #1="failed") (-1299 (-326 (-391)))) 105 T ELT) (((-3 $ #1#) (-1299 (-326 (-560)))) 94 T ELT) (((-3 $ #1#) (-1299 (-976 (-391)))) 125 T ELT) (((-3 $ #1#) (-1299 (-976 (-560)))) 115 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-391))))) 83 T ELT) (((-3 $ #1#) (-1299 (-421 (-976 (-560))))) 70 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 101 T ELT) (($ (-1299 (-326 (-560)))) 90 T ELT) (($ (-1299 (-976 (-391)))) 121 T ELT) (($ (-1299 (-976 (-560)))) 111 T ELT) (($ (-1299 (-421 (-976 (-391))))) 79 T ELT) (($ (-1299 (-421 (-976 (-560))))) 63 T ELT)) (-3886 (((-1305) $) 47 T ELT)) (-4462 (((-888) $) 41 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 53 T ELT) (($ (-1299 (-352 (-4036 (QUOTE X)) (-4036) (-721)))) 38 T ELT))) -(((-86 |#1|) (-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036) (-721))))))) (-1209)) (T -86)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-352 (-4036 (QUOTE X)) (-4036) (-721)))) (-5 *1 (-86 *3)) (-14 *3 (-1209))))) -(-13 (-455) (-10 -8 (-15 -4462 ($ (-1299 (-352 (-4036 (QUOTE X)) (-4036) (-721))))))) -((-3886 (((-1305) $) 45 T ELT)) (-4462 (((-888) $) 39 T ELT) (($ (-1299 (-721))) 99 T ELT) (($ (-663 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 34 T ELT))) -(((-87 |#1|) (-454) (-1209)) (T -87)) -NIL -(-454) -((-3661 (((-3 $ #1="failed") (-711 (-326 (-391)))) 116 T ELT) (((-3 $ #1#) (-711 (-326 (-560)))) 104 T ELT) (((-3 $ #1#) (-711 (-976 (-391)))) 138 T ELT) (((-3 $ #1#) (-711 (-976 (-560)))) 127 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-391))))) 92 T ELT) (((-3 $ #1#) (-711 (-421 (-976 (-560))))) 78 T ELT)) (-3660 (($ (-711 (-326 (-391)))) 112 T ELT) (($ (-711 (-326 (-560)))) 100 T ELT) (($ (-711 (-976 (-391)))) 134 T ELT) (($ (-711 (-976 (-560)))) 123 T ELT) (($ (-711 (-421 (-976 (-391))))) 88 T ELT) (($ (-711 (-421 (-976 (-560))))) 71 T ELT)) (-3886 (((-1305) $) 62 T ELT)) (-4462 (((-888) $) 56 T ELT) (($ (-663 (-342))) 46 T ELT) (($ (-342)) 53 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 51 T ELT) (($ (-711 (-352 (-4036 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4036) (-721)))) 47 T ELT))) -(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4036) (-721))))))) (-1209)) (T -88)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-4036 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4036) (-721)))) (-5 *1 (-88 *3)) (-14 *3 (-1209))))) -(-13 (-398) (-10 -8 (-15 -4462 ($ (-711 (-352 (-4036 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4036) (-721))))))) -((-3661 (((-3 $ #1="failed") (-326 (-391))) 48 T ELT) (((-3 $ #1#) (-326 (-560))) 53 T ELT) (((-3 $ #1#) (-976 (-391))) 57 T ELT) (((-3 $ #1#) (-976 (-560))) 61 T ELT) (((-3 $ #1#) (-421 (-976 (-391)))) 43 T ELT) (((-3 $ #1#) (-421 (-976 (-560)))) 36 T ELT)) (-3660 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-560))) 51 T ELT) (($ (-976 (-391))) 55 T ELT) (($ (-976 (-560))) 59 T ELT) (($ (-421 (-976 (-391)))) 41 T ELT) (($ (-421 (-976 (-560)))) 33 T ELT)) (-3886 (((-1305) $) 91 T ELT)) (-4462 (((-888) $) 85 T ELT) (($ (-663 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 77 T ELT) (($ (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))) 32 T ELT))) -(((-89 |#1|) (-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))))) (-1209)) (T -89)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721))) (-5 *1 (-89 *3)) (-14 *3 (-1209))))) -(-13 (-411) (-10 -8 (-15 -4462 ($ (-352 (-4036 (QUOTE X)) (-4036 (QUOTE -4482)) (-721)))))) -((-1378 (((-1299 (-711 |#1|)) (-711 |#1|)) 61 T ELT)) (-1377 (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 (-663 (-949))))) |#2| (-949)) 49 T ELT)) (-1379 (((-2 (|:| |minor| (-663 (-949))) (|:| -3770 |#2|) (|:| |minors| (-663 (-663 (-949)))) (|:| |ops| (-663 |#2|))) |#2| (-949)) 72 (|has| |#1| (-376)) ELT))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1377 ((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 (-663 (-949))))) |#2| (-949))) (-15 -1378 ((-1299 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -1379 ((-2 (|:| |minor| (-663 (-949))) (|:| -3770 |#2|) (|:| |minors| (-663 (-663 (-949)))) (|:| |ops| (-663 |#2|))) |#2| (-949))) |%noBranch|)) (-571) (-680 |#1|)) (T -90)) -((-1379 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |minor| (-663 (-949))) (|:| -3770 *3) (|:| |minors| (-663 (-663 (-949)))) (|:| |ops| (-663 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-680 *5)))) (-1378 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1299 (-711 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-711 *4)) (-4 *5 (-680 *4)))) (-1377 (*1 *2 *3 *4) (-12 (-4 *5 (-571)) (-5 *2 (-2 (|:| -1795 (-711 *5)) (|:| |vec| (-1299 (-663 (-949)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-680 *5))))) -(-10 -7 (-15 -1377 ((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 (-663 (-949))))) |#2| (-949))) (-15 -1378 ((-1299 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -1379 ((-2 (|:| |minor| (-663 (-949))) (|:| -3770 |#2|) (|:| |minors| (-663 (-663 (-949)))) (|:| |ops| (-663 |#2|))) |#2| (-949))) |%noBranch|)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3830 ((|#1| $) 40 T ELT)) (-4240 (($) NIL T CONST)) (-3832 ((|#1| |#1| $) 35 T ELT)) (-3831 ((|#1| $) 33 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) NIL T ELT)) (-4123 (($ |#1| $) 36 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 34 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 18 T ELT)) (-4079 (($) 45 T ELT)) (-3829 (((-793) $) 31 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 17 T ELT)) (-4462 (((-888) $) 30 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) NIL T ELT)) (-1380 (($ (-663 |#1|)) 42 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 12 (|has| $ (-6 -4511)) ELT))) -(((-91 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -1380 ($ (-663 |#1|))))) (-1133)) (T -91)) -((-1380 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-91 *3))))) -(-13 (-1153 |#1|) (-10 -8 (-15 -1380 ($ (-663 |#1|))))) -((-4462 (((-888) $) 13 T ELT) (($ (-1214)) 9 T ELT) (((-1214) $) 8 T ELT))) -(((-92 |#1|) (-10 -8 (-15 -4462 ((-1214) |#1|)) (-15 -4462 (|#1| (-1214))) (-15 -4462 ((-888) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4462 ((-1214) |#1|)) (-15 -4462 (|#1| (-1214))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-1214)) 20 T ELT) (((-1214) $) 19 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 127 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 117 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 147 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 137 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 107 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 95 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 123 T ELT) (($ (-1297 (-326 (-558)))) 113 T ELT) (($ (-1297 (-974 (-391)))) 143 T ELT) (($ (-1297 (-974 (-558)))) 133 T ELT) (($ (-1297 (-419 (-974 (-391))))) 103 T ELT) (($ (-1297 (-419 (-974 (-558))))) 88 T ELT)) (-3882 (((-1303) $) 80 T ELT)) (-4458 (((-886) $) 28 T ELT) (($ (-661 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 73 T ELT) (($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) 67 T ELT))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))))) (-1207)) (T -74)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) (-5 *1 (-74 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-326 (-391))) 47 T ELT) (((-3 $ #1#) (-326 (-558))) 52 T ELT) (((-3 $ #1#) (-974 (-391))) 56 T ELT) (((-3 $ #1#) (-974 (-558))) 60 T ELT) (((-3 $ #1#) (-419 (-974 (-391)))) 42 T ELT) (((-3 $ #1#) (-419 (-974 (-558)))) 35 T ELT)) (-3656 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-558))) 50 T ELT) (($ (-974 (-391))) 54 T ELT) (($ (-974 (-558))) 58 T ELT) (($ (-419 (-974 (-391)))) 40 T ELT) (($ (-419 (-974 (-558)))) 32 T ELT)) (-3882 (((-1303) $) 81 T ELT)) (-4458 (((-886) $) 75 T ELT) (($ (-661 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 70 T ELT) (($ (-352 (-4032) (-4032 (QUOTE X)) (-719))) 31 T ELT))) +(((-75 |#1|) (-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE X)) (-719)))))) (-1207)) (T -75)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-352 (-4032) (-4032 (QUOTE X)) (-719))) (-5 *1 (-75 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE X)) (-719)))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 132 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 121 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 152 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 142 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 110 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 97 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 128 T ELT) (($ (-1297 (-326 (-558)))) 117 T ELT) (($ (-1297 (-974 (-391)))) 148 T ELT) (($ (-1297 (-974 (-558)))) 138 T ELT) (($ (-1297 (-419 (-974 (-391))))) 106 T ELT) (($ (-1297 (-419 (-974 (-558))))) 90 T ELT)) (-3882 (((-1303) $) 82 T ELT)) (-4458 (((-886) $) 74 T ELT) (($ (-661 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) NIL T ELT) (($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE EPS)) (-4032 (QUOTE -4478)) (-719)))) 69 T ELT))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE EPS)) (-4032 (QUOTE -4478)) (-719))))))) (-1207) (-1207) (-1207)) (T -76)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE X) (QUOTE EPS)) (-4032 (QUOTE -4478)) (-719)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE EPS)) (-4032 (QUOTE -4478)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 138 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 127 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 158 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 148 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 116 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 103 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 134 T ELT) (($ (-1297 (-326 (-558)))) 123 T ELT) (($ (-1297 (-974 (-391)))) 154 T ELT) (($ (-1297 (-974 (-558)))) 144 T ELT) (($ (-1297 (-419 (-974 (-391))))) 112 T ELT) (($ (-1297 (-419 (-974 (-558))))) 96 T ELT)) (-3882 (((-1303) $) 88 T ELT)) (-4458 (((-886) $) 80 T ELT) (($ (-661 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) NIL T ELT) (($ (-1297 (-352 (-4032 (QUOTE EPS)) (-4032 (QUOTE YA) (QUOTE YB)) (-719)))) 75 T ELT))) +(((-77 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE EPS)) (-4032 (QUOTE YA) (QUOTE YB)) (-719))))))) (-1207) (-1207) (-1207)) (T -77)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE EPS)) (-4032 (QUOTE YA) (QUOTE YB)) (-719)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE EPS)) (-4032 (QUOTE YA) (QUOTE YB)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-326 (-391))) 83 T ELT) (((-3 $ #1#) (-326 (-558))) 88 T ELT) (((-3 $ #1#) (-974 (-391))) 92 T ELT) (((-3 $ #1#) (-974 (-558))) 96 T ELT) (((-3 $ #1#) (-419 (-974 (-391)))) 78 T ELT) (((-3 $ #1#) (-419 (-974 (-558)))) 71 T ELT)) (-3656 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-558))) 86 T ELT) (($ (-974 (-391))) 90 T ELT) (($ (-974 (-558))) 94 T ELT) (($ (-419 (-974 (-391)))) 76 T ELT) (($ (-419 (-974 (-558)))) 68 T ELT)) (-3882 (((-1303) $) 63 T ELT)) (-4458 (((-886) $) 51 T ELT) (($ (-661 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 55 T ELT) (($ (-352 (-4032) (-4032 (QUOTE X)) (-719))) 48 T ELT))) +(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE X)) (-719)))))) (-1207)) (T -78)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-352 (-4032) (-4032 (QUOTE X)) (-719))) (-5 *1 (-78 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032) (-4032 (QUOTE X)) (-719)))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 90 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 79 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 110 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 100 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 68 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 55 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 86 T ELT) (($ (-1297 (-326 (-558)))) 75 T ELT) (($ (-1297 (-974 (-391)))) 106 T ELT) (($ (-1297 (-974 (-558)))) 96 T ELT) (($ (-1297 (-419 (-974 (-391))))) 64 T ELT) (($ (-1297 (-419 (-974 (-558))))) 48 T ELT)) (-3882 (((-1303) $) 126 T ELT)) (-4458 (((-886) $) 120 T ELT) (($ (-661 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 116 T ELT) (($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719)))) 39 T ELT))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719))))))) (-1207)) (T -79)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719)))) (-5 *1 (-79 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE XC)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 151 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 141 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 171 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 161 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 131 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 119 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 147 T ELT) (($ (-1297 (-326 (-558)))) 137 T ELT) (($ (-1297 (-974 (-391)))) 167 T ELT) (($ (-1297 (-974 (-558)))) 157 T ELT) (($ (-1297 (-419 (-974 (-391))))) 127 T ELT) (($ (-1297 (-419 (-974 (-558))))) 112 T ELT)) (-3882 (((-1303) $) 105 T ELT)) (-4458 (((-886) $) 99 T ELT) (($ (-661 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 95 T ELT) (($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) 91 T ELT))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))))) (-1207)) (T -80)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) (-5 *1 (-80 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 79 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 68 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 99 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 89 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 57 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 44 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 75 T ELT) (($ (-1297 (-326 (-558)))) 64 T ELT) (($ (-1297 (-974 (-391)))) 95 T ELT) (($ (-1297 (-974 (-558)))) 85 T ELT) (($ (-1297 (-419 (-974 (-391))))) 53 T ELT) (($ (-1297 (-419 (-974 (-558))))) 37 T ELT)) (-3882 (((-1303) $) 125 T ELT)) (-4458 (((-886) $) 119 T ELT) (($ (-661 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 114 T ELT) (($ (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719)))) 36 T ELT))) +(((-81 |#1|) (-13 (-453) (-633 (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))) (-1207)) (T -81)) +NIL +(-13 (-453) (-633 (-1297 (-352 (-4032) (-4032 (QUOTE X)) (-719))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 80 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 69 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 100 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 90 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 58 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 45 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 76 T ELT) (($ (-1297 (-326 (-558)))) 65 T ELT) (($ (-1297 (-974 (-391)))) 96 T ELT) (($ (-1297 (-974 (-558)))) 86 T ELT) (($ (-1297 (-419 (-974 (-391))))) 54 T ELT) (($ (-1297 (-419 (-974 (-558))))) 38 T ELT)) (-3882 (((-1303) $) 126 T ELT)) (-4458 (((-886) $) 120 T ELT) (($ (-661 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 115 T ELT) (($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))) 37 T ELT))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))))))) (-1207)) (T -82)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))) (-5 *1 (-82 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 99 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 88 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 119 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 109 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 77 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 64 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 95 T ELT) (($ (-1297 (-326 (-558)))) 84 T ELT) (($ (-1297 (-974 (-391)))) 115 T ELT) (($ (-1297 (-974 (-558)))) 105 T ELT) (($ (-1297 (-419 (-974 (-391))))) 73 T ELT) (($ (-1297 (-419 (-974 (-558))))) 57 T ELT)) (-3882 (((-1303) $) 49 T ELT)) (-4458 (((-886) $) 43 T ELT) (($ (-661 (-342))) 33 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 39 T ELT) (($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719)))) 34 T ELT))) +(((-83 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719))))))) (-1207)) (T -83)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719)))) (-5 *1 (-83 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719))))))) +((-3657 (((-3 $ #1="failed") (-709 (-326 (-391)))) 118 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 107 T ELT) (((-3 $ #1#) (-709 (-974 (-391)))) 140 T ELT) (((-3 $ #1#) (-709 (-974 (-558)))) 129 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-391))))) 96 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-558))))) 83 T ELT)) (-3656 (($ (-709 (-326 (-391)))) 114 T ELT) (($ (-709 (-326 (-558)))) 103 T ELT) (($ (-709 (-974 (-391)))) 136 T ELT) (($ (-709 (-974 (-558)))) 125 T ELT) (($ (-709 (-419 (-974 (-391))))) 92 T ELT) (($ (-709 (-419 (-974 (-558))))) 76 T ELT)) (-3882 (((-1303) $) 66 T ELT)) (-4458 (((-886) $) 53 T ELT) (($ (-661 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 58 T ELT) (($ (-709 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719)))) 50 T ELT))) +(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719))))))) (-1207)) (T -84)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719)))) (-5 *1 (-84 *3)) (-14 *3 (-1207))))) +(-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE X) (QUOTE -4478)) (-4032) (-719))))))) +((-3657 (((-3 $ #1="failed") (-709 (-326 (-391)))) 113 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 101 T ELT) (((-3 $ #1#) (-709 (-974 (-391)))) 135 T ELT) (((-3 $ #1#) (-709 (-974 (-558)))) 124 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-391))))) 89 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-558))))) 75 T ELT)) (-3656 (($ (-709 (-326 (-391)))) 109 T ELT) (($ (-709 (-326 (-558)))) 97 T ELT) (($ (-709 (-974 (-391)))) 131 T ELT) (($ (-709 (-974 (-558)))) 120 T ELT) (($ (-709 (-419 (-974 (-391))))) 85 T ELT) (($ (-709 (-419 (-974 (-558))))) 68 T ELT)) (-3882 (((-1303) $) 60 T ELT)) (-4458 (((-886) $) 54 T ELT) (($ (-661 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 45 T ELT) (($ (-709 (-352 (-4032 (QUOTE X)) (-4032) (-719)))) 46 T ELT))) +(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE X)) (-4032) (-719))))))) (-1207)) (T -85)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-4032 (QUOTE X)) (-4032) (-719)))) (-5 *1 (-85 *3)) (-14 *3 (-1207))))) +(-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE X)) (-4032) (-719))))))) +((-3657 (((-3 $ #1="failed") (-1297 (-326 (-391)))) 105 T ELT) (((-3 $ #1#) (-1297 (-326 (-558)))) 94 T ELT) (((-3 $ #1#) (-1297 (-974 (-391)))) 125 T ELT) (((-3 $ #1#) (-1297 (-974 (-558)))) 115 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-391))))) 83 T ELT) (((-3 $ #1#) (-1297 (-419 (-974 (-558))))) 70 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 101 T ELT) (($ (-1297 (-326 (-558)))) 90 T ELT) (($ (-1297 (-974 (-391)))) 121 T ELT) (($ (-1297 (-974 (-558)))) 111 T ELT) (($ (-1297 (-419 (-974 (-391))))) 79 T ELT) (($ (-1297 (-419 (-974 (-558))))) 63 T ELT)) (-3882 (((-1303) $) 47 T ELT)) (-4458 (((-886) $) 41 T ELT) (($ (-661 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 53 T ELT) (($ (-1297 (-352 (-4032 (QUOTE X)) (-4032) (-719)))) 38 T ELT))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032) (-719))))))) (-1207)) (T -86)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-4032 (QUOTE X)) (-4032) (-719)))) (-5 *1 (-86 *3)) (-14 *3 (-1207))))) +(-13 (-453) (-10 -8 (-15 -4458 ($ (-1297 (-352 (-4032 (QUOTE X)) (-4032) (-719))))))) +((-3882 (((-1303) $) 45 T ELT)) (-4458 (((-886) $) 39 T ELT) (($ (-1297 (-719))) 99 T ELT) (($ (-661 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 34 T ELT))) +(((-87 |#1|) (-452) (-1207)) (T -87)) +NIL +(-452) +((-3657 (((-3 $ #1="failed") (-709 (-326 (-391)))) 116 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 104 T ELT) (((-3 $ #1#) (-709 (-974 (-391)))) 138 T ELT) (((-3 $ #1#) (-709 (-974 (-558)))) 127 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-391))))) 92 T ELT) (((-3 $ #1#) (-709 (-419 (-974 (-558))))) 78 T ELT)) (-3656 (($ (-709 (-326 (-391)))) 112 T ELT) (($ (-709 (-326 (-558)))) 100 T ELT) (($ (-709 (-974 (-391)))) 134 T ELT) (($ (-709 (-974 (-558)))) 123 T ELT) (($ (-709 (-419 (-974 (-391))))) 88 T ELT) (($ (-709 (-419 (-974 (-558))))) 71 T ELT)) (-3882 (((-1303) $) 62 T ELT)) (-4458 (((-886) $) 56 T ELT) (($ (-661 (-342))) 46 T ELT) (($ (-342)) 53 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 51 T ELT) (($ (-709 (-352 (-4032 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4032) (-719)))) 47 T ELT))) +(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4032) (-719))))))) (-1207)) (T -88)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-4032 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4032) (-719)))) (-5 *1 (-88 *3)) (-14 *3 (-1207))))) +(-13 (-398) (-10 -8 (-15 -4458 ($ (-709 (-352 (-4032 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4032) (-719))))))) +((-3657 (((-3 $ #1="failed") (-326 (-391))) 48 T ELT) (((-3 $ #1#) (-326 (-558))) 53 T ELT) (((-3 $ #1#) (-974 (-391))) 57 T ELT) (((-3 $ #1#) (-974 (-558))) 61 T ELT) (((-3 $ #1#) (-419 (-974 (-391)))) 43 T ELT) (((-3 $ #1#) (-419 (-974 (-558)))) 36 T ELT)) (-3656 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-558))) 51 T ELT) (($ (-974 (-391))) 55 T ELT) (($ (-974 (-558))) 59 T ELT) (($ (-419 (-974 (-391)))) 41 T ELT) (($ (-419 (-974 (-558)))) 33 T ELT)) (-3882 (((-1303) $) 91 T ELT)) (-4458 (((-886) $) 85 T ELT) (($ (-661 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 77 T ELT) (($ (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))) 32 T ELT))) +(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))))) (-1207)) (T -89)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719))) (-5 *1 (-89 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -8 (-15 -4458 ($ (-352 (-4032 (QUOTE X)) (-4032 (QUOTE -4478)) (-719)))))) +((-1376 (((-1297 (-709 |#1|)) (-709 |#1|)) 61 T ELT)) (-1375 (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 (-661 (-947))))) |#2| (-947)) 49 T ELT)) (-1377 (((-2 (|:| |minor| (-661 (-947))) (|:| -3766 |#2|) (|:| |minors| (-661 (-661 (-947)))) (|:| |ops| (-661 |#2|))) |#2| (-947)) 72 (|has| |#1| (-376)) ELT))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1375 ((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 (-661 (-947))))) |#2| (-947))) (-15 -1376 ((-1297 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-376)) (-15 -1377 ((-2 (|:| |minor| (-661 (-947))) (|:| -3766 |#2|) (|:| |minors| (-661 (-661 (-947)))) (|:| |ops| (-661 |#2|))) |#2| (-947))) |%noBranch|)) (-569) (-678 |#1|)) (T -90)) +((-1377 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-661 (-947))) (|:| -3766 *3) (|:| |minors| (-661 (-661 (-947)))) (|:| |ops| (-661 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-947)) (-4 *3 (-678 *5)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-709 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-709 *4)) (-4 *5 (-678 *4)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1793 (-709 *5)) (|:| |vec| (-1297 (-661 (-947)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-947)) (-4 *3 (-678 *5))))) +(-10 -7 (-15 -1375 ((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 (-661 (-947))))) |#2| (-947))) (-15 -1376 ((-1297 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-376)) (-15 -1377 ((-2 (|:| |minor| (-661 (-947))) (|:| -3766 |#2|) (|:| |minors| (-661 (-661 (-947)))) (|:| |ops| (-661 |#2|))) |#2| (-947))) |%noBranch|)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3826 ((|#1| $) 40 T ELT)) (-4236 (($) NIL T CONST)) (-3828 ((|#1| |#1| $) 35 T ELT)) (-3827 ((|#1| $) 33 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) NIL T ELT)) (-4119 (($ |#1| $) 36 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 34 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 18 T ELT)) (-4075 (($) 45 T ELT)) (-3825 (((-791) $) 31 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 17 T ELT)) (-4458 (((-886) $) 30 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) NIL T ELT)) (-1378 (($ (-661 |#1|)) 42 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 12 (|has| $ (-6 -4507)) ELT))) +(((-91 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -1378 ($ (-661 |#1|))))) (-1131)) (T -91)) +((-1378 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-91 *3))))) +(-13 (-1151 |#1|) (-10 -8 (-15 -1378 ($ (-661 |#1|))))) +((-4458 (((-886) $) 13 T ELT) (($ (-1212)) 9 T ELT) (((-1212) $) 8 T ELT))) +(((-92 |#1|) (-10 -8 (-15 -4458 ((-1212) |#1|)) (-15 -4458 (|#1| (-1212))) (-15 -4458 ((-886) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -4458 ((-1212) |#1|)) (-15 -4458 (|#1| (-1212))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-1212)) 20 T ELT) (((-1212) $) 19 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-93) (-142)) (T -93)) NIL -(-13 (-1133) (-504 (-1214))) -(((-102) . T) ((-635 #1=(-1214)) . T) ((-632 (-888)) . T) ((-632 #1#) . T) ((-504 #1#) . T) ((-1133) . T) ((-1249) . T)) -((-3994 (($ $) 10 T ELT)) (-3995 (($ $) 12 T ELT))) -(((-94 |#1|) (-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1131) (-502 (-1212))) +(((-102) . T) ((-633 #1=(-1212)) . T) ((-630 (-886)) . T) ((-630 #1#) . T) ((-502 #1#) . T) ((-1131) . T) ((-1247) . T)) +((-3990 (($ $) 10 T ELT)) (-3991 (($ $) 12 T ELT))) +(((-94 |#1|) (-10 -8 (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|))) -((-3992 (($ $) 11 T ELT)) (-3990 (($ $) 10 T ELT)) (-3994 (($ $) 9 T ELT)) (-3995 (($ $) 8 T ELT)) (-3993 (($ $) 7 T ELT)) (-3991 (($ $) 6 T ELT))) +(-10 -8 (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|))) +((-3988 (($ $) 11 T ELT)) (-3986 (($ $) 10 T ELT)) (-3990 (($ $) 9 T ELT)) (-3991 (($ $) 8 T ELT)) (-3989 (($ $) 7 T ELT)) (-3987 (($ $) 6 T ELT))) (((-95) (-142)) (T -95)) -((-3992 (*1 *1 *1) (-4 *1 (-95))) (-3990 (*1 *1 *1) (-4 *1 (-95))) (-3994 (*1 *1 *1) (-4 *1 (-95))) (-3995 (*1 *1 *1) (-4 *1 (-95))) (-3993 (*1 *1 *1) (-4 *1 (-95))) (-3991 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3991 ($ $)) (-15 -3993 ($ $)) (-15 -3995 ($ $)) (-15 -3994 ($ $)) (-15 -3990 ($ $)) (-15 -3992 ($ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4056 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-96) (-13 (-1115) (-10 -8 (-15 -4056 ((-1167) $))))) (T -96)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-96))))) -(-13 (-1115) (-10 -8 (-15 -4056 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1381 (((-391) (-1191) (-391)) 46 T ELT) (((-391) (-1191) (-1191) (-391)) 44 T ELT)) (-1382 (((-391) (-391)) 35 T ELT)) (-1383 (((-1305)) 37 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1386 (((-391) (-1191) (-1191)) 50 T ELT) (((-391) (-1191)) 52 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1384 (((-391) (-1191) (-1191)) 51 T ELT)) (-1385 (((-391) (-1191) (-1191)) 53 T ELT) (((-391) (-1191)) 54 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-97) (-13 (-1133) (-10 -7 (-15 -1386 ((-391) (-1191) (-1191))) (-15 -1386 ((-391) (-1191))) (-15 -1385 ((-391) (-1191) (-1191))) (-15 -1385 ((-391) (-1191))) (-15 -1384 ((-391) (-1191) (-1191))) (-15 -1383 ((-1305))) (-15 -1382 ((-391) (-391))) (-15 -1381 ((-391) (-1191) (-391))) (-15 -1381 ((-391) (-1191) (-1191) (-391))) (-6 -4511)))) (T -97)) -((-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1385 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1384 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1383 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-97)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1381 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1191)) (-5 *1 (-97)))) (-1381 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1191)) (-5 *1 (-97))))) -(-13 (-1133) (-10 -7 (-15 -1386 ((-391) (-1191) (-1191))) (-15 -1386 ((-391) (-1191))) (-15 -1385 ((-391) (-1191) (-1191))) (-15 -1385 ((-391) (-1191))) (-15 -1384 ((-391) (-1191) (-1191))) (-15 -1383 ((-1305))) (-15 -1382 ((-391) (-391))) (-15 -1381 ((-391) (-1191) (-391))) (-15 -1381 ((-391) (-1191) (-1191) (-391))) (-6 -4511))) +((-3988 (*1 *1 *1) (-4 *1 (-95))) (-3986 (*1 *1 *1) (-4 *1 (-95))) (-3990 (*1 *1 *1) (-4 *1 (-95))) (-3991 (*1 *1 *1) (-4 *1 (-95))) (-3989 (*1 *1 *1) (-4 *1 (-95))) (-3987 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3987 ($ $)) (-15 -3989 ($ $)) (-15 -3991 ($ $)) (-15 -3990 ($ $)) (-15 -3986 ($ $)) (-15 -3988 ($ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4052 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-96) (-13 (-1113) (-10 -8 (-15 -4052 ((-1165) $))))) (T -96)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96))))) +(-13 (-1113) (-10 -8 (-15 -4052 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1379 (((-391) (-1189) (-391)) 46 T ELT) (((-391) (-1189) (-1189) (-391)) 44 T ELT)) (-1380 (((-391) (-391)) 35 T ELT)) (-1381 (((-1303)) 37 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1384 (((-391) (-1189) (-1189)) 50 T ELT) (((-391) (-1189)) 52 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1382 (((-391) (-1189) (-1189)) 51 T ELT)) (-1383 (((-391) (-1189) (-1189)) 53 T ELT) (((-391) (-1189)) 54 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-97) (-13 (-1131) (-10 -7 (-15 -1384 ((-391) (-1189) (-1189))) (-15 -1384 ((-391) (-1189))) (-15 -1383 ((-391) (-1189) (-1189))) (-15 -1383 ((-391) (-1189))) (-15 -1382 ((-391) (-1189) (-1189))) (-15 -1381 ((-1303))) (-15 -1380 ((-391) (-391))) (-15 -1379 ((-391) (-1189) (-391))) (-15 -1379 ((-391) (-1189) (-1189) (-391))) (-6 -4507)))) (T -97)) +((-1384 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1383 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1382 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1381 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1379 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))) (-1379 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97))))) +(-13 (-1131) (-10 -7 (-15 -1384 ((-391) (-1189) (-1189))) (-15 -1384 ((-391) (-1189))) (-15 -1383 ((-391) (-1189) (-1189))) (-15 -1383 ((-391) (-1189))) (-15 -1382 ((-391) (-1189) (-1189))) (-15 -1381 ((-1303))) (-15 -1380 ((-391) (-391))) (-15 -1379 ((-391) (-1189) (-391))) (-15 -1379 ((-391) (-1189) (-1189) (-391))) (-6 -4507))) NIL (((-98) (-142)) (T -98)) NIL -(-13 (-10 -7 (-6 -4511) (-6 (-4513 "*")) (-6 -4512) (-6 -4508) (-6 -4506) (-6 -4505) (-6 -4504) (-6 -4509) (-6 -4503) (-6 -4502) (-6 -4501) (-6 -4500) (-6 -4499) (-6 -4507) (-6 -4510) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4498))) -((-3053 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1387 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-560))) 24 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 16 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#1| $ |#1|) 13 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) 22 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 8 T CONST)) (-3540 (((-114) $ $) 10 T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 30 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-99 |#1|) (-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -1387 ($ (-1 |#1| |#1|))) (-15 -1387 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1387 ($ (-1 |#1| |#1| (-560)))))) (-1081)) (T -99)) -((-1387 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-99 *3)))) (-1387 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-99 *3)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1081)) (-5 *1 (-99 *3))))) -(-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -1387 ($ (-1 |#1| |#1|))) (-15 -1387 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1387 ($ (-1 |#1| |#1| (-560)))))) -((-1388 (((-419 |#2|) |#2| (-663 |#2|)) 10 T ELT) (((-419 |#2|) |#2| |#2|) 11 T ELT))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1388 ((-419 |#2|) |#2| |#2|)) (-15 -1388 ((-419 |#2|) |#2| (-663 |#2|)))) (-13 (-466) (-149)) (-1275 |#1|)) (T -100)) -((-1388 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3)))) (-1388 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -1388 ((-419 |#2|) |#2| |#2|)) (-15 -1388 ((-419 |#2|) |#2| (-663 |#2|)))) -((-3053 (((-114) $ $) 13 T ELT)) (-1389 (((-114) $ $) 14 T ELT)) (-3540 (((-114) $ $) 11 T ELT))) -(((-101 |#1|) (-10 -8 (-15 -1389 ((-114) |#1| |#1|)) (-15 -3053 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -1389 ((-114) |#1| |#1|)) (-15 -3053 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -4507) (-6 (-4509 "*")) (-6 -4508) (-6 -4504) (-6 -4502) (-6 -4501) (-6 -4500) (-6 -4505) (-6 -4499) (-6 -4498) (-6 -4497) (-6 -4496) (-6 -4495) (-6 -4503) (-6 -4506) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4494))) +((-3049 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1385 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-558))) 24 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 16 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#1| $ |#1|) 13 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) 22 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 8 T CONST)) (-3536 (((-114) $ $) 10 T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) 30 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-99 |#1|) (-13 (-485) (-298 |#1| |#1|) (-10 -8 (-15 -1385 ($ (-1 |#1| |#1|))) (-15 -1385 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1385 ($ (-1 |#1| |#1| (-558)))))) (-1079)) (T -99)) +((-1385 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-1385 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) +(-13 (-485) (-298 |#1| |#1|) (-10 -8 (-15 -1385 ($ (-1 |#1| |#1|))) (-15 -1385 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1385 ($ (-1 |#1| |#1| (-558)))))) +((-1386 (((-417 |#2|) |#2| (-661 |#2|)) 10 T ELT) (((-417 |#2|) |#2| |#2|) 11 T ELT))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1386 ((-417 |#2|) |#2| |#2|)) (-15 -1386 ((-417 |#2|) |#2| (-661 |#2|)))) (-13 (-464) (-149)) (-1273 |#1|)) (T -100)) +((-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1386 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -1386 ((-417 |#2|) |#2| |#2|)) (-15 -1386 ((-417 |#2|) |#2| (-661 |#2|)))) +((-3049 (((-114) $ $) 13 T ELT)) (-1387 (((-114) $ $) 14 T ELT)) (-3536 (((-114) $ $) 11 T ELT))) +(((-101 |#1|) (-10 -8 (-15 -1387 ((-114) |#1| |#1|)) (-15 -3049 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -1387 ((-114) |#1| |#1|)) (-15 -3049 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-102) (-142)) (T -102)) -((-3540 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-3053 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1389 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) -(-13 (-1249) (-10 -8 (-15 -3540 ((-114) $ $)) (-15 -3053 ((-114) $ $)) (-15 -1389 ((-114) $ $)))) -(((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) NIL T ELT)) (-3512 ((|#1| $ |#1|) 24 (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-1392 (($ $ (-663 |#1|)) 30 T ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3625 (($ $) 12 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1428 (($ $ |#1| $) 32 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1391 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1390 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3626 (($ $) 11 T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) 13 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 9 T ELT)) (-4079 (($) 31 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1393 (($ (-793) |#1|) 33 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -1393 ($ (-793) |#1|)) (-15 -1392 ($ $ (-663 |#1|))) (-15 -1391 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1391 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1390 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1390 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|))))) (-1133)) (T -103)) -((-1393 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1133)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-103 *3)))) (-1391 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1133)))) (-1391 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-103 *3)))) (-1390 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1133)) (-5 *1 (-103 *2)))) (-1390 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1133)) (-5 *1 (-103 *2))))) -(-13 (-127 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -1393 ($ (-793) |#1|)) (-15 -1392 ($ $ (-663 |#1|))) (-15 -1391 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1391 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1390 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1390 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|))))) -((-1394 ((|#3| |#2| |#2|) 34 T ELT)) (-1396 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4513 #1="*"))) ELT)) (-1395 ((|#3| |#2| |#2|) 36 T ELT)) (-1397 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4513 #1#))) ELT))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1394 (|#3| |#2| |#2|)) (-15 -1395 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4513 "*"))) (PROGN (-15 -1396 (|#1| |#2| |#2|)) (-15 -1397 (|#1| |#2|))) |%noBranch|)) (-1081) (-1275 |#1|) (-708 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) -((-1397 (*1 *2 *3) (-12 (|has| *2 (-6 (-4513 #1="*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1081)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1275 *2)) (-4 *4 (-708 *2 *5 *6)))) (-1396 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4513 #1#))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1081)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1275 *2)) (-4 *4 (-708 *2 *5 *6)))) (-1395 (*1 *2 *3 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1275 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1394 (*1 *2 *3 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1275 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(-10 -7 (-15 -1394 (|#3| |#2| |#2|)) (-15 -1395 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4513 "*"))) (PROGN (-15 -1396 (|#1| |#2| |#2|)) (-15 -1397 (|#1| |#2|))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1399 (((-663 (-1209))) 37 T ELT)) (-1398 (((-2 (|:| |zeros| (-1187 (-229))) (|:| |ones| (-1187 (-229))) (|:| |singularities| (-1187 (-229)))) (-1209)) 39 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-105) (-13 (-1133) (-10 -7 (-15 -1399 ((-663 (-1209)))) (-15 -1398 ((-2 (|:| |zeros| (-1187 (-229))) (|:| |ones| (-1187 (-229))) (|:| |singularities| (-1187 (-229)))) (-1209))) (-6 -4511)))) (T -105)) -((-1399 (*1 *2) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-105)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-2 (|:| |zeros| (-1187 (-229))) (|:| |ones| (-1187 (-229))) (|:| |singularities| (-1187 (-229))))) (-5 *1 (-105))))) -(-13 (-1133) (-10 -7 (-15 -1399 ((-663 (-1209)))) (-15 -1398 ((-2 (|:| |zeros| (-1187 (-229))) (|:| |ones| (-1187 (-229))) (|:| |singularities| (-1187 (-229)))) (-1209))) (-6 -4511))) -((-1402 (($ (-663 |#2|)) 11 T ELT))) -(((-106 |#1| |#2|) (-10 -8 (-15 -1402 (|#1| (-663 |#2|)))) (-107 |#2|) (-1249)) (T -106)) -NIL -(-10 -8 (-15 -1402 (|#1| (-663 |#2|)))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4240 (($) 7 T CONST)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-107 |#1|) (-142) (-1249)) (T -107)) -((-1402 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-107 *3)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249)))) (-4123 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249))))) -(-13 (-503 |t#1|) (-10 -8 (-6 -4512) (-15 -1402 ($ (-663 |t#1|))) (-15 -1401 (|t#1| $)) (-15 -4123 ($ |t#1| $)) (-15 -1400 (|t#1| $)))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-560) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3660 (((-560) $) NIL T ELT) (((-1209) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-560) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-560) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-560) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-560) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-560) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-4474 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-560) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3618 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1209)) (-663 (-560))) NIL (|has| (-560) (-528 (-1209) (-560))) ELT) (($ $ (-1209) (-560)) NIL (|has| (-560) (-528 (-1209) (-560))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-560) $) NIL T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-560) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-560) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1052)) ELT) (((-229) $) NIL (|has| (-560) (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1209)) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1036 2) $) 10 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-560) (-940))) (|has| (-560) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-2253 (($ (-421 (-560))) 9 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| (-560) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-4465 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT))) -(((-108) (-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 2)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -2253 ($ (-421 (-560))))))) (T -108)) -((-3616 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108))))) -(-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 2)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -2253 ($ (-421 (-560)))))) -((-1414 (((-663 (-995)) $) 13 T ELT)) (-4056 (((-520) $) 9 T ELT)) (-4462 (((-888) $) 20 T ELT)) (-1403 (($ (-520) (-663 (-995))) 15 T ELT))) -(((-109) (-13 (-632 (-888)) (-10 -8 (-15 -4056 ((-520) $)) (-15 -1414 ((-663 (-995)) $)) (-15 -1403 ($ (-520) (-663 (-995))))))) (T -109)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-663 (-995))) (-5 *1 (-109)))) (-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-995))) (-5 *1 (-109))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4056 ((-520) $)) (-15 -1414 ((-663 (-995)) $)) (-15 -1403 ($ (-520) (-663 (-995)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3828 (($ $ $) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) NIL (|has| (-114) (-872)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1945 (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-114) (-872))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) NIL (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4304 (((-114) $ (-1266 (-560)) (-114)) NIL (|has| $ (-6 -4512)) ELT) (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-3912 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-4358 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-1731 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-114) $ (-560)) NIL T ELT)) (-3925 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1133)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1133)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-3376 (((-663 (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3046 (($ $ $) NIL T ELT)) (-3045 (($ $) NIL T ELT)) (-1426 (($ $ $) NIL T ELT)) (-4130 (($ (-793) (-114)) 10 T ELT)) (-1427 (($ $ $) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL T ELT)) (-4024 (($ $ $) NIL (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3093 (((-663 (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL T ELT)) (-2174 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-114) $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2428 (($ $ (-114)) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-2434 (((-663 (-114)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 (($ $ (-1266 (-560))) NIL T ELT) (((-114) $ (-560)) NIL T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2171 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-4036 (($ (-663 (-114))) NIL T ELT)) (-4318 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1992 (($ (-793) (-114)) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3047 (($ $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-110) (-13 (-125) (-10 -8 (-15 -1992 ($ (-793) (-114)))))) (T -110)) -((-1992 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110))))) -(-13 (-125) (-10 -8 (-15 -1992 ($ (-793) (-114))))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-111 |#1| |#2|) (-142) (-1081) (-1081)) (T -111)) -NIL -(-13 (-670 |t#1|) (-1088 |t#2|) (-10 -7 (-6 -4506) (-6 -4505))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1083 |#2|) . T) ((-1088 |#2|) . T) ((-1133) . T) ((-1249) . T)) -((-2540 (($ $) 8 T ELT))) -(((-112 |#1|) (-10 -8 (-15 -2540 (|#1| |#1|))) (-113)) (T -112)) -NIL -(-10 -8 (-15 -2540 (|#1| |#1|))) -((-2540 (($ $) 8 T ELT)) (-3046 (($ $ $) 9 T ELT)) (-3045 (($ $) 11 T ELT)) (-3047 (($ $ $) 10 T ELT)) (-2538 (($ $ $) 6 T ELT)) (-2539 (($ $ $) 7 T ELT))) +((-3536 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-3049 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1387 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) +(-13 (-1247) (-10 -8 (-15 -3536 ((-114) $ $)) (-15 -3049 ((-114) $ $)) (-15 -1387 ((-114) $ $)))) +(((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) NIL T ELT)) (-3508 ((|#1| $ |#1|) 24 (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-1390 (($ $ (-661 |#1|)) 30 T ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3621 (($ $) 12 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1426 (($ $ |#1| $) 32 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1389 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1388 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-661 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3622 (($ $) 11 T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) 13 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 9 T ELT)) (-4075 (($) 31 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-791) |#1|) 33 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -1391 ($ (-791) |#1|)) (-15 -1390 ($ $ (-661 |#1|))) (-15 -1389 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1389 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1388 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1388 ($ $ |#1| (-1 (-661 |#1|) |#1| |#1| |#1|))))) (-1131)) (T -103)) +((-1391 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-103 *3)) (-4 *3 (-1131)))) (-1390 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1131)))) (-1389 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) (-1388 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2)))) (-1388 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-661 *2) *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -1391 ($ (-791) |#1|)) (-15 -1390 ($ $ (-661 |#1|))) (-15 -1389 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1389 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1388 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1388 ($ $ |#1| (-1 (-661 |#1|) |#1| |#1| |#1|))))) +((-1392 ((|#3| |#2| |#2|) 34 T ELT)) (-1394 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4509 #1="*"))) ELT)) (-1393 ((|#3| |#2| |#2|) 36 T ELT)) (-1395 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4509 #1#))) ELT))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1392 (|#3| |#2| |#2|)) (-15 -1393 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4509 "*"))) (PROGN (-15 -1394 (|#1| |#2| |#2|)) (-15 -1395 (|#1| |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-706 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) +((-1395 (*1 *2 *3) (-12 (|has| *2 (-6 (-4509 #1="*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-706 *2 *5 *6)))) (-1394 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4509 #1#))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-706 *2 *5 *6)))) (-1393 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +(-10 -7 (-15 -1392 (|#3| |#2| |#2|)) (-15 -1393 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4509 "*"))) (PROGN (-15 -1394 (|#1| |#2| |#2|)) (-15 -1395 (|#1| |#2|))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1397 (((-661 (-1207))) 37 T ELT)) (-1396 (((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207)) 39 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-105) (-13 (-1131) (-10 -7 (-15 -1397 ((-661 (-1207)))) (-15 -1396 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4507)))) (T -105)) +((-1397 (*1 *2) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-105)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229))))) (-5 *1 (-105))))) +(-13 (-1131) (-10 -7 (-15 -1397 ((-661 (-1207)))) (-15 -1396 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4507))) +((-1400 (($ (-661 |#2|)) 11 T ELT))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1400 (|#1| (-661 |#2|)))) (-107 |#2|) (-1247)) (T -106)) +NIL +(-10 -8 (-15 -1400 (|#1| (-661 |#2|)))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4236 (($) 7 T CONST)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-107 |#1|) (-142) (-1247)) (T -107)) +((-1400 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-4119 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4508) (-15 -1400 ($ (-661 |t#1|))) (-15 -1399 (|t#1| $)) (-15 -4119 ($ |t#1| $)) (-15 -1398 (|t#1| $)))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3656 (((-558) $) NIL T ELT) (((-1207) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-558) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-558) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-558) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-558) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-558) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-4470 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-558) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3614 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1207)) (-661 (-558))) NIL (|has| (-558) (-526 (-1207) (-558))) ELT) (($ $ (-1207) (-558)) NIL (|has| (-558) (-526 (-1207) (-558))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-558) $) NIL T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-558) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-558) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1050)) ELT) (((-229) $) NIL (|has| (-558) (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1207)) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1034 2) $) 10 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-558) (-938))) (|has| (-558) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-2249 (($ (-419 (-558))) 9 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-4461 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-108) (-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 2)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -2249 ($ (-419 (-558))))))) (T -108)) +((-3612 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108))))) +(-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 2)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -2249 ($ (-419 (-558)))))) +((-1412 (((-661 (-993)) $) 13 T ELT)) (-4052 (((-518) $) 9 T ELT)) (-4458 (((-886) $) 20 T ELT)) (-1401 (($ (-518) (-661 (-993))) 15 T ELT))) +(((-109) (-13 (-630 (-886)) (-10 -8 (-15 -4052 ((-518) $)) (-15 -1412 ((-661 (-993)) $)) (-15 -1401 ($ (-518) (-661 (-993))))))) (T -109)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-661 (-993))) (-5 *1 (-109)))) (-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-993))) (-5 *1 (-109))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4052 ((-518) $)) (-15 -1412 ((-661 (-993)) $)) (-15 -1401 ($ (-518) (-661 (-993)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3824 (($ $ $) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) NIL (|has| (-114) (-870)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-870))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) NIL (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4300 (((-114) $ (-1264 (-558)) (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-3908 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-4354 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-1729 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-114) $ (-558)) NIL T ELT)) (-3921 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1131)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1131)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3372 (((-661 (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3042 (($ $ $) NIL T ELT)) (-3041 (($ $) NIL T ELT)) (-1424 (($ $ $) NIL T ELT)) (-4126 (($ (-791) (-114)) 10 T ELT)) (-1425 (($ $ $) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL T ELT)) (-4020 (($ $ $) NIL (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3089 (((-661 (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL T ELT)) (-2170 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-114) $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2424 (($ $ (-114)) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-114)) (-661 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-661 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-2430 (((-661 (-114)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 (($ $ (-1264 (-558))) NIL T ELT) (((-114) $ (-558)) NIL T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2167 (((-791) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT) (((-791) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-114) (-631 (-547))) ELT)) (-4032 (($ (-661 (-114))) NIL T ELT)) (-4314 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1988 (($ (-791) (-114)) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3043 (($ $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-110) (-13 (-125) (-10 -8 (-15 -1988 ($ (-791) (-114)))))) (T -110)) +((-1988 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-114)) (-5 *1 (-110))))) +(-13 (-125) (-10 -8 (-15 -1988 ($ (-791) (-114))))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-111 |#1| |#2|) (-142) (-1079) (-1079)) (T -111)) +NIL +(-13 (-668 |t#1|) (-1086 |t#2|) (-10 -7 (-6 -4502) (-6 -4501))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1131) . T) ((-1247) . T)) +((-2536 (($ $) 8 T ELT))) +(((-112 |#1|) (-10 -8 (-15 -2536 (|#1| |#1|))) (-113)) (T -112)) +NIL +(-10 -8 (-15 -2536 (|#1| |#1|))) +((-2536 (($ $) 8 T ELT)) (-3042 (($ $ $) 9 T ELT)) (-3041 (($ $) 11 T ELT)) (-3043 (($ $ $) 10 T ELT)) (-2534 (($ $ $) 6 T ELT)) (-2535 (($ $ $) 7 T ELT))) (((-113) (-142)) (T -113)) -((-3045 (*1 *1 *1) (-4 *1 (-113))) (-3047 (*1 *1 *1 *1) (-4 *1 (-113))) (-3046 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-684) (-10 -8 (-15 -3045 ($ $)) (-15 -3047 ($ $ $)) (-15 -3046 ($ $ $)))) -(((-684) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) 10 T ELT)) (-3828 (($ $ $) 15 T ELT)) (-3342 (($) 7 T CONST)) (-1404 (($ $) 6 T ELT)) (-3624 (((-793)) 24 T ELT)) (-3481 (($) 32 T ELT)) (-3046 (($ $ $) 13 T ELT)) (-3045 (($ $) 9 T ELT)) (-1426 (($ $ $) 16 T ELT)) (-1427 (($ $ $) 17 T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) 30 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 28 T ELT)) (-3340 (($ $ $) 20 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3341 (($) 8 T CONST)) (-3339 (($ $ $) 21 T ELT)) (-4488 (((-549) $) 34 T ELT)) (-4462 (((-888) $) 36 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3047 (($ $ $) 11 T ELT)) (-2538 (($ $ $) 14 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 19 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 22 T ELT)) (-2539 (($ $ $) 12 T ELT))) -(((-114) (-13 (-868) (-999) (-633 (-549)) (-10 -8 (-15 -3828 ($ $ $)) (-15 -1427 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -1404 ($ $))))) (T -114)) -((-3828 (*1 *1 *1 *1) (-5 *1 (-114))) (-1427 (*1 *1 *1 *1) (-5 *1 (-114))) (-1426 (*1 *1 *1 *1) (-5 *1 (-114))) (-1404 (*1 *1 *1) (-5 *1 (-114)))) -(-13 (-868) (-999) (-633 (-549)) (-10 -8 (-15 -3828 ($ $ $)) (-15 -1427 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -1404 ($ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1666 (((-793) $) 92 T ELT) (($ $ (-793)) 37 T ELT)) (-1412 (((-114) $) 41 T ELT)) (-1406 (($ $ (-1191) (-795)) 59 T ELT) (($ $ (-520) (-795)) 33 T ELT)) (-1405 (($ $ (-45 (-1191) (-795))) 16 T ELT)) (-3328 (((-3 (-795) "failed") $ (-1191)) 27 T ELT) (((-713 (-795)) $ (-520)) 32 T ELT)) (-1414 (((-45 (-1191) (-795)) $) 15 T ELT)) (-4109 (($ (-1209)) 20 T ELT) (($ (-1209) (-793)) 23 T ELT) (($ (-1209) (-55)) 24 T ELT)) (-1413 (((-114) $) 39 T ELT)) (-1411 (((-114) $) 43 T ELT)) (-4056 (((-1209) $) 8 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3118 (((-114) $ (-1209)) 11 T ELT)) (-2357 (($ $ (-1 (-549) (-663 (-549)))) 65 T ELT) (((-713 (-1 (-549) (-663 (-549)))) $) 69 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1408 (((-114) $ (-520)) 36 T ELT)) (-1410 (($ $ (-1 (-114) $ $)) 45 T ELT)) (-4133 (((-713 (-1 (-888) (-663 (-888)))) $) 67 T ELT) (($ $ (-1 (-888) (-663 (-888)))) 51 T ELT) (($ $ (-1 (-888) (-888))) 53 T ELT)) (-1407 (($ $ (-1191)) 55 T ELT) (($ $ (-520)) 57 T ELT)) (-3906 (($ $) 75 T ELT)) (-1409 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-4462 (((-888) $) 61 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3279 (($ $ (-520)) 34 T ELT)) (-3003 (((-55) $) 70 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 88 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 104 T ELT))) -(((-115) (-13 (-872) (-860 (-1209)) (-10 -8 (-15 -1414 ((-45 (-1191) (-795)) $)) (-15 -3906 ($ $)) (-15 -4109 ($ (-1209))) (-15 -4109 ($ (-1209) (-793))) (-15 -4109 ($ (-1209) (-55))) (-15 -1413 ((-114) $)) (-15 -1412 ((-114) $)) (-15 -1411 ((-114) $)) (-15 -1666 ((-793) $)) (-15 -1666 ($ $ (-793))) (-15 -1410 ($ $ (-1 (-114) $ $))) (-15 -1409 ($ $ (-1 (-114) $ $))) (-15 -4133 ((-713 (-1 (-888) (-663 (-888)))) $)) (-15 -4133 ($ $ (-1 (-888) (-663 (-888))))) (-15 -4133 ($ $ (-1 (-888) (-888)))) (-15 -2357 ($ $ (-1 (-549) (-663 (-549))))) (-15 -2357 ((-713 (-1 (-549) (-663 (-549)))) $)) (-15 -1408 ((-114) $ (-520))) (-15 -3279 ($ $ (-520))) (-15 -1407 ($ $ (-1191))) (-15 -1407 ($ $ (-520))) (-15 -3328 ((-3 (-795) "failed") $ (-1191))) (-15 -3328 ((-713 (-795)) $ (-520))) (-15 -1406 ($ $ (-1191) (-795))) (-15 -1406 ($ $ (-520) (-795))) (-15 -1405 ($ $ (-45 (-1191) (-795))))))) (T -115)) -((-1414 (*1 *2 *1) (-12 (-5 *2 (-45 (-1191) (-795))) (-5 *1 (-115)))) (-3906 (*1 *1 *1) (-5 *1 (-115))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-115)))) (-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *1 (-115)))) (-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-1410 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-1409 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-713 (-1 (-888) (-663 (-888))))) (-5 *1 (-115)))) (-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-888) (-663 (-888)))) (-5 *1 (-115)))) (-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-888) (-888))) (-5 *1 (-115)))) (-2357 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-713 (-1 (-549) (-663 (-549))))) (-5 *1 (-115)))) (-1408 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115)))) (-3279 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-115)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-3328 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1191)) (-5 *2 (-795)) (-5 *1 (-115)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115)))) (-1406 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-795)) (-5 *1 (-115)))) (-1406 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1191) (-795))) (-5 *1 (-115))))) -(-13 (-872) (-860 (-1209)) (-10 -8 (-15 -1414 ((-45 (-1191) (-795)) $)) (-15 -3906 ($ $)) (-15 -4109 ($ (-1209))) (-15 -4109 ($ (-1209) (-793))) (-15 -4109 ($ (-1209) (-55))) (-15 -1413 ((-114) $)) (-15 -1412 ((-114) $)) (-15 -1411 ((-114) $)) (-15 -1666 ((-793) $)) (-15 -1666 ($ $ (-793))) (-15 -1410 ($ $ (-1 (-114) $ $))) (-15 -1409 ($ $ (-1 (-114) $ $))) (-15 -4133 ((-713 (-1 (-888) (-663 (-888)))) $)) (-15 -4133 ($ $ (-1 (-888) (-663 (-888))))) (-15 -4133 ($ $ (-1 (-888) (-888)))) (-15 -2357 ($ $ (-1 (-549) (-663 (-549))))) (-15 -2357 ((-713 (-1 (-549) (-663 (-549)))) $)) (-15 -1408 ((-114) $ (-520))) (-15 -3279 ($ $ (-520))) (-15 -1407 ($ $ (-1191))) (-15 -1407 ($ $ (-520))) (-15 -3328 ((-3 (-795) "failed") $ (-1191))) (-15 -3328 ((-713 (-795)) $ (-520))) (-15 -1406 ($ $ (-1191) (-795))) (-15 -1406 ($ $ (-520) (-795))) (-15 -1405 ($ $ (-45 (-1191) (-795)))))) -((-3000 (((-3 (-1 |#1| (-663 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-663 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-663 |#1|)) 25 T ELT)) (-1415 (((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-663 (-1 |#1| (-663 |#1|)))) 30 T ELT)) (-1416 (((-115) |#1|) 63 T ELT)) (-1417 (((-3 |#1| "failed") (-115)) 58 T ELT))) -(((-116 |#1|) (-10 -7 (-15 -3000 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -3000 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -3000 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3000 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -1415 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -1415 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1415 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -1416 ((-115) |#1|)) (-15 -1417 ((-3 |#1| "failed") (-115)))) (-1133)) (T -116)) -((-1417 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1133)))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1133)))) (-1415 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1133)))) (-1415 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) (-1415 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) (-3000 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1133)))) (-3000 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) (-3000 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) (-3000 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1133))))) -(-10 -7 (-15 -3000 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -3000 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -3000 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3000 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -1415 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -1415 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1415 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -1416 ((-115) |#1|)) (-15 -1417 ((-3 |#1| "failed") (-115)))) -((-1418 (((-560) |#2|) 41 T ELT))) -(((-117 |#1| |#2|) (-10 -7 (-15 -1418 ((-560) |#2|))) (-13 (-376) (-1070 (-421 (-560)))) (-1275 |#1|)) (T -117)) -((-1418 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1070 (-421 *2)))) (-5 *2 (-560)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -1418 ((-560) |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $ (-560)) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3096 (($ (-1203 (-560)) (-560)) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4288 (((-793) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-3099 (((-560)) NIL T ELT)) (-3098 (((-560) $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4285 (($ $ (-560)) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3100 (((-1187 (-560)) $) NIL T ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-560) $ (-560)) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-118 |#1|) (-895 |#1|) (-560)) (T -118)) -NIL -(-895 |#1|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-118 |#1|) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-118 |#1|) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-118 |#1|) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-118 |#1|) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-118 |#1|) (-1070 (-560))) ELT)) (-3660 (((-118 |#1|) $) NIL T ELT) (((-1209) $) NIL (|has| (-118 |#1|) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-118 |#1|) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-118 |#1|) (-1070 (-560))) ELT)) (-4246 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-118 |#1|))) (|:| |vec| (-1299 (-118 |#1|)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-118 |#1|)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-118 |#1|) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-118 |#1|) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-118 |#1|) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-118 |#1|) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-118 |#1|) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-118 |#1|) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-118 |#1|) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-4474 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-118 |#1|))) (|:| |vec| (-1299 (-118 |#1|)))) (-1299 $) $) NIL T ELT) (((-711 (-118 |#1|)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-118 |#1|) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3618 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-118 |#1|)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-1209)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-528 (-1209) (-118 |#1|))) ELT) (($ $ (-1209) (-118 |#1|)) NIL (|has| (-118 |#1|) (-528 (-1209) (-118 |#1|))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-118 |#1|) $) NIL T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-118 |#1|) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-118 |#1|) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-118 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1052)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1052)) ELT)) (-3101 (((-177 (-421 (-560))) $) NIL T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1209)) NIL (|has| (-118 |#1|) (-1070 (-1209))) ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-940))) (|has| (-118 |#1|) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-421 (-560)) $ (-560)) NIL T ELT)) (-3889 (($ $) NIL (|has| (-118 |#1|) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-118 |#1|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-118 |#1|) (-872)) ELT)) (-4465 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) -(((-119 |#1|) (-13 (-1023 (-118 |#1|)) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) (-560)) (T -119)) -((-4286 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-119 *3)) (-14 *3 (-560)))) (-4246 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2)))) -(-13 (-1023 (-118 |#1|)) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) -((-4304 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-3518 (((-663 $) $) 31 T ELT)) (-3514 (((-114) $ $) 36 T ELT)) (-3749 (((-114) |#2| $) 40 T ELT)) (-3517 (((-663 |#2|) $) 25 T ELT)) (-4033 (((-114) $) 18 T ELT)) (-4316 ((|#2| $ #1#) NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-4149 (((-114) $) 57 T ELT)) (-4462 (((-888) $) 47 T ELT)) (-4028 (((-663 $) $) 32 T ELT)) (-3540 (((-114) $ $) 38 T ELT)) (-4473 (((-793) $) 50 T ELT))) -(((-120 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4304 (|#1| |#1| "right" |#1|)) (-15 -4304 (|#1| |#1| "left" |#1|)) (-15 -4316 (|#1| |#1| "right")) (-15 -4316 (|#1| |#1| "left")) (-15 -4304 (|#2| |#1| #1="value" |#2|)) (-15 -3514 ((-114) |#1| |#1|)) (-15 -3517 ((-663 |#2|) |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -3749 ((-114) |#2| |#1|)) (-15 -4473 ((-793) |#1|))) (-121 |#2|) (-1249)) (T -120)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4304 (|#1| |#1| "right" |#1|)) (-15 -4304 (|#1| |#1| "left" |#1|)) (-15 -4316 (|#1| |#1| "right")) (-15 -4316 (|#1| |#1| "left")) (-15 -4304 (|#2| |#1| #1="value" |#2|)) (-15 -3514 ((-114) |#1| |#1|)) (-15 -3517 ((-663 |#2|) |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -3749 ((-114) |#2| |#1|)) (-15 -4473 ((-793) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) 58 (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) 60 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4512)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-3625 (($ $) 63 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3626 (($ $) 65 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-121 |#1|) (-142) (-1249)) (T -121)) -((-3626 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1249)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1249)))) (-3625 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1249)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1249)))) (-4304 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4512)) (-4 *1 (-121 *3)) (-4 *3 (-1249)))) (-1420 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-121 *2)) (-4 *2 (-1249)))) (-4304 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4512)) (-4 *1 (-121 *3)) (-4 *3 (-1249)))) (-1419 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-121 *2)) (-4 *2 (-1249))))) -(-13 (-1042 |t#1|) (-10 -8 (-15 -3626 ($ $)) (-15 -4316 ($ $ "left")) (-15 -3625 ($ $)) (-15 -4316 ($ $ "right")) (IF (|has| $ (-6 -4512)) (PROGN (-15 -4304 ($ $ "left" $)) (-15 -1420 ($ $ $)) (-15 -4304 ($ $ "right" $)) (-15 -1419 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-1423 (((-114) |#1|) 29 T ELT)) (-1422 (((-793) (-793)) 28 T ELT) (((-793)) 27 T ELT)) (-1421 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT))) -(((-122 |#1|) (-10 -7 (-15 -1421 ((-114) |#1|)) (-15 -1421 ((-114) |#1| (-114))) (-15 -1422 ((-793))) (-15 -1422 ((-793) (-793))) (-15 -1423 ((-114) |#1|))) (-1275 (-560))) (T -122)) -((-1423 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) (-1422 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) (-1421 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) (-1421 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560)))))) -(-10 -7 (-15 -1421 ((-114) |#1|)) (-15 -1421 ((-114) |#1| (-114))) (-15 -1422 ((-793))) (-15 -1422 ((-793) (-793))) (-15 -1423 ((-114) |#1|))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 18 T ELT)) (-3924 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) 21 (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) 23 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3625 (($ $) 20 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1428 (($ $ |#1| $) 27 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3626 (($ $) 22 T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1424 (($ |#1| $) 28 T ELT)) (-4123 (($ |#1| $) 15 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 11 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1425 (($ (-663 |#1|)) 16 T ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4512) (-6 -4511) (-15 -1425 ($ (-663 |#1|))) (-15 -4123 ($ |#1| $)) (-15 -1424 ($ |#1| $)) (-15 -3924 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-872)) (T -123)) -((-1425 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-123 *3)))) (-4123 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-872)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-872)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-872))))) -(-13 (-127 |#1|) (-10 -8 (-6 -4512) (-6 -4511) (-15 -1425 ($ (-663 |#1|))) (-15 -4123 ($ |#1| $)) (-15 -1424 ($ |#1| $)) (-15 -3924 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2540 (($ $) 13 T ELT)) (-3045 (($ $) 11 T ELT)) (-1426 (($ $ $) 23 T ELT)) (-1427 (($ $ $) 21 T ELT)) (-2538 (($ $ $) 19 T ELT)) (-2539 (($ $ $) 17 T ELT))) -(((-124 |#1|) (-10 -8 (-15 -1426 (|#1| |#1| |#1|)) (-15 -1427 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|))) (-125)) (T -124)) -NIL -(-10 -8 (-15 -1426 (|#1| |#1| |#1|)) (-15 -1427 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-2540 (($ $) 103 T ELT)) (-3828 (($ $ $) 31 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 66 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) 98 (|has| (-114) (-872)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1945 (($ $) 102 (-12 (|has| (-114) (-872)) (|has| $ (-6 -4512))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) 97 (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-4304 (((-114) $ (-1266 (-560)) (-114)) 88 (|has| $ (-6 -4512)) ELT) (((-114) $ (-560) (-114)) 54 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 38 T CONST)) (-2524 (($ $) 100 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 90 T ELT)) (-1479 (($ $) 68 (-12 (|has| (-114) (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4511)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1133)) (|has| $ (-6 -4511))) ELT)) (-4358 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1133)) (|has| $ (-6 -4511))) ELT)) (-1731 (((-114) $ (-560) (-114)) 53 (|has| $ (-6 -4512)) ELT)) (-3601 (((-114) $ (-560)) 55 T ELT)) (-3925 (((-560) (-114) $ (-560)) 95 (|has| (-114) (-1133)) ELT) (((-560) (-114) $) 94 (|has| (-114) (-1133)) ELT) (((-560) (-1 (-114) (-114)) $) 93 T ELT)) (-3376 (((-663 (-114)) $) 45 (|has| $ (-6 -4511)) ELT)) (-3046 (($ $ $) 108 T ELT)) (-3045 (($ $) 106 T ELT)) (-1426 (($ $ $) 32 T ELT)) (-4130 (($ (-793) (-114)) 78 T ELT)) (-1427 (($ $ $) 33 T ELT)) (-2429 (((-560) $) 63 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 23 T ELT)) (-4024 (($ $ $) 96 (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3093 (((-663 (-114)) $) 46 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 62 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 22 T ELT)) (-2174 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2531 (($ $ $ (-560)) 87 T ELT) (($ (-114) $ (-560)) 86 T ELT)) (-2432 (((-663 (-560)) $) 60 T ELT)) (-2433 (((-114) (-560) $) 59 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-114) $) 64 (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2428 (($ $ (-114)) 65 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-114)) (-663 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-663 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT)) (-1340 (((-114) $ $) 34 T ELT)) (-2431 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-2434 (((-663 (-114)) $) 58 T ELT)) (-3909 (((-114) $) 37 T ELT)) (-4079 (($) 36 T ELT)) (-4316 (($ $ (-1266 (-560))) 77 T ELT) (((-114) $ (-560)) 57 T ELT) (((-114) $ (-560) (-114)) 56 T ELT)) (-2532 (($ $ (-1266 (-560))) 85 T ELT) (($ $ (-560)) 84 T ELT)) (-2171 (((-793) (-114) $) 47 (-12 (|has| (-114) (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4511)) ELT)) (-1946 (($ $ $ (-560)) 99 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 35 T ELT)) (-4488 (((-549) $) 67 (|has| (-114) (-633 (-549))) ELT)) (-4036 (($ (-663 (-114))) 76 T ELT)) (-4318 (($ (-663 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2173 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4511)) ELT)) (-3047 (($ $ $) 107 T ELT)) (-2538 (($ $ $) 105 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-2539 (($ $ $) 104 T ELT)) (-4473 (((-793) $) 39 (|has| $ (-6 -4511)) ELT))) +((-3041 (*1 *1 *1) (-4 *1 (-113))) (-3043 (*1 *1 *1 *1) (-4 *1 (-113))) (-3042 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-682) (-10 -8 (-15 -3041 ($ $)) (-15 -3043 ($ $ $)) (-15 -3042 ($ $ $)))) +(((-682) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) 10 T ELT)) (-3824 (($ $ $) 15 T ELT)) (-3338 (($) 7 T CONST)) (-1402 (($ $) 6 T ELT)) (-3620 (((-791)) 24 T ELT)) (-3477 (($) 32 T ELT)) (-3042 (($ $ $) 13 T ELT)) (-3041 (($ $) 9 T ELT)) (-1424 (($ $ $) 16 T ELT)) (-1425 (($ $ $) 17 T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) 30 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 28 T ELT)) (-3336 (($ $ $) 20 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3337 (($) 8 T CONST)) (-3335 (($ $ $) 21 T ELT)) (-4484 (((-547) $) 34 T ELT)) (-4458 (((-886) $) 36 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3043 (($ $ $) 11 T ELT)) (-2534 (($ $ $) 14 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 19 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 22 T ELT)) (-2535 (($ $ $) 12 T ELT))) +(((-114) (-13 (-866) (-997) (-631 (-547)) (-10 -8 (-15 -3824 ($ $ $)) (-15 -1425 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1402 ($ $))))) (T -114)) +((-3824 (*1 *1 *1 *1) (-5 *1 (-114))) (-1425 (*1 *1 *1 *1) (-5 *1 (-114))) (-1424 (*1 *1 *1 *1) (-5 *1 (-114))) (-1402 (*1 *1 *1) (-5 *1 (-114)))) +(-13 (-866) (-997) (-631 (-547)) (-10 -8 (-15 -3824 ($ $ $)) (-15 -1425 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1402 ($ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1664 (((-791) $) 92 T ELT) (($ $ (-791)) 37 T ELT)) (-1410 (((-114) $) 41 T ELT)) (-1404 (($ $ (-1189) (-793)) 59 T ELT) (($ $ (-518) (-793)) 33 T ELT)) (-1403 (($ $ (-45 (-1189) (-793))) 16 T ELT)) (-3324 (((-3 (-793) "failed") $ (-1189)) 27 T ELT) (((-711 (-793)) $ (-518)) 32 T ELT)) (-1412 (((-45 (-1189) (-793)) $) 15 T ELT)) (-4105 (($ (-1207)) 20 T ELT) (($ (-1207) (-791)) 23 T ELT) (($ (-1207) (-55)) 24 T ELT)) (-1411 (((-114) $) 39 T ELT)) (-1409 (((-114) $) 43 T ELT)) (-4052 (((-1207) $) 8 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3114 (((-114) $ (-1207)) 11 T ELT)) (-2353 (($ $ (-1 (-547) (-661 (-547)))) 65 T ELT) (((-711 (-1 (-547) (-661 (-547)))) $) 69 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1406 (((-114) $ (-518)) 36 T ELT)) (-1408 (($ $ (-1 (-114) $ $)) 45 T ELT)) (-4129 (((-711 (-1 (-886) (-661 (-886)))) $) 67 T ELT) (($ $ (-1 (-886) (-661 (-886)))) 51 T ELT) (($ $ (-1 (-886) (-886))) 53 T ELT)) (-1405 (($ $ (-1189)) 55 T ELT) (($ $ (-518)) 57 T ELT)) (-3902 (($ $) 75 T ELT)) (-1407 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-4458 (((-886) $) 61 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3275 (($ $ (-518)) 34 T ELT)) (-2999 (((-55) $) 70 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 88 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 104 T ELT))) +(((-115) (-13 (-870) (-858 (-1207)) (-10 -8 (-15 -1412 ((-45 (-1189) (-793)) $)) (-15 -3902 ($ $)) (-15 -4105 ($ (-1207))) (-15 -4105 ($ (-1207) (-791))) (-15 -4105 ($ (-1207) (-55))) (-15 -1411 ((-114) $)) (-15 -1410 ((-114) $)) (-15 -1409 ((-114) $)) (-15 -1664 ((-791) $)) (-15 -1664 ($ $ (-791))) (-15 -1408 ($ $ (-1 (-114) $ $))) (-15 -1407 ($ $ (-1 (-114) $ $))) (-15 -4129 ((-711 (-1 (-886) (-661 (-886)))) $)) (-15 -4129 ($ $ (-1 (-886) (-661 (-886))))) (-15 -4129 ($ $ (-1 (-886) (-886)))) (-15 -2353 ($ $ (-1 (-547) (-661 (-547))))) (-15 -2353 ((-711 (-1 (-547) (-661 (-547)))) $)) (-15 -1406 ((-114) $ (-518))) (-15 -3275 ($ $ (-518))) (-15 -1405 ($ $ (-1189))) (-15 -1405 ($ $ (-518))) (-15 -3324 ((-3 (-793) "failed") $ (-1189))) (-15 -3324 ((-711 (-793)) $ (-518))) (-15 -1404 ($ $ (-1189) (-793))) (-15 -1404 ($ $ (-518) (-793))) (-15 -1403 ($ $ (-45 (-1189) (-793))))))) (T -115)) +((-1412 (*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-793))) (-5 *1 (-115)))) (-3902 (*1 *1 *1) (-5 *1 (-115))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115)))) (-4105 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *1 (-115)))) (-4105 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) (-1408 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-886) (-661 (-886))))) (-5 *1 (-115)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-661 (-886)))) (-5 *1 (-115)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-886))) (-5 *1 (-115)))) (-2353 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-661 (-547)))) (-5 *1 (-115)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-547) (-661 (-547))))) (-5 *1 (-115)))) (-1406 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3324 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-793)) (-5 *1 (-115)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-793))) (-5 *1 (-115)))) (-1404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-793)) (-5 *1 (-115)))) (-1404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-793)) (-5 *1 (-115)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-793))) (-5 *1 (-115))))) +(-13 (-870) (-858 (-1207)) (-10 -8 (-15 -1412 ((-45 (-1189) (-793)) $)) (-15 -3902 ($ $)) (-15 -4105 ($ (-1207))) (-15 -4105 ($ (-1207) (-791))) (-15 -4105 ($ (-1207) (-55))) (-15 -1411 ((-114) $)) (-15 -1410 ((-114) $)) (-15 -1409 ((-114) $)) (-15 -1664 ((-791) $)) (-15 -1664 ($ $ (-791))) (-15 -1408 ($ $ (-1 (-114) $ $))) (-15 -1407 ($ $ (-1 (-114) $ $))) (-15 -4129 ((-711 (-1 (-886) (-661 (-886)))) $)) (-15 -4129 ($ $ (-1 (-886) (-661 (-886))))) (-15 -4129 ($ $ (-1 (-886) (-886)))) (-15 -2353 ($ $ (-1 (-547) (-661 (-547))))) (-15 -2353 ((-711 (-1 (-547) (-661 (-547)))) $)) (-15 -1406 ((-114) $ (-518))) (-15 -3275 ($ $ (-518))) (-15 -1405 ($ $ (-1189))) (-15 -1405 ($ $ (-518))) (-15 -3324 ((-3 (-793) "failed") $ (-1189))) (-15 -3324 ((-711 (-793)) $ (-518))) (-15 -1404 ($ $ (-1189) (-793))) (-15 -1404 ($ $ (-518) (-793))) (-15 -1403 ($ $ (-45 (-1189) (-793)))))) +((-2996 (((-3 (-1 |#1| (-661 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-661 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-661 |#1|)) 25 T ELT)) (-1413 (((-3 (-661 (-1 |#1| (-661 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-661 (-1 |#1| (-661 |#1|)))) 30 T ELT)) (-1414 (((-115) |#1|) 63 T ELT)) (-1415 (((-3 |#1| "failed") (-115)) 58 T ELT))) +(((-116 |#1|) (-10 -7 (-15 -2996 ((-3 |#1| "failed") (-115) (-661 |#1|))) (-15 -2996 ((-115) (-115) (-1 |#1| (-661 |#1|)))) (-15 -2996 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2996 ((-3 (-1 |#1| (-661 |#1|)) "failed") (-115))) (-15 -1413 ((-115) (-115) (-661 (-1 |#1| (-661 |#1|))))) (-15 -1413 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1413 ((-3 (-661 (-1 |#1| (-661 |#1|))) "failed") (-115))) (-15 -1414 ((-115) |#1|)) (-15 -1415 ((-3 |#1| "failed") (-115)))) (-1131)) (T -116)) +((-1415 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1131)))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1131)))) (-1413 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-1 *4 (-661 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1131)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 (-1 *4 (-661 *4)))) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) (-2996 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-661 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1131)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-661 *4))) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) (-2996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-661 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1131))))) +(-10 -7 (-15 -2996 ((-3 |#1| "failed") (-115) (-661 |#1|))) (-15 -2996 ((-115) (-115) (-1 |#1| (-661 |#1|)))) (-15 -2996 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2996 ((-3 (-1 |#1| (-661 |#1|)) "failed") (-115))) (-15 -1413 ((-115) (-115) (-661 (-1 |#1| (-661 |#1|))))) (-15 -1413 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1413 ((-3 (-661 (-1 |#1| (-661 |#1|))) "failed") (-115))) (-15 -1414 ((-115) |#1|)) (-15 -1415 ((-3 |#1| "failed") (-115)))) +((-1416 (((-558) |#2|) 41 T ELT))) +(((-117 |#1| |#2|) (-10 -7 (-15 -1416 ((-558) |#2|))) (-13 (-376) (-1068 (-419 (-558)))) (-1273 |#1|)) (T -117)) +((-1416 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1068 (-419 *2)))) (-5 *2 (-558)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -1416 ((-558) |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $ (-558)) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3092 (($ (-1201 (-558)) (-558)) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3093 (($ $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4284 (((-791) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-3095 (((-558)) NIL T ELT)) (-3094 (((-558) $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4281 (($ $ (-558)) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3096 (((-1185 (-558)) $) NIL T ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-558) $ (-558)) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-118 |#1|) (-893 |#1|) (-558)) (T -118)) +NIL +(-893 |#1|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-118 |#1|) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-118 |#1|) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-118 |#1|) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-118 |#1|) (-1068 (-558))) ELT)) (-3656 (((-118 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-118 |#1|) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-118 |#1|) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-118 |#1|) (-1068 (-558))) ELT)) (-4242 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-118 |#1|)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-118 |#1|) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-118 |#1|) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-118 |#1|) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-118 |#1|) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-118 |#1|) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-4470 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-1297 $) $) NIL T ELT) (((-709 (-118 |#1|)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-118 |#1|) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3614 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-118 |#1|)) (-661 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-661 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-661 (-1207)) (-661 (-118 |#1|))) NIL (|has| (-118 |#1|) (-526 (-1207) (-118 |#1|))) ELT) (($ $ (-1207) (-118 |#1|)) NIL (|has| (-118 |#1|) (-526 (-1207) (-118 |#1|))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-118 |#1|) $) NIL T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-118 |#1|) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-118 |#1|) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-118 |#1|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1050)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1050)) ELT)) (-3097 (((-177 (-419 (-558))) $) NIL T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-118 |#1|) (-1068 (-1207))) ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-938))) (|has| (-118 |#1|) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3885 (($ $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-118 |#1|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-118 |#1|) (-870)) ELT)) (-4461 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) +(((-119 |#1|) (-13 (-1021 (-118 |#1|)) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) (-558)) (T -119)) +((-4282 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-119 *3)) (-14 *3 (-558)))) (-4242 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-558)))) (-4242 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-119 *3)) (-14 *3 *2)))) +(-13 (-1021 (-118 |#1|)) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) +((-4300 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-3514 (((-661 $) $) 31 T ELT)) (-3510 (((-114) $ $) 36 T ELT)) (-3745 (((-114) |#2| $) 40 T ELT)) (-3513 (((-661 |#2|) $) 25 T ELT)) (-4029 (((-114) $) 18 T ELT)) (-4312 ((|#2| $ #1#) NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-4145 (((-114) $) 57 T ELT)) (-4458 (((-886) $) 47 T ELT)) (-4024 (((-661 $) $) 32 T ELT)) (-3536 (((-114) $ $) 38 T ELT)) (-4469 (((-791) $) 50 T ELT))) +(((-120 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4300 (|#1| |#1| "right" |#1|)) (-15 -4300 (|#1| |#1| "left" |#1|)) (-15 -4312 (|#1| |#1| "right")) (-15 -4312 (|#1| |#1| "left")) (-15 -4300 (|#2| |#1| #1="value" |#2|)) (-15 -3510 ((-114) |#1| |#1|)) (-15 -3513 ((-661 |#2|) |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -3745 ((-114) |#2| |#1|)) (-15 -4469 ((-791) |#1|))) (-121 |#2|) (-1247)) (T -120)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4300 (|#1| |#1| "right" |#1|)) (-15 -4300 (|#1| |#1| "left" |#1|)) (-15 -4312 (|#1| |#1| "right")) (-15 -4312 (|#1| |#1| "left")) (-15 -4300 (|#2| |#1| #1="value" |#2|)) (-15 -3510 ((-114) |#1| |#1|)) (-15 -3513 ((-661 |#2|) |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -3745 ((-114) |#2| |#1|)) (-15 -4469 ((-791) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) 58 (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) 60 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4508)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-3621 (($ $) 63 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3622 (($ $) 65 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-121 |#1|) (-142) (-1247)) (T -121)) +((-3622 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-3621 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-4300 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4508)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-1418 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-4300 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4508)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-1417 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-121 *2)) (-4 *2 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -3622 ($ $)) (-15 -4312 ($ $ "left")) (-15 -3621 ($ $)) (-15 -4312 ($ $ "right")) (IF (|has| $ (-6 -4508)) (PROGN (-15 -4300 ($ $ "left" $)) (-15 -1418 ($ $ $)) (-15 -4300 ($ $ "right" $)) (-15 -1417 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-1421 (((-114) |#1|) 29 T ELT)) (-1420 (((-791) (-791)) 28 T ELT) (((-791)) 27 T ELT)) (-1419 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT))) +(((-122 |#1|) (-10 -7 (-15 -1419 ((-114) |#1|)) (-15 -1419 ((-114) |#1| (-114))) (-15 -1420 ((-791))) (-15 -1420 ((-791) (-791))) (-15 -1421 ((-114) |#1|))) (-1273 (-558))) (T -122)) +((-1421 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) (-1420 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) (-1419 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) (-1419 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558)))))) +(-10 -7 (-15 -1419 ((-114) |#1|)) (-15 -1419 ((-114) |#1| (-114))) (-15 -1420 ((-791))) (-15 -1420 ((-791) (-791))) (-15 -1421 ((-114) |#1|))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 18 T ELT)) (-3920 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) 21 (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) 23 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3621 (($ $) 20 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1426 (($ $ |#1| $) 27 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3622 (($ $) 22 T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1422 (($ |#1| $) 28 T ELT)) (-4119 (($ |#1| $) 15 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 11 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1423 (($ (-661 |#1|)) 16 T ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4507) (-15 -1423 ($ (-661 |#1|))) (-15 -4119 ($ |#1| $)) (-15 -1422 ($ |#1| $)) (-15 -3920 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-870)) (T -123)) +((-1423 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-123 *3)))) (-4119 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-870)))) (-1422 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-870)))) (-3920 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-870))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4507) (-15 -1423 ($ (-661 |#1|))) (-15 -4119 ($ |#1| $)) (-15 -1422 ($ |#1| $)) (-15 -3920 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2536 (($ $) 13 T ELT)) (-3041 (($ $) 11 T ELT)) (-1424 (($ $ $) 23 T ELT)) (-1425 (($ $ $) 21 T ELT)) (-2534 (($ $ $) 19 T ELT)) (-2535 (($ $ $) 17 T ELT))) +(((-124 |#1|) (-10 -8 (-15 -1424 (|#1| |#1| |#1|)) (-15 -1425 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1|))) (-125)) (T -124)) +NIL +(-10 -8 (-15 -1424 (|#1| |#1| |#1|)) (-15 -1425 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-2536 (($ $) 103 T ELT)) (-3824 (($ $ $) 31 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 66 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) 98 (|has| (-114) (-870)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1943 (($ $) 102 (-12 (|has| (-114) (-870)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) 97 (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-4300 (((-114) $ (-1264 (-558)) (-114)) 88 (|has| $ (-6 -4508)) ELT) (((-114) $ (-558) (-114)) 54 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 38 T CONST)) (-2520 (($ $) 100 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 90 T ELT)) (-1477 (($ $) 68 (-12 (|has| (-114) (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4507)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1131)) (|has| $ (-6 -4507))) ELT)) (-4354 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1131)) (|has| $ (-6 -4507))) ELT)) (-1729 (((-114) $ (-558) (-114)) 53 (|has| $ (-6 -4508)) ELT)) (-3597 (((-114) $ (-558)) 55 T ELT)) (-3921 (((-558) (-114) $ (-558)) 95 (|has| (-114) (-1131)) ELT) (((-558) (-114) $) 94 (|has| (-114) (-1131)) ELT) (((-558) (-1 (-114) (-114)) $) 93 T ELT)) (-3372 (((-661 (-114)) $) 45 (|has| $ (-6 -4507)) ELT)) (-3042 (($ $ $) 108 T ELT)) (-3041 (($ $) 106 T ELT)) (-1424 (($ $ $) 32 T ELT)) (-4126 (($ (-791) (-114)) 78 T ELT)) (-1425 (($ $ $) 33 T ELT)) (-2425 (((-558) $) 63 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 23 T ELT)) (-4020 (($ $ $) 96 (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3089 (((-661 (-114)) $) 46 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 62 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 22 T ELT)) (-2170 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2527 (($ $ $ (-558)) 87 T ELT) (($ (-114) $ (-558)) 86 T ELT)) (-2428 (((-661 (-558)) $) 60 T ELT)) (-2429 (((-114) (-558) $) 59 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-114) $) 64 (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2424 (($ $ (-114)) 65 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-114)) (-661 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-661 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT)) (-1338 (((-114) $ $) 34 T ELT)) (-2427 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-2430 (((-661 (-114)) $) 58 T ELT)) (-3905 (((-114) $) 37 T ELT)) (-4075 (($) 36 T ELT)) (-4312 (($ $ (-1264 (-558))) 77 T ELT) (((-114) $ (-558)) 57 T ELT) (((-114) $ (-558) (-114)) 56 T ELT)) (-2528 (($ $ (-1264 (-558))) 85 T ELT) (($ $ (-558)) 84 T ELT)) (-2167 (((-791) (-114) $) 47 (-12 (|has| (-114) (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4507)) ELT)) (-1944 (($ $ $ (-558)) 99 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 35 T ELT)) (-4484 (((-547) $) 67 (|has| (-114) (-631 (-547))) ELT)) (-4032 (($ (-661 (-114))) 76 T ELT)) (-4314 (($ (-661 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2169 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4507)) ELT)) (-3043 (($ $ $) 107 T ELT)) (-2534 (($ $ $) 105 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-2535 (($ $ $) 104 T ELT)) (-4469 (((-791) $) 39 (|has| $ (-6 -4507)) ELT))) (((-125) (-142)) (T -125)) -((-1427 (*1 *1 *1 *1) (-4 *1 (-125))) (-1426 (*1 *1 *1 *1) (-4 *1 (-125))) (-3828 (*1 *1 *1 *1) (-4 *1 (-125)))) -(-13 (-872) (-113) (-684) (-19 (-114)) (-10 -8 (-15 -1427 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -3828 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-632 (-888)) . T) ((-153 #1=(-114)) . T) ((-633 (-549)) |has| (-114) (-633 (-549))) ((-298 #2=(-560) #1#) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #2# #1#) . T) ((-321 #1#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ((-385 #1#) . T) ((-503 #1#) . T) ((-618 #2# #1#) . T) ((-528 #1# #1#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ((-673 #1#) . T) ((-684) . T) ((-19 #1#) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-2174 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3906 (($ $) 16 T ELT)) (-4473 (((-793) $) 25 T ELT))) -(((-126 |#1| |#2|) (-10 -8 (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4473 ((-793) |#1|)) (-15 -3906 (|#1| |#1|))) (-127 |#2|) (-1133)) (T -126)) -NIL -(-10 -8 (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4473 ((-793) |#1|)) (-15 -3906 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) 58 (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) 60 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-3625 (($ $) 63 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-1428 (($ $ |#1| $) 66 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3626 (($ $) 65 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-127 |#1|) (-142) (-1133)) (T -127)) -((-1428 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1133))))) -(-13 (-121 |t#1|) (-10 -8 (-6 -4512) (-6 -4511) (-15 -1428 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 18 T ELT)) (-3512 ((|#1| $ |#1|) 22 (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) 23 (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) 21 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3625 (($ $) 24 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1428 (($ $ |#1| $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3626 (($ $) NIL T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4123 (($ |#1| $) 15 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 11 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 20 T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1429 (($ (-663 |#1|)) 16 T ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4512) (-15 -1429 ($ (-663 |#1|))) (-15 -4123 ($ |#1| $)))) (-872)) (T -128)) -((-1429 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-128 *3)))) (-4123 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-872))))) -(-13 (-127 |#1|) (-10 -8 (-6 -4512) (-15 -1429 ($ (-663 |#1|))) (-15 -4123 ($ |#1| $)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 30 T ELT)) (-3512 ((|#1| $ |#1|) 32 (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) 36 (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) 34 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3625 (($ $) 23 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1428 (($ $ |#1| $) 16 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3626 (($ $) 22 T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) 25 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 20 T ELT)) (-4079 (($) 11 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1430 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -1430 ($ |#1|)) (-15 -1430 ($ $ |#1| $)))) (-1133)) (T -129)) -((-1430 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1133)))) (-1430 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1133))))) -(-13 (-127 |#1|) (-10 -8 (-15 -1430 ($ |#1|)) (-15 -1430 ($ $ |#1| $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) 34 T ELT)) (-3624 (((-793)) 20 T ELT)) (-4240 (($) 12 T CONST)) (-3481 (($) 29 T ELT)) (-3016 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3344 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2234 (((-949) $) 27 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 25 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1431 (($ (-793)) 8 T ELT)) (-4241 (($ $ $) 31 T ELT)) (-4242 (($ $ $) 30 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) 33 T ELT)) (-3051 (((-114) $ $) 17 T ELT)) (-3052 (((-114) $ $) 15 T ELT)) (-3540 (((-114) $ $) 13 T ELT)) (-3171 (((-114) $ $) 16 T ELT)) (-3172 (((-114) $ $) 14 T ELT)) (-2539 (($ $ $) 32 T ELT))) -(((-130) (-13 (-868) (-684) (-10 -8 (-15 -1431 ($ (-793))) (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468)))) (T -130)) -((-1431 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))) (-4242 (*1 *1 *1 *1) (-5 *1 (-130))) (-4241 (*1 *1 *1 *1) (-5 *1 (-130))) (-4240 (*1 *1) (-5 *1 (-130)))) -(-13 (-868) (-684) (-10 -8 (-15 -1431 ($ (-793))) (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-1425 (*1 *1 *1 *1) (-4 *1 (-125))) (-1424 (*1 *1 *1 *1) (-4 *1 (-125))) (-3824 (*1 *1 *1 *1) (-4 *1 (-125)))) +(-13 (-870) (-113) (-682) (-19 (-114)) (-10 -8 (-15 -1425 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -3824 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-630 (-886)) . T) ((-153 #1=(-114)) . T) ((-631 (-547)) |has| (-114) (-631 (-547))) ((-298 #2=(-558) #1#) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #2# #1#) . T) ((-321 #1#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ((-385 #1#) . T) ((-501 #1#) . T) ((-616 #2# #1#) . T) ((-526 #1# #1#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ((-671 #1#) . T) ((-682) . T) ((-19 #1#) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-2170 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3902 (($ $) 16 T ELT)) (-4469 (((-791) $) 25 T ELT))) +(((-126 |#1| |#2|) (-10 -8 (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4469 ((-791) |#1|)) (-15 -3902 (|#1| |#1|))) (-127 |#2|) (-1131)) (T -126)) +NIL +(-10 -8 (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4469 ((-791) |#1|)) (-15 -3902 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) 58 (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) 60 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-3621 (($ $) 63 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-1426 (($ $ |#1| $) 66 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3622 (($ $) 65 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-127 |#1|) (-142) (-1131)) (T -127)) +((-1426 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1131))))) +(-13 (-121 |t#1|) (-10 -8 (-6 -4508) (-6 -4507) (-15 -1426 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 18 T ELT)) (-3508 ((|#1| $ |#1|) 22 (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) 23 (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) 21 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3621 (($ $) 24 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1426 (($ $ |#1| $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3622 (($ $) NIL T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4119 (($ |#1| $) 15 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 11 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 20 T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1427 (($ (-661 |#1|)) 16 T ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4508) (-15 -1427 ($ (-661 |#1|))) (-15 -4119 ($ |#1| $)))) (-870)) (T -128)) +((-1427 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-128 *3)))) (-4119 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-870))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4508) (-15 -1427 ($ (-661 |#1|))) (-15 -4119 ($ |#1| $)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 30 T ELT)) (-3508 ((|#1| $ |#1|) 32 (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) 36 (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) 34 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3621 (($ $) 23 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1426 (($ $ |#1| $) 16 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3622 (($ $) 22 T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) 25 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 20 T ELT)) (-4075 (($) 11 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1428 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -1428 ($ |#1|)) (-15 -1428 ($ $ |#1| $)))) (-1131)) (T -129)) +((-1428 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131)))) (-1428 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131))))) +(-13 (-127 |#1|) (-10 -8 (-15 -1428 ($ |#1|)) (-15 -1428 ($ $ |#1| $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) 34 T ELT)) (-3620 (((-791)) 20 T ELT)) (-4236 (($) 12 T CONST)) (-3477 (($) 29 T ELT)) (-3012 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3340 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2230 (((-947) $) 27 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 25 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1429 (($ (-791)) 8 T ELT)) (-4237 (($ $ $) 31 T ELT)) (-4238 (($ $ $) 30 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) 33 T ELT)) (-3047 (((-114) $ $) 17 T ELT)) (-3048 (((-114) $ $) 15 T ELT)) (-3536 (((-114) $ $) 13 T ELT)) (-3167 (((-114) $ $) 16 T ELT)) (-3168 (((-114) $ $) 14 T ELT)) (-2535 (($ $ $) 32 T ELT))) +(((-130) (-13 (-866) (-682) (-10 -8 (-15 -1429 ($ (-791))) (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464)))) (T -130)) +((-1429 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-130)))) (-4238 (*1 *1 *1 *1) (-5 *1 (-130))) (-4237 (*1 *1 *1 *1) (-5 *1 (-130))) (-4236 (*1 *1) (-5 *1 (-130)))) +(-13 (-866) (-682) (-10 -8 (-15 -1429 ($ (-791))) (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-3053 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-872)) ELT)) (-1945 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-130) (-872))) ELT)) (-3396 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-872)) ELT)) (-4304 (((-130) $ (-560) (-130)) 26 (|has| $ (-6 -4512)) ELT) (((-130) $ (-1266 (-560)) (-130)) NIL (|has| $ (-6 -4512)) ELT)) (-1432 (((-793) $ (-793)) 34 T ELT)) (-4226 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT)) (-3912 (($ (-130) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4511)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 (((-130) $ (-560) (-130)) 25 (|has| $ (-6 -4512)) ELT)) (-3601 (((-130) $ (-560)) 20 T ELT)) (-3925 (((-560) (-1 (-114) (-130)) $) NIL T ELT) (((-560) (-130) $) NIL (|has| (-130) (-1133)) ELT) (((-560) (-130) $ (-560)) NIL (|has| (-130) (-1133)) ELT)) (-3376 (((-663 (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) (-130)) 14 T ELT)) (-2429 (((-560) $) 27 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| (-130) (-872)) ELT)) (-4024 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-872)) ELT)) (-3093 (((-663 (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT)) (-2430 (((-560) $) 30 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-130) (-872)) ELT)) (-2174 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| (-130) (-1133)) ELT)) (-2531 (($ (-130) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| (-130) (-1133)) ELT)) (-4317 (((-130) $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2428 (($ $ (-130)) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1133))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1133))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1133))) ELT) (($ $ (-663 (-130)) (-663 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT)) (-2434 (((-663 (-130)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 12 T ELT)) (-4316 (((-130) $ (-560) (-130)) NIL T ELT) (((-130) $ (-560)) 23 T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-130) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-130) (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-130) (-633 (-549))) ELT)) (-4036 (($ (-663 (-130))) 40 T ELT)) (-4318 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-988 (-130)) $) 35 T ELT) (((-1191) $) 37 T ELT) (((-888) $) NIL (|has| (-130) (-632 (-888))) ELT)) (-1433 (((-793) $) 18 T ELT)) (-1434 (($ (-793)) 8 T ELT)) (-1389 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2173 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-130) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-130) (-872)) ELT)) (-3540 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| (-130) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-130) (-872)) ELT)) (-4473 (((-793) $) 15 (|has| $ (-6 -4511)) ELT))) -(((-131) (-13 (-19 (-130)) (-632 (-988 (-130))) (-632 (-1191)) (-10 -8 (-15 -1434 ($ (-793))) (-15 -1433 ((-793) $)) (-15 -1432 ((-793) $ (-793))) (-6 -4511)))) (T -131)) -((-1434 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-1432 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131))))) -(-13 (-19 (-130)) (-632 (-988 (-130))) (-632 (-1191)) (-10 -8 (-15 -1434 ($ (-793))) (-15 -1433 ((-793) $)) (-15 -1432 ((-793) $ (-793))) (-6 -4511))) -((-3053 (((-114) $ $) NIL T ELT)) (-1435 (($) 6 T CONST)) (-1437 (($) 7 T CONST)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 14 T ELT)) (-1436 (($) 8 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 10 T ELT))) -(((-132) (-13 (-1133) (-10 -8 (-15 -1437 ($) -4468) (-15 -1436 ($) -4468) (-15 -1435 ($) -4468)))) (T -132)) -((-1437 (*1 *1) (-5 *1 (-132))) (-1436 (*1 *1) (-5 *1 (-132))) (-1435 (*1 *1) (-5 *1 (-132)))) -(-13 (-1133) (-10 -8 (-15 -1437 ($) -4468) (-15 -1436 ($) -4468) (-15 -1435 ($) -4468))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT))) +((-3049 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-870)) ELT)) (-1943 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-870))) ELT)) (-3392 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-870)) ELT)) (-4300 (((-130) $ (-558) (-130)) 26 (|has| $ (-6 -4508)) ELT) (((-130) $ (-1264 (-558)) (-130)) NIL (|has| $ (-6 -4508)) ELT)) (-1430 (((-791) $ (-791)) 34 T ELT)) (-4222 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT)) (-3908 (($ (-130) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4507)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 (((-130) $ (-558) (-130)) 25 (|has| $ (-6 -4508)) ELT)) (-3597 (((-130) $ (-558)) 20 T ELT)) (-3921 (((-558) (-1 (-114) (-130)) $) NIL T ELT) (((-558) (-130) $) NIL (|has| (-130) (-1131)) ELT) (((-558) (-130) $ (-558)) NIL (|has| (-130) (-1131)) ELT)) (-3372 (((-661 (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) (-130)) 14 T ELT)) (-2425 (((-558) $) 27 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-4020 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-3089 (((-661 (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT)) (-2426 (((-558) $) 30 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-2170 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| (-130) (-1131)) ELT)) (-2527 (($ (-130) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| (-130) (-1131)) ELT)) (-4313 (((-130) $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2424 (($ $ (-130)) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1131))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1131))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1131))) ELT) (($ $ (-661 (-130)) (-661 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT)) (-2430 (((-661 (-130)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 12 T ELT)) (-4312 (((-130) $ (-558) (-130)) NIL T ELT) (((-130) $ (-558)) 23 T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-130) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-130) (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-130) (-631 (-547))) ELT)) (-4032 (($ (-661 (-130))) 40 T ELT)) (-4314 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-986 (-130)) $) 35 T ELT) (((-1189) $) 37 T ELT) (((-886) $) NIL (|has| (-130) (-630 (-886))) ELT)) (-1431 (((-791) $) 18 T ELT)) (-1432 (($ (-791)) 8 T ELT)) (-1387 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2169 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-130) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-130) (-870)) ELT)) (-3536 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| (-130) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-130) (-870)) ELT)) (-4469 (((-791) $) 15 (|has| $ (-6 -4507)) ELT))) +(((-131) (-13 (-19 (-130)) (-630 (-986 (-130))) (-630 (-1189)) (-10 -8 (-15 -1432 ($ (-791))) (-15 -1431 ((-791) $)) (-15 -1430 ((-791) $ (-791))) (-6 -4507)))) (T -131)) +((-1432 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-131)))) (-1430 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) +(-13 (-19 (-130)) (-630 (-986 (-130))) (-630 (-1189)) (-10 -8 (-15 -1432 ($ (-791))) (-15 -1431 ((-791) $)) (-15 -1430 ((-791) $ (-791))) (-6 -4507))) +((-3049 (((-114) $ $) NIL T ELT)) (-1433 (($) 6 T CONST)) (-1435 (($) 7 T CONST)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 14 T ELT)) (-1434 (($) 8 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 10 T ELT))) +(((-132) (-13 (-1131) (-10 -8 (-15 -1435 ($) -4464) (-15 -1434 ($) -4464) (-15 -1433 ($) -4464)))) (T -132)) +((-1435 (*1 *1) (-5 *1 (-132))) (-1434 (*1 *1) (-5 *1 (-132))) (-1433 (*1 *1) (-5 *1 (-132)))) +(-13 (-1131) (-10 -8 (-15 -1435 ($) -4464) (-15 -1434 ($) -4464) (-15 -1433 ($) -4464))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT))) (((-133) (-142)) (T -133)) -((-1438 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) -(-13 (-23) (-10 -8 (-15 -1438 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-1439 (((-1305) $ (-793)) 17 T ELT)) (-3925 (((-793) $) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-1436 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) +(-13 (-23) (-10 -8 (-15 -1436 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-1437 (((-1303) $ (-791)) 17 T ELT)) (-3921 (((-791) $) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-134) (-142)) (T -134)) -((-3925 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) (-1439 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1305))))) -(-13 (-1133) (-10 -8 (-15 -3925 ((-793) $)) (-15 -1439 ((-1305) $ (-793))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 16 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-663 (-1167)) $) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-135) (-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $))))) (T -135)) -((-3737 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-135))))) -(-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $)))) -((-3053 (((-114) $ $) 49 T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-793) "failed") $) 58 T ELT)) (-3660 (((-793) $) 56 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) 37 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1441 (((-114)) 59 T ELT)) (-1440 (((-114) (-114)) 61 T ELT)) (-3010 (((-114) $) 30 T ELT)) (-1442 (((-114) $) 55 T ELT)) (-4462 (((-888) $) 28 T ELT) (($ (-793)) 20 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 18 T CONST)) (-3151 (($) 19 T CONST)) (-1443 (($ (-793)) 21 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) 40 T ELT)) (-3540 (((-114) $ $) 32 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 35 T ELT)) (-4353 (((-3 $ "failed") $ $) 42 T ELT)) (-4355 (($ $ $) 38 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-793) $) 48 T ELT) (($ (-949) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-136) (-13 (-872) (-23) (-748) (-1070 (-793)) (-10 -8 (-6 (-4513 "*")) (-15 -4353 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1443 ($ (-793))) (-15 -3010 ((-114) $)) (-15 -1442 ((-114) $)) (-15 -1441 ((-114))) (-15 -1440 ((-114) (-114)))))) (T -136)) -((-4353 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1441 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(-13 (-872) (-23) (-748) (-1070 (-793)) (-10 -8 (-6 (-4513 "*")) (-15 -4353 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1443 ($ (-793))) (-15 -3010 ((-114) $)) (-15 -1442 ((-114) $)) (-15 -1441 ((-114))) (-15 -1440 ((-114) (-114))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1444 (($ (-663 |#3|)) 62 T ELT)) (-3920 (($ $) 125 T ELT) (($ $ (-560) (-560)) 124 T ELT)) (-4240 (($) 20 T ELT)) (-3661 (((-3 |#3| "failed") $) 85 T ELT)) (-3660 ((|#3| $) NIL T ELT)) (-1448 (($ $ (-663 (-560))) 126 T ELT)) (-1445 (((-663 |#3|) $) 57 T ELT)) (-3597 (((-793) $) 67 T ELT)) (-4460 (($ $ $) 119 T ELT)) (-1446 (($) 66 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1447 (($) 19 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#3| $ (-560)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-560) (-560)) 72 T ELT) ((|#3| $ (-560) (-560) (-560)) 73 T ELT) ((|#3| $ (-560) (-560) (-560) (-560)) 74 T ELT) ((|#3| $ (-663 (-560))) 75 T ELT)) (-4464 (((-793) $) 68 T ELT)) (-2207 (($ $ (-560) $ (-560)) 120 T ELT) (($ $ (-560) (-560)) 122 T ELT)) (-4462 (((-888) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-246 |#2| |#3|)) 101 T ELT) (($ (-1174 |#2| |#3|)) 104 T ELT) (($ (-663 |#3|)) 76 T ELT) (($ (-663 $)) 82 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 95 T CONST)) (-3151 (($) 96 T CONST)) (-3540 (((-114) $ $) 106 T ELT)) (-4353 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-4355 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-560)) 115 T ELT) (($ (-560) $) 114 T ELT) (($ $ $) 121 T ELT))) -(((-137 |#1| |#2| |#3|) (-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -4462 ($ (-246 |#2| |#3|))) (-15 -4462 ($ (-1174 |#2| |#3|))) (-15 -4462 ($ (-663 |#3|))) (-15 -4462 ($ (-663 $))) (-15 -3597 ((-793) $)) (-15 -4316 (|#3| $)) (-15 -4316 (|#3| $ (-560) (-560))) (-15 -4316 (|#3| $ (-560) (-560) (-560))) (-15 -4316 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -4316 (|#3| $ (-663 (-560)))) (-15 -4460 ($ $ $)) (-15 * ($ $ $)) (-15 -2207 ($ $ (-560) $ (-560))) (-15 -2207 ($ $ (-560) (-560))) (-15 -3920 ($ $)) (-15 -3920 ($ $ (-560) (-560))) (-15 -1448 ($ $ (-663 (-560)))) (-15 -1447 ($)) (-15 -1446 ($)) (-15 -1445 ((-663 |#3|) $)) (-15 -1444 ($ (-663 |#3|))) (-15 -4240 ($)))) (-560) (-793) (-175)) (T -137)) -((-4460 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1174 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) (-4 *5 (-175)))) (-4316 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-793)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-4316 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-4316 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-560)) (-14 *5 (-793)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2207 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2207 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-3920 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-1448 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1447 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1446 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-4240 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175))))) -(-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -4462 ($ (-246 |#2| |#3|))) (-15 -4462 ($ (-1174 |#2| |#3|))) (-15 -4462 ($ (-663 |#3|))) (-15 -4462 ($ (-663 $))) (-15 -3597 ((-793) $)) (-15 -4316 (|#3| $)) (-15 -4316 (|#3| $ (-560) (-560))) (-15 -4316 (|#3| $ (-560) (-560) (-560))) (-15 -4316 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -4316 (|#3| $ (-663 (-560)))) (-15 -4460 ($ $ $)) (-15 * ($ $ $)) (-15 -2207 ($ $ (-560) $ (-560))) (-15 -2207 ($ $ (-560) (-560))) (-15 -3920 ($ $)) (-15 -3920 ($ $ (-560) (-560))) (-15 -1448 ($ $ (-663 (-560)))) (-15 -1447 ($)) (-15 -1446 ($)) (-15 -1445 ((-663 |#3|) $)) (-15 -1444 ($ (-663 |#3|))) (-15 -4240 ($)))) -((-2658 (((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4474 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) -(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2658 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4474 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-560) (-793) (-175) (-175)) (T -138)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))) -(-10 -7 (-15 -2658 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4474 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 (((-1167) $) 11 T ELT)) (-4035 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-139) (-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $))))) (T -139)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-139)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-139))))) -(-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1552 (((-190) $) 10 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-663 (-1167)) $) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-140) (-13 (-1115) (-10 -8 (-15 -1552 ((-190) $)) (-15 -3737 ((-663 (-1167)) $))))) (T -140)) -((-1552 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-140))))) -(-13 (-1115) (-10 -8 (-15 -1552 ((-190) $)) (-15 -3737 ((-663 (-1167)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1550 (((-663 (-890)) $) NIL T ELT)) (-4056 (((-520) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1552 (((-190) $) NIL T ELT)) (-3118 (((-114) $ (-520)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1551 (((-663 (-114)) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (((-186) $) 6 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3003 (((-55) $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-141) (-13 (-189) (-632 (-186)))) (T -141)) -NIL -(-13 (-189) (-632 (-186))) -((-1450 (((-663 (-187 (-141))) $) 13 T ELT)) (-1449 (((-663 (-187 (-141))) $) 14 T ELT)) (-1451 (((-663 (-862)) $) 10 T ELT)) (-1626 (((-141) $) 7 T ELT)) (-4462 (((-888) $) 16 T ELT))) -(((-142) (-13 (-632 (-888)) (-10 -8 (-15 -1626 ((-141) $)) (-15 -1451 ((-663 (-862)) $)) (-15 -1450 ((-663 (-187 (-141))) $)) (-15 -1449 ((-663 (-187 (-141))) $))))) (T -142)) -((-1626 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-663 (-862))) (-5 *1 (-142)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142))))) -(-13 (-632 (-888)) (-10 -8 (-15 -1626 ((-141) $)) (-15 -1451 ((-663 (-862)) $)) (-15 -1450 ((-663 (-187 (-141))) $)) (-15 -1449 ((-663 (-187 (-141))) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3933 (($) 17 T CONST)) (-2024 (($) NIL (|has| (-146) (-381)) ELT)) (-3738 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-3740 (($ $ $) NIL T ELT)) (-3739 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| (-146) (-381)) ELT)) (-3743 (($) NIL T ELT) (($ (-663 (-146))) NIL T ELT)) (-1725 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-3911 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4511)) ELT)) (-3912 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-4358 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4511)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4511)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-3481 (($) NIL (|has| (-146) (-381)) ELT)) (-3376 (((-663 (-146)) $) 69 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) NIL T ELT)) (-3016 (((-146) $) NIL (|has| (-146) (-872)) ELT)) (-3093 (((-663 (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-3344 (((-146) $) NIL (|has| (-146) (-872)) ELT)) (-2174 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-3935 (($) 18 T CONST)) (-2234 (((-949) $) NIL (|has| (-146) (-381)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3742 (($ $ $) 30 T ELT)) (-1400 (((-146) $) 61 T ELT)) (-4123 (($ (-146) $) 59 T ELT)) (-2645 (($ (-949)) NIL (|has| (-146) (-381)) ELT)) (-1454 (($) 16 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-1480 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-1401 (((-146) $) 62 T ELT)) (-2172 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 57 T ELT)) (-1455 (($) 15 T CONST)) (-3741 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1610 (($ (-663 (-146))) NIL T ELT) (($) NIL T ELT)) (-2171 (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT) (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-1191) $) 37 T ELT) (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT) (((-663 (-146)) $) 35 T ELT)) (-4036 (($ (-663 (-146))) NIL T ELT)) (-2025 (($ $) 33 (|has| (-146) (-381)) ELT)) (-4462 (((-888) $) 53 T ELT)) (-1456 (($ (-1191)) 14 T ELT) (($ (-663 (-146))) 50 T ELT)) (-2026 (((-793) $) NIL T ELT)) (-3744 (($) 58 T ELT) (($ (-663 (-146))) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1402 (($ (-663 (-146))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1452 (($) 21 T CONST)) (-1453 (($) 20 T CONST)) (-3540 (((-114) $ $) 24 T ELT)) (-4473 (((-793) $) 56 (|has| $ (-6 -4511)) ELT))) -(((-143) (-13 (-1133) (-633 (-1191)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -1456 ($ (-1191))) (-15 -1456 ($ (-663 (-146)))) (-15 -1455 ($) -4468) (-15 -1454 ($) -4468) (-15 -3933 ($) -4468) (-15 -3935 ($) -4468) (-15 -1453 ($) -4468) (-15 -1452 ($) -4468)))) (T -143)) -((-1456 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-143)))) (-1456 (*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143)))) (-1455 (*1 *1) (-5 *1 (-143))) (-1454 (*1 *1) (-5 *1 (-143))) (-3933 (*1 *1) (-5 *1 (-143))) (-3935 (*1 *1) (-5 *1 (-143))) (-1453 (*1 *1) (-5 *1 (-143))) (-1452 (*1 *1) (-5 *1 (-143)))) -(-13 (-1133) (-633 (-1191)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -1456 ($ (-1191))) (-15 -1456 ($ (-663 (-146)))) (-15 -1455 ($) -4468) (-15 -1454 ($) -4468) (-15 -3933 ($) -4468) (-15 -3935 ($) -4468) (-15 -1453 ($) -4468) (-15 -1452 ($) -4468))) -((-4257 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4255 ((|#1| |#3|) 9 T ELT)) (-4256 ((|#3| |#3|) 15 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4255 (|#1| |#3|)) (-15 -4256 (|#3| |#3|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1023 |#1|) (-385 |#2|)) (T -144)) -((-4257 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1023 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4255 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -4255 (|#1| |#3|)) (-15 -4256 (|#3| |#3|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1495 (($ $ $) 8 T ELT)) (-1493 (($ $) 7 T ELT)) (-3590 (($ $ $) 6 T ELT))) +((-3921 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-791)))) (-1437 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-791)) (-5 *2 (-1303))))) +(-13 (-1131) (-10 -8 (-15 -3921 ((-791) $)) (-15 -1437 ((-1303) $ (-791))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-661 (-1165)) $) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-135) (-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $))))) (T -135)) +((-3733 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-135))))) +(-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $)))) +((-3049 (((-114) $ $) 49 T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-791) "failed") $) 58 T ELT)) (-3656 (((-791) $) 56 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) 37 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1439 (((-114)) 59 T ELT)) (-1438 (((-114) (-114)) 61 T ELT)) (-3006 (((-114) $) 30 T ELT)) (-1440 (((-114) $) 55 T ELT)) (-4458 (((-886) $) 28 T ELT) (($ (-791)) 20 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 18 T CONST)) (-3147 (($) 19 T CONST)) (-1441 (($ (-791)) 21 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) 40 T ELT)) (-3536 (((-114) $ $) 32 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 35 T ELT)) (-4349 (((-3 $ "failed") $ $) 42 T ELT)) (-4351 (($ $ $) 38 T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-791) $) 48 T ELT) (($ (-947) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-136) (-13 (-870) (-23) (-746) (-1068 (-791)) (-10 -8 (-6 (-4509 "*")) (-15 -4349 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1441 ($ (-791))) (-15 -3006 ((-114) $)) (-15 -1440 ((-114) $)) (-15 -1439 ((-114))) (-15 -1438 ((-114) (-114)))))) (T -136)) +((-4349 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-136)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1439 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) +(-13 (-870) (-23) (-746) (-1068 (-791)) (-10 -8 (-6 (-4509 "*")) (-15 -4349 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1441 ($ (-791))) (-15 -3006 ((-114) $)) (-15 -1440 ((-114) $)) (-15 -1439 ((-114))) (-15 -1438 ((-114) (-114))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1442 (($ (-661 |#3|)) 62 T ELT)) (-3916 (($ $) 125 T ELT) (($ $ (-558) (-558)) 124 T ELT)) (-4236 (($) 20 T ELT)) (-3657 (((-3 |#3| "failed") $) 85 T ELT)) (-3656 ((|#3| $) NIL T ELT)) (-1446 (($ $ (-661 (-558))) 126 T ELT)) (-1443 (((-661 |#3|) $) 57 T ELT)) (-3593 (((-791) $) 67 T ELT)) (-4456 (($ $ $) 119 T ELT)) (-1444 (($) 66 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1445 (($) 19 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#3| $ (-558)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-558) (-558)) 72 T ELT) ((|#3| $ (-558) (-558) (-558)) 73 T ELT) ((|#3| $ (-558) (-558) (-558) (-558)) 74 T ELT) ((|#3| $ (-661 (-558))) 75 T ELT)) (-4460 (((-791) $) 68 T ELT)) (-2203 (($ $ (-558) $ (-558)) 120 T ELT) (($ $ (-558) (-558)) 122 T ELT)) (-4458 (((-886) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-246 |#2| |#3|)) 101 T ELT) (($ (-1172 |#2| |#3|)) 104 T ELT) (($ (-661 |#3|)) 76 T ELT) (($ (-661 $)) 82 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 95 T CONST)) (-3147 (($) 96 T CONST)) (-3536 (((-114) $ $) 106 T ELT)) (-4349 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-4351 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-558)) 115 T ELT) (($ (-558) $) 114 T ELT) (($ $ $) 121 T ELT))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-791)) (-482 (-558) (-791)) (-298 (-558) |#3|) (-10 -8 (-15 -4458 ($ (-246 |#2| |#3|))) (-15 -4458 ($ (-1172 |#2| |#3|))) (-15 -4458 ($ (-661 |#3|))) (-15 -4458 ($ (-661 $))) (-15 -3593 ((-791) $)) (-15 -4312 (|#3| $)) (-15 -4312 (|#3| $ (-558) (-558))) (-15 -4312 (|#3| $ (-558) (-558) (-558))) (-15 -4312 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -4312 (|#3| $ (-661 (-558)))) (-15 -4456 ($ $ $)) (-15 * ($ $ $)) (-15 -2203 ($ $ (-558) $ (-558))) (-15 -2203 ($ $ (-558) (-558))) (-15 -3916 ($ $)) (-15 -3916 ($ $ (-558) (-558))) (-15 -1446 ($ $ (-661 (-558)))) (-15 -1445 ($)) (-15 -1444 ($)) (-15 -1443 ((-661 |#3|) $)) (-15 -1442 ($ (-661 |#3|))) (-15 -4236 ($)))) (-558) (-791) (-175)) (T -137)) +((-4456 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-175)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4312 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4312 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-558)) (-14 *5 (-791)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-2203 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-2203 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-3916 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1445 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-1444 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-661 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4236 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) +(-13 (-477 |#3| (-791)) (-482 (-558) (-791)) (-298 (-558) |#3|) (-10 -8 (-15 -4458 ($ (-246 |#2| |#3|))) (-15 -4458 ($ (-1172 |#2| |#3|))) (-15 -4458 ($ (-661 |#3|))) (-15 -4458 ($ (-661 $))) (-15 -3593 ((-791) $)) (-15 -4312 (|#3| $)) (-15 -4312 (|#3| $ (-558) (-558))) (-15 -4312 (|#3| $ (-558) (-558) (-558))) (-15 -4312 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -4312 (|#3| $ (-661 (-558)))) (-15 -4456 ($ $ $)) (-15 * ($ $ $)) (-15 -2203 ($ $ (-558) $ (-558))) (-15 -2203 ($ $ (-558) (-558))) (-15 -3916 ($ $)) (-15 -3916 ($ $ (-558) (-558))) (-15 -1446 ($ $ (-661 (-558)))) (-15 -1445 ($)) (-15 -1444 ($)) (-15 -1443 ((-661 |#3|) $)) (-15 -1442 ($ (-661 |#3|))) (-15 -4236 ($)))) +((-2654 (((-137 |#1| |#2| |#4|) (-661 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4470 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) +(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2654 ((-137 |#1| |#2| |#4|) (-661 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4470 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-558) (-791) (-175) (-175)) (T -138)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))) +(-10 -7 (-15 -2654 ((-137 |#1| |#2| |#4|) (-661 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4470 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 (((-1165) $) 11 T ELT)) (-4031 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-139) (-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $))))) (T -139)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-139)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-139))))) +(-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1550 (((-190) $) 10 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-661 (-1165)) $) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-140) (-13 (-1113) (-10 -8 (-15 -1550 ((-190) $)) (-15 -3733 ((-661 (-1165)) $))))) (T -140)) +((-1550 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-140))))) +(-13 (-1113) (-10 -8 (-15 -1550 ((-190) $)) (-15 -3733 ((-661 (-1165)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1548 (((-661 (-888)) $) NIL T ELT)) (-4052 (((-518) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1550 (((-190) $) NIL T ELT)) (-3114 (((-114) $ (-518)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1549 (((-661 (-114)) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (((-186) $) 6 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2999 (((-55) $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-141) (-13 (-189) (-630 (-186)))) (T -141)) +NIL +(-13 (-189) (-630 (-186))) +((-1448 (((-661 (-187 (-141))) $) 13 T ELT)) (-1447 (((-661 (-187 (-141))) $) 14 T ELT)) (-1449 (((-661 (-860)) $) 10 T ELT)) (-1624 (((-141) $) 7 T ELT)) (-4458 (((-886) $) 16 T ELT))) +(((-142) (-13 (-630 (-886)) (-10 -8 (-15 -1624 ((-141) $)) (-15 -1449 ((-661 (-860)) $)) (-15 -1448 ((-661 (-187 (-141))) $)) (-15 -1447 ((-661 (-187 (-141))) $))))) (T -142)) +((-1624 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-661 (-860))) (-5 *1 (-142)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) +(-13 (-630 (-886)) (-10 -8 (-15 -1624 ((-141) $)) (-15 -1449 ((-661 (-860)) $)) (-15 -1448 ((-661 (-187 (-141))) $)) (-15 -1447 ((-661 (-187 (-141))) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3929 (($) 17 T CONST)) (-2020 (($) NIL (|has| (-146) (-381)) ELT)) (-3734 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-3736 (($ $ $) NIL T ELT)) (-3735 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| (-146) (-381)) ELT)) (-3739 (($) NIL T ELT) (($ (-661 (-146))) NIL T ELT)) (-1723 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-3907 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4507)) ELT)) (-3908 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-4354 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4507)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4507)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-3477 (($) NIL (|has| (-146) (-381)) ELT)) (-3372 (((-661 (-146)) $) 69 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) NIL T ELT)) (-3012 (((-146) $) NIL (|has| (-146) (-870)) ELT)) (-3089 (((-661 (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-3340 (((-146) $) NIL (|has| (-146) (-870)) ELT)) (-2170 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-3931 (($) 18 T CONST)) (-2230 (((-947) $) NIL (|has| (-146) (-381)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3738 (($ $ $) 30 T ELT)) (-1398 (((-146) $) 61 T ELT)) (-4119 (($ (-146) $) 59 T ELT)) (-2641 (($ (-947)) NIL (|has| (-146) (-381)) ELT)) (-1452 (($) 16 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-1478 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-1399 (((-146) $) 62 T ELT)) (-2168 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 57 T ELT)) (-1453 (($) 15 T CONST)) (-3737 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1608 (($ (-661 (-146))) NIL T ELT) (($) NIL T ELT)) (-2167 (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT) (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-1189) $) 37 T ELT) (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT) (((-661 (-146)) $) 35 T ELT)) (-4032 (($ (-661 (-146))) NIL T ELT)) (-2021 (($ $) 33 (|has| (-146) (-381)) ELT)) (-4458 (((-886) $) 53 T ELT)) (-1454 (($ (-1189)) 14 T ELT) (($ (-661 (-146))) 50 T ELT)) (-2022 (((-791) $) NIL T ELT)) (-3740 (($) 58 T ELT) (($ (-661 (-146))) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1400 (($ (-661 (-146))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1450 (($) 21 T CONST)) (-1451 (($) 20 T CONST)) (-3536 (((-114) $ $) 24 T ELT)) (-4469 (((-791) $) 56 (|has| $ (-6 -4507)) ELT))) +(((-143) (-13 (-1131) (-631 (-1189)) (-438 (-146)) (-631 (-661 (-146))) (-10 -8 (-15 -1454 ($ (-1189))) (-15 -1454 ($ (-661 (-146)))) (-15 -1453 ($) -4464) (-15 -1452 ($) -4464) (-15 -3929 ($) -4464) (-15 -3931 ($) -4464) (-15 -1451 ($) -4464) (-15 -1450 ($) -4464)))) (T -143)) +((-1454 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-661 (-146))) (-5 *1 (-143)))) (-1453 (*1 *1) (-5 *1 (-143))) (-1452 (*1 *1) (-5 *1 (-143))) (-3929 (*1 *1) (-5 *1 (-143))) (-3931 (*1 *1) (-5 *1 (-143))) (-1451 (*1 *1) (-5 *1 (-143))) (-1450 (*1 *1) (-5 *1 (-143)))) +(-13 (-1131) (-631 (-1189)) (-438 (-146)) (-631 (-661 (-146))) (-10 -8 (-15 -1454 ($ (-1189))) (-15 -1454 ($ (-661 (-146)))) (-15 -1453 ($) -4464) (-15 -1452 ($) -4464) (-15 -3929 ($) -4464) (-15 -3931 ($) -4464) (-15 -1451 ($) -4464) (-15 -1450 ($) -4464))) +((-4253 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4251 ((|#1| |#3|) 9 T ELT)) (-4252 ((|#3| |#3|) 15 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4251 (|#1| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1021 |#1|) (-385 |#2|)) (T -144)) +((-4253 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1021 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4251 (*1 *2 *3) (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -4251 (|#1| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1493 (($ $ $) 8 T ELT)) (-1491 (($ $) 7 T ELT)) (-3586 (($ $ $) 6 T ELT))) (((-145) (-142)) (T -145)) -((-1495 (*1 *1 *1 *1) (-4 *1 (-145))) (-1493 (*1 *1 *1) (-4 *1 (-145))) (-3590 (*1 *1 *1 *1) (-4 *1 (-145)))) -(-13 (-10 -8 (-15 -3590 ($ $ $)) (-15 -1493 ($ $)) (-15 -1495 ($ $ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1464 (($) 35 T CONST)) (-1459 (((-114) $) 47 T ELT)) (-3933 (($ $) 57 T ELT)) (-1471 (($) 28 T CONST)) (-1662 (($) 26 T CONST)) (-3624 (((-793)) 13 T ELT)) (-3481 (($) 25 T ELT)) (-3064 (($) 27 T CONST)) (-1473 (((-793) $) 21 T ELT)) (-1470 (($) 29 T CONST)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1458 (((-114) $) 49 T ELT)) (-3935 (($ $) 58 T ELT)) (-2234 (((-949) $) 23 T ELT)) (-1468 (($) 31 T CONST)) (-3746 (((-1191) $) 55 T ELT)) (-2645 (($ (-949)) 20 T ELT)) (-1465 (($) 34 T CONST)) (-1461 (((-114) $) 45 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1467 (($) 32 T CONST)) (-1463 (($) 36 T CONST)) (-1462 (((-114) $) 43 T ELT)) (-4462 (((-888) $) 38 T ELT)) (-1472 (($ (-793)) 19 T ELT) (($ (-1191)) 56 T ELT)) (-1469 (($) 30 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-1466 (($) 33 T CONST)) (-1457 (((-114) $) 53 T ELT)) (-1460 (((-114) $) 51 T ELT)) (-3051 (((-114) $ $) 11 T ELT)) (-3052 (((-114) $ $) 9 T ELT)) (-3540 (((-114) $ $) 7 T ELT)) (-3171 (((-114) $ $) 10 T ELT)) (-3172 (((-114) $ $) 8 T ELT))) -(((-146) (-13 (-868) (-10 -8 (-15 -1473 ((-793) $)) (-15 -1472 ($ (-793))) (-15 -1472 ($ (-1191))) (-15 -1662 ($) -4468) (-15 -3064 ($) -4468) (-15 -1471 ($) -4468) (-15 -1470 ($) -4468) (-15 -1469 ($) -4468) (-15 -1468 ($) -4468) (-15 -1467 ($) -4468) (-15 -1466 ($) -4468) (-15 -1465 ($) -4468) (-15 -1464 ($) -4468) (-15 -1463 ($) -4468) (-15 -3933 ($ $)) (-15 -3935 ($ $)) (-15 -1462 ((-114) $)) (-15 -1461 ((-114) $)) (-15 -1460 ((-114) $)) (-15 -1459 ((-114) $)) (-15 -1458 ((-114) $)) (-15 -1457 ((-114) $))))) (T -146)) -((-1473 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-146)))) (-1662 (*1 *1) (-5 *1 (-146))) (-3064 (*1 *1) (-5 *1 (-146))) (-1471 (*1 *1) (-5 *1 (-146))) (-1470 (*1 *1) (-5 *1 (-146))) (-1469 (*1 *1) (-5 *1 (-146))) (-1468 (*1 *1) (-5 *1 (-146))) (-1467 (*1 *1) (-5 *1 (-146))) (-1466 (*1 *1) (-5 *1 (-146))) (-1465 (*1 *1) (-5 *1 (-146))) (-1464 (*1 *1) (-5 *1 (-146))) (-1463 (*1 *1) (-5 *1 (-146))) (-3933 (*1 *1 *1) (-5 *1 (-146))) (-3935 (*1 *1 *1) (-5 *1 (-146))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(-13 (-868) (-10 -8 (-15 -1473 ((-793) $)) (-15 -1472 ($ (-793))) (-15 -1472 ($ (-1191))) (-15 -1662 ($) -4468) (-15 -3064 ($) -4468) (-15 -1471 ($) -4468) (-15 -1470 ($) -4468) (-15 -1469 ($) -4468) (-15 -1468 ($) -4468) (-15 -1467 ($) -4468) (-15 -1466 ($) -4468) (-15 -1465 ($) -4468) (-15 -1464 ($) -4468) (-15 -1463 ($) -4468) (-15 -3933 ($ $)) (-15 -3935 ($ $)) (-15 -1462 ((-114) $)) (-15 -1461 ((-114) $)) (-15 -1460 ((-114) $)) (-15 -1459 ((-114) $)) (-15 -1458 ((-114) $)) (-15 -1457 ((-114) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3189 (((-713 $) $) 44 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-1493 (*1 *1 *1 *1) (-4 *1 (-145))) (-1491 (*1 *1 *1) (-4 *1 (-145))) (-3586 (*1 *1 *1 *1) (-4 *1 (-145)))) +(-13 (-10 -8 (-15 -3586 ($ $ $)) (-15 -1491 ($ $)) (-15 -1493 ($ $ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1462 (($) 35 T CONST)) (-1457 (((-114) $) 47 T ELT)) (-3929 (($ $) 57 T ELT)) (-1469 (($) 28 T CONST)) (-1660 (($) 26 T CONST)) (-3620 (((-791)) 13 T ELT)) (-3477 (($) 25 T ELT)) (-3060 (($) 27 T CONST)) (-1471 (((-791) $) 21 T ELT)) (-1468 (($) 29 T CONST)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1456 (((-114) $) 49 T ELT)) (-3931 (($ $) 58 T ELT)) (-2230 (((-947) $) 23 T ELT)) (-1466 (($) 31 T CONST)) (-3742 (((-1189) $) 55 T ELT)) (-2641 (($ (-947)) 20 T ELT)) (-1463 (($) 34 T CONST)) (-1459 (((-114) $) 45 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1465 (($) 32 T CONST)) (-1461 (($) 36 T CONST)) (-1460 (((-114) $) 43 T ELT)) (-4458 (((-886) $) 38 T ELT)) (-1470 (($ (-791)) 19 T ELT) (($ (-1189)) 56 T ELT)) (-1467 (($) 30 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-1464 (($) 33 T CONST)) (-1455 (((-114) $) 53 T ELT)) (-1458 (((-114) $) 51 T ELT)) (-3047 (((-114) $ $) 11 T ELT)) (-3048 (((-114) $ $) 9 T ELT)) (-3536 (((-114) $ $) 7 T ELT)) (-3167 (((-114) $ $) 10 T ELT)) (-3168 (((-114) $ $) 8 T ELT))) +(((-146) (-13 (-866) (-10 -8 (-15 -1471 ((-791) $)) (-15 -1470 ($ (-791))) (-15 -1470 ($ (-1189))) (-15 -1660 ($) -4464) (-15 -3060 ($) -4464) (-15 -1469 ($) -4464) (-15 -1468 ($) -4464) (-15 -1467 ($) -4464) (-15 -1466 ($) -4464) (-15 -1465 ($) -4464) (-15 -1464 ($) -4464) (-15 -1463 ($) -4464) (-15 -1462 ($) -4464) (-15 -1461 ($) -4464) (-15 -3929 ($ $)) (-15 -3931 ($ $)) (-15 -1460 ((-114) $)) (-15 -1459 ((-114) $)) (-15 -1458 ((-114) $)) (-15 -1457 ((-114) $)) (-15 -1456 ((-114) $)) (-15 -1455 ((-114) $))))) (T -146)) +((-1471 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-146)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-146)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) (-1660 (*1 *1) (-5 *1 (-146))) (-3060 (*1 *1) (-5 *1 (-146))) (-1469 (*1 *1) (-5 *1 (-146))) (-1468 (*1 *1) (-5 *1 (-146))) (-1467 (*1 *1) (-5 *1 (-146))) (-1466 (*1 *1) (-5 *1 (-146))) (-1465 (*1 *1) (-5 *1 (-146))) (-1464 (*1 *1) (-5 *1 (-146))) (-1463 (*1 *1) (-5 *1 (-146))) (-1462 (*1 *1) (-5 *1 (-146))) (-1461 (*1 *1) (-5 *1 (-146))) (-3929 (*1 *1 *1) (-5 *1 (-146))) (-3931 (*1 *1 *1) (-5 *1 (-146))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) +(-13 (-866) (-10 -8 (-15 -1471 ((-791) $)) (-15 -1470 ($ (-791))) (-15 -1470 ($ (-1189))) (-15 -1660 ($) -4464) (-15 -3060 ($) -4464) (-15 -1469 ($) -4464) (-15 -1468 ($) -4464) (-15 -1467 ($) -4464) (-15 -1466 ($) -4464) (-15 -1465 ($) -4464) (-15 -1464 ($) -4464) (-15 -1463 ($) -4464) (-15 -1462 ($) -4464) (-15 -1461 ($) -4464) (-15 -3929 ($ $)) (-15 -3931 ($ $)) (-15 -1460 ((-114) $)) (-15 -1459 ((-114) $)) (-15 -1458 ((-114) $)) (-15 -1457 ((-114) $)) (-15 -1456 ((-114) $)) (-15 -1455 ((-114) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3185 (((-711 $) $) 44 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-147) (-142)) (T -147)) -((-3189 (*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-147))))) -(-13 (-1081) (-10 -8 (-15 -3189 ((-713 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-2852 ((|#1| (-711 |#1|) |#1|) 19 T ELT))) -(((-148 |#1|) (-10 -7 (-15 -2852 (|#1| (-711 |#1|) |#1|))) (-175)) (T -148)) -((-2852 (*1 *2 *3 *2) (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) -(-10 -7 (-15 -2852 (|#1| (-711 |#1|) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3185 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147))))) +(-13 (-1079) (-10 -8 (-15 -3185 ((-711 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-2848 ((|#1| (-709 |#1|) |#1|) 19 T ELT))) +(((-148 |#1|) (-10 -7 (-15 -2848 (|#1| (-709 |#1|) |#1|))) (-175)) (T -148)) +((-2848 (*1 *2 *3 *2) (-12 (-5 *3 (-709 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) +(-10 -7 (-15 -2848 (|#1| (-709 |#1|) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-149) (-142)) (T -149)) NIL -(-13 (-1081)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-1476 (((-2 (|:| -2646 (-793)) (|:| -4470 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793)) 76 T ELT)) (-1475 (((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|) 56 T ELT)) (-1474 (((-2 (|:| -4470 (-421 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1477 ((|#1| |#3| |#3|) 44 T ELT)) (-4284 ((|#3| |#3| (-421 |#2|) (-421 |#2|)) 20 T ELT)) (-1478 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|) 53 T ELT))) -(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1474 ((-2 (|:| -4470 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1475 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -1476 ((-2 (|:| -2646 (-793)) (|:| -4470 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -1477 (|#1| |#3| |#3|)) (-15 -4284 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -1478 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) (-1254) (-1275 |#1|) (-1275 (-421 |#2|))) (T -150)) -((-1478 (*1 *2 *3 *3) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1275 (-421 *5))))) (-4284 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1275 *3)))) (-1477 (*1 *2 *3 *3) (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1254)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1275 (-421 *4))))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *6)) (-4 *5 (-1254)) (-4 *6 (-1275 *5)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1275 *3)))) (-1475 (*1 *2 *3) (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1275 (-421 *5))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| -4470 (-421 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1275 (-421 *5)))))) -(-10 -7 (-15 -1474 ((-2 (|:| -4470 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1475 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -1476 ((-2 (|:| -2646 (-793)) (|:| -4470 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -1477 (|#1| |#3| |#3|)) (-15 -4284 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -1478 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) -((-3191 (((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|)) 35 T ELT))) -(((-151 |#1| |#2|) (-10 -7 (-15 -3191 ((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|)))) (-559) (-168 |#1|)) (T -151)) -((-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 *5))) (-5 *3 (-1203 *5)) (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5))))) -(-10 -7 (-15 -3191 ((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|)))) -((-4226 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-1479 (($ $) 44 T ELT)) (-3912 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4358 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1480 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 18 T ELT) (((-793) |#2| $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4473 (((-793) $) 12 T ELT))) -(((-152 |#1| |#2|) (-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -3912 (|#1| |#2| |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4226 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3912 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) (-153 |#2|) (-1249)) (T -152)) -NIL -(-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -3912 (|#1| |#2| |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4226 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3912 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 48 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 45 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 44 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 53 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-153 |#1|) (-142) (-1249)) (T -153)) -((-4036 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-153 *3)))) (-1480 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1249)))) (-4358 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)))) (-4358 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *3)) (-4 *3 (-1249)))) (-4226 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *3)) (-4 *3 (-1249)))) (-4358 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1133)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)))) (-3912 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)) (-4 *2 (-1133)))) (-1479 (*1 *1 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)) (-4 *2 (-1133))))) -(-13 (-503 |t#1|) (-10 -8 (-15 -4036 ($ (-663 |t#1|))) (-15 -1480 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4511)) (PROGN (-15 -4358 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4358 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3912 ($ (-1 (-114) |t#1|) $)) (-15 -4226 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1133)) (PROGN (-15 -4358 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3912 ($ |t#1| $)) (-15 -1479 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) 112 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-663 (-949))) 71 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1481 (($ (-949)) 57 T ELT)) (-4427 (((-136)) 23 T ELT)) (-4462 (((-888) $) 87 T ELT) (($ (-560)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4193 ((|#2| $ (-663 (-949))) 74 T ELT)) (-3614 (((-793)) 20 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 47 T CONST)) (-3151 (($) 51 T CONST)) (-3540 (((-114) $ $) 33 T ELT)) (-4465 (($ $ |#2|) NIL T ELT)) (-4353 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-4355 (($ $ $) 38 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-154 |#1| |#2| |#3|) (-13 (-1081) (-38 |#2|) (-1307 |#2|) (-10 -8 (-15 -1481 ($ (-949))) (-15 -3380 ($ |#2| (-663 (-949)))) (-15 -4193 (|#2| $ (-663 (-949)))) (-15 -3973 ((-3 $ "failed") $)))) (-949) (-376) (-1025 |#1| |#2|)) (T -154)) -((-3973 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-376)) (-14 *4 (-1025 *2 *3)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1025 *3 *4)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-949)) (-4 *2 (-376)) (-14 *5 (-1025 *4 *2)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-949))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-949)) (-14 *5 (-1025 *4 *2))))) -(-13 (-1081) (-38 |#2|) (-1307 |#2|) (-10 -8 (-15 -1481 ($ (-949))) (-15 -3380 ($ |#2| (-663 (-949)))) (-15 -4193 (|#2| $ (-663 (-949)))) (-15 -3973 ((-3 $ "failed") $)))) -((-1483 (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1482 (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560))) 95 T ELT) (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955)) 96 T ELT)) (-1654 (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-973 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560))) 89 T ELT) (((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955)) 90 T ELT))) -(((-155) (-10 -7 (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560)))) (-15 -1482 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955))) (-15 -1482 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560)))) (-15 -1483 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-973 (-229))))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229)))))))) (T -155)) -((-1654 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-973 (-229))))))) (-1654 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-973 (-229)))))) (-1483 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 *4)))) (|:| |xValues| (-1121 *4)) (|:| |yValues| (-1121 *4)))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-973 *4)))))) (-1482 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155)))) (-1654 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) (-5 *1 (-155))))) -(-10 -7 (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560)))) (-15 -1482 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955))) (-15 -1482 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-955) (-421 (-560)) (-421 (-560)))) (-15 -1483 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-973 (-229))))) (-15 -1654 ((-2 (|:| |brans| (-663 (-663 (-973 (-229))))) (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229)))) (-663 (-663 (-973 (-229))))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3685 (((-663 (-1167)) $) 20 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 27 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 9 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-156) (-13 (-1115) (-10 -8 (-15 -3685 ((-663 (-1167)) $)) (-15 -3737 ((-1167) $))))) (T -156)) -((-3685 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-156)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-156))))) -(-13 (-1115) (-10 -8 (-15 -3685 ((-663 (-1167)) $)) (-15 -3737 ((-1167) $)))) -((-1536 (((-663 (-171 |#2|)) |#1| |#2|) 50 T ELT))) -(((-157 |#1| |#2|) (-10 -7 (-15 -1536 ((-663 (-171 |#2|)) |#1| |#2|))) (-1275 (-171 (-560))) (-13 (-376) (-871))) (T -157)) -((-1536 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1275 (-171 (-560)))) (-4 *4 (-13 (-376) (-871)))))) -(-10 -7 (-15 -1536 ((-663 (-171 |#2|)) |#1| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 (((-1250) $) 12 T ELT)) (-4035 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-158) (-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1250) $))))) (T -158)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-158)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-158))))) -(-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1250) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1485 (($) 38 T ELT)) (-3587 (($) 37 T ELT)) (-1484 (((-949)) 43 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3443 (((-560) $) 41 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3586 (($) 39 T ELT)) (-3442 (($ (-560)) 44 T ELT)) (-4462 (((-888) $) 50 T ELT)) (-3585 (($) 40 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 35 T ELT)) (-4355 (($ $ $) 32 T ELT)) (* (($ (-949) $) 42 T ELT) (($ (-229) $) 11 T ELT))) -(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-229) $)) (-15 -4355 ($ $ $)) (-15 -3587 ($)) (-15 -1485 ($)) (-15 -3586 ($)) (-15 -3585 ($)) (-15 -3443 ((-560) $)) (-15 -1484 ((-949))) (-15 -3442 ($ (-560)))))) (T -159)) -((-4355 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3587 (*1 *1) (-5 *1 (-159))) (-1485 (*1 *1) (-5 *1 (-159))) (-3586 (*1 *1) (-5 *1 (-159))) (-3585 (*1 *1) (-5 *1 (-159))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-159)))) (-1484 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-159)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159))))) -(-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-229) $)) (-15 -4355 ($ $ $)) (-15 -3587 ($)) (-15 -1485 ($)) (-15 -3586 ($)) (-15 -3585 ($)) (-15 -3443 ((-560) $)) (-15 -1484 ((-949))) (-15 -3442 ($ (-560))))) -((-1498 ((|#2| |#2| (-1124 |#2|)) 98 T ELT) ((|#2| |#2| (-1209)) 75 T ELT)) (-4460 ((|#2| |#2| (-1124 |#2|)) 97 T ELT) ((|#2| |#2| (-1209)) 74 T ELT)) (-1495 ((|#2| |#2| |#2|) 25 T ELT)) (-4109 (((-115) (-115)) 111 T ELT)) (-1492 ((|#2| (-663 |#2|)) 130 T ELT)) (-1489 ((|#2| (-663 |#2|)) 150 T ELT)) (-1488 ((|#2| (-663 |#2|)) 138 T ELT)) (-1486 ((|#2| |#2|) 136 T ELT)) (-1490 ((|#2| (-663 |#2|)) 124 T ELT)) (-1491 ((|#2| (-663 |#2|)) 125 T ELT)) (-1487 ((|#2| (-663 |#2|)) 148 T ELT)) (-1499 ((|#2| |#2| (-1209)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1493 ((|#2| |#2|) 21 T ELT)) (-3590 ((|#2| |#2| |#2|) 24 T ELT)) (-2482 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-160 |#1| |#2|) (-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3590 (|#2| |#2| |#2|)) (-15 -1495 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1499 (|#2| |#2|)) (-15 -1499 (|#2| |#2| (-1209))) (-15 -1498 (|#2| |#2| (-1209))) (-15 -1498 (|#2| |#2| (-1124 |#2|))) (-15 -4460 (|#2| |#2| (-1209))) (-15 -4460 (|#2| |#2| (-1124 |#2|))) (-15 -1486 (|#2| |#2|)) (-15 -1487 (|#2| (-663 |#2|))) (-15 -1488 (|#2| (-663 |#2|))) (-15 -1489 (|#2| (-663 |#2|))) (-15 -1490 (|#2| (-663 |#2|))) (-15 -1491 (|#2| (-663 |#2|))) (-15 -1492 (|#2| (-663 |#2|)))) (-571) (-435 |#1|)) (T -160)) -((-1492 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-4460 (*1 *2 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-4460 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-1498 (*1 *2 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-1498 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-1499 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-1499 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1495 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-3590 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4)) (-4 *4 (-435 *3)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-435 *4))))) -(-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3590 (|#2| |#2| |#2|)) (-15 -1495 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1499 (|#2| |#2|)) (-15 -1499 (|#2| |#2| (-1209))) (-15 -1498 (|#2| |#2| (-1209))) (-15 -1498 (|#2| |#2| (-1124 |#2|))) (-15 -4460 (|#2| |#2| (-1209))) (-15 -4460 (|#2| |#2| (-1124 |#2|))) (-15 -1486 (|#2| |#2|)) (-15 -1487 (|#2| (-663 |#2|))) (-15 -1488 (|#2| (-663 |#2|))) (-15 -1489 (|#2| (-663 |#2|))) (-15 -1490 (|#2| (-663 |#2|))) (-15 -1491 (|#2| (-663 |#2|))) (-15 -1492 (|#2| (-663 |#2|)))) -((-1497 ((|#1| |#1| |#1|) 66 T ELT)) (-1496 ((|#1| |#1| |#1|) 63 T ELT)) (-1495 ((|#1| |#1| |#1|) 57 T ELT)) (-3377 ((|#1| |#1|) 43 T ELT)) (-1494 ((|#1| |#1| (-663 |#1|)) 55 T ELT)) (-1493 ((|#1| |#1|) 47 T ELT)) (-3590 ((|#1| |#1| |#1|) 51 T ELT))) -(((-161 |#1|) (-10 -7 (-15 -3590 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1494 (|#1| |#1| (-663 |#1|))) (-15 -3377 (|#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -1496 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|))) (-559)) (T -161)) -((-1497 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-1496 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-1495 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3377 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-1494 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))) (-1493 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3590 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) -(-10 -7 (-15 -3590 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1494 (|#1| |#1| (-663 |#1|))) (-15 -3377 (|#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -1496 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|))) -((-1498 (($ $ (-1209)) 12 T ELT) (($ $ (-1124 $)) 11 T ELT)) (-4460 (($ $ (-1209)) 10 T ELT) (($ $ (-1124 $)) 9 T ELT)) (-1495 (($ $ $) 8 T ELT)) (-1499 (($ $) 14 T ELT) (($ $ (-1209)) 13 T ELT)) (-1493 (($ $) 7 T ELT)) (-3590 (($ $ $) 6 T ELT))) +(-13 (-1079)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-1474 (((-2 (|:| -2642 (-791)) (|:| -4466 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-791)) 76 T ELT)) (-1473 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-791))) "failed") |#3|) 56 T ELT)) (-1472 (((-2 (|:| -4466 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1475 ((|#1| |#3| |#3|) 44 T ELT)) (-4280 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20 T ELT)) (-1476 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-791))) |#3| |#3|) 53 T ELT))) +(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1472 ((-2 (|:| -4466 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1473 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-791))) "failed") |#3|)) (-15 -1474 ((-2 (|:| -2642 (-791)) (|:| -4466 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-791))) (-15 -1475 (|#1| |#3| |#3|)) (-15 -4280 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1476 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-791))) |#3| |#3|))) (-1252) (-1273 |#1|) (-1273 (-419 |#2|))) (T -150)) +((-1476 (*1 *2 *3 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-791)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-419 *5))))) (-4280 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3)))) (-1475 (*1 *2 *3 *3) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1273 (-419 *4))))) (-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-791)) (-4 *7 (-1273 *3)))) (-1473 (*1 *2 *3) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-791)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-419 *5))))) (-1472 (*1 *2 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -4466 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-419 *5)))))) +(-10 -7 (-15 -1472 ((-2 (|:| -4466 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1473 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-791))) "failed") |#3|)) (-15 -1474 ((-2 (|:| -2642 (-791)) (|:| -4466 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-791))) (-15 -1475 (|#1| |#3| |#3|)) (-15 -4280 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1476 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-791))) |#3| |#3|))) +((-3187 (((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|)) 35 T ELT))) +(((-151 |#1| |#2|) (-10 -7 (-15 -3187 ((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|)))) (-557) (-168 |#1|)) (T -151)) +((-3187 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-168 *4)) (-4 *4 (-557)) (-5 *1 (-151 *4 *5))))) +(-10 -7 (-15 -3187 ((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|)))) +((-4222 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-1477 (($ $) 44 T ELT)) (-3908 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4354 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1478 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 18 T ELT) (((-791) |#2| $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4469 (((-791) $) 12 T ELT))) +(((-152 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3908 (|#1| |#2| |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4222 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3908 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) (-153 |#2|) (-1247)) (T -152)) +NIL +(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3908 (|#1| |#2| |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4222 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3908 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 48 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 45 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 44 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 53 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-153 |#1|) (-142) (-1247)) (T -153)) +((-4032 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3)))) (-1478 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-4354 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-4354 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-3908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-4354 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-3908 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1131)))) (-1477 (*1 *1 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1131))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -4032 ($ (-661 |t#1|))) (-15 -1478 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4507)) (PROGN (-15 -4354 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4354 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3908 ($ (-1 (-114) |t#1|) $)) (-15 -4222 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -4354 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3908 ($ |t#1| $)) (-15 -1477 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 112 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-661 (-947))) 71 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1479 (($ (-947)) 57 T ELT)) (-4423 (((-136)) 23 T ELT)) (-4458 (((-886) $) 87 T ELT) (($ (-558)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4189 ((|#2| $ (-661 (-947))) 74 T ELT)) (-3610 (((-791)) 20 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 47 T CONST)) (-3147 (($) 51 T CONST)) (-3536 (((-114) $ $) 33 T ELT)) (-4461 (($ $ |#2|) NIL T ELT)) (-4349 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-4351 (($ $ $) 38 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-154 |#1| |#2| |#3|) (-13 (-1079) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -1479 ($ (-947))) (-15 -3376 ($ |#2| (-661 (-947)))) (-15 -4189 (|#2| $ (-661 (-947)))) (-15 -3969 ((-3 $ "failed") $)))) (-947) (-376) (-1023 |#1| |#2|)) (T -154)) +((-3969 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-947)) (-4 *3 (-376)) (-14 *4 (-1023 *2 *3)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1023 *3 *4)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-947)) (-4 *2 (-376)) (-14 *5 (-1023 *4 *2)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-947))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-947)) (-14 *5 (-1023 *4 *2))))) +(-13 (-1079) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -1479 ($ (-947))) (-15 -3376 ($ |#2| (-661 (-947)))) (-15 -4189 (|#2| $ (-661 (-947)))) (-15 -3969 ((-3 $ "failed") $)))) +((-1481 (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1480 (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558))) 95 T ELT) (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953)) 96 T ELT)) (-1652 (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-971 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558))) 89 T ELT) (((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953)) 90 T ELT))) +(((-155) (-10 -7 (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558)))) (-15 -1480 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953))) (-15 -1480 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558)))) (-15 -1481 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-971 (-229))))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229)))))))) (T -155)) +((-1652 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)) (-5 *3 (-661 (-661 (-971 (-229))))))) (-1652 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)) (-5 *3 (-661 (-971 (-229)))))) (-1481 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 *4)))) (|:| |xValues| (-1119 *4)) (|:| |yValues| (-1119 *4)))) (-5 *1 (-155)) (-5 *3 (-661 (-661 (-971 *4)))))) (-1480 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-953)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-953)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) (-1652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-953)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-953)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155))))) +(-10 -7 (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558)))) (-15 -1480 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953))) (-15 -1480 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-953) (-419 (-558)) (-419 (-558)))) (-15 -1481 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-971 (-229))))) (-15 -1652 ((-2 (|:| |brans| (-661 (-661 (-971 (-229))))) (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229)))) (-661 (-661 (-971 (-229))))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3681 (((-661 (-1165)) $) 20 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 9 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-156) (-13 (-1113) (-10 -8 (-15 -3681 ((-661 (-1165)) $)) (-15 -3733 ((-1165) $))))) (T -156)) +((-3681 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-156)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-156))))) +(-13 (-1113) (-10 -8 (-15 -3681 ((-661 (-1165)) $)) (-15 -3733 ((-1165) $)))) +((-1534 (((-661 (-171 |#2|)) |#1| |#2|) 50 T ELT))) +(((-157 |#1| |#2|) (-10 -7 (-15 -1534 ((-661 (-171 |#2|)) |#1| |#2|))) (-1273 (-171 (-558))) (-13 (-376) (-869))) (T -157)) +((-1534 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1273 (-171 (-558)))) (-4 *4 (-13 (-376) (-869)))))) +(-10 -7 (-15 -1534 ((-661 (-171 |#2|)) |#1| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 (((-1248) $) 12 T ELT)) (-4031 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-158) (-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1248) $))))) (T -158)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-158)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158))))) +(-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1248) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1483 (($) 38 T ELT)) (-3583 (($) 37 T ELT)) (-1482 (((-947)) 43 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3439 (((-558) $) 41 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3582 (($) 39 T ELT)) (-3438 (($ (-558)) 44 T ELT)) (-4458 (((-886) $) 50 T ELT)) (-3581 (($) 40 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 35 T ELT)) (-4351 (($ $ $) 32 T ELT)) (* (($ (-947) $) 42 T ELT) (($ (-229) $) 11 T ELT))) +(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-947) $)) (-15 * ($ (-229) $)) (-15 -4351 ($ $ $)) (-15 -3583 ($)) (-15 -1483 ($)) (-15 -3582 ($)) (-15 -3581 ($)) (-15 -3439 ((-558) $)) (-15 -1482 ((-947))) (-15 -3438 ($ (-558)))))) (T -159)) +((-4351 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3583 (*1 *1) (-5 *1 (-159))) (-1483 (*1 *1) (-5 *1 (-159))) (-3582 (*1 *1) (-5 *1 (-159))) (-3581 (*1 *1) (-5 *1 (-159))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) (-1482 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-159)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-159))))) +(-13 (-25) (-10 -8 (-15 * ($ (-947) $)) (-15 * ($ (-229) $)) (-15 -4351 ($ $ $)) (-15 -3583 ($)) (-15 -1483 ($)) (-15 -3582 ($)) (-15 -3581 ($)) (-15 -3439 ((-558) $)) (-15 -1482 ((-947))) (-15 -3438 ($ (-558))))) +((-1496 ((|#2| |#2| (-1122 |#2|)) 98 T ELT) ((|#2| |#2| (-1207)) 75 T ELT)) (-4456 ((|#2| |#2| (-1122 |#2|)) 97 T ELT) ((|#2| |#2| (-1207)) 74 T ELT)) (-1493 ((|#2| |#2| |#2|) 25 T ELT)) (-4105 (((-115) (-115)) 111 T ELT)) (-1490 ((|#2| (-661 |#2|)) 130 T ELT)) (-1487 ((|#2| (-661 |#2|)) 150 T ELT)) (-1486 ((|#2| (-661 |#2|)) 138 T ELT)) (-1484 ((|#2| |#2|) 136 T ELT)) (-1488 ((|#2| (-661 |#2|)) 124 T ELT)) (-1489 ((|#2| (-661 |#2|)) 125 T ELT)) (-1485 ((|#2| (-661 |#2|)) 148 T ELT)) (-1497 ((|#2| |#2| (-1207)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1491 ((|#2| |#2|) 21 T ELT)) (-3586 ((|#2| |#2| |#2|) 24 T ELT)) (-2478 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-160 |#1| |#2|) (-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1497 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-1207))) (-15 -1496 (|#2| |#2| (-1207))) (-15 -1496 (|#2| |#2| (-1122 |#2|))) (-15 -4456 (|#2| |#2| (-1207))) (-15 -4456 (|#2| |#2| (-1122 |#2|))) (-15 -1484 (|#2| |#2|)) (-15 -1485 (|#2| (-661 |#2|))) (-15 -1486 (|#2| (-661 |#2|))) (-15 -1487 (|#2| (-661 |#2|))) (-15 -1488 (|#2| (-661 |#2|))) (-15 -1489 (|#2| (-661 |#2|))) (-15 -1490 (|#2| (-661 |#2|)))) (-569) (-433 |#1|)) (T -160)) +((-1490 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1484 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4456 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-4456 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1496 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-1496 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1497 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1493 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-3586 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-433 *4))))) +(-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1497 (|#2| |#2|)) (-15 -1497 (|#2| |#2| (-1207))) (-15 -1496 (|#2| |#2| (-1207))) (-15 -1496 (|#2| |#2| (-1122 |#2|))) (-15 -4456 (|#2| |#2| (-1207))) (-15 -4456 (|#2| |#2| (-1122 |#2|))) (-15 -1484 (|#2| |#2|)) (-15 -1485 (|#2| (-661 |#2|))) (-15 -1486 (|#2| (-661 |#2|))) (-15 -1487 (|#2| (-661 |#2|))) (-15 -1488 (|#2| (-661 |#2|))) (-15 -1489 (|#2| (-661 |#2|))) (-15 -1490 (|#2| (-661 |#2|)))) +((-1495 ((|#1| |#1| |#1|) 66 T ELT)) (-1494 ((|#1| |#1| |#1|) 63 T ELT)) (-1493 ((|#1| |#1| |#1|) 57 T ELT)) (-3373 ((|#1| |#1|) 43 T ELT)) (-1492 ((|#1| |#1| (-661 |#1|)) 55 T ELT)) (-1491 ((|#1| |#1|) 47 T ELT)) (-3586 ((|#1| |#1| |#1|) 51 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -3586 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -1492 (|#1| |#1| (-661 |#1|))) (-15 -3373 (|#1| |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|))) (-557)) (T -161)) +((-1495 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1493 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3373 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1492 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2)))) (-1491 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) +(-10 -7 (-15 -3586 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -1492 (|#1| |#1| (-661 |#1|))) (-15 -3373 (|#1| |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|))) +((-1496 (($ $ (-1207)) 12 T ELT) (($ $ (-1122 $)) 11 T ELT)) (-4456 (($ $ (-1207)) 10 T ELT) (($ $ (-1122 $)) 9 T ELT)) (-1493 (($ $ $) 8 T ELT)) (-1497 (($ $) 14 T ELT) (($ $ (-1207)) 13 T ELT)) (-1491 (($ $) 7 T ELT)) (-3586 (($ $ $) 6 T ELT))) (((-162) (-142)) (T -162)) -((-1499 (*1 *1 *1) (-4 *1 (-162))) (-1499 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209)))) (-1498 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209)))) (-1498 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-162)))) (-4460 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209)))) (-4460 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-162))))) -(-13 (-145) (-10 -8 (-15 -1499 ($ $)) (-15 -1499 ($ $ (-1209))) (-15 -1498 ($ $ (-1209))) (-15 -1498 ($ $ (-1124 $))) (-15 -4460 ($ $ (-1209))) (-15 -4460 ($ $ (-1124 $))))) +((-1497 (*1 *1 *1) (-4 *1 (-162))) (-1497 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-1496 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-162)))) (-4456 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-4456 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-162))))) +(-13 (-145) (-10 -8 (-15 -1497 ($ $)) (-15 -1497 ($ $ (-1207))) (-15 -1496 ($ $ (-1207))) (-15 -1496 ($ $ (-1122 $))) (-15 -4456 ($ $ (-1207))) (-15 -4456 ($ $ (-1122 $))))) (((-145) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-1500 (($ (-560)) 15 T ELT) (($ $ $) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 19 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 11 T ELT))) -(((-163) (-13 (-1133) (-10 -8 (-15 -1500 ($ (-560))) (-15 -1500 ($ $ $))))) (T -163)) -((-1500 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163)))) (-1500 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1133) (-10 -8 (-15 -1500 ($ (-560))) (-15 -1500 ($ $ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 16 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-663 (-1167)) $) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-164) (-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $))))) (T -164)) -((-3737 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-164))))) -(-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $)))) -((-4109 (((-115) (-1209)) 103 T ELT))) -(((-165) (-10 -7 (-15 -4109 ((-115) (-1209))))) (T -165)) -((-4109 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-115)) (-5 *1 (-165))))) -(-10 -7 (-15 -4109 ((-115) (-1209)))) -((-1750 ((|#3| |#3|) 19 T ELT))) -(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1750 (|#3| |#3|))) (-1081) (-1275 |#1|) (-1275 |#2|)) (T -166)) -((-1750 (*1 *2 *2) (-12 (-4 *3 (-1081)) (-4 *4 (-1275 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1275 *4))))) -(-10 -7 (-15 -1750 (|#3| |#3|))) -((-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 222 T ELT)) (-3836 ((|#2| $) 102 T ELT)) (-3998 (($ $) 255 T ELT)) (-4155 (($ $) 249 T ELT)) (-3191 (((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $)) 47 T ELT)) (-3996 (($ $) 253 T ELT)) (-4154 (($ $) 247 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3049 (($ $ $) 228 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 160 T ELT) (((-711 |#2|) (-711 $)) 154 T ELT)) (-4358 (($ (-1203 |#2|)) 125 T ELT) (((-3 $ "failed") (-421 (-1203 |#2|))) NIL T ELT)) (-3973 (((-3 $ "failed") $) 213 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 203 T ELT)) (-3510 (((-114) $) 198 T ELT)) (-3509 (((-421 (-560)) $) 201 T ELT)) (-3597 (((-949)) 96 T ELT)) (-3048 (($ $ $) 230 T ELT)) (-1501 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-4143 (($) 244 T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 192 T ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 197 T ELT)) (-3620 ((|#2| $) 100 T ELT)) (-2238 (((-1203 |#2|) $) 127 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4458 (($ $) 246 T ELT)) (-3566 (((-1203 |#2|) $) 126 T ELT)) (-2888 (($ $) 206 T ELT)) (-1503 (($) 103 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 95 T ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 64 T ELT)) (-3972 (((-3 $ "failed") $ |#2|) 208 T ELT) (((-3 $ "failed") $ $) 211 T ELT)) (-4459 (($ $) 245 T ELT)) (-1799 (((-793) $) 225 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 234 T ELT)) (-4273 ((|#2| (-1299 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-4274 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3689 (((-1203 |#2|)) 120 T ELT)) (-3997 (($ $) 254 T ELT)) (-4150 (($ $) 248 T ELT)) (-3728 (((-1299 |#2|) $ (-1299 $)) 136 T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#2|) $) 116 T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-4488 (((-1299 |#2|) $) NIL T ELT) (($ (-1299 |#2|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT) (($ (-1203 |#2|)) NIL T ELT) (((-916 (-560)) $) 183 T ELT) (((-916 (-391)) $) 187 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-549) $) 179 T ELT)) (-3496 (($ $) 104 T ELT)) (-4462 (((-888) $) 143 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-2852 (((-1203 |#2|) $) 32 T ELT)) (-3614 (((-793)) 106 T ELT)) (-1389 (((-114) $ $) 13 T ELT)) (-4004 (($ $) 258 T ELT)) (-3992 (($ $) 252 T ELT)) (-4002 (($ $) 256 T ELT)) (-3990 (($ $) 250 T ELT)) (-2464 ((|#2| $) 241 T ELT)) (-4003 (($ $) 257 T ELT)) (-3991 (($ $) 251 T ELT)) (-3889 (($ $) 162 T ELT)) (-3540 (((-114) $ $) 110 T ELT)) (-4353 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 111 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT))) -(((-167 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4462 (|#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-171 (-229)) |#1|)) (-15 -4488 ((-171 (-391)) |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4154 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4458 (|#1| |#1|)) (-15 -4459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4143 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -1501 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2464 (|#2| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3496 (|#1| |#1|)) (-15 -1503 (|#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4358 ((-3 |#1| "failed") (-421 (-1203 |#2|)))) (-15 -3566 ((-1203 |#2|) |#1|)) (-15 -4488 (|#1| (-1203 |#2|))) (-15 -4358 (|#1| (-1203 |#2|))) (-15 -3689 ((-1203 |#2|))) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 ((-1203 |#2|) |#1|)) (-15 -4273 (|#2|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -2238 ((-1203 |#2|) |#1|)) (-15 -2852 ((-1203 |#2|) |#1|)) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -3620 (|#2| |#1|)) (-15 -3836 (|#2| |#1|)) (-15 -3597 ((-949))) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -1389 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) -((-3614 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3597 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-949)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-4273 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-3689 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4462 (|#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-171 (-229)) |#1|)) (-15 -4488 ((-171 (-391)) |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4154 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4458 (|#1| |#1|)) (-15 -4459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4143 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -1501 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2464 (|#2| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3496 (|#1| |#1|)) (-15 -1503 (|#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4358 ((-3 |#1| "failed") (-421 (-1203 |#2|)))) (-15 -3566 ((-1203 |#2|) |#1|)) (-15 -4488 (|#1| (-1203 |#2|))) (-15 -4358 (|#1| (-1203 |#2|))) (-15 -3689 ((-1203 |#2|))) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 ((-1203 |#2|) |#1|)) (-15 -4273 (|#2|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -2238 ((-1203 |#2|) |#1|)) (-15 -2852 ((-1203 |#2|) |#1|)) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -3620 (|#2| |#1|)) (-15 -3836 (|#2| |#1|)) (-15 -3597 ((-949))) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -1389 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 111 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-2287 (($ $) 112 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-2285 (((-114) $) 114 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-2004 (((-711 |#1|) (-1299 $)) 58 T ELT) (((-711 |#1|)) 74 T ELT)) (-3836 ((|#1| $) 64 T ELT)) (-3998 (($ $) 247 (|has| |#1| (-1235)) ELT)) (-4155 (($ $) 230 (|has| |#1| (-1235)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 164 (|has| |#1| (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 261 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-4291 (($ $) 131 (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-4487 (((-419 $) $) 132 (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-3524 (($ $) 260 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT)) (-3191 (((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $)) 264 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-1800 (((-114) $ $) 122 (|has| |#1| (-319)) ELT)) (-3624 (((-793)) 105 (|has| |#1| (-381)) ELT)) (-3996 (($ $) 246 (|has| |#1| (-1235)) ELT)) (-4154 (($ $) 231 (|has| |#1| (-1235)) ELT)) (-4000 (($ $) 245 (|has| |#1| (-1235)) ELT)) (-4153 (($ $) 232 (|has| |#1| (-1235)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 191 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 189 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3660 (((-560) $) 190 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 188 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 187 T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) 60 T ELT) (($ (-1299 |#1|)) 77 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-3049 (($ $ $) 126 (|has| |#1| (-319)) ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) 65 T ELT) (((-711 |#1|) $) 72 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 183 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 182 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 181 T ELT) (((-711 |#1|) (-711 $)) 180 T ELT)) (-4358 (($ (-1203 |#1|)) 175 T ELT) (((-3 $ "failed") (-421 (-1203 |#1|))) 172 (|has| |#1| (-376)) ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4159 ((|#1| $) 272 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 265 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 267 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 266 (|has| |#1| (-559)) ELT)) (-3597 (((-949)) 66 T ELT)) (-3481 (($) 108 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) 125 (|has| |#1| (-319)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 120 (|has| |#1| (-319)) ELT)) (-3320 (($) 166 (|has| |#1| (-363)) ELT)) (-1895 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1988 (($ $ (-793)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4239 (((-114) $) 133 (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-1501 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1092)) (|has| |#1| (-1235))) ELT)) (-4143 (($) 257 (|has| |#1| (-1235)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 280 (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 279 (|has| |#1| (-912 (-391))) ELT)) (-4288 (((-949) $) 169 (|has| |#1| (-363)) ELT) (((-856 (-949)) $) 155 (|has| |#1| (-363)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 259 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT)) (-3620 ((|#1| $) 63 T ELT)) (-3951 (((-713 $) $) 159 (|has| |#1| (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 129 (|has| |#1| (-319)) ELT)) (-2238 (((-1203 |#1|) $) 56 (|has| |#1| (-376)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2234 (((-949) $) 107 (|has| |#1| (-381)) ELT)) (-4458 (($ $) 254 (|has| |#1| (-1235)) ELT)) (-3566 (((-1203 |#1|) $) 173 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 185 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 184 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 179 T ELT) (((-711 |#1|) (-1299 $)) 178 T ELT)) (-2116 (($ (-663 $)) 118 (-4043 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT) (($ $ $) 117 (-4043 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3952 (($) 160 (|has| |#1| (-363)) CONST)) (-2645 (($ (-949)) 106 (|has| |#1| (-381)) ELT)) (-1503 (($) 276 T ELT)) (-4160 ((|#1| $) 273 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2654 (($) 177 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 119 (-4043 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-3648 (($ (-663 $)) 116 (-4043 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT) (($ $ $) 115 (-4043 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 163 (|has| |#1| (-363)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 263 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 262 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-4248 (((-419 $) $) 130 (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 127 (|has| |#1| (-319)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 110 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 121 (|has| |#1| (-319)) ELT)) (-4459 (($ $) 255 (|has| |#1| (-1235)) ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) 287 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 285 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 284 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 283 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) 282 (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-1799 (((-793) $) 123 (|has| |#1| (-319)) ELT)) (-4316 (($ $ |#1|) 288 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 124 (|has| |#1| (-319)) ELT)) (-4273 ((|#1| (-1299 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1989 (((-793) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4274 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 141 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) 147 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) 146 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) 145 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) 143 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-793)) 153 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3047 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 151 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3047 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2653 (((-711 |#1|) (-1299 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3689 (((-1203 |#1|)) 176 T ELT)) (-4001 (($ $) 244 (|has| |#1| (-1235)) ELT)) (-4152 (($ $) 233 (|has| |#1| (-1235)) ELT)) (-1889 (($) 165 (|has| |#1| (-363)) ELT)) (-3999 (($ $) 243 (|has| |#1| (-1235)) ELT)) (-4151 (($ $) 234 (|has| |#1| (-1235)) ELT)) (-3997 (($ $) 242 (|has| |#1| (-1235)) ELT)) (-4150 (($ $) 235 (|has| |#1| (-1235)) ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 62 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 61 T ELT) (((-1299 |#1|) $) 79 T ELT) (((-711 |#1|) (-1299 $)) 78 T ELT)) (-4488 (((-1299 |#1|) $) 76 T ELT) (($ (-1299 |#1|)) 75 T ELT) (((-1203 |#1|) $) 192 T ELT) (($ (-1203 |#1|)) 174 T ELT) (((-916 (-560)) $) 278 (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) 277 (|has| |#1| (-633 (-916 (-391)))) ELT) (((-171 (-391)) $) 229 (|has| |#1| (-1052)) ELT) (((-171 (-229)) $) 228 (|has| |#1| (-1052)) ELT) (((-549) $) 227 (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) 275 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 162 (-4043 (-3047 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) (|has| |#1| (-363))) ELT)) (-1502 (($ |#1| |#1|) 274 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-421 (-560))) 104 (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) 109 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-3189 (($ $) 161 (|has| |#1| (-363)) ELT) (((-713 $) $) 55 (-4043 (-3047 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) (|has| |#1| (-147))) ELT)) (-2852 (((-1203 |#1|) $) 57 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 80 T ELT)) (-4004 (($ $) 253 (|has| |#1| (-1235)) ELT)) (-3992 (($ $) 241 (|has| |#1| (-1235)) ELT)) (-2286 (((-114) $ $) 113 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940)))) ELT)) (-4002 (($ $) 252 (|has| |#1| (-1235)) ELT)) (-3990 (($ $) 240 (|has| |#1| (-1235)) ELT)) (-4006 (($ $) 251 (|has| |#1| (-1235)) ELT)) (-3994 (($ $) 239 (|has| |#1| (-1235)) ELT)) (-2464 ((|#1| $) 269 (|has| |#1| (-1235)) ELT)) (-4007 (($ $) 250 (|has| |#1| (-1235)) ELT)) (-3995 (($ $) 238 (|has| |#1| (-1235)) ELT)) (-4005 (($ $) 249 (|has| |#1| (-1235)) ELT)) (-3993 (($ $) 237 (|has| |#1| (-1235)) ELT)) (-4003 (($ $) 248 (|has| |#1| (-1235)) ELT)) (-3991 (($ $) 236 (|has| |#1| (-1235)) ELT)) (-3889 (($ $) 270 (|has| |#1| (-1092)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 139 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) 150 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) 149 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) 148 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) 144 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-793)) 154 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3047 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 152 (-4043 (-3047 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3047 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3047 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-421 (-560))) 258 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT) (($ $ $) 256 (|has| |#1| (-1235)) ELT) (($ $ (-560)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-421 (-560)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 136 (|has| |#1| (-376)) ELT))) +((-3049 (((-114) $ $) NIL T ELT)) (-1498 (($ (-558)) 15 T ELT) (($ $ $) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 19 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 11 T ELT))) +(((-163) (-13 (-1131) (-10 -8 (-15 -1498 ($ (-558))) (-15 -1498 ($ $ $))))) (T -163)) +((-1498 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-163)))) (-1498 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1131) (-10 -8 (-15 -1498 ($ (-558))) (-15 -1498 ($ $ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-661 (-1165)) $) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-164) (-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $))))) (T -164)) +((-3733 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-164))))) +(-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $)))) +((-4105 (((-115) (-1207)) 103 T ELT))) +(((-165) (-10 -7 (-15 -4105 ((-115) (-1207))))) (T -165)) +((-4105 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165))))) +(-10 -7 (-15 -4105 ((-115) (-1207)))) +((-1748 ((|#3| |#3|) 19 T ELT))) +(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1748 (|#3| |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|)) (T -166)) +((-1748 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1273 *4))))) +(-10 -7 (-15 -1748 (|#3| |#3|))) +((-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 222 T ELT)) (-3832 ((|#2| $) 102 T ELT)) (-3994 (($ $) 255 T ELT)) (-4151 (($ $) 249 T ELT)) (-3187 (((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $)) 47 T ELT)) (-3992 (($ $) 253 T ELT)) (-4150 (($ $) 247 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3045 (($ $ $) 228 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 160 T ELT) (((-709 |#2|) (-709 $)) 154 T ELT)) (-4354 (($ (-1201 |#2|)) 125 T ELT) (((-3 $ "failed") (-419 (-1201 |#2|))) NIL T ELT)) (-3969 (((-3 $ "failed") $) 213 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 203 T ELT)) (-3506 (((-114) $) 198 T ELT)) (-3505 (((-419 (-558)) $) 201 T ELT)) (-3593 (((-947)) 96 T ELT)) (-3044 (($ $ $) 230 T ELT)) (-1499 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-4139 (($) 244 T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 192 T ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 197 T ELT)) (-3616 ((|#2| $) 100 T ELT)) (-2234 (((-1201 |#2|) $) 127 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4454 (($ $) 246 T ELT)) (-3562 (((-1201 |#2|) $) 126 T ELT)) (-2884 (($ $) 206 T ELT)) (-1501 (($) 103 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 95 T ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 64 T ELT)) (-3968 (((-3 $ "failed") $ |#2|) 208 T ELT) (((-3 $ "failed") $ $) 211 T ELT)) (-4455 (($ $) 245 T ELT)) (-1797 (((-791) $) 225 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 234 T ELT)) (-4269 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-4270 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-3685 (((-1201 |#2|)) 120 T ELT)) (-3993 (($ $) 254 T ELT)) (-4146 (($ $) 248 T ELT)) (-3724 (((-1297 |#2|) $ (-1297 $)) 136 T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 116 T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-4484 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT) (($ (-1201 |#2|)) NIL T ELT) (((-914 (-558)) $) 183 T ELT) (((-914 (-391)) $) 187 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-547) $) 179 T ELT)) (-3492 (($ $) 104 T ELT)) (-4458 (((-886) $) 143 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-2848 (((-1201 |#2|) $) 32 T ELT)) (-3610 (((-791)) 106 T ELT)) (-1387 (((-114) $ $) 13 T ELT)) (-4000 (($ $) 258 T ELT)) (-3988 (($ $) 252 T ELT)) (-3998 (($ $) 256 T ELT)) (-3986 (($ $) 250 T ELT)) (-2460 ((|#2| $) 241 T ELT)) (-3999 (($ $) 257 T ELT)) (-3987 (($ $) 251 T ELT)) (-3885 (($ $) 162 T ELT)) (-3536 (((-114) $ $) 110 T ELT)) (-4349 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 111 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-419 (-558))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-167 |#1| |#2|) (-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4458 (|#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-171 (-229)) |#1|)) (-15 -4484 ((-171 (-391)) |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3988 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4454 (|#1| |#1|)) (-15 -4455 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4139 (|#1|)) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -1499 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2460 (|#2| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3492 (|#1| |#1|)) (-15 -1501 (|#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4354 ((-3 |#1| "failed") (-419 (-1201 |#2|)))) (-15 -3562 ((-1201 |#2|) |#1|)) (-15 -4484 (|#1| (-1201 |#2|))) (-15 -4354 (|#1| (-1201 |#2|))) (-15 -3685 ((-1201 |#2|))) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 ((-1201 |#2|) |#1|)) (-15 -4269 (|#2|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -2234 ((-1201 |#2|) |#1|)) (-15 -2848 ((-1201 |#2|) |#1|)) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3616 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -3593 ((-947))) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -1387 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) +((-3610 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3593 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-947)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-4269 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-3685 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) +(-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4458 (|#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-171 (-229)) |#1|)) (-15 -4484 ((-171 (-391)) |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3988 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4454 (|#1| |#1|)) (-15 -4455 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4139 (|#1|)) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -1499 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2460 (|#2| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3492 (|#1| |#1|)) (-15 -1501 (|#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4354 ((-3 |#1| "failed") (-419 (-1201 |#2|)))) (-15 -3562 ((-1201 |#2|) |#1|)) (-15 -4484 (|#1| (-1201 |#2|))) (-15 -4354 (|#1| (-1201 |#2|))) (-15 -3685 ((-1201 |#2|))) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 ((-1201 |#2|) |#1|)) (-15 -4269 (|#2|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -2234 ((-1201 |#2|) |#1|)) (-15 -2848 ((-1201 |#2|) |#1|)) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3616 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -3593 ((-947))) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -1387 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 111 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2283 (($ $) 112 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2281 (((-114) $) 114 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2000 (((-709 |#1|) (-1297 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3832 ((|#1| $) 64 T ELT)) (-3994 (($ $) 247 (|has| |#1| (-1233)) ELT)) (-4151 (($ $) 230 (|has| |#1| (-1233)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 261 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-4287 (($ $) 131 (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-4483 (((-417 $) $) 132 (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3520 (($ $) 260 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT)) (-3187 (((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $)) 264 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-1798 (((-114) $ $) 122 (|has| |#1| (-319)) ELT)) (-3620 (((-791)) 105 (|has| |#1| (-381)) ELT)) (-3992 (($ $) 246 (|has| |#1| (-1233)) ELT)) (-4150 (($ $) 231 (|has| |#1| (-1233)) ELT)) (-3996 (($ $) 245 (|has| |#1| (-1233)) ELT)) (-4149 (($ $) 232 (|has| |#1| (-1233)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3656 (((-558) $) 190 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) 60 T ELT) (($ (-1297 |#1|)) 77 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-3045 (($ $ $) 126 (|has| |#1| (-319)) ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 183 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 182 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 181 T ELT) (((-709 |#1|) (-709 $)) 180 T ELT)) (-4354 (($ (-1201 |#1|)) 175 T ELT) (((-3 $ "failed") (-419 (-1201 |#1|))) 172 (|has| |#1| (-376)) ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4155 ((|#1| $) 272 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 265 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 267 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 266 (|has| |#1| (-557)) ELT)) (-3593 (((-947)) 66 T ELT)) (-3477 (($) 108 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) 125 (|has| |#1| (-319)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 120 (|has| |#1| (-319)) ELT)) (-3316 (($) 166 (|has| |#1| (-363)) ELT)) (-1893 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1984 (($ $ (-791)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4235 (((-114) $) 133 (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-1499 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1090)) (|has| |#1| (-1233))) ELT)) (-4139 (($) 257 (|has| |#1| (-1233)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 280 (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 279 (|has| |#1| (-910 (-391))) ELT)) (-4284 (((-947) $) 169 (|has| |#1| (-363)) ELT) (((-854 (-947)) $) 155 (|has| |#1| (-363)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 259 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT)) (-3616 ((|#1| $) 63 T ELT)) (-3947 (((-711 $) $) 159 (|has| |#1| (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| |#1| (-319)) ELT)) (-2234 (((-1201 |#1|) $) 56 (|has| |#1| (-376)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2230 (((-947) $) 107 (|has| |#1| (-381)) ELT)) (-4454 (($ $) 254 (|has| |#1| (-1233)) ELT)) (-3562 (((-1201 |#1|) $) 173 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 179 T ELT) (((-709 |#1|) (-1297 $)) 178 T ELT)) (-2112 (($ (-661 $)) 118 (-4039 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT) (($ $ $) 117 (-4039 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3948 (($) 160 (|has| |#1| (-363)) CONST)) (-2641 (($ (-947)) 106 (|has| |#1| (-381)) ELT)) (-1501 (($) 276 T ELT)) (-4156 ((|#1| $) 273 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2650 (($) 177 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 119 (-4039 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3644 (($ (-661 $)) 116 (-4039 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT) (($ $ $) 115 (-4039 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 263 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 262 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-4244 (((-417 $) $) 130 (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 127 (|has| |#1| (-319)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 110 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 121 (|has| |#1| (-319)) ELT)) (-4455 (($ $) 255 (|has| |#1| (-1233)) ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) 287 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 285 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 284 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 283 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 282 (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-1797 (((-791) $) 123 (|has| |#1| (-319)) ELT)) (-4312 (($ $ |#1|) 288 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 124 (|has| |#1| (-319)) ELT)) (-4269 ((|#1| (-1297 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1985 (((-791) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4270 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 141 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) 147 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) 146 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) 145 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) 143 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-791)) 153 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3043 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 151 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3043 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2649 (((-709 |#1|) (-1297 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3685 (((-1201 |#1|)) 176 T ELT)) (-3997 (($ $) 244 (|has| |#1| (-1233)) ELT)) (-4148 (($ $) 233 (|has| |#1| (-1233)) ELT)) (-1887 (($) 165 (|has| |#1| (-363)) ELT)) (-3995 (($ $) 243 (|has| |#1| (-1233)) ELT)) (-4147 (($ $) 234 (|has| |#1| (-1233)) ELT)) (-3993 (($ $) 242 (|has| |#1| (-1233)) ELT)) (-4146 (($ $) 235 (|has| |#1| (-1233)) ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 62 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 61 T ELT) (((-1297 |#1|) $) 79 T ELT) (((-709 |#1|) (-1297 $)) 78 T ELT)) (-4484 (((-1297 |#1|) $) 76 T ELT) (($ (-1297 |#1|)) 75 T ELT) (((-1201 |#1|) $) 192 T ELT) (($ (-1201 |#1|)) 174 T ELT) (((-914 (-558)) $) 278 (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) 277 (|has| |#1| (-631 (-914 (-391)))) ELT) (((-171 (-391)) $) 229 (|has| |#1| (-1050)) ELT) (((-171 (-229)) $) 228 (|has| |#1| (-1050)) ELT) (((-547) $) 227 (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) 275 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 162 (-4039 (-3043 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (|has| |#1| (-363))) ELT)) (-1500 (($ |#1| |#1|) 274 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) 109 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3185 (($ $) 161 (|has| |#1| (-363)) ELT) (((-711 $) $) 55 (-4039 (-3043 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (|has| |#1| (-147))) ELT)) (-2848 (((-1201 |#1|) $) 57 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 80 T ELT)) (-4000 (($ $) 253 (|has| |#1| (-1233)) ELT)) (-3988 (($ $) 241 (|has| |#1| (-1233)) ELT)) (-2282 (((-114) $ $) 113 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3998 (($ $) 252 (|has| |#1| (-1233)) ELT)) (-3986 (($ $) 240 (|has| |#1| (-1233)) ELT)) (-4002 (($ $) 251 (|has| |#1| (-1233)) ELT)) (-3990 (($ $) 239 (|has| |#1| (-1233)) ELT)) (-2460 ((|#1| $) 269 (|has| |#1| (-1233)) ELT)) (-4003 (($ $) 250 (|has| |#1| (-1233)) ELT)) (-3991 (($ $) 238 (|has| |#1| (-1233)) ELT)) (-4001 (($ $) 249 (|has| |#1| (-1233)) ELT)) (-3989 (($ $) 237 (|has| |#1| (-1233)) ELT)) (-3999 (($ $) 248 (|has| |#1| (-1233)) ELT)) (-3987 (($ $) 236 (|has| |#1| (-1233)) ELT)) (-3885 (($ $) 270 (|has| |#1| (-1090)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 139 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) 150 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) 149 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) 148 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) 144 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-791)) 154 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3043 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 152 (-4039 (-3043 (|has| |#1| (-376)) (|has| |#1| (-239))) (-3043 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-3043 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-419 (-558))) 258 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT) (($ $ $) 256 (|has| |#1| (-1233)) ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) (((-168 |#1|) (-142) (-175)) (T -168)) -((-3620 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1503 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3496 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1502 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3972 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-3889 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1235)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1092)) (-4 *3 (-1235)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560)))))) -(-13 (-746 |t#1| (-1203 |t#1|)) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-414 |t#1|) (-910 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -1502) (-15 -1503 ($)) (-15 -3496 ($ $)) (-15 -1502 ($ |t#1| |t#1|)) (-15 -4160 (|t#1| $)) (-15 -4159 (|t#1| $)) (-15 -3620 (|t#1| $)) (IF (|has| |t#1| (-571)) (PROGN (-6 (-571)) (-15 -3972 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4510)) (-6 -4510) |%noBranch|) (IF (|has| |t#1| (-6 -4507)) (-6 -4507) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-633 (-171 (-229)))) (-6 (-633 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1092)) (-15 -3889 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1235)) (PROGN (-6 (-1235)) (-15 -2464 (|t#1| $)) (IF (|has| |t#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |t#1| (-1092)) (-15 -1501 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-940)) (IF (|has| |t#1| (-319)) (-6 (-940)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1235)) ((-95) |has| |#1| (-1235)) ((-102) . T) ((-111 #1# #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4043 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-632 (-888)) . T) ((-175) . T) ((-633 (-171 (-229))) |has| |#1| (-1052)) ((-633 (-171 (-391))) |has| |#1| (-1052)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-916 (-391))) |has| |#1| (-633 (-916 (-391)))) ((-633 (-916 (-560))) |has| |#1| (-633 (-916 (-560)))) ((-633 #2=(-1203 |#1|)) . T) ((-236 $) -4043 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -4043 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -4043 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1235)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -4043 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -4043 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| #2#) . T) ((-424 |#1| #2#) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-507) |has| |#1| (-1235)) ((-528 (-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-668 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #3=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-660 #3#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-746 |#1| #2#) . T) ((-748) . T) ((-922 $ #4=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-930 #4#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-912 (-391)) |has| |#1| (-912 (-391))) ((-912 (-560)) |has| |#1| (-912 (-560))) ((-910 |#1|) . T) ((-940) -12 (|has| |#1| (-319)) (|has| |#1| (-940))) ((-951) -4043 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1034) -12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1083 |#1|) . T) ((-1083 $) . T) ((-1088 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1088 |#1|) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| |#1| (-363)) ((-1235) |has| |#1| (-1235)) ((-1238) |has| |#1| (-1235)) ((-1249) . T) ((-1254) -4043 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-940))))) -((-4248 (((-419 |#2|) |#2|) 67 T ELT))) -(((-169 |#1| |#2|) (-10 -7 (-15 -4248 ((-419 |#2|) |#2|))) (-319) (-1275 (-171 |#1|))) (T -169)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1275 (-171 *4)))))) -(-10 -7 (-15 -4248 ((-419 |#2|) |#2|))) -((-1506 (((-1167) (-1167) (-303)) 8 T ELT)) (-1504 (((-663 (-713 (-292))) (-1191)) 81 T ELT)) (-1505 (((-713 (-292)) (-1167)) 76 T ELT))) -(((-170) (-13 (-1249) (-10 -7 (-15 -1506 ((-1167) (-1167) (-303))) (-15 -1505 ((-713 (-292)) (-1167))) (-15 -1504 ((-663 (-713 (-292))) (-1191)))))) (T -170)) -((-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-713 (-292))) (-5 *1 (-170)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170))))) -(-13 (-1249) (-10 -7 (-15 -1506 ((-1167) (-1167) (-303))) (-15 -1505 ((-713 (-292)) (-1167))) (-15 -1504 ((-663 (-713 (-292))) (-1191))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 34 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-2287 (($ $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-2285 (((-114) $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-2004 (((-711 |#1|) (-1299 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT)) (-3998 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4155 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-4291 (($ $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-4487 (((-419 $) $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-3524 (($ $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4154 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4000 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4153 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) NIL T ELT) (($ (-1299 |#1|)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-4358 (($ (-1203 |#1|)) NIL T ELT) (((-3 $ "failed") (-421 (-1203 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4159 ((|#1| $) 13 T ELT)) (-3511 (((-3 (-421 (-560)) #3="failed") $) NIL (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-3597 (((-949)) NIL T ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-319)) ELT)) (-3320 (($) NIL (|has| |#1| (-363)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1988 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4239 (((-114) $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-1501 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1092)) (|has| |#1| (-1235))) ELT)) (-4143 (($) NIL (|has| |#1| (-1235)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| |#1| (-912 (-391))) ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-363)) ELT) (((-856 (-949)) $) NIL (|has| |#1| (-363)) ELT)) (-2655 (((-114) $) 36 T ELT)) (-3498 (($ $ (-560)) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT)) (-3620 ((|#1| $) 47 T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-363)) ELT)) (-1797 (((-3 (-663 $) #4="failed") (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-2238 (((-1203 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-4458 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3566 (((-1203 |#1|) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3952 (($) NIL (|has| |#1| (-363)) CONST)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1503 (($) NIL T ELT)) (-4160 ((|#1| $) 15 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-319)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) ELT)) (-4248 (((-419 $) $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-376))) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3972 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 48 (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-319)) ELT)) (-4316 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-4273 ((|#1| (-1299 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-4274 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2653 (((-711 |#1|) (-1299 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3689 (((-1203 |#1|)) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4152 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-1889 (($) NIL (|has| |#1| (-363)) ELT)) (-3999 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4151 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3997 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4150 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) NIL T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#1|) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-4488 (((-1299 |#1|) $) NIL T ELT) (($ (-1299 |#1|)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT) (($ (-1203 |#1|)) NIL T ELT) (((-916 (-560)) $) NIL (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-633 (-916 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1052)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1052)) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) 46 T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-363))) ELT)) (-1502 (($ |#1| |#1|) 38 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-3189 (($ $) NIL (|has| |#1| (-363)) ELT) (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-2852 (((-1203 |#1|) $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-2286 (((-114) $ $) NIL (-4043 (-12 (|has| |#1| (-319)) (|has| |#1| (-940))) (|has| |#1| (-571))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3990 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4006 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3994 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-2464 ((|#1| $) NIL (|has| |#1| (-1235)) ELT)) (-4007 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3995 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4005 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3993 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-4003 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3991 (($ $) NIL (|has| |#1| (-1235)) ELT)) (-3889 (($ $) NIL (|has| |#1| (-1092)) ELT)) (-3145 (($) 28 T CONST)) (-3151 (($) 30 T CONST)) (-2982 (((-1191) $) 23 (|has| |#1| (-845)) ELT) (((-1191) $ (-114)) 25 (|has| |#1| (-845)) ELT) (((-1305) (-847) $) 26 (|has| |#1| (-845)) ELT) (((-1305) (-847) $ (-114)) 27 (|has| |#1| (-845)) ELT)) (-3156 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 40 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1235))) ELT) (($ $ $) NIL (|has| |#1| (-1235)) ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT))) -(((-171 |#1|) (-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-175)) (T -171)) -NIL -(-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) -((-4474 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) -(((-172 |#1| |#2|) (-10 -7 (-15 -4474 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))) -(-10 -7 (-15 -4474 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-4488 (((-916 |#1|) |#3|) 22 T ELT))) -(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -4488 ((-916 |#1|) |#3|))) (-1133) (-13 (-633 (-916 |#1|)) (-175)) (-168 |#2|)) (T -173)) -((-4488 (*1 *2 *3) (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-916 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1133)) (-4 *3 (-168 *5))))) -(-10 -7 (-15 -4488 ((-916 |#1|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-1508 (((-114) $) 9 T ELT)) (-1507 (((-114) $ (-114)) 11 T ELT)) (-4130 (($) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3906 (($ $) 14 T ELT)) (-4462 (((-888) $) 18 T ELT)) (-4218 (((-114) $) 8 T ELT)) (-4377 (((-114) $ (-114)) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-174) (-13 (-1133) (-10 -8 (-15 -4130 ($)) (-15 -4218 ((-114) $)) (-15 -1508 ((-114) $)) (-15 -4377 ((-114) $ (-114))) (-15 -1507 ((-114) $ (-114))) (-15 -3906 ($ $))))) (T -174)) -((-4130 (*1 *1) (-5 *1 (-174))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4377 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1507 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-3906 (*1 *1 *1) (-5 *1 (-174)))) -(-13 (-1133) (-10 -8 (-15 -4130 ($)) (-15 -4218 ((-114) $)) (-15 -1508 ((-114) $)) (-15 -4377 ((-114) $ (-114))) (-15 -1507 ((-114) $ (-114))) (-15 -3906 ($ $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3616 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1501 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3492 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1500 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3968 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-3885 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1090)) (-4 *3 (-1233)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3507 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) +(-13 (-744 |t#1| (-1201 |t#1|)) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-412 |t#1|) (-908 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -1500) (-15 -1501 ($)) (-15 -3492 ($ $)) (-15 -1500 ($ |t#1| |t#1|)) (-15 -4156 (|t#1| $)) (-15 -4155 (|t#1| $)) (-15 -3616 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3968 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4506)) (-6 -4506) |%noBranch|) (IF (|has| |t#1| (-6 -4503)) (-6 -4503) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1050)) (PROGN (-6 (-631 (-171 (-229)))) (-6 (-631 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3885 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1233)) (PROGN (-6 (-1233)) (-15 -2460 (|t#1| $)) (IF (|has| |t#1| (-1032)) (-6 (-1032)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -1499 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-319)) (-6 (-938)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1233)) ((-95) |has| |#1| (-1233)) ((-102) . T) ((-111 #1# #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4039 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-630 (-886)) . T) ((-175) . T) ((-631 (-171 (-229))) |has| |#1| (-1050)) ((-631 (-171 (-391))) |has| |#1| (-1050)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-914 (-391))) |has| |#1| (-631 (-914 (-391)))) ((-631 (-914 (-558))) |has| |#1| (-631 (-914 (-558)))) ((-631 #2=(-1201 |#1|)) . T) ((-236 $) -4039 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -4039 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -4039 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1233)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -4039 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -4039 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| #2#) . T) ((-422 |#1| #2#) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-505) |has| |#1| (-1233)) ((-526 (-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-666 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 #3=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 |#1|) . T) ((-660 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-658 #3#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-737 |#1|) . T) ((-737 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-744 |#1| #2#) . T) ((-746) . T) ((-920 $ #4=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-928 #4#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-558)) |has| |#1| (-910 (-558))) ((-908 |#1|) . T) ((-938) -12 (|has| |#1| (-319)) (|has| |#1| (-938))) ((-949) -4039 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1032) -12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| |#1| (-363)) ((-1233) |has| |#1| (-1233)) ((-1236) |has| |#1| (-1233)) ((-1247) . T) ((-1252) -4039 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938))))) +((-4244 (((-417 |#2|) |#2|) 67 T ELT))) +(((-169 |#1| |#2|) (-10 -7 (-15 -4244 ((-417 |#2|) |#2|))) (-319) (-1273 (-171 |#1|))) (T -169)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(-10 -7 (-15 -4244 ((-417 |#2|) |#2|))) +((-1504 (((-1165) (-1165) (-303)) 8 T ELT)) (-1502 (((-661 (-711 (-292))) (-1189)) 81 T ELT)) (-1503 (((-711 (-292)) (-1165)) 76 T ELT))) +(((-170) (-13 (-1247) (-10 -7 (-15 -1504 ((-1165) (-1165) (-303))) (-15 -1503 ((-711 (-292)) (-1165))) (-15 -1502 ((-661 (-711 (-292))) (-1189)))))) (T -170)) +((-1504 (*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-711 (-292))) (-5 *1 (-170)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-711 (-292)))) (-5 *1 (-170))))) +(-13 (-1247) (-10 -7 (-15 -1504 ((-1165) (-1165) (-303))) (-15 -1503 ((-711 (-292)) (-1165))) (-15 -1502 ((-661 (-711 (-292))) (-1189))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 34 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-2283 (($ $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-2281 (((-114) $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-2000 (((-709 |#1|) (-1297 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT)) (-3994 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4151 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-4287 (($ $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-4483 (((-417 $) $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3520 (($ $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4150 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4149 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4354 (($ (-1201 |#1|)) NIL T ELT) (((-3 $ "failed") (-419 (-1201 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4155 ((|#1| $) 13 T ELT)) (-3507 (((-3 (-419 (-558)) #3="failed") $) NIL (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3593 (((-947)) NIL T ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-319)) ELT)) (-3316 (($) NIL (|has| |#1| (-363)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1984 (($ $ (-791)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4235 (((-114) $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-1499 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#1| (-1233))) ELT)) (-4139 (($) NIL (|has| |#1| (-1233)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-947)) $) NIL (|has| |#1| (-363)) ELT)) (-2651 (((-114) $) 36 T ELT)) (-3494 (($ $ (-558)) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT)) (-3616 ((|#1| $) 47 T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-363)) ELT)) (-1795 (((-3 (-661 $) #4="failed") (-661 $) $) NIL (|has| |#1| (-319)) ELT)) (-2234 (((-1201 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-4454 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3562 (((-1201 |#1|) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3948 (($) NIL (|has| |#1| (-363)) CONST)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1501 (($) NIL T ELT)) (-4156 ((|#1| $) 15 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-319)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-4244 (((-417 $) $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3968 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 48 (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-319)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-319)) ELT)) (-4312 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-4269 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-4270 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2649 (((-709 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3685 (((-1201 |#1|)) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4148 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1887 (($) NIL (|has| |#1| (-363)) ELT)) (-3995 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4147 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3993 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4146 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) NIL T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-4484 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT) (($ (-1201 |#1|)) NIL T ELT) (((-914 (-558)) $) NIL (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| |#1| (-631 (-914 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1050)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1050)) ELT) (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) 46 T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-363))) ELT)) (-1500 (($ |#1| |#1|) 38 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-3185 (($ $) NIL (|has| |#1| (-363)) ELT) (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-2848 (((-1201 |#1|) $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3988 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2282 (((-114) $ $) NIL (-4039 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-569))) ELT)) (-3998 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3986 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3990 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2460 ((|#1| $) NIL (|has| |#1| (-1233)) ELT)) (-4003 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3991 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4001 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3989 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3999 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3987 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3885 (($ $) NIL (|has| |#1| (-1090)) ELT)) (-3141 (($) 28 T CONST)) (-3147 (($) 30 T CONST)) (-2978 (((-1189) $) 23 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 25 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 26 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 27 (|has| |#1| (-843)) ELT)) (-3152 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 40 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-419 (-558))) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1233))) ELT) (($ $ $) NIL (|has| |#1| (-1233)) ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) +(((-171 |#1|) (-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) (-175)) (T -171)) +NIL +(-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) +((-4470 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) +(((-172 |#1| |#2|) (-10 -7 (-15 -4470 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))) +(-10 -7 (-15 -4470 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-4484 (((-914 |#1|) |#3|) 22 T ELT))) +(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -4484 ((-914 |#1|) |#3|))) (-1131) (-13 (-631 (-914 |#1|)) (-175)) (-168 |#2|)) (T -173)) +((-4484 (*1 *2 *3) (-12 (-4 *5 (-13 (-631 *2) (-175))) (-5 *2 (-914 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1131)) (-4 *3 (-168 *5))))) +(-10 -7 (-15 -4484 ((-914 |#1|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-1506 (((-114) $) 9 T ELT)) (-1505 (((-114) $ (-114)) 11 T ELT)) (-4126 (($) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3902 (($ $) 14 T ELT)) (-4458 (((-886) $) 18 T ELT)) (-4214 (((-114) $) 8 T ELT)) (-4373 (((-114) $ (-114)) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-174) (-13 (-1131) (-10 -8 (-15 -4126 ($)) (-15 -4214 ((-114) $)) (-15 -1506 ((-114) $)) (-15 -4373 ((-114) $ (-114))) (-15 -1505 ((-114) $ (-114))) (-15 -3902 ($ $))))) (T -174)) +((-4126 (*1 *1) (-5 *1 (-174))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4373 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1505 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-3902 (*1 *1 *1) (-5 *1 (-174)))) +(-13 (-1131) (-10 -8 (-15 -4126 ($)) (-15 -4214 ((-114) $)) (-15 -1506 ((-114) $)) (-15 -4373 ((-114) $ (-114))) (-15 -1505 ((-114) $ (-114))) (-15 -3902 ($ $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-175) (-142)) (T -175)) NIL -(-13 (-1081) (-111 $ $) (-10 -7 (-6 (-4513 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-1915 (($ $) 6 T ELT))) +(-13 (-1079) (-111 $ $) (-10 -7 (-6 (-4509 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-1913 (($ $) 6 T ELT))) (((-176) (-142)) (T -176)) -((-1915 (*1 *1 *1) (-4 *1 (-176)))) -(-13 (-10 -8 (-15 -1915 ($ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 ((|#1| $) 79 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL T ELT)) (-1513 (($ $) 21 T ELT)) (-1517 (($ |#1| (-1187 |#1|)) 48 T ELT)) (-3973 (((-3 $ "failed") $) 123 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-1514 (((-1187 |#1|) $) 86 T ELT)) (-1516 (((-1187 |#1|) $) 83 T ELT)) (-1515 (((-1187 |#1|) $) 84 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1510 (((-1187 |#1|) $) 93 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2116 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-4285 (($ $ (-560)) 96 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1509 (((-1187 |#1|) $) 94 T ELT)) (-1511 (((-1187 (-421 |#1|)) $) 14 T ELT)) (-3101 (($ (-421 |#1|)) 17 T ELT) (($ |#1| (-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-3378 (($ $) 98 T ELT)) (-4462 (((-888) $) 139 T ELT) (($ (-560)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-421 |#1|)) 36 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-3614 (((-793)) 67 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-1512 (((-1187 (-421 |#1|)) $) 20 T ELT)) (-3145 (($) 103 T CONST)) (-3151 (($) 28 T CONST)) (-3540 (((-114) $ $) 35 T ELT)) (-4465 (($ $ $) 121 T ELT)) (-4353 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-4355 (($ $ $) 107 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-421 |#1|) $) 117 T ELT) (($ $ (-421 |#1|)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT))) -(((-177 |#1|) (-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -3101 ($ (-421 |#1|))) (-15 -3101 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -1517 ($ |#1| (-1187 |#1|))) (-15 -1516 ((-1187 |#1|) $)) (-15 -1515 ((-1187 |#1|) $)) (-15 -1514 ((-1187 |#1|) $)) (-15 -3617 (|#1| $)) (-15 -1513 ($ $)) (-15 -1512 ((-1187 (-421 |#1|)) $)) (-15 -1511 ((-1187 (-421 |#1|)) $)) (-15 -1510 ((-1187 |#1|) $)) (-15 -1509 ((-1187 |#1|) $)) (-15 -4285 ($ $ (-560))) (-15 -3378 ($ $)))) (-319)) (T -177)) -((-3101 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-3101 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1517 (*1 *1 *2 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3617 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1187 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-1187 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3378 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -(-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -3101 ($ (-421 |#1|))) (-15 -3101 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -1517 ($ |#1| (-1187 |#1|))) (-15 -1516 ((-1187 |#1|) $)) (-15 -1515 ((-1187 |#1|) $)) (-15 -1514 ((-1187 |#1|) $)) (-15 -3617 (|#1| $)) (-15 -1513 ($ $)) (-15 -1512 ((-1187 (-421 |#1|)) $)) (-15 -1511 ((-1187 (-421 |#1|)) $)) (-15 -1510 ((-1187 |#1|) $)) (-15 -1509 ((-1187 |#1|) $)) (-15 -4285 ($ $ (-560))) (-15 -3378 ($ $)))) -((-1518 (($ (-109) $) 15 T ELT)) (-3725 (((-713 (-109)) (-520) $) 14 T ELT)) (-4462 (((-888) $) 18 T ELT)) (-1519 (((-663 (-109)) $) 8 T ELT))) -(((-178) (-13 (-632 (-888)) (-10 -8 (-15 -1519 ((-663 (-109)) $)) (-15 -1518 ($ (-109) $)) (-15 -3725 ((-713 (-109)) (-520) $))))) (T -178)) -((-1519 (*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178)))) (-1518 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-3725 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178))))) -(-13 (-632 (-888)) (-10 -8 (-15 -1519 ((-663 (-109)) $)) (-15 -1518 ($ (-109) $)) (-15 -3725 ((-713 (-109)) (-520) $)))) -((-1532 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 38 T ELT)) (-1523 (((-973 |#1|) (-973 |#1|)) 22 T ELT)) (-1528 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 34 T ELT)) (-1521 (((-973 |#1|) (-973 |#1|)) 20 T ELT)) (-1526 (((-973 |#1|) (-973 |#1|)) 28 T ELT)) (-1525 (((-973 |#1|) (-973 |#1|)) 27 T ELT)) (-1524 (((-973 |#1|) (-973 |#1|)) 26 T ELT)) (-1529 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 35 T ELT)) (-1527 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 33 T ELT)) (-1858 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 32 T ELT)) (-1522 (((-973 |#1|) (-973 |#1|)) 21 T ELT)) (-1533 (((-1 (-973 |#1|) (-973 |#1|)) |#1| |#1|) 41 T ELT)) (-1520 (((-973 |#1|) (-973 |#1|)) 8 T ELT)) (-1531 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 37 T ELT)) (-1530 (((-1 (-973 |#1|) (-973 |#1|)) |#1|) 36 T ELT))) -(((-179 |#1|) (-10 -7 (-15 -1520 ((-973 |#1|) (-973 |#1|))) (-15 -1521 ((-973 |#1|) (-973 |#1|))) (-15 -1522 ((-973 |#1|) (-973 |#1|))) (-15 -1523 ((-973 |#1|) (-973 |#1|))) (-15 -1524 ((-973 |#1|) (-973 |#1|))) (-15 -1525 ((-973 |#1|) (-973 |#1|))) (-15 -1526 ((-973 |#1|) (-973 |#1|))) (-15 -1858 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1527 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1528 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1529 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1530 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1531 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1532 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1533 ((-1 (-973 |#1|) (-973 |#1|)) |#1| |#1|))) (-13 (-376) (-1235) (-1034))) (T -179)) -((-1533 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1532 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1531 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -1520 ((-973 |#1|) (-973 |#1|))) (-15 -1521 ((-973 |#1|) (-973 |#1|))) (-15 -1522 ((-973 |#1|) (-973 |#1|))) (-15 -1523 ((-973 |#1|) (-973 |#1|))) (-15 -1524 ((-973 |#1|) (-973 |#1|))) (-15 -1525 ((-973 |#1|) (-973 |#1|))) (-15 -1526 ((-973 |#1|) (-973 |#1|))) (-15 -1858 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1527 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1528 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1529 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1530 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1531 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1532 ((-1 (-973 |#1|) (-973 |#1|)) |#1|)) (-15 -1533 ((-1 (-973 |#1|) (-973 |#1|)) |#1| |#1|))) -((-2852 ((|#2| |#3|) 28 T ELT))) -(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2852 (|#2| |#3|))) (-175) (-1275 |#1|) (-746 |#1| |#2|)) (T -180)) -((-2852 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1275 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-746 *4 *2))))) -(-10 -7 (-15 -2852 (|#2| |#3|))) -((-3283 (((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)) 44 (|has| (-976 |#2|) (-912 |#1|)) ELT))) -(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-976 |#2|) (-912 |#1|)) (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))) |%noBranch|)) (-1133) (-13 (-912 |#1|) (-175)) (-168 |#2|)) (T -181)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *3 (-168 *6)) (-4 (-976 *6) (-912 *5)) (-4 *6 (-13 (-912 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) -(-10 -7 (IF (|has| (-976 |#2|) (-912 |#1|)) (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))) |%noBranch|)) -((-1535 (((-663 |#1|) (-663 |#1|) |#1|) 41 T ELT)) (-1534 (((-663 |#1|) |#1| (-663 |#1|)) 20 T ELT)) (-2306 (((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|)) 36 T ELT) ((|#1| (-663 |#1|) (-663 |#1|)) 32 T ELT))) -(((-182 |#1|) (-10 -7 (-15 -1534 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -2306 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -2306 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -1535 ((-663 |#1|) (-663 |#1|) |#1|))) (-319)) (T -182)) -((-1535 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-2306 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-2306 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1534 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -(-10 -7 (-15 -1534 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -2306 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -2306 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -1535 ((-663 |#1|) (-663 |#1|) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3822 (((-1250) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 10 T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-183) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $))))) (T -183)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-183)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-183))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $)))) -((-1544 (((-2 (|:| |start| |#2|) (|:| -2001 (-419 |#2|))) |#2|) 66 T ELT)) (-1543 ((|#1| |#1|) 58 T ELT)) (-1542 (((-171 |#1|) |#2|) 93 T ELT)) (-1541 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1540 ((|#2| |#2|) 90 T ELT)) (-1539 (((-419 |#2|) |#2| |#1|) 118 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 87 T ELT)) (-3620 ((|#1| |#2|) 117 T ELT)) (-1538 ((|#2| |#2|) 130 T ELT)) (-4248 (((-419 |#2|) |#2|) 153 T ELT) (((-419 |#2|) |#2| |#1|) 33 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-1537 (((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2|) 151 T ELT) (((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-1536 (((-663 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-663 (-171 |#1|)) |#2|) 43 T ELT))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1536 ((-663 (-171 |#1|)) |#2|)) (-15 -1536 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -1537 ((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2| (-114))) (-15 -1537 ((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2|)) (-15 -4248 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4248 ((-419 |#2|) |#2| |#1|)) (-15 -4248 ((-419 |#2|) |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -3620 (|#1| |#2|)) (-15 -1539 ((-419 |#2|) |#2| |#1| (-114))) (-15 -1539 ((-419 |#2|) |#2| |#1|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#1| |#2| |#1|)) (-15 -1541 (|#1| |#2|)) (-15 -1542 ((-171 |#1|) |#2|)) (-15 -1543 (|#1| |#1|)) (-15 -1544 ((-2 (|:| |start| |#2|) (|:| -2001 (-419 |#2|))) |#2|))) (-13 (-376) (-871)) (-1275 (-171 |#1|))) (T -184)) -((-1544 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-2 (|:| |start| *3) (|:| -2001 (-419 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-1543 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1275 (-171 *2))))) (-1542 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-871))) (-4 *3 (-1275 *2)))) (-1541 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1275 (-171 *2))))) (-1541 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1275 (-171 *2))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-871))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1275 (-171 *3))))) (-1539 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-3620 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1275 (-171 *2))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-871))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1275 (-171 *3))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-4248 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-1537 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-663 (-2 (|:| -2001 (-663 *3)) (|:| -1751 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-1537 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-871))) (-5 *2 (-663 (-2 (|:| -2001 (-663 *3)) (|:| -1751 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1275 (-171 *5))))) (-1536 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) (-1536 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4)))))) -(-10 -7 (-15 -1536 ((-663 (-171 |#1|)) |#2|)) (-15 -1536 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -1537 ((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2| (-114))) (-15 -1537 ((-663 (-2 (|:| -2001 (-663 |#2|)) (|:| -1751 |#1|))) |#2| |#2|)) (-15 -4248 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4248 ((-419 |#2|) |#2| |#1|)) (-15 -4248 ((-419 |#2|) |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -3620 (|#1| |#2|)) (-15 -1539 ((-419 |#2|) |#2| |#1| (-114))) (-15 -1539 ((-419 |#2|) |#2| |#1|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#1| |#2| |#1|)) (-15 -1541 (|#1| |#2|)) (-15 -1542 ((-171 |#1|) |#2|)) (-15 -1543 (|#1| |#1|)) (-15 -1544 ((-2 (|:| |start| |#2|) (|:| -2001 (-419 |#2|))) |#2|))) -((-1545 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1546 (((-793) |#2|) 18 T ELT)) (-1547 ((|#2| |#2| |#2|) 20 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -1545 ((-3 |#2| "failed") |#2|)) (-15 -1546 ((-793) |#2|)) (-15 -1547 (|#2| |#2| |#2|))) (-1249) (-696 |#1|)) (T -185)) -((-1547 (*1 *2 *2 *2) (-12 (-4 *3 (-1249)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-1249)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) (-4 *3 (-696 *4)))) (-1545 (*1 *2 *2) (|partial| -12 (-4 *3 (-1249)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3))))) -(-10 -7 (-15 -1545 ((-3 |#2| "failed") |#2|)) (-15 -1546 ((-793) |#2|)) (-15 -1547 (|#2| |#2| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-1550 (((-663 (-890)) $) NIL T ELT)) (-4056 (((-520) $) 8 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1552 (((-190) $) 10 T ELT)) (-3118 (((-114) $ (-520)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1548 (((-713 $) (-520)) 17 T ELT)) (-1551 (((-663 (-114)) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3003 (((-55) $) 12 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-186) (-13 (-189) (-10 -8 (-15 -1548 ((-713 $) (-520)))))) (T -186)) -((-1548 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186))))) -(-13 (-189) (-10 -8 (-15 -1548 ((-713 $) (-520))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1626 ((|#1| $) 7 T ELT)) (-4462 (((-888) $) 14 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1549 (((-663 (-1214)) $) 10 T ELT)) (-3540 (((-114) $ $) 12 T ELT))) -(((-187 |#1|) (-13 (-1133) (-10 -8 (-15 -1626 (|#1| $)) (-15 -1549 ((-663 (-1214)) $)))) (-189)) (T -187)) -((-1626 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -(-13 (-1133) (-10 -8 (-15 -1626 (|#1| $)) (-15 -1549 ((-663 (-1214)) $)))) -((-1550 (((-663 (-890)) $) 16 T ELT)) (-1552 (((-190) $) 8 T ELT)) (-1551 (((-663 (-114)) $) 13 T ELT)) (-3003 (((-55) $) 10 T ELT))) -(((-188 |#1|) (-10 -8 (-15 -1550 ((-663 (-890)) |#1|)) (-15 -1551 ((-663 (-114)) |#1|)) (-15 -1552 ((-190) |#1|)) (-15 -3003 ((-55) |#1|))) (-189)) (T -188)) -NIL -(-10 -8 (-15 -1550 ((-663 (-890)) |#1|)) (-15 -1551 ((-663 (-114)) |#1|)) (-15 -1552 ((-190) |#1|)) (-15 -3003 ((-55) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-1550 (((-663 (-890)) $) 22 T ELT)) (-4056 (((-520) $) 19 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1552 (((-190) $) 24 T ELT)) (-3118 (((-114) $ (-520)) 17 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1551 (((-663 (-114)) $) 23 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3003 (((-55) $) 18 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-1913 (*1 *1 *1) (-4 *1 (-176)))) +(-13 (-10 -8 (-15 -1913 ($ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 ((|#1| $) 79 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL T ELT)) (-1511 (($ $) 21 T ELT)) (-1515 (($ |#1| (-1185 |#1|)) 48 T ELT)) (-3969 (((-3 $ "failed") $) 123 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-1512 (((-1185 |#1|) $) 86 T ELT)) (-1514 (((-1185 |#1|) $) 83 T ELT)) (-1513 (((-1185 |#1|) $) 84 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1508 (((-1185 |#1|) $) 93 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2112 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-4281 (($ $ (-558)) 96 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1507 (((-1185 |#1|) $) 94 T ELT)) (-1509 (((-1185 (-419 |#1|)) $) 14 T ELT)) (-3097 (($ (-419 |#1|)) 17 T ELT) (($ |#1| (-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-3374 (($ $) 98 T ELT)) (-4458 (((-886) $) 139 T ELT) (($ (-558)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-419 |#1|)) 36 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3610 (((-791)) 67 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-1510 (((-1185 (-419 |#1|)) $) 20 T ELT)) (-3141 (($) 103 T CONST)) (-3147 (($) 28 T CONST)) (-3536 (((-114) $ $) 35 T ELT)) (-4461 (($ $ $) 121 T ELT)) (-4349 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-4351 (($ $ $) 107 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-419 |#1|) $) 117 T ELT) (($ $ (-419 |#1|)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-177 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-376) (-10 -8 (-15 -3097 ($ (-419 |#1|))) (-15 -3097 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -1515 ($ |#1| (-1185 |#1|))) (-15 -1514 ((-1185 |#1|) $)) (-15 -1513 ((-1185 |#1|) $)) (-15 -1512 ((-1185 |#1|) $)) (-15 -3613 (|#1| $)) (-15 -1511 ($ $)) (-15 -1510 ((-1185 (-419 |#1|)) $)) (-15 -1509 ((-1185 (-419 |#1|)) $)) (-15 -1508 ((-1185 |#1|) $)) (-15 -1507 ((-1185 |#1|) $)) (-15 -4281 ($ $ (-558))) (-15 -3374 ($ $)))) (-319)) (T -177)) +((-3097 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-3097 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3613 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1511 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-1185 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1185 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3374 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) +(-13 (-38 |#1|) (-38 (-419 |#1|)) (-376) (-10 -8 (-15 -3097 ($ (-419 |#1|))) (-15 -3097 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -1515 ($ |#1| (-1185 |#1|))) (-15 -1514 ((-1185 |#1|) $)) (-15 -1513 ((-1185 |#1|) $)) (-15 -1512 ((-1185 |#1|) $)) (-15 -3613 (|#1| $)) (-15 -1511 ($ $)) (-15 -1510 ((-1185 (-419 |#1|)) $)) (-15 -1509 ((-1185 (-419 |#1|)) $)) (-15 -1508 ((-1185 |#1|) $)) (-15 -1507 ((-1185 |#1|) $)) (-15 -4281 ($ $ (-558))) (-15 -3374 ($ $)))) +((-1516 (($ (-109) $) 15 T ELT)) (-3721 (((-711 (-109)) (-518) $) 14 T ELT)) (-4458 (((-886) $) 18 T ELT)) (-1517 (((-661 (-109)) $) 8 T ELT))) +(((-178) (-13 (-630 (-886)) (-10 -8 (-15 -1517 ((-661 (-109)) $)) (-15 -1516 ($ (-109) $)) (-15 -3721 ((-711 (-109)) (-518) $))))) (T -178)) +((-1517 (*1 *2 *1) (-12 (-5 *2 (-661 (-109))) (-5 *1 (-178)))) (-1516 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-3721 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-178))))) +(-13 (-630 (-886)) (-10 -8 (-15 -1517 ((-661 (-109)) $)) (-15 -1516 ($ (-109) $)) (-15 -3721 ((-711 (-109)) (-518) $)))) +((-1530 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 38 T ELT)) (-1521 (((-971 |#1|) (-971 |#1|)) 22 T ELT)) (-1526 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 34 T ELT)) (-1519 (((-971 |#1|) (-971 |#1|)) 20 T ELT)) (-1524 (((-971 |#1|) (-971 |#1|)) 28 T ELT)) (-1523 (((-971 |#1|) (-971 |#1|)) 27 T ELT)) (-1522 (((-971 |#1|) (-971 |#1|)) 26 T ELT)) (-1527 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 35 T ELT)) (-1525 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 33 T ELT)) (-1856 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 32 T ELT)) (-1520 (((-971 |#1|) (-971 |#1|)) 21 T ELT)) (-1531 (((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|) 41 T ELT)) (-1518 (((-971 |#1|) (-971 |#1|)) 8 T ELT)) (-1529 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 37 T ELT)) (-1528 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 36 T ELT))) +(((-179 |#1|) (-10 -7 (-15 -1518 ((-971 |#1|) (-971 |#1|))) (-15 -1519 ((-971 |#1|) (-971 |#1|))) (-15 -1520 ((-971 |#1|) (-971 |#1|))) (-15 -1521 ((-971 |#1|) (-971 |#1|))) (-15 -1522 ((-971 |#1|) (-971 |#1|))) (-15 -1523 ((-971 |#1|) (-971 |#1|))) (-15 -1524 ((-971 |#1|) (-971 |#1|))) (-15 -1856 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1525 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1526 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1527 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1528 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1529 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1530 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1531 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) (-13 (-376) (-1233) (-1032))) (T -179)) +((-1531 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1526 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -1518 ((-971 |#1|) (-971 |#1|))) (-15 -1519 ((-971 |#1|) (-971 |#1|))) (-15 -1520 ((-971 |#1|) (-971 |#1|))) (-15 -1521 ((-971 |#1|) (-971 |#1|))) (-15 -1522 ((-971 |#1|) (-971 |#1|))) (-15 -1523 ((-971 |#1|) (-971 |#1|))) (-15 -1524 ((-971 |#1|) (-971 |#1|))) (-15 -1856 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1525 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1526 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1527 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1528 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1529 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1530 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1531 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) +((-2848 ((|#2| |#3|) 28 T ELT))) +(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2848 (|#2| |#3|))) (-175) (-1273 |#1|) (-744 |#1| |#2|)) (T -180)) +((-2848 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-744 *4 *2))))) +(-10 -7 (-15 -2848 (|#2| |#3|))) +((-3279 (((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)) 44 (|has| (-974 |#2|) (-910 |#1|)) ELT))) +(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-974 |#2|) (-910 |#1|)) (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))) |%noBranch|)) (-1131) (-13 (-910 |#1|) (-175)) (-168 |#2|)) (T -181)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *3)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *3 (-168 *6)) (-4 (-974 *6) (-910 *5)) (-4 *6 (-13 (-910 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) +(-10 -7 (IF (|has| (-974 |#2|) (-910 |#1|)) (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))) |%noBranch|)) +((-1533 (((-661 |#1|) (-661 |#1|) |#1|) 41 T ELT)) (-1532 (((-661 |#1|) |#1| (-661 |#1|)) 20 T ELT)) (-2302 (((-661 |#1|) (-661 (-661 |#1|)) (-661 |#1|)) 36 T ELT) ((|#1| (-661 |#1|) (-661 |#1|)) 32 T ELT))) +(((-182 |#1|) (-10 -7 (-15 -1532 ((-661 |#1|) |#1| (-661 |#1|))) (-15 -2302 (|#1| (-661 |#1|) (-661 |#1|))) (-15 -2302 ((-661 |#1|) (-661 (-661 |#1|)) (-661 |#1|))) (-15 -1533 ((-661 |#1|) (-661 |#1|) |#1|))) (-319)) (T -182)) +((-1533 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-2302 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-661 *4))) (-5 *2 (-661 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-2302 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1532 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(-10 -7 (-15 -1532 ((-661 |#1|) |#1| (-661 |#1|))) (-15 -2302 (|#1| (-661 |#1|) (-661 |#1|))) (-15 -2302 ((-661 |#1|) (-661 (-661 |#1|)) (-661 |#1|))) (-15 -1533 ((-661 |#1|) (-661 |#1|) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3818 (((-1248) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 10 T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-183) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $))))) (T -183)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-183)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $)))) +((-1542 (((-2 (|:| |start| |#2|) (|:| -1997 (-417 |#2|))) |#2|) 66 T ELT)) (-1541 ((|#1| |#1|) 58 T ELT)) (-1540 (((-171 |#1|) |#2|) 93 T ELT)) (-1539 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1538 ((|#2| |#2|) 90 T ELT)) (-1537 (((-417 |#2|) |#2| |#1|) 118 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 87 T ELT)) (-3616 ((|#1| |#2|) 117 T ELT)) (-1536 ((|#2| |#2|) 130 T ELT)) (-4244 (((-417 |#2|) |#2|) 153 T ELT) (((-417 |#2|) |#2| |#1|) 33 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-1535 (((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2|) 151 T ELT) (((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-1534 (((-661 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-661 (-171 |#1|)) |#2|) 43 T ELT))) +(((-184 |#1| |#2|) (-10 -7 (-15 -1534 ((-661 (-171 |#1|)) |#2|)) (-15 -1534 ((-661 (-171 |#1|)) |#2| |#1|)) (-15 -1535 ((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2| (-114))) (-15 -1535 ((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2|)) (-15 -4244 ((-417 |#2|) |#2| |#1| (-114))) (-15 -4244 ((-417 |#2|) |#2| |#1|)) (-15 -4244 ((-417 |#2|) |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -3616 (|#1| |#2|)) (-15 -1537 ((-417 |#2|) |#2| |#1| (-114))) (-15 -1537 ((-417 |#2|) |#2| |#1|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -1539 (|#1| |#2|)) (-15 -1540 ((-171 |#1|) |#2|)) (-15 -1541 (|#1| |#1|)) (-15 -1542 ((-2 (|:| |start| |#2|) (|:| -1997 (-417 |#2|))) |#2|))) (-13 (-376) (-869)) (-1273 (-171 |#1|))) (T -184)) +((-1542 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-2 (|:| |start| *3) (|:| -1997 (-417 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1541 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1540 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-869))) (-4 *3 (-1273 *2)))) (-1539 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1539 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-869))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-1537 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1537 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3616 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-869))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4244 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1535 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-661 (-2 (|:| -1997 (-661 *3)) (|:| -1749 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1535 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-869))) (-5 *2 (-661 (-2 (|:| -1997 (-661 *3)) (|:| -1749 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5))))) (-1534 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1534 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(-10 -7 (-15 -1534 ((-661 (-171 |#1|)) |#2|)) (-15 -1534 ((-661 (-171 |#1|)) |#2| |#1|)) (-15 -1535 ((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2| (-114))) (-15 -1535 ((-661 (-2 (|:| -1997 (-661 |#2|)) (|:| -1749 |#1|))) |#2| |#2|)) (-15 -4244 ((-417 |#2|) |#2| |#1| (-114))) (-15 -4244 ((-417 |#2|) |#2| |#1|)) (-15 -4244 ((-417 |#2|) |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -3616 (|#1| |#2|)) (-15 -1537 ((-417 |#2|) |#2| |#1| (-114))) (-15 -1537 ((-417 |#2|) |#2| |#1|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#1| |#2| |#1|)) (-15 -1539 (|#1| |#2|)) (-15 -1540 ((-171 |#1|) |#2|)) (-15 -1541 (|#1| |#1|)) (-15 -1542 ((-2 (|:| |start| |#2|) (|:| -1997 (-417 |#2|))) |#2|))) +((-1543 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1544 (((-791) |#2|) 18 T ELT)) (-1545 ((|#2| |#2| |#2|) 20 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -1543 ((-3 |#2| "failed") |#2|)) (-15 -1544 ((-791) |#2|)) (-15 -1545 (|#2| |#2| |#2|))) (-1247) (-694 |#1|)) (T -185)) +((-1545 (*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3)))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-1247)) (-5 *2 (-791)) (-5 *1 (-185 *4 *3)) (-4 *3 (-694 *4)))) (-1543 (*1 *2 *2) (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) +(-10 -7 (-15 -1543 ((-3 |#2| "failed") |#2|)) (-15 -1544 ((-791) |#2|)) (-15 -1545 (|#2| |#2| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-1548 (((-661 (-888)) $) NIL T ELT)) (-4052 (((-518) $) 8 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1550 (((-190) $) 10 T ELT)) (-3114 (((-114) $ (-518)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1546 (((-711 $) (-518)) 17 T ELT)) (-1549 (((-661 (-114)) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2999 (((-55) $) 12 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-186) (-13 (-189) (-10 -8 (-15 -1546 ((-711 $) (-518)))))) (T -186)) +((-1546 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-186))) (-5 *1 (-186))))) +(-13 (-189) (-10 -8 (-15 -1546 ((-711 $) (-518))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1624 ((|#1| $) 7 T ELT)) (-4458 (((-886) $) 14 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1547 (((-661 (-1212)) $) 10 T ELT)) (-3536 (((-114) $ $) 12 T ELT))) +(((-187 |#1|) (-13 (-1131) (-10 -8 (-15 -1624 (|#1| $)) (-15 -1547 ((-661 (-1212)) $)))) (-189)) (T -187)) +((-1624 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) +(-13 (-1131) (-10 -8 (-15 -1624 (|#1| $)) (-15 -1547 ((-661 (-1212)) $)))) +((-1548 (((-661 (-888)) $) 16 T ELT)) (-1550 (((-190) $) 8 T ELT)) (-1549 (((-661 (-114)) $) 13 T ELT)) (-2999 (((-55) $) 10 T ELT))) +(((-188 |#1|) (-10 -8 (-15 -1548 ((-661 (-888)) |#1|)) (-15 -1549 ((-661 (-114)) |#1|)) (-15 -1550 ((-190) |#1|)) (-15 -2999 ((-55) |#1|))) (-189)) (T -188)) +NIL +(-10 -8 (-15 -1548 ((-661 (-888)) |#1|)) (-15 -1549 ((-661 (-114)) |#1|)) (-15 -1550 ((-190) |#1|)) (-15 -2999 ((-55) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-1548 (((-661 (-888)) $) 22 T ELT)) (-4052 (((-518) $) 19 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1550 (((-190) $) 24 T ELT)) (-3114 (((-114) $ (-518)) 17 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1549 (((-661 (-114)) $) 23 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2999 (((-55) $) 18 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-189) (-142)) (T -189)) -((-1552 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114))))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-890)))))) -(-13 (-860 (-520)) (-10 -8 (-15 -1552 ((-190) $)) (-15 -1551 ((-663 (-114)) $)) (-15 -1550 ((-663 (-890)) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-860 (-520)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4462 (((-888) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 10 T ELT))) -(((-190) (-13 (-1133) (-10 -8 (-15 -9 ($) -4468) (-15 -8 ($) -4468) (-15 -7 ($) -4468)))) (T -190)) +((-1550 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-114))))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-888)))))) +(-13 (-858 (-518)) (-10 -8 (-15 -1550 ((-190) $)) (-15 -1549 ((-661 (-114)) $)) (-15 -1548 ((-661 (-888)) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-858 (-518)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4458 (((-886) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 10 T ELT))) +(((-190) (-13 (-1131) (-10 -8 (-15 -9 ($) -4464) (-15 -8 ($) -4464) (-15 -7 ($) -4464)))) (T -190)) ((-9 (*1 *1) (-5 *1 (-190))) (-8 (*1 *1) (-5 *1 (-190))) (-7 (*1 *1) (-5 *1 (-190)))) -(-13 (-1133) (-10 -8 (-15 -9 ($) -4468) (-15 -8 ($) -4468) (-15 -7 ($) -4468))) -((-4158 ((|#2| |#2|) 28 T ELT)) (-4161 (((-114) |#2|) 19 T ELT)) (-4159 (((-326 |#1|) |#2|) 12 T ELT)) (-4160 (((-326 |#1|) |#2|) 14 T ELT)) (-4156 ((|#2| |#2| (-1209)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-4162 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-4157 ((|#2| |#2| (-1209)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-191 |#1| |#2|) (-10 -7 (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1209))) (-15 -4157 (|#2| |#2|)) (-15 -4157 (|#2| |#2| (-1209))) (-15 -4159 ((-326 |#1|) |#2|)) (-15 -4160 ((-326 |#1|) |#2|)) (-15 -4161 ((-114) |#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4162 ((-171 (-326 |#1|)) |#2|))) (-13 (-571) (-1070 (-560))) (-13 (-27) (-1235) (-435 (-171 |#1|)))) (T -191)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4158 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3)))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4157 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4157 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3)))))) (-4156 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 (-171 *4)))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3))))))) -(-10 -7 (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1209))) (-15 -4157 (|#2| |#2|)) (-15 -4157 (|#2| |#2| (-1209))) (-15 -4159 ((-326 |#1|) |#2|)) (-15 -4160 ((-326 |#1|) |#2|)) (-15 -4161 ((-114) |#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4162 ((-171 (-326 |#1|)) |#2|))) -((-1556 (((-1299 (-711 (-976 |#1|))) (-1299 (-711 |#1|))) 26 T ELT)) (-4462 (((-1299 (-711 (-421 (-976 |#1|)))) (-1299 (-711 |#1|))) 37 T ELT))) -(((-192 |#1|) (-10 -7 (-15 -1556 ((-1299 (-711 (-976 |#1|))) (-1299 (-711 |#1|)))) (-15 -4462 ((-1299 (-711 (-421 (-976 |#1|)))) (-1299 (-711 |#1|))))) (-175)) (T -192)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-1299 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1299 (-711 (-421 (-976 *4))))) (-5 *1 (-192 *4)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1299 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1299 (-711 (-976 *4)))) (-5 *1 (-192 *4))))) -(-10 -7 (-15 -1556 ((-1299 (-711 (-976 |#1|))) (-1299 (-711 |#1|)))) (-15 -4462 ((-1299 (-711 (-421 (-976 |#1|)))) (-1299 (-711 |#1|))))) -((-1564 (((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560)))) 93 T ELT)) (-1566 (((-1211 (-421 (-560))) (-663 (-560)) (-663 (-560))) 106 T ELT)) (-1557 (((-1211 (-421 (-560))) (-949)) 54 T ELT)) (-4370 (((-1211 (-421 (-560))) (-949)) 79 T ELT)) (-4284 (((-421 (-560)) (-1211 (-421 (-560)))) 89 T ELT)) (-1558 (((-1211 (-421 (-560))) (-949)) 37 T ELT)) (-1561 (((-1211 (-421 (-560))) (-949)) 66 T ELT)) (-1560 (((-1211 (-421 (-560))) (-949)) 61 T ELT)) (-1563 (((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560)))) 87 T ELT)) (-3378 (((-1211 (-421 (-560))) (-949)) 29 T ELT)) (-1562 (((-421 (-560)) (-1211 (-421 (-560))) (-1211 (-421 (-560)))) 91 T ELT)) (-1559 (((-1211 (-421 (-560))) (-949)) 35 T ELT)) (-1565 (((-1211 (-421 (-560))) (-663 (-949))) 100 T ELT))) -(((-193) (-10 -7 (-15 -3378 ((-1211 (-421 (-560))) (-949))) (-15 -1557 ((-1211 (-421 (-560))) (-949))) (-15 -1558 ((-1211 (-421 (-560))) (-949))) (-15 -1559 ((-1211 (-421 (-560))) (-949))) (-15 -1560 ((-1211 (-421 (-560))) (-949))) (-15 -1561 ((-1211 (-421 (-560))) (-949))) (-15 -4370 ((-1211 (-421 (-560))) (-949))) (-15 -1562 ((-421 (-560)) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -1563 ((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -4284 ((-421 (-560)) (-1211 (-421 (-560))))) (-15 -1564 ((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -1565 ((-1211 (-421 (-560))) (-663 (-949)))) (-15 -1566 ((-1211 (-421 (-560))) (-663 (-560)) (-663 (-560)))))) (T -193)) -((-1566 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1211 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-1563 (*1 *2 *2 *2) (-12 (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1562 (*1 *2 *3 *3) (-12 (-5 *3 (-1211 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(-10 -7 (-15 -3378 ((-1211 (-421 (-560))) (-949))) (-15 -1557 ((-1211 (-421 (-560))) (-949))) (-15 -1558 ((-1211 (-421 (-560))) (-949))) (-15 -1559 ((-1211 (-421 (-560))) (-949))) (-15 -1560 ((-1211 (-421 (-560))) (-949))) (-15 -1561 ((-1211 (-421 (-560))) (-949))) (-15 -4370 ((-1211 (-421 (-560))) (-949))) (-15 -1562 ((-421 (-560)) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -1563 ((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -4284 ((-421 (-560)) (-1211 (-421 (-560))))) (-15 -1564 ((-1211 (-421 (-560))) (-1211 (-421 (-560))) (-1211 (-421 (-560))))) (-15 -1565 ((-1211 (-421 (-560))) (-663 (-949)))) (-15 -1566 ((-1211 (-421 (-560))) (-663 (-560)) (-663 (-560))))) -((-1568 (((-419 (-1203 (-560))) (-560)) 38 T ELT)) (-1567 (((-663 (-1203 (-560))) (-560)) 33 T ELT)) (-3288 (((-1203 (-560)) (-560)) 28 T ELT))) -(((-194) (-10 -7 (-15 -1567 ((-663 (-1203 (-560))) (-560))) (-15 -3288 ((-1203 (-560)) (-560))) (-15 -1568 ((-419 (-1203 (-560))) (-560))))) (T -194)) -((-1568 (*1 *2 *3) (-12 (-5 *2 (-419 (-1203 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))) (-3288 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-194)) (-5 *3 (-560)))) (-1567 (*1 *2 *3) (-12 (-5 *2 (-663 (-1203 (-560)))) (-5 *1 (-194)) (-5 *3 (-560))))) -(-10 -7 (-15 -1567 ((-663 (-1203 (-560))) (-560))) (-15 -3288 ((-1203 (-560)) (-560))) (-15 -1568 ((-419 (-1203 (-560))) (-560)))) -((-1763 (((-1187 (-229)) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 133 T ELT)) (-1784 (((-663 (-1191)) (-1187 (-229))) NIL T ELT)) (-1569 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1761 (((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229)))) NIL T ELT)) (-1783 (((-663 (-1191)) (-663 (-229))) NIL T ELT)) (-1785 (((-229) (-1121 (-866 (-229)))) 31 T ELT)) (-1786 (((-229) (-1121 (-866 (-229)))) 32 T ELT)) (-1571 (((-391) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 127 T ELT)) (-1570 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-1781 (((-1191) (-229)) NIL T ELT)) (-3056 (((-1191) (-663 (-1191))) 27 T ELT)) (-1572 (((-1067) (-1209) (-1209) (-1067)) 13 T ELT))) -(((-195) (-10 -7 (-15 -1569 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1570 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -1571 ((-391) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1761 ((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229)))) (-15 -3056 ((-1191) (-663 (-1191)))) (-15 -1572 ((-1067) (-1209) (-1209) (-1067))))) (T -195)) -((-1572 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-1209)) (-5 *1 (-195)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-195)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-195)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-195)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-195)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-195)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1209)) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-195)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) -(-10 -7 (-15 -1569 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1570 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -1571 ((-391) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1761 ((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229)))) (-15 -3056 ((-1191) (-663 (-1191)))) (-15 -1572 ((-1067) (-1209) (-1209) (-1067)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 61 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-196) (-809)) (T -196)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 66 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-197) (-809)) (T -197)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 80 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-198) (-809)) (T -198)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 63 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-199) (-809)) (T -199)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 76 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-200) (-809)) (T -200)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 93 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-201) (-809)) (T -201)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 90 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-202) (-809)) (T -202)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 78 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-203) (-809)) (T -203)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 76 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-204) (-809)) (T -204)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 77 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-205) (-809)) (T -205)) -NIL -(-809) -((-3053 (((-114) $ $) NIL T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 105 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-206) (-809)) (T -206)) -NIL -(-809) -((-1573 (((-3 (-2 (|:| -2984 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1575 (((-560) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1574 (((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 91 T ELT))) -(((-207) (-10 -7 (-15 -1573 ((-3 (-2 (|:| -2984 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1574 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1575 ((-560) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) -((-1575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-560)) (-5 *1 (-207)))) (-1574 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-207)))) (-1573 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -2984 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -(-10 -7 (-15 -1573 ((-3 (-2 (|:| -2984 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1574 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1575 ((-560) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) -((-1580 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 47 T ELT)) (-1579 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-1578 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229)))) 110 T ELT)) (-1577 (((-391) (-711 (-326 (-229)))) 138 T ELT)) (-2605 (((-711 (-326 (-229))) (-1299 (-326 (-229))) (-663 (-1209))) 134 T ELT)) (-1583 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1581 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT)) (-4284 (((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1209)) (-1299 (-326 (-229)))) 123 T ELT)) (-1576 (((-391) (-391) (-663 (-391))) 131 T ELT) (((-391) (-391) (-391)) 126 T ELT)) (-1582 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) -(((-208) (-10 -7 (-15 -1576 ((-391) (-391) (-391))) (-15 -1576 ((-391) (-391) (-663 (-391)))) (-15 -1577 ((-391) (-711 (-326 (-229))))) (-15 -2605 ((-711 (-326 (-229))) (-1299 (-326 (-229))) (-663 (-1209)))) (-15 -4284 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1209)) (-1299 (-326 (-229))))) (-15 -1578 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -1579 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1580 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1581 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1582 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1583 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) -((-1583 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4284 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1209))) (-5 *4 (-1299 (-326 (-229)))) (-5 *1 (-208)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *4 (-663 (-1209))) (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1576 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1576 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))) -(-10 -7 (-15 -1576 ((-391) (-391) (-391))) (-15 -1576 ((-391) (-391) (-663 (-391)))) (-15 -1577 ((-391) (-711 (-326 (-229))))) (-15 -2605 ((-711 (-326 (-229))) (-1299 (-326 (-229))) (-663 (-1209)))) (-15 -4284 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1209)) (-1299 (-326 (-229))))) (-15 -1578 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -1579 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1580 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1581 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1582 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1583 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2894 (((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 74 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-209) (-824)) (T -209)) -NIL -(-824) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2894 (((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-210) (-824)) (T -210)) -NIL -(-824) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2894 (((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-211) (-824)) (T -211)) -NIL -(-824) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2894 (((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 87 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-212) (-824)) (T -212)) -NIL -(-824) -((-4450 (((-663 (-1209)) (-1209) (-793)) 26 T ELT)) (-1584 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-1586 (((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 87 T ELT)) (-1585 (((-114) (-229) (-229) (-663 (-326 (-229)))) 47 T ELT))) -(((-213) (-10 -7 (-15 -4450 ((-663 (-1209)) (-1209) (-793))) (-15 -1584 ((-326 (-229)) (-326 (-229)))) (-15 -1585 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -1586 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))))))) (T -213)) -((-1586 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1585 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1209))) (-5 *1 (-213)) (-5 *3 (-1209))))) -(-10 -7 (-15 -4450 ((-663 (-1209)) (-1209) (-793))) (-15 -1584 ((-326 (-229)) (-326 (-229)))) (-15 -1585 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -1586 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 28 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3152 (((-1067) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 70 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-214) (-923)) (T -214)) -NIL -(-923) -((-3053 (((-114) $ $) NIL T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 24 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3152 (((-1067) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-215) (-923)) (T -215)) -NIL -(-923) -((-3053 (((-114) $ $) NIL T ELT)) (-1587 ((|#2| $ (-793) |#2|) 11 T ELT)) (-3601 ((|#2| $ (-793)) 10 T ELT)) (-4130 (($) 8 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 23 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 13 T ELT))) -(((-216 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -4130 ($)) (-15 -3601 (|#2| $ (-793))) (-15 -1587 (|#2| $ (-793) |#2|)))) (-949) (-1133)) (T -216)) -((-4130 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1133)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-1133)) (-5 *1 (-216 *4 *2)) (-14 *4 (-949)))) (-1587 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-949)) (-4 *2 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -4130 ($)) (-15 -3601 (|#2| $ (-793))) (-15 -1587 (|#2| $ (-793) |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2189 (((-1305) $) 37 T ELT) (((-1305) $ (-949) (-949)) 41 T ELT)) (-4316 (($ $ (-1021)) 19 T ELT) (((-252 (-1191)) $ (-1209)) 15 T ELT)) (-4133 (((-1305) $) 35 T ELT)) (-4462 (((-888) $) 32 T ELT) (($ (-663 |#1|)) 8 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $ $) 27 T ELT)) (-4355 (($ $ $) 22 T ELT))) -(((-217 |#1|) (-13 (-1133) (-635 (-663 |#1|)) (-10 -8 (-15 -4316 ($ $ (-1021))) (-15 -4316 ((-252 (-1191)) $ (-1209))) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $)) (-15 -2189 ((-1305) $ (-949) (-949))))) (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $))))) (T -217)) -((-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $))))))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-252 (-1191))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ *3)) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $))))))) (-4355 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $))))))) (-4353 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $))))))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) (-15 -2189 (*2 $))))))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) (-15 -2189 (*2 $))))))) (-2189 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) (-15 -2189 (*2 $)))))))) -(-13 (-1133) (-635 (-663 |#1|)) (-10 -8 (-15 -4316 ($ $ (-1021))) (-15 -4316 ((-252 (-1191)) $ (-1209))) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $)) (-15 -2189 ((-1305) $ (-949) (-949))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 10 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3338 (($ (-657 |#1|)) 11 T ELT)) (-4462 (((-888) $) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-218 |#1|) (-13 (-868) (-10 -8 (-15 -3338 ($ (-657 |#1|))))) (-663 (-1209))) (T -218)) -((-3338 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1209))) (-5 *1 (-218 *3))))) -(-13 (-868) (-10 -8 (-15 -3338 ($ (-657 |#1|))))) -((-1588 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1588 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) -((-1588 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1275 (-421 *2))) (-4 *2 (-1275 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) -(-10 -7 (-15 -1588 (|#2| |#4| (-1 |#2| |#2|)))) -((-1592 ((|#2| |#2| (-793) |#2|) 55 T ELT)) (-1591 ((|#2| |#2| (-793) |#2|) 51 T ELT)) (-2611 (((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|)))) 79 T ELT)) (-1590 (((-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|))) |#2|) 72 T ELT)) (-1593 (((-114) |#2|) 70 T ELT)) (-4249 (((-419 |#2|) |#2|) 92 T ELT)) (-4248 (((-419 |#2|) |#2|) 91 T ELT)) (-2612 ((|#2| |#2| (-793) |#2|) 49 T ELT)) (-1589 (((-2 (|:| |cont| |#1|) (|:| -2001 (-663 (-2 (|:| |irr| |#2|) (|:| -2640 (-560)))))) |#2| (-114)) 86 T ELT))) -(((-220 |#1| |#2|) (-10 -7 (-15 -4248 ((-419 |#2|) |#2|)) (-15 -4249 ((-419 |#2|) |#2|)) (-15 -1589 ((-2 (|:| |cont| |#1|) (|:| -2001 (-663 (-2 (|:| |irr| |#2|) (|:| -2640 (-560)))))) |#2| (-114))) (-15 -1590 ((-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|))) |#2|)) (-15 -2611 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|))))) (-15 -2612 (|#2| |#2| (-793) |#2|)) (-15 -1591 (|#2| |#2| (-793) |#2|)) (-15 -1592 (|#2| |#2| (-793) |#2|)) (-15 -1593 ((-114) |#2|))) (-363) (-1275 |#1|)) (T -220)) -((-1593 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4)))) (-1592 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4)))) (-1591 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4)))) (-2612 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -3060 *5)))) (-4 *5 (-1275 *4)) (-4 *4 (-363)) (-5 *2 (-663 *5)) (-5 *1 (-220 *4 *5)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3060 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1275 *5)))) (-4249 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4)))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -4248 ((-419 |#2|) |#2|)) (-15 -4249 ((-419 |#2|) |#2|)) (-15 -1589 ((-2 (|:| |cont| |#1|) (|:| -2001 (-663 (-2 (|:| |irr| |#2|) (|:| -2640 (-560)))))) |#2| (-114))) (-15 -1590 ((-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|))) |#2|)) (-15 -2611 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -3060 |#2|))))) (-15 -2612 (|#2| |#2| (-793) |#2|)) (-15 -1591 (|#2| |#2| (-793) |#2|)) (-15 -1592 (|#2| |#2| (-793) |#2|)) (-15 -1593 ((-114) |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-560) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3660 (((-560) $) NIL T ELT) (((-1209) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-560) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-560) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-560) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-560) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-560) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-4474 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-560) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3618 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1209)) (-663 (-560))) NIL (|has| (-560) (-528 (-1209) (-560))) ELT) (($ $ (-1209) (-560)) NIL (|has| (-560) (-528 (-1209) (-560))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-560) $) NIL T ELT)) (-1594 (($ (-421 (-560))) 9 T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-560) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-560) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1052)) ELT) (((-229) $) NIL (|has| (-560) (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1209)) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1036 10) $) 10 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-560) (-940))) (|has| (-560) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| (-560) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-4465 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT))) -(((-221) (-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 10)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -1594 ($ (-421 (-560))))))) (T -221)) -((-3616 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221))))) -(-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 10)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -1594 ($ (-421 (-560)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3823 (((-1147) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3682 (((-497) $) 10 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 23 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 15 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-222) (-13 (-1115) (-10 -8 (-15 -3682 ((-497) $)) (-15 -3823 ((-1147) $)) (-15 -3737 ((-1167) $))))) (T -222)) -((-3682 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-222)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-222))))) -(-13 (-1115) (-10 -8 (-15 -3682 ((-497) $)) (-15 -3823 ((-1147) $)) (-15 -3737 ((-1167) $)))) -((-4328 (((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1124 (-866 |#2|)) (-1191)) 29 T ELT) (((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1124 (-866 |#2|))) 25 T ELT)) (-1595 (((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1209) (-866 |#2|) (-866 |#2|) (-114)) 17 T ELT))) -(((-223 |#1| |#2|) (-10 -7 (-15 -4328 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1124 (-866 |#2|)))) (-15 -4328 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1124 (-866 |#2|)) (-1191))) (-15 -1595 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1209) (-866 |#2|) (-866 |#2|) (-114)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-990) (-29 |#1|))) (T -223)) -((-1595 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1209)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-4 *3 (-13 (-1235) (-990) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-866 *3)))) (-4328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1124 (-866 *3))) (-5 *5 (-1191)) (-4 *3 (-13 (-1235) (-990) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-866 *3))) (-4 *3 (-13 (-1235) (-990) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *5 *3))))) -(-10 -7 (-15 -4328 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1124 (-866 |#2|)))) (-15 -4328 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1124 (-866 |#2|)) (-1191))) (-15 -1595 ((-3 (|:| |f1| (-866 |#2|)) (|:| |f2| (-663 (-866 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1209) (-866 |#2|) (-866 |#2|) (-114)))) -((-4328 (((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|)))) (-1191)) 49 T ELT) (((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|))) (-1191)) 50 T ELT) (((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|)))) 22 T ELT))) -(((-224 |#1|) (-10 -7 (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|))))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|))) (-1191))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|)))))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|)))) (-1191)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (T -224)) -((-4328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1124 (-866 (-421 (-976 *6))))) (-5 *5 (-1191)) (-5 *3 (-421 (-976 *6))) (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 (-326 *6))) (|:| |f2| (-663 (-866 (-326 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-224 *6)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-866 (-421 (-976 *5))))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 (-326 *5))) (|:| |f2| (-663 (-866 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5)))) (-4328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-421 (-976 *6))) (-5 *4 (-1124 (-866 (-326 *6)))) (-5 *5 (-1191)) (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 (-326 *6))) (|:| |f2| (-663 (-866 (-326 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *6)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1124 (-866 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-866 (-326 *5))) (|:| |f2| (-663 (-866 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5))))) -(-10 -7 (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|))))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-326 |#1|))) (-1191))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|)))))) (-15 -4328 ((-3 (|:| |f1| (-866 (-326 |#1|))) (|:| |f2| (-663 (-866 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-421 (-976 |#1|)) (-1124 (-866 (-421 (-976 |#1|)))) (-1191)))) -((-4358 (((-2 (|:| -2228 (-1203 |#1|)) (|:| |deg| (-949))) (-1203 |#1|)) 26 T ELT)) (-4479 (((-663 (-326 |#2|)) (-326 |#2|) (-949)) 51 T ELT))) -(((-225 |#1| |#2|) (-10 -7 (-15 -4358 ((-2 (|:| -2228 (-1203 |#1|)) (|:| |deg| (-949))) (-1203 |#1|))) (-15 -4479 ((-663 (-326 |#2|)) (-326 |#2|) (-949)))) (-1081) (-571)) (T -225)) -((-4479 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1081)))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-5 *2 (-2 (|:| -2228 (-1203 *4)) (|:| |deg| (-949)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1203 *4)) (-4 *5 (-571))))) -(-10 -7 (-15 -4358 ((-2 (|:| -2228 (-1203 |#1|)) (|:| |deg| (-949))) (-1203 |#1|))) (-15 -4479 ((-663 (-326 |#2|)) (-326 |#2|) (-949)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1639 ((|#1| $) NIL T ELT)) (-3830 ((|#1| $) 30 T ELT)) (-4240 (($) NIL T CONST)) (-3489 (($ $) NIL T ELT)) (-2524 (($ $) 39 T ELT)) (-3832 ((|#1| |#1| $) NIL T ELT)) (-3831 ((|#1| $) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4349 (((-793) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) NIL T ELT)) (-1637 ((|#1| |#1| $) 35 T ELT)) (-1636 ((|#1| |#1| $) 37 T ELT)) (-4123 (($ |#1| $) NIL T ELT)) (-3088 (((-793) $) 33 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-3488 ((|#1| $) NIL T ELT)) (-1635 ((|#1| $) 31 T ELT)) (-1634 ((|#1| $) 29 T ELT)) (-1401 ((|#1| $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3491 ((|#1| |#1| $) NIL T ELT)) (-3909 (((-114) $) 9 T ELT)) (-4079 (($) NIL T ELT)) (-3490 ((|#1| $) NIL T ELT)) (-1640 (($) NIL T ELT) (($ (-663 |#1|)) 16 T ELT)) (-3829 (((-793) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1638 ((|#1| $) 13 T ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) NIL T ELT)) (-3487 ((|#1| $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -1640 ($ (-663 |#1|))))) (-1133)) (T -226)) -((-1640 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-226 *3))))) -(-13 (-263 |#1|) (-10 -8 (-15 -1640 ($ (-663 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1597 (($ (-326 |#1|)) 24 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3149 (((-114) $) NIL T ELT)) (-3661 (((-3 (-326 |#1|) "failed") $) NIL T ELT)) (-3660 (((-326 |#1|) $) NIL T ELT)) (-4475 (($ $) 32 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4474 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3678 (((-326 |#1|) $) NIL T ELT)) (-1599 (($ $) 31 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1598 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($ (-793)) NIL T ELT)) (-1596 (($ $) 33 T ELT)) (-4464 (((-560) $) NIL T ELT)) (-4462 (((-888) $) 65 T ELT) (($ (-560)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-4193 (((-326 |#1|) $ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 26 T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) 29 T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT))) -(((-227 |#1| |#2|) (-13 (-640 (-326 |#1|)) (-1070 (-326 |#1|)) (-10 -8 (-15 -3678 ((-326 |#1|) $)) (-15 -1599 ($ $)) (-15 -4475 ($ $)) (-15 -4193 ((-326 |#1|) $ $)) (-15 -2654 ($ (-793))) (-15 -1598 ((-114) $)) (-15 -3149 ((-114) $)) (-15 -4464 ((-560) $)) (-15 -4474 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1597 ($ (-326 |#1|))) (-15 -1596 ($ $)))) (-13 (-1081) (-872)) (-663 (-1209))) (T -227)) -((-3678 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) (-14 *3 (-663 (-1209))))) (-4475 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) (-14 *3 (-663 (-1209))))) (-4193 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) (-14 *4 (-663 (-1209))))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1081) (-872))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1209))))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1081) (-872))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1209))))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) (-14 *3 (-663 (-1209)))))) -(-13 (-640 (-326 |#1|)) (-1070 (-326 |#1|)) (-10 -8 (-15 -3678 ((-326 |#1|) $)) (-15 -1599 ($ $)) (-15 -4475 ($ $)) (-15 -4193 ((-326 |#1|) $ $)) (-15 -2654 ($ (-793))) (-15 -1598 ((-114) $)) (-15 -3149 ((-114) $)) (-15 -4464 ((-560) $)) (-15 -4474 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1597 ($ (-326 |#1|))) (-15 -1596 ($ $)))) -((-1600 (((-114) (-1191)) 26 T ELT)) (-1601 (((-3 (-866 |#2|) "failed") (-630 |#2|) |#2| (-866 |#2|) (-866 |#2|) (-114)) 35 T ELT)) (-1602 (((-3 (-114) "failed") (-1203 |#2|) (-866 |#2|) (-866 |#2|) (-114)) 83 T ELT) (((-3 (-114) "failed") (-976 |#1|) (-1209) (-866 |#2|) (-866 |#2|) (-114)) 84 T ELT))) -(((-228 |#1| |#2|) (-10 -7 (-15 -1600 ((-114) (-1191))) (-15 -1601 ((-3 (-866 |#2|) "failed") (-630 |#2|) |#2| (-866 |#2|) (-866 |#2|) (-114))) (-15 -1602 ((-3 (-114) "failed") (-976 |#1|) (-1209) (-866 |#2|) (-866 |#2|) (-114))) (-15 -1602 ((-3 (-114) "failed") (-1203 |#2|) (-866 |#2|) (-866 |#2|) (-114)))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-29 |#1|))) (T -228)) -((-1602 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1203 *6)) (-5 *4 (-866 *6)) (-4 *6 (-13 (-1235) (-29 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-228 *5 *6)))) (-1602 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-976 *6)) (-5 *4 (-1209)) (-5 *5 (-866 *7)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-4 *7 (-13 (-1235) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-1601 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-866 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1235) (-29 *6))) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-228 *6 *4)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1235) (-29 *4)))))) -(-10 -7 (-15 -1600 ((-114) (-1191))) (-15 -1601 ((-3 (-866 |#2|) "failed") (-630 |#2|) |#2| (-866 |#2|) (-866 |#2|) (-114))) (-15 -1602 ((-3 (-114) "failed") (-976 |#1|) (-1209) (-866 |#2|) (-866 |#2|) (-114))) (-15 -1602 ((-3 (-114) "failed") (-1203 |#2|) (-866 |#2|) (-866 |#2|) (-114)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 98 T ELT)) (-3617 (((-560) $) 33 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-3998 (($ $) 87 T ELT)) (-4155 (($ $) 75 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) 66 T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3996 (($ $) 85 T ELT)) (-4154 (($ $) 73 T ELT)) (-4139 (((-560) $) 128 T ELT)) (-4000 (($ $) 90 T ELT)) (-4153 (($ $) 77 T ELT)) (-4240 (($) NIL T CONST)) (-3615 (($ $) NIL T ELT)) (-3661 (((-3 (-560) #1="failed") $) 127 T ELT) (((-3 (-421 (-560)) #1#) $) 124 T ELT)) (-3660 (((-560) $) 125 T ELT) (((-421 (-560)) $) 122 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 103 T ELT)) (-1959 (((-421 (-560)) $ (-793)) 117 T ELT) (((-421 (-560)) $ (-793) (-793)) 116 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2619 (((-949)) 28 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4502)) ELT)) (-3690 (((-114) $) 118 T ELT)) (-4143 (($) 46 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL T ELT)) (-4288 (((-560) $) 40 T ELT)) (-2655 (((-114) $) 99 T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3620 (($ $) NIL T ELT)) (-3691 (((-114) $) 97 T ELT)) (-1603 (((-114) $) 154 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) 63 T ELT) (($) 36 (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-3344 (($ $ $) 62 T ELT) (($) 35 (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-2620 (((-560) $) 26 T ELT)) (-1958 (($ $) 31 T ELT)) (-1957 (($ $) 67 T ELT)) (-4458 (($ $) 72 T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-1991 (((-949) (-560)) NIL (|has| $ (-6 -4502)) ELT)) (-3747 (((-1152) $) 101 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL T ELT)) (-3618 (($ $) NIL T ELT)) (-3758 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-949)) 110 T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-2646 (((-560) $) 27 T ELT)) (-1956 (($) 45 T ELT)) (-4459 (($ $) 71 T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3100 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4502)) ELT)) (-4274 (($ $) 104 T ELT) (($ $ (-793)) NIL T ELT)) (-1990 (((-949) (-560)) NIL (|has| $ (-6 -4502)) ELT)) (-4001 (($ $) 88 T ELT)) (-4152 (($ $) 78 T ELT)) (-3999 (($ $) 89 T ELT)) (-4151 (($ $) 76 T ELT)) (-3997 (($ $) 86 T ELT)) (-4150 (($ $) 74 T ELT)) (-4488 (((-391) $) 113 T ELT) (((-229) $) 14 T ELT) (((-916 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-4462 (((-888) $) 49 T ELT) (($ (-560)) 153 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 153 T ELT) (($ (-421 (-560))) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (($ $) NIL T ELT)) (-1992 (((-949)) 34 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4502)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (((-949)) 24 T ELT)) (-4004 (($ $) 93 T ELT)) (-3992 (($ $) 81 T ELT) (($ $ $) 120 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4002 (($ $) 91 T ELT)) (-3990 (($ $) 79 T ELT)) (-4006 (($ $) 96 T ELT)) (-3994 (($ $) 84 T ELT)) (-4007 (($ $) 94 T ELT)) (-3995 (($ $) 82 T ELT)) (-4005 (($ $) 95 T ELT)) (-3993 (($ $) 83 T ELT)) (-4003 (($ $) 92 T ELT)) (-3991 (($ $) 80 T ELT)) (-3889 (($ $) 119 T ELT)) (-3145 (($) 42 T CONST)) (-3151 (($) 43 T CONST)) (-2982 (((-1191) $) 18 T ELT) (((-1191) $ (-114)) 20 T ELT) (((-1305) (-847) $) 21 T ELT) (((-1305) (-847) $ (-114)) 22 T ELT)) (-3893 (($ $) 107 T ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3890 (($ $ $) 109 T ELT)) (-3051 (((-114) $ $) 56 T ELT)) (-3052 (((-114) $ $) 54 T ELT)) (-3540 (((-114) $ $) 64 T ELT)) (-3171 (((-114) $ $) 55 T ELT)) (-3172 (((-114) $ $) 53 T ELT)) (-4465 (($ $ $) 44 T ELT) (($ $ (-560)) 65 T ELT)) (-4353 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-4355 (($ $ $) 58 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 68 T ELT) (($ $ (-421 (-560))) 152 T ELT) (($ $ $) 69 T ELT)) (* (($ (-949) $) 32 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-229) (-13 (-418) (-240) (-845) (-1235) (-633 (-549)) (-10 -8 (-15 -4465 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -1956 ($)) (-15 -1958 ($ $)) (-15 -1957 ($ $)) (-15 -3992 ($ $ $)) (-15 -3893 ($ $)) (-15 -3890 ($ $ $)) (-15 -1959 ((-421 (-560)) $ (-793))) (-15 -1959 ((-421 (-560)) $ (-793) (-793))) (-15 -1603 ((-114) $))))) (T -229)) -((** (*1 *1 *1 *1) (-5 *1 (-229))) (-4465 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-229)))) (-1956 (*1 *1) (-5 *1 (-229))) (-1958 (*1 *1 *1) (-5 *1 (-229))) (-1957 (*1 *1 *1) (-5 *1 (-229))) (-3992 (*1 *1 *1 *1) (-5 *1 (-229))) (-3893 (*1 *1 *1) (-5 *1 (-229))) (-3890 (*1 *1 *1 *1) (-5 *1 (-229))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) (-1959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) -(-13 (-418) (-240) (-845) (-1235) (-633 (-549)) (-10 -8 (-15 -4465 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -1956 ($)) (-15 -1958 ($ $)) (-15 -1957 ($ $)) (-15 -3992 ($ $ $)) (-15 -3893 ($ $)) (-15 -3890 ($ $ $)) (-15 -1959 ((-421 (-560)) $ (-793))) (-15 -1959 ((-421 (-560)) $ (-793) (-793))) (-15 -1603 ((-114) $)))) -((-3892 (((-171 (-229)) (-793) (-171 (-229))) 11 T ELT) (((-229) (-793) (-229)) 12 T ELT)) (-1604 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1605 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3891 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3895 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3897 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3894 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3896 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3899 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3898 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-3893 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-3890 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) -(((-230) (-10 -7 (-15 -3893 ((-229) (-229))) (-15 -3893 ((-171 (-229)) (-171 (-229)))) (-15 -3890 ((-229) (-229) (-229))) (-15 -3890 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1604 ((-229) (-229))) (-15 -1604 ((-171 (-229)) (-171 (-229)))) (-15 -3891 ((-229) (-229))) (-15 -3891 ((-171 (-229)) (-171 (-229)))) (-15 -3892 ((-229) (-793) (-229))) (-15 -3892 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -3894 ((-229) (-229) (-229))) (-15 -3894 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3895 ((-229) (-229) (-229))) (-15 -3895 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3896 ((-229) (-229) (-229))) (-15 -3896 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3897 ((-229) (-229) (-229))) (-15 -3897 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3898 ((-171 (-229)) (-171 (-229)))) (-15 -3898 ((-229) (-229))) (-15 -3899 ((-229) (-229))) (-15 -3899 ((-171 (-229)) (-171 (-229)))) (-15 -1605 ((-229) (-229) (-229))) (-15 -1605 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230)) -((-1605 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1605 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3896 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3896 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3895 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3895 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3894 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3894 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3892 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) (-3892 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) -(-10 -7 (-15 -3893 ((-229) (-229))) (-15 -3893 ((-171 (-229)) (-171 (-229)))) (-15 -3890 ((-229) (-229) (-229))) (-15 -3890 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1604 ((-229) (-229))) (-15 -1604 ((-171 (-229)) (-171 (-229)))) (-15 -3891 ((-229) (-229))) (-15 -3891 ((-171 (-229)) (-171 (-229)))) (-15 -3892 ((-229) (-793) (-229))) (-15 -3892 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -3894 ((-229) (-229) (-229))) (-15 -3894 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3895 ((-229) (-229) (-229))) (-15 -3895 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3896 ((-229) (-229) (-229))) (-15 -3896 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3897 ((-229) (-229) (-229))) (-15 -3897 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3898 ((-171 (-229)) (-171 (-229)))) (-15 -3898 ((-229) (-229))) (-15 -3899 ((-229) (-229))) (-15 -3899 ((-171 (-229)) (-171 (-229)))) (-15 -1605 ((-229) (-229) (-229))) (-15 -1605 ((-171 (-229)) (-171 (-229)) (-171 (-229))))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793) (-793)) NIL T ELT)) (-2583 (($ $ $) NIL T ELT)) (-3920 (($ (-1299 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4389 (($ |#1| |#1| |#1|) 33 T ELT)) (-3609 (((-114) $) NIL T ELT)) (-2582 (($ $ (-560) (-560)) NIL T ELT)) (-2581 (($ $ (-560) (-560)) NIL T ELT)) (-2580 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2585 (($ $) NIL T ELT)) (-3611 (((-114) $) NIL T ELT)) (-2579 (($ $ (-560) (-560) $) NIL T ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-1375 (($ $ (-560) (-1299 |#1|)) NIL T ELT)) (-1374 (($ $ (-560) (-1299 |#1|)) NIL T ELT)) (-4363 (($ |#1| |#1| |#1|) 32 T ELT)) (-3839 (($ (-793) |#1|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3600 (((-1299 |#1|) $ (-560)) NIL T ELT)) (-1606 (($ |#1|) 31 T ELT)) (-1607 (($ |#1|) 30 T ELT)) (-1608 (($ |#1|) 29 T ELT)) (-3597 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3601 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3596 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-3595 (((-663 (-1299 |#1|)) $) NIL (|has| |#1| (-571)) ELT)) (-3603 (((-793) $) NIL T ELT)) (-4130 (($ (-793) (-793) |#1|) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3833 ((|#1| $) NIL (|has| |#1| (-6 (-4513 #1="*"))) ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-3612 (($ (-663 (-663 |#1|))) 11 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4108 (((-663 (-663 |#1|)) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4104 (((-3 $ #2="failed") $) NIL (|has| |#1| (-376)) ELT)) (-1609 (($) 12 T ELT)) (-2584 (($ $ $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-3972 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3838 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3610 (((-114) $) NIL T ELT)) (-3834 ((|#1| $) NIL (|has| |#1| (-6 (-4513 #1#))) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3599 (((-1299 |#1|) $ (-560)) NIL T ELT)) (-4462 (($ (-1299 |#1|)) NIL T ELT) (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1299 |#1|) $ (-1299 |#1|)) 15 T ELT) (((-1299 |#1|) (-1299 |#1|) $) NIL T ELT) (((-973 |#1|) $ (-973 |#1|)) 21 T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-231 |#1|) (-13 (-708 |#1| (-1299 |#1|) (-1299 |#1|)) (-10 -8 (-15 * ((-973 |#1|) $ (-973 |#1|))) (-15 -1609 ($)) (-15 -1608 ($ |#1|)) (-15 -1607 ($ |#1|)) (-15 -1606 ($ |#1|)) (-15 -4363 ($ |#1| |#1| |#1|)) (-15 -4389 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1235))) (T -231)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235))) (-5 *1 (-231 *3)))) (-1609 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) (-1608 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) (-1607 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) (-1606 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) (-4363 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) (-4389 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235)))))) -(-13 (-708 |#1| (-1299 |#1|) (-1299 |#1|)) (-10 -8 (-15 * ((-973 |#1|) $ (-973 |#1|))) (-15 -1609 ($)) (-15 -1608 ($ |#1|)) (-15 -1607 ($ |#1|)) (-15 -1606 ($ |#1|)) (-15 -4363 ($ |#1| |#1| |#1|)) (-15 -4389 ($ |#1| |#1| |#1|)))) -((-1725 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3911 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-1610 (($) NIL T ELT) (($ (-663 |#2|)) 11 T ELT)) (-3540 (((-114) $ $) 26 T ELT))) -(((-232 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -1725 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -1610 (|#1| (-663 |#2|))) (-15 -1610 (|#1|))) (-233 |#2|) (-1133)) (T -232)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -1725 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -1610 (|#1| (-663 |#2|))) (-15 -1610 (|#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-233 |#1|) (-142) (-1133)) (T -233)) +(-13 (-1131) (-10 -8 (-15 -9 ($) -4464) (-15 -8 ($) -4464) (-15 -7 ($) -4464))) +((-4154 ((|#2| |#2|) 28 T ELT)) (-4157 (((-114) |#2|) 19 T ELT)) (-4155 (((-326 |#1|) |#2|) 12 T ELT)) (-4156 (((-326 |#1|) |#2|) 14 T ELT)) (-4152 ((|#2| |#2| (-1207)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-4158 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-4153 ((|#2| |#2| (-1207)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-191 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| |#2|)) (-15 -4152 (|#2| |#2| (-1207))) (-15 -4153 (|#2| |#2|)) (-15 -4153 (|#2| |#2| (-1207))) (-15 -4155 ((-326 |#1|) |#2|)) (-15 -4156 ((-326 |#1|) |#2|)) (-15 -4157 ((-114) |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -4158 ((-171 (-326 |#1|)) |#2|))) (-13 (-569) (-1068 (-558))) (-13 (-27) (-1233) (-433 (-171 |#1|)))) (T -191)) +((-4158 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3)))))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4153 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3)))))) (-4152 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 (-171 *4)))))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3))))))) +(-10 -7 (-15 -4152 (|#2| |#2|)) (-15 -4152 (|#2| |#2| (-1207))) (-15 -4153 (|#2| |#2|)) (-15 -4153 (|#2| |#2| (-1207))) (-15 -4155 ((-326 |#1|) |#2|)) (-15 -4156 ((-326 |#1|) |#2|)) (-15 -4157 ((-114) |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -4158 ((-171 (-326 |#1|)) |#2|))) +((-1554 (((-1297 (-709 (-974 |#1|))) (-1297 (-709 |#1|))) 26 T ELT)) (-4458 (((-1297 (-709 (-419 (-974 |#1|)))) (-1297 (-709 |#1|))) 37 T ELT))) +(((-192 |#1|) (-10 -7 (-15 -1554 ((-1297 (-709 (-974 |#1|))) (-1297 (-709 |#1|)))) (-15 -4458 ((-1297 (-709 (-419 (-974 |#1|)))) (-1297 (-709 |#1|))))) (-175)) (T -192)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-1297 (-709 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-709 (-419 (-974 *4))))) (-5 *1 (-192 *4)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-1297 (-709 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-709 (-974 *4)))) (-5 *1 (-192 *4))))) +(-10 -7 (-15 -1554 ((-1297 (-709 (-974 |#1|))) (-1297 (-709 |#1|)))) (-15 -4458 ((-1297 (-709 (-419 (-974 |#1|)))) (-1297 (-709 |#1|))))) +((-1562 (((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558)))) 93 T ELT)) (-1564 (((-1209 (-419 (-558))) (-661 (-558)) (-661 (-558))) 106 T ELT)) (-1555 (((-1209 (-419 (-558))) (-947)) 54 T ELT)) (-4366 (((-1209 (-419 (-558))) (-947)) 79 T ELT)) (-4280 (((-419 (-558)) (-1209 (-419 (-558)))) 89 T ELT)) (-1556 (((-1209 (-419 (-558))) (-947)) 37 T ELT)) (-1559 (((-1209 (-419 (-558))) (-947)) 66 T ELT)) (-1558 (((-1209 (-419 (-558))) (-947)) 61 T ELT)) (-1561 (((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558)))) 87 T ELT)) (-3374 (((-1209 (-419 (-558))) (-947)) 29 T ELT)) (-1560 (((-419 (-558)) (-1209 (-419 (-558))) (-1209 (-419 (-558)))) 91 T ELT)) (-1557 (((-1209 (-419 (-558))) (-947)) 35 T ELT)) (-1563 (((-1209 (-419 (-558))) (-661 (-947))) 100 T ELT))) +(((-193) (-10 -7 (-15 -3374 ((-1209 (-419 (-558))) (-947))) (-15 -1555 ((-1209 (-419 (-558))) (-947))) (-15 -1556 ((-1209 (-419 (-558))) (-947))) (-15 -1557 ((-1209 (-419 (-558))) (-947))) (-15 -1558 ((-1209 (-419 (-558))) (-947))) (-15 -1559 ((-1209 (-419 (-558))) (-947))) (-15 -4366 ((-1209 (-419 (-558))) (-947))) (-15 -1560 ((-419 (-558)) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -1561 ((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -4280 ((-419 (-558)) (-1209 (-419 (-558))))) (-15 -1562 ((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -1563 ((-1209 (-419 (-558))) (-661 (-947)))) (-15 -1564 ((-1209 (-419 (-558))) (-661 (-558)) (-661 (-558)))))) (T -193)) +((-1564 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-1209 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-1561 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1560 (*1 *2 *3 *3) (-12 (-5 *3 (-1209 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(-10 -7 (-15 -3374 ((-1209 (-419 (-558))) (-947))) (-15 -1555 ((-1209 (-419 (-558))) (-947))) (-15 -1556 ((-1209 (-419 (-558))) (-947))) (-15 -1557 ((-1209 (-419 (-558))) (-947))) (-15 -1558 ((-1209 (-419 (-558))) (-947))) (-15 -1559 ((-1209 (-419 (-558))) (-947))) (-15 -4366 ((-1209 (-419 (-558))) (-947))) (-15 -1560 ((-419 (-558)) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -1561 ((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -4280 ((-419 (-558)) (-1209 (-419 (-558))))) (-15 -1562 ((-1209 (-419 (-558))) (-1209 (-419 (-558))) (-1209 (-419 (-558))))) (-15 -1563 ((-1209 (-419 (-558))) (-661 (-947)))) (-15 -1564 ((-1209 (-419 (-558))) (-661 (-558)) (-661 (-558))))) +((-1566 (((-417 (-1201 (-558))) (-558)) 38 T ELT)) (-1565 (((-661 (-1201 (-558))) (-558)) 33 T ELT)) (-3284 (((-1201 (-558)) (-558)) 28 T ELT))) +(((-194) (-10 -7 (-15 -1565 ((-661 (-1201 (-558))) (-558))) (-15 -3284 ((-1201 (-558)) (-558))) (-15 -1566 ((-417 (-1201 (-558))) (-558))))) (T -194)) +((-1566 (*1 *2 *3) (-12 (-5 *2 (-417 (-1201 (-558)))) (-5 *1 (-194)) (-5 *3 (-558)))) (-3284 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-661 (-1201 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) +(-10 -7 (-15 -1565 ((-661 (-1201 (-558))) (-558))) (-15 -3284 ((-1201 (-558)) (-558))) (-15 -1566 ((-417 (-1201 (-558))) (-558)))) +((-1761 (((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 133 T ELT)) (-1782 (((-661 (-1189)) (-1185 (-229))) NIL T ELT)) (-1567 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1759 (((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229)))) NIL T ELT)) (-1781 (((-661 (-1189)) (-661 (-229))) NIL T ELT)) (-1783 (((-229) (-1119 (-864 (-229)))) 31 T ELT)) (-1784 (((-229) (-1119 (-864 (-229)))) 32 T ELT)) (-1569 (((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 127 T ELT)) (-1568 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-1779 (((-1189) (-229)) NIL T ELT)) (-3052 (((-1189) (-661 (-1189))) 27 T ELT)) (-1570 (((-1065) (-1207) (-1207) (-1065)) 13 T ELT))) +(((-195) (-10 -7 (-15 -1567 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1568 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -1569 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1759 ((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229)))) (-15 -3052 ((-1189) (-661 (-1189)))) (-15 -1570 ((-1065) (-1207) (-1207) (-1065))))) (T -195)) +((-1570 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1207)) (-5 *1 (-195)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-195)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-195)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-195)))) (-1759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-195)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) +(-10 -7 (-15 -1567 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1568 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -1569 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1759 ((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229)))) (-15 -3052 ((-1189) (-661 (-1189)))) (-15 -1570 ((-1065) (-1207) (-1207) (-1065)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 61 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-196) (-807)) (T -196)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 66 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-197) (-807)) (T -197)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 80 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-198) (-807)) (T -198)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 63 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-199) (-807)) (T -199)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 76 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-200) (-807)) (T -200)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 93 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-201) (-807)) (T -201)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 90 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-202) (-807)) (T -202)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 78 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-203) (-807)) (T -203)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 76 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-204) (-807)) (T -204)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 77 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-205) (-807)) (T -205)) +NIL +(-807) +((-3049 (((-114) $ $) NIL T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 105 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-206) (-807)) (T -206)) +NIL +(-807) +((-1571 (((-3 (-2 (|:| -2980 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1573 (((-558) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1572 (((-3 (-661 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 91 T ELT))) +(((-207) (-10 -7 (-15 -1571 ((-3 (-2 (|:| -2980 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1572 ((-3 (-661 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1573 ((-558) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) +((-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-558)) (-5 *1 (-207)))) (-1572 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-207)))) (-1571 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -2980 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) +(-10 -7 (-15 -1571 ((-3 (-2 (|:| -2980 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1572 ((-3 (-661 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1573 ((-558) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-1578 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 47 T ELT)) (-1577 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-1576 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-709 (-326 (-229)))) 110 T ELT)) (-1575 (((-391) (-709 (-326 (-229)))) 138 T ELT)) (-2601 (((-709 (-326 (-229))) (-1297 (-326 (-229))) (-661 (-1207))) 134 T ELT)) (-1581 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1579 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT)) (-4280 (((-709 (-326 (-229))) (-709 (-326 (-229))) (-661 (-1207)) (-1297 (-326 (-229)))) 123 T ELT)) (-1574 (((-391) (-391) (-661 (-391))) 131 T ELT) (((-391) (-391) (-391)) 126 T ELT)) (-1580 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) +(((-208) (-10 -7 (-15 -1574 ((-391) (-391) (-391))) (-15 -1574 ((-391) (-391) (-661 (-391)))) (-15 -1575 ((-391) (-709 (-326 (-229))))) (-15 -2601 ((-709 (-326 (-229))) (-1297 (-326 (-229))) (-661 (-1207)))) (-15 -4280 ((-709 (-326 (-229))) (-709 (-326 (-229))) (-661 (-1207)) (-1297 (-326 (-229))))) (-15 -1576 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-709 (-326 (-229))))) (-15 -1577 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1579 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1580 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1581 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) +((-1581 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4280 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-709 (-326 (-229)))) (-5 *3 (-661 (-1207))) (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-661 (-1207))) (-5 *2 (-709 (-326 (-229)))) (-5 *1 (-208)))) (-1575 (*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1574 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1574 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))) +(-10 -7 (-15 -1574 ((-391) (-391) (-391))) (-15 -1574 ((-391) (-391) (-661 (-391)))) (-15 -1575 ((-391) (-709 (-326 (-229))))) (-15 -2601 ((-709 (-326 (-229))) (-1297 (-326 (-229))) (-661 (-1207)))) (-15 -4280 ((-709 (-326 (-229))) (-709 (-326 (-229))) (-661 (-1207)) (-1297 (-326 (-229))))) (-15 -1576 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-709 (-326 (-229))))) (-15 -1577 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1579 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1580 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1581 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2890 (((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 74 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-209) (-822)) (T -209)) +NIL +(-822) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2890 (((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-210) (-822)) (T -210)) +NIL +(-822) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2890 (((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-211) (-822)) (T -211)) +NIL +(-822) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2890 (((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 87 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-212) (-822)) (T -212)) +NIL +(-822) +((-4446 (((-661 (-1207)) (-1207) (-791)) 26 T ELT)) (-1582 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-1584 (((-114) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 87 T ELT)) (-1583 (((-114) (-229) (-229) (-661 (-326 (-229)))) 47 T ELT))) +(((-213) (-10 -7 (-15 -4446 ((-661 (-1207)) (-1207) (-791))) (-15 -1582 ((-326 (-229)) (-326 (-229)))) (-15 -1583 ((-114) (-229) (-229) (-661 (-326 (-229))))) (-15 -1584 ((-114) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) (T -213)) +((-1584 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1583 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-661 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4446 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-661 (-1207))) (-5 *1 (-213)) (-5 *3 (-1207))))) +(-10 -7 (-15 -4446 ((-661 (-1207)) (-1207) (-791))) (-15 -1582 ((-326 (-229)) (-326 (-229)))) (-15 -1583 ((-114) (-229) (-229) (-661 (-326 (-229))))) (-15 -1584 ((-114) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 28 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3148 (((-1065) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 70 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-214) (-921)) (T -214)) +NIL +(-921) +((-3049 (((-114) $ $) NIL T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 24 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3148 (((-1065) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-215) (-921)) (T -215)) +NIL +(-921) +((-3049 (((-114) $ $) NIL T ELT)) (-1585 ((|#2| $ (-791) |#2|) 11 T ELT)) (-3597 ((|#2| $ (-791)) 10 T ELT)) (-4126 (($) 8 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 23 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 13 T ELT))) +(((-216 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -4126 ($)) (-15 -3597 (|#2| $ (-791))) (-15 -1585 (|#2| $ (-791) |#2|)))) (-947) (-1131)) (T -216)) +((-4126 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1131)))) (-3597 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *2 (-1131)) (-5 *1 (-216 *4 *2)) (-14 *4 (-947)))) (-1585 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-216 *4 *2)) (-14 *4 (-947)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -4126 ($)) (-15 -3597 (|#2| $ (-791))) (-15 -1585 (|#2| $ (-791) |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2185 (((-1303) $) 37 T ELT) (((-1303) $ (-947) (-947)) 41 T ELT)) (-4312 (($ $ (-1019)) 19 T ELT) (((-252 (-1189)) $ (-1207)) 15 T ELT)) (-4129 (((-1303) $) 35 T ELT)) (-4458 (((-886) $) 32 T ELT) (($ (-661 |#1|)) 8 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $ $) 27 T ELT)) (-4351 (($ $ $) 22 T ELT))) +(((-217 |#1|) (-13 (-1131) (-633 (-661 |#1|)) (-10 -8 (-15 -4312 ($ $ (-1019))) (-15 -4312 ((-252 (-1189)) $ (-1207))) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $)) (-15 -2185 ((-1303) $ (-947) (-947))))) (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $))))) (T -217)) +((-4312 (*1 *1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $))))))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ *3)) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $))))))) (-4351 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $))))))) (-4349 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $))))))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) (-15 -2185 (*2 $))))))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) (-15 -2185 (*2 $))))))) (-2185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) (-15 -2185 (*2 $)))))))) +(-13 (-1131) (-633 (-661 |#1|)) (-10 -8 (-15 -4312 ($ $ (-1019))) (-15 -4312 ((-252 (-1189)) $ (-1207))) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $)) (-15 -2185 ((-1303) $ (-947) (-947))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 10 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3334 (($ (-655 |#1|)) 11 T ELT)) (-4458 (((-886) $) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-218 |#1|) (-13 (-866) (-10 -8 (-15 -3334 ($ (-655 |#1|))))) (-661 (-1207))) (T -218)) +((-3334 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-14 *3 (-661 (-1207))) (-5 *1 (-218 *3))))) +(-13 (-866) (-10 -8 (-15 -3334 ($ (-655 |#1|))))) +((-1586 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1586 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) +((-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-419 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) +(-10 -7 (-15 -1586 (|#2| |#4| (-1 |#2| |#2|)))) +((-1590 ((|#2| |#2| (-791) |#2|) 55 T ELT)) (-1589 ((|#2| |#2| (-791) |#2|) 51 T ELT)) (-2607 (((-661 |#2|) (-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|)))) 79 T ELT)) (-1588 (((-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|))) |#2|) 72 T ELT)) (-1591 (((-114) |#2|) 70 T ELT)) (-4245 (((-417 |#2|) |#2|) 92 T ELT)) (-4244 (((-417 |#2|) |#2|) 91 T ELT)) (-2608 ((|#2| |#2| (-791) |#2|) 49 T ELT)) (-1587 (((-2 (|:| |cont| |#1|) (|:| -1997 (-661 (-2 (|:| |irr| |#2|) (|:| -2636 (-558)))))) |#2| (-114)) 86 T ELT))) +(((-220 |#1| |#2|) (-10 -7 (-15 -4244 ((-417 |#2|) |#2|)) (-15 -4245 ((-417 |#2|) |#2|)) (-15 -1587 ((-2 (|:| |cont| |#1|) (|:| -1997 (-661 (-2 (|:| |irr| |#2|) (|:| -2636 (-558)))))) |#2| (-114))) (-15 -1588 ((-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|))) |#2|)) (-15 -2607 ((-661 |#2|) (-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|))))) (-15 -2608 (|#2| |#2| (-791) |#2|)) (-15 -1589 (|#2| |#2| (-791) |#2|)) (-15 -1590 (|#2| |#2| (-791) |#2|)) (-15 -1591 ((-114) |#2|))) (-363) (-1273 |#1|)) (T -220)) +((-1591 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-1590 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-1589 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-2608 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |deg| (-791)) (|:| -3056 *5)))) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *2 (-661 *5)) (-5 *1 (-220 *4 *5)))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3056 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5)))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4244 ((-417 |#2|) |#2|)) (-15 -4245 ((-417 |#2|) |#2|)) (-15 -1587 ((-2 (|:| |cont| |#1|) (|:| -1997 (-661 (-2 (|:| |irr| |#2|) (|:| -2636 (-558)))))) |#2| (-114))) (-15 -1588 ((-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|))) |#2|)) (-15 -2607 ((-661 |#2|) (-661 (-2 (|:| |deg| (-791)) (|:| -3056 |#2|))))) (-15 -2608 (|#2| |#2| (-791) |#2|)) (-15 -1589 (|#2| |#2| (-791) |#2|)) (-15 -1590 (|#2| |#2| (-791) |#2|)) (-15 -1591 ((-114) |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3656 (((-558) $) NIL T ELT) (((-1207) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-558) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-558) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-558) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-558) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-558) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-4470 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-558) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3614 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1207)) (-661 (-558))) NIL (|has| (-558) (-526 (-1207) (-558))) ELT) (($ $ (-1207) (-558)) NIL (|has| (-558) (-526 (-1207) (-558))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-558) $) NIL T ELT)) (-1592 (($ (-419 (-558))) 9 T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-558) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-558) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1050)) ELT) (((-229) $) NIL (|has| (-558) (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1207)) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1034 10) $) 10 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-558) (-938))) (|has| (-558) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-4461 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-221) (-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 10)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -1592 ($ (-419 (-558))))))) (T -221)) +((-3612 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221))))) +(-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 10)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -1592 ($ (-419 (-558)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3819 (((-1145) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3678 (((-495) $) 10 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 23 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 15 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-222) (-13 (-1113) (-10 -8 (-15 -3678 ((-495) $)) (-15 -3819 ((-1145) $)) (-15 -3733 ((-1165) $))))) (T -222)) +((-3678 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-222)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-222))))) +(-13 (-1113) (-10 -8 (-15 -3678 ((-495) $)) (-15 -3819 ((-1145) $)) (-15 -3733 ((-1165) $)))) +((-4324 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1122 (-864 |#2|)) (-1189)) 29 T ELT) (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1122 (-864 |#2|))) 25 T ELT)) (-1593 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)) 17 T ELT))) +(((-223 |#1| |#2|) (-10 -7 (-15 -4324 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -4324 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1122 (-864 |#2|)) (-1189))) (-15 -1593 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-988) (-29 |#1|))) (T -223)) +((-1593 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1207)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-4 *3 (-13 (-1233) (-988) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1189)) (-4 *3 (-13 (-1233) (-988) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1233) (-988) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *5 *3))))) +(-10 -7 (-15 -4324 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -4324 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1122 (-864 |#2|)) (-1189))) (-15 -1593 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-661 (-864 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)))) +((-4324 (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|)))) (-1189)) 49 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|))) (-1189)) 50 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|)))) 22 T ELT))) +(((-224 |#1|) (-10 -7 (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|))))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|))) (-1189))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|)))))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|)))) (-1189)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (T -224)) +((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 (-419 (-974 *6))))) (-5 *5 (-1189)) (-5 *3 (-419 (-974 *6))) (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-661 (-864 (-326 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-224 *6)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 (-419 (-974 *5))))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-661 (-864 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-974 *6))) (-5 *4 (-1122 (-864 (-326 *6)))) (-5 *5 (-1189)) (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-661 (-864 (-326 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *6)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1122 (-864 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-661 (-864 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5))))) +(-10 -7 (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|))))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-326 |#1|))) (-1189))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|)))))) (-15 -4324 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-661 (-864 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-974 |#1|)) (-1122 (-864 (-419 (-974 |#1|)))) (-1189)))) +((-4354 (((-2 (|:| -2224 (-1201 |#1|)) (|:| |deg| (-947))) (-1201 |#1|)) 26 T ELT)) (-4475 (((-661 (-326 |#2|)) (-326 |#2|) (-947)) 51 T ELT))) +(((-225 |#1| |#2|) (-10 -7 (-15 -4354 ((-2 (|:| -2224 (-1201 |#1|)) (|:| |deg| (-947))) (-1201 |#1|))) (-15 -4475 ((-661 (-326 |#2|)) (-326 |#2|) (-947)))) (-1079) (-569)) (T -225)) +((-4475 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *6 (-569)) (-5 *2 (-661 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1079)))) (-4354 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-2 (|:| -2224 (-1201 *4)) (|:| |deg| (-947)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-569))))) +(-10 -7 (-15 -4354 ((-2 (|:| -2224 (-1201 |#1|)) (|:| |deg| (-947))) (-1201 |#1|))) (-15 -4475 ((-661 (-326 |#2|)) (-326 |#2|) (-947)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1637 ((|#1| $) NIL T ELT)) (-3826 ((|#1| $) 30 T ELT)) (-4236 (($) NIL T CONST)) (-3485 (($ $) NIL T ELT)) (-2520 (($ $) 39 T ELT)) (-3828 ((|#1| |#1| $) NIL T ELT)) (-3827 ((|#1| $) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4345 (((-791) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) NIL T ELT)) (-1635 ((|#1| |#1| $) 35 T ELT)) (-1634 ((|#1| |#1| $) 37 T ELT)) (-4119 (($ |#1| $) NIL T ELT)) (-3084 (((-791) $) 33 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-3484 ((|#1| $) NIL T ELT)) (-1633 ((|#1| $) 31 T ELT)) (-1632 ((|#1| $) 29 T ELT)) (-1399 ((|#1| $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3487 ((|#1| |#1| $) NIL T ELT)) (-3905 (((-114) $) 9 T ELT)) (-4075 (($) NIL T ELT)) (-3486 ((|#1| $) NIL T ELT)) (-1638 (($) NIL T ELT) (($ (-661 |#1|)) 16 T ELT)) (-3825 (((-791) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1636 ((|#1| $) 13 T ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) NIL T ELT)) (-3483 ((|#1| $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -1638 ($ (-661 |#1|))))) (-1131)) (T -226)) +((-1638 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-226 *3))))) +(-13 (-263 |#1|) (-10 -8 (-15 -1638 ($ (-661 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1595 (($ (-326 |#1|)) 24 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3145 (((-114) $) NIL T ELT)) (-3657 (((-3 (-326 |#1|) "failed") $) NIL T ELT)) (-3656 (((-326 |#1|) $) NIL T ELT)) (-4471 (($ $) 32 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4470 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3674 (((-326 |#1|) $) NIL T ELT)) (-1597 (($ $) 31 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1596 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($ (-791)) NIL T ELT)) (-1594 (($ $) 33 T ELT)) (-4460 (((-558) $) NIL T ELT)) (-4458 (((-886) $) 65 T ELT) (($ (-558)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-4189 (((-326 |#1|) $ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 26 T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) 29 T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 20 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT))) +(((-227 |#1| |#2|) (-13 (-638 (-326 |#1|)) (-1068 (-326 |#1|)) (-10 -8 (-15 -3674 ((-326 |#1|) $)) (-15 -1597 ($ $)) (-15 -4471 ($ $)) (-15 -4189 ((-326 |#1|) $ $)) (-15 -2650 ($ (-791))) (-15 -1596 ((-114) $)) (-15 -3145 ((-114) $)) (-15 -4460 ((-558) $)) (-15 -4470 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1595 ($ (-326 |#1|))) (-15 -1594 ($ $)))) (-13 (-1079) (-870)) (-661 (-1207))) (T -227)) +((-3674 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-661 (-1207))))) (-4471 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-661 (-1207))))) (-4189 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-661 (-1207))))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1207))))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1207))))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-661 (-1207)))))) +(-13 (-638 (-326 |#1|)) (-1068 (-326 |#1|)) (-10 -8 (-15 -3674 ((-326 |#1|) $)) (-15 -1597 ($ $)) (-15 -4471 ($ $)) (-15 -4189 ((-326 |#1|) $ $)) (-15 -2650 ($ (-791))) (-15 -1596 ((-114) $)) (-15 -3145 ((-114) $)) (-15 -4460 ((-558) $)) (-15 -4470 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1595 ($ (-326 |#1|))) (-15 -1594 ($ $)))) +((-1598 (((-114) (-1189)) 26 T ELT)) (-1599 (((-3 (-864 |#2|) "failed") (-628 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114)) 35 T ELT)) (-1600 (((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)) 83 T ELT) (((-3 (-114) "failed") (-974 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114)) 84 T ELT))) +(((-228 |#1| |#2|) (-10 -7 (-15 -1598 ((-114) (-1189))) (-15 -1599 ((-3 (-864 |#2|) "failed") (-628 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -1600 ((-3 (-114) "failed") (-974 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -1600 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-29 |#1|))) (T -228)) +((-1600 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6)) (-4 *6 (-13 (-1233) (-29 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-228 *5 *6)))) (-1600 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-974 *6)) (-5 *4 (-1207)) (-5 *5 (-864 *7)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-1599 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-628 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1233) (-29 *6))) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-228 *6 *4)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4)))))) +(-10 -7 (-15 -1598 ((-114) (-1189))) (-15 -1599 ((-3 (-864 |#2|) "failed") (-628 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -1600 ((-3 (-114) "failed") (-974 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -1600 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 98 T ELT)) (-3613 (((-558) $) 33 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4283 (($ $) NIL T ELT)) (-3994 (($ $) 87 T ELT)) (-4151 (($ $) 75 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) 66 T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3992 (($ $) 85 T ELT)) (-4150 (($ $) 73 T ELT)) (-4135 (((-558) $) 128 T ELT)) (-3996 (($ $) 90 T ELT)) (-4149 (($ $) 77 T ELT)) (-4236 (($) NIL T CONST)) (-3611 (($ $) NIL T ELT)) (-3657 (((-3 (-558) #1="failed") $) 127 T ELT) (((-3 (-419 (-558)) #1#) $) 124 T ELT)) (-3656 (((-558) $) 125 T ELT) (((-419 (-558)) $) 122 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 103 T ELT)) (-1957 (((-419 (-558)) $ (-791)) 117 T ELT) (((-419 (-558)) $ (-791) (-791)) 116 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2615 (((-947)) 28 T ELT) (((-947) (-947)) NIL (|has| $ (-6 -4498)) ELT)) (-3686 (((-114) $) 118 T ELT)) (-4139 (($) 46 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL T ELT)) (-4284 (((-558) $) 40 T ELT)) (-2651 (((-114) $) 99 T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3616 (($ $) NIL T ELT)) (-3687 (((-114) $) 97 T ELT)) (-1601 (((-114) $) 154 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) 63 T ELT) (($) 36 (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-3340 (($ $ $) 62 T ELT) (($) 35 (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-2616 (((-558) $) 26 T ELT)) (-1956 (($ $) 31 T ELT)) (-1955 (($ $) 67 T ELT)) (-4454 (($ $) 72 T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-1987 (((-947) (-558)) NIL (|has| $ (-6 -4498)) ELT)) (-3743 (((-1150) $) 101 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL T ELT)) (-3614 (($ $) NIL T ELT)) (-3754 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-947)) 110 T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2642 (((-558) $) 27 T ELT)) (-1954 (($) 45 T ELT)) (-4455 (($ $) 71 T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3096 (((-947)) NIL T ELT) (((-947) (-947)) NIL (|has| $ (-6 -4498)) ELT)) (-4270 (($ $) 104 T ELT) (($ $ (-791)) NIL T ELT)) (-1986 (((-947) (-558)) NIL (|has| $ (-6 -4498)) ELT)) (-3997 (($ $) 88 T ELT)) (-4148 (($ $) 78 T ELT)) (-3995 (($ $) 89 T ELT)) (-4147 (($ $) 76 T ELT)) (-3993 (($ $) 86 T ELT)) (-4146 (($ $) 74 T ELT)) (-4484 (((-391) $) 113 T ELT) (((-229) $) 14 T ELT) (((-914 (-391)) $) NIL T ELT) (((-547) $) 52 T ELT)) (-4458 (((-886) $) 49 T ELT) (($ (-558)) 153 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 153 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (($ $) NIL T ELT)) (-1988 (((-947)) 34 T ELT) (((-947) (-947)) NIL (|has| $ (-6 -4498)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (((-947)) 24 T ELT)) (-4000 (($ $) 93 T ELT)) (-3988 (($ $) 81 T ELT) (($ $ $) 120 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3998 (($ $) 91 T ELT)) (-3986 (($ $) 79 T ELT)) (-4002 (($ $) 96 T ELT)) (-3990 (($ $) 84 T ELT)) (-4003 (($ $) 94 T ELT)) (-3991 (($ $) 82 T ELT)) (-4001 (($ $) 95 T ELT)) (-3989 (($ $) 83 T ELT)) (-3999 (($ $) 92 T ELT)) (-3987 (($ $) 80 T ELT)) (-3885 (($ $) 119 T ELT)) (-3141 (($) 42 T CONST)) (-3147 (($) 43 T CONST)) (-2978 (((-1189) $) 18 T ELT) (((-1189) $ (-114)) 20 T ELT) (((-1303) (-845) $) 21 T ELT) (((-1303) (-845) $ (-114)) 22 T ELT)) (-3889 (($ $) 107 T ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3886 (($ $ $) 109 T ELT)) (-3047 (((-114) $ $) 56 T ELT)) (-3048 (((-114) $ $) 54 T ELT)) (-3536 (((-114) $ $) 64 T ELT)) (-3167 (((-114) $ $) 55 T ELT)) (-3168 (((-114) $ $) 53 T ELT)) (-4461 (($ $ $) 44 T ELT) (($ $ (-558)) 65 T ELT)) (-4349 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-4351 (($ $ $) 58 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 68 T ELT) (($ $ (-419 (-558))) 152 T ELT) (($ $ $) 69 T ELT)) (* (($ (-947) $) 32 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-229) (-13 (-416) (-240) (-843) (-1233) (-631 (-547)) (-10 -8 (-15 -4461 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1954 ($)) (-15 -1956 ($ $)) (-15 -1955 ($ $)) (-15 -3988 ($ $ $)) (-15 -3889 ($ $)) (-15 -3886 ($ $ $)) (-15 -1957 ((-419 (-558)) $ (-791))) (-15 -1957 ((-419 (-558)) $ (-791) (-791))) (-15 -1601 ((-114) $))))) (T -229)) +((** (*1 *1 *1 *1) (-5 *1 (-229))) (-4461 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-229)))) (-1954 (*1 *1) (-5 *1 (-229))) (-1956 (*1 *1 *1) (-5 *1 (-229))) (-1955 (*1 *1 *1) (-5 *1 (-229))) (-3988 (*1 *1 *1 *1) (-5 *1 (-229))) (-3889 (*1 *1 *1) (-5 *1 (-229))) (-3886 (*1 *1 *1 *1) (-5 *1 (-229))) (-1957 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1957 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) +(-13 (-416) (-240) (-843) (-1233) (-631 (-547)) (-10 -8 (-15 -4461 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1954 ($)) (-15 -1956 ($ $)) (-15 -1955 ($ $)) (-15 -3988 ($ $ $)) (-15 -3889 ($ $)) (-15 -3886 ($ $ $)) (-15 -1957 ((-419 (-558)) $ (-791))) (-15 -1957 ((-419 (-558)) $ (-791) (-791))) (-15 -1601 ((-114) $)))) +((-3888 (((-171 (-229)) (-791) (-171 (-229))) 11 T ELT) (((-229) (-791) (-229)) 12 T ELT)) (-1602 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1603 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3887 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3891 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3893 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3890 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3892 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3895 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3894 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-3889 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-3886 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) +(((-230) (-10 -7 (-15 -3889 ((-229) (-229))) (-15 -3889 ((-171 (-229)) (-171 (-229)))) (-15 -3886 ((-229) (-229) (-229))) (-15 -3886 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1602 ((-229) (-229))) (-15 -1602 ((-171 (-229)) (-171 (-229)))) (-15 -3887 ((-229) (-229))) (-15 -3887 ((-171 (-229)) (-171 (-229)))) (-15 -3888 ((-229) (-791) (-229))) (-15 -3888 ((-171 (-229)) (-791) (-171 (-229)))) (-15 -3890 ((-229) (-229) (-229))) (-15 -3890 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3891 ((-229) (-229) (-229))) (-15 -3891 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3892 ((-229) (-229) (-229))) (-15 -3892 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3893 ((-229) (-229) (-229))) (-15 -3893 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3894 ((-171 (-229)) (-171 (-229)))) (-15 -3894 ((-229) (-229))) (-15 -3895 ((-229) (-229))) (-15 -3895 ((-171 (-229)) (-171 (-229)))) (-15 -1603 ((-229) (-229) (-229))) (-15 -1603 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230)) +((-1603 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1603 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3892 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3892 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-791)) (-5 *1 (-230)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-791)) (-5 *1 (-230)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3886 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3886 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) +(-10 -7 (-15 -3889 ((-229) (-229))) (-15 -3889 ((-171 (-229)) (-171 (-229)))) (-15 -3886 ((-229) (-229) (-229))) (-15 -3886 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1602 ((-229) (-229))) (-15 -1602 ((-171 (-229)) (-171 (-229)))) (-15 -3887 ((-229) (-229))) (-15 -3887 ((-171 (-229)) (-171 (-229)))) (-15 -3888 ((-229) (-791) (-229))) (-15 -3888 ((-171 (-229)) (-791) (-171 (-229)))) (-15 -3890 ((-229) (-229) (-229))) (-15 -3890 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3891 ((-229) (-229) (-229))) (-15 -3891 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3892 ((-229) (-229) (-229))) (-15 -3892 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3893 ((-229) (-229) (-229))) (-15 -3893 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3894 ((-171 (-229)) (-171 (-229)))) (-15 -3894 ((-229) (-229))) (-15 -3895 ((-229) (-229))) (-15 -3895 ((-171 (-229)) (-171 (-229)))) (-15 -1603 ((-229) (-229) (-229))) (-15 -1603 ((-171 (-229)) (-171 (-229)) (-171 (-229))))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791) (-791)) NIL T ELT)) (-2579 (($ $ $) NIL T ELT)) (-3916 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4385 (($ |#1| |#1| |#1|) 33 T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2578 (($ $ (-558) (-558)) NIL T ELT)) (-2577 (($ $ (-558) (-558)) NIL T ELT)) (-2576 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2581 (($ $) NIL T ELT)) (-3607 (((-114) $) NIL T ELT)) (-2575 (($ $ (-558) (-558) $) NIL T ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1373 (($ $ (-558) (-1297 |#1|)) NIL T ELT)) (-1372 (($ $ (-558) (-1297 |#1|)) NIL T ELT)) (-4359 (($ |#1| |#1| |#1|) 32 T ELT)) (-3835 (($ (-791) |#1|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3596 (((-1297 |#1|) $ (-558)) NIL T ELT)) (-1604 (($ |#1|) 31 T ELT)) (-1605 (($ |#1|) 30 T ELT)) (-1606 (($ |#1|) 29 T ELT)) (-3593 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3597 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3592 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-3591 (((-661 (-1297 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-3599 (((-791) $) NIL T ELT)) (-4126 (($ (-791) (-791) |#1|) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3829 ((|#1| $) NIL (|has| |#1| (-6 (-4509 #1="*"))) ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-3608 (($ (-661 (-661 |#1|))) 11 T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4104 (((-661 (-661 |#1|)) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4100 (((-3 $ #2="failed") $) NIL (|has| |#1| (-376)) ELT)) (-1607 (($) 12 T ELT)) (-2580 (($ $ $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-3968 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3834 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3830 ((|#1| $) NIL (|has| |#1| (-6 (-4509 #1#))) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3595 (((-1297 |#1|) $ (-558)) NIL T ELT)) (-4458 (($ (-1297 |#1|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) 15 T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT) (((-971 |#1|) $ (-971 |#1|)) 21 T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-231 |#1|) (-13 (-706 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -1607 ($)) (-15 -1606 ($ |#1|)) (-15 -1605 ($ |#1|)) (-15 -1604 ($ |#1|)) (-15 -4359 ($ |#1| |#1| |#1|)) (-15 -4385 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1233))) (T -231)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233))) (-5 *1 (-231 *3)))) (-1607 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1606 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1605 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1604 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4359 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4385 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(-13 (-706 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -1607 ($)) (-15 -1606 ($ |#1|)) (-15 -1605 ($ |#1|)) (-15 -1604 ($ |#1|)) (-15 -4359 ($ |#1| |#1| |#1|)) (-15 -4385 ($ |#1| |#1| |#1|)))) +((-1723 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3907 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-1608 (($) NIL T ELT) (($ (-661 |#2|)) 11 T ELT)) (-3536 (((-114) $ $) 26 T ELT))) +(((-232 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -1723 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -1608 (|#1| (-661 |#2|))) (-15 -1608 (|#1|))) (-233 |#2|) (-1131)) (T -232)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -1723 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -1608 (|#1| (-661 |#2|))) (-15 -1608 (|#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-233 |#1|) (-142) (-1131)) (T -233)) NIL (-13 (-242 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-1 |#1| |#1|) (-793)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1209)) 60 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 58 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 57 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 56 (|has| |#1| (-930 (-1209))) ELT) (($ $) 52 (|has| |#1| (-239)) ELT) (($ $ (-793)) 50 (|has| |#1| (-239)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#1| |#1|) (-793)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1209)) 59 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 55 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 54 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 53 (|has| |#1| (-930 (-1209))) ELT) (($ $) 51 (|has| |#1| (-239)) ELT) (($ $ (-793)) 49 (|has| |#1| (-239)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-234 |#1|) (-142) (-1081)) (T -234)) -NIL -(-13 (-1081) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-928 (-1209))) (-6 (-928 (-1209))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-236 $) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-922 $ #1=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-930 #1#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3156 ((|#2| $) 9 T ELT))) -(((-235 |#1| |#2|) (-10 -8 (-15 -3156 (|#2| |#1|))) (-236 |#2|) (-1249)) (T -235)) -NIL -(-10 -8 (-15 -3156 (|#2| |#1|))) -((-4274 ((|#1| $) 7 T ELT)) (-3156 ((|#1| $) 6 T ELT))) -(((-236 |#1|) (-142) (-1249)) (T -236)) -((-4274 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1249)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -4274 (|t#1| $)) (-15 -3156 (|t#1| $)))) -(((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-793)) 42 T ELT) (($ $) 40 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3156 (($ $ (-793)) 43 T ELT) (($ $) 41 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-237 |#1|) (-142) (-1081)) (T -237)) -NIL -(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-4274 (($ $) NIL T ELT) (($ $ (-793)) 9 T ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) 11 T ELT))) -(((-238 |#1|) (-10 -8 (-15 -3156 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-793))) (-15 -3156 (|#1| |#1|)) (-15 -4274 (|#1| |#1|))) (-239)) (T -238)) -NIL -(-10 -8 (-15 -3156 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-793))) (-15 -3156 (|#1| |#1|)) (-15 -4274 (|#1| |#1|))) -((-4274 (($ $) 7 T ELT) (($ $ (-793)) 10 T ELT)) (-3156 (($ $) 6 T ELT) (($ $ (-793)) 9 T ELT))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-1 |#1| |#1|) (-791)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1207)) 60 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 58 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 57 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 56 (|has| |#1| (-928 (-1207))) ELT) (($ $) 52 (|has| |#1| (-239)) ELT) (($ $ (-791)) 50 (|has| |#1| (-239)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#1| |#1|) (-791)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1207)) 59 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 55 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 54 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 53 (|has| |#1| (-928 (-1207))) ELT) (($ $) 51 (|has| |#1| (-239)) ELT) (($ $ (-791)) 49 (|has| |#1| (-239)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-234 |#1|) (-142) (-1079)) (T -234)) +NIL +(-13 (-1079) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-926 (-1207))) (-6 (-926 (-1207))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-236 $) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-920 $ #1=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-928 #1#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3152 ((|#2| $) 9 T ELT))) +(((-235 |#1| |#2|) (-10 -8 (-15 -3152 (|#2| |#1|))) (-236 |#2|) (-1247)) (T -235)) +NIL +(-10 -8 (-15 -3152 (|#2| |#1|))) +((-4270 ((|#1| $) 7 T ELT)) (-3152 ((|#1| $) 6 T ELT))) +(((-236 |#1|) (-142) (-1247)) (T -236)) +((-4270 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4270 (|t#1| $)) (-15 -3152 (|t#1| $)))) +(((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-791)) 42 T ELT) (($ $) 40 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3152 (($ $ (-791)) 43 T ELT) (($ $) 41 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-237 |#1|) (-142) (-1079)) (T -237)) +NIL +(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-4270 (($ $) NIL T ELT) (($ $ (-791)) 9 T ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) 11 T ELT))) +(((-238 |#1|) (-10 -8 (-15 -3152 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-791))) (-15 -3152 (|#1| |#1|)) (-15 -4270 (|#1| |#1|))) (-239)) (T -238)) +NIL +(-10 -8 (-15 -3152 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-791))) (-15 -3152 (|#1| |#1|)) (-15 -4270 (|#1| |#1|))) +((-4270 (($ $) 7 T ELT) (($ $ (-791)) 10 T ELT)) (-3152 (($ $) 6 T ELT) (($ $ (-791)) 9 T ELT))) (((-239) (-142)) (T -239)) -((-4274 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) (-3156 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))) -(-13 (-236 $) (-10 -8 (-15 -4274 ($ $ (-793))) (-15 -3156 ($ $ (-793))))) -(((-236 $) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-793)) 47 T ELT) (($ $) 45 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-793)) 48 T ELT) (($ $) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4270 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791))))) +(-13 (-236 $) (-10 -8 (-15 -4270 ($ $ (-791))) (-15 -3152 ($ $ (-791))))) +(((-236 $) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-791)) 47 T ELT) (($ $) 45 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-791)) 48 T ELT) (($ $) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-240) (-142)) (T -240)) NIL -(-13 (-1081) (-239)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-1610 (($) 12 T ELT) (($ (-663 |#2|)) NIL T ELT)) (-3906 (($ $) 14 T ELT)) (-4036 (($ (-663 |#2|)) 10 T ELT)) (-4462 (((-888) $) 21 T ELT))) -(((-241 |#1| |#2|) (-10 -8 (-15 -4462 ((-888) |#1|)) (-15 -1610 (|#1| (-663 |#2|))) (-15 -1610 (|#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -3906 (|#1| |#1|))) (-242 |#2|) (-1133)) (T -241)) -NIL -(-10 -8 (-15 -4462 ((-888) |#1|)) (-15 -1610 (|#1| (-663 |#2|))) (-15 -1610 (|#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -3906 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-242 |#1|) (-142) (-1133)) (T -242)) -((-1610 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1133)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-242 *3)))) (-3911 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-242 *2)) (-4 *2 (-1133)))) (-3911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-242 *3)) (-4 *3 (-1133)))) (-1725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-242 *3)) (-4 *3 (-1133))))) -(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1610 ($)) (-15 -1610 ($ (-663 |t#1|))) (IF (|has| $ (-6 -4511)) (PROGN (-15 -3911 ($ |t#1| $)) (-15 -3911 ($ (-1 (-114) |t#1|) $)) (-15 -1725 ($ (-1 (-114) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-1611 (((-2 (|:| |varOrder| (-663 (-1209))) (|:| |inhom| (-3 (-663 (-1299 (-793))) "failed")) (|:| |hom| (-663 (-1299 (-793))))) (-305 (-976 (-560)))) 42 T ELT))) -(((-243) (-10 -7 (-15 -1611 ((-2 (|:| |varOrder| (-663 (-1209))) (|:| |inhom| (-3 (-663 (-1299 (-793))) "failed")) (|:| |hom| (-663 (-1299 (-793))))) (-305 (-976 (-560))))))) (T -243)) -((-1611 (*1 *2 *3) (-12 (-5 *3 (-305 (-976 (-560)))) (-5 *2 (-2 (|:| |varOrder| (-663 (-1209))) (|:| |inhom| (-3 (-663 (-1299 (-793))) "failed")) (|:| |hom| (-663 (-1299 (-793)))))) (-5 *1 (-243))))) -(-10 -7 (-15 -1611 ((-2 (|:| |varOrder| (-663 (-1209))) (|:| |inhom| (-3 (-663 (-1299 (-793))) "failed")) (|:| |hom| (-663 (-1299 (-793))))) (-305 (-976 (-560)))))) -((-3624 (((-793)) 56 T ELT)) (-2507 (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 $) (-1299 $)) 53 T ELT) (((-711 |#3|) (-711 $)) 44 T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-4427 (((-136)) 62 T ELT)) (-4274 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4462 (((-1299 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-888) $) NIL T ELT) (($ (-560)) 12 T ELT) (($ (-421 (-560))) NIL T ELT)) (-3614 (((-793)) 15 T ELT)) (-4465 (($ $ |#3|) 59 T ELT))) -(((-244 |#1| |#2| |#3|) (-10 -8 (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4462 ((-888) |#1|)) (-15 -3614 ((-793))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -4462 (|#1| |#3|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2507 ((-711 |#3|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 |#1|) (-1299 |#1|))) (-15 -3624 ((-793))) (-15 -4465 (|#1| |#1| |#3|)) (-15 -4427 ((-136))) (-15 -4462 ((-1299 |#3|) |#1|))) (-245 |#2| |#3|) (-793) (-1249)) (T -244)) -((-4427 (*1 *2) (-12 (-14 *4 (-793)) (-4 *5 (-1249)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3624 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1249)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3614 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1249)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) -(-10 -8 (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4462 ((-888) |#1|)) (-15 -3614 ((-793))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -4462 (|#1| |#3|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2507 ((-711 |#3|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 |#1|) (-1299 |#1|))) (-15 -3624 ((-793))) (-15 -4465 (|#1| |#1| |#3|)) (-15 -4427 ((-136))) (-15 -4462 ((-1299 |#3|) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-3692 (((-114) $) 80 (|has| |#2| (-23)) ELT)) (-4223 (($ (-949)) 134 (|has| |#2| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) 130 (|has| |#2| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) 82 (|has| |#2| (-133)) ELT)) (-3624 (((-793)) 119 (|has| |#2| (-381)) ELT)) (-4304 ((|#2| $ (-560) |#2|) 56 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 75 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) 72 (-3047 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1133)) ELT)) (-3660 (((-560) $) 74 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-421 (-560)) $) 71 (-3047 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) ((|#2| $) 70 (|has| |#2| (-1133)) ELT)) (-2507 (((-711 (-560)) (-711 $)) 116 (-3047 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 115 (-3047 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 114 (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-711 $)) 113 (|has| |#2| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) 90 (|has| |#2| (-1081)) ELT)) (-3481 (($) 122 (|has| |#2| (-381)) ELT)) (-1731 ((|#2| $ (-560) |#2|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ (-560)) 55 T ELT)) (-3690 (((-114) $) 129 (|has| |#2| (-817)) ELT)) (-3376 (((-663 |#2|) $) 30 (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) 92 (|has| |#2| (-1081)) ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 123 (|has| |#2| (-872)) ELT)) (-3093 (((-663 |#2|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 124 (|has| |#2| (-872)) ELT)) (-2174 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2234 (((-949) $) 121 (|has| |#2| (-381)) ELT)) (-2508 (((-711 (-560)) (-1299 $)) 118 (-3047 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 117 (-3047 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) 112 (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-1299 $)) 111 (|has| |#2| (-1081)) ELT)) (-3746 (((-1191) $) 22 (|has| |#2| (-1133)) ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-2645 (($ (-949)) 120 (|has| |#2| (-381)) ELT)) (-3747 (((-1152) $) 21 (|has| |#2| (-1133)) ELT)) (-4317 ((|#2| $) 46 (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#2|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#2| $ (-560) |#2|) 54 T ELT) ((|#2| $ (-560)) 53 T ELT)) (-4352 ((|#2| $ $) 133 (|has| |#2| (-1081)) ELT)) (-1612 (($ (-1299 |#2|)) 135 T ELT)) (-4427 (((-136)) 132 (|has| |#2| (-376)) ELT)) (-4274 (($ $ (-793)) 109 (-3047 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) 107 (-3047 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 103 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) 102 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) 101 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) 99 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 97 (|has| |#2| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) 28 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-1299 |#2|) $) 136 T ELT) (($ (-560)) 76 (-4043 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ELT) (($ (-421 (-560))) 73 (-3047 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (($ |#2|) 68 (|has| |#2| (-1133)) ELT) (((-888) $) 17 (|has| |#2| (-632 (-888))) ELT)) (-3614 (((-793)) 94 (|has| |#2| (-1081)) CONST)) (-1389 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3145 (($) 79 (|has| |#2| (-23)) CONST)) (-3151 (($) 93 (|has| |#2| (-1081)) CONST)) (-3156 (($ $ (-793)) 110 (-3047 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) 108 (-3047 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 106 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) 105 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) 104 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) 100 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 95 (|has| |#2| (-1081)) ELT)) (-3051 (((-114) $ $) 125 (|has| |#2| (-872)) ELT)) (-3052 (((-114) $ $) 127 (|has| |#2| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-3171 (((-114) $ $) 126 (|has| |#2| (-872)) ELT)) (-3172 (((-114) $ $) 128 (|has| |#2| (-872)) ELT)) (-4465 (($ $ |#2|) 131 (|has| |#2| (-376)) ELT)) (-4353 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-4355 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) 91 (|has| |#2| (-1081)) ELT) (($ $ (-949)) 88 (|has| |#2| (-1081)) ELT)) (* (($ $ $) 89 (|has| |#2| (-1081)) ELT) (($ $ |#2|) 87 (|has| |#2| (-748)) ELT) (($ |#2| $) 86 (|has| |#2| (-748)) ELT) (($ (-560) $) 83 (|has| |#2| (-21)) ELT) (($ (-793) $) 81 (|has| |#2| (-23)) ELT) (($ (-949) $) 78 (|has| |#2| (-25)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-245 |#1| |#2|) (-142) (-793) (-1249)) (T -245)) -((-1612 (*1 *1 *2) (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1249)) (-4 *1 (-245 *3 *4)))) (-4223 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1081)) (-4 *4 (-1249)))) (-4352 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1249)) (-4 *2 (-1081))))) -(-13 (-618 (-560) |t#2|) (-632 (-1299 |t#2|)) (-10 -8 (-6 -4511) (-15 -1612 ($ (-1299 |t#2|))) (IF (|has| |t#2| (-1133)) (-6 (-426 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1081)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -4223 ($ (-949))) (-15 -4352 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-748)) (-6 (-662 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4508)) (-6 -4508) |%noBranch|) (IF (|has| |t#2| (-872)) (-6 (-872)) |%noBranch|) (IF (|has| |t#2| (-817)) (-6 (-817)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1307 |t#2|)) |%noBranch|))) -(((-21) -4043 (|has| |#2| (-1081)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -4043 (|has| |#2| (-1081)) (|has| |#2| (-817)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -4043 (|has| |#2| (-1081)) (|has| |#2| (-817)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -4043 (|has| |#2| (-1133)) (|has| |#2| (-1081)) (|has| |#2| (-872)) (|has| |#2| (-817)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -4043 (|has| |#2| (-1081)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -4043 (|has| |#2| (-1081)) (|has| |#2| (-817)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-635 #1=(-421 (-560))) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ((-635 (-560)) -4043 (|has| |#2| (-1081)) (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133)))) ((-635 |#2|) |has| |#2| (-1133)) ((-632 (-888)) -4043 (|has| |#2| (-1133)) (|has| |#2| (-1081)) (|has| |#2| (-872)) (|has| |#2| (-817)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-632 (-888))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-632 (-1299 |#2|)) . T) ((-236 $) -4043 (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1081)))) ((-234 |#2|) |has| |#2| (-1081)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1081))) ((-239) -4043 (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1081)))) ((-274 |#2|) |has| |#2| (-1081)) ((-298 #2=(-560) |#2|) . T) ((-300 #2# |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1081)) ((-426 |#2|) |has| |#2| (-1133)) ((-503 |#2|) . T) ((-618 #2# |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-668 (-560)) -4043 (|has| |#2| (-1081)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-668 |#2|) -4043 (|has| |#2| (-1081)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1081)) ((-670 #3=(-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ((-670 |#2|) -4043 (|has| |#2| (-1081)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-670 $) |has| |#2| (-1081)) ((-662 |#2|) -4043 (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-660 #3#) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ((-660 |#2|) |has| |#2| (-1081)) ((-739 |#2|) -4043 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-748) |has| |#2| (-1081)) ((-816) |has| |#2| (-817)) ((-817) |has| |#2| (-817)) ((-818) |has| |#2| (-817)) ((-821) |has| |#2| (-817)) ((-872) -4043 (|has| |#2| (-872)) (|has| |#2| (-817))) ((-875) -4043 (|has| |#2| (-872)) (|has| |#2| (-817))) ((-922 $ #4=(-1209)) -4043 (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081)))) ((-928 (-1209)) -12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081))) ((-930 #4#) -4043 (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) (-12 (|has| |#2| (-928 (-1209))) (|has| |#2| (-1081)))) ((-1070 #1#) -12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ((-1070 (-560)) -12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ((-1070 |#2|) |has| |#2| (-1133)) ((-1083 |#2|) -4043 (|has| |#2| (-1081)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1088 |#2|) -4043 (|has| |#2| (-1081)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1081) |has| |#2| (-1081)) ((-1089) |has| |#2| (-1081)) ((-1144) |has| |#2| (-1081)) ((-1133) -4043 (|has| |#2| (-1133)) (|has| |#2| (-1081)) (|has| |#2| (-872)) (|has| |#2| (-817)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1249) . T) ((-1307 |#2|) |has| |#2| (-376))) -((-3053 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3692 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4223 (($ (-949)) 63 (|has| |#2| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) 69 (|has| |#2| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) 54 (|has| |#2| (-133)) ELT)) (-3624 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4304 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1133)) ELT)) (-3660 (((-560) $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) ((|#2| $) 29 (|has| |#2| (-1133)) ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) 59 (|has| |#2| (-1081)) ELT)) (-3481 (($) NIL (|has| |#2| (-381)) ELT)) (-1731 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ (-560)) 57 T ELT)) (-3690 (((-114) $) NIL (|has| |#2| (-817)) ELT)) (-3376 (((-663 |#2|) $) 14 (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#2| (-1081)) ELT)) (-2429 (((-560) $) 20 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-3093 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-2174 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#2| (-381)) ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-1299 $)) NIL (|has| |#2| (-1081)) ELT)) (-3746 (((-1191) $) NIL (|has| |#2| (-1133)) ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#2| (-381)) ELT)) (-3747 (((-1152) $) NIL (|has| |#2| (-1133)) ELT)) (-4317 ((|#2| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 24 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) 21 T ELT)) (-4352 ((|#2| $ $) NIL (|has| |#2| (-1081)) ELT)) (-1612 (($ (-1299 |#2|)) 18 T ELT)) (-4427 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4274 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#2|) $) 9 T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (($ |#2|) 12 (|has| |#2| (-1133)) ELT) (((-888) $) NIL (|has| |#2| (-632 (-888))) ELT)) (-3614 (((-793)) NIL (|has| |#2| (-1081)) CONST)) (-1389 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) 37 (|has| |#2| (-23)) CONST)) (-3151 (($) 41 (|has| |#2| (-1081)) CONST)) (-3156 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3540 (((-114) $ $) 28 (|has| |#2| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3172 (((-114) $ $) 67 (|has| |#2| (-872)) ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4355 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1081)) ELT)) (* (($ $ $) 47 (|has| |#2| (-1081)) ELT) (($ $ |#2|) 45 (|has| |#2| (-748)) ELT) (($ |#2| $) 46 (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-246 |#1| |#2|) (-245 |#1| |#2|) (-793) (-1249)) (T -246)) +(-13 (-1079) (-239)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-1608 (($) 12 T ELT) (($ (-661 |#2|)) NIL T ELT)) (-3902 (($ $) 14 T ELT)) (-4032 (($ (-661 |#2|)) 10 T ELT)) (-4458 (((-886) $) 21 T ELT))) +(((-241 |#1| |#2|) (-10 -8 (-15 -4458 ((-886) |#1|)) (-15 -1608 (|#1| (-661 |#2|))) (-15 -1608 (|#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -3902 (|#1| |#1|))) (-242 |#2|) (-1131)) (T -241)) +NIL +(-10 -8 (-15 -4458 ((-886) |#1|)) (-15 -1608 (|#1| (-661 |#2|))) (-15 -1608 (|#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -3902 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-242 |#1|) (-142) (-1131)) (T -242)) +((-1608 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1131)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-242 *3)))) (-3907 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-242 *2)) (-4 *2 (-1131)))) (-3907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-242 *3)) (-4 *3 (-1131)))) (-1723 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-242 *3)) (-4 *3 (-1131))))) +(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1608 ($)) (-15 -1608 ($ (-661 |t#1|))) (IF (|has| $ (-6 -4507)) (PROGN (-15 -3907 ($ |t#1| $)) (-15 -3907 ($ (-1 (-114) |t#1|) $)) (-15 -1723 ($ (-1 (-114) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-1609 (((-2 (|:| |varOrder| (-661 (-1207))) (|:| |inhom| (-3 (-661 (-1297 (-791))) "failed")) (|:| |hom| (-661 (-1297 (-791))))) (-305 (-974 (-558)))) 42 T ELT))) +(((-243) (-10 -7 (-15 -1609 ((-2 (|:| |varOrder| (-661 (-1207))) (|:| |inhom| (-3 (-661 (-1297 (-791))) "failed")) (|:| |hom| (-661 (-1297 (-791))))) (-305 (-974 (-558))))))) (T -243)) +((-1609 (*1 *2 *3) (-12 (-5 *3 (-305 (-974 (-558)))) (-5 *2 (-2 (|:| |varOrder| (-661 (-1207))) (|:| |inhom| (-3 (-661 (-1297 (-791))) "failed")) (|:| |hom| (-661 (-1297 (-791)))))) (-5 *1 (-243))))) +(-10 -7 (-15 -1609 ((-2 (|:| |varOrder| (-661 (-1207))) (|:| |inhom| (-3 (-661 (-1297 (-791))) "failed")) (|:| |hom| (-661 (-1297 (-791))))) (-305 (-974 (-558)))))) +((-3620 (((-791)) 56 T ELT)) (-2503 (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 $) (-1297 $)) 53 T ELT) (((-709 |#3|) (-709 $)) 44 T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-4423 (((-136)) 62 T ELT)) (-4270 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4458 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-886) $) NIL T ELT) (($ (-558)) 12 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3610 (((-791)) 15 T ELT)) (-4461 (($ $ |#3|) 59 T ELT))) +(((-244 |#1| |#2| |#3|) (-10 -8 (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4458 ((-886) |#1|)) (-15 -3610 ((-791))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -4458 (|#1| |#3|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2503 ((-709 |#3|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 |#1|) (-1297 |#1|))) (-15 -3620 ((-791))) (-15 -4461 (|#1| |#1| |#3|)) (-15 -4423 ((-136))) (-15 -4458 ((-1297 |#3|) |#1|))) (-245 |#2| |#3|) (-791) (-1247)) (T -244)) +((-4423 (*1 *2) (-12 (-14 *4 (-791)) (-4 *5 (-1247)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3620 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3610 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) +(-10 -8 (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4458 ((-886) |#1|)) (-15 -3610 ((-791))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -4458 (|#1| |#3|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2503 ((-709 |#3|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 |#1|) (-1297 |#1|))) (-15 -3620 ((-791))) (-15 -4461 (|#1| |#1| |#3|)) (-15 -4423 ((-136))) (-15 -4458 ((-1297 |#3|) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-3688 (((-114) $) 80 (|has| |#2| (-23)) ELT)) (-4219 (($ (-947)) 134 (|has| |#2| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) 130 (|has| |#2| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) 82 (|has| |#2| (-133)) ELT)) (-3620 (((-791)) 119 (|has| |#2| (-381)) ELT)) (-4300 ((|#2| $ (-558) |#2|) 56 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 75 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) 72 (-3043 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1131)) ELT)) (-3656 (((-558) $) 74 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-419 (-558)) $) 71 (-3043 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) ((|#2| $) 70 (|has| |#2| (-1131)) ELT)) (-2503 (((-709 (-558)) (-709 $)) 116 (-3043 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 115 (-3043 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 114 (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-709 $)) 113 (|has| |#2| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) 90 (|has| |#2| (-1079)) ELT)) (-3477 (($) 122 (|has| |#2| (-381)) ELT)) (-1729 ((|#2| $ (-558) |#2|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ (-558)) 55 T ELT)) (-3686 (((-114) $) 129 (|has| |#2| (-815)) ELT)) (-3372 (((-661 |#2|) $) 30 (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) 92 (|has| |#2| (-1079)) ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 123 (|has| |#2| (-870)) ELT)) (-3089 (((-661 |#2|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 124 (|has| |#2| (-870)) ELT)) (-2170 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2230 (((-947) $) 121 (|has| |#2| (-381)) ELT)) (-2504 (((-709 (-558)) (-1297 $)) 118 (-3043 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 117 (-3043 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 112 (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-1297 $)) 111 (|has| |#2| (-1079)) ELT)) (-3742 (((-1189) $) 22 (|has| |#2| (-1131)) ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-2641 (($ (-947)) 120 (|has| |#2| (-381)) ELT)) (-3743 (((-1150) $) 21 (|has| |#2| (-1131)) ELT)) (-4313 ((|#2| $) 46 (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#2|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#2| $ (-558) |#2|) 54 T ELT) ((|#2| $ (-558)) 53 T ELT)) (-4348 ((|#2| $ $) 133 (|has| |#2| (-1079)) ELT)) (-1610 (($ (-1297 |#2|)) 135 T ELT)) (-4423 (((-136)) 132 (|has| |#2| (-376)) ELT)) (-4270 (($ $ (-791)) 109 (-3043 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) 107 (-3043 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 103 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) 102 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) 101 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) 99 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) 97 (|has| |#2| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) 28 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-1297 |#2|) $) 136 T ELT) (($ (-558)) 76 (-4039 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ELT) (($ (-419 (-558))) 73 (-3043 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (($ |#2|) 68 (|has| |#2| (-1131)) ELT) (((-886) $) 17 (|has| |#2| (-630 (-886))) ELT)) (-3610 (((-791)) 94 (|has| |#2| (-1079)) CONST)) (-1387 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3141 (($) 79 (|has| |#2| (-23)) CONST)) (-3147 (($) 93 (|has| |#2| (-1079)) CONST)) (-3152 (($ $ (-791)) 110 (-3043 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) 108 (-3043 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 106 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) 105 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) 104 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) 100 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) 95 (|has| |#2| (-1079)) ELT)) (-3047 (((-114) $ $) 125 (|has| |#2| (-870)) ELT)) (-3048 (((-114) $ $) 127 (|has| |#2| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-3167 (((-114) $ $) 126 (|has| |#2| (-870)) ELT)) (-3168 (((-114) $ $) 128 (|has| |#2| (-870)) ELT)) (-4461 (($ $ |#2|) 131 (|has| |#2| (-376)) ELT)) (-4349 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-4351 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) 91 (|has| |#2| (-1079)) ELT) (($ $ (-947)) 88 (|has| |#2| (-1079)) ELT)) (* (($ $ $) 89 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 87 (|has| |#2| (-746)) ELT) (($ |#2| $) 86 (|has| |#2| (-746)) ELT) (($ (-558) $) 83 (|has| |#2| (-21)) ELT) (($ (-791) $) 81 (|has| |#2| (-23)) ELT) (($ (-947) $) 78 (|has| |#2| (-25)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-245 |#1| |#2|) (-142) (-791) (-1247)) (T -245)) +((-1610 (*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4)))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1079)) (-4 *4 (-1247)))) (-4348 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) +(-13 (-616 (-558) |t#2|) (-630 (-1297 |t#2|)) (-10 -8 (-6 -4507) (-15 -1610 ($ (-1297 |t#2|))) (IF (|has| |t#2| (-1131)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1079)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -4219 ($ (-947))) (-15 -4348 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-746)) (-6 (-660 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-737 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |t#2| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#2| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1305 |t#2|)) |%noBranch|))) +(((-21) -4039 (|has| |#2| (-1079)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -4039 (|has| |#2| (-1079)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -4039 (|has| |#2| (-1079)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -4039 (|has| |#2| (-1131)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -4039 (|has| |#2| (-1079)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -4039 (|has| |#2| (-1079)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-633 #1=(-419 (-558))) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ((-633 (-558)) -4039 (|has| |#2| (-1079)) (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131)))) ((-633 |#2|) |has| |#2| (-1131)) ((-630 (-886)) -4039 (|has| |#2| (-1131)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-630 (-886))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-630 (-1297 |#2|)) . T) ((-236 $) -4039 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1079)))) ((-234 |#2|) |has| |#2| (-1079)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1079))) ((-239) -4039 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1079)))) ((-274 |#2|) |has| |#2| (-1079)) ((-298 #2=(-558) |#2|) . T) ((-300 #2# |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1079)) ((-424 |#2|) |has| |#2| (-1131)) ((-501 |#2|) . T) ((-616 #2# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-666 (-558)) -4039 (|has| |#2| (-1079)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-666 |#2|) -4039 (|has| |#2| (-1079)) (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-666 $) |has| |#2| (-1079)) ((-668 #3=(-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ((-668 |#2|) -4039 (|has| |#2| (-1079)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1079)) ((-660 |#2|) -4039 (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-658 #3#) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ((-658 |#2|) |has| |#2| (-1079)) ((-737 |#2|) -4039 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-746) |has| |#2| (-1079)) ((-814) |has| |#2| (-815)) ((-815) |has| |#2| (-815)) ((-816) |has| |#2| (-815)) ((-819) |has| |#2| (-815)) ((-870) -4039 (|has| |#2| (-870)) (|has| |#2| (-815))) ((-873) -4039 (|has| |#2| (-870)) (|has| |#2| (-815))) ((-920 $ #4=(-1207)) -4039 (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079)))) ((-926 (-1207)) -12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079))) ((-928 #4#) -4039 (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1207))) (|has| |#2| (-1079)))) ((-1068 #1#) -12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ((-1068 (-558)) -12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ((-1068 |#2|) |has| |#2| (-1131)) ((-1081 |#2|) -4039 (|has| |#2| (-1079)) (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1086 |#2|) -4039 (|has| |#2| (-1079)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1079) |has| |#2| (-1079)) ((-1087) |has| |#2| (-1079)) ((-1142) |has| |#2| (-1079)) ((-1131) -4039 (|has| |#2| (-1131)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1247) . T) ((-1305 |#2|) |has| |#2| (-376))) +((-3049 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3688 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4219 (($ (-947)) 63 (|has| |#2| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) 69 (|has| |#2| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) 54 (|has| |#2| (-133)) ELT)) (-3620 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4300 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1131)) ELT)) (-3656 (((-558) $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) ((|#2| $) 29 (|has| |#2| (-1131)) ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) 59 (|has| |#2| (-1079)) ELT)) (-3477 (($) NIL (|has| |#2| (-381)) ELT)) (-1729 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ (-558)) 57 T ELT)) (-3686 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3372 (((-661 |#2|) $) 14 (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#2| (-1079)) ELT)) (-2425 (((-558) $) 20 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3089 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2170 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#2| (-381)) ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3742 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#2| (-381)) ELT)) (-3743 (((-1150) $) NIL (|has| |#2| (-1131)) ELT)) (-4313 ((|#2| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 24 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) 21 T ELT)) (-4348 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-1610 (($ (-1297 |#2|)) 18 T ELT)) (-4423 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4270 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#2|) $) 9 T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (($ |#2|) 12 (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-630 (-886))) ELT)) (-3610 (((-791)) NIL (|has| |#2| (-1079)) CONST)) (-1387 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) 37 (|has| |#2| (-23)) CONST)) (-3147 (($) 41 (|has| |#2| (-1079)) CONST)) (-3152 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3536 (((-114) $ $) 28 (|has| |#2| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3168 (((-114) $ $) 67 (|has| |#2| (-870)) ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4351 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) 47 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 45 (|has| |#2| (-746)) ELT) (($ |#2| $) 46 (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-947) $) NIL (|has| |#2| (-25)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-246 |#1| |#2|) (-245 |#1| |#2|) (-791) (-1247)) (T -246)) NIL (-245 |#1| |#2|) -((-4357 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4358 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4474 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) -(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -4357 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4358 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4474 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-793) (-1249) (-1249)) (T -247)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1249)) (-4 *2 (-1249)) (-5 *1 (-247 *5 *6 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793)) (-4 *7 (-1249)) (-4 *5 (-1249)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5))))) -(-10 -7 (-15 -4357 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4358 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4474 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-1616 (((-560) (-663 (-1191))) 36 T ELT) (((-560) (-1191)) 29 T ELT)) (-1615 (((-1305) (-663 (-1191))) 40 T ELT) (((-1305) (-1191)) 39 T ELT)) (-1613 (((-1191)) 16 T ELT)) (-1614 (((-1191) (-560) (-1191)) 23 T ELT)) (-4289 (((-663 (-1191)) (-663 (-1191)) (-560) (-1191)) 37 T ELT) (((-1191) (-1191) (-560) (-1191)) 35 T ELT)) (-3105 (((-663 (-1191)) (-663 (-1191))) 15 T ELT) (((-663 (-1191)) (-1191)) 11 T ELT))) -(((-248) (-10 -7 (-15 -3105 ((-663 (-1191)) (-1191))) (-15 -3105 ((-663 (-1191)) (-663 (-1191)))) (-15 -1613 ((-1191))) (-15 -1614 ((-1191) (-560) (-1191))) (-15 -4289 ((-1191) (-1191) (-560) (-1191))) (-15 -4289 ((-663 (-1191)) (-663 (-1191)) (-560) (-1191))) (-15 -1615 ((-1305) (-1191))) (-15 -1615 ((-1305) (-663 (-1191)))) (-15 -1616 ((-560) (-1191))) (-15 -1616 ((-560) (-663 (-1191)))))) (T -248)) -((-1616 (*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-560)) (-5 *1 (-248)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-560)) (-5 *1 (-248)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1305)) (-5 *1 (-248)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-248)))) (-4289 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-1191))) (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *1 (-248)))) (-4289 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-248)))) (-1614 (*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-248)))) (-1613 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-248)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-248)))) (-3105 (*1 *2 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-248)) (-5 *3 (-1191))))) -(-10 -7 (-15 -3105 ((-663 (-1191)) (-1191))) (-15 -3105 ((-663 (-1191)) (-663 (-1191)))) (-15 -1613 ((-1191))) (-15 -1614 ((-1191) (-560) (-1191))) (-15 -4289 ((-1191) (-1191) (-560) (-1191))) (-15 -4289 ((-663 (-1191)) (-663 (-1191)) (-560) (-1191))) (-15 -1615 ((-1305) (-1191))) (-15 -1615 ((-1305) (-663 (-1191)))) (-15 -1616 ((-560) (-1191))) (-15 -1616 ((-560) (-663 (-1191))))) -((** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 18 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-560)) $) 25 T ELT) (($ $ (-421 (-560))) NIL T ELT))) -(((-249 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) (-250)) (T -249)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 52 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 56 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 53 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-421 (-560)) $) 55 T ELT) (($ $ (-421 (-560))) 54 T ELT))) +((-4353 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4354 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4470 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) +(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -4353 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4354 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4470 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-791) (-1247) (-1247)) (T -247)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-791)) (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5))))) +(-10 -7 (-15 -4353 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4354 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4470 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) +((-1614 (((-558) (-661 (-1189))) 36 T ELT) (((-558) (-1189)) 29 T ELT)) (-1613 (((-1303) (-661 (-1189))) 40 T ELT) (((-1303) (-1189)) 39 T ELT)) (-1611 (((-1189)) 16 T ELT)) (-1612 (((-1189) (-558) (-1189)) 23 T ELT)) (-4285 (((-661 (-1189)) (-661 (-1189)) (-558) (-1189)) 37 T ELT) (((-1189) (-1189) (-558) (-1189)) 35 T ELT)) (-3101 (((-661 (-1189)) (-661 (-1189))) 15 T ELT) (((-661 (-1189)) (-1189)) 11 T ELT))) +(((-248) (-10 -7 (-15 -3101 ((-661 (-1189)) (-1189))) (-15 -3101 ((-661 (-1189)) (-661 (-1189)))) (-15 -1611 ((-1189))) (-15 -1612 ((-1189) (-558) (-1189))) (-15 -4285 ((-1189) (-1189) (-558) (-1189))) (-15 -4285 ((-661 (-1189)) (-661 (-1189)) (-558) (-1189))) (-15 -1613 ((-1303) (-1189))) (-15 -1613 ((-1303) (-661 (-1189)))) (-15 -1614 ((-558) (-1189))) (-15 -1614 ((-558) (-661 (-1189)))))) (T -248)) +((-1614 (*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-558)) (-5 *1 (-248)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-558)) (-5 *1 (-248)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) (-4285 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-661 (-1189))) (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *1 (-248)))) (-4285 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1612 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1611 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-248)))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189))))) +(-10 -7 (-15 -3101 ((-661 (-1189)) (-1189))) (-15 -3101 ((-661 (-1189)) (-661 (-1189)))) (-15 -1611 ((-1189))) (-15 -1612 ((-1189) (-558) (-1189))) (-15 -4285 ((-1189) (-1189) (-558) (-1189))) (-15 -4285 ((-661 (-1189)) (-661 (-1189)) (-558) (-1189))) (-15 -1613 ((-1303) (-1189))) (-15 -1613 ((-1303) (-661 (-1189)))) (-15 -1614 ((-558) (-1189))) (-15 -1614 ((-558) (-661 (-1189))))) +((** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-249 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) (-250)) (T -249)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 52 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 56 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 53 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 55 T ELT) (($ $ (-419 (-558))) 54 T ELT))) (((-250) (-142)) (T -250)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-560)))) (-2888 (*1 *1 *1) (-4 *1 (-250)))) -(-13 (-302) (-38 (-421 (-560))) (-10 -8 (-15 ** ($ $ (-560))) (-15 -2888 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-302) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-739 #1#) . T) ((-748) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-4313 (($ $) 63 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-1618 (($ $ $) 59 (|has| $ (-6 -4512)) ELT)) (-1617 (($ $ $) 58 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-1620 (($ $) 62 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-1619 (($ $) 61 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) 65 T ELT)) (-3682 (($ $) 64 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4307 (($ $ $) 60 (|has| $ (-6 -4512)) ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-251 |#1|) (-142) (-1249)) (T -251)) -((-4314 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-4307 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-1618 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249)))) (-1617 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249))))) -(-13 (-1042 |t#1|) (-10 -8 (-15 -4314 (|t#1| $)) (-15 -3682 ($ $)) (-15 -4313 ($ $)) (-15 -1620 ($ $)) (-15 -1619 ($ $)) (IF (|has| $ (-6 -4512)) (PROGN (-15 -4307 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1617 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) NIL T ELT)) (-4311 ((|#1| $) NIL T ELT)) (-4313 (($ $) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) NIL (|has| |#1| (-872)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1945 (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) 10 (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3948 (((-114) $ (-793)) NIL T ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4312 ((|#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-4315 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2608 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-1479 (($ $) 7 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) NIL (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3912 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3949 (((-114) $) NIL T ELT)) (-3925 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-4235 (((-114) $ (-793)) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4024 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4048 (($ |#1|) NIL T ELT)) (-4232 (((-114) $ (-793)) NIL T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4123 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3950 (((-114) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-793) $ "count") 16 T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-1726 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-1621 (($ (-663 |#1|)) 22 T ELT)) (-4149 (((-114) $) NIL T ELT)) (-4308 (($ $) NIL T ELT)) (-4306 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) NIL T ELT)) (-4310 (($ $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4307 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4318 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4462 (($ (-663 |#1|)) 17 T ELT) (((-663 |#1|) $) 18 T ELT) (((-888) $) 21 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 14 (|has| $ (-6 -4511)) ELT))) -(((-252 |#1|) (-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -1621 ($ (-663 |#1|))) (-15 -4316 ($ $ "unique")) (-15 -4316 ($ $ "sort")) (-15 -4316 ((-793) $ "count")))) (-872)) (T -252)) -((-1621 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-252 *3)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-872)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-872)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-872))))) -(-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -1621 ($ (-663 |#1|))) (-15 -4316 ($ $ "unique")) (-15 -4316 ($ $ "sort")) (-15 -4316 ((-793) $ "count")))) -((-1622 (((-3 (-793) "failed") |#1| |#1| (-793)) 40 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -1622 ((-3 (-793) "failed") |#1| |#1| (-793)))) (-13 (-748) (-381) (-10 -7 (-15 ** (|#1| |#1| (-560)))))) (T -253)) -((-1622 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-793)) (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560)))))) (-5 *1 (-253 *3))))) -(-10 -7 (-15 -1622 ((-3 (-793) "failed") |#1| |#1| (-793)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $) 59 (|has| |#1| (-239)) ELT) (($ $ (-793)) 57 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 55 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 53 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 52 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 51 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3156 (($ $) 58 (|has| |#1| (-239)) ELT) (($ $ (-793)) 56 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 54 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 50 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 49 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 48 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-254 |#1|) (-142) (-1081)) (T -254)) -NIL -(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-930 (-1209))) (-6 (-927 |t#1| (-1209))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) -4043 (-12 (|has| |#1| (-175)) (|has| |#1| (-930 (-1209)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-739 |#1|) -4043 (-12 (|has| |#1| (-175)) (|has| |#1| (-930 (-1209)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-922 $ #1=(-1209)) |has| |#1| (-930 (-1209))) ((-927 |#1| (-1209)) |has| |#1| (-930 (-1209))) ((-930 #1#) |has| |#1| (-930 (-1209))) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-889 |#1|)) $) NIL T ELT)) (-3572 (((-1203 $) $ (-889 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-889 |#1|))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-889 |#1|) #2#) $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-889 |#1|) $) NIL T ELT)) (-4272 (($ $ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2162 (($ $ (-663 (-560))) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-940)) ELT)) (-1816 (($ $ |#2| (-246 (-4473 |#1|) (-793)) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#2|) (-889 |#1|)) NIL T ELT) (($ (-1203 $) (-889 |#1|)) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-246 (-4473 |#1|) (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-889 |#1|)) NIL T ELT)) (-3307 (((-246 (-4473 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-1817 (($ (-1 (-246 (-4473 |#1|) (-793)) (-246 (-4473 |#1|) (-793))) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3571 (((-3 (-889 |#1|) #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-889 |#1|)) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#2| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-889 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-889 |#1|) $) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 $)) NIL T ELT)) (-4273 (($ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4274 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-4464 (((-246 (-4473 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-889 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-889 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-246 (-4473 |#1|) (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-255 |#1| |#2|) (-13 (-980 |#2| (-246 (-4473 |#1|) (-793)) (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) (-663 (-1209)) (-1081)) (T -255)) -((-2162 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4)) (-14 *3 (-663 (-1209))) (-4 *4 (-1081))))) -(-13 (-980 |#2| (-246 (-4473 |#1|) (-793)) (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1623 (((-1305) $) 17 T ELT)) (-1625 (((-187 (-257)) $) 11 T ELT)) (-1624 (($ (-187 (-257))) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1626 (((-257) $) 7 T ELT)) (-4462 (((-888) $) 9 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 15 T ELT))) -(((-256) (-13 (-1133) (-10 -8 (-15 -1626 ((-257) $)) (-15 -1625 ((-187 (-257)) $)) (-15 -1624 ($ (-187 (-257)))) (-15 -1623 ((-1305) $))))) (T -256)) -((-1626 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-256))))) -(-13 (-1133) (-10 -8 (-15 -1626 ((-257) $)) (-15 -1625 ((-187 (-257)) $)) (-15 -1624 ($ (-187 (-257)))) (-15 -1623 ((-1305) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1550 (((-663 (-890)) $) NIL T ELT)) (-4056 (((-520) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1552 (((-190) $) NIL T ELT)) (-3118 (((-114) $ (-520)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1627 (((-345) $) 7 T ELT)) (-1551 (((-663 (-114)) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (((-186) $) 8 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3003 (((-55) $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-257) (-13 (-189) (-632 (-186)) (-10 -8 (-15 -1627 ((-345) $))))) (T -257)) -((-1627 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) -(-13 (-189) (-632 (-186)) (-10 -8 (-15 -1627 ((-345) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 (((-1214) $ (-793)) 13 T ELT)) (-4462 (((-888) $) 20 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 16 T ELT)) (-4473 (((-793) $) 9 T ELT))) -(((-258) (-13 (-1133) (-298 (-793) (-1214)) (-10 -8 (-15 -4473 ((-793) $))))) (T -258)) -((-4473 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258))))) -(-13 (-1133) (-298 (-793) (-1214)) (-10 -8 (-15 -4473 ((-793) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4223 (($ (-949)) NIL (|has| |#4| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) NIL (|has| |#4| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#4| (-381)) ELT)) (-4304 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1133)) ELT) (((-3 (-560) #1#) $) NIL (-12 (|has| |#4| (-1070 (-560))) (|has| |#4| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#4| (-1070 (-421 (-560)))) (|has| |#4| (-1133))) ELT)) (-3660 ((|#4| $) NIL (|has| |#4| (-1133)) ELT) (((-560) $) NIL (-12 (|has| |#4| (-1070 (-560))) (|has| |#4| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#4| (-1070 (-421 (-560)))) (|has| |#4| (-1133))) ELT)) (-2507 (((-2 (|:| -1795 (-711 |#4|)) (|:| |vec| (-1299 |#4|))) (-711 $) (-1299 $)) NIL (|has| |#4| (-1081)) ELT) (((-711 |#4|) (-711 $)) NIL (|has| |#4| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081))) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#4| (-1081)) ELT)) (-3481 (($) NIL (|has| |#4| (-381)) ELT)) (-1731 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#4| $ (-560)) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#4| (-817)) ELT)) (-3376 (((-663 |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#4| (-1081)) ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#4| (-872)) ELT)) (-3093 (((-663 |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#4| (-872)) ELT)) (-2174 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#4| (-381)) ELT)) (-2508 (((-2 (|:| -1795 (-711 |#4|)) (|:| |vec| (-1299 |#4|))) (-1299 $) $) NIL (|has| |#4| (-1081)) ELT) (((-711 |#4|) (-1299 $)) NIL (|has| |#4| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1081))) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#4| (-381)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 ((|#4| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#4|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2434 (((-663 |#4|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#4| $ (-560) |#4|) NIL T ELT) ((|#4| $ (-560)) 12 T ELT)) (-4352 ((|#4| $ $) NIL (|has| |#4| (-1081)) ELT)) (-1612 (($ (-1299 |#4|)) NIL T ELT)) (-4427 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-4274 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1081)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081)))) ELT) (($ $) NIL (-4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081)))) ELT)) (-2171 (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1133)) ELT) (((-888) $) NIL T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#4| (-1070 (-560))) (|has| |#4| (-1133))) (|has| |#4| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#4| (-1070 (-421 (-560)))) (|has| |#4| (-1133))) ELT)) (-3614 (((-793)) NIL (|has| |#4| (-1081)) CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL (|has| |#4| (-1081)) CONST)) (-3156 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1081)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#4| (-928 (-1209))) (|has| |#4| (-1081))) (-12 (|has| |#4| (-930 (-1209))) (|has| |#4| (-1081)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081)))) ELT) (($ $) NIL (-4043 (-12 (|has| |#4| (-240)) (|has| |#4| (-1081))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1081)))) ELT)) (-3051 (((-114) $ $) NIL (|has| |#4| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#4| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#4| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#4| (-872)) ELT)) (-4465 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#4| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#4| (-1081)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-748)) ELT) (($ |#4| $) NIL (|has| |#4| (-748)) ELT) (($ $ $) NIL (|has| |#4| (-1081)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|)) (-949) (-1081) (-1155 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-670 |#2|)) (T -259)) -NIL -(-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4223 (($ (-949)) NIL (|has| |#3| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) NIL (|has| |#3| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-4304 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1133)) ELT) (((-3 (-560) #1#) $) NIL (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT)) (-3660 ((|#3| $) NIL (|has| |#3| (-1133)) ELT) (((-560) $) NIL (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT)) (-2507 (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 $) (-1299 $)) NIL (|has| |#3| (-1081)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#3| (-1081)) ELT)) (-3481 (($) NIL (|has| |#3| (-381)) ELT)) (-1731 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#3| $ (-560)) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#3| (-817)) ELT)) (-3376 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#3| (-1081)) ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#3| (-872)) ELT)) (-3093 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#3| (-872)) ELT)) (-2174 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#3| (-381)) ELT)) (-2508 (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-1299 $) $) NIL (|has| |#3| (-1081)) ELT) (((-711 |#3|) (-1299 $)) NIL (|has| |#3| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#3| (-381)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 ((|#3| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-2434 (((-663 |#3|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) 11 T ELT)) (-4352 ((|#3| $ $) NIL (|has| |#3| (-1081)) ELT)) (-1612 (($ (-1299 |#3|)) NIL T ELT)) (-4427 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4274 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) ELT) (($ $) NIL (-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) ELT)) (-2171 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1133)) ELT) (((-888) $) NIL T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (|has| |#3| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT)) (-3614 (((-793)) NIL (|has| |#3| (-1081)) CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL (|has| |#3| (-1081)) CONST)) (-3156 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#3| (-928 (-1209))) (|has| |#3| (-1081))) (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) ELT) (($ $) NIL (-4043 (-12 (|has| |#3| (-240)) (|has| |#3| (-1081))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1081)))) ELT)) (-3051 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-4465 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1081)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ $ $) NIL (|has| |#3| (-1081)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-670 |#2|)) (-793) (-1081) (-670 |#2|)) (T -260)) -NIL -(-13 (-245 |#1| |#3|) (-670 |#2|)) -((-1632 (((-663 (-793)) $) 56 T ELT) (((-663 (-793)) $ |#3|) 59 T ELT)) (-1666 (((-793) $) 58 T ELT) (((-793) $ |#3|) 61 T ELT)) (-1628 (($ $) 76 T ELT)) (-3661 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-4288 (((-793) $ |#3|) 43 T ELT) (((-793) $) 38 T ELT)) (-1667 (((-1 $ (-793)) |#3|) 15 T ELT) (((-1 $ (-793)) $) 88 T ELT)) (-1630 ((|#4| $) 69 T ELT)) (-1631 (((-114) $) 67 T ELT)) (-1629 (($ $) 75 T ELT)) (-4284 (($ $ (-663 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 97 T ELT)) (-4274 (($ $ (-663 |#4|) (-663 (-793))) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1633 (((-663 |#3|) $) 86 T ELT)) (-4464 ((|#5| $) NIL T ELT) (((-793) $ |#4|) NIL T ELT) (((-663 (-793)) $ (-663 |#4|)) NIL T ELT) (((-793) $ |#3|) 49 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT))) -(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4462 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4284 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#3| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#3| |#1|)) (-15 -1667 ((-1 |#1| (-793)) |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1629 (|#1| |#1|)) (-15 -1630 (|#4| |#1|)) (-15 -1631 ((-114) |#1|)) (-15 -1666 ((-793) |#1| |#3|)) (-15 -1632 ((-663 (-793)) |#1| |#3|)) (-15 -1666 ((-793) |#1|)) (-15 -1632 ((-663 (-793)) |#1|)) (-15 -4464 ((-793) |#1| |#3|)) (-15 -4288 ((-793) |#1|)) (-15 -4288 ((-793) |#1| |#3|)) (-15 -1633 ((-663 |#3|) |#1|)) (-15 -1667 ((-1 |#1| (-793)) |#3|)) (-15 -4462 (|#1| |#3|)) (-15 -3661 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4464 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -4464 ((-793) |#1| |#4|)) (-15 -4462 (|#1| |#4|)) (-15 -3661 ((-3 |#4| #1#) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#4| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4464 (|#5| |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4274 (|#1| |#1| |#4|)) (-15 -4274 (|#1| |#1| (-663 |#4|))) (-15 -4274 (|#1| |#1| |#4| (-793))) (-15 -4274 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1081) (-872) (-277 |#3|) (-817)) (T -261)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4462 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4284 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#3| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#3| |#1|)) (-15 -1667 ((-1 |#1| (-793)) |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1629 (|#1| |#1|)) (-15 -1630 (|#4| |#1|)) (-15 -1631 ((-114) |#1|)) (-15 -1666 ((-793) |#1| |#3|)) (-15 -1632 ((-663 (-793)) |#1| |#3|)) (-15 -1666 ((-793) |#1|)) (-15 -1632 ((-663 (-793)) |#1|)) (-15 -4464 ((-793) |#1| |#3|)) (-15 -4288 ((-793) |#1|)) (-15 -4288 ((-793) |#1| |#3|)) (-15 -1633 ((-663 |#3|) |#1|)) (-15 -1667 ((-1 |#1| (-793)) |#3|)) (-15 -4462 (|#1| |#3|)) (-15 -3661 ((-3 |#3| #1="failed") |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4464 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -4464 ((-793) |#1| |#4|)) (-15 -4462 (|#1| |#4|)) (-15 -3661 ((-3 |#4| #1#) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#4| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4464 (|#5| |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4274 (|#1| |#1| |#4|)) (-15 -4274 (|#1| |#1| (-663 |#4|))) (-15 -4274 (|#1| |#1| |#4| (-793))) (-15 -4274 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1632 (((-663 (-793)) $) 248 T ELT) (((-663 (-793)) $ |#2|) 246 T ELT)) (-1666 (((-793) $) 247 T ELT) (((-793) $ |#2|) 245 T ELT)) (-3570 (((-663 |#3|) $) 120 T ELT)) (-3572 (((-1203 $) $ |#3|) 135 T ELT) (((-1203 |#1|) $) 134 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 97 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 98 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 100 (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) 122 T ELT) (((-793) $ (-663 |#3|)) 121 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 110 (|has| |#1| (-940)) ELT)) (-4291 (($ $) 108 (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) 107 (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 113 (|has| |#1| (-940)) ELT)) (-1628 (($ $) 241 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-421 (-560)) #2#) $) 175 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) 173 (|has| |#1| (-1070 (-560))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3660 ((|#1| $) 177 T ELT) (((-421 (-560)) $) 176 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) 174 (|has| |#1| (-1070 (-560))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-4272 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4475 (($ $) 168 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 146 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 145 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 144 T ELT) (((-711 |#1|) (-711 $)) 143 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) 190 (|has| |#1| (-466)) ELT) (($ $ |#3|) 115 (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) 119 T ELT)) (-4239 (((-114) $) 106 (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| |#4| $) 186 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 94 (-12 (|has| |#3| (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 93 (-12 (|has| |#3| (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ |#2|) 251 T ELT) (((-793) $) 250 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2663 (((-793) $) 183 T ELT)) (-3573 (($ (-1203 |#1|) |#3|) 127 T ELT) (($ (-1203 $) |#3|) 126 T ELT)) (-3308 (((-663 $) $) 136 T ELT)) (-4453 (((-114) $) 166 T ELT)) (-3380 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-793)) 129 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 128 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#3|) 130 T ELT)) (-3307 ((|#4| $) 184 T ELT) (((-793) $ |#3|) 132 T ELT) (((-663 (-793)) $ (-663 |#3|)) 131 T ELT)) (-1817 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1667 (((-1 $ (-793)) |#2|) 253 T ELT) (((-1 $ (-793)) $) 240 (|has| |#1| (-240)) ELT)) (-3571 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 148 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 147 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 142 T ELT) (((-711 |#1|) (-1299 $)) 141 T ELT)) (-3381 (($ $) 163 T ELT)) (-3678 ((|#1| $) 162 T ELT)) (-1630 ((|#3| $) 243 T ELT)) (-2116 (($ (-663 $)) 104 (|has| |#1| (-466)) ELT) (($ $ $) 103 (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1631 (((-114) $) 244 T ELT)) (-3310 (((-3 (-663 $) #3#) $) 124 T ELT)) (-3309 (((-3 (-663 $) #3#) $) 125 T ELT)) (-3311 (((-3 (-2 (|:| |var| |#3|) (|:| -2646 (-793))) #3#) $) 123 T ELT)) (-1629 (($ $) 242 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 180 T ELT)) (-2018 ((|#1| $) 181 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 105 (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) 102 (|has| |#1| (-466)) ELT) (($ $ $) 101 (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 112 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 111 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 109 (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-663 $) (-663 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-663 |#3|) (-663 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) 238 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) 236 (|has| |#1| (-240)) ELT)) (-4273 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#3|) (-663 (-793))) 49 T ELT) (($ $ |#3| (-793)) 48 T ELT) (($ $ (-663 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 259 T ELT) (($ $) 235 (|has| |#1| (-239)) ELT) (($ $ (-793)) 233 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 231 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 229 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 228 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 227 (|has| |#1| (-930 (-1209))) ELT)) (-1633 (((-663 |#2|) $) 252 T ELT)) (-4464 ((|#4| $) 164 T ELT) (((-793) $ |#3|) 140 T ELT) (((-663 (-793)) $ (-663 |#3|)) 139 T ELT) (((-793) $ |#2|) 249 T ELT)) (-4488 (((-916 (-391)) $) 92 (-12 (|has| |#3| (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) 91 (-12 (|has| |#3| (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) 90 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) 189 (|has| |#1| (-466)) ELT) (($ $ |#3|) 116 (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 114 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-421 (-560))) 88 (-4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 95 (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) 182 T ELT)) (-4193 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-793)) 138 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 137 T ELT)) (-3189 (((-713 $) $) 89 (-4043 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1815 (($ $ $ (-793)) 187 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 99 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 |#3|) (-663 (-793))) 52 T ELT) (($ $ |#3| (-793)) 51 T ELT) (($ $ (-663 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 257 T ELT) (($ $) 234 (|has| |#1| (-239)) ELT) (($ $ (-793)) 232 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 230 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 226 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 225 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 224 (|has| |#1| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-262 |#1| |#2| |#3| |#4|) (-142) (-1081) (-872) (-277 |t#2|) (-817)) (T -262)) -((-1667 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-663 *4)))) (-4288 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-793)))) (-4464 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-663 (-793))))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-793)))) (-1632 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-663 (-793))))) (-1666 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-114)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-817)) (-4 *2 (-277 *4)))) (-1629 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1081)) (-4 *3 (-872)) (-4 *4 (-277 *3)) (-4 *5 (-817)))) (-1628 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1081)) (-4 *3 (-872)) (-4 *4 (-277 *3)) (-4 *5 (-817)))) (-1667 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6))))) -(-13 (-980 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1070 |t#2|) (-10 -8 (-15 -1667 ((-1 $ (-793)) |t#2|)) (-15 -1633 ((-663 |t#2|) $)) (-15 -4288 ((-793) $ |t#2|)) (-15 -4288 ((-793) $)) (-15 -4464 ((-793) $ |t#2|)) (-15 -1632 ((-663 (-793)) $)) (-15 -1666 ((-793) $)) (-15 -1632 ((-663 (-793)) $ |t#2|)) (-15 -1666 ((-793) $ |t#2|)) (-15 -1631 ((-114) $)) (-15 -1630 (|t#3| $)) (-15 -1629 ($ $)) (-15 -1628 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-528 |t#2| |t#1|)) (-6 (-528 |t#2| $)) (-6 (-321 $)) (-15 -1667 ((-1 $ (-793)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#3| (-633 (-916 (-391))))) ((-633 (-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#3| (-633 (-916 (-560))))) ((-236 $) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-940)) (|has| |#1| (-466))) ((-528 |#2| |#1|) |has| |#1| (-240)) ((-528 |#2| $) |has| |#1| (-240)) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-922 $ #3=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-922 $ |#3|) . T) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-928 |#3|) . T) ((-930 #3#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-930 |#3|) . T) ((-912 (-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#3| (-912 (-391)))) ((-912 (-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#3| (-912 (-560)))) ((-980 |#1| |#4| |#3|) . T) ((-940) |has| |#1| (-940)) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1070 |#2|) . T) ((-1070 |#3|) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) |has| |#1| (-940))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1639 ((|#1| $) 58 T ELT)) (-3830 ((|#1| $) 48 T ELT)) (-4240 (($) 7 T CONST)) (-3489 (($ $) 64 T ELT)) (-2524 (($ $) 52 T ELT)) (-3832 ((|#1| |#1| $) 50 T ELT)) (-3831 ((|#1| $) 49 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4349 (((-793) $) 65 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-1637 ((|#1| |#1| $) 56 T ELT)) (-1636 ((|#1| |#1| $) 55 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3088 (((-793) $) 59 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-3488 ((|#1| $) 66 T ELT)) (-1635 ((|#1| $) 54 T ELT)) (-1634 ((|#1| $) 53 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3491 ((|#1| |#1| $) 62 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-3490 ((|#1| $) 63 T ELT)) (-1640 (($) 61 T ELT) (($ (-663 |#1|)) 60 T ELT)) (-3829 (((-793) $) 47 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1638 ((|#1| $) 57 T ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-3487 ((|#1| $) 67 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-263 |#1|) (-142) (-1249)) (T -263)) -((-1640 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-263 *3)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1637 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1636 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) (-2524 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(-13 (-1153 |t#1|) (-1027 |t#1|) (-10 -8 (-15 -1640 ($)) (-15 -1640 ($ (-663 |t#1|))) (-15 -3088 ((-793) $)) (-15 -1639 (|t#1| $)) (-15 -1638 (|t#1| $)) (-15 -1637 (|t#1| |t#1| $)) (-15 -1636 (|t#1| |t#1| $)) (-15 -1635 (|t#1| $)) (-15 -1634 (|t#1| $)) (-15 -2524 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1027 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1153 |#1|) . T) ((-1249) . T)) -((-1641 (((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391))) 75 T ELT) (((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270))) 74 T ELT) (((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391))) 65 T ELT) (((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270))) 64 T ELT) (((-1165 (-229)) (-905 |#1|) (-1124 (-391))) 56 T ELT) (((-1165 (-229)) (-905 |#1|) (-1124 (-391)) (-663 (-270))) 55 T ELT)) (-1648 (((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391))) 78 T ELT) (((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270))) 77 T ELT) (((-1303) |#1| (-1124 (-391)) (-1124 (-391))) 68 T ELT) (((-1303) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270))) 67 T ELT) (((-1303) (-905 |#1|) (-1124 (-391))) 60 T ELT) (((-1303) (-905 |#1|) (-1124 (-391)) (-663 (-270))) 59 T ELT) (((-1302) (-903 |#1|) (-1124 (-391))) 47 T ELT) (((-1302) (-903 |#1|) (-1124 (-391)) (-663 (-270))) 46 T ELT) (((-1302) |#1| (-1124 (-391))) 38 T ELT) (((-1302) |#1| (-1124 (-391)) (-663 (-270))) 36 T ELT))) -(((-264 |#1|) (-10 -7 (-15 -1648 ((-1302) |#1| (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) |#1| (-1124 (-391)))) (-15 -1648 ((-1302) (-903 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-903 |#1|) (-1124 (-391)))) (-15 -1648 ((-1303) (-905 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-905 |#1|) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) (-905 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-905 |#1|) (-1124 (-391)))) (-15 -1648 ((-1303) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) |#1| (-1124 (-391)) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391)))) (-15 -1648 ((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391))))) (-13 (-633 (-549)) (-1133))) (T -264)) -((-1641 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908 *5)) (-5 *4 (-1124 (-391))) (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *5)))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-908 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *6)))) (-1648 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908 *5)) (-5 *4 (-1124 (-391))) (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *5)))) (-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-908 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *6)))) (-1641 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) (-1648 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1303)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) (-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1124 (-391))) (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *5)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *6)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1124 (-391))) (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *5)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *6)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1124 (-391))) (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1302)) (-5 *1 (-264 *5)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1302)) (-5 *1 (-264 *6)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1302)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133)))))) -(-10 -7 (-15 -1648 ((-1302) |#1| (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) |#1| (-1124 (-391)))) (-15 -1648 ((-1302) (-903 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-903 |#1|) (-1124 (-391)))) (-15 -1648 ((-1303) (-905 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-905 |#1|) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) (-905 |#1|) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-905 |#1|) (-1124 (-391)))) (-15 -1648 ((-1303) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) |#1| (-1124 (-391)) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) |#1| (-1124 (-391)) (-1124 (-391)))) (-15 -1648 ((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-908 |#1|) (-1124 (-391)) (-1124 (-391)))) (-15 -1641 ((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-908 |#1|) (-1124 (-391)) (-1124 (-391))))) -((-1642 (((-1 (-973 (-229)) (-229) (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 158 T ELT)) (-1641 (((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391))) 178 T ELT) (((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 176 T ELT) (((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391))) 181 T ELT) (((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 177 T ELT) (((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391))) 169 T ELT) (((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 168 T ELT) (((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391))) 150 T ELT) (((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270))) 148 T ELT) (((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391))) 149 T ELT) (((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270))) 146 T ELT)) (-1648 (((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391))) 180 T ELT) (((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 179 T ELT) (((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391))) 183 T ELT) (((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 182 T ELT) (((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391))) 171 T ELT) (((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270))) 170 T ELT) (((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391))) 156 T ELT) (((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270))) 155 T ELT) (((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391))) 154 T ELT) (((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270))) 153 T ELT) (((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391))) 118 T ELT) (((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270))) 117 T ELT) (((-1302) (-1 (-229) (-229)) (-1121 (-391))) 112 T ELT) (((-1302) (-1 (-229) (-229)) (-1121 (-391)) (-663 (-270))) 110 T ELT))) -(((-265) (-10 -7 (-15 -1648 ((-1302) (-1 (-229) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-1 (-229) (-229)) (-1121 (-391)))) (-15 -1648 ((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1648 ((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1648 ((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)))) (-15 -1642 ((-1 (-973 (-229)) (-229) (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265)) -((-1642 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-973 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1302)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1302)) (-5 *1 (-265)))) (-1648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-265))))) -(-10 -7 (-15 -1648 ((-1302) (-1 (-229) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-1 (-229) (-229)) (-1121 (-391)))) (-15 -1648 ((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1302) (-903 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1648 ((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-905 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-905 (-1 (-229) (-229))) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229)) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-391)) (-1121 (-391)))) (-15 -1648 ((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1648 ((-1303) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)))) (-15 -1641 ((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)) (-663 (-270)))) (-15 -1641 ((-1165 (-229)) (-908 (-1 (-229) (-229) (-229))) (-1121 (-391)) (-1121 (-391)))) (-15 -1642 ((-1 (-973 (-229)) (-229) (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) -((-1648 (((-1302) (-305 |#2|) (-1209) (-1209) (-663 (-270))) 102 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -1648 ((-1302) (-305 |#2|) (-1209) (-1209) (-663 (-270))))) (-13 (-571) (-872) (-1070 (-560))) (-435 |#1|)) (T -266)) -((-1648 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1209)) (-5 *5 (-663 (-270))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-872) (-1070 (-560)))) (-5 *2 (-1302)) (-5 *1 (-266 *6 *7))))) -(-10 -7 (-15 -1648 ((-1302) (-305 |#2|) (-1209) (-1209) (-663 (-270))))) -((-1645 (((-560) (-560)) 71 T ELT)) (-1646 (((-560) (-560)) 72 T ELT)) (-1647 (((-229) (-229)) 73 T ELT)) (-1644 (((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229))) 70 T ELT)) (-1643 (((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229)) (-114)) 68 T ELT))) -(((-267) (-10 -7 (-15 -1643 ((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229)) (-114))) (-15 -1644 ((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229)))) (-15 -1645 ((-560) (-560))) (-15 -1646 ((-560) (-560))) (-15 -1647 ((-229) (-229))))) (T -267)) -((-1647 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-1644 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1121 (-229))) (-5 *2 (-1303)) (-5 *1 (-267)))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1121 (-229))) (-5 *5 (-114)) (-5 *2 (-1303)) (-5 *1 (-267))))) -(-10 -7 (-15 -1643 ((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229)) (-114))) (-15 -1644 ((-1303) (-1 (-171 (-229)) (-171 (-229))) (-1121 (-229)) (-1121 (-229)))) (-15 -1645 ((-560) (-560))) (-15 -1646 ((-560) (-560))) (-15 -1647 ((-229) (-229)))) -((-4462 (((-1124 (-391)) (-1124 (-326 |#1|))) 16 T ELT))) -(((-268 |#1|) (-10 -7 (-15 -4462 ((-1124 (-391)) (-1124 (-326 |#1|))))) (-13 (-872) (-571) (-633 (-391)))) (T -268)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-1124 (-326 *4))) (-4 *4 (-13 (-872) (-571) (-633 (-391)))) (-5 *2 (-1124 (-391))) (-5 *1 (-268 *4))))) -(-10 -7 (-15 -4462 ((-1124 (-391)) (-1124 (-326 |#1|))))) -((-1648 (((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270))) 23 T ELT) (((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229))) 24 T ELT) (((-1302) (-663 (-973 (-229))) (-663 (-270))) 16 T ELT) (((-1302) (-663 (-973 (-229)))) 17 T ELT) (((-1302) (-663 (-229)) (-663 (-229)) (-663 (-270))) 20 T ELT) (((-1302) (-663 (-229)) (-663 (-229))) 21 T ELT))) -(((-269) (-10 -7 (-15 -1648 ((-1302) (-663 (-229)) (-663 (-229)))) (-15 -1648 ((-1302) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -1648 ((-1302) (-663 (-973 (-229))))) (-15 -1648 ((-1302) (-663 (-973 (-229))) (-663 (-270)))) (-15 -1648 ((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -1648 ((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270)))))) (T -269)) -((-1648 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-269)))) (-1648 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1303)) (-5 *1 (-269)))) (-1648 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *4 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-269)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *2 (-1302)) (-5 *1 (-269)))) (-1648 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-269)))) (-1648 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1302)) (-5 *1 (-269))))) -(-10 -7 (-15 -1648 ((-1302) (-663 (-229)) (-663 (-229)))) (-15 -1648 ((-1302) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -1648 ((-1302) (-663 (-973 (-229))))) (-15 -1648 ((-1302) (-663 (-973 (-229))) (-663 (-270)))) (-15 -1648 ((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -1648 ((-1303) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4397 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-1661 (($ (-949)) 81 T ELT)) (-1660 (($ (-949)) 80 T ELT)) (-1994 (($ (-663 (-391))) 87 T ELT)) (-1664 (($ (-391)) 66 T ELT)) (-1663 (($ (-949)) 82 T ELT)) (-1657 (($ (-114)) 33 T ELT)) (-4399 (($ (-1191)) 28 T ELT)) (-1656 (($ (-1191)) 29 T ELT)) (-1662 (($ (-1165 (-229))) 76 T ELT)) (-2153 (($ (-663 (-1121 (-391)))) 72 T ELT)) (-1650 (($ (-663 (-1121 (-391)))) 68 T ELT) (($ (-663 (-1121 (-421 (-560))))) 71 T ELT)) (-1653 (($ (-391)) 38 T ELT) (($ (-899)) 42 T ELT)) (-1649 (((-114) (-663 $) (-1209)) 100 T ELT)) (-1665 (((-3 (-51) "failed") (-663 $) (-1209)) 102 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1652 (($ (-391)) 43 T ELT) (($ (-899)) 44 T ELT)) (-3728 (($ (-1 (-973 (-229)) (-973 (-229)))) 65 T ELT)) (-2494 (($ (-1 (-973 (-229)) (-973 (-229)))) 83 T ELT)) (-1651 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-4462 (((-888) $) 93 T ELT)) (-1654 (($ (-114)) 34 T ELT) (($ (-663 (-1121 (-391)))) 60 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2148 (($ (-114)) 35 T ELT)) (-3540 (((-114) $ $) 97 T ELT))) -(((-270) (-13 (-1133) (-10 -8 (-15 -2148 ($ (-114))) (-15 -1654 ($ (-114))) (-15 -4397 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4399 ($ (-1191))) (-15 -1656 ($ (-1191))) (-15 -1657 ($ (-114))) (-15 -1654 ($ (-663 (-1121 (-391))))) (-15 -3728 ($ (-1 (-973 (-229)) (-973 (-229))))) (-15 -1653 ($ (-391))) (-15 -1653 ($ (-899))) (-15 -1652 ($ (-391))) (-15 -1652 ($ (-899))) (-15 -1651 ($ (-1 (-229) (-229)))) (-15 -1651 ($ (-1 (-229) (-229) (-229)))) (-15 -1651 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1664 ($ (-391))) (-15 -1650 ($ (-663 (-1121 (-391))))) (-15 -1650 ($ (-663 (-1121 (-421 (-560)))))) (-15 -2153 ($ (-663 (-1121 (-391))))) (-15 -1662 ($ (-1165 (-229)))) (-15 -1660 ($ (-949))) (-15 -1661 ($ (-949))) (-15 -1663 ($ (-949))) (-15 -2494 ($ (-1 (-973 (-229)) (-973 (-229))))) (-15 -1994 ($ (-663 (-391)))) (-15 -1665 ((-3 (-51) "failed") (-663 $) (-1209))) (-15 -1649 ((-114) (-663 $) (-1209)))))) (T -270)) -((-2148 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1654 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-270)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-270)))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1654 (*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *1 (-270)))) (-1653 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1653 (*1 *1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-270)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1664 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-421 (-560))))) (-5 *1 (-270)))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-270)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) (-1663 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *1 (-270)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270)))) (-1665 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *2 (-114)) (-5 *1 (-270))))) -(-13 (-1133) (-10 -8 (-15 -2148 ($ (-114))) (-15 -1654 ($ (-114))) (-15 -4397 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4399 ($ (-1191))) (-15 -1656 ($ (-1191))) (-15 -1657 ($ (-114))) (-15 -1654 ($ (-663 (-1121 (-391))))) (-15 -3728 ($ (-1 (-973 (-229)) (-973 (-229))))) (-15 -1653 ($ (-391))) (-15 -1653 ($ (-899))) (-15 -1652 ($ (-391))) (-15 -1652 ($ (-899))) (-15 -1651 ($ (-1 (-229) (-229)))) (-15 -1651 ($ (-1 (-229) (-229) (-229)))) (-15 -1651 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1664 ($ (-391))) (-15 -1650 ($ (-663 (-1121 (-391))))) (-15 -1650 ($ (-663 (-1121 (-421 (-560)))))) (-15 -2153 ($ (-663 (-1121 (-391))))) (-15 -1662 ($ (-1165 (-229)))) (-15 -1660 ($ (-949))) (-15 -1661 ($ (-949))) (-15 -1663 ($ (-949))) (-15 -2494 ($ (-1 (-973 (-229)) (-973 (-229))))) (-15 -1994 ($ (-663 (-391)))) (-15 -1665 ((-3 (-51) "failed") (-663 $) (-1209))) (-15 -1649 ((-114) (-663 $) (-1209))))) -((-4397 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-1661 (((-949) (-663 (-270)) (-949)) 52 T ELT)) (-1660 (((-949) (-663 (-270)) (-949)) 51 T ELT)) (-4367 (((-663 (-391)) (-663 (-270)) (-663 (-391))) 68 T ELT)) (-1664 (((-391) (-663 (-270)) (-391)) 57 T ELT)) (-1663 (((-949) (-663 (-270)) (-949)) 53 T ELT)) (-1657 (((-114) (-663 (-270)) (-114)) 27 T ELT)) (-4399 (((-1191) (-663 (-270)) (-1191)) 19 T ELT)) (-1656 (((-1191) (-663 (-270)) (-1191)) 26 T ELT)) (-1662 (((-1165 (-229)) (-663 (-270))) 46 T ELT)) (-2153 (((-663 (-1121 (-391))) (-663 (-270)) (-663 (-1121 (-391)))) 40 T ELT)) (-1658 (((-899) (-663 (-270)) (-899)) 32 T ELT)) (-1659 (((-899) (-663 (-270)) (-899)) 33 T ELT)) (-2494 (((-1 (-973 (-229)) (-973 (-229))) (-663 (-270)) (-1 (-973 (-229)) (-973 (-229)))) 63 T ELT)) (-1655 (((-114) (-663 (-270)) (-114)) 14 T ELT)) (-2148 (((-114) (-663 (-270)) (-114)) 13 T ELT))) -(((-271) (-10 -7 (-15 -2148 ((-114) (-663 (-270)) (-114))) (-15 -1655 ((-114) (-663 (-270)) (-114))) (-15 -4397 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4399 ((-1191) (-663 (-270)) (-1191))) (-15 -1656 ((-1191) (-663 (-270)) (-1191))) (-15 -1657 ((-114) (-663 (-270)) (-114))) (-15 -1658 ((-899) (-663 (-270)) (-899))) (-15 -1659 ((-899) (-663 (-270)) (-899))) (-15 -2153 ((-663 (-1121 (-391))) (-663 (-270)) (-663 (-1121 (-391))))) (-15 -1660 ((-949) (-663 (-270)) (-949))) (-15 -1661 ((-949) (-663 (-270)) (-949))) (-15 -1662 ((-1165 (-229)) (-663 (-270)))) (-15 -1663 ((-949) (-663 (-270)) (-949))) (-15 -1664 ((-391) (-663 (-270)) (-391))) (-15 -2494 ((-1 (-973 (-229)) (-973 (-229))) (-663 (-270)) (-1 (-973 (-229)) (-973 (-229))))) (-15 -4367 ((-663 (-391)) (-663 (-270)) (-663 (-391)))))) (T -271)) -((-4367 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2494 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1664 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1663 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-271)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1660 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2153 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *2 (-899)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1658 (*1 *2 *3 *2) (-12 (-5 *2 (-899)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1657 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4399 (*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4397 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1655 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2148 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(-10 -7 (-15 -2148 ((-114) (-663 (-270)) (-114))) (-15 -1655 ((-114) (-663 (-270)) (-114))) (-15 -4397 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4399 ((-1191) (-663 (-270)) (-1191))) (-15 -1656 ((-1191) (-663 (-270)) (-1191))) (-15 -1657 ((-114) (-663 (-270)) (-114))) (-15 -1658 ((-899) (-663 (-270)) (-899))) (-15 -1659 ((-899) (-663 (-270)) (-899))) (-15 -2153 ((-663 (-1121 (-391))) (-663 (-270)) (-663 (-1121 (-391))))) (-15 -1660 ((-949) (-663 (-270)) (-949))) (-15 -1661 ((-949) (-663 (-270)) (-949))) (-15 -1662 ((-1165 (-229)) (-663 (-270)))) (-15 -1663 ((-949) (-663 (-270)) (-949))) (-15 -1664 ((-391) (-663 (-270)) (-391))) (-15 -2494 ((-1 (-973 (-229)) (-973 (-229))) (-663 (-270)) (-1 (-973 (-229)) (-973 (-229))))) (-15 -4367 ((-663 (-391)) (-663 (-270)) (-663 (-391))))) -((-1665 (((-3 |#1| "failed") (-663 (-270)) (-1209)) 17 T ELT))) -(((-272 |#1|) (-10 -7 (-15 -1665 ((-3 |#1| "failed") (-663 (-270)) (-1209)))) (-1249)) (T -272)) -((-1665 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *1 (-272 *2)) (-4 *2 (-1249))))) -(-10 -7 (-15 -1665 ((-3 |#1| "failed") (-663 (-270)) (-1209)))) -((-4274 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) 11 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) 19 T ELT) (($ $ (-793)) NIL T ELT) (($ $) 16 T ELT)) (-3156 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-793)) 14 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT))) -(((-273 |#1| |#2|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -3156 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3156 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3156 (|#1| |#1| (-663 (-1209)))) (-15 -3156 (|#1| |#1| (-1209) (-793))) (-15 -3156 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3156 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1249)) (T -273)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -3156 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3156 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3156 (|#1| |#1| (-663 (-1209)))) (-15 -3156 (|#1| |#1| (-1209) (-793))) (-15 -3156 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3156 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|)))) -((-4274 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 22 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) 16 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 15 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 14 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209)) 12 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-793)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3156 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 20 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) 19 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 18 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 17 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209)) 13 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-793)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) -(((-274 |#1|) (-142) (-1249)) (T -274)) -((-4274 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1249)))) (-4274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1249)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1249)))) (-3156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -4274 ($ $ (-1 |t#1| |t#1|))) (-15 -4274 ($ $ (-1 |t#1| |t#1|) (-793))) (-15 -3156 ($ $ (-1 |t#1| |t#1|))) (-15 -3156 ($ $ (-1 |t#1| |t#1|) (-793))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-930 (-1209))) (-6 (-930 (-1209))) |%noBranch|))) -(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-922 $ #1=(-1209)) |has| |#1| (-930 (-1209))) ((-930 #1#) |has| |#1| (-930 (-1209))) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1632 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ |#2|) NIL T ELT)) (-1666 (((-793) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-3570 (((-663 |#3|) $) NIL T ELT)) (-3572 (((-1203 $) $ |#3|) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 |#3|)) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1628 (($ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 |#3| #2#) $) NIL T ELT) (((-3 |#2| #2#) $) NIL T ELT) (((-3 (-1157 |#1| |#2|) #2#) $) 23 T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1157 |#1| |#2|) $) NIL T ELT)) (-4272 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-545 |#3|) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| |#1| (-912 (-391))) (|has| |#3| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| |#1| (-912 (-560))) (|has| |#3| (-912 (-560)))) ELT)) (-4288 (((-793) $ |#2|) NIL T ELT) (((-793) $) 10 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#1|) |#3|) NIL T ELT) (($ (-1203 $) |#3|) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#3|) NIL T ELT)) (-3307 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT)) (-1817 (($ (-1 (-545 |#3|) (-545 |#3|)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1667 (((-1 $ (-793)) |#2|) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3571 (((-3 |#3| #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-1630 ((|#3| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1631 (((-114) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| |#3|) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-1629 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4273 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-1633 (((-663 |#2|) $) NIL T ELT)) (-4464 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#3| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#3| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1157 |#1| |#2|)) 32 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1070 (-1157 |#1| |#2|))) (-1081) (-872) (-277 |#2|)) (T -275)) -NIL -(-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1070 (-1157 |#1| |#2|))) -((-1666 (((-793) $) 37 T ELT)) (-3661 (((-3 |#2| "failed") $) 22 T ELT)) (-3660 ((|#2| $) 33 T ELT)) (-4274 (($ $ (-793)) 18 T ELT) (($ $) 14 T ELT)) (-4462 (((-888) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3540 (((-114) $ $) 26 T ELT)) (-3172 (((-114) $ $) 36 T ELT))) -(((-276 |#1| |#2|) (-10 -8 (-15 -1666 ((-793) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| "failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -3172 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-277 |#2|) (-872)) (T -276)) -NIL -(-10 -8 (-15 -1666 ((-793) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| "failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -3172 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-1666 (((-793) $) 26 T ELT)) (-4347 ((|#1| $) 27 T ELT)) (-3661 (((-3 |#1| "failed") $) 31 T ELT)) (-3660 ((|#1| $) 32 T ELT)) (-4288 (((-793) $) 28 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-1667 (($ |#1| (-793)) 29 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-793)) 35 T ELT) (($ $) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3156 (($ $ (-793)) 36 T ELT) (($ $) 34 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT))) -(((-277 |#1|) (-142) (-872)) (T -277)) -((-4462 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-872)))) (-1667 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-872)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-872)) (-5 *2 (-793)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-872)))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-872)) (-5 *2 (-793))))) -(-13 (-872) (-239) (-1070 |t#1|) (-10 -8 (-15 -1667 ($ |t#1| (-793))) (-15 -4288 ((-793) $)) (-15 -4347 (|t#1| $)) (-15 -1666 ((-793) $)) (-15 -4462 ($ |t#1|)))) -(((-102) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-236 $) . T) ((-239) . T) ((-872) . T) ((-875) . T) ((-1070 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3570 (((-663 (-1209)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 52 T ELT)) (-4450 (((-663 (-1209)) (-326 (-229)) (-793)) 94 T ELT)) (-1670 (((-3 (-326 (-229)) "failed") (-326 (-229))) 62 T ELT)) (-1671 (((-326 (-229)) (-326 (-229))) 78 T ELT)) (-1669 (((-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 37 T ELT)) (-1672 (((-114) (-663 (-326 (-229)))) 104 T ELT)) (-1676 (((-114) (-326 (-229))) 35 T ELT)) (-1678 (((-663 (-1191)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) 132 T ELT)) (-1675 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 108 T ELT)) (-1674 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 106 T ELT)) (-1673 (((-711 (-229)) (-663 (-326 (-229))) (-793)) 120 T ELT)) (-3414 (((-114) (-326 (-229))) 30 T ELT) (((-114) (-663 (-326 (-229)))) 105 T ELT)) (-1668 (((-663 (-229)) (-663 (-866 (-229))) (-229)) 15 T ELT)) (-1772 (((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 126 T ELT)) (-1677 (((-1067) (-1209) (-1067)) 45 T ELT))) -(((-278) (-10 -7 (-15 -1668 ((-663 (-229)) (-663 (-866 (-229))) (-229))) (-15 -1669 ((-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))) (-15 -1670 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1671 ((-326 (-229)) (-326 (-229)))) (-15 -1672 ((-114) (-663 (-326 (-229))))) (-15 -3414 ((-114) (-663 (-326 (-229))))) (-15 -3414 ((-114) (-326 (-229)))) (-15 -1673 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -1674 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1675 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1676 ((-114) (-326 (-229)))) (-15 -3570 ((-663 (-1209)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -4450 ((-663 (-1209)) (-326 (-229)) (-793))) (-15 -1677 ((-1067) (-1209) (-1067))) (-15 -1772 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -1678 ((-663 (-1191)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))))))) (T -278)) -((-1678 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) (-5 *2 (-663 (-1191))) (-5 *1 (-278)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-1677 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-1209)) (-5 *1 (-278)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1209))) (-5 *1 (-278)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) (-5 *2 (-663 (-1209))) (-5 *1 (-278)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-278)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1670 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (-5 *1 (-278)))) (-1668 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-866 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4)) (-5 *1 (-278))))) -(-10 -7 (-15 -1668 ((-663 (-229)) (-663 (-866 (-229))) (-229))) (-15 -1669 ((-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))) (-15 -1670 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1671 ((-326 (-229)) (-326 (-229)))) (-15 -1672 ((-114) (-663 (-326 (-229))))) (-15 -3414 ((-114) (-663 (-326 (-229))))) (-15 -3414 ((-114) (-326 (-229)))) (-15 -1673 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -1674 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1675 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1676 ((-114) (-326 (-229)))) (-15 -3570 ((-663 (-1209)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -4450 ((-663 (-1209)) (-326 (-229)) (-793))) (-15 -1677 ((-1067) (-1209) (-1067))) (-15 -1772 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -1678 ((-663 (-1191)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 56 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 32 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-279) (-863)) (T -279)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 72 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 63 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 41 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 43 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-280) (-863)) (T -280)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 90 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 85 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 52 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 65 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-281) (-863)) (T -281)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 73 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 45 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-282) (-863)) (T -282)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 65 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 31 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-283) (-863)) (T -283)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 90 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 33 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-284) (-863)) (T -284)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 87 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 32 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-285) (-863)) (T -285)) -NIL -(-863) -((-3053 (((-114) $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1680 (((-663 (-560)) $) 28 T ELT)) (-4464 (((-793) $) 26 T ELT)) (-4462 (((-888) $) 32 T ELT) (($ (-663 (-560))) 22 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1679 (($ (-793)) 29 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 9 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 17 T ELT))) -(((-286) (-13 (-872) (-10 -8 (-15 -4462 ($ (-663 (-560)))) (-15 -4464 ((-793) $)) (-15 -1680 ((-663 (-560)) $)) (-15 -1679 ($ (-793)))))) (T -286)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-1679 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286))))) -(-13 (-872) (-10 -8 (-15 -4462 ($ (-663 (-560)))) (-15 -4464 ((-793) $)) (-15 -1680 ((-663 (-560)) $)) (-15 -1679 ($ (-793))))) -((-3998 ((|#2| |#2|) 77 T ELT)) (-4155 ((|#2| |#2|) 65 T ELT)) (-1709 (((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 123 T ELT)) (-3996 ((|#2| |#2|) 75 T ELT)) (-4154 ((|#2| |#2|) 63 T ELT)) (-4000 ((|#2| |#2|) 79 T ELT)) (-4153 ((|#2| |#2|) 67 T ELT)) (-4143 ((|#2|) 46 T ELT)) (-4109 (((-115) (-115)) 97 T ELT)) (-4458 ((|#2| |#2|) 61 T ELT)) (-1710 (((-114) |#2|) 146 T ELT)) (-1699 ((|#2| |#2|) 193 T ELT)) (-1687 ((|#2| |#2|) 169 T ELT)) (-1682 ((|#2|) 59 T ELT)) (-1681 ((|#2|) 58 T ELT)) (-1697 ((|#2| |#2|) 189 T ELT)) (-1685 ((|#2| |#2|) 165 T ELT)) (-1701 ((|#2| |#2|) 197 T ELT)) (-1689 ((|#2| |#2|) 173 T ELT)) (-1684 ((|#2| |#2|) 161 T ELT)) (-1683 ((|#2| |#2|) 163 T ELT)) (-1702 ((|#2| |#2|) 199 T ELT)) (-1690 ((|#2| |#2|) 175 T ELT)) (-1700 ((|#2| |#2|) 195 T ELT)) (-1688 ((|#2| |#2|) 171 T ELT)) (-1698 ((|#2| |#2|) 191 T ELT)) (-1686 ((|#2| |#2|) 167 T ELT)) (-1705 ((|#2| |#2|) 205 T ELT)) (-1693 ((|#2| |#2|) 181 T ELT)) (-1703 ((|#2| |#2|) 201 T ELT)) (-1691 ((|#2| |#2|) 177 T ELT)) (-1707 ((|#2| |#2|) 209 T ELT)) (-1695 ((|#2| |#2|) 185 T ELT)) (-1708 ((|#2| |#2|) 211 T ELT)) (-1696 ((|#2| |#2|) 187 T ELT)) (-1706 ((|#2| |#2|) 207 T ELT)) (-1694 ((|#2| |#2|) 183 T ELT)) (-1704 ((|#2| |#2|) 203 T ELT)) (-1692 ((|#2| |#2|) 179 T ELT)) (-4459 ((|#2| |#2|) 62 T ELT)) (-4001 ((|#2| |#2|) 80 T ELT)) (-4152 ((|#2| |#2|) 68 T ELT)) (-3999 ((|#2| |#2|) 78 T ELT)) (-4151 ((|#2| |#2|) 66 T ELT)) (-3997 ((|#2| |#2|) 76 T ELT)) (-4150 ((|#2| |#2|) 64 T ELT)) (-2482 (((-114) (-115)) 95 T ELT)) (-4004 ((|#2| |#2|) 83 T ELT)) (-3992 ((|#2| |#2|) 71 T ELT)) (-4002 ((|#2| |#2|) 81 T ELT)) (-3990 ((|#2| |#2|) 69 T ELT)) (-4006 ((|#2| |#2|) 85 T ELT)) (-3994 ((|#2| |#2|) 73 T ELT)) (-4007 ((|#2| |#2|) 86 T ELT)) (-3995 ((|#2| |#2|) 74 T ELT)) (-4005 ((|#2| |#2|) 84 T ELT)) (-3993 ((|#2| |#2|) 72 T ELT)) (-4003 ((|#2| |#2|) 82 T ELT)) (-3991 ((|#2| |#2|) 70 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -4459 (|#2| |#2|)) (-15 -4458 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4143 (|#2|)) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1681 (|#2|)) (-15 -1682 (|#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1700 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1707 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1709 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1710 ((-114) |#2|))) (-571) (-13 (-435 |#1|) (-1034))) (T -287)) -((-1710 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-435 *4) (-1034))))) (-1709 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-435 *4) (-1034))) (-4 *4 (-571)) (-5 *1 (-287 *4 *2)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1707 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1700 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1696 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-1682 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-1681 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-435 *3) (-1034))))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-435 *4) (-1034))))) (-4143 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4458 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) (-4459 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) -(-10 -7 (-15 -4459 (|#2| |#2|)) (-15 -4458 (|#2| |#2|)) (-15 -4154 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4143 (|#2|)) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1681 (|#2|)) (-15 -1682 (|#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1700 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1707 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1709 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1710 ((-114) |#2|))) -((-1713 (((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1209)) 151 T ELT)) (-1715 ((|#2| (-421 (-560)) |#2|) 49 T ELT)) (-1714 ((|#2| |#2| (-630 |#2|)) 144 T ELT)) (-1711 (((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1209)) 143 T ELT)) (-1712 ((|#2| |#2| (-1209)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2846 ((|#2| |#2| (-1209)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-288 |#1| |#2|) (-10 -7 (-15 -2846 (|#2| |#2|)) (-15 -2846 (|#2| |#2| (-1209))) (-15 -1711 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1209))) (-15 -1712 (|#2| |#2|)) (-15 -1712 (|#2| |#2| (-1209))) (-15 -1713 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1209))) (-15 -1714 (|#2| |#2| (-630 |#2|))) (-15 -1715 (|#2| (-421 (-560)) |#2|))) (-13 (-571) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -288)) -((-1715 (*1 *2 *3 *2) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-1714 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)))) (-1713 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-1209)) (-4 *2 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *5 *2)))) (-1712 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-1712 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3))))) (-1711 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3))) (|:| |vals| (-663 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-2846 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-2846 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3)))))) -(-10 -7 (-15 -2846 (|#2| |#2|)) (-15 -2846 (|#2| |#2| (-1209))) (-15 -1711 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1209))) (-15 -1712 (|#2| |#2|)) (-15 -1712 (|#2| |#2| (-1209))) (-15 -1713 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1209))) (-15 -1714 (|#2| |#2| (-630 |#2|))) (-15 -1715 (|#2| (-421 (-560)) |#2|))) -((-3462 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3998 ((|#3| |#3|) 142 T ELT)) (-3450 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-4155 ((|#3| |#3|) 132 T ELT)) (-3460 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3996 ((|#3| |#3|) 140 T ELT)) (-3448 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-4154 ((|#3| |#3|) 130 T ELT)) (-3464 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-4000 ((|#3| |#3|) 144 T ELT)) (-3452 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-4153 ((|#3| |#3|) 134 T ELT)) (-3445 (((-3 |#3| #1#) |#3| (-793)) 41 T ELT)) (-3447 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4458 ((|#3| |#3|) 129 T ELT)) (-3446 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4459 ((|#3| |#3|) 128 T ELT)) (-3465 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-4001 ((|#3| |#3|) 145 T ELT)) (-3453 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-4152 ((|#3| |#3|) 135 T ELT)) (-3463 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3999 ((|#3| |#3|) 143 T ELT)) (-3451 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-4151 ((|#3| |#3|) 133 T ELT)) (-3461 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3997 ((|#3| |#3|) 141 T ELT)) (-3449 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-4150 ((|#3| |#3|) 131 T ELT)) (-3468 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-4004 ((|#3| |#3|) 148 T ELT)) (-3456 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3992 ((|#3| |#3|) 152 T ELT)) (-3466 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-4002 ((|#3| |#3|) 146 T ELT)) (-3454 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3990 ((|#3| |#3|) 136 T ELT)) (-3470 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-4006 ((|#3| |#3|) 150 T ELT)) (-3458 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3994 ((|#3| |#3|) 138 T ELT)) (-3471 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-4007 ((|#3| |#3|) 151 T ELT)) (-3459 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3995 ((|#3| |#3|) 139 T ELT)) (-3469 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-4005 ((|#3| |#3|) 149 T ELT)) (-3457 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3993 ((|#3| |#3|) 153 T ELT)) (-3467 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-4003 ((|#3| |#3|) 147 T ELT)) (-3455 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3991 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-421 (-560))) 47 (|has| |#1| (-376)) ELT))) -(((-289 |#1| |#2| |#3|) (-13 (-1015 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -4459 (|#3| |#3|)) (-15 -4458 (|#3| |#3|)) (-15 -4154 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4152 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4007 (|#3| |#3|)))) (-38 (-421 (-560))) (-1292 |#1|) (-1263 |#1| |#2|)) (T -289)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1292 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1263 *4 *5)))) (-4459 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4458 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4)))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1263 *3 *4))))) -(-13 (-1015 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -4459 (|#3| |#3|)) (-15 -4458 (|#3| |#3|)) (-15 -4154 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4152 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4007 (|#3| |#3|)))) -((-3462 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3998 ((|#3| |#3|) 137 T ELT)) (-3450 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-4155 ((|#3| |#3|) 125 T ELT)) (-3460 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3996 ((|#3| |#3|) 135 T ELT)) (-3448 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-4154 ((|#3| |#3|) 123 T ELT)) (-3464 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-4000 ((|#3| |#3|) 139 T ELT)) (-3452 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-4153 ((|#3| |#3|) 127 T ELT)) (-3445 (((-3 |#3| #1#) |#3| (-793)) 38 T ELT)) (-3447 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4458 ((|#3| |#3|) 111 T ELT)) (-3446 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4459 ((|#3| |#3|) 122 T ELT)) (-3465 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-4001 ((|#3| |#3|) 140 T ELT)) (-3453 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-4152 ((|#3| |#3|) 128 T ELT)) (-3463 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3999 ((|#3| |#3|) 138 T ELT)) (-3451 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-4151 ((|#3| |#3|) 126 T ELT)) (-3461 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3997 ((|#3| |#3|) 136 T ELT)) (-3449 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-4150 ((|#3| |#3|) 124 T ELT)) (-3468 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-4004 ((|#3| |#3|) 143 T ELT)) (-3456 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3992 ((|#3| |#3|) 131 T ELT)) (-3466 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-4002 ((|#3| |#3|) 141 T ELT)) (-3454 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3990 ((|#3| |#3|) 129 T ELT)) (-3470 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-4006 ((|#3| |#3|) 145 T ELT)) (-3458 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3994 ((|#3| |#3|) 133 T ELT)) (-3471 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-4007 ((|#3| |#3|) 146 T ELT)) (-3459 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3995 ((|#3| |#3|) 134 T ELT)) (-3469 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-4005 ((|#3| |#3|) 144 T ELT)) (-3457 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3993 ((|#3| |#3|) 132 T ELT)) (-3467 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-4003 ((|#3| |#3|) 142 T ELT)) (-3455 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3991 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-421 (-560))) 44 (|has| |#1| (-376)) ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-13 (-1015 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -4459 (|#3| |#3|)) (-15 -4458 (|#3| |#3|)) (-15 -4154 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4152 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4007 (|#3| |#3|)))) (-38 (-421 (-560))) (-1261 |#1|) (-1284 |#1| |#2|) (-1015 |#2|)) (T -290)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1261 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1284 *4 *5)) (-4 *6 (-1015 *5)))) (-4459 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4458 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4))))) -(-13 (-1015 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -4459 (|#3| |#3|)) (-15 -4458 (|#3| |#3|)) (-15 -4154 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4152 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4006 (|#3| |#3|)) (-15 -4007 (|#3| |#3|)))) -((-1718 (((-114) $) 20 T ELT)) (-1720 (((-1214) $) 9 T ELT)) (-4083 (((-3 (-520) "failed") $) 15 T ELT)) (-4082 (((-3 (-663 $) "failed") $) NIL T ELT)) (-1717 (((-3 (-520) "failed") $) 21 T ELT)) (-1719 (((-3 (-1135) "failed") $) 19 T ELT)) (-4469 (((-114) $) 17 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1716 (((-114) $) 10 T ELT))) -(((-291) (-13 (-632 (-888)) (-10 -8 (-15 -1720 ((-1214) $)) (-15 -4469 ((-114) $)) (-15 -1719 ((-3 (-1135) "failed") $)) (-15 -1718 ((-114) $)) (-15 -1717 ((-3 (-520) "failed") $)) (-15 -1716 ((-114) $)) (-15 -4083 ((-3 (-520) "failed") $)) (-15 -4082 ((-3 (-663 $) "failed") $))))) (T -291)) -((-1720 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-291)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1719 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-291)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1717 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-4083 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-4082 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291))))) -(-13 (-632 (-888)) (-10 -8 (-15 -1720 ((-1214) $)) (-15 -4469 ((-114) $)) (-15 -1719 ((-3 (-1135) "failed") $)) (-15 -1718 ((-114) $)) (-15 -1717 ((-3 (-520) "failed") $)) (-15 -1716 ((-114) $)) (-15 -4083 ((-3 (-520) "failed") $)) (-15 -4082 ((-3 (-663 $) "failed") $)))) -((-1722 (((-611) $) 10 T ELT)) (-1723 (((-600) $) 8 T ELT)) (-1721 (((-303) $) 12 T ELT)) (-1724 (($ (-600) (-611) (-303)) NIL T ELT)) (-4462 (((-888) $) 19 T ELT))) -(((-292) (-13 (-632 (-888)) (-10 -8 (-15 -1724 ($ (-600) (-611) (-303))) (-15 -1723 ((-600) $)) (-15 -1722 ((-611) $)) (-15 -1721 ((-303) $))))) (T -292)) -((-1724 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -(-13 (-632 (-888)) (-10 -8 (-15 -1724 ($ (-600) (-611) (-303))) (-15 -1723 ((-600) $)) (-15 -1722 ((-611) $)) (-15 -1721 ((-303) $)))) -((-4226 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-1479 (($ $) 38 T ELT)) (-3911 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3912 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3343 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2531 (($ |#2| $ (-560)) 20 T ELT) (($ $ $ (-560)) 22 T ELT)) (-2532 (($ $ (-560)) 11 T ELT) (($ $ (-1266 (-560))) 14 T ELT)) (-4307 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-4318 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-663 $)) NIL T ELT))) -(((-293 |#1| |#2|) (-10 -8 (-15 -3343 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -3343 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -3912 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4226 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3912 (|#1| |#2| |#1|)) (-15 -1479 (|#1| |#1|))) (-294 |#2|) (-1249)) (T -293)) -NIL -(-10 -8 (-15 -3343 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -3343 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -3912 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4226 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3912 (|#1| |#2| |#1|)) (-15 -1479 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 94 T ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2608 (($ $) 92 (|has| |#1| (-1133)) ELT)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ (-1 (-114) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1133)) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3343 (($ (-1 (-114) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4123 (($ |#1| $ (-560)) 97 T ELT) (($ $ $ (-560)) 96 T ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-1726 (($ $ (-560)) 100 T ELT) (($ $ (-1266 (-560))) 99 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4307 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-294 |#1|) (-142) (-1249)) (T -294)) -((-4307 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)))) (-4307 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)))) (-1726 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-1726 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-3911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-4123 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-294 *2)) (-4 *2 (-1249)))) (-4123 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-3343 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-1725 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) (-3911 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-1133)))) (-2608 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-1133)))) (-3343 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-872))))) -(-13 (-673 |t#1|) (-10 -8 (-6 -4512) (-15 -4307 ($ $ |t#1|)) (-15 -4307 ($ $ $)) (-15 -1726 ($ $ (-560))) (-15 -1726 ($ $ (-1266 (-560)))) (-15 -3911 ($ (-1 (-114) |t#1|) $)) (-15 -4123 ($ |t#1| $ (-560))) (-15 -4123 ($ $ $ (-560))) (-15 -3343 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1725 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1133)) (PROGN (-15 -3911 ($ |t#1| $)) (-15 -2608 ($ $))) |%noBranch|) (IF (|has| |t#1| (-872)) (-15 -3343 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-558)))) (-2884 (*1 *1 *1) (-4 *1 (-250)))) +(-13 (-302) (-38 (-419 (-558))) (-10 -8 (-15 ** ($ $ (-558))) (-15 -2884 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-302) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-737 #1#) . T) ((-746) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-4309 (($ $) 63 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-1616 (($ $ $) 59 (|has| $ (-6 -4508)) ELT)) (-1615 (($ $ $) 58 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-1618 (($ $) 62 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-1617 (($ $) 61 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) 65 T ELT)) (-3678 (($ $) 64 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4303 (($ $ $) 60 (|has| $ (-6 -4508)) ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-251 |#1|) (-142) (-1247)) (T -251)) +((-4310 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1618 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1617 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-4303 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1616 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1615 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -4310 (|t#1| $)) (-15 -3678 ($ $)) (-15 -4309 ($ $)) (-15 -1618 ($ $)) (-15 -1617 ($ $)) (IF (|has| $ (-6 -4508)) (PROGN (-15 -4303 ($ $ $)) (-15 -1616 ($ $ $)) (-15 -1615 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) NIL T ELT)) (-4307 ((|#1| $) NIL T ELT)) (-4309 (($ $) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) NIL (|has| |#1| (-870)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) 10 (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3944 (((-114) $ (-791)) NIL T ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4308 ((|#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-4311 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2604 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-1477 (($ $) 7 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3908 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3921 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-4231 (((-114) $ (-791)) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4020 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4044 (($ |#1|) NIL T ELT)) (-4228 (((-114) $ (-791)) NIL T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4119 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3946 (((-114) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-791) $ "count") 16 T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-1724 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-1619 (($ (-661 |#1|)) 22 T ELT)) (-4145 (((-114) $) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-4302 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) NIL T ELT)) (-4306 (($ $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4303 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4314 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4458 (($ (-661 |#1|)) 17 T ELT) (((-661 |#1|) $) 18 T ELT) (((-886) $) 21 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 14 (|has| $ (-6 -4507)) ELT))) +(((-252 |#1|) (-13 (-686 |#1|) (-502 (-661 |#1|)) (-10 -8 (-15 -1619 ($ (-661 |#1|))) (-15 -4312 ($ $ "unique")) (-15 -4312 ($ $ "sort")) (-15 -4312 ((-791) $ "count")))) (-870)) (T -252)) +((-1619 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-252 *3)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-870)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-870)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-791)) (-5 *1 (-252 *4)) (-4 *4 (-870))))) +(-13 (-686 |#1|) (-502 (-661 |#1|)) (-10 -8 (-15 -1619 ($ (-661 |#1|))) (-15 -4312 ($ $ "unique")) (-15 -4312 ($ $ "sort")) (-15 -4312 ((-791) $ "count")))) +((-1620 (((-3 (-791) "failed") |#1| |#1| (-791)) 40 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -1620 ((-3 (-791) "failed") |#1| |#1| (-791)))) (-13 (-746) (-381) (-10 -7 (-15 ** (|#1| |#1| (-558)))))) (T -253)) +((-1620 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-791)) (-4 *3 (-13 (-746) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-253 *3))))) +(-10 -7 (-15 -1620 ((-3 (-791) "failed") |#1| |#1| (-791)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $) 59 (|has| |#1| (-239)) ELT) (($ $ (-791)) 57 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 55 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 53 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 52 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 51 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-791)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3152 (($ $) 58 (|has| |#1| (-239)) ELT) (($ $ (-791)) 56 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 54 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 50 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 49 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 48 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-791)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-254 |#1|) (-142) (-1079)) (T -254)) +NIL +(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-928 (-1207))) (-6 (-925 |t#1| (-1207))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) -4039 (-12 (|has| |#1| (-175)) (|has| |#1| (-928 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-737 |#1|) -4039 (-12 (|has| |#1| (-175)) (|has| |#1| (-928 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-920 $ #1=(-1207)) |has| |#1| (-928 (-1207))) ((-925 |#1| (-1207)) |has| |#1| (-928 (-1207))) ((-928 #1#) |has| |#1| (-928 (-1207))) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-887 |#1|)) $) NIL T ELT)) (-3568 (((-1201 $) $ (-887 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-887 |#1|))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-887 |#1|) #2#) $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-887 |#1|) $) NIL T ELT)) (-4268 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2158 (($ $ (-661 (-558))) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-938)) ELT)) (-1814 (($ $ |#2| (-246 (-4469 |#1|) (-791)) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1201 $) (-887 |#1|)) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-246 (-4469 |#1|) (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3303 (((-246 (-4469 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-1815 (($ (-1 (-246 (-4469 |#1|) (-791)) (-246 (-4469 |#1|) (-791))) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3567 (((-3 (-887 |#1|) #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#2| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 $)) NIL T ELT)) (-4269 (($ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4270 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-4460 (((-246 (-4469 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-887 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-246 (-4469 |#1|) (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-255 |#1| |#2|) (-13 (-978 |#2| (-246 (-4469 |#1|) (-791)) (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) (-661 (-1207)) (-1079)) (T -255)) +((-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-661 (-1207))) (-4 *4 (-1079))))) +(-13 (-978 |#2| (-246 (-4469 |#1|) (-791)) (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1621 (((-1303) $) 17 T ELT)) (-1623 (((-187 (-257)) $) 11 T ELT)) (-1622 (($ (-187 (-257))) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1624 (((-257) $) 7 T ELT)) (-4458 (((-886) $) 9 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 15 T ELT))) +(((-256) (-13 (-1131) (-10 -8 (-15 -1624 ((-257) $)) (-15 -1623 ((-187 (-257)) $)) (-15 -1622 ($ (-187 (-257)))) (-15 -1621 ((-1303) $))))) (T -256)) +((-1624 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256))))) +(-13 (-1131) (-10 -8 (-15 -1624 ((-257) $)) (-15 -1623 ((-187 (-257)) $)) (-15 -1622 ($ (-187 (-257)))) (-15 -1621 ((-1303) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1548 (((-661 (-888)) $) NIL T ELT)) (-4052 (((-518) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1550 (((-190) $) NIL T ELT)) (-3114 (((-114) $ (-518)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1625 (((-345) $) 7 T ELT)) (-1549 (((-661 (-114)) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (((-186) $) 8 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2999 (((-55) $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-257) (-13 (-189) (-630 (-186)) (-10 -8 (-15 -1625 ((-345) $))))) (T -257)) +((-1625 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) +(-13 (-189) (-630 (-186)) (-10 -8 (-15 -1625 ((-345) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 (((-1212) $ (-791)) 13 T ELT)) (-4458 (((-886) $) 20 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 16 T ELT)) (-4469 (((-791) $) 9 T ELT))) +(((-258) (-13 (-1131) (-298 (-791) (-1212)) (-10 -8 (-15 -4469 ((-791) $))))) (T -258)) +((-4469 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-258))))) +(-13 (-1131) (-298 (-791) (-1212)) (-10 -8 (-15 -4469 ((-791) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4219 (($ (-947)) NIL (|has| |#4| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) NIL (|has| |#4| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#4| (-381)) ELT)) (-4300 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1131)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#4| (-1068 (-558))) (|has| |#4| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#4| (-1068 (-419 (-558)))) (|has| |#4| (-1131))) ELT)) (-3656 ((|#4| $) NIL (|has| |#4| (-1131)) ELT) (((-558) $) NIL (-12 (|has| |#4| (-1068 (-558))) (|has| |#4| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#4| (-1068 (-419 (-558)))) (|has| |#4| (-1131))) ELT)) (-2503 (((-2 (|:| -1793 (-709 |#4|)) (|:| |vec| (-1297 |#4|))) (-709 $) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-709 |#4|) (-709 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079))) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#4| (-1079)) ELT)) (-3477 (($) NIL (|has| |#4| (-381)) ELT)) (-1729 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#4| $ (-558)) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#4| (-815)) ELT)) (-3372 (((-661 |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#4| (-1079)) ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-3089 (((-661 |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-2170 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#4| (-381)) ELT)) (-2504 (((-2 (|:| -1793 (-709 |#4|)) (|:| |vec| (-1297 |#4|))) (-1297 $) $) NIL (|has| |#4| (-1079)) ELT) (((-709 |#4|) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1079))) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#4| (-381)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 ((|#4| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#4|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2430 (((-661 |#4|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#4| $ (-558) |#4|) NIL T ELT) ((|#4| $ (-558)) 12 T ELT)) (-4348 ((|#4| $ $) NIL (|has| |#4| (-1079)) ELT)) (-1610 (($ (-1297 |#4|)) NIL T ELT)) (-4423 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-4270 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-791)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079)))) ELT)) (-2167 (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1131)) ELT) (((-886) $) NIL T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#4| (-1068 (-558))) (|has| |#4| (-1131))) (|has| |#4| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#4| (-1068 (-419 (-558)))) (|has| |#4| (-1131))) ELT)) (-3610 (((-791)) NIL (|has| |#4| (-1079)) CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL (|has| |#4| (-1079)) CONST)) (-3152 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-791)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#4| (-926 (-1207))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1207))) (|has| |#4| (-1079)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-4039 (-12 (|has| |#4| (-240)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1079)))) ELT)) (-3047 (((-114) $ $) NIL (|has| |#4| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#4| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#4| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#4| (-870)) ELT)) (-4461 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#4| (-1079)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-746)) ELT) (($ |#4| $) NIL (|has| |#4| (-746)) ELT) (($ $ $) NIL (|has| |#4| (-1079)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-668 |#2|) (-668 |#3|)) (-947) (-1079) (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-668 |#2|)) (T -259)) +NIL +(-13 (-245 |#1| |#4|) (-668 |#2|) (-668 |#3|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4219 (($ (-947)) NIL (|has| |#3| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#3| (-381)) ELT)) (-4300 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1131)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT)) (-3656 ((|#3| $) NIL (|has| |#3| (-1131)) ELT) (((-558) $) NIL (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT)) (-2503 (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-709 |#3|) (-709 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-3477 (($) NIL (|has| |#3| (-381)) ELT)) (-1729 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#3| $ (-558)) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#3| (-815)) ELT)) (-3372 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#3| (-1079)) ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-3089 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-2170 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#3| (-381)) ELT)) (-2504 (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-709 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#3| (-381)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 ((|#3| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-2430 (((-661 |#3|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) 11 T ELT)) (-4348 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-1610 (($ (-1297 |#3|)) NIL T ELT)) (-4423 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4270 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) ELT)) (-2167 (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1131)) ELT) (((-886) $) NIL T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (|has| |#3| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT)) (-3610 (((-791)) NIL (|has| |#3| (-1079)) CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL (|has| |#3| (-1079)) CONST)) (-3152 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#3| (-926 (-1207))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-4039 (-12 (|has| |#3| (-240)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1079)))) ELT)) (-3047 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-4461 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#3| (-1079)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-746)) ELT) (($ |#3| $) NIL (|has| |#3| (-746)) ELT) (($ $ $) NIL (|has| |#3| (-1079)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-668 |#2|)) (-791) (-1079) (-668 |#2|)) (T -260)) +NIL +(-13 (-245 |#1| |#3|) (-668 |#2|)) +((-1630 (((-661 (-791)) $) 56 T ELT) (((-661 (-791)) $ |#3|) 59 T ELT)) (-1664 (((-791) $) 58 T ELT) (((-791) $ |#3|) 61 T ELT)) (-1626 (($ $) 76 T ELT)) (-3657 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-4284 (((-791) $ |#3|) 43 T ELT) (((-791) $) 38 T ELT)) (-1665 (((-1 $ (-791)) |#3|) 15 T ELT) (((-1 $ (-791)) $) 88 T ELT)) (-1628 ((|#4| $) 69 T ELT)) (-1629 (((-114) $) 67 T ELT)) (-1627 (($ $) 75 T ELT)) (-4280 (($ $ (-661 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-661 |#4|) (-661 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-661 |#4|) (-661 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-661 |#3|) (-661 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-661 |#3|) (-661 |#2|)) 97 T ELT)) (-4270 (($ $ (-661 |#4|) (-661 (-791))) NIL T ELT) (($ $ |#4| (-791)) NIL T ELT) (($ $ (-661 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-1631 (((-661 |#3|) $) 86 T ELT)) (-4460 ((|#5| $) NIL T ELT) (((-791) $ |#4|) NIL T ELT) (((-661 (-791)) $ (-661 |#4|)) NIL T ELT) (((-791) $ |#3|) 49 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) +(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4458 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4280 (|#1| |#1| (-661 |#3|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#3| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#3|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#3| |#1|)) (-15 -1665 ((-1 |#1| (-791)) |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1628 (|#4| |#1|)) (-15 -1629 ((-114) |#1|)) (-15 -1664 ((-791) |#1| |#3|)) (-15 -1630 ((-661 (-791)) |#1| |#3|)) (-15 -1664 ((-791) |#1|)) (-15 -1630 ((-661 (-791)) |#1|)) (-15 -4460 ((-791) |#1| |#3|)) (-15 -4284 ((-791) |#1|)) (-15 -4284 ((-791) |#1| |#3|)) (-15 -1631 ((-661 |#3|) |#1|)) (-15 -1665 ((-1 |#1| (-791)) |#3|)) (-15 -4458 (|#1| |#3|)) (-15 -3657 ((-3 |#3| #1="failed") |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4460 ((-661 (-791)) |#1| (-661 |#4|))) (-15 -4460 ((-791) |#1| |#4|)) (-15 -4458 (|#1| |#4|)) (-15 -3657 ((-3 |#4| #1#) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#4| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4460 (|#5| |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4270 (|#1| |#1| |#4|)) (-15 -4270 (|#1| |#1| (-661 |#4|))) (-15 -4270 (|#1| |#1| |#4| (-791))) (-15 -4270 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1079) (-870) (-277 |#3|) (-815)) (T -261)) +NIL +(-10 -8 (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4458 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4280 (|#1| |#1| (-661 |#3|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#3| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#3|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#3| |#1|)) (-15 -1665 ((-1 |#1| (-791)) |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1628 (|#4| |#1|)) (-15 -1629 ((-114) |#1|)) (-15 -1664 ((-791) |#1| |#3|)) (-15 -1630 ((-661 (-791)) |#1| |#3|)) (-15 -1664 ((-791) |#1|)) (-15 -1630 ((-661 (-791)) |#1|)) (-15 -4460 ((-791) |#1| |#3|)) (-15 -4284 ((-791) |#1|)) (-15 -4284 ((-791) |#1| |#3|)) (-15 -1631 ((-661 |#3|) |#1|)) (-15 -1665 ((-1 |#1| (-791)) |#3|)) (-15 -4458 (|#1| |#3|)) (-15 -3657 ((-3 |#3| #1="failed") |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4460 ((-661 (-791)) |#1| (-661 |#4|))) (-15 -4460 ((-791) |#1| |#4|)) (-15 -4458 (|#1| |#4|)) (-15 -3657 ((-3 |#4| #1#) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#4| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4460 (|#5| |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4270 (|#1| |#1| |#4|)) (-15 -4270 (|#1| |#1| (-661 |#4|))) (-15 -4270 (|#1| |#1| |#4| (-791))) (-15 -4270 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1630 (((-661 (-791)) $) 248 T ELT) (((-661 (-791)) $ |#2|) 246 T ELT)) (-1664 (((-791) $) 247 T ELT) (((-791) $ |#2|) 245 T ELT)) (-3566 (((-661 |#3|) $) 120 T ELT)) (-3568 (((-1201 $) $ |#3|) 135 T ELT) (((-1201 |#1|) $) 134 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 110 (|has| |#1| (-938)) ELT)) (-4287 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 113 (|has| |#1| (-938)) ELT)) (-1626 (($ $) 241 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1068 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3656 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1068 (-558))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-4268 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4471 (($ $) 168 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) 119 T ELT)) (-4235 (((-114) $) 106 (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| |#4| $) 186 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 94 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 93 (-12 (|has| |#3| (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ |#2|) 251 T ELT) (((-791) $) 250 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2659 (((-791) $) 183 T ELT)) (-3569 (($ (-1201 |#1|) |#3|) 127 T ELT) (($ (-1201 $) |#3|) 126 T ELT)) (-3304 (((-661 $) $) 136 T ELT)) (-4449 (((-114) $) 166 T ELT)) (-3376 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#3|) 130 T ELT)) (-3303 ((|#4| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-1815 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1665 (((-1 $ (-791)) |#2|) 253 T ELT) (((-1 $ (-791)) $) 240 (|has| |#1| (-240)) ELT)) (-3567 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 142 T ELT) (((-709 |#1|) (-1297 $)) 141 T ELT)) (-3377 (($ $) 163 T ELT)) (-3674 ((|#1| $) 162 T ELT)) (-1628 ((|#3| $) 243 T ELT)) (-2112 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1629 (((-114) $) 244 T ELT)) (-3306 (((-3 (-661 $) #3#) $) 124 T ELT)) (-3305 (((-3 (-661 $) #3#) $) 125 T ELT)) (-3307 (((-3 (-2 (|:| |var| |#3|) (|:| -2642 (-791))) #3#) $) 123 T ELT)) (-1627 (($ $) 242 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 180 T ELT)) (-2014 ((|#1| $) 181 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 105 (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 112 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 111 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 109 (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 $)) 238 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 |#1|)) 236 (|has| |#1| (-240)) ELT)) (-4269 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 259 T ELT) (($ $) 235 (|has| |#1| (-239)) ELT) (($ $ (-791)) 233 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 231 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 229 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 228 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 227 (|has| |#1| (-928 (-1207))) ELT)) (-1631 (((-661 |#2|) $) 252 T ELT)) (-4460 ((|#4| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT) (((-791) $ |#2|) 249 T ELT)) (-4484 (((-914 (-391)) $) 92 (-12 (|has| |#3| (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) 91 (-12 (|has| |#3| (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 114 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-419 (-558))) 88 (-4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) 182 T ELT)) (-4189 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3185 (((-711 $) $) 89 (-4039 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1813 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 257 T ELT) (($ $) 234 (|has| |#1| (-239)) ELT) (($ $ (-791)) 232 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 230 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 226 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 225 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 224 (|has| |#1| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-262 |#1| |#2| |#3| |#4|) (-142) (-1079) (-870) (-277 |t#2|) (-815)) (T -262)) +((-1665 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *4 *3 *5 *6)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 *4)))) (-4284 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) (-4460 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1630 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) (-1664 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-815)) (-4 *2 (-277 *4)))) (-1627 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-1665 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *3 *4 *5 *6))))) +(-13 (-978 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1068 |t#2|) (-10 -8 (-15 -1665 ((-1 $ (-791)) |t#2|)) (-15 -1631 ((-661 |t#2|) $)) (-15 -4284 ((-791) $ |t#2|)) (-15 -4284 ((-791) $)) (-15 -4460 ((-791) $ |t#2|)) (-15 -1630 ((-661 (-791)) $)) (-15 -1664 ((-791) $)) (-15 -1630 ((-661 (-791)) $ |t#2|)) (-15 -1664 ((-791) $ |t#2|)) (-15 -1629 ((-114) $)) (-15 -1628 (|t#3| $)) (-15 -1627 ($ $)) (-15 -1626 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-321 $)) (-15 -1665 ((-1 $ (-791)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#2|) . T) ((-633 |#3|) . T) ((-633 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#3| (-631 (-914 (-391))))) ((-631 (-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#3| (-631 (-914 (-558))))) ((-236 $) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-938)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-240)) ((-526 |#2| $) |has| |#1| (-240)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 #2=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 #2#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-920 $ #3=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-920 $ |#3|) . T) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-926 |#3|) . T) ((-928 #3#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#3| (-910 (-558)))) ((-978 |#1| |#4| |#3|) . T) ((-938) |has| |#1| (-938)) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1068 |#2|) . T) ((-1068 |#3|) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) |has| |#1| (-938))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1637 ((|#1| $) 58 T ELT)) (-3826 ((|#1| $) 48 T ELT)) (-4236 (($) 7 T CONST)) (-3485 (($ $) 64 T ELT)) (-2520 (($ $) 52 T ELT)) (-3828 ((|#1| |#1| $) 50 T ELT)) (-3827 ((|#1| $) 49 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4345 (((-791) $) 65 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-1635 ((|#1| |#1| $) 56 T ELT)) (-1634 ((|#1| |#1| $) 55 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3084 (((-791) $) 59 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-3484 ((|#1| $) 66 T ELT)) (-1633 ((|#1| $) 54 T ELT)) (-1632 ((|#1| $) 53 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3487 ((|#1| |#1| $) 62 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-3486 ((|#1| $) 63 T ELT)) (-1638 (($) 61 T ELT) (($ (-661 |#1|)) 60 T ELT)) (-3825 (((-791) $) 47 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1636 ((|#1| $) 57 T ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-3483 ((|#1| $) 67 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-263 |#1|) (-142) (-1247)) (T -263)) +((-1638 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1635 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1634 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(-13 (-1151 |t#1|) (-1025 |t#1|) (-10 -8 (-15 -1638 ($)) (-15 -1638 ($ (-661 |t#1|))) (-15 -3084 ((-791) $)) (-15 -1637 (|t#1| $)) (-15 -1636 (|t#1| $)) (-15 -1635 (|t#1| |t#1| $)) (-15 -1634 (|t#1| |t#1| $)) (-15 -1633 (|t#1| $)) (-15 -1632 (|t#1| $)) (-15 -2520 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1025 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1151 |#1|) . T) ((-1247) . T)) +((-1639 (((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 75 T ELT) (((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270))) 74 T ELT) (((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391))) 65 T ELT) (((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270))) 64 T ELT) (((-1163 (-229)) (-903 |#1|) (-1122 (-391))) 56 T ELT) (((-1163 (-229)) (-903 |#1|) (-1122 (-391)) (-661 (-270))) 55 T ELT)) (-1646 (((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 78 T ELT) (((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270))) 77 T ELT) (((-1301) |#1| (-1122 (-391)) (-1122 (-391))) 68 T ELT) (((-1301) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270))) 67 T ELT) (((-1301) (-903 |#1|) (-1122 (-391))) 60 T ELT) (((-1301) (-903 |#1|) (-1122 (-391)) (-661 (-270))) 59 T ELT) (((-1300) (-901 |#1|) (-1122 (-391))) 47 T ELT) (((-1300) (-901 |#1|) (-1122 (-391)) (-661 (-270))) 46 T ELT) (((-1300) |#1| (-1122 (-391))) 38 T ELT) (((-1300) |#1| (-1122 (-391)) (-661 (-270))) 36 T ELT))) +(((-264 |#1|) (-10 -7 (-15 -1646 ((-1300) |#1| (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) |#1| (-1122 (-391)))) (-15 -1646 ((-1300) (-901 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-901 |#1|) (-1122 (-391)))) (-15 -1646 ((-1301) (-903 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-903 |#1|) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) (-903 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-903 |#1|) (-1122 (-391)))) (-15 -1646 ((-1301) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -1646 ((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) (-13 (-631 (-547)) (-1131))) (T -264)) +((-1639 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *5)))) (-1639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *6)))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-1639 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) (-1639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) (-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *5)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *6)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-264 *5)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-264 *6)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131)))))) +(-10 -7 (-15 -1646 ((-1300) |#1| (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) |#1| (-1122 (-391)))) (-15 -1646 ((-1300) (-901 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-901 |#1|) (-1122 (-391)))) (-15 -1646 ((-1301) (-903 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-903 |#1|) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) (-903 |#1|) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-903 |#1|) (-1122 (-391)))) (-15 -1646 ((-1301) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -1646 ((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -1639 ((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) +((-1640 (((-1 (-971 (-229)) (-229) (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 158 T ELT)) (-1639 (((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391))) 178 T ELT) (((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 176 T ELT) (((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391))) 181 T ELT) (((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 177 T ELT) (((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391))) 169 T ELT) (((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 168 T ELT) (((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391))) 150 T ELT) (((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270))) 148 T ELT) (((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391))) 149 T ELT) (((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270))) 146 T ELT)) (-1646 (((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391))) 180 T ELT) (((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 179 T ELT) (((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391))) 183 T ELT) (((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 182 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391))) 171 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270))) 170 T ELT) (((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391))) 156 T ELT) (((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270))) 155 T ELT) (((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391))) 154 T ELT) (((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270))) 153 T ELT) (((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391))) 118 T ELT) (((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270))) 117 T ELT) (((-1300) (-1 (-229) (-229)) (-1119 (-391))) 112 T ELT) (((-1300) (-1 (-229) (-229)) (-1119 (-391)) (-661 (-270))) 110 T ELT))) +(((-265) (-10 -7 (-15 -1646 ((-1300) (-1 (-229) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-1 (-229) (-229)) (-1119 (-391)))) (-15 -1646 ((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1646 ((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1646 ((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)))) (-15 -1640 ((-1 (-971 (-229)) (-229) (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265)) +((-1640 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-971 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-265))))) +(-10 -7 (-15 -1646 ((-1300) (-1 (-229) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-1 (-229) (-229)) (-1119 (-391)))) (-15 -1646 ((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1300) (-901 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1646 ((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-903 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-903 (-1 (-229) (-229))) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229)) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-391)) (-1119 (-391)))) (-15 -1646 ((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1646 ((-1301) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)))) (-15 -1639 ((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)) (-661 (-270)))) (-15 -1639 ((-1163 (-229)) (-906 (-1 (-229) (-229) (-229))) (-1119 (-391)) (-1119 (-391)))) (-15 -1640 ((-1 (-971 (-229)) (-229) (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) +((-1646 (((-1300) (-305 |#2|) (-1207) (-1207) (-661 (-270))) 102 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -1646 ((-1300) (-305 |#2|) (-1207) (-1207) (-661 (-270))))) (-13 (-569) (-870) (-1068 (-558))) (-433 |#1|)) (T -266)) +((-1646 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-661 (-270))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-558)))) (-5 *2 (-1300)) (-5 *1 (-266 *6 *7))))) +(-10 -7 (-15 -1646 ((-1300) (-305 |#2|) (-1207) (-1207) (-661 (-270))))) +((-1643 (((-558) (-558)) 71 T ELT)) (-1644 (((-558) (-558)) 72 T ELT)) (-1645 (((-229) (-229)) 73 T ELT)) (-1642 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229))) 70 T ELT)) (-1641 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229)) (-114)) 68 T ELT))) +(((-267) (-10 -7 (-15 -1641 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229)) (-114))) (-15 -1642 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229)))) (-15 -1643 ((-558) (-558))) (-15 -1644 ((-558) (-558))) (-15 -1645 ((-229) (-229))))) (T -267)) +((-1645 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1642 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1119 (-229))) (-5 *2 (-1301)) (-5 *1 (-267)))) (-1641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1119 (-229))) (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267))))) +(-10 -7 (-15 -1641 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229)) (-114))) (-15 -1642 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1119 (-229)) (-1119 (-229)))) (-15 -1643 ((-558) (-558))) (-15 -1644 ((-558) (-558))) (-15 -1645 ((-229) (-229)))) +((-4458 (((-1122 (-391)) (-1122 (-326 |#1|))) 16 T ELT))) +(((-268 |#1|) (-10 -7 (-15 -4458 ((-1122 (-391)) (-1122 (-326 |#1|))))) (-13 (-870) (-569) (-631 (-391)))) (T -268)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-1122 (-326 *4))) (-4 *4 (-13 (-870) (-569) (-631 (-391)))) (-5 *2 (-1122 (-391))) (-5 *1 (-268 *4))))) +(-10 -7 (-15 -4458 ((-1122 (-391)) (-1122 (-326 |#1|))))) +((-1646 (((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229)) (-661 (-270))) 23 T ELT) (((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229))) 24 T ELT) (((-1300) (-661 (-971 (-229))) (-661 (-270))) 16 T ELT) (((-1300) (-661 (-971 (-229)))) 17 T ELT) (((-1300) (-661 (-229)) (-661 (-229)) (-661 (-270))) 20 T ELT) (((-1300) (-661 (-229)) (-661 (-229))) 21 T ELT))) +(((-269) (-10 -7 (-15 -1646 ((-1300) (-661 (-229)) (-661 (-229)))) (-15 -1646 ((-1300) (-661 (-229)) (-661 (-229)) (-661 (-270)))) (-15 -1646 ((-1300) (-661 (-971 (-229))))) (-15 -1646 ((-1300) (-661 (-971 (-229))) (-661 (-270)))) (-15 -1646 ((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229)))) (-15 -1646 ((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229)) (-661 (-270)))))) (T -269)) +((-1646 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-1646 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *4 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-1646 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-1646 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1300)) (-5 *1 (-269))))) +(-10 -7 (-15 -1646 ((-1300) (-661 (-229)) (-661 (-229)))) (-15 -1646 ((-1300) (-661 (-229)) (-661 (-229)) (-661 (-270)))) (-15 -1646 ((-1300) (-661 (-971 (-229))))) (-15 -1646 ((-1300) (-661 (-971 (-229))) (-661 (-270)))) (-15 -1646 ((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229)))) (-15 -1646 ((-1301) (-661 (-229)) (-661 (-229)) (-661 (-229)) (-661 (-270))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4393 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-1659 (($ (-947)) 81 T ELT)) (-1658 (($ (-947)) 80 T ELT)) (-1990 (($ (-661 (-391))) 87 T ELT)) (-1662 (($ (-391)) 66 T ELT)) (-1661 (($ (-947)) 82 T ELT)) (-1655 (($ (-114)) 33 T ELT)) (-4395 (($ (-1189)) 28 T ELT)) (-1654 (($ (-1189)) 29 T ELT)) (-1660 (($ (-1163 (-229))) 76 T ELT)) (-2149 (($ (-661 (-1119 (-391)))) 72 T ELT)) (-1648 (($ (-661 (-1119 (-391)))) 68 T ELT) (($ (-661 (-1119 (-419 (-558))))) 71 T ELT)) (-1651 (($ (-391)) 38 T ELT) (($ (-897)) 42 T ELT)) (-1647 (((-114) (-661 $) (-1207)) 100 T ELT)) (-1663 (((-3 (-51) "failed") (-661 $) (-1207)) 102 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1650 (($ (-391)) 43 T ELT) (($ (-897)) 44 T ELT)) (-3724 (($ (-1 (-971 (-229)) (-971 (-229)))) 65 T ELT)) (-2490 (($ (-1 (-971 (-229)) (-971 (-229)))) 83 T ELT)) (-1649 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-4458 (((-886) $) 93 T ELT)) (-1652 (($ (-114)) 34 T ELT) (($ (-661 (-1119 (-391)))) 60 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2144 (($ (-114)) 35 T ELT)) (-3536 (((-114) $ $) 97 T ELT))) +(((-270) (-13 (-1131) (-10 -8 (-15 -2144 ($ (-114))) (-15 -1652 ($ (-114))) (-15 -4393 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4395 ($ (-1189))) (-15 -1654 ($ (-1189))) (-15 -1655 ($ (-114))) (-15 -1652 ($ (-661 (-1119 (-391))))) (-15 -3724 ($ (-1 (-971 (-229)) (-971 (-229))))) (-15 -1651 ($ (-391))) (-15 -1651 ($ (-897))) (-15 -1650 ($ (-391))) (-15 -1650 ($ (-897))) (-15 -1649 ($ (-1 (-229) (-229)))) (-15 -1649 ($ (-1 (-229) (-229) (-229)))) (-15 -1649 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1662 ($ (-391))) (-15 -1648 ($ (-661 (-1119 (-391))))) (-15 -1648 ($ (-661 (-1119 (-419 (-558)))))) (-15 -2149 ($ (-661 (-1119 (-391))))) (-15 -1660 ($ (-1163 (-229)))) (-15 -1658 ($ (-947))) (-15 -1659 ($ (-947))) (-15 -1661 ($ (-947))) (-15 -2490 ($ (-1 (-971 (-229)) (-971 (-229))))) (-15 -1990 ($ (-661 (-391)))) (-15 -1663 ((-3 (-51) "failed") (-661 $) (-1207))) (-15 -1647 ((-114) (-661 $) (-1207)))))) (T -270)) +((-2144 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4393 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4395 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-1654 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-1655 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270)))) (-3724 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-419 (-558))))) (-5 *1 (-270)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-270)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) (-1659 (*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *1 (-270)))) (-1990 (*1 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-270)))) (-1663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *2 (-114)) (-5 *1 (-270))))) +(-13 (-1131) (-10 -8 (-15 -2144 ($ (-114))) (-15 -1652 ($ (-114))) (-15 -4393 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4395 ($ (-1189))) (-15 -1654 ($ (-1189))) (-15 -1655 ($ (-114))) (-15 -1652 ($ (-661 (-1119 (-391))))) (-15 -3724 ($ (-1 (-971 (-229)) (-971 (-229))))) (-15 -1651 ($ (-391))) (-15 -1651 ($ (-897))) (-15 -1650 ($ (-391))) (-15 -1650 ($ (-897))) (-15 -1649 ($ (-1 (-229) (-229)))) (-15 -1649 ($ (-1 (-229) (-229) (-229)))) (-15 -1649 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1662 ($ (-391))) (-15 -1648 ($ (-661 (-1119 (-391))))) (-15 -1648 ($ (-661 (-1119 (-419 (-558)))))) (-15 -2149 ($ (-661 (-1119 (-391))))) (-15 -1660 ($ (-1163 (-229)))) (-15 -1658 ($ (-947))) (-15 -1659 ($ (-947))) (-15 -1661 ($ (-947))) (-15 -2490 ($ (-1 (-971 (-229)) (-971 (-229))))) (-15 -1990 ($ (-661 (-391)))) (-15 -1663 ((-3 (-51) "failed") (-661 $) (-1207))) (-15 -1647 ((-114) (-661 $) (-1207))))) +((-4393 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-661 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-1659 (((-947) (-661 (-270)) (-947)) 52 T ELT)) (-1658 (((-947) (-661 (-270)) (-947)) 51 T ELT)) (-4363 (((-661 (-391)) (-661 (-270)) (-661 (-391))) 68 T ELT)) (-1662 (((-391) (-661 (-270)) (-391)) 57 T ELT)) (-1661 (((-947) (-661 (-270)) (-947)) 53 T ELT)) (-1655 (((-114) (-661 (-270)) (-114)) 27 T ELT)) (-4395 (((-1189) (-661 (-270)) (-1189)) 19 T ELT)) (-1654 (((-1189) (-661 (-270)) (-1189)) 26 T ELT)) (-1660 (((-1163 (-229)) (-661 (-270))) 46 T ELT)) (-2149 (((-661 (-1119 (-391))) (-661 (-270)) (-661 (-1119 (-391)))) 40 T ELT)) (-1656 (((-897) (-661 (-270)) (-897)) 32 T ELT)) (-1657 (((-897) (-661 (-270)) (-897)) 33 T ELT)) (-2490 (((-1 (-971 (-229)) (-971 (-229))) (-661 (-270)) (-1 (-971 (-229)) (-971 (-229)))) 63 T ELT)) (-1653 (((-114) (-661 (-270)) (-114)) 14 T ELT)) (-2144 (((-114) (-661 (-270)) (-114)) 13 T ELT))) +(((-271) (-10 -7 (-15 -2144 ((-114) (-661 (-270)) (-114))) (-15 -1653 ((-114) (-661 (-270)) (-114))) (-15 -4393 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-661 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4395 ((-1189) (-661 (-270)) (-1189))) (-15 -1654 ((-1189) (-661 (-270)) (-1189))) (-15 -1655 ((-114) (-661 (-270)) (-114))) (-15 -1656 ((-897) (-661 (-270)) (-897))) (-15 -1657 ((-897) (-661 (-270)) (-897))) (-15 -2149 ((-661 (-1119 (-391))) (-661 (-270)) (-661 (-1119 (-391))))) (-15 -1658 ((-947) (-661 (-270)) (-947))) (-15 -1659 ((-947) (-661 (-270)) (-947))) (-15 -1660 ((-1163 (-229)) (-661 (-270)))) (-15 -1661 ((-947) (-661 (-270)) (-947))) (-15 -1662 ((-391) (-661 (-270)) (-391))) (-15 -2490 ((-1 (-971 (-229)) (-971 (-229))) (-661 (-270)) (-1 (-971 (-229)) (-971 (-229))))) (-15 -4363 ((-661 (-391)) (-661 (-270)) (-661 (-391)))))) (T -271)) +((-4363 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-391))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2490 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1662 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-271)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1658 (*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2149 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1657 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1655 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1654 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-4395 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-4393 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1653 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2144 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(-10 -7 (-15 -2144 ((-114) (-661 (-270)) (-114))) (-15 -1653 ((-114) (-661 (-270)) (-114))) (-15 -4393 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-661 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4395 ((-1189) (-661 (-270)) (-1189))) (-15 -1654 ((-1189) (-661 (-270)) (-1189))) (-15 -1655 ((-114) (-661 (-270)) (-114))) (-15 -1656 ((-897) (-661 (-270)) (-897))) (-15 -1657 ((-897) (-661 (-270)) (-897))) (-15 -2149 ((-661 (-1119 (-391))) (-661 (-270)) (-661 (-1119 (-391))))) (-15 -1658 ((-947) (-661 (-270)) (-947))) (-15 -1659 ((-947) (-661 (-270)) (-947))) (-15 -1660 ((-1163 (-229)) (-661 (-270)))) (-15 -1661 ((-947) (-661 (-270)) (-947))) (-15 -1662 ((-391) (-661 (-270)) (-391))) (-15 -2490 ((-1 (-971 (-229)) (-971 (-229))) (-661 (-270)) (-1 (-971 (-229)) (-971 (-229))))) (-15 -4363 ((-661 (-391)) (-661 (-270)) (-661 (-391))))) +((-1663 (((-3 |#1| "failed") (-661 (-270)) (-1207)) 17 T ELT))) +(((-272 |#1|) (-10 -7 (-15 -1663 ((-3 |#1| "failed") (-661 (-270)) (-1207)))) (-1247)) (T -272)) +((-1663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *1 (-272 *2)) (-4 *2 (-1247))))) +(-10 -7 (-15 -1663 ((-3 |#1| "failed") (-661 (-270)) (-1207)))) +((-4270 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) 11 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) 19 T ELT) (($ $ (-791)) NIL T ELT) (($ $) 16 T ELT)) (-3152 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-791)) 14 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT))) +(((-273 |#1| |#2|) (-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -3152 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3152 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3152 (|#1| |#1| (-661 (-1207)))) (-15 -3152 (|#1| |#1| (-1207) (-791))) (-15 -3152 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3152 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -3152 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1247)) (T -273)) +NIL +(-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -3152 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3152 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3152 (|#1| |#1| (-661 (-1207)))) (-15 -3152 (|#1| |#1| (-1207) (-791))) (-15 -3152 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3152 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -3152 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|)))) +((-4270 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 22 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) 16 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 15 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 14 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207)) 12 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-791)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3152 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 20 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) 19 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 18 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 17 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207)) 13 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-791)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) +(((-274 |#1|) (-142) (-1247)) (T -274)) +((-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-4270 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))) (-3152 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-3152 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4270 ($ $ (-1 |t#1| |t#1|))) (-15 -4270 ($ $ (-1 |t#1| |t#1|) (-791))) (-15 -3152 ($ $ (-1 |t#1| |t#1|))) (-15 -3152 ($ $ (-1 |t#1| |t#1|) (-791))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-928 (-1207))) (-6 (-928 (-1207))) |%noBranch|))) +(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-920 $ #1=(-1207)) |has| |#1| (-928 (-1207))) ((-928 #1#) |has| |#1| (-928 (-1207))) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1630 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ |#2|) NIL T ELT)) (-1664 (((-791) $) NIL T ELT) (((-791) $ |#2|) NIL T ELT)) (-3566 (((-661 |#3|) $) NIL T ELT)) (-3568 (((-1201 $) $ |#3|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 |#3|)) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1626 (($ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 |#3| #2#) $) NIL T ELT) (((-3 |#2| #2#) $) NIL T ELT) (((-3 (-1155 |#1| |#2|) #2#) $) 23 T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-4268 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-543 |#3|) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| |#1| (-910 (-558))) (|has| |#3| (-910 (-558)))) ELT)) (-4284 (((-791) $ |#2|) NIL T ELT) (((-791) $) 10 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#1|) |#3|) NIL T ELT) (($ (-1201 $) |#3|) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-543 |#3|)) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#3|) NIL T ELT)) (-3303 (((-543 |#3|) $) NIL T ELT) (((-791) $ |#3|) NIL T ELT) (((-661 (-791)) $ (-661 |#3|)) NIL T ELT)) (-1815 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1665 (((-1 $ (-791)) |#2|) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3567 (((-3 |#3| #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-1628 ((|#3| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1629 (((-114) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| |#3|) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-1627 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-661 |#3|) (-661 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-661 |#3|) (-661 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4269 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1631 (((-661 |#2|) $) NIL T ELT)) (-4460 (((-543 |#3|) $) NIL T ELT) (((-791) $ |#3|) NIL T ELT) (((-661 (-791)) $ (-661 |#3|)) NIL T ELT) (((-791) $ |#2|) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#3| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#3| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#1| |#2|)) 32 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-543 |#3|)) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-543 |#3|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870) (-277 |#2|)) (T -275)) +NIL +(-13 (-262 |#1| |#2| |#3| (-543 |#3|)) (-1068 (-1155 |#1| |#2|))) +((-1664 (((-791) $) 37 T ELT)) (-3657 (((-3 |#2| "failed") $) 22 T ELT)) (-3656 ((|#2| $) 33 T ELT)) (-4270 (($ $ (-791)) 18 T ELT) (($ $) 14 T ELT)) (-4458 (((-886) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3536 (((-114) $ $) 26 T ELT)) (-3168 (((-114) $ $) 36 T ELT))) +(((-276 |#1| |#2|) (-10 -8 (-15 -1664 ((-791) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| "failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -3168 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-277 |#2|) (-870)) (T -276)) +NIL +(-10 -8 (-15 -1664 ((-791) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| "failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -3168 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-1664 (((-791) $) 26 T ELT)) (-4343 ((|#1| $) 27 T ELT)) (-3657 (((-3 |#1| "failed") $) 31 T ELT)) (-3656 ((|#1| $) 32 T ELT)) (-4284 (((-791) $) 28 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-1665 (($ |#1| (-791)) 29 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-791)) 35 T ELT) (($ $) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3152 (($ $ (-791)) 36 T ELT) (($ $) 34 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT))) +(((-277 |#1|) (-142) (-870)) (T -277)) +((-4458 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-870)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-277 *2)) (-4 *2 (-870)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-870)) (-5 *2 (-791)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-870)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-870)) (-5 *2 (-791))))) +(-13 (-870) (-239) (-1068 |t#1|) (-10 -8 (-15 -1665 ($ |t#1| (-791))) (-15 -4284 ((-791) $)) (-15 -4343 (|t#1| $)) (-15 -1664 ((-791) $)) (-15 -4458 ($ |t#1|)))) +(((-102) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-870) . T) ((-873) . T) ((-1068 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3566 (((-661 (-1207)) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 52 T ELT)) (-4446 (((-661 (-1207)) (-326 (-229)) (-791)) 94 T ELT)) (-1668 (((-3 (-326 (-229)) "failed") (-326 (-229))) 62 T ELT)) (-1669 (((-326 (-229)) (-326 (-229))) 78 T ELT)) (-1667 (((-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 37 T ELT)) (-1670 (((-114) (-661 (-326 (-229)))) 104 T ELT)) (-1674 (((-114) (-326 (-229))) 35 T ELT)) (-1676 (((-661 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) 132 T ELT)) (-1673 (((-661 (-326 (-229))) (-661 (-326 (-229)))) 108 T ELT)) (-1672 (((-661 (-326 (-229))) (-661 (-326 (-229)))) 106 T ELT)) (-1671 (((-709 (-229)) (-661 (-326 (-229))) (-791)) 120 T ELT)) (-3410 (((-114) (-326 (-229))) 30 T ELT) (((-114) (-661 (-326 (-229)))) 105 T ELT)) (-1666 (((-661 (-229)) (-661 (-864 (-229))) (-229)) 15 T ELT)) (-1770 (((-391) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 126 T ELT)) (-1675 (((-1065) (-1207) (-1065)) 45 T ELT))) +(((-278) (-10 -7 (-15 -1666 ((-661 (-229)) (-661 (-864 (-229))) (-229))) (-15 -1667 ((-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))) (-15 -1668 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1669 ((-326 (-229)) (-326 (-229)))) (-15 -1670 ((-114) (-661 (-326 (-229))))) (-15 -3410 ((-114) (-661 (-326 (-229))))) (-15 -3410 ((-114) (-326 (-229)))) (-15 -1671 ((-709 (-229)) (-661 (-326 (-229))) (-791))) (-15 -1672 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1673 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1674 ((-114) (-326 (-229)))) (-15 -3566 ((-661 (-1207)) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -4446 ((-661 (-1207)) (-326 (-229)) (-791))) (-15 -1675 ((-1065) (-1207) (-1065))) (-15 -1770 ((-391) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -1676 ((-661 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))))))) (T -278)) +((-1676 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) (-5 *2 (-661 (-1189))) (-5 *1 (-278)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-1675 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1207)) (-5 *1 (-278)))) (-4446 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-791)) (-5 *2 (-661 (-1207))) (-5 *1 (-278)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *2 (-661 (-1207))) (-5 *1 (-278)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-278)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1668 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (-5 *1 (-278)))) (-1666 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 *4)) (-5 *1 (-278))))) +(-10 -7 (-15 -1666 ((-661 (-229)) (-661 (-864 (-229))) (-229))) (-15 -1667 ((-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))) (-15 -1668 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1669 ((-326 (-229)) (-326 (-229)))) (-15 -1670 ((-114) (-661 (-326 (-229))))) (-15 -3410 ((-114) (-661 (-326 (-229))))) (-15 -3410 ((-114) (-326 (-229)))) (-15 -1671 ((-709 (-229)) (-661 (-326 (-229))) (-791))) (-15 -1672 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1673 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1674 ((-114) (-326 (-229)))) (-15 -3566 ((-661 (-1207)) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -4446 ((-661 (-1207)) (-326 (-229)) (-791))) (-15 -1675 ((-1065) (-1207) (-1065))) (-15 -1770 ((-391) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -1676 ((-661 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 56 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-279) (-861)) (T -279)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 72 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 63 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 41 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 43 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-280) (-861)) (T -280)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 90 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 85 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 52 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 65 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-281) (-861)) (T -281)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 73 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 45 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-282) (-861)) (T -282)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 65 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 31 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-283) (-861)) (T -283)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 90 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 33 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-284) (-861)) (T -284)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 87 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-285) (-861)) (T -285)) +NIL +(-861) +((-3049 (((-114) $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1678 (((-661 (-558)) $) 28 T ELT)) (-4460 (((-791) $) 26 T ELT)) (-4458 (((-886) $) 32 T ELT) (($ (-661 (-558))) 22 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1677 (($ (-791)) 29 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 9 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 17 T ELT))) +(((-286) (-13 (-870) (-10 -8 (-15 -4458 ($ (-661 (-558)))) (-15 -4460 ((-791) $)) (-15 -1678 ((-661 (-558)) $)) (-15 -1677 ($ (-791)))))) (T -286)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-286)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-286))))) +(-13 (-870) (-10 -8 (-15 -4458 ($ (-661 (-558)))) (-15 -4460 ((-791) $)) (-15 -1678 ((-661 (-558)) $)) (-15 -1677 ($ (-791))))) +((-3994 ((|#2| |#2|) 77 T ELT)) (-4151 ((|#2| |#2|) 65 T ELT)) (-1707 (((-3 |#2| "failed") |#2| (-661 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 123 T ELT)) (-3992 ((|#2| |#2|) 75 T ELT)) (-4150 ((|#2| |#2|) 63 T ELT)) (-3996 ((|#2| |#2|) 79 T ELT)) (-4149 ((|#2| |#2|) 67 T ELT)) (-4139 ((|#2|) 46 T ELT)) (-4105 (((-115) (-115)) 97 T ELT)) (-4454 ((|#2| |#2|) 61 T ELT)) (-1708 (((-114) |#2|) 146 T ELT)) (-1697 ((|#2| |#2|) 193 T ELT)) (-1685 ((|#2| |#2|) 169 T ELT)) (-1680 ((|#2|) 59 T ELT)) (-1679 ((|#2|) 58 T ELT)) (-1695 ((|#2| |#2|) 189 T ELT)) (-1683 ((|#2| |#2|) 165 T ELT)) (-1699 ((|#2| |#2|) 197 T ELT)) (-1687 ((|#2| |#2|) 173 T ELT)) (-1682 ((|#2| |#2|) 161 T ELT)) (-1681 ((|#2| |#2|) 163 T ELT)) (-1700 ((|#2| |#2|) 199 T ELT)) (-1688 ((|#2| |#2|) 175 T ELT)) (-1698 ((|#2| |#2|) 195 T ELT)) (-1686 ((|#2| |#2|) 171 T ELT)) (-1696 ((|#2| |#2|) 191 T ELT)) (-1684 ((|#2| |#2|) 167 T ELT)) (-1703 ((|#2| |#2|) 205 T ELT)) (-1691 ((|#2| |#2|) 181 T ELT)) (-1701 ((|#2| |#2|) 201 T ELT)) (-1689 ((|#2| |#2|) 177 T ELT)) (-1705 ((|#2| |#2|) 209 T ELT)) (-1693 ((|#2| |#2|) 185 T ELT)) (-1706 ((|#2| |#2|) 211 T ELT)) (-1694 ((|#2| |#2|) 187 T ELT)) (-1704 ((|#2| |#2|) 207 T ELT)) (-1692 ((|#2| |#2|) 183 T ELT)) (-1702 ((|#2| |#2|) 203 T ELT)) (-1690 ((|#2| |#2|) 179 T ELT)) (-4455 ((|#2| |#2|) 62 T ELT)) (-3997 ((|#2| |#2|) 80 T ELT)) (-4148 ((|#2| |#2|) 68 T ELT)) (-3995 ((|#2| |#2|) 78 T ELT)) (-4147 ((|#2| |#2|) 66 T ELT)) (-3993 ((|#2| |#2|) 76 T ELT)) (-4146 ((|#2| |#2|) 64 T ELT)) (-2478 (((-114) (-115)) 95 T ELT)) (-4000 ((|#2| |#2|) 83 T ELT)) (-3988 ((|#2| |#2|) 71 T ELT)) (-3998 ((|#2| |#2|) 81 T ELT)) (-3986 ((|#2| |#2|) 69 T ELT)) (-4002 ((|#2| |#2|) 85 T ELT)) (-3990 ((|#2| |#2|) 73 T ELT)) (-4003 ((|#2| |#2|) 86 T ELT)) (-3991 ((|#2| |#2|) 74 T ELT)) (-4001 ((|#2| |#2|) 84 T ELT)) (-3989 ((|#2| |#2|) 72 T ELT)) (-3999 ((|#2| |#2|) 82 T ELT)) (-3987 ((|#2| |#2|) 70 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -4455 (|#2| |#2|)) (-15 -4454 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4146 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4139 (|#2|)) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1679 (|#2|)) (-15 -1680 (|#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1700 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1707 ((-3 |#2| "failed") |#2| (-661 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1708 ((-114) |#2|))) (-569) (-13 (-433 |#1|) (-1032))) (T -287)) +((-1708 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-433 *4) (-1032))))) (-1707 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-661 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-433 *4) (-1032))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1700 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1696 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-1680 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-1679 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-433 *3) (-1032))))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-433 *4) (-1032))))) (-4139 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4148 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4146 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4454 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) (-4455 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) +(-10 -7 (-15 -4455 (|#2| |#2|)) (-15 -4454 (|#2| |#2|)) (-15 -4150 (|#2| |#2|)) (-15 -4146 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -3988 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4139 (|#2|)) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1679 (|#2|)) (-15 -1680 (|#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1700 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1705 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1707 ((-3 |#2| "failed") |#2| (-661 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1708 ((-114) |#2|))) +((-1711 (((-3 |#2| "failed") (-661 (-628 |#2|)) |#2| (-1207)) 151 T ELT)) (-1713 ((|#2| (-419 (-558)) |#2|) 49 T ELT)) (-1712 ((|#2| |#2| (-628 |#2|)) 144 T ELT)) (-1709 (((-2 (|:| |func| |#2|) (|:| |kers| (-661 (-628 |#2|))) (|:| |vals| (-661 |#2|))) |#2| (-1207)) 143 T ELT)) (-1710 ((|#2| |#2| (-1207)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2842 ((|#2| |#2| (-1207)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-288 |#1| |#2|) (-10 -7 (-15 -2842 (|#2| |#2|)) (-15 -2842 (|#2| |#2| (-1207))) (-15 -1709 ((-2 (|:| |func| |#2|) (|:| |kers| (-661 (-628 |#2|))) (|:| |vals| (-661 |#2|))) |#2| (-1207))) (-15 -1710 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-1207))) (-15 -1711 ((-3 |#2| "failed") (-661 (-628 |#2|)) |#2| (-1207))) (-15 -1712 (|#2| |#2| (-628 |#2|))) (-15 -1713 (|#2| (-419 (-558)) |#2|))) (-13 (-569) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -288)) +((-1713 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-1712 (*1 *2 *2 *3) (-12 (-5 *3 (-628 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)))) (-1711 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-1207)) (-4 *2 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *5 *2)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3))))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-661 (-628 *3))) (|:| |vals| (-661 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-2842 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-2842 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3)))))) +(-10 -7 (-15 -2842 (|#2| |#2|)) (-15 -2842 (|#2| |#2| (-1207))) (-15 -1709 ((-2 (|:| |func| |#2|) (|:| |kers| (-661 (-628 |#2|))) (|:| |vals| (-661 |#2|))) |#2| (-1207))) (-15 -1710 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-1207))) (-15 -1711 ((-3 |#2| "failed") (-661 (-628 |#2|)) |#2| (-1207))) (-15 -1712 (|#2| |#2| (-628 |#2|))) (-15 -1713 (|#2| (-419 (-558)) |#2|))) +((-3458 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3994 ((|#3| |#3|) 142 T ELT)) (-3446 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-4151 ((|#3| |#3|) 132 T ELT)) (-3456 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3992 ((|#3| |#3|) 140 T ELT)) (-3444 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-4150 ((|#3| |#3|) 130 T ELT)) (-3460 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3996 ((|#3| |#3|) 144 T ELT)) (-3448 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-4149 ((|#3| |#3|) 134 T ELT)) (-3441 (((-3 |#3| #1#) |#3| (-791)) 41 T ELT)) (-3443 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4454 ((|#3| |#3|) 129 T ELT)) (-3442 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4455 ((|#3| |#3|) 128 T ELT)) (-3461 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3997 ((|#3| |#3|) 145 T ELT)) (-3449 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-4148 ((|#3| |#3|) 135 T ELT)) (-3459 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3995 ((|#3| |#3|) 143 T ELT)) (-3447 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-4147 ((|#3| |#3|) 133 T ELT)) (-3457 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3993 ((|#3| |#3|) 141 T ELT)) (-3445 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-4146 ((|#3| |#3|) 131 T ELT)) (-3464 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-4000 ((|#3| |#3|) 148 T ELT)) (-3452 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3988 ((|#3| |#3|) 152 T ELT)) (-3462 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3998 ((|#3| |#3|) 146 T ELT)) (-3450 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3986 ((|#3| |#3|) 136 T ELT)) (-3466 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-4002 ((|#3| |#3|) 150 T ELT)) (-3454 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3990 ((|#3| |#3|) 138 T ELT)) (-3467 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-4003 ((|#3| |#3|) 151 T ELT)) (-3455 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3991 ((|#3| |#3|) 139 T ELT)) (-3465 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-4001 ((|#3| |#3|) 149 T ELT)) (-3453 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3989 ((|#3| |#3|) 153 T ELT)) (-3463 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3999 ((|#3| |#3|) 147 T ELT)) (-3451 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3987 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-419 (-558))) 47 (|has| |#1| (-376)) ELT))) +(((-289 |#1| |#2| |#3|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4455 (|#3| |#3|)) (-15 -4454 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4146 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4148 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3987 (|#3| |#3|)) (-15 -3988 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)))) (-38 (-419 (-558))) (-1290 |#1|) (-1261 |#1| |#2|)) (T -289)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1290 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1261 *4 *5)))) (-4455 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4454 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4146 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4148 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))) +(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4455 (|#3| |#3|)) (-15 -4454 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4146 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4148 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3987 (|#3| |#3|)) (-15 -3988 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)))) +((-3458 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3994 ((|#3| |#3|) 137 T ELT)) (-3446 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-4151 ((|#3| |#3|) 125 T ELT)) (-3456 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3992 ((|#3| |#3|) 135 T ELT)) (-3444 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-4150 ((|#3| |#3|) 123 T ELT)) (-3460 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3996 ((|#3| |#3|) 139 T ELT)) (-3448 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-4149 ((|#3| |#3|) 127 T ELT)) (-3441 (((-3 |#3| #1#) |#3| (-791)) 38 T ELT)) (-3443 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4454 ((|#3| |#3|) 111 T ELT)) (-3442 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4455 ((|#3| |#3|) 122 T ELT)) (-3461 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3997 ((|#3| |#3|) 140 T ELT)) (-3449 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-4148 ((|#3| |#3|) 128 T ELT)) (-3459 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3995 ((|#3| |#3|) 138 T ELT)) (-3447 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-4147 ((|#3| |#3|) 126 T ELT)) (-3457 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3993 ((|#3| |#3|) 136 T ELT)) (-3445 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-4146 ((|#3| |#3|) 124 T ELT)) (-3464 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-4000 ((|#3| |#3|) 143 T ELT)) (-3452 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3988 ((|#3| |#3|) 131 T ELT)) (-3462 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3998 ((|#3| |#3|) 141 T ELT)) (-3450 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3986 ((|#3| |#3|) 129 T ELT)) (-3466 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-4002 ((|#3| |#3|) 145 T ELT)) (-3454 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3990 ((|#3| |#3|) 133 T ELT)) (-3467 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-4003 ((|#3| |#3|) 146 T ELT)) (-3455 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3991 ((|#3| |#3|) 134 T ELT)) (-3465 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-4001 ((|#3| |#3|) 144 T ELT)) (-3453 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3989 ((|#3| |#3|) 132 T ELT)) (-3463 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3999 ((|#3| |#3|) 142 T ELT)) (-3451 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3987 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-419 (-558))) 44 (|has| |#1| (-376)) ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4455 (|#3| |#3|)) (-15 -4454 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4146 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4148 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3987 (|#3| |#3|)) (-15 -3988 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)))) (-38 (-419 (-558))) (-1259 |#1|) (-1282 |#1| |#2|) (-1013 |#2|)) (T -290)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1282 *4 *5)) (-4 *6 (-1013 *5)))) (-4455 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4454 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4150 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4146 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4148 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3988 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4))))) +(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4455 (|#3| |#3|)) (-15 -4454 (|#3| |#3|)) (-15 -4150 (|#3| |#3|)) (-15 -4146 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4148 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3987 (|#3| |#3|)) (-15 -3988 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -3990 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)))) +((-1716 (((-114) $) 20 T ELT)) (-1718 (((-1212) $) 9 T ELT)) (-4079 (((-3 (-518) "failed") $) 15 T ELT)) (-4078 (((-3 (-661 $) "failed") $) NIL T ELT)) (-1715 (((-3 (-518) "failed") $) 21 T ELT)) (-1717 (((-3 (-1133) "failed") $) 19 T ELT)) (-4465 (((-114) $) 17 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1714 (((-114) $) 10 T ELT))) +(((-291) (-13 (-630 (-886)) (-10 -8 (-15 -1718 ((-1212) $)) (-15 -4465 ((-114) $)) (-15 -1717 ((-3 (-1133) "failed") $)) (-15 -1716 ((-114) $)) (-15 -1715 ((-3 (-518) "failed") $)) (-15 -1714 ((-114) $)) (-15 -4079 ((-3 (-518) "failed") $)) (-15 -4078 ((-3 (-661 $) "failed") $))))) (T -291)) +((-1718 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))) (-4465 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1717 (*1 *2 *1) (|partial| -12 (-5 *2 (-1133)) (-5 *1 (-291)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1715 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-4079 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-4078 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-291))) (-5 *1 (-291))))) +(-13 (-630 (-886)) (-10 -8 (-15 -1718 ((-1212) $)) (-15 -4465 ((-114) $)) (-15 -1717 ((-3 (-1133) "failed") $)) (-15 -1716 ((-114) $)) (-15 -1715 ((-3 (-518) "failed") $)) (-15 -1714 ((-114) $)) (-15 -4079 ((-3 (-518) "failed") $)) (-15 -4078 ((-3 (-661 $) "failed") $)))) +((-1720 (((-609) $) 10 T ELT)) (-1721 (((-598) $) 8 T ELT)) (-1719 (((-303) $) 12 T ELT)) (-1722 (($ (-598) (-609) (-303)) NIL T ELT)) (-4458 (((-886) $) 19 T ELT))) +(((-292) (-13 (-630 (-886)) (-10 -8 (-15 -1722 ($ (-598) (-609) (-303))) (-15 -1721 ((-598) $)) (-15 -1720 ((-609) $)) (-15 -1719 ((-303) $))))) (T -292)) +((-1722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-609)) (-5 *4 (-303)) (-5 *1 (-292)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-292)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-292)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) +(-13 (-630 (-886)) (-10 -8 (-15 -1722 ($ (-598) (-609) (-303))) (-15 -1721 ((-598) $)) (-15 -1720 ((-609) $)) (-15 -1719 ((-303) $)))) +((-4222 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-1477 (($ $) 38 T ELT)) (-3907 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3908 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3339 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2527 (($ |#2| $ (-558)) 20 T ELT) (($ $ $ (-558)) 22 T ELT)) (-2528 (($ $ (-558)) 11 T ELT) (($ $ (-1264 (-558))) 14 T ELT)) (-4303 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-4314 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-661 $)) NIL T ELT))) +(((-293 |#1| |#2|) (-10 -8 (-15 -3339 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -3339 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -3908 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4222 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3908 (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|))) (-294 |#2|) (-1247)) (T -293)) +NIL +(-10 -8 (-15 -3339 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -3339 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -3908 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4222 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3908 (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 94 T ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2604 (($ $) 92 (|has| |#1| (-1131)) ELT)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ (-1 (-114) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1131)) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3339 (($ (-1 (-114) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4119 (($ |#1| $ (-558)) 97 T ELT) (($ $ $ (-558)) 96 T ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-1724 (($ $ (-558)) 100 T ELT) (($ $ (-1264 (-558))) 99 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4303 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-294 |#1|) (-142) (-1247)) (T -294)) +((-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-4303 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-4119 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-4119 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3339 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-1723 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3907 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1131)))) (-2604 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1131)))) (-3339 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) +(-13 (-671 |t#1|) (-10 -8 (-6 -4508) (-15 -4303 ($ $ |t#1|)) (-15 -4303 ($ $ $)) (-15 -1724 ($ $ (-558))) (-15 -1724 ($ $ (-1264 (-558)))) (-15 -3907 ($ (-1 (-114) |t#1|) $)) (-15 -4119 ($ |t#1| $ (-558))) (-15 -4119 ($ $ $ (-558))) (-15 -3339 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1723 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -3907 ($ |t#1| $)) (-15 -2604 ($ $))) |%noBranch|) (IF (|has| |t#1| (-870)) (-15 -3339 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) ((** (($ $ $) 10 T ELT))) (((-295 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-296)) (T -295)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4458 (($ $) 6 T ELT)) (-4459 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-4454 (($ $) 6 T ELT)) (-4455 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-296) (-142)) (T -296)) -((** (*1 *1 *1 *1) (-4 *1 (-296))) (-4459 (*1 *1 *1) (-4 *1 (-296))) (-4458 (*1 *1 *1) (-4 *1 (-296)))) -(-13 (-10 -8 (-15 -4458 ($ $)) (-15 -4459 ($ $)) (-15 ** ($ $ $)))) -((-1730 (((-663 (-1187 |#1|)) (-1187 |#1|) |#1|) 35 T ELT)) (-1727 ((|#2| |#2| |#1|) 39 T ELT)) (-1729 ((|#2| |#2| |#1|) 41 T ELT)) (-1728 ((|#2| |#2| |#1|) 40 T ELT))) -(((-297 |#1| |#2|) (-10 -7 (-15 -1727 (|#2| |#2| |#1|)) (-15 -1728 (|#2| |#2| |#1|)) (-15 -1729 (|#2| |#2| |#1|)) (-15 -1730 ((-663 (-1187 |#1|)) (-1187 |#1|) |#1|))) (-376) (-1292 |#1|)) (T -297)) -((-1730 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1187 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1187 *4)) (-4 *5 (-1292 *4)))) (-1729 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3)))) (-1728 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3)))) (-1727 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3))))) -(-10 -7 (-15 -1727 (|#2| |#2| |#1|)) (-15 -1728 (|#2| |#2| |#1|)) (-15 -1729 (|#2| |#2| |#1|)) (-15 -1730 ((-663 (-1187 |#1|)) (-1187 |#1|) |#1|))) -((-4316 ((|#2| $ |#1|) 6 T ELT))) -(((-298 |#1| |#2|) (-142) (-1249) (-1249)) (T -298)) -((-4316 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1249)) (-4 *2 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -4316 (|t#2| $ |t#1|)))) -(((-1249) . T)) -((-1731 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3601 ((|#3| $ |#2|) 10 T ELT))) -(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -1731 (|#3| |#1| |#2| |#3|)) (-15 -3601 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1133) (-1249)) (T -299)) -NIL -(-10 -8 (-15 -1731 (|#3| |#1| |#2| |#3|)) (-15 -3601 (|#3| |#1| |#2|))) -((-4304 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4512)) ELT)) (-1731 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) 11 T ELT)) (-4316 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-300 |#1| |#2|) (-142) (-1133) (-1249)) (T -300)) -((-4316 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) (-3601 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) (-4304 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) (-1731 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249))))) -(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -4316 (|t#2| $ |t#1| |t#2|)) (-15 -3601 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4512)) (PROGN (-15 -4304 (|t#2| $ |t#1| |t#2|)) (-15 -1731 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-298 |#1| |#2|) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 37 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 44 T ELT)) (-2287 (($ $) 41 T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) 35 T ELT)) (-4358 (($ |#2| |#3|) 18 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-3099 ((|#3| $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 19 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-2647 (((-3 $ "failed") $ $) NIL T ELT)) (-1799 (((-793) $) 36 T ELT)) (-4316 ((|#2| $ |#2|) 46 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 23 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 31 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3099 (|#3| $)) (-15 -4462 (|#2| $)) (-15 -4358 ($ |#2| |#3|)) (-15 -2647 ((-3 $ "failed") $ $)) (-15 -3973 ((-3 $ "failed") $)) (-15 -2888 ($ $)))) (-175) (-1275 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -301)) -((-3973 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3099 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1275 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4462 (*1 *2 *1) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4358 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1275 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2647 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2888 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -(-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3099 (|#3| $)) (-15 -4462 (|#2| $)) (-15 -4358 ($ |#2| |#3|)) (-15 -2647 ((-3 $ "failed") $ $)) (-15 -3973 ((-3 $ "failed") $)) (-15 -2888 ($ $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-296))) (-4455 (*1 *1 *1) (-4 *1 (-296))) (-4454 (*1 *1 *1) (-4 *1 (-296)))) +(-13 (-10 -8 (-15 -4454 ($ $)) (-15 -4455 ($ $)) (-15 ** ($ $ $)))) +((-1728 (((-661 (-1185 |#1|)) (-1185 |#1|) |#1|) 35 T ELT)) (-1725 ((|#2| |#2| |#1|) 39 T ELT)) (-1727 ((|#2| |#2| |#1|) 41 T ELT)) (-1726 ((|#2| |#2| |#1|) 40 T ELT))) +(((-297 |#1| |#2|) (-10 -7 (-15 -1725 (|#2| |#2| |#1|)) (-15 -1726 (|#2| |#2| |#1|)) (-15 -1727 (|#2| |#2| |#1|)) (-15 -1728 ((-661 (-1185 |#1|)) (-1185 |#1|) |#1|))) (-376) (-1290 |#1|)) (T -297)) +((-1728 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-661 (-1185 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4)))) (-1727 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-1726 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-1725 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3))))) +(-10 -7 (-15 -1725 (|#2| |#2| |#1|)) (-15 -1726 (|#2| |#2| |#1|)) (-15 -1727 (|#2| |#2| |#1|)) (-15 -1728 ((-661 (-1185 |#1|)) (-1185 |#1|) |#1|))) +((-4312 ((|#2| $ |#1|) 6 T ELT))) +(((-298 |#1| |#2|) (-142) (-1247) (-1247)) (T -298)) +((-4312 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4312 (|t#2| $ |t#1|)))) +(((-1247) . T)) +((-1729 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3597 ((|#3| $ |#2|) 10 T ELT))) +(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -1729 (|#3| |#1| |#2| |#3|)) (-15 -3597 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1131) (-1247)) (T -299)) +NIL +(-10 -8 (-15 -1729 (|#3| |#1| |#2| |#3|)) (-15 -3597 (|#3| |#1| |#2|))) +((-4300 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4508)) ELT)) (-1729 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) 11 T ELT)) (-4312 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-300 |#1| |#2|) (-142) (-1131) (-1247)) (T -300)) +((-4312 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) (-3597 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) (-4300 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) (-1729 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247))))) +(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -4312 (|t#2| $ |t#1| |t#2|)) (-15 -3597 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4508)) (PROGN (-15 -4300 (|t#2| $ |t#1| |t#2|)) (-15 -1729 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-298 |#1| |#2|) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 37 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 44 T ELT)) (-2283 (($ $) 41 T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) 35 T ELT)) (-4354 (($ |#2| |#3|) 18 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-3095 ((|#3| $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 19 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2643 (((-3 $ "failed") $ $) NIL T ELT)) (-1797 (((-791) $) 36 T ELT)) (-4312 ((|#2| $ |#2|) 46 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 23 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 31 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3095 (|#3| $)) (-15 -4458 (|#2| $)) (-15 -4354 ($ |#2| |#3|)) (-15 -2643 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2884 ($ $)))) (-175) (-1273 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -301)) +((-3969 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3095 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4458 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4354 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2643 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2884 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +(-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3095 (|#3| $)) (-15 -4458 (|#2| $)) (-15 -4354 ($ |#2| |#3|)) (-15 -2643 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2884 ($ $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-302) (-142)) (T -302)) NIL -(-13 (-1081) (-111 $ $) (-10 -7 (-6 -4504))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-1739 (((-663 (-1117)) $) 10 T ELT)) (-1737 (($ (-520) (-520) (-1135) $) 19 T ELT)) (-1735 (($ (-520) (-663 (-995)) $) 23 T ELT)) (-1733 (($) 25 T ELT)) (-1738 (((-713 (-1135)) (-520) (-520) $) 18 T ELT)) (-1736 (((-663 (-995)) (-520) $) 22 T ELT)) (-4079 (($) 7 T ELT)) (-1734 (($) 24 T ELT)) (-4462 (((-888) $) 29 T ELT)) (-1732 (($) 26 T ELT))) -(((-303) (-13 (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -1739 ((-663 (-1117)) $)) (-15 -1738 ((-713 (-1135)) (-520) (-520) $)) (-15 -1737 ($ (-520) (-520) (-1135) $)) (-15 -1736 ((-663 (-995)) (-520) $)) (-15 -1735 ($ (-520) (-663 (-995)) $)) (-15 -1734 ($)) (-15 -1733 ($)) (-15 -1732 ($))))) (T -303)) -((-4079 (*1 *1) (-5 *1 (-303))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-663 (-1117))) (-5 *1 (-303)))) (-1738 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1135))) (-5 *1 (-303)))) (-1737 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-303)))) (-1736 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-663 (-995))) (-5 *1 (-303)))) (-1735 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-995))) (-5 *1 (-303)))) (-1734 (*1 *1) (-5 *1 (-303))) (-1733 (*1 *1) (-5 *1 (-303))) (-1732 (*1 *1) (-5 *1 (-303)))) -(-13 (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -1739 ((-663 (-1117)) $)) (-15 -1738 ((-713 (-1135)) (-520) (-520) $)) (-15 -1737 ($ (-520) (-520) (-1135) $)) (-15 -1736 ((-663 (-995)) (-520) $)) (-15 -1735 ($ (-520) (-663 (-995)) $)) (-15 -1734 ($)) (-15 -1733 ($)) (-15 -1732 ($)))) -((-1743 (((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|)))) 103 T ELT)) (-1742 (((-663 (-711 (-421 (-976 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|)))))) (-711 (-421 (-976 |#1|)))) 98 T ELT) (((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|))) (-793) (-793)) 42 T ELT)) (-1744 (((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|)))) 100 T ELT)) (-1741 (((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|)))) 76 T ELT)) (-1740 (((-663 (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (-711 (-421 (-976 |#1|)))) 75 T ELT)) (-2852 (((-976 |#1|) (-711 (-421 (-976 |#1|)))) 56 T ELT) (((-976 |#1|) (-711 (-421 (-976 |#1|))) (-1209)) 57 T ELT))) -(((-304 |#1|) (-10 -7 (-15 -2852 ((-976 |#1|) (-711 (-421 (-976 |#1|))) (-1209))) (-15 -2852 ((-976 |#1|) (-711 (-421 (-976 |#1|))))) (-15 -1740 ((-663 (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (-711 (-421 (-976 |#1|))))) (-15 -1741 ((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|))))) (-15 -1742 ((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|))) (-793) (-793))) (-15 -1742 ((-663 (-711 (-421 (-976 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|)))))) (-711 (-421 (-976 |#1|))))) (-15 -1743 ((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|))))) (-15 -1744 ((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|)))))) (-466)) (T -304)) -((-1744 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-976 *4)))))) (-1743 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4)))) (|:| |geneigvec| (-663 (-711 (-421 (-976 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-976 *4)))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-421 (-976 *5)) (-1198 (-1209) (-976 *5)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-976 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-976 *5)))))) (-1742 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-421 (-976 *6)) (-1198 (-1209) (-976 *6)))) (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-976 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-976 *6)))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-421 (-976 *5)) (-1198 (-1209) (-976 *5)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-976 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-976 *5)))))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-976 *4)))) (-4 *4 (-466)) (-5 *2 (-663 (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4))))) (-5 *1 (-304 *4)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-976 *4)))) (-5 *2 (-976 *4)) (-5 *1 (-304 *4)) (-4 *4 (-466)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-976 *5)))) (-5 *4 (-1209)) (-5 *2 (-976 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466))))) -(-10 -7 (-15 -2852 ((-976 |#1|) (-711 (-421 (-976 |#1|))) (-1209))) (-15 -2852 ((-976 |#1|) (-711 (-421 (-976 |#1|))))) (-15 -1740 ((-663 (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (-711 (-421 (-976 |#1|))))) (-15 -1741 ((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|))))) (-15 -1742 ((-663 (-711 (-421 (-976 |#1|)))) (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|))) (-711 (-421 (-976 |#1|))) (-793) (-793))) (-15 -1742 ((-663 (-711 (-421 (-976 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|)))))) (-711 (-421 (-976 |#1|))))) (-15 -1743 ((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|))))) (-15 -1744 ((-663 (-2 (|:| |eigval| (-3 (-421 (-976 |#1|)) (-1198 (-1209) (-976 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 |#1|))))))) (-711 (-421 (-976 |#1|)))))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3692 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1750 (($ $) 12 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1759 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-4240 (($) NIL (-4043 (|has| |#1| (-21)) (|has| |#1| (-748))) CONST)) (-1748 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1746 (((-3 $ "failed") $) 62 (|has| |#1| (-748)) ELT)) (-4034 ((|#1| $) 11 T ELT)) (-3973 (((-3 $ "failed") $) 60 (|has| |#1| (-748)) ELT)) (-2655 (((-114) $) NIL (|has| |#1| (-748)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-4035 ((|#1| $) 10 T ELT)) (-1749 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1747 (((-3 $ "failed") $) 61 (|has| |#1| (-748)) ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2888 (($ $) 64 (-4043 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-1745 (((-663 $) $) 85 (|has| |#1| (-571)) ELT)) (-4284 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-1209) |#1|) 17 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 21 (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-3730 (($ |#1| |#1|) 9 T ELT)) (-4427 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 87 (|has| |#1| (-928 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-928 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-928 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-928 (-1209))) ELT)) (-3496 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-4462 (($ (-560)) NIL (|has| |#1| (-1081)) ELT) (((-114) $) 37 (|has| |#1| (-1133)) ELT) (((-888) $) 36 (|has| |#1| (-1133)) ELT)) (-3614 (((-793)) 67 (|has| |#1| (-1081)) CONST)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3145 (($) 47 (|has| |#1| (-21)) CONST)) (-3151 (($) 57 (|has| |#1| (-748)) CONST)) (-3156 (($ $ (-1209)) NIL (|has| |#1| (-928 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-928 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-928 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-928 (-1209))) ELT)) (-3540 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1133)) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-4043 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-4353 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4355 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) NIL (|has| |#1| (-487)) ELT) (($ $ (-793)) NIL (|has| |#1| (-748)) ELT) (($ $ (-949)) NIL (|has| |#1| (-1144)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1144)) ELT) (($ |#1| $) 54 (|has| |#1| (-1144)) ELT) (($ $ $) 53 (|has| |#1| (-1144)) ELT) (($ (-560) $) 70 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-25)) ELT))) -(((-305 |#1|) (-13 (-1249) (-10 -8 (-15 -3540 ($ |#1| |#1|)) (-15 -3730 ($ |#1| |#1|)) (-15 -1750 ($ $)) (-15 -4035 (|#1| $)) (-15 -4034 (|#1| $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1209) |#1|)) (-6 (-528 (-1209) |#1|)) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4284 ($ $ $)) (-15 -4284 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4355 ($ |#1| $)) (-15 -4355 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1749 ($ $)) (-15 -1748 ($ $)) (-15 -4353 ($ |#1| $)) (-15 -4353 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1144)) (PROGN (-6 (-1144)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -1747 ((-3 $ "failed") $)) (-15 -1746 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -1747 ((-3 $ "failed") $)) (-15 -1746 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-6 (-1081)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -1745 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-928 (-1209))) (-6 (-928 (-1209))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1307 |#1|)) (-15 -4465 ($ $ $)) (-15 -2888 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1759 ($ $ $)) |%noBranch|))) (-1249)) (T -305)) -((-3540 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) (-3730 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) (-4035 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) (-4034 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-305 *3)))) (-4284 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1133)) (-4 *2 (-1249)) (-5 *1 (-305 *2)))) (-4284 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1133)) (-4 *3 (-1249)) (-5 *1 (-305 *3)))) (-4355 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1249)))) (-4355 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1249)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) (-1748 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) (-4353 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) (-4353 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) (-1747 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1249)))) (-1746 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1249)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571)) (-4 *3 (-1249)))) (-1759 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1249)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1144)) (-4 *2 (-1249)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1144)) (-4 *2 (-1249)))) (-4465 (*1 *1 *1 *1) (-4043 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1249))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1249))))) (-2888 (*1 *1 *1) (-4043 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1249))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1249)))))) -(-13 (-1249) (-10 -8 (-15 -3540 ($ |#1| |#1|)) (-15 -3730 ($ |#1| |#1|)) (-15 -1750 ($ $)) (-15 -4035 (|#1| $)) (-15 -4034 (|#1| $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1209) |#1|)) (-6 (-528 (-1209) |#1|)) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4284 ($ $ $)) (-15 -4284 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4355 ($ |#1| $)) (-15 -4355 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1749 ($ $)) (-15 -1748 ($ $)) (-15 -4353 ($ |#1| $)) (-15 -4353 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1144)) (PROGN (-6 (-1144)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -1747 ((-3 $ "failed") $)) (-15 -1746 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -1747 ((-3 $ "failed") $)) (-15 -1746 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-6 (-1081)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -1745 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-928 (-1209))) (-6 (-928 (-1209))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1307 |#1|)) (-15 -4465 ($ $ $)) (-15 -2888 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1759 ($ $ $)) |%noBranch|))) -((-4474 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -4474 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1249) (-1249)) (T -306)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))) -(-10 -7 (-15 -4474 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) NIL T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-307 |#1| |#2|) (-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) (-1133) (-1133)) (T -307)) -NIL -(-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) -((-1751 (((-323) (-1191) (-663 (-1191))) 17 T ELT) (((-323) (-1191) (-1191)) 16 T ELT) (((-323) (-663 (-1191))) 15 T ELT) (((-323) (-1191)) 14 T ELT))) -(((-308) (-10 -7 (-15 -1751 ((-323) (-1191))) (-15 -1751 ((-323) (-663 (-1191)))) (-15 -1751 ((-323) (-1191) (-1191))) (-15 -1751 ((-323) (-1191) (-663 (-1191)))))) (T -308)) -((-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1191))) (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1751 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-323)) (-5 *1 (-308)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308))))) -(-10 -7 (-15 -1751 ((-323) (-1191))) (-15 -1751 ((-323) (-663 (-1191)))) (-15 -1751 ((-323) (-1191) (-1191))) (-15 -1751 ((-323) (-1191) (-663 (-1191))))) -((-1755 (((-663 (-630 $)) $) 27 T ELT)) (-1759 (($ $ (-305 $)) 78 T ELT) (($ $ (-663 (-305 $))) 139 T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-3661 (((-3 (-630 $) "failed") $) 127 T ELT)) (-3660 (((-630 $) $) 126 T ELT)) (-3058 (($ $) 17 T ELT) (($ (-663 $)) 54 T ELT)) (-1754 (((-663 (-115)) $) 35 T ELT)) (-4109 (((-115) (-115)) 88 T ELT)) (-3160 (((-114) $) 150 T ELT)) (-4474 (($ (-1 $ $) (-630 $)) 86 T ELT)) (-1757 (((-3 (-630 $) "failed") $) 94 T ELT)) (-2463 (($ (-115) $) 59 T ELT) (($ (-115) (-663 $)) 110 T ELT)) (-3118 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1209)) 131 T ELT)) (-3088 (((-793) $) 44 T ELT)) (-1753 (((-114) $ $) 57 T ELT) (((-114) $ (-1209)) 49 T ELT)) (-3161 (((-114) $) 148 T ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) 81 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1209) (-1 $ (-663 $))) 67 T ELT) (($ $ (-1209) (-1 $ $)) 72 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 80 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-663 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-4316 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-663 $)) 123 T ELT)) (-1758 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-3075 (($ $) 15 T ELT) (($ (-663 $)) 53 T ELT)) (-2482 (((-114) (-115)) 21 T ELT))) -(((-309 |#1|) (-10 -8 (-15 -3160 ((-114) |#1|)) (-15 -3161 ((-114) |#1|)) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| |#1|)))) (-15 -1753 ((-114) |#1| (-1209))) (-15 -1753 ((-114) |#1| |#1|)) (-15 -4474 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2463 (|#1| (-115) (-663 |#1|))) (-15 -2463 (|#1| (-115) |#1|)) (-15 -3118 ((-114) |#1| (-1209))) (-15 -3118 ((-114) |#1| (-115))) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1754 ((-663 (-115)) |#1|)) (-15 -1755 ((-663 (-630 |#1|)) |#1|)) (-15 -1757 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3088 ((-793) |#1|)) (-15 -1758 (|#1| |#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3058 (|#1| (-663 |#1|))) (-15 -3058 (|#1| |#1|)) (-15 -3075 (|#1| (-663 |#1|))) (-15 -3075 (|#1| |#1|)) (-15 -1759 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1759 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1759 (|#1| |#1| (-305 |#1|))) (-15 -4316 (|#1| (-115) (-663 |#1|))) (-15 -4316 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3661 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3660 ((-630 |#1|) |#1|))) (-310)) (T -309)) -((-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) -(-10 -8 (-15 -3160 ((-114) |#1|)) (-15 -3161 ((-114) |#1|)) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| |#1|)))) (-15 -1753 ((-114) |#1| (-1209))) (-15 -1753 ((-114) |#1| |#1|)) (-15 -4474 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2463 (|#1| (-115) (-663 |#1|))) (-15 -2463 (|#1| (-115) |#1|)) (-15 -3118 ((-114) |#1| (-1209))) (-15 -3118 ((-114) |#1| (-115))) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1754 ((-663 (-115)) |#1|)) (-15 -1755 ((-663 (-630 |#1|)) |#1|)) (-15 -1757 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3088 ((-793) |#1|)) (-15 -1758 (|#1| |#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3058 (|#1| (-663 |#1|))) (-15 -3058 (|#1| |#1|)) (-15 -3075 (|#1| (-663 |#1|))) (-15 -3075 (|#1| |#1|)) (-15 -1759 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1759 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1759 (|#1| |#1| (-305 |#1|))) (-15 -4316 (|#1| (-115) (-663 |#1|))) (-15 -4316 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3661 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3660 ((-630 |#1|) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-1755 (((-663 (-630 $)) $) 42 T ELT)) (-1759 (($ $ (-305 $)) 54 T ELT) (($ $ (-663 (-305 $))) 53 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 52 T ELT)) (-3661 (((-3 (-630 $) "failed") $) 67 T ELT)) (-3660 (((-630 $) $) 68 T ELT)) (-3058 (($ $) 49 T ELT) (($ (-663 $)) 48 T ELT)) (-1754 (((-663 (-115)) $) 41 T ELT)) (-4109 (((-115) (-115)) 40 T ELT)) (-3160 (((-114) $) 20 (|has| $ (-1070 (-560))) ELT)) (-1752 (((-1203 $) (-630 $)) 23 (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) 34 T ELT)) (-1757 (((-3 (-630 $) "failed") $) 44 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1756 (((-663 (-630 $)) $) 43 T ELT)) (-2463 (($ (-115) $) 36 T ELT) (($ (-115) (-663 $)) 35 T ELT)) (-3118 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1209)) 37 T ELT)) (-3088 (((-793) $) 45 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1753 (((-114) $ $) 33 T ELT) (((-114) $ (-1209)) 32 T ELT)) (-3161 (((-114) $) 21 (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) 65 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 64 T ELT) (($ $ (-663 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-663 $) (-663 $)) 60 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) 31 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) 30 T ELT) (($ $ (-1209) (-1 $ (-663 $))) 29 T ELT) (($ $ (-1209) (-1 $ $)) 28 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 27 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-663 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT)) (-4316 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-663 $)) 55 T ELT)) (-1758 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3689 (($ $) 22 (|has| $ (-1081)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-630 $)) 66 T ELT)) (-3075 (($ $) 51 T ELT) (($ (-663 $)) 50 T ELT)) (-2482 (((-114) (-115)) 39 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +(-13 (-1079) (-111 $ $) (-10 -7 (-6 -4500))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-1737 (((-661 (-1115)) $) 10 T ELT)) (-1735 (($ (-518) (-518) (-1133) $) 19 T ELT)) (-1733 (($ (-518) (-661 (-993)) $) 23 T ELT)) (-1731 (($) 25 T ELT)) (-1736 (((-711 (-1133)) (-518) (-518) $) 18 T ELT)) (-1734 (((-661 (-993)) (-518) $) 22 T ELT)) (-4075 (($) 7 T ELT)) (-1732 (($) 24 T ELT)) (-4458 (((-886) $) 29 T ELT)) (-1730 (($) 26 T ELT))) +(((-303) (-13 (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -1737 ((-661 (-1115)) $)) (-15 -1736 ((-711 (-1133)) (-518) (-518) $)) (-15 -1735 ($ (-518) (-518) (-1133) $)) (-15 -1734 ((-661 (-993)) (-518) $)) (-15 -1733 ($ (-518) (-661 (-993)) $)) (-15 -1732 ($)) (-15 -1731 ($)) (-15 -1730 ($))))) (T -303)) +((-4075 (*1 *1) (-5 *1 (-303))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-661 (-1115))) (-5 *1 (-303)))) (-1736 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-1133))) (-5 *1 (-303)))) (-1735 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1133)) (-5 *1 (-303)))) (-1734 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-661 (-993))) (-5 *1 (-303)))) (-1733 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-993))) (-5 *1 (-303)))) (-1732 (*1 *1) (-5 *1 (-303))) (-1731 (*1 *1) (-5 *1 (-303))) (-1730 (*1 *1) (-5 *1 (-303)))) +(-13 (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -1737 ((-661 (-1115)) $)) (-15 -1736 ((-711 (-1133)) (-518) (-518) $)) (-15 -1735 ($ (-518) (-518) (-1133) $)) (-15 -1734 ((-661 (-993)) (-518) $)) (-15 -1733 ($ (-518) (-661 (-993)) $)) (-15 -1732 ($)) (-15 -1731 ($)) (-15 -1730 ($)))) +((-1741 (((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |geneigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|)))) 103 T ELT)) (-1740 (((-661 (-709 (-419 (-974 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|)))))) (-709 (-419 (-974 |#1|)))) 98 T ELT) (((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|))) (-791) (-791)) 42 T ELT)) (-1742 (((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|)))) 100 T ELT)) (-1739 (((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|)))) 76 T ELT)) (-1738 (((-661 (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (-709 (-419 (-974 |#1|)))) 75 T ELT)) (-2848 (((-974 |#1|) (-709 (-419 (-974 |#1|)))) 56 T ELT) (((-974 |#1|) (-709 (-419 (-974 |#1|))) (-1207)) 57 T ELT))) +(((-304 |#1|) (-10 -7 (-15 -2848 ((-974 |#1|) (-709 (-419 (-974 |#1|))) (-1207))) (-15 -2848 ((-974 |#1|) (-709 (-419 (-974 |#1|))))) (-15 -1738 ((-661 (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (-709 (-419 (-974 |#1|))))) (-15 -1739 ((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|))))) (-15 -1740 ((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|))) (-791) (-791))) (-15 -1740 ((-661 (-709 (-419 (-974 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|)))))) (-709 (-419 (-974 |#1|))))) (-15 -1741 ((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |geneigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|))))) (-15 -1742 ((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|)))))) (-464)) (T -304)) +((-1742 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-661 (-2 (|:| |eigval| (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-974 *4)))))) (-1741 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-661 (-2 (|:| |eigval| (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4)))) (|:| |geneigvec| (-661 (-709 (-419 (-974 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-974 *4)))))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-974 *5)) (-1196 (-1207) (-974 *5)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 *4)))) (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-974 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-709 (-419 (-974 *5)))))) (-1740 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-974 *6)) (-1196 (-1207) (-974 *6)))) (-5 *5 (-791)) (-4 *6 (-464)) (-5 *2 (-661 (-709 (-419 (-974 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-709 (-419 (-974 *6)))))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-974 *5)) (-1196 (-1207) (-974 *5)))) (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-974 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-709 (-419 (-974 *5)))))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-974 *4)))) (-4 *4 (-464)) (-5 *2 (-661 (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4))))) (-5 *1 (-304 *4)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-974 *4)))) (-5 *2 (-974 *4)) (-5 *1 (-304 *4)) (-4 *4 (-464)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-974 *5)))) (-5 *4 (-1207)) (-5 *2 (-974 *5)) (-5 *1 (-304 *5)) (-4 *5 (-464))))) +(-10 -7 (-15 -2848 ((-974 |#1|) (-709 (-419 (-974 |#1|))) (-1207))) (-15 -2848 ((-974 |#1|) (-709 (-419 (-974 |#1|))))) (-15 -1738 ((-661 (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (-709 (-419 (-974 |#1|))))) (-15 -1739 ((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|))))) (-15 -1740 ((-661 (-709 (-419 (-974 |#1|)))) (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|))) (-709 (-419 (-974 |#1|))) (-791) (-791))) (-15 -1740 ((-661 (-709 (-419 (-974 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|)))))) (-709 (-419 (-974 |#1|))))) (-15 -1741 ((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |geneigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|))))) (-15 -1742 ((-661 (-2 (|:| |eigval| (-3 (-419 (-974 |#1|)) (-1196 (-1207) (-974 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 |#1|))))))) (-709 (-419 (-974 |#1|)))))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3688 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1748 (($ $) 12 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1757 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-4236 (($) NIL (-4039 (|has| |#1| (-21)) (|has| |#1| (-746))) CONST)) (-1746 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1744 (((-3 $ "failed") $) 62 (|has| |#1| (-746)) ELT)) (-4030 ((|#1| $) 11 T ELT)) (-3969 (((-3 $ "failed") $) 60 (|has| |#1| (-746)) ELT)) (-2651 (((-114) $) NIL (|has| |#1| (-746)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-4031 ((|#1| $) 10 T ELT)) (-1747 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1745 (((-3 $ "failed") $) 61 (|has| |#1| (-746)) ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2884 (($ $) 64 (-4039 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-1743 (((-661 $) $) 85 (|has| |#1| (-569)) ELT)) (-4280 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-1207) |#1|) 17 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 21 (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-3726 (($ |#1| |#1|) 9 T ELT)) (-4423 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 87 (|has| |#1| (-926 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-926 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-926 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-926 (-1207))) ELT)) (-3492 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2834 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4458 (($ (-558)) NIL (|has| |#1| (-1079)) ELT) (((-114) $) 37 (|has| |#1| (-1131)) ELT) (((-886) $) 36 (|has| |#1| (-1131)) ELT)) (-3610 (((-791)) 67 (|has| |#1| (-1079)) CONST)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3141 (($) 47 (|has| |#1| (-21)) CONST)) (-3147 (($) 57 (|has| |#1| (-746)) CONST)) (-3152 (($ $ (-1207)) NIL (|has| |#1| (-926 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-926 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-926 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-926 (-1207))) ELT)) (-3536 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1131)) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-4039 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-4349 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4351 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) NIL (|has| |#1| (-485)) ELT) (($ $ (-791)) NIL (|has| |#1| (-746)) ELT) (($ $ (-947)) NIL (|has| |#1| (-1142)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1142)) ELT) (($ |#1| $) 54 (|has| |#1| (-1142)) ELT) (($ $ $) 53 (|has| |#1| (-1142)) ELT) (($ (-558) $) 70 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-947) $) NIL (|has| |#1| (-25)) ELT))) +(((-305 |#1|) (-13 (-1247) (-10 -8 (-15 -3536 ($ |#1| |#1|)) (-15 -3726 ($ |#1| |#1|)) (-15 -1748 ($ $)) (-15 -4031 (|#1| $)) (-15 -4030 (|#1| $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1207) |#1|)) (-6 (-526 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-6 (-630 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4280 ($ $ $)) (-15 -4280 ($ $ (-661 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4351 ($ |#1| $)) (-15 -4351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -4349 ($ |#1| $)) (-15 -4349 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-746)) (PROGN (-6 (-746)) (-15 -1745 ((-3 $ "failed") $)) (-15 -1744 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1745 ((-3 $ "failed") $)) (-15 -1744 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1743 ((-661 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1207))) (-6 (-926 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -4461 ($ $ $)) (-15 -2884 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1757 ($ $ $)) |%noBranch|))) (-1247)) (T -305)) +((-3536 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3726 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-1748 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4031 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4030 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-4280 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1131)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1131)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-4351 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-1746 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-4349 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-4349 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-1745 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1247)))) (-1744 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1247)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-661 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1247)))) (-1757 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (-4461 (*1 *1 *1 *1) (-4039 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1247))))) (-2884 (*1 *1 *1) (-4039 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1247)))))) +(-13 (-1247) (-10 -8 (-15 -3536 ($ |#1| |#1|)) (-15 -3726 ($ |#1| |#1|)) (-15 -1748 ($ $)) (-15 -4031 (|#1| $)) (-15 -4030 (|#1| $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1207) |#1|)) (-6 (-526 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-6 (-630 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4280 ($ $ $)) (-15 -4280 ($ $ (-661 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4351 ($ |#1| $)) (-15 -4351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -4349 ($ |#1| $)) (-15 -4349 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-746)) (PROGN (-6 (-746)) (-15 -1745 ((-3 $ "failed") $)) (-15 -1744 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1745 ((-3 $ "failed") $)) (-15 -1744 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1743 ((-661 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1207))) (-6 (-926 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -4461 ($ $ $)) (-15 -2884 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1757 ($ $ $)) |%noBranch|))) +((-4470 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -4470 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1247) (-1247)) (T -306)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))) +(-10 -7 (-15 -4470 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) NIL T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-307 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) (-1131) (-1131)) (T -307)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) +((-1749 (((-323) (-1189) (-661 (-1189))) 17 T ELT) (((-323) (-1189) (-1189)) 16 T ELT) (((-323) (-661 (-1189))) 15 T ELT) (((-323) (-1189)) 14 T ELT))) +(((-308) (-10 -7 (-15 -1749 ((-323) (-1189))) (-15 -1749 ((-323) (-661 (-1189)))) (-15 -1749 ((-323) (-1189) (-1189))) (-15 -1749 ((-323) (-1189) (-661 (-1189)))))) (T -308)) +((-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1749 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-323)) (-5 *1 (-308)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))) +(-10 -7 (-15 -1749 ((-323) (-1189))) (-15 -1749 ((-323) (-661 (-1189)))) (-15 -1749 ((-323) (-1189) (-1189))) (-15 -1749 ((-323) (-1189) (-661 (-1189))))) +((-1753 (((-661 (-628 $)) $) 27 T ELT)) (-1757 (($ $ (-305 $)) 78 T ELT) (($ $ (-661 (-305 $))) 139 T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-3657 (((-3 (-628 $) "failed") $) 127 T ELT)) (-3656 (((-628 $) $) 126 T ELT)) (-3054 (($ $) 17 T ELT) (($ (-661 $)) 54 T ELT)) (-1752 (((-661 (-115)) $) 35 T ELT)) (-4105 (((-115) (-115)) 88 T ELT)) (-3156 (((-114) $) 150 T ELT)) (-4470 (($ (-1 $ $) (-628 $)) 86 T ELT)) (-1755 (((-3 (-628 $) "failed") $) 94 T ELT)) (-2459 (($ (-115) $) 59 T ELT) (($ (-115) (-661 $)) 110 T ELT)) (-3114 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1207)) 131 T ELT)) (-3084 (((-791) $) 44 T ELT)) (-1751 (((-114) $ $) 57 T ELT) (((-114) $ (-1207)) 49 T ELT)) (-3157 (((-114) $) 148 T ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) 81 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-661 $))) 67 T ELT) (($ $ (-1207) (-1 $ $)) 72 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 80 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-661 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-4312 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-661 $)) 123 T ELT)) (-1756 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-3071 (($ $) 15 T ELT) (($ (-661 $)) 53 T ELT)) (-2478 (((-114) (-115)) 21 T ELT))) +(((-309 |#1|) (-10 -8 (-15 -3156 ((-114) |#1|)) (-15 -3157 ((-114) |#1|)) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| |#1|)))) (-15 -1751 ((-114) |#1| (-1207))) (-15 -1751 ((-114) |#1| |#1|)) (-15 -4470 (|#1| (-1 |#1| |#1|) (-628 |#1|))) (-15 -2459 (|#1| (-115) (-661 |#1|))) (-15 -2459 (|#1| (-115) |#1|)) (-15 -3114 ((-114) |#1| (-1207))) (-15 -3114 ((-114) |#1| (-115))) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1752 ((-661 (-115)) |#1|)) (-15 -1753 ((-661 (-628 |#1|)) |#1|)) (-15 -1755 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -3084 ((-791) |#1|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1|)) (-15 -3054 (|#1| (-661 |#1|))) (-15 -3054 (|#1| |#1|)) (-15 -3071 (|#1| (-661 |#1|))) (-15 -3071 (|#1| |#1|)) (-15 -1757 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1757 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1757 (|#1| |#1| (-305 |#1|))) (-15 -4312 (|#1| (-115) (-661 |#1|))) (-15 -4312 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -3657 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -3656 ((-628 |#1|) |#1|))) (-310)) (T -309)) +((-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) +(-10 -8 (-15 -3156 ((-114) |#1|)) (-15 -3157 ((-114) |#1|)) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| |#1|)))) (-15 -1751 ((-114) |#1| (-1207))) (-15 -1751 ((-114) |#1| |#1|)) (-15 -4470 (|#1| (-1 |#1| |#1|) (-628 |#1|))) (-15 -2459 (|#1| (-115) (-661 |#1|))) (-15 -2459 (|#1| (-115) |#1|)) (-15 -3114 ((-114) |#1| (-1207))) (-15 -3114 ((-114) |#1| (-115))) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1752 ((-661 (-115)) |#1|)) (-15 -1753 ((-661 (-628 |#1|)) |#1|)) (-15 -1755 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -3084 ((-791) |#1|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1|)) (-15 -3054 (|#1| (-661 |#1|))) (-15 -3054 (|#1| |#1|)) (-15 -3071 (|#1| (-661 |#1|))) (-15 -3071 (|#1| |#1|)) (-15 -1757 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1757 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1757 (|#1| |#1| (-305 |#1|))) (-15 -4312 (|#1| (-115) (-661 |#1|))) (-15 -4312 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -3657 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -3656 ((-628 |#1|) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-1753 (((-661 (-628 $)) $) 42 T ELT)) (-1757 (($ $ (-305 $)) 54 T ELT) (($ $ (-661 (-305 $))) 53 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 52 T ELT)) (-3657 (((-3 (-628 $) "failed") $) 67 T ELT)) (-3656 (((-628 $) $) 68 T ELT)) (-3054 (($ $) 49 T ELT) (($ (-661 $)) 48 T ELT)) (-1752 (((-661 (-115)) $) 41 T ELT)) (-4105 (((-115) (-115)) 40 T ELT)) (-3156 (((-114) $) 20 (|has| $ (-1068 (-558))) ELT)) (-1750 (((-1201 $) (-628 $)) 23 (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) 34 T ELT)) (-1755 (((-3 (-628 $) "failed") $) 44 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1754 (((-661 (-628 $)) $) 43 T ELT)) (-2459 (($ (-115) $) 36 T ELT) (($ (-115) (-661 $)) 35 T ELT)) (-3114 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1207)) 37 T ELT)) (-3084 (((-791) $) 45 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1751 (((-114) $ $) 33 T ELT) (((-114) $ (-1207)) 32 T ELT)) (-3157 (((-114) $) 21 (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) 65 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 64 T ELT) (($ $ (-661 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-661 $) (-661 $)) 60 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) 31 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) 30 T ELT) (($ $ (-1207) (-1 $ (-661 $))) 29 T ELT) (($ $ (-1207) (-1 $ $)) 28 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 27 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-661 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT)) (-4312 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-661 $)) 55 T ELT)) (-1756 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3685 (($ $) 22 (|has| $ (-1079)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-628 $)) 66 T ELT)) (-3071 (($ $) 51 T ELT) (($ (-661 $)) 50 T ELT)) (-2478 (((-114) (-115)) 39 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-310) (-142)) (T -310)) -((-4316 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4316 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4316 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4316 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4316 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-1759 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1759 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310)))) (-1759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-3075 (*1 *1 *1) (-4 *1 (-310))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-3058 (*1 *1 *1) (-4 *1 (-310))) (-3058 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-1758 (*1 *1 *1) (-4 *1 (-310))) (-1758 (*1 *1 *1 *1) (-4 *1 (-310))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793)))) (-1757 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115))))) (-4109 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2482 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3118 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3118 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1209)) (-5 *2 (-114)))) (-2463 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-4474 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310)))) (-1753 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-1753 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1209)) (-5 *2 (-114)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1081)) (-4 *1 (-310)) (-5 *2 (-1203 *1)))) (-3689 (*1 *1 *1) (-12 (-4 *1 (-1081)) (-4 *1 (-310)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-1070 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-1070 (-560))) (-4 *1 (-310)) (-5 *2 (-114))))) -(-13 (-1133) (-1070 (-630 $)) (-528 (-630 $) $) (-321 $) (-10 -8 (-15 -4316 ($ (-115) $)) (-15 -4316 ($ (-115) $ $)) (-15 -4316 ($ (-115) $ $ $)) (-15 -4316 ($ (-115) $ $ $ $)) (-15 -4316 ($ (-115) (-663 $))) (-15 -1759 ($ $ (-305 $))) (-15 -1759 ($ $ (-663 (-305 $)))) (-15 -1759 ($ $ (-663 (-630 $)) (-663 $))) (-15 -3075 ($ $)) (-15 -3075 ($ (-663 $))) (-15 -3058 ($ $)) (-15 -3058 ($ (-663 $))) (-15 -1758 ($ $)) (-15 -1758 ($ $ $)) (-15 -3088 ((-793) $)) (-15 -1757 ((-3 (-630 $) "failed") $)) (-15 -1756 ((-663 (-630 $)) $)) (-15 -1755 ((-663 (-630 $)) $)) (-15 -1754 ((-663 (-115)) $)) (-15 -4109 ((-115) (-115))) (-15 -2482 ((-114) (-115))) (-15 -3118 ((-114) $ (-115))) (-15 -3118 ((-114) $ (-1209))) (-15 -2463 ($ (-115) $)) (-15 -2463 ($ (-115) (-663 $))) (-15 -4474 ($ (-1 $ $) (-630 $))) (-15 -1753 ((-114) $ $)) (-15 -1753 ((-114) $ (-1209))) (-15 -4284 ($ $ (-663 (-1209)) (-663 (-1 $ $)))) (-15 -4284 ($ $ (-663 (-1209)) (-663 (-1 $ (-663 $))))) (-15 -4284 ($ $ (-1209) (-1 $ (-663 $)))) (-15 -4284 ($ $ (-1209) (-1 $ $))) (-15 -4284 ($ $ (-663 (-115)) (-663 (-1 $ $)))) (-15 -4284 ($ $ (-663 (-115)) (-663 (-1 $ (-663 $))))) (-15 -4284 ($ $ (-115) (-1 $ (-663 $)))) (-15 -4284 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1081)) (PROGN (-15 -1752 ((-1203 $) (-630 $))) (-15 -3689 ($ $))) |%noBranch|) (IF (|has| $ (-1070 (-560))) (PROGN (-15 -3161 ((-114) $)) (-15 -3160 ((-114) $))) |%noBranch|))) -(((-102) . T) ((-635 #1=(-630 $)) . T) ((-632 (-888)) . T) ((-321 $) . T) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-1070 #1#) . T) ((-1133) . T) ((-1249) . T)) -((-4474 ((|#2| (-1 |#2| |#1|) (-1191) (-630 |#1|)) 18 T ELT))) -(((-311 |#1| |#2|) (-10 -7 (-15 -4474 (|#2| (-1 |#2| |#1|) (-1191) (-630 |#1|)))) (-310) (-1249)) (T -311)) -((-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1191)) (-5 *5 (-630 *6)) (-4 *6 (-310)) (-4 *2 (-1249)) (-5 *1 (-311 *6 *2))))) -(-10 -7 (-15 -4474 (|#2| (-1 |#2| |#1|) (-1191) (-630 |#1|)))) -((-4474 ((|#2| (-1 |#2| |#1|) (-630 |#1|)) 17 T ELT))) -(((-312 |#1| |#2|) (-10 -7 (-15 -4474 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) (-310) (-310)) (T -312)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))) -(-10 -7 (-15 -4474 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) -((-1762 (((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229)))) 117 T ELT)) (-1763 (((-1187 (-229)) (-1299 (-326 (-229))) (-663 (-1209)) (-1121 (-866 (-229)))) 134 T ELT) (((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229)))) 71 T ELT)) (-1784 (((-663 (-1191)) (-1187 (-229))) NIL T ELT)) (-1761 (((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229)))) 68 T ELT)) (-1764 (((-663 (-229)) (-976 (-421 (-560))) (-1209) (-1121 (-866 (-229)))) 58 T ELT)) (-1783 (((-663 (-1191)) (-663 (-229))) NIL T ELT)) (-1785 (((-229) (-1121 (-866 (-229)))) 29 T ELT)) (-1786 (((-229) (-1121 (-866 (-229)))) 30 T ELT)) (-1760 (((-114) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 63 T ELT)) (-1781 (((-1191) (-229)) NIL T ELT))) -(((-313) (-10 -7 (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -1760 ((-114) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1761 ((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229))))) (-15 -1762 ((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-1299 (-326 (-229))) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1764 ((-663 (-229)) (-976 (-421 (-560))) (-1209) (-1121 (-866 (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229)))))) (T -313)) -((-1784 (*1 *2 *3) (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-313)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-313)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-313)))) (-1764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *4 (-1209)) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-1763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *4 (-663 (-1209))) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313)))) (-1763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1209))) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313)))) (-1762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1209))) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1209)) (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))) -(-10 -7 (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -1760 ((-114) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1761 ((-663 (-229)) (-326 (-229)) (-1209) (-1121 (-866 (-229))))) (-15 -1762 ((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-326 (-229)) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1763 ((-1187 (-229)) (-1299 (-326 (-229))) (-663 (-1209)) (-1121 (-866 (-229))))) (-15 -1764 ((-663 (-229)) (-976 (-421 (-560))) (-1209) (-1121 (-866 (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229))))) -((-2201 (((-114) (-229)) 12 T ELT))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2201 ((-114) (-229)))) (-229) (-229)) (T -314)) -((-2201 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2201 ((-114) (-229)))) -((-1780 (((-1299 (-326 (-391))) (-1299 (-326 (-229)))) 110 T ELT)) (-1768 (((-1121 (-866 (-229))) (-1121 (-866 (-391)))) 43 T ELT)) (-1784 (((-663 (-1191)) (-1187 (-229))) 92 T ELT)) (-1791 (((-326 (-391)) (-976 (-229))) 53 T ELT)) (-1792 (((-229) (-976 (-229))) 49 T ELT)) (-1787 (((-1191) (-391)) 193 T ELT)) (-1767 (((-866 (-229)) (-866 (-391))) 37 T ELT)) (-1773 (((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1299 (-326 (-229)))) 164 T ELT)) (-1788 (((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) 205 T ELT) (((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) 203 T ELT)) (-1795 (((-711 (-229)) (-663 (-229)) (-793)) 19 T ELT)) (-1778 (((-1299 (-721)) (-663 (-229))) 99 T ELT)) (-1783 (((-663 (-1191)) (-663 (-229))) 79 T ELT)) (-3143 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-2201 (((-114) (-229) (-1121 (-866 (-229)))) 117 T ELT)) (-1790 (((-1067) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 222 T ELT)) (-1785 (((-229) (-1121 (-866 (-229)))) 112 T ELT)) (-1786 (((-229) (-1121 (-866 (-229)))) 113 T ELT)) (-1794 (((-229) (-421 (-560))) 31 T ELT)) (-1782 (((-1191) (-391)) 77 T ELT)) (-1765 (((-229) (-391)) 22 T ELT)) (-1772 (((-391) (-1299 (-326 (-229)))) 175 T ELT)) (-1766 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-1770 (((-421 (-560)) (-326 (-229))) 56 T ELT)) (-1774 (((-326 (-421 (-560))) (-326 (-229))) 73 T ELT)) (-1779 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1771 (((-229) (-326 (-229))) 57 T ELT)) (-1776 (((-663 (-229)) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) 68 T ELT)) (-1775 (((-1121 (-866 (-229))) (-1121 (-866 (-229)))) 65 T ELT)) (-1781 (((-1191) (-229)) 76 T ELT)) (-1777 (((-721) (-229)) 95 T ELT)) (-1769 (((-421 (-560)) (-229)) 58 T ELT)) (-1793 (((-326 (-391)) (-229)) 52 T ELT)) (-4488 (((-663 (-1121 (-866 (-229)))) (-663 (-1121 (-866 (-391))))) 46 T ELT)) (-4318 (((-1067) (-663 (-1067))) 189 T ELT) (((-1067) (-1067) (-1067)) 183 T ELT)) (-1789 (((-1067) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) -(((-315) (-10 -7 (-15 -1765 ((-229) (-391))) (-15 -1766 ((-326 (-229)) (-326 (-391)))) (-15 -1767 ((-866 (-229)) (-866 (-391)))) (-15 -1768 ((-1121 (-866 (-229))) (-1121 (-866 (-391))))) (-15 -4488 ((-663 (-1121 (-866 (-229)))) (-663 (-1121 (-866 (-391)))))) (-15 -1769 ((-421 (-560)) (-229))) (-15 -1770 ((-421 (-560)) (-326 (-229)))) (-15 -1771 ((-229) (-326 (-229)))) (-15 -3143 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1772 ((-391) (-1299 (-326 (-229))))) (-15 -1773 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1299 (-326 (-229))))) (-15 -1774 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -1775 ((-1121 (-866 (-229))) (-1121 (-866 (-229))))) (-15 -1776 ((-663 (-229)) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) (-15 -1777 ((-721) (-229))) (-15 -1778 ((-1299 (-721)) (-663 (-229)))) (-15 -1779 ((-326 (-391)) (-326 (-229)))) (-15 -1780 ((-1299 (-326 (-391))) (-1299 (-326 (-229))))) (-15 -2201 ((-114) (-229) (-1121 (-866 (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1782 ((-1191) (-391))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229)))) (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -4318 ((-1067) (-1067) (-1067))) (-15 -4318 ((-1067) (-663 (-1067)))) (-15 -1787 ((-1191) (-391))) (-15 -1788 ((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))))) (-15 -1788 ((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))))) (-15 -1789 ((-1067) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1790 ((-1067) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1791 ((-326 (-391)) (-976 (-229)))) (-15 -1792 ((-229) (-976 (-229)))) (-15 -1793 ((-326 (-391)) (-229))) (-15 -1794 ((-229) (-421 (-560)))) (-15 -1795 ((-711 (-229)) (-663 (-229)) (-793))))) (T -315)) -((-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-315)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-976 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-976 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1067)) (-5 *1 (-315)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1067)) (-5 *1 (-315)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) (-5 *2 (-1067)) (-5 *1 (-315)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *2 (-1067)) (-5 *1 (-315)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1191)) (-5 *1 (-315)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-663 (-1067))) (-5 *2 (-1067)) (-5 *1 (-315)))) (-4318 (*1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-315)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-315)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-315)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1191)) (-5 *1 (-315)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-315)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1121 (-866 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *2 (-1299 (-326 (-391)))) (-5 *1 (-315)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1299 (-721))) (-5 *1 (-315)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *2 (-663 (-229))) (-5 *1 (-315)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-1121 (-866 (-229)))) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560)))) (-5 *1 (-315)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) (-5 *1 (-315)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3143 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-663 (-1121 (-866 (-391))))) (-5 *2 (-663 (-1121 (-866 (-229))))) (-5 *1 (-315)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-391)))) (-5 *2 (-1121 (-866 (-229)))) (-5 *1 (-315)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-866 (-391))) (-5 *2 (-866 (-229))) (-5 *1 (-315)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) -(-10 -7 (-15 -1765 ((-229) (-391))) (-15 -1766 ((-326 (-229)) (-326 (-391)))) (-15 -1767 ((-866 (-229)) (-866 (-391)))) (-15 -1768 ((-1121 (-866 (-229))) (-1121 (-866 (-391))))) (-15 -4488 ((-663 (-1121 (-866 (-229)))) (-663 (-1121 (-866 (-391)))))) (-15 -1769 ((-421 (-560)) (-229))) (-15 -1770 ((-421 (-560)) (-326 (-229)))) (-15 -1771 ((-229) (-326 (-229)))) (-15 -3143 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1772 ((-391) (-1299 (-326 (-229))))) (-15 -1773 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1299 (-326 (-229))))) (-15 -1774 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -1775 ((-1121 (-866 (-229))) (-1121 (-866 (-229))))) (-15 -1776 ((-663 (-229)) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) (-15 -1777 ((-721) (-229))) (-15 -1778 ((-1299 (-721)) (-663 (-229)))) (-15 -1779 ((-326 (-391)) (-326 (-229)))) (-15 -1780 ((-1299 (-326 (-391))) (-1299 (-326 (-229))))) (-15 -2201 ((-114) (-229) (-1121 (-866 (-229))))) (-15 -1781 ((-1191) (-229))) (-15 -1782 ((-1191) (-391))) (-15 -1783 ((-663 (-1191)) (-663 (-229)))) (-15 -1784 ((-663 (-1191)) (-1187 (-229)))) (-15 -1785 ((-229) (-1121 (-866 (-229))))) (-15 -1786 ((-229) (-1121 (-866 (-229))))) (-15 -4318 ((-1067) (-1067) (-1067))) (-15 -4318 ((-1067) (-663 (-1067)))) (-15 -1787 ((-1191) (-391))) (-15 -1788 ((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))))) (-15 -1788 ((-1067) (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))))) (-15 -1789 ((-1067) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1790 ((-1067) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1791 ((-326 (-391)) (-976 (-229)))) (-15 -1792 ((-229) (-976 (-229)))) (-15 -1793 ((-326 (-391)) (-229))) (-15 -1794 ((-229) (-421 (-560)))) (-15 -1795 ((-711 (-229)) (-663 (-229)) (-793)))) -((-1796 (((-663 |#1|) (-663 |#1|)) 10 T ELT))) -(((-316 |#1|) (-10 -7 (-15 -1796 ((-663 |#1|) (-663 |#1|)))) (-871)) (T -316)) -((-1796 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-316 *3))))) -(-10 -7 (-15 -1796 ((-663 |#1|) (-663 |#1|)))) -((-4474 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4474 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-1081) (-1081)) (T -317)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6))))) -(-10 -7 (-15 -4474 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) -((-1800 (((-114) $ $) 14 T ELT)) (-3049 (($ $ $) 18 T ELT)) (-3048 (($ $ $) 17 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 50 T ELT)) (-1797 (((-3 (-663 $) "failed") (-663 $) $) 67 T ELT)) (-3648 (($ $ $) 25 T ELT) (($ (-663 $)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3972 (((-3 $ "failed") $ $) 21 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 55 T ELT))) -(((-318 |#1|) (-10 -8 (-15 -1797 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -1798 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1798 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -1800 ((-114) |#1| |#1|)) (-15 -3227 ((-713 (-663 |#1|)) (-663 |#1|) |#1|)) (-15 -3228 ((-2 (|:| -4470 (-663 |#1|)) (|:| -2654 |#1|)) (-663 |#1|))) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|))) (-319)) (T -318)) -NIL -(-10 -8 (-15 -1797 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -1798 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1798 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -1800 ((-114) |#1| |#1|)) (-15 -3227 ((-713 (-663 |#1|)) (-663 |#1|) |#1|)) (-15 -3228 ((-2 (|:| -4470 (-663 |#1|)) (|:| -2654 |#1|)) (-663 |#1|))) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-1797 (((-3 (-663 $) "failed") (-663 $) $) 65 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4312 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4312 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4312 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4312 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4312 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1757 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *1))) (-4 *1 (-310)))) (-1757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-628 *1))) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-3071 (*1 *1 *1) (-4 *1 (-310))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) (-3054 (*1 *1 *1) (-4 *1 (-310))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) (-1756 (*1 *1 *1) (-4 *1 (-310))) (-1756 (*1 *1 *1 *1) (-4 *1 (-310))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-791)))) (-1755 (*1 *2 *1) (|partial| -12 (-5 *2 (-628 *1)) (-4 *1 (-310)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-661 (-115))))) (-4105 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2478 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-2459 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2459 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-4470 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-628 *1)) (-4 *1 (-310)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-1751 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-1079)) (-4 *1 (-310)) (-5 *2 (-1201 *1)))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-310)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-1068 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1068 (-558))) (-4 *1 (-310)) (-5 *2 (-114))))) +(-13 (-1131) (-1068 (-628 $)) (-526 (-628 $) $) (-321 $) (-10 -8 (-15 -4312 ($ (-115) $)) (-15 -4312 ($ (-115) $ $)) (-15 -4312 ($ (-115) $ $ $)) (-15 -4312 ($ (-115) $ $ $ $)) (-15 -4312 ($ (-115) (-661 $))) (-15 -1757 ($ $ (-305 $))) (-15 -1757 ($ $ (-661 (-305 $)))) (-15 -1757 ($ $ (-661 (-628 $)) (-661 $))) (-15 -3071 ($ $)) (-15 -3071 ($ (-661 $))) (-15 -3054 ($ $)) (-15 -3054 ($ (-661 $))) (-15 -1756 ($ $)) (-15 -1756 ($ $ $)) (-15 -3084 ((-791) $)) (-15 -1755 ((-3 (-628 $) "failed") $)) (-15 -1754 ((-661 (-628 $)) $)) (-15 -1753 ((-661 (-628 $)) $)) (-15 -1752 ((-661 (-115)) $)) (-15 -4105 ((-115) (-115))) (-15 -2478 ((-114) (-115))) (-15 -3114 ((-114) $ (-115))) (-15 -3114 ((-114) $ (-1207))) (-15 -2459 ($ (-115) $)) (-15 -2459 ($ (-115) (-661 $))) (-15 -4470 ($ (-1 $ $) (-628 $))) (-15 -1751 ((-114) $ $)) (-15 -1751 ((-114) $ (-1207))) (-15 -4280 ($ $ (-661 (-1207)) (-661 (-1 $ $)))) (-15 -4280 ($ $ (-661 (-1207)) (-661 (-1 $ (-661 $))))) (-15 -4280 ($ $ (-1207) (-1 $ (-661 $)))) (-15 -4280 ($ $ (-1207) (-1 $ $))) (-15 -4280 ($ $ (-661 (-115)) (-661 (-1 $ $)))) (-15 -4280 ($ $ (-661 (-115)) (-661 (-1 $ (-661 $))))) (-15 -4280 ($ $ (-115) (-1 $ (-661 $)))) (-15 -4280 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1079)) (PROGN (-15 -1750 ((-1201 $) (-628 $))) (-15 -3685 ($ $))) |%noBranch|) (IF (|has| $ (-1068 (-558))) (PROGN (-15 -3157 ((-114) $)) (-15 -3156 ((-114) $))) |%noBranch|))) +(((-102) . T) ((-633 #1=(-628 $)) . T) ((-630 (-886)) . T) ((-321 $) . T) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-1068 #1#) . T) ((-1131) . T) ((-1247) . T)) +((-4470 ((|#2| (-1 |#2| |#1|) (-1189) (-628 |#1|)) 18 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -4470 (|#2| (-1 |#2| |#1|) (-1189) (-628 |#1|)))) (-310) (-1247)) (T -311)) +((-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-628 *6)) (-4 *6 (-310)) (-4 *2 (-1247)) (-5 *1 (-311 *6 *2))))) +(-10 -7 (-15 -4470 (|#2| (-1 |#2| |#1|) (-1189) (-628 |#1|)))) +((-4470 ((|#2| (-1 |#2| |#1|) (-628 |#1|)) 17 T ELT))) +(((-312 |#1| |#2|) (-10 -7 (-15 -4470 (|#2| (-1 |#2| |#1|) (-628 |#1|)))) (-310) (-310)) (T -312)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-628 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))) +(-10 -7 (-15 -4470 (|#2| (-1 |#2| |#1|) (-628 |#1|)))) +((-1760 (((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229)))) 117 T ELT)) (-1761 (((-1185 (-229)) (-1297 (-326 (-229))) (-661 (-1207)) (-1119 (-864 (-229)))) 134 T ELT) (((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229)))) 71 T ELT)) (-1782 (((-661 (-1189)) (-1185 (-229))) NIL T ELT)) (-1759 (((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229)))) 68 T ELT)) (-1762 (((-661 (-229)) (-974 (-419 (-558))) (-1207) (-1119 (-864 (-229)))) 58 T ELT)) (-1781 (((-661 (-1189)) (-661 (-229))) NIL T ELT)) (-1783 (((-229) (-1119 (-864 (-229)))) 29 T ELT)) (-1784 (((-229) (-1119 (-864 (-229)))) 30 T ELT)) (-1758 (((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 63 T ELT)) (-1779 (((-1189) (-229)) NIL T ELT))) +(((-313) (-10 -7 (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -1758 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1759 ((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229))))) (-15 -1760 ((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-1297 (-326 (-229))) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1762 ((-661 (-229)) (-974 (-419 (-558))) (-1207) (-1119 (-864 (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229)))))) (T -313)) +((-1782 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-313)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-313)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313)))) (-1762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *4 (-1207)) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-661 (-1207))) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1207))) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-1760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1207))) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-1759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))) +(-10 -7 (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -1758 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1759 ((-661 (-229)) (-326 (-229)) (-1207) (-1119 (-864 (-229))))) (-15 -1760 ((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-326 (-229)) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1761 ((-1185 (-229)) (-1297 (-326 (-229))) (-661 (-1207)) (-1119 (-864 (-229))))) (-15 -1762 ((-661 (-229)) (-974 (-419 (-558))) (-1207) (-1119 (-864 (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229))))) +((-2197 (((-114) (-229)) 12 T ELT))) +(((-314 |#1| |#2|) (-10 -7 (-15 -2197 ((-114) (-229)))) (-229) (-229)) (T -314)) +((-2197 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2197 ((-114) (-229)))) +((-1778 (((-1297 (-326 (-391))) (-1297 (-326 (-229)))) 110 T ELT)) (-1766 (((-1119 (-864 (-229))) (-1119 (-864 (-391)))) 43 T ELT)) (-1782 (((-661 (-1189)) (-1185 (-229))) 92 T ELT)) (-1789 (((-326 (-391)) (-974 (-229))) 53 T ELT)) (-1790 (((-229) (-974 (-229))) 49 T ELT)) (-1785 (((-1189) (-391)) 193 T ELT)) (-1765 (((-864 (-229)) (-864 (-391))) 37 T ELT)) (-1771 (((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1297 (-326 (-229)))) 164 T ELT)) (-1786 (((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) 205 T ELT) (((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) 203 T ELT)) (-1793 (((-709 (-229)) (-661 (-229)) (-791)) 19 T ELT)) (-1776 (((-1297 (-719)) (-661 (-229))) 99 T ELT)) (-1781 (((-661 (-1189)) (-661 (-229))) 79 T ELT)) (-3139 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-2197 (((-114) (-229) (-1119 (-864 (-229)))) 117 T ELT)) (-1788 (((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 222 T ELT)) (-1783 (((-229) (-1119 (-864 (-229)))) 112 T ELT)) (-1784 (((-229) (-1119 (-864 (-229)))) 113 T ELT)) (-1792 (((-229) (-419 (-558))) 31 T ELT)) (-1780 (((-1189) (-391)) 77 T ELT)) (-1763 (((-229) (-391)) 22 T ELT)) (-1770 (((-391) (-1297 (-326 (-229)))) 175 T ELT)) (-1764 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-1768 (((-419 (-558)) (-326 (-229))) 56 T ELT)) (-1772 (((-326 (-419 (-558))) (-326 (-229))) 73 T ELT)) (-1777 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1769 (((-229) (-326 (-229))) 57 T ELT)) (-1774 (((-661 (-229)) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) 68 T ELT)) (-1773 (((-1119 (-864 (-229))) (-1119 (-864 (-229)))) 65 T ELT)) (-1779 (((-1189) (-229)) 76 T ELT)) (-1775 (((-719) (-229)) 95 T ELT)) (-1767 (((-419 (-558)) (-229)) 58 T ELT)) (-1791 (((-326 (-391)) (-229)) 52 T ELT)) (-4484 (((-661 (-1119 (-864 (-229)))) (-661 (-1119 (-864 (-391))))) 46 T ELT)) (-4314 (((-1065) (-661 (-1065))) 189 T ELT) (((-1065) (-1065) (-1065)) 183 T ELT)) (-1787 (((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) +(((-315) (-10 -7 (-15 -1763 ((-229) (-391))) (-15 -1764 ((-326 (-229)) (-326 (-391)))) (-15 -1765 ((-864 (-229)) (-864 (-391)))) (-15 -1766 ((-1119 (-864 (-229))) (-1119 (-864 (-391))))) (-15 -4484 ((-661 (-1119 (-864 (-229)))) (-661 (-1119 (-864 (-391)))))) (-15 -1767 ((-419 (-558)) (-229))) (-15 -1768 ((-419 (-558)) (-326 (-229)))) (-15 -1769 ((-229) (-326 (-229)))) (-15 -3139 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1770 ((-391) (-1297 (-326 (-229))))) (-15 -1771 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1297 (-326 (-229))))) (-15 -1772 ((-326 (-419 (-558))) (-326 (-229)))) (-15 -1773 ((-1119 (-864 (-229))) (-1119 (-864 (-229))))) (-15 -1774 ((-661 (-229)) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) (-15 -1775 ((-719) (-229))) (-15 -1776 ((-1297 (-719)) (-661 (-229)))) (-15 -1777 ((-326 (-391)) (-326 (-229)))) (-15 -1778 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -2197 ((-114) (-229) (-1119 (-864 (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1780 ((-1189) (-391))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229)))) (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -4314 ((-1065) (-1065) (-1065))) (-15 -4314 ((-1065) (-661 (-1065)))) (-15 -1785 ((-1189) (-391))) (-15 -1786 ((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))))) (-15 -1786 ((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))))) (-15 -1787 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1788 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1789 ((-326 (-391)) (-974 (-229)))) (-15 -1790 ((-229) (-974 (-229)))) (-15 -1791 ((-326 (-391)) (-229))) (-15 -1792 ((-229) (-419 (-558)))) (-15 -1793 ((-709 (-229)) (-661 (-229)) (-791))))) (T -315)) +((-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-315)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-419 (-558))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-974 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-974 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1065)) (-5 *1 (-315)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1065)) (-5 *1 (-315)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) (-5 *2 (-1065)) (-5 *1 (-315)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *2 (-1065)) (-5 *1 (-315)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-661 (-1065))) (-5 *2 (-1065)) (-5 *1 (-315)))) (-4314 (*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-315)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-315)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-315)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *4 (-1119 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391)))) (-5 *1 (-315)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1297 (-719))) (-5 *1 (-315)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-719)) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *2 (-661 (-229))) (-5 *1 (-315)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1119 (-864 (-229)))) (-5 *1 (-315)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-558)))) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-315)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3139 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-661 (-1119 (-864 (-391))))) (-5 *2 (-661 (-1119 (-864 (-229))))) (-5 *1 (-315)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-391)))) (-5 *2 (-1119 (-864 (-229)))) (-5 *1 (-315)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) +(-10 -7 (-15 -1763 ((-229) (-391))) (-15 -1764 ((-326 (-229)) (-326 (-391)))) (-15 -1765 ((-864 (-229)) (-864 (-391)))) (-15 -1766 ((-1119 (-864 (-229))) (-1119 (-864 (-391))))) (-15 -4484 ((-661 (-1119 (-864 (-229)))) (-661 (-1119 (-864 (-391)))))) (-15 -1767 ((-419 (-558)) (-229))) (-15 -1768 ((-419 (-558)) (-326 (-229)))) (-15 -1769 ((-229) (-326 (-229)))) (-15 -3139 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1770 ((-391) (-1297 (-326 (-229))))) (-15 -1771 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1297 (-326 (-229))))) (-15 -1772 ((-326 (-419 (-558))) (-326 (-229)))) (-15 -1773 ((-1119 (-864 (-229))) (-1119 (-864 (-229))))) (-15 -1774 ((-661 (-229)) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) (-15 -1775 ((-719) (-229))) (-15 -1776 ((-1297 (-719)) (-661 (-229)))) (-15 -1777 ((-326 (-391)) (-326 (-229)))) (-15 -1778 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -2197 ((-114) (-229) (-1119 (-864 (-229))))) (-15 -1779 ((-1189) (-229))) (-15 -1780 ((-1189) (-391))) (-15 -1781 ((-661 (-1189)) (-661 (-229)))) (-15 -1782 ((-661 (-1189)) (-1185 (-229)))) (-15 -1783 ((-229) (-1119 (-864 (-229))))) (-15 -1784 ((-229) (-1119 (-864 (-229))))) (-15 -4314 ((-1065) (-1065) (-1065))) (-15 -4314 ((-1065) (-661 (-1065)))) (-15 -1785 ((-1189) (-391))) (-15 -1786 ((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))))) (-15 -1786 ((-1065) (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))))) (-15 -1787 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1788 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1789 ((-326 (-391)) (-974 (-229)))) (-15 -1790 ((-229) (-974 (-229)))) (-15 -1791 ((-326 (-391)) (-229))) (-15 -1792 ((-229) (-419 (-558)))) (-15 -1793 ((-709 (-229)) (-661 (-229)) (-791)))) +((-1794 (((-661 |#1|) (-661 |#1|)) 10 T ELT))) +(((-316 |#1|) (-10 -7 (-15 -1794 ((-661 |#1|) (-661 |#1|)))) (-869)) (T -316)) +((-1794 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-869)) (-5 *1 (-316 *3))))) +(-10 -7 (-15 -1794 ((-661 |#1|) (-661 |#1|)))) +((-4470 (((-709 |#2|) (-1 |#2| |#1|) (-709 |#1|)) 17 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -4470 ((-709 |#2|) (-1 |#2| |#1|) (-709 |#1|)))) (-1079) (-1079)) (T -317)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-709 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-709 *6)) (-5 *1 (-317 *5 *6))))) +(-10 -7 (-15 -4470 ((-709 |#2|) (-1 |#2| |#1|) (-709 |#1|)))) +((-1798 (((-114) $ $) 14 T ELT)) (-3045 (($ $ $) 18 T ELT)) (-3044 (($ $ $) 17 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 50 T ELT)) (-1795 (((-3 (-661 $) "failed") (-661 $) $) 67 T ELT)) (-3644 (($ $ $) 25 T ELT) (($ (-661 $)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3968 (((-3 $ "failed") $ $) 21 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 55 T ELT))) +(((-318 |#1|) (-10 -8 (-15 -1795 ((-3 (-661 |#1|) "failed") (-661 |#1|) |#1|)) (-15 -1796 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -1798 ((-114) |#1| |#1|)) (-15 -3223 ((-711 (-661 |#1|)) (-661 |#1|) |#1|)) (-15 -3224 ((-2 (|:| -4466 (-661 |#1|)) (|:| -2650 |#1|)) (-661 |#1|))) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|))) (-319)) (T -318)) +NIL +(-10 -8 (-15 -1795 ((-3 (-661 |#1|) "failed") (-661 |#1|) |#1|)) (-15 -1796 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1796 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -1798 ((-114) |#1| |#1|)) (-15 -3223 ((-711 (-661 |#1|)) (-661 |#1|) |#1|)) (-15 -3224 ((-2 (|:| -4466 (-661 |#1|)) (|:| -2650 |#1|)) (-661 |#1|))) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-1795 (((-3 (-661 $) "failed") (-661 $) $) 65 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-319) (-142)) (T -319)) -((-1800 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))) (-3366 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-319)))) (-3048 (*1 *1 *1 *1) (-4 *1 (-319))) (-3049 (*1 *1 *1 *1) (-4 *1 (-319))) (-1798 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) (-4 *1 (-319)))) (-1798 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1797 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319))))) -(-13 (-951) (-10 -8 (-15 -1800 ((-114) $ $)) (-15 -1799 ((-793) $)) (-15 -3366 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3048 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -1798 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $)) (-15 -1798 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1797 ((-3 (-663 $) "failed") (-663 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-4284 (($ $ (-663 |#2|) (-663 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-663 (-305 |#2|))) NIL T ELT))) -(((-320 |#1| |#2|) (-10 -8 (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|)))) (-321 |#2|) (-1133)) (T -320)) -NIL -(-10 -8 (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|)))) -((-4284 (($ $ (-663 |#1|) (-663 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 13 T ELT) (($ $ (-663 (-305 |#1|))) 12 T ELT))) -(((-321 |#1|) (-142) (-1133)) (T -321)) -((-4284 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1133)))) (-4284 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1133))))) -(-13 (-528 |t#1| |t#1|) (-10 -8 (-15 -4284 ($ $ (-305 |t#1|))) (-15 -4284 ($ $ (-663 (-305 |t#1|)))))) -(((-528 |#1| |#1|) . T)) -((-4284 ((|#1| (-1 |#1| (-560)) (-1211 (-421 (-560)))) 26 T ELT))) -(((-322 |#1|) (-10 -7 (-15 -4284 (|#1| (-1 |#1| (-560)) (-1211 (-421 (-560)))))) (-38 (-421 (-560)))) (T -322)) -((-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1211 (-421 (-560)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-560))))))) -(-10 -7 (-15 -4284 (|#1| (-1 |#1| (-560)) (-1211 (-421 (-560)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 7 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 9 T ELT))) -(((-323) (-1133)) (T -323)) -NIL -(-1133) -((-3053 (((-114) $ $) NIL T ELT)) (-4012 (((-560) $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 9 T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-324) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -4012 ((-560) $))))) (T -324)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-324)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -4012 ((-560) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 60 T ELT)) (-3617 (((-1286 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-1286 |#1| |#2| |#3| |#4|) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-3 (-1280 |#2| |#3| |#4|) #2#) $) 26 T ELT)) (-3660 (((-1286 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1209) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-1280 |#2| |#3| |#4|) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-1286 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1299 (-1286 |#1| |#2| |#3| |#4|)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-1286 |#1| |#2| |#3| |#4|)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-1286 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3951 (((-713 $) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-4474 (($ (-1 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4300 (((-3 (-866 |#2|) "failed") $) 80 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-1286 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1299 (-1286 |#1| |#2| |#3| |#4|)))) (-1299 $) $) NIL T ELT) (((-711 (-1286 |#1| |#2| |#3| |#4|)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3618 (((-1286 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-1286 |#1| |#2| |#3| |#4|)) (-663 (-1286 |#1| |#2| |#3| |#4|))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-321 (-1286 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-321 (-1286 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1286 |#1| |#2| |#3| |#4|))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-321 (-1286 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-305 (-1286 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-321 (-1286 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-1209)) (-663 (-1286 |#1| |#2| |#3| |#4|))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-528 (-1209) (-1286 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1209) (-1286 |#1| |#2| |#3| |#4|)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-528 (-1209) (-1286 |#1| |#2| |#3| |#4|))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-1286 |#1| |#2| |#3| |#4|)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-298 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-1286 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1052)) ELT) (((-229) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1286 |#1| |#2| |#3| |#4|) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-1286 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1209)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-1070 (-1209))) ELT) (($ (-1280 |#2| |#3| |#4|)) 37 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-1286 |#1| |#2| |#3| |#4|) (-940))) (|has| (-1286 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-1286 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-1286 |#1| |#2| |#3| |#4|) (-872)) ELT)) (-4465 (($ $ $) 35 T ELT) (($ (-1286 |#1| |#2| |#3| |#4|) (-1286 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-1286 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1286 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-13 (-1023 (-1286 |#1| |#2| |#3| |#4|)) (-1070 (-1280 |#2| |#3| |#4|)) (-10 -8 (-15 -4300 ((-3 (-866 |#2|) "failed") $)) (-15 -4462 ($ (-1280 |#2| |#3| |#4|))))) (-13 (-1070 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1235) (-435 |#1|)) (-1209) |#2|) (T -325)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1280 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4) (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) (-5 *1 (-325 *3 *4 *5 *6)))) (-4300 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) (-5 *2 (-866 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4)))) -(-13 (-1023 (-1286 |#1| |#2| |#3| |#4|)) (-1070 (-1280 |#2| |#3| |#4|)) (-10 -8 (-15 -4300 ((-3 (-866 |#2|) "failed") $)) (-15 -4462 ($ (-1280 |#2| |#3| |#4|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1762 (((-663 $) $ (-1209)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1203 $) (-1209)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1203 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-976 $)) NIL (|has| |#1| (-571)) ELT)) (-1334 (($ $ (-1209)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1203 $) (-1209)) NIL (|has| |#1| (-571)) ELT) (($ (-1203 $)) NIL (|has| |#1| (-571)) ELT) (($ (-976 $)) NIL (|has| |#1| (-571)) ELT)) (-3692 (((-114) $) 27 (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (-3570 (((-663 (-1209)) $) 368 T ELT)) (-3572 (((-421 (-1203 $)) $ (-630 $)) NIL (|has| |#1| (-571)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1755 (((-663 (-630 $)) $) NIL T ELT)) (-3998 (($ $) 171 (|has| |#1| (-571)) ELT)) (-4155 (($ $) 147 (|has| |#1| (-571)) ELT)) (-1498 (($ $ (-1124 $)) 232 (|has| |#1| (-571)) ELT) (($ $ (-1209)) 228 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL (-4043 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (-1759 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) 386 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 430 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 308 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-4291 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-571)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3996 (($ $) 167 (|has| |#1| (-571)) ELT)) (-4154 (($ $) 143 (|has| |#1| (-571)) ELT)) (-1801 (($ $ (-560)) 73 (|has| |#1| (-571)) ELT)) (-4000 (($ $) 175 (|has| |#1| (-571)) ELT)) (-4153 (($ $) 151 (|has| |#1| (-571)) ELT)) (-4240 (($) NIL (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) (|has| |#1| (-1144))) CONST)) (-1335 (((-663 $) $ (-1209)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1203 $) (-1209)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1203 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-976 $)) NIL (|has| |#1| (-571)) ELT)) (-3687 (($ $ (-1209)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1203 $) (-1209)) 134 (|has| |#1| (-571)) ELT) (($ (-1203 $)) NIL (|has| |#1| (-571)) ELT) (($ (-976 $)) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 (-630 $) #1="failed") $) 18 T ELT) (((-3 (-1209) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) ELT) (((-3 (-560) #1#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-976 |#1|)) #1#) $) NIL (|has| |#1| (-571)) ELT) (((-3 (-976 |#1|) #1#) $) NIL (|has| |#1| (-1081)) ELT) (((-3 (-421 (-560)) #1#) $) 46 (-4043 (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3660 (((-630 $) $) 12 T ELT) (((-1209) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-976 |#1|)) $) NIL (|has| |#1| (-571)) ELT) (((-976 |#1|) $) NIL (|has| |#1| (-1081)) ELT) (((-421 (-560)) $) 319 (-4043 (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2507 (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 125 (|has| |#1| (-1081)) ELT) (((-711 |#1|) (-711 $)) 115 (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT)) (-4358 (($ $) 96 (|has| |#1| (-571)) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4460 (($ $ (-1124 $)) 236 (|has| |#1| (-571)) ELT) (($ $ (-1209)) 234 (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-571)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3892 (($ $ $) 202 (|has| |#1| (-571)) ELT)) (-4143 (($) 137 (|has| |#1| (-571)) ELT)) (-1495 (($ $ $) 222 (|has| |#1| (-571)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 392 (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 399 (|has| |#1| (-912 (-391))) ELT)) (-3058 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1754 (((-663 (-115)) $) NIL T ELT)) (-4109 (((-115) (-115)) 276 T ELT)) (-2655 (((-114) $) 25 (|has| |#1| (-1144)) ELT)) (-3160 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-3483 (($ $) 72 (|has| |#1| (-1081)) ELT)) (-3485 (((-1157 |#1| (-630 $)) $) 91 (|has| |#1| (-1081)) ELT)) (-1802 (((-114) $) 62 (|has| |#1| (-571)) ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-571)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-1752 (((-1203 $) (-630 $)) 277 (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) 426 T ELT)) (-1757 (((-3 (-630 $) "failed") $) NIL T ELT)) (-4458 (($ $) 141 (|has| |#1| (-571)) ELT)) (-2485 (($ $) 247 (|has| |#1| (-571)) ELT)) (-2508 (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL (|has| |#1| (-1081)) ELT) (((-711 |#1|) (-1299 $)) NIL (|has| |#1| (-1081)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1756 (((-663 (-630 $)) $) 49 T ELT)) (-2463 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) 431 T ELT)) (-3310 (((-3 (-663 $) #3="failed") $) NIL (|has| |#1| (-1144)) ELT)) (-3312 (((-3 (-2 (|:| |val| $) (|:| -2646 (-560))) #3#) $) NIL (|has| |#1| (-1081)) ELT)) (-3309 (((-3 (-663 $) #3#) $) 436 (|has| |#1| (-25)) ELT)) (-2016 (((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 $))) #3#) $) 440 (|has| |#1| (-25)) ELT)) (-3311 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $) NIL (|has| |#1| (-1144)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $ (-115)) NIL (|has| |#1| (-1081)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) #3#) $ (-1209)) NIL (|has| |#1| (-1081)) ELT)) (-3118 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1209)) 51 T ELT)) (-2888 (($ $) NIL (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-3319 (($ $ (-1209)) 251 (|has| |#1| (-571)) ELT) (($ $ (-1124 $)) 253 (|has| |#1| (-571)) ELT)) (-3088 (((-793) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) 43 T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 301 (|has| |#1| (-571)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-1753 (((-114) $ $) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-1499 (($ $ (-1209)) 226 (|has| |#1| (-571)) ELT) (($ $) 224 (|has| |#1| (-571)) ELT)) (-1493 (($ $) 218 (|has| |#1| (-571)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 306 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-4459 (($ $) 139 (|has| |#1| (-571)) ELT)) (-3161 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 425 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1209) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1209) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 379 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-633 (-549))) ELT) (($ $) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1209)) 366 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1209)) 365 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ $))) NIL (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ (-663 $)))) NIL (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793) (-1 $ (-663 $))) NIL (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793) (-1 $ $)) NIL (|has| |#1| (-1081)) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-2483 (($ $) 239 (|has| |#1| (-571)) ELT)) (-4316 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-1758 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2484 (($ $) 249 (|has| |#1| (-571)) ELT)) (-3891 (($ $) 200 (|has| |#1| (-571)) ELT)) (-4274 (($ $ (-1209)) NIL (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-1081)) ELT)) (-3482 (($ $) 74 (|has| |#1| (-571)) ELT)) (-3484 (((-1157 |#1| (-630 $)) $) 93 (|has| |#1| (-571)) ELT)) (-3689 (($ $) 317 (|has| $ (-1081)) ELT)) (-4001 (($ $) 177 (|has| |#1| (-571)) ELT)) (-4152 (($ $) 153 (|has| |#1| (-571)) ELT)) (-3999 (($ $) 173 (|has| |#1| (-571)) ELT)) (-4151 (($ $) 149 (|has| |#1| (-571)) ELT)) (-3997 (($ $) 169 (|has| |#1| (-571)) ELT)) (-4150 (($ $) 145 (|has| |#1| (-571)) ELT)) (-4488 (((-916 (-560)) $) NIL (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-633 (-916 (-391)))) ELT) (($ (-419 $)) NIL (|has| |#1| (-571)) ELT) (((-549) $) 363 (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-4462 (((-888) $) 424 T ELT) (($ (-630 $)) 415 T ELT) (($ (-1209)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560)))) ELT) (($ (-1157 |#1| (-630 $))) 95 (|has| |#1| (-1081)) ELT) (($ (-421 |#1|)) NIL (|has| |#1| (-571)) ELT) (($ (-976 (-421 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-976 (-421 |#1|)))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-976 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-976 |#1|)) NIL (|has| |#1| (-1081)) ELT) (($ (-560)) 34 (-4043 (|has| |#1| (-1070 (-560))) (|has| |#1| (-1081))) ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-571)) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL (|has| |#1| (-1081)) CONST)) (-3075 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3590 (($ $ $) 220 (|has| |#1| (-571)) ELT)) (-3895 (($ $ $) 206 (|has| |#1| (-571)) ELT)) (-3897 (($ $ $) 210 (|has| |#1| (-571)) ELT)) (-3894 (($ $ $) 204 (|has| |#1| (-571)) ELT)) (-3896 (($ $ $) 208 (|has| |#1| (-571)) ELT)) (-2482 (((-114) (-115)) 10 T ELT)) (-1389 (((-114) $ $) 86 T ELT)) (-4004 (($ $) 183 (|has| |#1| (-571)) ELT)) (-3992 (($ $) 159 (|has| |#1| (-571)) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) 179 (|has| |#1| (-571)) ELT)) (-3990 (($ $) 155 (|has| |#1| (-571)) ELT)) (-4006 (($ $) 187 (|has| |#1| (-571)) ELT)) (-3994 (($ $) 163 (|has| |#1| (-571)) ELT)) (-2017 (($ (-1209) $) NIL T ELT) (($ (-1209) $ $) NIL T ELT) (($ (-1209) $ $ $) NIL T ELT) (($ (-1209) $ $ $ $) NIL T ELT) (($ (-1209) (-663 $)) NIL T ELT)) (-3899 (($ $) 214 (|has| |#1| (-571)) ELT)) (-3898 (($ $) 212 (|has| |#1| (-571)) ELT)) (-4007 (($ $) 189 (|has| |#1| (-571)) ELT)) (-3995 (($ $) 165 (|has| |#1| (-571)) ELT)) (-4005 (($ $) 185 (|has| |#1| (-571)) ELT)) (-3993 (($ $) 161 (|has| |#1| (-571)) ELT)) (-4003 (($ $) 181 (|has| |#1| (-571)) ELT)) (-3991 (($ $) 157 (|has| |#1| (-571)) ELT)) (-3889 (($ $) 192 (|has| |#1| (-571)) ELT)) (-3145 (($) 21 (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) CONST)) (-2487 (($ $) 243 (|has| |#1| (-571)) ELT)) (-3151 (($) 23 (|has| |#1| (-1144)) CONST)) (-3893 (($ $) 194 (|has| |#1| (-571)) ELT) (($ $ $) 196 (|has| |#1| (-571)) ELT)) (-2488 (($ $) 241 (|has| |#1| (-571)) ELT)) (-3156 (($ $ (-1209)) NIL (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-1081)) ELT)) (-2486 (($ $) 245 (|has| |#1| (-571)) ELT)) (-3890 (($ $ $) 198 (|has| |#1| (-571)) ELT)) (-3540 (((-114) $ $) 88 T ELT)) (-4465 (($ (-1157 |#1| (-630 $)) (-1157 |#1| (-630 $))) 106 (|has| |#1| (-571)) ELT) (($ $ $) 42 (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-4353 (($ $ $) 40 (-4043 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT) (($ $) 29 (-4043 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (-4355 (($ $ $) 38 (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 314 (|has| |#1| (-571)) ELT) (($ $ (-560)) 80 (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 75 (|has| |#1| (-1144)) ELT) (($ $ (-949)) 84 (|has| |#1| (-1144)) ELT)) (* (($ (-421 (-560)) $) NIL (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-571)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1081)) ELT) (($ $ $) 36 (|has| |#1| (-1144)) ELT) (($ (-560) $) 32 (-4043 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT) (($ (-793) $) NIL (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT) (($ (-949) $) NIL (-4043 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081)))) ELT))) -(((-326 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1235)) (-6 (-162)) (-6 (-649)) (-6 (-1171)) (-15 -4358 ($ $)) (-15 -1802 ((-114) $)) (-15 -1801 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -3193 ((-419 (-1203 $)) (-1203 $))) (-15 -3194 ((-419 (-1203 $)) (-1203 $)))) |%noBranch|) (IF (|has| |#1| (-1070 (-560))) (-6 (-1070 (-48))) |%noBranch|)) |%noBranch|))) (-1133)) (T -326)) -((-4358 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1133)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1133)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1133)))) (-3193 (*1 *2 *3) (-12 (-5 *2 (-419 (-1203 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1203 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1133)))) (-3194 (*1 *2 *3) (-12 (-5 *2 (-419 (-1203 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1203 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1133))))) -(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1235)) (-6 (-162)) (-6 (-649)) (-6 (-1171)) (-15 -4358 ($ $)) (-15 -1802 ((-114) $)) (-15 -1801 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -3193 ((-419 (-1203 $)) (-1203 $))) (-15 -3194 ((-419 (-1203 $)) (-1203 $)))) |%noBranch|) (IF (|has| |#1| (-1070 (-560))) (-6 (-1070 (-48))) |%noBranch|)) |%noBranch|))) -((-4474 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -4474 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1133) (-1133)) (T -327)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -4474 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-4245 (((-51) |#2| (-305 |#2|) (-793)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-793)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1209)) 26 T ELT)) (-4334 (((-51) |#2| (-305 |#2|) (-421 (-560))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-421 (-560))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1209)) 55 T ELT)) (-4298 (((-51) |#2| (-305 |#2|) (-421 (-560))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-421 (-560))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1209)) 50 T ELT)) (-4295 (((-51) |#2| (-305 |#2|) (-560)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-560)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1209)) 43 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -4245 ((-51) (-1209))) (-15 -4245 ((-51) |#2|)) (-15 -4245 ((-51) |#2| (-793))) (-15 -4245 ((-51) |#2| (-305 |#2|))) (-15 -4245 ((-51) |#2| (-305 |#2|) (-793))) (-15 -4295 ((-51) (-1209))) (-15 -4295 ((-51) |#2|)) (-15 -4295 ((-51) |#2| (-560))) (-15 -4295 ((-51) |#2| (-305 |#2|))) (-15 -4295 ((-51) |#2| (-305 |#2|) (-560))) (-15 -4298 ((-51) (-1209))) (-15 -4298 ((-51) |#2|)) (-15 -4298 ((-51) |#2| (-421 (-560)))) (-15 -4298 ((-51) |#2| (-305 |#2|))) (-15 -4298 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -4334 ((-51) (-1209))) (-15 -4334 ((-51) |#2|)) (-15 -4334 ((-51) |#2| (-421 (-560)))) (-15 -4334 ((-51) |#2| (-305 |#2|))) (-15 -4334 ((-51) |#2| (-305 |#2|) (-421 (-560))))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -328)) -((-4334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-4334 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) (-4298 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-4298 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) (-4295 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-1070 *5) (-660 *5))) (-5 *5 (-560)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1070 *4) (-660 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-4295 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4295 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) (-4245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-793)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-4245 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4)))))) -(-10 -7 (-15 -4245 ((-51) (-1209))) (-15 -4245 ((-51) |#2|)) (-15 -4245 ((-51) |#2| (-793))) (-15 -4245 ((-51) |#2| (-305 |#2|))) (-15 -4245 ((-51) |#2| (-305 |#2|) (-793))) (-15 -4295 ((-51) (-1209))) (-15 -4295 ((-51) |#2|)) (-15 -4295 ((-51) |#2| (-560))) (-15 -4295 ((-51) |#2| (-305 |#2|))) (-15 -4295 ((-51) |#2| (-305 |#2|) (-560))) (-15 -4298 ((-51) (-1209))) (-15 -4298 ((-51) |#2|)) (-15 -4298 ((-51) |#2| (-421 (-560)))) (-15 -4298 ((-51) |#2| (-305 |#2|))) (-15 -4298 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -4334 ((-51) (-1209))) (-15 -4334 ((-51) |#2|)) (-15 -4334 ((-51) |#2| (-421 (-560)))) (-15 -4334 ((-51) |#2| (-305 |#2|))) (-15 -4334 ((-51) |#2| (-305 |#2|) (-421 (-560))))) -((-1803 (((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 81 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 83 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 84 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) -(((-329 |#1| |#2|) (-10 -7 (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -1803 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-571) (-633 (-549))) (-435 |#1|)) (T -329)) -((-1803 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-1803 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1803 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1803 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-1803 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8))) (-4 *8 (-435 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1803 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1803 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-663 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1803 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1803 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1803 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6))))) -(-10 -7 (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -1803 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -1803 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -1803 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1803 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)))) -((-1805 (((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560) (-1191)) 67 T ELT) (((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560)) 68 T ELT) (((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560) (-1191)) 64 T ELT) (((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560)) 65 T ELT)) (-1804 (((-1 (-229) (-229)) (-229)) 66 T ELT))) -(((-330) (-10 -7 (-15 -1804 ((-1 (-229) (-229)) (-229))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560) (-1191))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560) (-1191))))) (T -330)) -((-1805 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1191)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) (-1805 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) (-1805 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) (-5 *6 (-560)) (-5 *7 (-1191)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) (-1805 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) (-5 *6 (-560)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) (-1804 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) -(-10 -7 (-15 -1804 ((-1 (-229) (-229)) (-229))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-1 (-229) (-229)) (-560) (-1191))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560))) (-15 -1805 ((-1245 (-957)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-229) (-560) (-1191)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 26 T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 20 T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) 36 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3690 (((-114) $) NIL T ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) 16 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1114) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1806 (((-421 (-560)) $) 17 T ELT)) (-3579 (($ (-1280 |#1| |#2| |#3|)) 11 T ELT)) (-2646 (((-1280 |#1| |#2| |#3|) $) 12 T ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-4464 (((-421 (-560)) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 10 T ELT)) (-4462 (((-888) $) 42 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) 34 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 28 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 37 T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-331 |#1| |#2| |#3|) (-13 (-1282 |#1|) (-816) (-10 -8 (-15 -3579 ($ (-1280 |#1| |#2| |#3|))) (-15 -2646 ((-1280 |#1| |#2| |#3|) $)) (-15 -1806 ((-421 (-560)) $)))) (-376) (-1209) |#1|) (T -331)) -((-3579 (*1 *1 *2) (-12 (-5 *2 (-1280 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1209)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1209)) (-14 *5 *3))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1209)) (-14 *5 *3)))) -(-13 (-1282 |#1|) (-816) (-10 -8 (-15 -3579 ($ (-1280 |#1| |#2| |#3|))) (-15 -2646 ((-1280 |#1| |#2| |#3|) $)) (-15 -1806 ((-421 (-560)) $)))) -((-3498 (((-2 (|:| -2646 (-793)) (|:| -4470 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793)) 35 T ELT)) (-4458 (((-663 (-2 (|:| -4470 (-793)) (|:| |logand| |#1|))) (-419 |#1|)) 40 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3498 ((-2 (|:| -2646 (-793)) (|:| -4470 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -4458 ((-663 (-2 (|:| -4470 (-793)) (|:| |logand| |#1|))) (-419 |#1|)))) (-571)) (T -332)) -((-4458 (*1 *2 *3) (-12 (-5 *3 (-419 *4)) (-4 *4 (-571)) (-5 *2 (-663 (-2 (|:| -4470 (-793)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *5)) (-4 *5 (-571)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *5) (|:| |radicand| (-663 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-793))))) -(-10 -7 (-15 -3498 ((-2 (|:| -2646 (-793)) (|:| -4470 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -4458 ((-663 (-2 (|:| -4470 (-793)) (|:| |logand| |#1|))) (-419 |#1|)))) -((-3570 (((-663 |#2|) (-1203 |#4|)) 44 T ELT)) (-1811 ((|#3| (-560)) 47 T ELT)) (-1809 (((-1203 |#4|) (-1203 |#3|)) 30 T ELT)) (-1810 (((-1203 |#4|) (-1203 |#4|) (-560)) 66 T ELT)) (-1808 (((-1203 |#3|) (-1203 |#4|)) 21 T ELT)) (-4464 (((-663 (-793)) (-1203 |#4|) (-663 |#2|)) 41 T ELT)) (-1807 (((-1203 |#3|) (-1203 |#4|) (-663 |#2|) (-663 |#3|)) 35 T ELT))) -(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1807 ((-1203 |#3|) (-1203 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -4464 ((-663 (-793)) (-1203 |#4|) (-663 |#2|))) (-15 -3570 ((-663 |#2|) (-1203 |#4|))) (-15 -1808 ((-1203 |#3|) (-1203 |#4|))) (-15 -1809 ((-1203 |#4|) (-1203 |#3|))) (-15 -1810 ((-1203 |#4|) (-1203 |#4|) (-560))) (-15 -1811 (|#3| (-560)))) (-817) (-872) (-1081) (-980 |#3| |#1| |#2|)) (T -333)) -((-1811 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1081)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-980 *2 *4 *5)))) (-1810 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 *7)) (-5 *3 (-560)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1203 *6)) (-4 *6 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-1203 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1203 *7)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-5 *2 (-1203 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1203 *7)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-5 *2 (-663 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4464 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *8)) (-5 *4 (-663 *6)) (-4 *6 (-872)) (-4 *8 (-980 *7 *5 *6)) (-4 *5 (-817)) (-4 *7 (-1081)) (-5 *2 (-663 (-793))) (-5 *1 (-333 *5 *6 *7 *8)))) (-1807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8)) (-4 *7 (-872)) (-4 *8 (-1081)) (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) (-5 *2 (-1203 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) -(-10 -7 (-15 -1807 ((-1203 |#3|) (-1203 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -4464 ((-663 (-793)) (-1203 |#4|) (-663 |#2|))) (-15 -3570 ((-663 |#2|) (-1203 |#4|))) (-15 -1808 ((-1203 |#3|) (-1203 |#4|))) (-15 -1809 ((-1203 |#4|) (-1203 |#3|))) (-15 -1810 ((-1203 |#4|) (-1203 |#4|) (-560))) (-15 -1811 (|#3| (-560)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 19 T ELT)) (-4290 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-560)))) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2526 ((|#1| $ (-560)) NIL T ELT)) (-1814 (((-560) $ (-560)) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2518 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1813 (($ (-1 (-560) (-560)) $) 11 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1812 (($ $ $) NIL (|has| (-560) (-816)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4193 (((-560) |#1| $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 30 (|has| |#1| (-872)) ELT)) (-4353 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-4355 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ (-560) |#1|) 28 T ELT))) -(((-334 |#1|) (-13 (-21) (-739 (-560)) (-335 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-872)) (-6 (-872)) |%noBranch|))) (-1133)) (T -334)) -NIL -(-13 (-21) (-739 (-560)) (-335 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-872)) (-6 (-872)) |%noBranch|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4290 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))) $) 33 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3624 (((-793) $) 34 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| "failed") $) 38 T ELT)) (-3660 ((|#1| $) 39 T ELT)) (-2526 ((|#1| $ (-560)) 31 T ELT)) (-1814 ((|#2| $ (-560)) 32 T ELT)) (-2518 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1813 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1812 (($ $ $) 27 (|has| |#2| (-816)) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-4193 ((|#2| |#1| $) 30 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-335 |#1| |#2|) (-142) (-1133) (-133)) (T -335)) -((-4355 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-133)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)) (-5 *2 (-793)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))))) (-1814 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1133)) (-4 *2 (-133)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1133)))) (-4193 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-133)))) (-1813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)))) (-2518 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-133)) (-4 *3 (-816))))) -(-13 (-133) (-1070 |t#1|) (-10 -8 (-15 -4355 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3624 ((-793) $)) (-15 -4290 ((-663 (-2 (|:| |gen| |t#1|) (|:| -4459 |t#2|))) $)) (-15 -1814 (|t#2| $ (-560))) (-15 -2526 (|t#1| $ (-560))) (-15 -4193 (|t#2| |t#1| $)) (-15 -1813 ($ (-1 |t#2| |t#2|) $)) (-15 -2518 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-816)) (-15 -1812 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-1070 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-793)))) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2526 ((|#1| $ (-560)) NIL T ELT)) (-1814 (((-793) $ (-560)) NIL T ELT)) (-2518 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1813 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1812 (($ $ $) NIL (|has| (-793) (-816)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4193 (((-793) |#1| $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-793) |#1|) NIL T ELT))) -(((-336 |#1|) (-335 |#1| (-793)) (-1133)) (T -336)) -NIL -(-335 |#1| (-793)) -((-4009 (($ $) 72 T ELT)) (-1816 (($ $ |#2| |#3| $) 14 T ELT)) (-1817 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-2019 (((-114) $) 42 T ELT)) (-2018 ((|#2| $) 44 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-3304 ((|#2| $) 68 T ELT)) (-4333 (((-663 |#2|) $) 56 T ELT)) (-1815 (($ $ $ (-793)) 37 T ELT)) (-4465 (($ $ |#2|) 60 T ELT))) -(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -4009 (|#1| |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1815 (|#1| |#1| |#1| (-793))) (-15 -1816 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1817 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4333 ((-663 |#2|) |#1|)) (-15 -2018 (|#2| |#1|)) (-15 -2019 ((-114) |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4465 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1081) (-816)) (T -337)) -NIL -(-10 -8 (-15 -4009 (|#1| |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1815 (|#1| |#1| |#1| (-793))) (-15 -1816 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1817 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4333 ((-663 |#2|) |#1|)) (-15 -2018 (|#2| |#1|)) (-15 -2019 ((-114) |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4465 (|#1| |#1| |#2|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 106 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 104 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3660 (((-560) $) 105 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 103 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 102 T ELT)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) 90 (|has| |#1| (-466)) ELT)) (-1816 (($ $ |#1| |#2| $) 94 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2663 (((-793) $) 97 T ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| |#2|) 78 T ELT)) (-3307 ((|#2| $) 96 T ELT)) (-1817 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 100 T ELT)) (-2018 ((|#1| $) 99 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-571)) ELT)) (-4464 ((|#2| $) 81 T ELT)) (-3304 ((|#1| $) 91 (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 66 (|has| |#1| (-571)) ELT) (($ |#1|) 64 T ELT) (($ (-421 (-560))) 74 (-4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-4333 (((-663 |#1|) $) 98 T ELT)) (-4193 ((|#1| $ |#2|) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1815 (($ $ $ (-793)) 93 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-338 |#1| |#2|) (-142) (-1081) (-816)) (T -338)) -((-2019 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-114)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-663 *3)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-793)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)))) (-1816 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) (-1815 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-4 *3 (-175)))) (-3972 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *2 (-571)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)) (-4 *2 (-466)))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *2 (-466))))) -(-13 (-47 |t#1| |t#2|) (-426 |t#1|) (-10 -8 (-15 -2019 ((-114) $)) (-15 -2018 (|t#1| $)) (-15 -4333 ((-663 |t#1|) $)) (-15 -2663 ((-793) $)) (-15 -3307 (|t#2| $)) (-15 -1817 ($ (-1 |t#2| |t#2|) $)) (-15 -1816 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -1815 ($ $ $ (-793))) |%noBranch|) (IF (|has| |t#1| (-571)) (-15 -3972 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -3304 (|t#1| $)) (-15 -4009 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-426 |#1|) . T) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-2210 (((-114) (-114)) NIL T ELT)) (-4304 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-2608 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) NIL (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-2211 (($ $ (-560)) NIL T ELT)) (-2212 (((-793) $) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4123 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2213 (($ (-663 |#1|)) NIL T ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-1726 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4307 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2213 ($ (-663 |#1|))) (-15 -2212 ((-793) $)) (-15 -2211 ($ $ (-560))) (-15 -2210 ((-114) (-114))))) (-1249)) (T -339)) -((-2213 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-339 *3)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1249)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1249)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1249))))) -(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2213 ($ (-663 |#1|))) (-15 -2212 ((-793) $)) (-15 -2211 ($ $ (-560))) (-15 -2210 ((-114) (-114))))) -((-4448 (((-114) $) 47 T ELT)) (-4445 (((-793)) 23 T ELT)) (-3836 ((|#2| $) 51 T ELT) (($ $ (-949)) 123 T ELT)) (-3624 (((-793)) 124 T ELT)) (-2014 (($ (-1299 |#2|)) 20 T ELT)) (-2235 (((-114) $) 136 T ELT)) (-3620 ((|#2| $) 53 T ELT) (($ $ (-949)) 120 T ELT)) (-2238 (((-1203 |#2|) $) NIL T ELT) (((-1203 $) $ (-949)) 111 T ELT)) (-1819 (((-1203 |#2|) $) 95 T ELT)) (-1818 (((-1203 |#2|) $) 91 T ELT) (((-3 (-1203 |#2|) "failed") $ $) 88 T ELT)) (-1820 (($ $ (-1203 |#2|)) 58 T ELT)) (-4446 (((-856 (-949))) 30 T ELT) (((-949)) 48 T ELT)) (-4427 (((-136)) 27 T ELT)) (-4464 (((-856 (-949)) $) 32 T ELT) (((-949) $) 139 T ELT)) (-1821 (($) 130 T ELT)) (-3728 (((-1299 |#2|) $) NIL T ELT) (((-711 |#2|) (-1299 $)) 42 T ELT)) (-3189 (($ $) NIL T ELT) (((-713 $) $) 100 T ELT)) (-4449 (((-114) $) 45 T ELT))) -(((-340 |#1| |#2|) (-10 -8 (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3624 ((-793))) (-15 -3189 (|#1| |#1|)) (-15 -1818 ((-3 (-1203 |#2|) "failed") |#1| |#1|)) (-15 -1818 ((-1203 |#2|) |#1|)) (-15 -1819 ((-1203 |#2|) |#1|)) (-15 -1820 (|#1| |#1| (-1203 |#2|))) (-15 -2235 ((-114) |#1|)) (-15 -1821 (|#1|)) (-15 -3836 (|#1| |#1| (-949))) (-15 -3620 (|#1| |#1| (-949))) (-15 -2238 ((-1203 |#1|) |#1| (-949))) (-15 -3836 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -4464 ((-949) |#1|)) (-15 -4446 ((-949))) (-15 -2238 ((-1203 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -4445 ((-793))) (-15 -4446 ((-856 (-949)))) (-15 -4464 ((-856 (-949)) |#1|)) (-15 -4448 ((-114) |#1|)) (-15 -4449 ((-114) |#1|)) (-15 -4427 ((-136)))) (-341 |#2|) (-376)) (T -340)) -((-4427 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4446 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-856 (-949))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4445 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4446 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-949)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3624 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) -(-10 -8 (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3624 ((-793))) (-15 -3189 (|#1| |#1|)) (-15 -1818 ((-3 (-1203 |#2|) "failed") |#1| |#1|)) (-15 -1818 ((-1203 |#2|) |#1|)) (-15 -1819 ((-1203 |#2|) |#1|)) (-15 -1820 (|#1| |#1| (-1203 |#2|))) (-15 -2235 ((-114) |#1|)) (-15 -1821 (|#1|)) (-15 -3836 (|#1| |#1| (-949))) (-15 -3620 (|#1| |#1| (-949))) (-15 -2238 ((-1203 |#1|) |#1| (-949))) (-15 -3836 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -4464 ((-949) |#1|)) (-15 -4446 ((-949))) (-15 -2238 ((-1203 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -4445 ((-793))) (-15 -4446 ((-856 (-949)))) (-15 -4464 ((-856 (-949)) |#1|)) (-15 -4448 ((-114) |#1|)) (-15 -4449 ((-114) |#1|)) (-15 -4427 ((-136)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-4448 (((-114) $) 111 T ELT)) (-4445 (((-793)) 107 T ELT)) (-3836 ((|#1| $) 159 T ELT) (($ $ (-949)) 156 (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 141 (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-3624 (((-793)) 131 (|has| |#1| (-381)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| "failed") $) 118 T ELT)) (-3660 ((|#1| $) 119 T ELT)) (-2014 (($ (-1299 |#1|)) 165 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3481 (($) 128 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-3320 (($) 143 (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) 144 (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) 104 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) 86 T ELT)) (-4288 (((-949) $) 146 (|has| |#1| (-381)) ELT) (((-856 (-949)) $) 101 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) 40 T ELT)) (-2237 (($) 154 (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) 153 (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) 160 T ELT) (($ $ (-949)) 157 (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) 132 (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2238 (((-1203 |#1|) $) 164 T ELT) (((-1203 $) $ (-949)) 158 (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) 129 (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) 150 (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) 149 (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) 148 (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) 151 (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3952 (($) 133 (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) 130 (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) 110 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2654 (($) 152 (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 140 (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-4446 (((-856 (-949))) 108 T ELT) (((-949)) 162 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-1989 (((-793) $) 145 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 102 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) 116 T ELT)) (-4274 (($ $ (-793)) 136 (|has| |#1| (-381)) ELT) (($ $) 134 (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) 109 T ELT) (((-949) $) 161 T ELT)) (-3689 (((-1203 |#1|)) 163 T ELT)) (-1889 (($) 142 (|has| |#1| (-381)) ELT)) (-1821 (($) 155 (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) 167 T ELT) (((-711 |#1|) (-1299 $)) 166 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 139 (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3189 (($ $) 138 (|has| |#1| (-381)) ELT) (((-713 $) $) 100 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 169 T ELT) (((-1299 $) (-949)) 168 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-4449 (((-114) $) 112 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-4444 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-793)) 105 (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) 137 (|has| |#1| (-381)) ELT) (($ $) 135 (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +((-1798 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-791)))) (-3362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-319)))) (-3044 (*1 *1 *1 *1) (-4 *1 (-319))) (-3045 (*1 *1 *1 *1) (-4 *1 (-319))) (-1796 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) (-4 *1 (-319)))) (-1796 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1795 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-661 *1)) (-4 *1 (-319))))) +(-13 (-949) (-10 -8 (-15 -1798 ((-114) $ $)) (-15 -1797 ((-791) $)) (-15 -3362 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3044 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -1796 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $)) (-15 -1796 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1795 ((-3 (-661 $) "failed") (-661 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-4280 (($ $ (-661 |#2|) (-661 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-661 (-305 |#2|))) NIL T ELT))) +(((-320 |#1| |#2|) (-10 -8 (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|)))) (-321 |#2|) (-1131)) (T -320)) +NIL +(-10 -8 (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|)))) +((-4280 (($ $ (-661 |#1|) (-661 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 13 T ELT) (($ $ (-661 (-305 |#1|))) 12 T ELT))) +(((-321 |#1|) (-142) (-1131)) (T -321)) +((-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1131))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -4280 ($ $ (-305 |t#1|))) (-15 -4280 ($ $ (-661 (-305 |t#1|)))))) +(((-526 |#1| |#1|) . T)) +((-4280 ((|#1| (-1 |#1| (-558)) (-1209 (-419 (-558)))) 26 T ELT))) +(((-322 |#1|) (-10 -7 (-15 -4280 (|#1| (-1 |#1| (-558)) (-1209 (-419 (-558)))))) (-38 (-419 (-558)))) (T -322)) +((-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1209 (-419 (-558)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-419 (-558))))))) +(-10 -7 (-15 -4280 (|#1| (-1 |#1| (-558)) (-1209 (-419 (-558)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 7 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 9 T ELT))) +(((-323) (-1131)) (T -323)) +NIL +(-1131) +((-3049 (((-114) $ $) NIL T ELT)) (-4008 (((-558) $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 9 T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-324) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -4008 ((-558) $))))) (T -324)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-324)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-324))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -4008 ((-558) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 60 T ELT)) (-3613 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-1284 |#1| |#2| |#3| |#4|) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-3 (-1278 |#2| |#3| |#4|) #2#) $) 26 T ELT)) (-3656 (((-1284 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1207) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-1284 |#1| |#2| |#3| |#4|)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-1284 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3947 (((-711 $) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-4470 (($ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4296 (((-3 (-864 |#2|) "failed") $) 80 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-1297 $) $) NIL T ELT) (((-709 (-1284 |#1| |#2| |#3| |#4|)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3614 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-1284 |#1| |#2| |#3| |#4|)) (-661 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-661 (-305 (-1284 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-661 (-1207)) (-661 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-526 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1207) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-526 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-298 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-1284 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1050)) ELT) (((-229) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1068 (-1207))) ELT) (($ (-1278 |#2| |#3| |#4|)) 37 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-938))) (|has| (-1284 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-4461 (($ $ $) 35 T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-325 |#1| |#2| |#3| |#4|) (-13 (-1021 (-1284 |#1| |#2| |#3| |#4|)) (-1068 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -4296 ((-3 (-864 |#2|) "failed") $)) (-15 -4458 ($ (-1278 |#2| |#3| |#4|))))) (-13 (-1068 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1233) (-433 |#1|)) (-1207) |#2|) (T -325)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4) (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) (-4296 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4)))) +(-13 (-1021 (-1284 |#1| |#2| |#3| |#4|)) (-1068 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -4296 ((-3 (-864 |#2|) "failed") $)) (-15 -4458 ($ (-1278 |#2| |#3| |#4|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1760 (((-661 $) $ (-1207)) NIL (|has| |#1| (-569)) ELT) (((-661 $) $) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1201 $) (-1207)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1201 $)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-974 $)) NIL (|has| |#1| (-569)) ELT)) (-1332 (($ $ (-1207)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1201 $) (-1207)) NIL (|has| |#1| (-569)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-569)) ELT) (($ (-974 $)) NIL (|has| |#1| (-569)) ELT)) (-3688 (((-114) $) 27 (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (-3566 (((-661 (-1207)) $) 368 T ELT)) (-3568 (((-419 (-1201 $)) $ (-628 $)) NIL (|has| |#1| (-569)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1753 (((-661 (-628 $)) $) NIL T ELT)) (-3994 (($ $) 171 (|has| |#1| (-569)) ELT)) (-4151 (($ $) 147 (|has| |#1| (-569)) ELT)) (-1496 (($ $ (-1122 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1207)) 228 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL (-4039 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (-1757 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) 386 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 430 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-569)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3992 (($ $) 167 (|has| |#1| (-569)) ELT)) (-4150 (($ $) 143 (|has| |#1| (-569)) ELT)) (-1799 (($ $ (-558)) 73 (|has| |#1| (-569)) ELT)) (-3996 (($ $) 175 (|has| |#1| (-569)) ELT)) (-4149 (($ $) 151 (|has| |#1| (-569)) ELT)) (-4236 (($) NIL (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) (|has| |#1| (-1142))) CONST)) (-1333 (((-661 $) $ (-1207)) NIL (|has| |#1| (-569)) ELT) (((-661 $) $) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1201 $) (-1207)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1201 $)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-974 $)) NIL (|has| |#1| (-569)) ELT)) (-3683 (($ $ (-1207)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1201 $) (-1207)) 134 (|has| |#1| (-569)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-569)) ELT) (($ (-974 $)) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 (-628 $) #1="failed") $) 18 T ELT) (((-3 (-1207) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-974 |#1|)) #1#) $) NIL (|has| |#1| (-569)) ELT) (((-3 (-974 |#1|) #1#) $) NIL (|has| |#1| (-1079)) ELT) (((-3 (-419 (-558)) #1#) $) 46 (-4039 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3656 (((-628 $) $) 12 T ELT) (((-1207) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-974 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-974 |#1|) $) NIL (|has| |#1| (-1079)) ELT) (((-419 (-558)) $) 319 (-4039 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2503 (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 125 (|has| |#1| (-1079)) ELT) (((-709 |#1|) (-709 $)) 115 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT)) (-4354 (($ $) 96 (|has| |#1| (-569)) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#1| (-1142)) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4456 (($ $ (-1122 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1207)) 234 (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-569)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3888 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-4139 (($) 137 (|has| |#1| (-569)) ELT)) (-1493 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 392 (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 399 (|has| |#1| (-910 (-391))) ELT)) (-3054 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1752 (((-661 (-115)) $) NIL T ELT)) (-4105 (((-115) (-115)) 276 T ELT)) (-2651 (((-114) $) 25 (|has| |#1| (-1142)) ELT)) (-3156 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-3479 (($ $) 72 (|has| |#1| (-1079)) ELT)) (-3481 (((-1155 |#1| (-628 $)) $) 91 (|has| |#1| (-1079)) ELT)) (-1800 (((-114) $) 62 (|has| |#1| (-569)) ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-569)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| |#1| (-569)) ELT)) (-1750 (((-1201 $) (-628 $)) 277 (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) 426 T ELT)) (-1755 (((-3 (-628 $) "failed") $) NIL T ELT)) (-4454 (($ $) 141 (|has| |#1| (-569)) ELT)) (-2481 (($ $) 247 (|has| |#1| (-569)) ELT)) (-2504 (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL (|has| |#1| (-1079)) ELT) (((-709 |#1|) (-1297 $)) NIL (|has| |#1| (-1079)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1754 (((-661 (-628 $)) $) 49 T ELT)) (-2459 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) 431 T ELT)) (-3306 (((-3 (-661 $) #3="failed") $) NIL (|has| |#1| (-1142)) ELT)) (-3308 (((-3 (-2 (|:| |val| $) (|:| -2642 (-558))) #3#) $) NIL (|has| |#1| (-1079)) ELT)) (-3305 (((-3 (-661 $) #3#) $) 436 (|has| |#1| (-25)) ELT)) (-2012 (((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 $))) #3#) $) 440 (|has| |#1| (-25)) ELT)) (-3307 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $) NIL (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $ (-115)) NIL (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) #3#) $ (-1207)) NIL (|has| |#1| (-1079)) ELT)) (-3114 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) 51 T ELT)) (-2884 (($ $) NIL (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3315 (($ $ (-1207)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1122 $)) 253 (|has| |#1| (-569)) ELT)) (-3084 (((-791) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) 43 T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 301 (|has| |#1| (-569)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1751 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-1497 (($ $ (-1207)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-1491 (($ $) 218 (|has| |#1| (-569)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-569)) ELT)) (-4455 (($ $) 139 (|has| |#1| (-569)) ELT)) (-3157 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 425 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 379 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-631 (-547))) ELT) (($ $) NIL (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1207)) 366 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-115)) (-661 $) (-1207)) 365 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ (-661 $)))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791) (-1 $ (-661 $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791) (-1 $ $)) NIL (|has| |#1| (-1079)) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-2479 (($ $) 239 (|has| |#1| (-569)) ELT)) (-4312 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1756 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2480 (($ $) 249 (|has| |#1| (-569)) ELT)) (-3887 (($ $) 200 (|has| |#1| (-569)) ELT)) (-4270 (($ $ (-1207)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-1079)) ELT)) (-3478 (($ $) 74 (|has| |#1| (-569)) ELT)) (-3480 (((-1155 |#1| (-628 $)) $) 93 (|has| |#1| (-569)) ELT)) (-3685 (($ $) 317 (|has| $ (-1079)) ELT)) (-3997 (($ $) 177 (|has| |#1| (-569)) ELT)) (-4148 (($ $) 153 (|has| |#1| (-569)) ELT)) (-3995 (($ $) 173 (|has| |#1| (-569)) ELT)) (-4147 (($ $) 149 (|has| |#1| (-569)) ELT)) (-3993 (($ $) 169 (|has| |#1| (-569)) ELT)) (-4146 (($ $) 145 (|has| |#1| (-569)) ELT)) (-4484 (((-914 (-558)) $) NIL (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| |#1| (-631 (-914 (-391)))) ELT) (($ (-417 $)) NIL (|has| |#1| (-569)) ELT) (((-547) $) 363 (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2834 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4458 (((-886) $) 424 T ELT) (($ (-628 $)) 415 T ELT) (($ (-1207)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558)))) ELT) (($ (-1155 |#1| (-628 $))) 95 (|has| |#1| (-1079)) ELT) (($ (-419 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-974 (-419 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-974 (-419 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-974 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-974 |#1|)) NIL (|has| |#1| (-1079)) ELT) (($ (-558)) 34 (-4039 (|has| |#1| (-1068 (-558))) (|has| |#1| (-1079))) ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-569)) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL (|has| |#1| (-1079)) CONST)) (-3071 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3586 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-3891 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-3893 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-3890 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-3892 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-2478 (((-114) (-115)) 10 T ELT)) (-1387 (((-114) $ $) 86 T ELT)) (-4000 (($ $) 183 (|has| |#1| (-569)) ELT)) (-3988 (($ $) 159 (|has| |#1| (-569)) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) 179 (|has| |#1| (-569)) ELT)) (-3986 (($ $) 155 (|has| |#1| (-569)) ELT)) (-4002 (($ $) 187 (|has| |#1| (-569)) ELT)) (-3990 (($ $) 163 (|has| |#1| (-569)) ELT)) (-2013 (($ (-1207) $) NIL T ELT) (($ (-1207) $ $) NIL T ELT) (($ (-1207) $ $ $) NIL T ELT) (($ (-1207) $ $ $ $) NIL T ELT) (($ (-1207) (-661 $)) NIL T ELT)) (-3895 (($ $) 214 (|has| |#1| (-569)) ELT)) (-3894 (($ $) 212 (|has| |#1| (-569)) ELT)) (-4003 (($ $) 189 (|has| |#1| (-569)) ELT)) (-3991 (($ $) 165 (|has| |#1| (-569)) ELT)) (-4001 (($ $) 185 (|has| |#1| (-569)) ELT)) (-3989 (($ $) 161 (|has| |#1| (-569)) ELT)) (-3999 (($ $) 181 (|has| |#1| (-569)) ELT)) (-3987 (($ $) 157 (|has| |#1| (-569)) ELT)) (-3885 (($ $) 192 (|has| |#1| (-569)) ELT)) (-3141 (($) 21 (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) CONST)) (-2483 (($ $) 243 (|has| |#1| (-569)) ELT)) (-3147 (($) 23 (|has| |#1| (-1142)) CONST)) (-3889 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-2484 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3152 (($ $ (-1207)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-1079)) ELT)) (-2482 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3886 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-3536 (((-114) $ $) 88 T ELT)) (-4461 (($ (-1155 |#1| (-628 $)) (-1155 |#1| (-628 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4349 (($ $ $) 40 (-4039 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT) (($ $) 29 (-4039 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (-4351 (($ $ $) 38 (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 314 (|has| |#1| (-569)) ELT) (($ $ (-558)) 80 (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-791)) 75 (|has| |#1| (-1142)) ELT) (($ $ (-947)) 84 (|has| |#1| (-1142)) ELT)) (* (($ (-419 (-558)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1079)) ELT) (($ $ $) 36 (|has| |#1| (-1142)) ELT) (($ (-558) $) 32 (-4039 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT) (($ (-791) $) NIL (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT) (($ (-947) $) NIL (-4039 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079)))) ELT))) +(((-326 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-647)) (-6 (-1169)) (-15 -4354 ($ $)) (-15 -1800 ((-114) $)) (-15 -1799 ($ $ (-558))) (IF (|has| |#1| (-464)) (PROGN (-15 -3189 ((-417 (-1201 $)) (-1201 $))) (-15 -3190 ((-417 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-558))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) (-1131)) (T -326)) +((-4354 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1131)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1131)))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1131)))) (-3189 (*1 *2 *3) (-12 (-5 *2 (-417 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1131)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-417 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1131))))) +(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-647)) (-6 (-1169)) (-15 -4354 ($ $)) (-15 -1800 ((-114) $)) (-15 -1799 ($ $ (-558))) (IF (|has| |#1| (-464)) (PROGN (-15 -3189 ((-417 (-1201 $)) (-1201 $))) (-15 -3190 ((-417 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-558))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) +((-4470 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -4470 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1131) (-1131)) (T -327)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))) +(-10 -7 (-15 -4470 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) +((-4241 (((-51) |#2| (-305 |#2|) (-791)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-791)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1207)) 26 T ELT)) (-4330 (((-51) |#2| (-305 |#2|) (-419 (-558))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-419 (-558))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1207)) 55 T ELT)) (-4294 (((-51) |#2| (-305 |#2|) (-419 (-558))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-419 (-558))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1207)) 50 T ELT)) (-4291 (((-51) |#2| (-305 |#2|) (-558)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-558)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1207)) 43 T ELT))) +(((-328 |#1| |#2|) (-10 -7 (-15 -4241 ((-51) (-1207))) (-15 -4241 ((-51) |#2|)) (-15 -4241 ((-51) |#2| (-791))) (-15 -4241 ((-51) |#2| (-305 |#2|))) (-15 -4241 ((-51) |#2| (-305 |#2|) (-791))) (-15 -4291 ((-51) (-1207))) (-15 -4291 ((-51) |#2|)) (-15 -4291 ((-51) |#2| (-558))) (-15 -4291 ((-51) |#2| (-305 |#2|))) (-15 -4291 ((-51) |#2| (-305 |#2|) (-558))) (-15 -4294 ((-51) (-1207))) (-15 -4294 ((-51) |#2|)) (-15 -4294 ((-51) |#2| (-419 (-558)))) (-15 -4294 ((-51) |#2| (-305 |#2|))) (-15 -4294 ((-51) |#2| (-305 |#2|) (-419 (-558)))) (-15 -4330 ((-51) (-1207))) (-15 -4330 ((-51) |#2|)) (-15 -4330 ((-51) |#2| (-419 (-558)))) (-15 -4330 ((-51) |#2| (-305 |#2|))) (-15 -4330 ((-51) |#2| (-305 |#2|) (-419 (-558))))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -328)) +((-4330 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-4330 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) (-4294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-4294 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-1068 *5) (-658 *5))) (-5 *5 (-558)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4291 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4291 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1068 *4) (-658 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-4291 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-791)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4)))))) +(-10 -7 (-15 -4241 ((-51) (-1207))) (-15 -4241 ((-51) |#2|)) (-15 -4241 ((-51) |#2| (-791))) (-15 -4241 ((-51) |#2| (-305 |#2|))) (-15 -4241 ((-51) |#2| (-305 |#2|) (-791))) (-15 -4291 ((-51) (-1207))) (-15 -4291 ((-51) |#2|)) (-15 -4291 ((-51) |#2| (-558))) (-15 -4291 ((-51) |#2| (-305 |#2|))) (-15 -4291 ((-51) |#2| (-305 |#2|) (-558))) (-15 -4294 ((-51) (-1207))) (-15 -4294 ((-51) |#2|)) (-15 -4294 ((-51) |#2| (-419 (-558)))) (-15 -4294 ((-51) |#2| (-305 |#2|))) (-15 -4294 ((-51) |#2| (-305 |#2|) (-419 (-558)))) (-15 -4330 ((-51) (-1207))) (-15 -4330 ((-51) |#2|)) (-15 -4330 ((-51) |#2| (-419 (-558)))) (-15 -4330 ((-51) |#2| (-305 |#2|))) (-15 -4330 ((-51) |#2| (-305 |#2|) (-419 (-558))))) +((-1801 (((-51) |#2| (-115) (-305 |#2|) (-661 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|))) 81 T ELT) (((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 |#2|)) 83 T ELT) (((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 |#2|)) 84 T ELT) (((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) +(((-329 |#1| |#2|) (-10 -7 (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1801 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) (-661 |#2|)))) (-13 (-569) (-631 (-547))) (-433 |#1|)) (T -329)) +((-1801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-661 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-1801 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1801 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1801 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-1801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-115))) (-5 *6 (-661 (-305 *8))) (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1801 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1801 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 (-305 *8))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-661 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1801 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1801 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-661 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1801 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6))))) +(-10 -7 (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1801 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1801 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1801 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1801 ((-51) |#2| (-115) (-305 |#2|) (-661 |#2|)))) +((-1803 (((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558) (-1189)) 67 T ELT) (((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558)) 68 T ELT) (((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558) (-1189)) 64 T ELT) (((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558)) 65 T ELT)) (-1802 (((-1 (-229) (-229)) (-229)) 66 T ELT))) +(((-330) (-10 -7 (-15 -1802 ((-1 (-229) (-229)) (-229))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558) (-1189))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558) (-1189))))) (T -330)) +((-1803 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1803 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1803 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) (-5 *6 (-558)) (-5 *7 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1803 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) (-5 *6 (-558)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) +(-10 -7 (-15 -1802 ((-1 (-229) (-229)) (-229))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-1 (-229) (-229)) (-558) (-1189))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558))) (-15 -1803 ((-1243 (-955)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-229) (-558) (-1189)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 26 T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 20 T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) 36 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3686 (((-114) $) NIL T ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) 16 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1112) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1804 (((-419 (-558)) $) 17 T ELT)) (-3575 (($ (-1278 |#1| |#2| |#3|)) 11 T ELT)) (-2642 (((-1278 |#1| |#2| |#3|) $) 12 T ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4460 (((-419 (-558)) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 10 T ELT)) (-4458 (((-886) $) 42 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) 34 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 28 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 37 T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-331 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-814) (-10 -8 (-15 -3575 ($ (-1278 |#1| |#2| |#3|))) (-15 -2642 ((-1278 |#1| |#2| |#3|) $)) (-15 -1804 ((-419 (-558)) $)))) (-376) (-1207) |#1|) (T -331)) +((-3575 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3)))) +(-13 (-1280 |#1|) (-814) (-10 -8 (-15 -3575 ($ (-1278 |#1| |#2| |#3|))) (-15 -2642 ((-1278 |#1| |#2| |#3|) $)) (-15 -1804 ((-419 (-558)) $)))) +((-3494 (((-2 (|:| -2642 (-791)) (|:| -4466 |#1|) (|:| |radicand| (-661 |#1|))) (-417 |#1|) (-791)) 35 T ELT)) (-4454 (((-661 (-2 (|:| -4466 (-791)) (|:| |logand| |#1|))) (-417 |#1|)) 40 T ELT))) +(((-332 |#1|) (-10 -7 (-15 -3494 ((-2 (|:| -2642 (-791)) (|:| -4466 |#1|) (|:| |radicand| (-661 |#1|))) (-417 |#1|) (-791))) (-15 -4454 ((-661 (-2 (|:| -4466 (-791)) (|:| |logand| |#1|))) (-417 |#1|)))) (-569)) (T -332)) +((-4454 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-569)) (-5 *2 (-661 (-2 (|:| -4466 (-791)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *5) (|:| |radicand| (-661 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-791))))) +(-10 -7 (-15 -3494 ((-2 (|:| -2642 (-791)) (|:| -4466 |#1|) (|:| |radicand| (-661 |#1|))) (-417 |#1|) (-791))) (-15 -4454 ((-661 (-2 (|:| -4466 (-791)) (|:| |logand| |#1|))) (-417 |#1|)))) +((-3566 (((-661 |#2|) (-1201 |#4|)) 44 T ELT)) (-1809 ((|#3| (-558)) 47 T ELT)) (-1807 (((-1201 |#4|) (-1201 |#3|)) 30 T ELT)) (-1808 (((-1201 |#4|) (-1201 |#4|) (-558)) 66 T ELT)) (-1806 (((-1201 |#3|) (-1201 |#4|)) 21 T ELT)) (-4460 (((-661 (-791)) (-1201 |#4|) (-661 |#2|)) 41 T ELT)) (-1805 (((-1201 |#3|) (-1201 |#4|) (-661 |#2|) (-661 |#3|)) 35 T ELT))) +(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1805 ((-1201 |#3|) (-1201 |#4|) (-661 |#2|) (-661 |#3|))) (-15 -4460 ((-661 (-791)) (-1201 |#4|) (-661 |#2|))) (-15 -3566 ((-661 |#2|) (-1201 |#4|))) (-15 -1806 ((-1201 |#3|) (-1201 |#4|))) (-15 -1807 ((-1201 |#4|) (-1201 |#3|))) (-15 -1808 ((-1201 |#4|) (-1201 |#4|) (-558))) (-15 -1809 (|#3| (-558)))) (-815) (-870) (-1079) (-978 |#3| |#1| |#2|)) (T -333)) +((-1809 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1079)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-978 *2 *4 *5)))) (-1808 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *7)) (-5 *3 (-558)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-1201 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-661 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4460 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *8)) (-5 *4 (-661 *6)) (-4 *6 (-870)) (-4 *8 (-978 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1079)) (-5 *2 (-661 (-791))) (-5 *1 (-333 *5 *6 *7 *8)))) (-1805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) +(-10 -7 (-15 -1805 ((-1201 |#3|) (-1201 |#4|) (-661 |#2|) (-661 |#3|))) (-15 -4460 ((-661 (-791)) (-1201 |#4|) (-661 |#2|))) (-15 -3566 ((-661 |#2|) (-1201 |#4|))) (-15 -1806 ((-1201 |#3|) (-1201 |#4|))) (-15 -1807 ((-1201 |#4|) (-1201 |#3|))) (-15 -1808 ((-1201 |#4|) (-1201 |#4|) (-558))) (-15 -1809 (|#3| (-558)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 19 T ELT)) (-4286 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-558)))) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2522 ((|#1| $ (-558)) NIL T ELT)) (-1812 (((-558) $ (-558)) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2514 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1811 (($ (-1 (-558) (-558)) $) 11 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1810 (($ $ $) NIL (|has| (-558) (-814)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4189 (((-558) |#1| $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 30 (|has| |#1| (-870)) ELT)) (-4349 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-4351 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ (-558) |#1|) 28 T ELT))) +(((-334 |#1|) (-13 (-21) (-737 (-558)) (-335 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) (-1131)) (T -334)) +NIL +(-13 (-21) (-737 (-558)) (-335 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4286 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))) $) 33 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3620 (((-791) $) 34 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| "failed") $) 38 T ELT)) (-3656 ((|#1| $) 39 T ELT)) (-2522 ((|#1| $ (-558)) 31 T ELT)) (-1812 ((|#2| $ (-558)) 32 T ELT)) (-2514 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1811 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1810 (($ $ $) 27 (|has| |#2| (-814)) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-4189 ((|#2| |#1| $) 30 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-335 |#1| |#2|) (-142) (-1131) (-133)) (T -335)) +((-4351 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) (-5 *2 (-791)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))))) (-1812 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1131)) (-4 *2 (-133)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1131)))) (-4189 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) (-1811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)) (-4 *3 (-814))))) +(-13 (-133) (-1068 |t#1|) (-10 -8 (-15 -4351 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3620 ((-791) $)) (-15 -4286 ((-661 (-2 (|:| |gen| |t#1|) (|:| -4455 |t#2|))) $)) (-15 -1812 (|t#2| $ (-558))) (-15 -2522 (|t#1| $ (-558))) (-15 -4189 (|t#2| |t#1| $)) (-15 -1811 ($ (-1 |t#2| |t#2|) $)) (-15 -2514 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-814)) (-15 -1810 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-1068 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-791)))) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2522 ((|#1| $ (-558)) NIL T ELT)) (-1812 (((-791) $ (-558)) NIL T ELT)) (-2514 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1811 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1810 (($ $ $) NIL (|has| (-791) (-814)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4189 (((-791) |#1| $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-791) |#1|) NIL T ELT))) +(((-336 |#1|) (-335 |#1| (-791)) (-1131)) (T -336)) +NIL +(-335 |#1| (-791)) +((-4005 (($ $) 72 T ELT)) (-1814 (($ $ |#2| |#3| $) 14 T ELT)) (-1815 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-2015 (((-114) $) 42 T ELT)) (-2014 ((|#2| $) 44 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-3300 ((|#2| $) 68 T ELT)) (-4329 (((-661 |#2|) $) 56 T ELT)) (-1813 (($ $ $ (-791)) 37 T ELT)) (-4461 (($ $ |#2|) 60 T ELT))) +(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -4005 (|#1| |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1813 (|#1| |#1| |#1| (-791))) (-15 -1814 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1815 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4329 ((-661 |#2|) |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -2015 ((-114) |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4461 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1079) (-814)) (T -337)) +NIL +(-10 -8 (-15 -4005 (|#1| |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1813 (|#1| |#1| |#1| (-791))) (-15 -1814 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1815 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4329 ((-661 |#2|) |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -2015 ((-114) |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4461 (|#1| |#1| |#2|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 104 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3656 (((-558) $) 105 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 103 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 102 T ELT)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) 90 (|has| |#1| (-464)) ELT)) (-1814 (($ $ |#1| |#2| $) 94 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2659 (((-791) $) 97 T ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| |#2|) 78 T ELT)) (-3303 ((|#2| $) 96 T ELT)) (-1815 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 100 T ELT)) (-2014 ((|#1| $) 99 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-569)) ELT)) (-4460 ((|#2| $) 81 T ELT)) (-3300 ((|#1| $) 91 (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 T ELT) (($ (-419 (-558))) 74 (-4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4329 (((-661 |#1|) $) 98 T ELT)) (-4189 ((|#1| $ |#2|) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1813 (($ $ $ (-791)) 93 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-338 |#1| |#2|) (-142) (-1079) (-814)) (T -338)) +((-2015 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-114)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-661 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-791)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-1815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)))) (-1814 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) (-1813 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *3 (-175)))) (-3968 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *2 (-569)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)) (-4 *2 (-464)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -2015 ((-114) $)) (-15 -2014 (|t#1| $)) (-15 -4329 ((-661 |t#1|) $)) (-15 -2659 ((-791) $)) (-15 -3303 (|t#2| $)) (-15 -1815 ($ (-1 |t#2| |t#2|) $)) (-15 -1814 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -1813 ($ $ $ (-791))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3968 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3300 (|t#1| $)) (-15 -4005 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2206 (((-114) (-114)) NIL T ELT)) (-4300 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-2604 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-2207 (($ $ (-558)) NIL T ELT)) (-2208 (((-791) $) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4119 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2209 (($ (-661 |#1|)) NIL T ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-1724 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4303 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2209 ($ (-661 |#1|))) (-15 -2208 ((-791) $)) (-15 -2207 ($ $ (-558))) (-15 -2206 ((-114) (-114))))) (-1247)) (T -339)) +((-2209 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-2206 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))) +(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2209 ($ (-661 |#1|))) (-15 -2208 ((-791) $)) (-15 -2207 ($ $ (-558))) (-15 -2206 ((-114) (-114))))) +((-4444 (((-114) $) 47 T ELT)) (-4441 (((-791)) 23 T ELT)) (-3832 ((|#2| $) 51 T ELT) (($ $ (-947)) 123 T ELT)) (-3620 (((-791)) 124 T ELT)) (-2010 (($ (-1297 |#2|)) 20 T ELT)) (-2231 (((-114) $) 136 T ELT)) (-3616 ((|#2| $) 53 T ELT) (($ $ (-947)) 120 T ELT)) (-2234 (((-1201 |#2|) $) NIL T ELT) (((-1201 $) $ (-947)) 111 T ELT)) (-1817 (((-1201 |#2|) $) 95 T ELT)) (-1816 (((-1201 |#2|) $) 91 T ELT) (((-3 (-1201 |#2|) "failed") $ $) 88 T ELT)) (-1818 (($ $ (-1201 |#2|)) 58 T ELT)) (-4442 (((-854 (-947))) 30 T ELT) (((-947)) 48 T ELT)) (-4423 (((-136)) 27 T ELT)) (-4460 (((-854 (-947)) $) 32 T ELT) (((-947) $) 139 T ELT)) (-1819 (($) 130 T ELT)) (-3724 (((-1297 |#2|) $) NIL T ELT) (((-709 |#2|) (-1297 $)) 42 T ELT)) (-3185 (($ $) NIL T ELT) (((-711 $) $) 100 T ELT)) (-4445 (((-114) $) 45 T ELT))) +(((-340 |#1| |#2|) (-10 -8 (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3620 ((-791))) (-15 -3185 (|#1| |#1|)) (-15 -1816 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -1816 ((-1201 |#2|) |#1|)) (-15 -1817 ((-1201 |#2|) |#1|)) (-15 -1818 (|#1| |#1| (-1201 |#2|))) (-15 -2231 ((-114) |#1|)) (-15 -1819 (|#1|)) (-15 -3832 (|#1| |#1| (-947))) (-15 -3616 (|#1| |#1| (-947))) (-15 -2234 ((-1201 |#1|) |#1| (-947))) (-15 -3832 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -4460 ((-947) |#1|)) (-15 -4442 ((-947))) (-15 -2234 ((-1201 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -4441 ((-791))) (-15 -4442 ((-854 (-947)))) (-15 -4460 ((-854 (-947)) |#1|)) (-15 -4444 ((-114) |#1|)) (-15 -4445 ((-114) |#1|)) (-15 -4423 ((-136)))) (-341 |#2|) (-376)) (T -340)) +((-4423 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4442 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-854 (-947))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4441 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4442 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-947)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3620 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) +(-10 -8 (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3620 ((-791))) (-15 -3185 (|#1| |#1|)) (-15 -1816 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -1816 ((-1201 |#2|) |#1|)) (-15 -1817 ((-1201 |#2|) |#1|)) (-15 -1818 (|#1| |#1| (-1201 |#2|))) (-15 -2231 ((-114) |#1|)) (-15 -1819 (|#1|)) (-15 -3832 (|#1| |#1| (-947))) (-15 -3616 (|#1| |#1| (-947))) (-15 -2234 ((-1201 |#1|) |#1| (-947))) (-15 -3832 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -4460 ((-947) |#1|)) (-15 -4442 ((-947))) (-15 -2234 ((-1201 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -4441 ((-791))) (-15 -4442 ((-854 (-947)))) (-15 -4460 ((-854 (-947)) |#1|)) (-15 -4444 ((-114) |#1|)) (-15 -4445 ((-114) |#1|)) (-15 -4423 ((-136)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-4444 (((-114) $) 111 T ELT)) (-4441 (((-791)) 107 T ELT)) (-3832 ((|#1| $) 159 T ELT) (($ $ (-947)) 156 (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 141 (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-3620 (((-791)) 131 (|has| |#1| (-381)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| "failed") $) 118 T ELT)) (-3656 ((|#1| $) 119 T ELT)) (-2010 (($ (-1297 |#1|)) 165 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3477 (($) 128 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-3316 (($) 143 (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) 144 (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) 104 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) 86 T ELT)) (-4284 (((-947) $) 146 (|has| |#1| (-381)) ELT) (((-854 (-947)) $) 101 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) 40 T ELT)) (-2233 (($) 154 (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) 153 (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) 160 T ELT) (($ $ (-947)) 157 (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) 132 (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2234 (((-1201 |#1|) $) 164 T ELT) (((-1201 $) $ (-947)) 158 (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) 129 (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) 150 (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) 149 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 148 (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) 151 (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3948 (($) 133 (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) 130 (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) 110 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2650 (($) 152 (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 140 (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-4442 (((-854 (-947))) 108 T ELT) (((-947)) 162 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-1985 (((-791) $) 145 (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) 102 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) 116 T ELT)) (-4270 (($ $ (-791)) 136 (|has| |#1| (-381)) ELT) (($ $) 134 (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) 109 T ELT) (((-947) $) 161 T ELT)) (-3685 (((-1201 |#1|)) 163 T ELT)) (-1887 (($) 142 (|has| |#1| (-381)) ELT)) (-1819 (($) 155 (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) 167 T ELT) (((-709 |#1|) (-1297 $)) 166 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 139 (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3185 (($ $) 138 (|has| |#1| (-381)) ELT) (((-711 $) $) 100 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 169 T ELT) (((-1297 $) (-947)) 168 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-4445 (((-114) $) 112 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-4440 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-791)) 105 (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) 137 (|has| |#1| (-381)) ELT) (($ $) 135 (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) (((-341 |#1|) (-142) (-376)) (T -341)) -((-2236 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1299 *1)) (-4 *1 (-341 *3)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-376)) (-5 *2 (-1299 *1)) (-4 *1 (-341 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1299 *3)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) (-3689 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) (-4446 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-949)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-949)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-2238 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1203 *1)) (-4 *1 (-341 *4)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1821 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2237 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2654 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-1820 (*1 *1 *1 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3)))) (-1818 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3))))) -(-13 (-1318 |t#1|) (-1070 |t#1|) (-10 -8 (-15 -2236 ((-1299 $))) (-15 -2236 ((-1299 $) (-949))) (-15 -3728 ((-1299 |t#1|) $)) (-15 -3728 ((-711 |t#1|) (-1299 $))) (-15 -2014 ($ (-1299 |t#1|))) (-15 -2238 ((-1203 |t#1|) $)) (-15 -3689 ((-1203 |t#1|))) (-15 -4446 ((-949))) (-15 -4464 ((-949) $)) (-15 -3620 (|t#1| $)) (-15 -3836 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -2238 ((-1203 $) $ (-949))) (-15 -3620 ($ $ (-949))) (-15 -3836 ($ $ (-949))) (-15 -1821 ($)) (-15 -2237 ($)) (-15 -2235 ((-114) $)) (-15 -2654 ($)) (-15 -1820 ($ $ (-1203 |t#1|))) (-15 -1819 ((-1203 |t#1|) $)) (-15 -1818 ((-1203 |t#1|) $)) (-15 -1818 ((-3 (-1203 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4043 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1318 |#1|) . T) ((-376) . T) ((-416) -4043 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1070 |#1|) . T) ((-1083 #1#) . T) ((-1083 |#1|) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 |#1|) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| |#1| (-381)) ((-1249) . T) ((-1254) . T) ((-1307 |#1|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-1839 (($ (-1208) $) 101 T ELT)) (-1830 (($) 90 T ELT)) (-1822 (((-1152) (-1152)) 9 T ELT)) (-1829 (($) 91 T ELT)) (-1833 (($) 105 T ELT) (($ (-326 (-721))) 113 T ELT) (($ (-326 (-723))) 109 T ELT) (($ (-326 (-716))) 117 T ELT) (($ (-326 (-391))) 124 T ELT) (($ (-326 (-560))) 120 T ELT) (($ (-326 (-171 (-391)))) 128 T ELT)) (-1838 (($ (-1208) $) 102 T ELT)) (-1828 (($ (-663 (-888))) 92 T ELT)) (-1824 (((-1305) $) 88 T ELT)) (-1826 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1837 (($ (-1152)) 59 T ELT)) (-1823 (((-1135) $) 29 T ELT)) (-1840 (($ (-1124 (-976 (-560))) $) 98 T ELT) (($ (-1124 (-976 (-560))) (-976 (-560)) $) 99 T ELT)) (-1836 (($ (-1152)) 100 T ELT)) (-1832 (($ (-1208) $) 130 T ELT) (($ (-1208) $ $) 131 T ELT)) (-1827 (($ (-1209) (-663 (-1209))) 89 T ELT)) (-1835 (($ (-1191)) 95 T ELT) (($ (-663 (-1191))) 93 T ELT)) (-4462 (((-888) $) 133 T ELT)) (-1825 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1209)) (|:| |arrayIndex| (-663 (-976 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1209)) (|:| |rand| (-888)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1208)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3909 (-114)) (|:| -3908 (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1191))) (|:| |callBranch| (-1191)) (|:| |forBranch| (-2 (|:| -1650 (-1124 (-976 (-560)))) (|:| |span| (-976 (-560))) (|:| -3737 $))) (|:| |labelBranch| (-1152)) (|:| |loopBranch| (-2 (|:| |switch| (-1208)) (|:| -3737 $))) (|:| |commonBranch| (-2 (|:| -4056 (-1209)) (|:| |contents| (-663 (-1209))))) (|:| |printBranch| (-663 (-888)))) $) 50 T ELT)) (-1834 (($ (-1191)) 203 T ELT)) (-1831 (($ (-663 $)) 129 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3071 (($ (-1209) (-1191)) 136 T ELT) (($ (-1209) (-326 (-723))) 176 T ELT) (($ (-1209) (-326 (-721))) 177 T ELT) (($ (-1209) (-326 (-716))) 178 T ELT) (($ (-1209) (-711 (-723))) 139 T ELT) (($ (-1209) (-711 (-721))) 142 T ELT) (($ (-1209) (-711 (-716))) 145 T ELT) (($ (-1209) (-1299 (-723))) 148 T ELT) (($ (-1209) (-1299 (-721))) 151 T ELT) (($ (-1209) (-1299 (-716))) 154 T ELT) (($ (-1209) (-711 (-326 (-723)))) 157 T ELT) (($ (-1209) (-711 (-326 (-721)))) 160 T ELT) (($ (-1209) (-711 (-326 (-716)))) 163 T ELT) (($ (-1209) (-1299 (-326 (-723)))) 166 T ELT) (($ (-1209) (-1299 (-326 (-721)))) 169 T ELT) (($ (-1209) (-1299 (-326 (-716)))) 172 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-723))) 173 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-721))) 174 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-716))) 175 T ELT) (($ (-1209) (-326 (-560))) 200 T ELT) (($ (-1209) (-326 (-391))) 201 T ELT) (($ (-1209) (-326 (-171 (-391)))) 202 T ELT) (($ (-1209) (-711 (-326 (-560)))) 181 T ELT) (($ (-1209) (-711 (-326 (-391)))) 184 T ELT) (($ (-1209) (-711 (-326 (-171 (-391))))) 187 T ELT) (($ (-1209) (-1299 (-326 (-560)))) 190 T ELT) (($ (-1209) (-1299 (-326 (-391)))) 193 T ELT) (($ (-1209) (-1299 (-326 (-171 (-391))))) 196 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-560))) 197 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-391))) 198 T ELT) (($ (-1209) (-663 (-976 (-560))) (-326 (-171 (-391)))) 199 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-342) (-13 (-1133) (-10 -8 (-15 -1840 ($ (-1124 (-976 (-560))) $)) (-15 -1840 ($ (-1124 (-976 (-560))) (-976 (-560)) $)) (-15 -1839 ($ (-1208) $)) (-15 -1838 ($ (-1208) $)) (-15 -1837 ($ (-1152))) (-15 -1836 ($ (-1152))) (-15 -1835 ($ (-1191))) (-15 -1835 ($ (-663 (-1191)))) (-15 -1834 ($ (-1191))) (-15 -1833 ($)) (-15 -1833 ($ (-326 (-721)))) (-15 -1833 ($ (-326 (-723)))) (-15 -1833 ($ (-326 (-716)))) (-15 -1833 ($ (-326 (-391)))) (-15 -1833 ($ (-326 (-560)))) (-15 -1833 ($ (-326 (-171 (-391))))) (-15 -1832 ($ (-1208) $)) (-15 -1832 ($ (-1208) $ $)) (-15 -3071 ($ (-1209) (-1191))) (-15 -3071 ($ (-1209) (-326 (-723)))) (-15 -3071 ($ (-1209) (-326 (-721)))) (-15 -3071 ($ (-1209) (-326 (-716)))) (-15 -3071 ($ (-1209) (-711 (-723)))) (-15 -3071 ($ (-1209) (-711 (-721)))) (-15 -3071 ($ (-1209) (-711 (-716)))) (-15 -3071 ($ (-1209) (-1299 (-723)))) (-15 -3071 ($ (-1209) (-1299 (-721)))) (-15 -3071 ($ (-1209) (-1299 (-716)))) (-15 -3071 ($ (-1209) (-711 (-326 (-723))))) (-15 -3071 ($ (-1209) (-711 (-326 (-721))))) (-15 -3071 ($ (-1209) (-711 (-326 (-716))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-723))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-721))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-716))))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-723)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-721)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-716)))) (-15 -3071 ($ (-1209) (-326 (-560)))) (-15 -3071 ($ (-1209) (-326 (-391)))) (-15 -3071 ($ (-1209) (-326 (-171 (-391))))) (-15 -3071 ($ (-1209) (-711 (-326 (-560))))) (-15 -3071 ($ (-1209) (-711 (-326 (-391))))) (-15 -3071 ($ (-1209) (-711 (-326 (-171 (-391)))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-560))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-391))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-171 (-391)))))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-560)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-391)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-171 (-391))))) (-15 -1831 ($ (-663 $))) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($ (-663 (-888)))) (-15 -1827 ($ (-1209) (-663 (-1209)))) (-15 -1826 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1825 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1209)) (|:| |arrayIndex| (-663 (-976 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1209)) (|:| |rand| (-888)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1208)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3909 (-114)) (|:| -3908 (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1191))) (|:| |callBranch| (-1191)) (|:| |forBranch| (-2 (|:| -1650 (-1124 (-976 (-560)))) (|:| |span| (-976 (-560))) (|:| -3737 $))) (|:| |labelBranch| (-1152)) (|:| |loopBranch| (-2 (|:| |switch| (-1208)) (|:| -3737 $))) (|:| |commonBranch| (-2 (|:| -4056 (-1209)) (|:| |contents| (-663 (-1209))))) (|:| |printBranch| (-663 (-888)))) $)) (-15 -1824 ((-1305) $)) (-15 -1823 ((-1135) $)) (-15 -1822 ((-1152) (-1152)))))) (T -342)) -((-1840 (*1 *1 *2 *1) (-12 (-5 *2 (-1124 (-976 (-560)))) (-5 *1 (-342)))) (-1840 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1124 (-976 (-560)))) (-5 *3 (-976 (-560))) (-5 *1 (-342)))) (-1839 (*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342)))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-342)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-342)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-342)))) (-1833 (*1 *1) (-5 *1 (-342))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1832 (*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342)))) (-1832 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1191)) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-723))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-716))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-723))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-721))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-716))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-723)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-721)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-716)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-723)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-721)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-716)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-723))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-716))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-560))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-560)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-391)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-560)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-391)))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-560))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-3071 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342)))) (-1830 (*1 *1) (-5 *1 (-342))) (-1829 (*1 *1) (-5 *1 (-342))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-342)))) (-1827 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1209)) (-5 *1 (-342)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1209)) (|:| |arrayIndex| (-663 (-976 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1209)) (|:| |rand| (-888)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1208)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -3909 (-114)) (|:| -3908 (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |blockBranch| (-663 (-342))) (|:| |commentBranch| (-663 (-1191))) (|:| |callBranch| (-1191)) (|:| |forBranch| (-2 (|:| -1650 (-1124 (-976 (-560)))) (|:| |span| (-976 (-560))) (|:| -3737 (-342)))) (|:| |labelBranch| (-1152)) (|:| |loopBranch| (-2 (|:| |switch| (-1208)) (|:| -3737 (-342)))) (|:| |commonBranch| (-2 (|:| -4056 (-1209)) (|:| |contents| (-663 (-1209))))) (|:| |printBranch| (-663 (-888))))) (-5 *1 (-342)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-342)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-342)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342))))) -(-13 (-1133) (-10 -8 (-15 -1840 ($ (-1124 (-976 (-560))) $)) (-15 -1840 ($ (-1124 (-976 (-560))) (-976 (-560)) $)) (-15 -1839 ($ (-1208) $)) (-15 -1838 ($ (-1208) $)) (-15 -1837 ($ (-1152))) (-15 -1836 ($ (-1152))) (-15 -1835 ($ (-1191))) (-15 -1835 ($ (-663 (-1191)))) (-15 -1834 ($ (-1191))) (-15 -1833 ($)) (-15 -1833 ($ (-326 (-721)))) (-15 -1833 ($ (-326 (-723)))) (-15 -1833 ($ (-326 (-716)))) (-15 -1833 ($ (-326 (-391)))) (-15 -1833 ($ (-326 (-560)))) (-15 -1833 ($ (-326 (-171 (-391))))) (-15 -1832 ($ (-1208) $)) (-15 -1832 ($ (-1208) $ $)) (-15 -3071 ($ (-1209) (-1191))) (-15 -3071 ($ (-1209) (-326 (-723)))) (-15 -3071 ($ (-1209) (-326 (-721)))) (-15 -3071 ($ (-1209) (-326 (-716)))) (-15 -3071 ($ (-1209) (-711 (-723)))) (-15 -3071 ($ (-1209) (-711 (-721)))) (-15 -3071 ($ (-1209) (-711 (-716)))) (-15 -3071 ($ (-1209) (-1299 (-723)))) (-15 -3071 ($ (-1209) (-1299 (-721)))) (-15 -3071 ($ (-1209) (-1299 (-716)))) (-15 -3071 ($ (-1209) (-711 (-326 (-723))))) (-15 -3071 ($ (-1209) (-711 (-326 (-721))))) (-15 -3071 ($ (-1209) (-711 (-326 (-716))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-723))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-721))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-716))))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-723)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-721)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-716)))) (-15 -3071 ($ (-1209) (-326 (-560)))) (-15 -3071 ($ (-1209) (-326 (-391)))) (-15 -3071 ($ (-1209) (-326 (-171 (-391))))) (-15 -3071 ($ (-1209) (-711 (-326 (-560))))) (-15 -3071 ($ (-1209) (-711 (-326 (-391))))) (-15 -3071 ($ (-1209) (-711 (-326 (-171 (-391)))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-560))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-391))))) (-15 -3071 ($ (-1209) (-1299 (-326 (-171 (-391)))))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-560)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-391)))) (-15 -3071 ($ (-1209) (-663 (-976 (-560))) (-326 (-171 (-391))))) (-15 -1831 ($ (-663 $))) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($ (-663 (-888)))) (-15 -1827 ($ (-1209) (-663 (-1209)))) (-15 -1826 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1825 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1209)) (|:| |arrayIndex| (-663 (-976 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1209)) (|:| |rand| (-888)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1208)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3909 (-114)) (|:| -3908 (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1191))) (|:| |callBranch| (-1191)) (|:| |forBranch| (-2 (|:| -1650 (-1124 (-976 (-560)))) (|:| |span| (-976 (-560))) (|:| -3737 $))) (|:| |labelBranch| (-1152)) (|:| |loopBranch| (-2 (|:| |switch| (-1208)) (|:| -3737 $))) (|:| |commonBranch| (-2 (|:| -4056 (-1209)) (|:| |contents| (-663 (-1209))))) (|:| |printBranch| (-663 (-888)))) $)) (-15 -1824 ((-1305) $)) (-15 -1823 ((-1135) $)) (-15 -1822 ((-1152) (-1152))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1841 (((-114) $) 13 T ELT)) (-4154 (($ |#1|) 10 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4150 (($ |#1|) 12 T ELT)) (-4462 (((-888) $) 19 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2464 ((|#1| $) 14 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 21 T ELT))) -(((-343 |#1|) (-13 (-872) (-10 -8 (-15 -4154 ($ |#1|)) (-15 -4150 ($ |#1|)) (-15 -1841 ((-114) $)) (-15 -2464 (|#1| $)))) (-872)) (T -343)) -((-4154 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872)))) (-4150 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-872)))) (-2464 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872))))) -(-13 (-872) (-10 -8 (-15 -4154 ($ |#1|)) (-15 -4150 ($ |#1|)) (-15 -1841 ((-114) $)) (-15 -2464 (|#1| $)))) -((-1842 (((-342) (-1209) (-976 (-560))) 23 T ELT)) (-1843 (((-342) (-1209) (-976 (-560))) 27 T ELT)) (-2561 (((-342) (-1209) (-1124 (-976 (-560))) (-1124 (-976 (-560)))) 26 T ELT) (((-342) (-1209) (-976 (-560)) (-976 (-560))) 24 T ELT)) (-1844 (((-342) (-1209) (-976 (-560))) 31 T ELT))) -(((-344) (-10 -7 (-15 -1842 ((-342) (-1209) (-976 (-560)))) (-15 -2561 ((-342) (-1209) (-976 (-560)) (-976 (-560)))) (-15 -2561 ((-342) (-1209) (-1124 (-976 (-560))) (-1124 (-976 (-560))))) (-15 -1843 ((-342) (-1209) (-976 (-560)))) (-15 -1844 ((-342) (-1209) (-976 (-560)))))) (T -344)) -((-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2561 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-1124 (-976 (-560)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2561 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344))))) -(-10 -7 (-15 -1842 ((-342) (-1209) (-976 (-560)))) (-15 -2561 ((-342) (-1209) (-976 (-560)) (-976 (-560)))) (-15 -2561 ((-342) (-1209) (-1124 (-976 (-560))) (-1124 (-976 (-560))))) (-15 -1843 ((-342) (-1209) (-976 (-560)))) (-15 -1844 ((-342) (-1209) (-976 (-560))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1845 (((-520) $) 20 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1846 (((-988 (-793)) $) 18 T ELT)) (-1848 (((-258) $) 7 T ELT)) (-4462 (((-888) $) 26 T ELT)) (-2435 (((-988 (-187 (-141))) $) 16 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1847 (((-663 (-898 (-1214) (-793))) $) 12 T ELT)) (-3540 (((-114) $ $) 22 T ELT))) -(((-345) (-13 (-1133) (-10 -8 (-15 -1848 ((-258) $)) (-15 -1847 ((-663 (-898 (-1214) (-793))) $)) (-15 -1846 ((-988 (-793)) $)) (-15 -2435 ((-988 (-187 (-141))) $)) (-15 -1845 ((-520) $))))) (T -345)) -((-1848 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-663 (-898 (-1214) (-793)))) (-5 *1 (-345)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-988 (-793))) (-5 *1 (-345)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-988 (-187 (-141)))) (-5 *1 (-345)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345))))) -(-13 (-1133) (-10 -8 (-15 -1848 ((-258) $)) (-15 -1847 ((-663 (-898 (-1214) (-793))) $)) (-15 -1846 ((-988 (-793)) $)) (-15 -2435 ((-988 (-187 (-141))) $)) (-15 -1845 ((-520) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4358 (($ $) 33 T ELT)) (-1851 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1849 (((-1299 |#4|) $) 132 T ELT)) (-2194 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 31 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (((-3 |#4| "failed") $) 36 T ELT)) (-1850 (((-1299 |#4|) $) 124 T ELT)) (-1852 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-560)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3941 (((-2 (|:| -2569 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4462 (((-888) $) 17 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 14 T CONST)) (-3540 (((-114) $ $) 20 T ELT)) (-4353 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 23 T ELT))) -(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1850 ((-1299 |#4|) $)) (-15 -1849 ((-1299 |#4|) $)))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -346)) -((-1850 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-1299 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-1849 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-1299 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) -(-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1850 ((-1299 |#4|) $)) (-15 -1849 ((-1299 |#4|) $)))) -((-4474 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4474 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1275 |#5|) (-1275 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -347)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1275 *9)) (-4 *11 (-1275 (-421 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) -(-10 -7 (-15 -4474 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) -((-1851 (((-114) $) 14 T ELT))) -(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1851 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1275 |#2|) (-1275 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -348)) -NIL -(-10 -8 (-15 -1851 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4358 (($ $) 34 T ELT)) (-1851 (((-114) $) 33 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2194 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 40 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2654 (((-3 |#4| "failed") $) 32 T ELT)) (-1852 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-560)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3941 (((-2 (|:| -2569 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT))) -(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1275 |t#1|) (-1275 (-421 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349)) -((-2194 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-427 *4 (-421 *4) *5 *6)))) (-1852 (*1 *1 *2) (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-1852 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-1852 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1275 *2)) (-4 *4 (-1275 (-421 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-1852 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1275 *2)) (-4 *5 (-1275 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -2569 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1275 *2)) (-4 *4 (-1275 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2654 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *2 (-355 *3 *4 *5)))) (-1852 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2194 ((-427 |t#2| (-421 |t#2|) |t#3| |t#4|) $)) (-15 -1852 ($ (-427 |t#2| (-421 |t#2|) |t#3| |t#4|))) (-15 -1852 ($ |t#4|)) (-15 -1852 ($ |t#1| |t#1|)) (-15 -1852 ($ |t#1| |t#1| (-560))) (-15 -3941 ((-2 (|:| -2569 (-427 |t#2| (-421 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4358 ($ $)) (-15 -1851 ((-114) $)) (-15 -2654 ((-3 |t#4| "failed") $)) (-15 -1852 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-1133) . T) ((-1249) . T)) -((-4284 (($ $ (-1209) |#2|) NIL T ELT) (($ $ (-663 (-1209)) (-663 |#2|)) 20 T ELT) (($ $ (-663 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-4316 (($ $ |#2|) 11 T ELT))) -(((-350 |#1| |#2|) (-10 -8 (-15 -4316 (|#1| |#1| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 |#2|))) (-15 -4284 (|#1| |#1| (-1209) |#2|))) (-351 |#2|) (-1133)) (T -350)) -NIL -(-10 -8 (-15 -4316 (|#1| |#1| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 |#2|))) (-15 -4284 (|#1| |#1| (-1209) |#2|))) -((-4474 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4284 (($ $ (-1209) |#1|) 17 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 16 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-4316 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) -(((-351 |#1|) (-142) (-1133)) (T -351)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1133))))) -(-13 (-10 -8 (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-528 (-1209) |t#1|)) (-6 (-528 (-1209) |t#1|)) |%noBranch|))) -(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-528 (-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1249) |has| |#1| (-298 |#1| |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1209)) $) NIL T ELT)) (-1853 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-1755 (((-663 (-630 $)) $) NIL T ELT)) (-3998 (($ $) NIL T ELT)) (-4155 (($ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1759 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-3524 (($ $) NIL T ELT)) (-3996 (($ $) NIL T ELT)) (-4154 (($ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-630 $) #1="failed") $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ "failed") (-326 |#3|)) 76 T ELT) (((-3 $ "failed") (-1209)) 103 T ELT) (((-3 $ "failed") (-326 (-560))) 64 (|has| |#3| (-1070 (-560))) ELT) (((-3 $ "failed") (-421 (-976 (-560)))) 70 (|has| |#3| (-1070 (-560))) ELT) (((-3 $ "failed") (-976 (-560))) 65 (|has| |#3| (-1070 (-560))) ELT) (((-3 $ "failed") (-326 (-391))) 94 (|has| |#3| (-1070 (-391))) ELT) (((-3 $ "failed") (-421 (-976 (-391)))) 88 (|has| |#3| (-1070 (-391))) ELT) (((-3 $ "failed") (-976 (-391))) 83 (|has| |#3| (-1070 (-391))) ELT)) (-3660 (((-630 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1209)) 104 T ELT) (($ (-326 (-560))) 66 (|has| |#3| (-1070 (-560))) ELT) (($ (-421 (-976 (-560)))) 71 (|has| |#3| (-1070 (-560))) ELT) (($ (-976 (-560))) 67 (|has| |#3| (-1070 (-560))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1070 (-391))) ELT) (($ (-421 (-976 (-391)))) 89 (|has| |#3| (-1070 (-391))) ELT) (($ (-976 (-391))) 85 (|has| |#3| (-1070 (-391))) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4143 (($) 101 T ELT)) (-3058 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1754 (((-663 (-115)) $) NIL T ELT)) (-4109 (((-115) (-115)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3160 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-1752 (((-1203 $) (-630 $)) NIL (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1757 (((-3 (-630 $) "failed") $) NIL T ELT)) (-1957 (($ $) 99 T ELT)) (-4458 (($ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1756 (((-663 (-630 $)) $) NIL T ELT)) (-2463 (($ (-115) $) 98 T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3118 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-3088 (((-793) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1753 (((-114) $ $) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-4459 (($ $) NIL T ELT)) (-3161 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1209) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1209) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4316 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-1758 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4274 (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-3689 (($ $) NIL (|has| $ (-1081)) ELT)) (-3997 (($ $) NIL T ELT)) (-4150 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-560)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-3614 (((-793)) NIL T CONST)) (-3075 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2482 (((-114) (-115)) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-3991 (($ $) NIL T ELT)) (-3889 (($ $) NIL T ELT)) (-3145 (($) 100 T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1070 |#3|) (-928 (-1209)) (-10 -8 (-15 -3660 ($ (-326 |#3|))) (-15 -3661 ((-3 $ "failed") (-326 |#3|))) (-15 -3660 ($ (-1209))) (-15 -3661 ((-3 $ "failed") (-1209))) (-15 -4462 ((-326 |#3|) $)) (IF (|has| |#3| (-1070 (-560))) (PROGN (-15 -3660 ($ (-326 (-560)))) (-15 -3661 ((-3 $ "failed") (-326 (-560)))) (-15 -3660 ($ (-421 (-976 (-560))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-560))))) (-15 -3660 ($ (-976 (-560)))) (-15 -3661 ((-3 $ "failed") (-976 (-560))))) |%noBranch|) (IF (|has| |#3| (-1070 (-391))) (PROGN (-15 -3660 ($ (-326 (-391)))) (-15 -3661 ((-3 $ "failed") (-326 (-391)))) (-15 -3660 ($ (-421 (-976 (-391))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-391))))) (-15 -3660 ($ (-976 (-391)))) (-15 -3661 ((-3 $ "failed") (-976 (-391))))) |%noBranch|) (-15 -3889 ($ $)) (-15 -3524 ($ $)) (-15 -4459 ($ $)) (-15 -4458 ($ $)) (-15 -1957 ($ $)) (-15 -4154 ($ $)) (-15 -4150 ($ $)) (-15 -4155 ($ $)) (-15 -3990 ($ $)) (-15 -3991 ($ $)) (-15 -3992 ($ $)) (-15 -3996 ($ $)) (-15 -3997 ($ $)) (-15 -3998 ($ $)) (-15 -4143 ($)) (-15 -3570 ((-663 (-1209)) $)) (-15 -1853 ((-114))) (-15 -1853 ((-114) (-114))))) (-663 (-1209)) (-663 (-1209)) (-401)) (T -352)) -((-3660 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-976 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-976 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3524 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4459 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4458 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-1957 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4155 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3991 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3996 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3998 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-4143 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) (-4 *4 (-401)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-1853 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401))))) -(-13 (-310) (-38 |#3|) (-1070 |#3|) (-928 (-1209)) (-10 -8 (-15 -3660 ($ (-326 |#3|))) (-15 -3661 ((-3 $ "failed") (-326 |#3|))) (-15 -3660 ($ (-1209))) (-15 -3661 ((-3 $ "failed") (-1209))) (-15 -4462 ((-326 |#3|) $)) (IF (|has| |#3| (-1070 (-560))) (PROGN (-15 -3660 ($ (-326 (-560)))) (-15 -3661 ((-3 $ "failed") (-326 (-560)))) (-15 -3660 ($ (-421 (-976 (-560))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-560))))) (-15 -3660 ($ (-976 (-560)))) (-15 -3661 ((-3 $ "failed") (-976 (-560))))) |%noBranch|) (IF (|has| |#3| (-1070 (-391))) (PROGN (-15 -3660 ($ (-326 (-391)))) (-15 -3661 ((-3 $ "failed") (-326 (-391)))) (-15 -3660 ($ (-421 (-976 (-391))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-391))))) (-15 -3660 ($ (-976 (-391)))) (-15 -3661 ((-3 $ "failed") (-976 (-391))))) |%noBranch|) (-15 -3889 ($ $)) (-15 -3524 ($ $)) (-15 -4459 ($ $)) (-15 -4458 ($ $)) (-15 -1957 ($ $)) (-15 -4154 ($ $)) (-15 -4150 ($ $)) (-15 -4155 ($ $)) (-15 -3990 ($ $)) (-15 -3991 ($ $)) (-15 -3992 ($ $)) (-15 -3996 ($ $)) (-15 -3997 ($ $)) (-15 -3998 ($ $)) (-15 -4143 ($)) (-15 -3570 ((-663 (-1209)) $)) (-15 -1853 ((-114))) (-15 -1853 ((-114) (-114))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-936 |#1|) "failed") $) NIL T ELT)) (-3660 (((-936 |#1|) $) NIL T ELT)) (-2014 (($ (-1299 (-936 |#1|))) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1895 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT) (($ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2235 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3620 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 (-936 |#1|)) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2234 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1819 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1818 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-1203 (-936 |#1|)) "failed") $ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1820 (($ $ (-1203 (-936 |#1|))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-936 |#1|) (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 (-936 |#1|))) NIL T ELT)) (-1889 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1821 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3728 (((-1299 (-936 |#1|)) $) NIL T ELT) (((-711 (-936 |#1|)) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-936 |#1|)) NIL T ELT)) (-3189 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT) (($ (-936 |#1|) $) NIL T ELT))) -(((-353 |#1| |#2|) (-341 (-936 |#1|)) (-949) (-949)) (T -353)) -NIL -(-341 (-936 |#1|)) -((-1862 (((-2 (|:| |num| (-1299 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-2014 (($ (-1299 (-421 |#3|)) (-1299 $)) NIL T ELT) (($ (-1299 (-421 |#3|))) NIL T ELT) (($ (-1299 |#3|) |#3|) 172 T ELT)) (-1867 (((-1299 $) (-1299 $)) 156 T ELT)) (-1854 (((-663 (-663 |#2|))) 126 T ELT)) (-1879 (((-114) |#2| |#2|) 76 T ELT)) (-4009 (($ $) 148 T ELT)) (-3883 (((-793)) 171 T ELT)) (-1868 (((-1299 $) (-1299 $)) 219 T ELT)) (-1855 (((-663 (-976 |#2|)) (-1209)) 115 T ELT)) (-1871 (((-114) $) 168 T ELT)) (-1870 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 223 T ELT)) (-1857 (((-3 |#3| "failed")) 52 T ELT)) (-1881 (((-793)) 183 T ELT)) (-4316 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1858 (((-3 |#3| "failed")) 71 T ELT)) (-4274 (($ $ (-1 (-421 |#3|) (-421 |#3|))) NIL T ELT) (($ $ (-1 (-421 |#3|) (-421 |#3|)) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-1869 (((-1299 $) (-1299 $)) 162 T ELT)) (-1856 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1880 (((-114)) 34 T ELT))) -(((-354 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -1854 ((-663 (-663 |#2|)))) (-15 -1855 ((-663 (-976 |#2|)) (-1209))) (-15 -1856 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1857 ((-3 |#3| "failed"))) (-15 -1858 ((-3 |#3| "failed"))) (-15 -4316 (|#2| |#1| |#2| |#2|)) (-15 -4009 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1870 ((-114) |#1| |#3|)) (-15 -1870 ((-114) |#1| |#2|)) (-15 -2014 (|#1| (-1299 |#3|) |#3|)) (-15 -1862 ((-2 (|:| |num| (-1299 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1867 ((-1299 |#1|) (-1299 |#1|))) (-15 -1868 ((-1299 |#1|) (-1299 |#1|))) (-15 -1869 ((-1299 |#1|) (-1299 |#1|))) (-15 -1870 ((-114) |#1|)) (-15 -1871 ((-114) |#1|)) (-15 -1879 ((-114) |#2| |#2|)) (-15 -1880 ((-114))) (-15 -1881 ((-793))) (-15 -3883 ((-793))) (-15 -4274 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -4274 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -2014 (|#1| (-1299 (-421 |#3|)))) (-15 -2014 (|#1| (-1299 (-421 |#3|)) (-1299 |#1|)))) (-355 |#2| |#3| |#4|) (-1254) (-1275 |#2|) (-1275 (-421 |#3|))) (T -354)) -((-3883 (*1 *2) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1881 (*1 *2) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1880 (*1 *2) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *3 (-1254)) (-4 *5 (-1275 *3)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-1858 (*1 *2) (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1857 (*1 *2) (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *5 (-1254)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-5 *2 (-663 (-976 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1854 (*1 *2) (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -1854 ((-663 (-663 |#2|)))) (-15 -1855 ((-663 (-976 |#2|)) (-1209))) (-15 -1856 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1857 ((-3 |#3| "failed"))) (-15 -1858 ((-3 |#3| "failed"))) (-15 -4316 (|#2| |#1| |#2| |#2|)) (-15 -4009 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1870 ((-114) |#1| |#3|)) (-15 -1870 ((-114) |#1| |#2|)) (-15 -2014 (|#1| (-1299 |#3|) |#3|)) (-15 -1862 ((-2 (|:| |num| (-1299 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1867 ((-1299 |#1|) (-1299 |#1|))) (-15 -1868 ((-1299 |#1|) (-1299 |#1|))) (-15 -1869 ((-1299 |#1|) (-1299 |#1|))) (-15 -1870 ((-114) |#1|)) (-15 -1871 ((-114) |#1|)) (-15 -1879 ((-114) |#2| |#2|)) (-15 -1880 ((-114))) (-15 -1881 ((-793))) (-15 -3883 ((-793))) (-15 -4274 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -4274 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -2014 (|#1| (-1299 (-421 |#3|)))) (-15 -2014 (|#1| (-1299 (-421 |#3|)) (-1299 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1862 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 111 (|has| (-421 |#2|) (-376)) ELT)) (-2287 (($ $) 112 (|has| (-421 |#2|) (-376)) ELT)) (-2285 (((-114) $) 114 (|has| (-421 |#2|) (-376)) ELT)) (-2004 (((-711 (-421 |#2|)) (-1299 $)) 58 T ELT) (((-711 (-421 |#2|))) 74 T ELT)) (-3836 (((-421 |#2|) $) 64 T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 164 (|has| (-421 |#2|) (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 131 (|has| (-421 |#2|) (-376)) ELT)) (-4487 (((-419 $) $) 132 (|has| (-421 |#2|) (-376)) ELT)) (-1800 (((-114) $ $) 122 (|has| (-421 |#2|) (-376)) ELT)) (-3624 (((-793)) 105 (|has| (-421 |#2|) (-381)) ELT)) (-1876 (((-114)) 239 T ELT)) (-1875 (((-114) |#1|) 238 T ELT) (((-114) |#2|) 237 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 191 (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 189 (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-3 (-421 |#2|) #1#) $) 186 T ELT)) (-3660 (((-560) $) 190 (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-421 (-560)) $) 188 (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-421 |#2|) $) 187 T ELT)) (-2014 (($ (-1299 (-421 |#2|)) (-1299 $)) 60 T ELT) (($ (-1299 (-421 |#2|))) 77 T ELT) (($ (-1299 |#2|) |#2|) 221 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-421 |#2|) (-363)) ELT)) (-3049 (($ $ $) 126 (|has| (-421 |#2|) (-376)) ELT)) (-2003 (((-711 (-421 |#2|)) $ (-1299 $)) 65 T ELT) (((-711 (-421 |#2|)) $) 72 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 183 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 182 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-711 $) (-1299 $)) 181 T ELT) (((-711 (-421 |#2|)) (-711 $)) 180 T ELT)) (-1867 (((-1299 $) (-1299 $)) 227 T ELT)) (-4358 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-421 |#3|)) 172 (|has| (-421 |#2|) (-376)) ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-1854 (((-663 (-663 |#1|))) 208 (|has| |#1| (-381)) ELT)) (-1879 (((-114) |#1| |#1|) 243 T ELT)) (-3597 (((-949)) 66 T ELT)) (-3481 (($) 108 (|has| (-421 |#2|) (-381)) ELT)) (-1874 (((-114)) 236 T ELT)) (-1873 (((-114) |#1|) 235 T ELT) (((-114) |#2|) 234 T ELT)) (-3048 (($ $ $) 125 (|has| (-421 |#2|) (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 120 (|has| (-421 |#2|) (-376)) ELT)) (-4009 (($ $) 214 T ELT)) (-3320 (($) 166 (|has| (-421 |#2|) (-363)) ELT)) (-1895 (((-114) $) 167 (|has| (-421 |#2|) (-363)) ELT)) (-1988 (($ $ (-793)) 158 (|has| (-421 |#2|) (-363)) ELT) (($ $) 157 (|has| (-421 |#2|) (-363)) ELT)) (-4239 (((-114) $) 133 (|has| (-421 |#2|) (-376)) ELT)) (-4288 (((-949) $) 169 (|has| (-421 |#2|) (-363)) ELT) (((-856 (-949)) $) 155 (|has| (-421 |#2|) (-363)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3883 (((-793)) 246 T ELT)) (-1868 (((-1299 $) (-1299 $)) 228 T ELT)) (-3620 (((-421 |#2|) $) 63 T ELT)) (-1855 (((-663 (-976 |#1|)) (-1209)) 209 (|has| |#1| (-376)) ELT)) (-3951 (((-713 $) $) 159 (|has| (-421 |#2|) (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 129 (|has| (-421 |#2|) (-376)) ELT)) (-2238 ((|#3| $) 56 (|has| (-421 |#2|) (-376)) ELT)) (-2234 (((-949) $) 107 (|has| (-421 |#2|) (-381)) ELT)) (-3566 ((|#3| $) 173 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 185 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 184 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-1299 $) $) 179 T ELT) (((-711 (-421 |#2|)) (-1299 $)) 178 T ELT)) (-2116 (($ (-663 $)) 118 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 117 (|has| (-421 |#2|) (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1863 (((-711 (-421 |#2|))) 223 T ELT)) (-1865 (((-711 (-421 |#2|))) 225 T ELT)) (-2888 (($ $) 134 (|has| (-421 |#2|) (-376)) ELT)) (-1860 (($ (-1299 |#2|) |#2|) 219 T ELT)) (-1864 (((-711 (-421 |#2|))) 224 T ELT)) (-1866 (((-711 (-421 |#2|))) 226 T ELT)) (-1859 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1861 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1872 (((-1299 $)) 232 T ELT)) (-4434 (((-1299 $)) 233 T ELT)) (-1871 (((-114) $) 231 T ELT)) (-1870 (((-114) $) 230 T ELT) (((-114) $ |#1|) 217 T ELT) (((-114) $ |#2|) 216 T ELT)) (-3952 (($) 160 (|has| (-421 |#2|) (-363)) CONST)) (-2645 (($ (-949)) 106 (|has| (-421 |#2|) (-381)) ELT)) (-1857 (((-3 |#2| "failed")) 211 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1881 (((-793)) 245 T ELT)) (-2654 (($) 177 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 119 (|has| (-421 |#2|) (-376)) ELT)) (-3648 (($ (-663 $)) 116 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 115 (|has| (-421 |#2|) (-376)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 163 (|has| (-421 |#2|) (-363)) ELT)) (-4248 (((-419 $) $) 130 (|has| (-421 |#2|) (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 127 (|has| (-421 |#2|) (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) 110 (|has| (-421 |#2|) (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 121 (|has| (-421 |#2|) (-376)) ELT)) (-1799 (((-793) $) 123 (|has| (-421 |#2|) (-376)) ELT)) (-4316 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1858 (((-3 |#2| "failed")) 212 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 124 (|has| (-421 |#2|) (-376)) ELT)) (-4273 (((-421 |#2|) (-1299 $)) 59 T ELT) (((-421 |#2|)) 73 T ELT)) (-1989 (((-793) $) 168 (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) 156 (|has| (-421 |#2|) (-363)) ELT)) (-4274 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 142 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 141 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-663 (-1209)) (-663 (-793))) 147 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1209) (-793)) 146 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1209))) 145 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1209)) 143 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 153 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-3047 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 151 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-3047 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2653 (((-711 (-421 |#2|)) (-1299 $) (-1 (-421 |#2|) (-421 |#2|))) 171 (|has| (-421 |#2|) (-376)) ELT)) (-3689 ((|#3|) 176 T ELT)) (-1889 (($) 165 (|has| (-421 |#2|) (-363)) ELT)) (-3728 (((-1299 (-421 |#2|)) $ (-1299 $)) 62 T ELT) (((-711 (-421 |#2|)) (-1299 $) (-1299 $)) 61 T ELT) (((-1299 (-421 |#2|)) $) 79 T ELT) (((-711 (-421 |#2|)) (-1299 $)) 78 T ELT)) (-4488 (((-1299 (-421 |#2|)) $) 76 T ELT) (($ (-1299 (-421 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 162 (|has| (-421 |#2|) (-363)) ELT)) (-1869 (((-1299 $) (-1299 $)) 229 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 |#2|)) 49 T ELT) (($ (-421 (-560))) 104 (-4043 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1070 (-421 (-560))))) ELT) (($ $) 109 (|has| (-421 |#2|) (-376)) ELT)) (-3189 (($ $) 161 (|has| (-421 |#2|) (-363)) ELT) (((-713 $) $) 55 (|has| (-421 |#2|) (-147)) ELT)) (-2852 ((|#3| $) 57 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1878 (((-114)) 242 T ELT)) (-1877 (((-114) |#1|) 241 T ELT) (((-114) |#2|) 240 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 80 T ELT)) (-2286 (((-114) $ $) 113 (|has| (-421 |#2|) (-376)) ELT)) (-1856 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1880 (((-114)) 244 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 140 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 139 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 150 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1209) (-793)) 149 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1209))) 148 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1209)) 144 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-3047 (|has| (-421 |#2|) (-930 (-1209))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 154 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-3047 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 152 (-4043 (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-3047 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-3047 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 138 (|has| (-421 |#2|) (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 135 (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 |#2|)) 51 T ELT) (($ (-421 |#2|) $) 50 T ELT) (($ (-421 (-560)) $) 137 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) 136 (|has| (-421 |#2|) (-376)) ELT))) -(((-355 |#1| |#2| |#3|) (-142) (-1254) (-1275 |t#1|) (-1275 (-421 |t#2|))) (T -355)) -((-3883 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-793)))) (-1881 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-793)))) (-1880 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1878 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1877 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1877 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) (-1876 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1875 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1875 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) (-1874 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1873 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1873 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) (-4434 (*1 *2) (-12 (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1872 (*1 *2) (-12 (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))))) (-1866 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1865 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1864 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1863 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1299 *4)) (|:| |den| *4))))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1275 *4)) (-4 *4 (-1254)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1275 (-421 *3))))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1299 *4)) (|:| |den| *4))))) (-1860 (*1 *1 *2 *3) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1275 *4)) (-4 *4 (-1254)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1275 (-421 *3))))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))) (-1870 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) (-1870 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) (-4274 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1254)) (-4 *3 (-1275 *2)) (-4 *4 (-1275 (-421 *3))))) (-4316 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1254)) (-4 *3 (-1275 *2)) (-4 *4 (-1275 (-421 *3))))) (-1858 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1254)) (-4 *4 (-1275 (-421 *2))) (-4 *2 (-1275 *3)))) (-1857 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1254)) (-4 *4 (-1275 (-421 *2))) (-4 *2 (-1275 *3)))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-1254)) (-4 *6 (-1275 (-421 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-4 *4 (-376)) (-5 *2 (-663 (-976 *4))))) (-1854 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3)))))) -(-13 (-746 (-421 |t#2|) |t#3|) (-10 -8 (-15 -3883 ((-793))) (-15 -1881 ((-793))) (-15 -1880 ((-114))) (-15 -1879 ((-114) |t#1| |t#1|)) (-15 -1878 ((-114))) (-15 -1877 ((-114) |t#1|)) (-15 -1877 ((-114) |t#2|)) (-15 -1876 ((-114))) (-15 -1875 ((-114) |t#1|)) (-15 -1875 ((-114) |t#2|)) (-15 -1874 ((-114))) (-15 -1873 ((-114) |t#1|)) (-15 -1873 ((-114) |t#2|)) (-15 -4434 ((-1299 $))) (-15 -1872 ((-1299 $))) (-15 -1871 ((-114) $)) (-15 -1870 ((-114) $)) (-15 -1869 ((-1299 $) (-1299 $))) (-15 -1868 ((-1299 $) (-1299 $))) (-15 -1867 ((-1299 $) (-1299 $))) (-15 -1866 ((-711 (-421 |t#2|)))) (-15 -1865 ((-711 (-421 |t#2|)))) (-15 -1864 ((-711 (-421 |t#2|)))) (-15 -1863 ((-711 (-421 |t#2|)))) (-15 -1862 ((-2 (|:| |num| (-1299 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2014 ($ (-1299 |t#2|) |t#2|)) (-15 -1861 ((-2 (|:| |num| (-1299 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1860 ($ (-1299 |t#2|) |t#2|)) (-15 -1859 ((-2 (|:| |num| (-711 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1870 ((-114) $ |t#1|)) (-15 -1870 ((-114) $ |t#2|)) (-15 -4274 ($ $ (-1 |t#2| |t#2|))) (-15 -4009 ($ $)) (-15 -4316 (|t#1| $ |t#1| |t#1|)) (-15 -1858 ((-3 |t#2| "failed"))) (-15 -1857 ((-3 |t#2| "failed"))) (-15 -1856 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1855 ((-663 (-976 |t#1|)) (-1209))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1854 ((-663 (-663 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-38 #2=(-421 |#2|)) . T) ((-38 $) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-102) . T) ((-111 #1# #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-147))) ((-149) |has| (-421 |#2|) (-149)) ((-635 #1#) -4043 (|has| (-421 |#2|) (-1070 (-421 (-560)))) (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-635 #2#) . T) ((-635 (-560)) . T) ((-635 $) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-632 (-888)) . T) ((-175) . T) ((-633 |#3|) . T) ((-236 $) -4043 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-234 #2#) |has| (-421 |#2|) (-376)) ((-240) -4043 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-239) -4043 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-274 #2#) |has| (-421 |#2|) (-376)) ((-250) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-302) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-319) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-376) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-416) |has| (-421 |#2|) (-363)) ((-381) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-381))) ((-363) |has| (-421 |#2|) (-363)) ((-383 #2# |#3|) . T) ((-424 #2# |#3|) . T) ((-390 #2#) . T) ((-426 #2#) . T) ((-466) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-571) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #2#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-670 #2#) . T) ((-670 #3=(-560)) |has| (-421 |#2|) (-660 (-560))) ((-670 $) . T) ((-662 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-662 #2#) . T) ((-662 $) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-660 #2#) . T) ((-660 #3#) |has| (-421 |#2|) (-660 (-560))) ((-739 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-739 #2#) . T) ((-739 $) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-746 #2# |#3|) . T) ((-748) . T) ((-922 $ #4=(-1209)) -4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209))))) ((-928 (-1209)) -12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) ((-930 #4#) -4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209))))) ((-951) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1070 (-421 (-560))) |has| (-421 |#2|) (-1070 (-421 (-560)))) ((-1070 #2#) . T) ((-1070 (-560)) |has| (-421 |#2|) (-1070 (-560))) ((-1083 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1083 #2#) . T) ((-1083 $) . T) ((-1088 #1#) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1088 #2#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| (-421 |#2|) (-363)) ((-1249) . T) ((-1254) -4043 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376)))) -((-4474 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4474 (|#8| (-1 |#5| |#1|) |#4|))) (-1254) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-1254) (-1275 |#5|) (-1275 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -356)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1254)) (-4 *8 (-1254)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *9 (-1275 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1275 (-421 *9)))))) -(-10 -7 (-15 -4474 (|#8| (-1 |#5| |#1|) |#4|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-936 |#1|) "failed") $) NIL T ELT)) (-3660 (((-936 |#1|) $) NIL T ELT)) (-2014 (($ (-1299 (-936 |#1|))) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1895 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT) (($ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2235 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3620 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 (-936 |#1|)) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2234 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1819 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1818 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-1203 (-936 |#1|)) "failed") $ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1820 (($ $ (-1203 (-936 |#1|))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-936 |#1|) (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1882 (((-988 (-1152))) NIL T ELT)) (-2654 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 (-936 |#1|))) NIL T ELT)) (-1889 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1821 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3728 (((-1299 (-936 |#1|)) $) NIL T ELT) (((-711 (-936 |#1|)) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-936 |#1|)) NIL T ELT)) (-3189 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT) (($ (-936 |#1|) $) NIL T ELT))) -(((-357 |#1| |#2|) (-13 (-341 (-936 |#1|)) (-10 -7 (-15 -1882 ((-988 (-1152)))))) (-949) (-949)) (T -357)) -((-1882 (*1 *2) (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-357 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) -(-13 (-341 (-936 |#1|)) (-10 -7 (-15 -1882 ((-988 (-1152)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 58 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 56 (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) 142 T ELT)) (-3660 ((|#1| $) 113 T ELT)) (-2014 (($ (-1299 |#1|)) 130 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) 124 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) 160 (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) 60 (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) 62 T ELT)) (-2237 (($) 162 (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) 117 T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) 171 (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 178 T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) 96 (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) 147 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1882 (((-988 (-1152))) 57 T ELT)) (-2654 (($) 158 (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 119 (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) 90 T ELT) (((-949)) 91 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) 161 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 154 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 |#1|)) 122 T ELT)) (-1889 (($) 159 (|has| |#1| (-381)) ELT)) (-1821 (($) 167 (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) 77 T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) 174 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) 155 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 144 T ELT) (((-1299 $) (-949)) 98 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) 67 T CONST)) (-3151 (($) 103 T CONST)) (-4444 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) 65 T ELT)) (-4465 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-4353 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 86 T ELT)) (** (($ $ (-949)) 180 T ELT) (($ $ (-793)) 181 T ELT) (($ $ (-560)) 179 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) -(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-988 (-1152)))))) (-363) (-1203 |#1|)) (T -358)) -((-1882 (*1 *2) (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1203 *3))))) -(-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-988 (-1152)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2014 (($ (-1299 |#1|)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1882 (((-988 (-1152))) NIL T ELT)) (-2654 (($) NIL (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 |#1|)) NIL T ELT)) (-1889 (($) NIL (|has| |#1| (-381)) ELT)) (-1821 (($) NIL (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-988 (-1152)))))) (-363) (-949)) (T -359)) -((-1882 (*1 *2) (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949))))) -(-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-988 (-1152)))))) -((-1892 (((-793) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) 61 T ELT)) (-1883 (((-988 (-1152)) (-1203 |#1|)) 112 T ELT)) (-1884 (((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) (-1203 |#1|)) 103 T ELT)) (-1885 (((-711 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) 113 T ELT)) (-1886 (((-3 (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) "failed") (-949)) 13 T ELT)) (-1887 (((-3 (-1203 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) (-949)) 18 T ELT))) -(((-360 |#1|) (-10 -7 (-15 -1883 ((-988 (-1152)) (-1203 |#1|))) (-15 -1884 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) (-1203 |#1|))) (-15 -1885 ((-711 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1892 ((-793) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1886 ((-3 (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) "failed") (-949))) (-15 -1887 ((-3 (-1203 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) (-949)))) (-363)) (T -360)) -((-1887 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-3 (-1203 *4) (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-5 *2 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) (-5 *1 (-360 *4)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-988 (-1152))) (-5 *1 (-360 *4))))) -(-10 -7 (-15 -1883 ((-988 (-1152)) (-1203 |#1|))) (-15 -1884 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) (-1203 |#1|))) (-15 -1885 ((-711 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1892 ((-793) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1886 ((-3 (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) "failed") (-949))) (-15 -1887 ((-3 (-1203 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) (-949)))) -((-4462 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4462 (|#3| |#1|)) (-15 -4462 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361)) -((-4462 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-4462 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4))))) -(-10 -7 (-15 -4462 (|#3| |#1|)) (-15 -4462 (|#1| |#3|))) -((-1895 (((-114) $) 65 T ELT)) (-4288 (((-856 (-949)) $) 26 T ELT) (((-949) $) 69 T ELT)) (-3951 (((-713 $) $) 21 T ELT)) (-3952 (($) 9 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 120 T ELT)) (-1989 (((-3 (-793) "failed") $ $) 98 T ELT) (((-793) $) 84 T ELT)) (-4274 (($ $) 8 T ELT) (($ $ (-793)) NIL T ELT)) (-1889 (($) 58 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 41 T ELT)) (-3189 (((-713 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-362 |#1|) (-10 -8 (-15 -4288 ((-949) |#1|)) (-15 -1989 ((-793) |#1|)) (-15 -1895 ((-114) |#1|)) (-15 -1889 (|#1|)) (-15 -3190 ((-3 (-1299 |#1|) "failed") (-711 |#1|))) (-15 -3189 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -1989 ((-3 (-793) "failed") |#1| |#1|)) (-15 -4288 ((-856 (-949)) |#1|)) (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) (-363)) (T -362)) -NIL -(-10 -8 (-15 -4288 ((-949) |#1|)) (-15 -1989 ((-793) |#1|)) (-15 -1895 ((-114) |#1|)) (-15 -1889 (|#1|)) (-15 -3190 ((-3 (-1299 |#1|) "failed") (-711 |#1|))) (-15 -3189 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -1989 ((-3 (-793) "failed") |#1| |#1|)) (-15 -4288 ((-856 (-949)) |#1|)) (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 110 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-3624 (((-793)) 120 T ELT)) (-4240 (($) 22 T CONST)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3481 (($) 123 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-3320 (($) 108 T ELT)) (-1895 (((-114) $) 107 T ELT)) (-1988 (($ $) 94 T ELT) (($ $ (-793)) 93 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-4288 (((-856 (-949)) $) 96 T ELT) (((-949) $) 105 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3951 (((-713 $) $) 119 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2234 (((-949) $) 122 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3952 (($) 118 T CONST)) (-2645 (($ (-949)) 121 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 111 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-1989 (((-3 (-793) "failed") $ $) 95 T ELT) (((-793) $) 106 T ELT)) (-4274 (($ $) 117 T ELT) (($ $ (-793)) 115 T ELT)) (-1889 (($) 109 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 112 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT)) (-3189 (((-713 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $) 116 T ELT) (($ $ (-793)) 114 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) +((-2232 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-947)) (-4 *4 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *4)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-3685 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-4442 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-947)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-947)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (-947)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1)) (-4 *1 (-341 *4)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3832 (*1 *1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1819 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2233 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2650 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-1818 (*1 *1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-1816 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3))))) +(-13 (-1316 |t#1|) (-1068 |t#1|) (-10 -8 (-15 -2232 ((-1297 $))) (-15 -2232 ((-1297 $) (-947))) (-15 -3724 ((-1297 |t#1|) $)) (-15 -3724 ((-709 |t#1|) (-1297 $))) (-15 -2010 ($ (-1297 |t#1|))) (-15 -2234 ((-1201 |t#1|) $)) (-15 -3685 ((-1201 |t#1|))) (-15 -4442 ((-947))) (-15 -4460 ((-947) $)) (-15 -3616 (|t#1| $)) (-15 -3832 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -2234 ((-1201 $) $ (-947))) (-15 -3616 ($ $ (-947))) (-15 -3832 ($ $ (-947))) (-15 -1819 ($)) (-15 -2233 ($)) (-15 -2231 ((-114) $)) (-15 -2650 ($)) (-15 -1818 ($ $ (-1201 |t#1|))) (-15 -1817 ((-1201 |t#1|) $)) (-15 -1816 ((-1201 |t#1|) $)) (-15 -1816 ((-3 (-1201 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4039 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1316 |#1|) . T) ((-376) . T) ((-414) -4039 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1068 |#1|) . T) ((-1081 #1#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| |#1| (-381)) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-1837 (($ (-1206) $) 101 T ELT)) (-1828 (($) 90 T ELT)) (-1820 (((-1150) (-1150)) 9 T ELT)) (-1827 (($) 91 T ELT)) (-1831 (($) 105 T ELT) (($ (-326 (-719))) 113 T ELT) (($ (-326 (-721))) 109 T ELT) (($ (-326 (-714))) 117 T ELT) (($ (-326 (-391))) 124 T ELT) (($ (-326 (-558))) 120 T ELT) (($ (-326 (-171 (-391)))) 128 T ELT)) (-1836 (($ (-1206) $) 102 T ELT)) (-1826 (($ (-661 (-886))) 92 T ELT)) (-1822 (((-1303) $) 88 T ELT)) (-1824 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1835 (($ (-1150)) 59 T ELT)) (-1821 (((-1133) $) 29 T ELT)) (-1838 (($ (-1122 (-974 (-558))) $) 98 T ELT) (($ (-1122 (-974 (-558))) (-974 (-558)) $) 99 T ELT)) (-1834 (($ (-1150)) 100 T ELT)) (-1830 (($ (-1206) $) 130 T ELT) (($ (-1206) $ $) 131 T ELT)) (-1825 (($ (-1207) (-661 (-1207))) 89 T ELT)) (-1833 (($ (-1189)) 95 T ELT) (($ (-661 (-1189))) 93 T ELT)) (-4458 (((-886) $) 133 T ELT)) (-1823 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-661 (-974 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3905 (-114)) (|:| -3904 (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |blockBranch| (-661 $)) (|:| |commentBranch| (-661 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1648 (-1122 (-974 (-558)))) (|:| |span| (-974 (-558))) (|:| -3733 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3733 $))) (|:| |commonBranch| (-2 (|:| -4052 (-1207)) (|:| |contents| (-661 (-1207))))) (|:| |printBranch| (-661 (-886)))) $) 50 T ELT)) (-1832 (($ (-1189)) 203 T ELT)) (-1829 (($ (-661 $)) 129 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3067 (($ (-1207) (-1189)) 136 T ELT) (($ (-1207) (-326 (-721))) 176 T ELT) (($ (-1207) (-326 (-719))) 177 T ELT) (($ (-1207) (-326 (-714))) 178 T ELT) (($ (-1207) (-709 (-721))) 139 T ELT) (($ (-1207) (-709 (-719))) 142 T ELT) (($ (-1207) (-709 (-714))) 145 T ELT) (($ (-1207) (-1297 (-721))) 148 T ELT) (($ (-1207) (-1297 (-719))) 151 T ELT) (($ (-1207) (-1297 (-714))) 154 T ELT) (($ (-1207) (-709 (-326 (-721)))) 157 T ELT) (($ (-1207) (-709 (-326 (-719)))) 160 T ELT) (($ (-1207) (-709 (-326 (-714)))) 163 T ELT) (($ (-1207) (-1297 (-326 (-721)))) 166 T ELT) (($ (-1207) (-1297 (-326 (-719)))) 169 T ELT) (($ (-1207) (-1297 (-326 (-714)))) 172 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-721))) 173 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-719))) 174 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-714))) 175 T ELT) (($ (-1207) (-326 (-558))) 200 T ELT) (($ (-1207) (-326 (-391))) 201 T ELT) (($ (-1207) (-326 (-171 (-391)))) 202 T ELT) (($ (-1207) (-709 (-326 (-558)))) 181 T ELT) (($ (-1207) (-709 (-326 (-391)))) 184 T ELT) (($ (-1207) (-709 (-326 (-171 (-391))))) 187 T ELT) (($ (-1207) (-1297 (-326 (-558)))) 190 T ELT) (($ (-1207) (-1297 (-326 (-391)))) 193 T ELT) (($ (-1207) (-1297 (-326 (-171 (-391))))) 196 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-558))) 197 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-391))) 198 T ELT) (($ (-1207) (-661 (-974 (-558))) (-326 (-171 (-391)))) 199 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-342) (-13 (-1131) (-10 -8 (-15 -1838 ($ (-1122 (-974 (-558))) $)) (-15 -1838 ($ (-1122 (-974 (-558))) (-974 (-558)) $)) (-15 -1837 ($ (-1206) $)) (-15 -1836 ($ (-1206) $)) (-15 -1835 ($ (-1150))) (-15 -1834 ($ (-1150))) (-15 -1833 ($ (-1189))) (-15 -1833 ($ (-661 (-1189)))) (-15 -1832 ($ (-1189))) (-15 -1831 ($)) (-15 -1831 ($ (-326 (-719)))) (-15 -1831 ($ (-326 (-721)))) (-15 -1831 ($ (-326 (-714)))) (-15 -1831 ($ (-326 (-391)))) (-15 -1831 ($ (-326 (-558)))) (-15 -1831 ($ (-326 (-171 (-391))))) (-15 -1830 ($ (-1206) $)) (-15 -1830 ($ (-1206) $ $)) (-15 -3067 ($ (-1207) (-1189))) (-15 -3067 ($ (-1207) (-326 (-721)))) (-15 -3067 ($ (-1207) (-326 (-719)))) (-15 -3067 ($ (-1207) (-326 (-714)))) (-15 -3067 ($ (-1207) (-709 (-721)))) (-15 -3067 ($ (-1207) (-709 (-719)))) (-15 -3067 ($ (-1207) (-709 (-714)))) (-15 -3067 ($ (-1207) (-1297 (-721)))) (-15 -3067 ($ (-1207) (-1297 (-719)))) (-15 -3067 ($ (-1207) (-1297 (-714)))) (-15 -3067 ($ (-1207) (-709 (-326 (-721))))) (-15 -3067 ($ (-1207) (-709 (-326 (-719))))) (-15 -3067 ($ (-1207) (-709 (-326 (-714))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-721))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-719))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-714))))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-721)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-719)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-714)))) (-15 -3067 ($ (-1207) (-326 (-558)))) (-15 -3067 ($ (-1207) (-326 (-391)))) (-15 -3067 ($ (-1207) (-326 (-171 (-391))))) (-15 -3067 ($ (-1207) (-709 (-326 (-558))))) (-15 -3067 ($ (-1207) (-709 (-326 (-391))))) (-15 -3067 ($ (-1207) (-709 (-326 (-171 (-391)))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-558))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-391))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-558)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-391)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-171 (-391))))) (-15 -1829 ($ (-661 $))) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($ (-661 (-886)))) (-15 -1825 ($ (-1207) (-661 (-1207)))) (-15 -1824 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1823 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-661 (-974 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3905 (-114)) (|:| -3904 (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |blockBranch| (-661 $)) (|:| |commentBranch| (-661 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1648 (-1122 (-974 (-558)))) (|:| |span| (-974 (-558))) (|:| -3733 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3733 $))) (|:| |commonBranch| (-2 (|:| -4052 (-1207)) (|:| |contents| (-661 (-1207))))) (|:| |printBranch| (-661 (-886)))) $)) (-15 -1822 ((-1303) $)) (-15 -1821 ((-1133) $)) (-15 -1820 ((-1150) (-1150)))))) (T -342)) +((-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-974 (-558)))) (-5 *1 (-342)))) (-1838 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1122 (-974 (-558)))) (-5 *3 (-974 (-558))) (-5 *1 (-342)))) (-1837 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-1836 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-342)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-1831 (*1 *1) (-5 *1 (-342))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-342)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1830 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-1830 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-714))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-721))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-719))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-714))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-721))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-719))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-714))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-721)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-719)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-714)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-721)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-719)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-714)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-719))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-714))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-558)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-391)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-558)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-391)))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-558))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-3067 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-342)))) (-1828 (*1 *1) (-5 *1 (-342))) (-1827 (*1 *1) (-5 *1 (-342))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-342)))) (-1825 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-661 (-974 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -3905 (-114)) (|:| -3904 (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |blockBranch| (-661 (-342))) (|:| |commentBranch| (-661 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1648 (-1122 (-974 (-558)))) (|:| |span| (-974 (-558))) (|:| -3733 (-342)))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3733 (-342)))) (|:| |commonBranch| (-2 (|:| -4052 (-1207)) (|:| |contents| (-661 (-1207))))) (|:| |printBranch| (-661 (-886))))) (-5 *1 (-342)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-342)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342))))) +(-13 (-1131) (-10 -8 (-15 -1838 ($ (-1122 (-974 (-558))) $)) (-15 -1838 ($ (-1122 (-974 (-558))) (-974 (-558)) $)) (-15 -1837 ($ (-1206) $)) (-15 -1836 ($ (-1206) $)) (-15 -1835 ($ (-1150))) (-15 -1834 ($ (-1150))) (-15 -1833 ($ (-1189))) (-15 -1833 ($ (-661 (-1189)))) (-15 -1832 ($ (-1189))) (-15 -1831 ($)) (-15 -1831 ($ (-326 (-719)))) (-15 -1831 ($ (-326 (-721)))) (-15 -1831 ($ (-326 (-714)))) (-15 -1831 ($ (-326 (-391)))) (-15 -1831 ($ (-326 (-558)))) (-15 -1831 ($ (-326 (-171 (-391))))) (-15 -1830 ($ (-1206) $)) (-15 -1830 ($ (-1206) $ $)) (-15 -3067 ($ (-1207) (-1189))) (-15 -3067 ($ (-1207) (-326 (-721)))) (-15 -3067 ($ (-1207) (-326 (-719)))) (-15 -3067 ($ (-1207) (-326 (-714)))) (-15 -3067 ($ (-1207) (-709 (-721)))) (-15 -3067 ($ (-1207) (-709 (-719)))) (-15 -3067 ($ (-1207) (-709 (-714)))) (-15 -3067 ($ (-1207) (-1297 (-721)))) (-15 -3067 ($ (-1207) (-1297 (-719)))) (-15 -3067 ($ (-1207) (-1297 (-714)))) (-15 -3067 ($ (-1207) (-709 (-326 (-721))))) (-15 -3067 ($ (-1207) (-709 (-326 (-719))))) (-15 -3067 ($ (-1207) (-709 (-326 (-714))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-721))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-719))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-714))))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-721)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-719)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-714)))) (-15 -3067 ($ (-1207) (-326 (-558)))) (-15 -3067 ($ (-1207) (-326 (-391)))) (-15 -3067 ($ (-1207) (-326 (-171 (-391))))) (-15 -3067 ($ (-1207) (-709 (-326 (-558))))) (-15 -3067 ($ (-1207) (-709 (-326 (-391))))) (-15 -3067 ($ (-1207) (-709 (-326 (-171 (-391)))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-558))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-391))))) (-15 -3067 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-558)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-391)))) (-15 -3067 ($ (-1207) (-661 (-974 (-558))) (-326 (-171 (-391))))) (-15 -1829 ($ (-661 $))) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($ (-661 (-886)))) (-15 -1825 ($ (-1207) (-661 (-1207)))) (-15 -1824 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1823 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-661 (-974 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3905 (-114)) (|:| -3904 (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |blockBranch| (-661 $)) (|:| |commentBranch| (-661 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1648 (-1122 (-974 (-558)))) (|:| |span| (-974 (-558))) (|:| -3733 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3733 $))) (|:| |commonBranch| (-2 (|:| -4052 (-1207)) (|:| |contents| (-661 (-1207))))) (|:| |printBranch| (-661 (-886)))) $)) (-15 -1822 ((-1303) $)) (-15 -1821 ((-1133) $)) (-15 -1820 ((-1150) (-1150))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1839 (((-114) $) 13 T ELT)) (-4150 (($ |#1|) 10 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4146 (($ |#1|) 12 T ELT)) (-4458 (((-886) $) 19 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2460 ((|#1| $) 14 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 21 T ELT))) +(((-343 |#1|) (-13 (-870) (-10 -8 (-15 -4150 ($ |#1|)) (-15 -4146 ($ |#1|)) (-15 -1839 ((-114) $)) (-15 -2460 (|#1| $)))) (-870)) (T -343)) +((-4150 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870)))) (-4146 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-870)))) (-2460 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870))))) +(-13 (-870) (-10 -8 (-15 -4150 ($ |#1|)) (-15 -4146 ($ |#1|)) (-15 -1839 ((-114) $)) (-15 -2460 (|#1| $)))) +((-1840 (((-342) (-1207) (-974 (-558))) 23 T ELT)) (-1841 (((-342) (-1207) (-974 (-558))) 27 T ELT)) (-2557 (((-342) (-1207) (-1122 (-974 (-558))) (-1122 (-974 (-558)))) 26 T ELT) (((-342) (-1207) (-974 (-558)) (-974 (-558))) 24 T ELT)) (-1842 (((-342) (-1207) (-974 (-558))) 31 T ELT))) +(((-344) (-10 -7 (-15 -1840 ((-342) (-1207) (-974 (-558)))) (-15 -2557 ((-342) (-1207) (-974 (-558)) (-974 (-558)))) (-15 -2557 ((-342) (-1207) (-1122 (-974 (-558))) (-1122 (-974 (-558))))) (-15 -1841 ((-342) (-1207) (-974 (-558)))) (-15 -1842 ((-342) (-1207) (-974 (-558)))))) (T -344)) +((-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2557 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1122 (-974 (-558)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2557 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) +(-10 -7 (-15 -1840 ((-342) (-1207) (-974 (-558)))) (-15 -2557 ((-342) (-1207) (-974 (-558)) (-974 (-558)))) (-15 -2557 ((-342) (-1207) (-1122 (-974 (-558))) (-1122 (-974 (-558))))) (-15 -1841 ((-342) (-1207) (-974 (-558)))) (-15 -1842 ((-342) (-1207) (-974 (-558))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1843 (((-518) $) 20 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1844 (((-986 (-791)) $) 18 T ELT)) (-1846 (((-258) $) 7 T ELT)) (-4458 (((-886) $) 26 T ELT)) (-2431 (((-986 (-187 (-141))) $) 16 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1845 (((-661 (-896 (-1212) (-791))) $) 12 T ELT)) (-3536 (((-114) $ $) 22 T ELT))) +(((-345) (-13 (-1131) (-10 -8 (-15 -1846 ((-258) $)) (-15 -1845 ((-661 (-896 (-1212) (-791))) $)) (-15 -1844 ((-986 (-791)) $)) (-15 -2431 ((-986 (-187 (-141))) $)) (-15 -1843 ((-518) $))))) (T -345)) +((-1846 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-661 (-896 (-1212) (-791)))) (-5 *1 (-345)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-986 (-791))) (-5 *1 (-345)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-986 (-187 (-141)))) (-5 *1 (-345)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) +(-13 (-1131) (-10 -8 (-15 -1846 ((-258) $)) (-15 -1845 ((-661 (-896 (-1212) (-791))) $)) (-15 -1844 ((-986 (-791)) $)) (-15 -2431 ((-986 (-187 (-141))) $)) (-15 -1843 ((-518) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4354 (($ $) 33 T ELT)) (-1849 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1847 (((-1297 |#4|) $) 132 T ELT)) (-2190 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (((-3 |#4| "failed") $) 36 T ELT)) (-1848 (((-1297 |#4|) $) 124 T ELT)) (-1850 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-558)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3937 (((-2 (|:| -2565 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4458 (((-886) $) 17 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 14 T CONST)) (-3536 (((-114) $ $) 20 T ELT)) (-4349 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 23 T ELT))) +(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1848 ((-1297 |#4|) $)) (-15 -1847 ((-1297 |#4|) $)))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -346)) +((-1848 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-1847 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) +(-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1848 ((-1297 |#4|) $)) (-15 -1847 ((-1297 |#4|) $)))) +((-4470 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4470 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1273 |#5|) (-1273 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -347)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) +(-10 -7 (-15 -4470 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) +((-1849 (((-114) $) 14 T ELT))) +(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1849 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1273 |#2|) (-1273 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -348)) +NIL +(-10 -8 (-15 -1849 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4354 (($ $) 34 T ELT)) (-1849 (((-114) $) 33 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2190 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 40 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2650 (((-3 |#4| "failed") $) 32 T ELT)) (-1850 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-558)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3937 (((-2 (|:| -2565 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT))) +(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1273 |t#1|) (-1273 (-419 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349)) +((-2190 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-1850 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-1850 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-1850 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1273 *2)) (-4 *5 (-1273 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -2565 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-4354 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2650 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) (-1850 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2190 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1850 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1850 ($ |t#4|)) (-15 -1850 ($ |t#1| |t#1|)) (-15 -1850 ($ |t#1| |t#1| (-558))) (-15 -3937 ((-2 (|:| -2565 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4354 ($ $)) (-15 -1849 ((-114) $)) (-15 -2650 ((-3 |t#4| "failed") $)) (-15 -1850 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-1131) . T) ((-1247) . T)) +((-4280 (($ $ (-1207) |#2|) NIL T ELT) (($ $ (-661 (-1207)) (-661 |#2|)) 20 T ELT) (($ $ (-661 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL T ELT)) (-4312 (($ $ |#2|) 11 T ELT))) +(((-350 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#1| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 |#2|))) (-15 -4280 (|#1| |#1| (-1207) |#2|))) (-351 |#2|) (-1131)) (T -350)) +NIL +(-10 -8 (-15 -4312 (|#1| |#1| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 |#2|))) (-15 -4280 (|#1| |#1| (-1207) |#2|))) +((-4470 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4280 (($ $ (-1207) |#1|) 17 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 16 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-4312 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) +(((-351 |#1|) (-142) (-1131)) (T -351)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1131))))) +(-13 (-10 -8 (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1207) |t#1|)) (-6 (-526 (-1207) |t#1|)) |%noBranch|))) +(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-526 (-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1247) |has| |#1| (-298 |#1| |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1207)) $) NIL T ELT)) (-1851 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-1753 (((-661 (-628 $)) $) NIL T ELT)) (-3994 (($ $) NIL T ELT)) (-4151 (($ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-3520 (($ $) NIL T ELT)) (-3992 (($ $) NIL T ELT)) (-4150 (($ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-628 $) #1="failed") $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ "failed") (-326 |#3|)) 76 T ELT) (((-3 $ "failed") (-1207)) 103 T ELT) (((-3 $ "failed") (-326 (-558))) 64 (|has| |#3| (-1068 (-558))) ELT) (((-3 $ "failed") (-419 (-974 (-558)))) 70 (|has| |#3| (-1068 (-558))) ELT) (((-3 $ "failed") (-974 (-558))) 65 (|has| |#3| (-1068 (-558))) ELT) (((-3 $ "failed") (-326 (-391))) 94 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-419 (-974 (-391)))) 88 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-974 (-391))) 83 (|has| |#3| (-1068 (-391))) ELT)) (-3656 (((-628 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1207)) 104 T ELT) (($ (-326 (-558))) 66 (|has| |#3| (-1068 (-558))) ELT) (($ (-419 (-974 (-558)))) 71 (|has| |#3| (-1068 (-558))) ELT) (($ (-974 (-558))) 67 (|has| |#3| (-1068 (-558))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1068 (-391))) ELT) (($ (-419 (-974 (-391)))) 89 (|has| |#3| (-1068 (-391))) ELT) (($ (-974 (-391))) 85 (|has| |#3| (-1068 (-391))) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4139 (($) 101 T ELT)) (-3054 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1752 (((-661 (-115)) $) NIL T ELT)) (-4105 (((-115) (-115)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3156 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-1750 (((-1201 $) (-628 $)) NIL (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1755 (((-3 (-628 $) "failed") $) NIL T ELT)) (-1955 (($ $) 99 T ELT)) (-4454 (($ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1754 (((-661 (-628 $)) $) NIL T ELT)) (-2459 (($ (-115) $) 98 T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3114 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-3084 (((-791) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1751 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4455 (($ $) NIL T ELT)) (-3157 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4312 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-1756 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4270 (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-3685 (($ $) NIL (|has| $ (-1079)) ELT)) (-3993 (($ $) NIL T ELT)) (-4146 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-558)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-3610 (((-791)) NIL T CONST)) (-3071 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2478 (((-114) (-115)) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3988 (($ $) NIL T ELT)) (-3986 (($ $) NIL T ELT)) (-3987 (($ $) NIL T ELT)) (-3885 (($ $) NIL T ELT)) (-3141 (($) 100 T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT))) +(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1068 |#3|) (-926 (-1207)) (-10 -8 (-15 -3656 ($ (-326 |#3|))) (-15 -3657 ((-3 $ "failed") (-326 |#3|))) (-15 -3656 ($ (-1207))) (-15 -3657 ((-3 $ "failed") (-1207))) (-15 -4458 ((-326 |#3|) $)) (IF (|has| |#3| (-1068 (-558))) (PROGN (-15 -3656 ($ (-326 (-558)))) (-15 -3657 ((-3 $ "failed") (-326 (-558)))) (-15 -3656 ($ (-419 (-974 (-558))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-558))))) (-15 -3656 ($ (-974 (-558)))) (-15 -3657 ((-3 $ "failed") (-974 (-558))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3656 ($ (-326 (-391)))) (-15 -3657 ((-3 $ "failed") (-326 (-391)))) (-15 -3656 ($ (-419 (-974 (-391))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-391))))) (-15 -3656 ($ (-974 (-391)))) (-15 -3657 ((-3 $ "failed") (-974 (-391))))) |%noBranch|) (-15 -3885 ($ $)) (-15 -3520 ($ $)) (-15 -4455 ($ $)) (-15 -4454 ($ $)) (-15 -1955 ($ $)) (-15 -4150 ($ $)) (-15 -4146 ($ $)) (-15 -4151 ($ $)) (-15 -3986 ($ $)) (-15 -3987 ($ $)) (-15 -3988 ($ $)) (-15 -3992 ($ $)) (-15 -3993 ($ $)) (-15 -3994 ($ $)) (-15 -4139 ($)) (-15 -3566 ((-661 (-1207)) $)) (-15 -1851 ((-114))) (-15 -1851 ((-114) (-114))))) (-661 (-1207)) (-661 (-1207)) (-401)) (T -352)) +((-3656 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) (-14 *4 (-661 *2)) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) (-14 *4 (-661 *2)) (-4 *5 (-401)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-974 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-974 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4455 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4454 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-1955 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3986 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3987 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3988 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3993 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3994 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-4139 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-1851 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401))))) +(-13 (-310) (-38 |#3|) (-1068 |#3|) (-926 (-1207)) (-10 -8 (-15 -3656 ($ (-326 |#3|))) (-15 -3657 ((-3 $ "failed") (-326 |#3|))) (-15 -3656 ($ (-1207))) (-15 -3657 ((-3 $ "failed") (-1207))) (-15 -4458 ((-326 |#3|) $)) (IF (|has| |#3| (-1068 (-558))) (PROGN (-15 -3656 ($ (-326 (-558)))) (-15 -3657 ((-3 $ "failed") (-326 (-558)))) (-15 -3656 ($ (-419 (-974 (-558))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-558))))) (-15 -3656 ($ (-974 (-558)))) (-15 -3657 ((-3 $ "failed") (-974 (-558))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3656 ($ (-326 (-391)))) (-15 -3657 ((-3 $ "failed") (-326 (-391)))) (-15 -3656 ($ (-419 (-974 (-391))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-391))))) (-15 -3656 ($ (-974 (-391)))) (-15 -3657 ((-3 $ "failed") (-974 (-391))))) |%noBranch|) (-15 -3885 ($ $)) (-15 -3520 ($ $)) (-15 -4455 ($ $)) (-15 -4454 ($ $)) (-15 -1955 ($ $)) (-15 -4150 ($ $)) (-15 -4146 ($ $)) (-15 -4151 ($ $)) (-15 -3986 ($ $)) (-15 -3987 ($ $)) (-15 -3988 ($ $)) (-15 -3992 ($ $)) (-15 -3993 ($ $)) (-15 -3994 ($ $)) (-15 -4139 ($)) (-15 -3566 ((-661 (-1207)) $)) (-15 -1851 ((-114))) (-15 -1851 ((-114) (-114))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-934 |#1|) "failed") $) NIL T ELT)) (-3656 (((-934 |#1|) $) NIL T ELT)) (-2010 (($ (-1297 (-934 |#1|))) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1893 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT) (($ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2231 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3616 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 (-934 |#1|)) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2230 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1817 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1816 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-1201 (-934 |#1|)) "failed") $ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1818 (($ $ (-1201 (-934 |#1|))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-934 |#1|) (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 (-934 |#1|))) NIL T ELT)) (-1887 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1819 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3724 (((-1297 (-934 |#1|)) $) NIL T ELT) (((-709 (-934 |#1|)) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-934 |#1|)) NIL T ELT)) (-3185 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT) (($ (-934 |#1|) $) NIL T ELT))) +(((-353 |#1| |#2|) (-341 (-934 |#1|)) (-947) (-947)) (T -353)) +NIL +(-341 (-934 |#1|)) +((-1860 (((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-2010 (($ (-1297 (-419 |#3|)) (-1297 $)) NIL T ELT) (($ (-1297 (-419 |#3|))) NIL T ELT) (($ (-1297 |#3|) |#3|) 172 T ELT)) (-1865 (((-1297 $) (-1297 $)) 156 T ELT)) (-1852 (((-661 (-661 |#2|))) 126 T ELT)) (-1877 (((-114) |#2| |#2|) 76 T ELT)) (-4005 (($ $) 148 T ELT)) (-3879 (((-791)) 171 T ELT)) (-1866 (((-1297 $) (-1297 $)) 219 T ELT)) (-1853 (((-661 (-974 |#2|)) (-1207)) 115 T ELT)) (-1869 (((-114) $) 168 T ELT)) (-1868 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 223 T ELT)) (-1855 (((-3 |#3| "failed")) 52 T ELT)) (-1879 (((-791)) 183 T ELT)) (-4312 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1856 (((-3 |#3| "failed")) 71 T ELT)) (-4270 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL T ELT) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-791)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-1867 (((-1297 $) (-1297 $)) 162 T ELT)) (-1854 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1878 (((-114)) 34 T ELT))) +(((-354 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -1852 ((-661 (-661 |#2|)))) (-15 -1853 ((-661 (-974 |#2|)) (-1207))) (-15 -1854 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1855 ((-3 |#3| "failed"))) (-15 -1856 ((-3 |#3| "failed"))) (-15 -4312 (|#2| |#1| |#2| |#2|)) (-15 -4005 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1868 ((-114) |#1| |#3|)) (-15 -1868 ((-114) |#1| |#2|)) (-15 -2010 (|#1| (-1297 |#3|) |#3|)) (-15 -1860 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1865 ((-1297 |#1|) (-1297 |#1|))) (-15 -1866 ((-1297 |#1|) (-1297 |#1|))) (-15 -1867 ((-1297 |#1|) (-1297 |#1|))) (-15 -1868 ((-114) |#1|)) (-15 -1869 ((-114) |#1|)) (-15 -1877 ((-114) |#2| |#2|)) (-15 -1878 ((-114))) (-15 -1879 ((-791))) (-15 -3879 ((-791))) (-15 -4270 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-791))) (-15 -4270 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2010 (|#1| (-1297 (-419 |#3|)))) (-15 -2010 (|#1| (-1297 (-419 |#3|)) (-1297 |#1|)))) (-355 |#2| |#3| |#4|) (-1252) (-1273 |#2|) (-1273 (-419 |#3|))) (T -354)) +((-3879 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1879 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1878 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1877 (*1 *2 *3 *3) (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-1856 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1855 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-5 *2 (-661 (-974 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1852 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-661 (-661 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) +(-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -1852 ((-661 (-661 |#2|)))) (-15 -1853 ((-661 (-974 |#2|)) (-1207))) (-15 -1854 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1855 ((-3 |#3| "failed"))) (-15 -1856 ((-3 |#3| "failed"))) (-15 -4312 (|#2| |#1| |#2| |#2|)) (-15 -4005 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1868 ((-114) |#1| |#3|)) (-15 -1868 ((-114) |#1| |#2|)) (-15 -2010 (|#1| (-1297 |#3|) |#3|)) (-15 -1860 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1865 ((-1297 |#1|) (-1297 |#1|))) (-15 -1866 ((-1297 |#1|) (-1297 |#1|))) (-15 -1867 ((-1297 |#1|) (-1297 |#1|))) (-15 -1868 ((-114) |#1|)) (-15 -1869 ((-114) |#1|)) (-15 -1877 ((-114) |#2| |#2|)) (-15 -1878 ((-114))) (-15 -1879 ((-791))) (-15 -3879 ((-791))) (-15 -4270 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-791))) (-15 -4270 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2010 (|#1| (-1297 (-419 |#3|)))) (-15 -2010 (|#1| (-1297 (-419 |#3|)) (-1297 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1860 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 111 (|has| (-419 |#2|) (-376)) ELT)) (-2283 (($ $) 112 (|has| (-419 |#2|) (-376)) ELT)) (-2281 (((-114) $) 114 (|has| (-419 |#2|) (-376)) ELT)) (-2000 (((-709 (-419 |#2|)) (-1297 $)) 58 T ELT) (((-709 (-419 |#2|))) 74 T ELT)) (-3832 (((-419 |#2|) $) 64 T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 164 (|has| (-419 |#2|) (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 131 (|has| (-419 |#2|) (-376)) ELT)) (-4483 (((-417 $) $) 132 (|has| (-419 |#2|) (-376)) ELT)) (-1798 (((-114) $ $) 122 (|has| (-419 |#2|) (-376)) ELT)) (-3620 (((-791)) 105 (|has| (-419 |#2|) (-381)) ELT)) (-1874 (((-114)) 239 T ELT)) (-1873 (((-114) |#1|) 238 T ELT) (((-114) |#2|) 237 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 191 (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) 186 T ELT)) (-3656 (((-558) $) 190 (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-419 (-558)) $) 188 (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-419 |#2|) $) 187 T ELT)) (-2010 (($ (-1297 (-419 |#2|)) (-1297 $)) 60 T ELT) (($ (-1297 (-419 |#2|))) 77 T ELT) (($ (-1297 |#2|) |#2|) 221 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-419 |#2|) (-363)) ELT)) (-3045 (($ $ $) 126 (|has| (-419 |#2|) (-376)) ELT)) (-1999 (((-709 (-419 |#2|)) $ (-1297 $)) 65 T ELT) (((-709 (-419 |#2|)) $) 72 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 183 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 182 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-709 $) (-1297 $)) 181 T ELT) (((-709 (-419 |#2|)) (-709 $)) 180 T ELT)) (-1865 (((-1297 $) (-1297 $)) 227 T ELT)) (-4354 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-419 |#3|)) 172 (|has| (-419 |#2|) (-376)) ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-1852 (((-661 (-661 |#1|))) 208 (|has| |#1| (-381)) ELT)) (-1877 (((-114) |#1| |#1|) 243 T ELT)) (-3593 (((-947)) 66 T ELT)) (-3477 (($) 108 (|has| (-419 |#2|) (-381)) ELT)) (-1872 (((-114)) 236 T ELT)) (-1871 (((-114) |#1|) 235 T ELT) (((-114) |#2|) 234 T ELT)) (-3044 (($ $ $) 125 (|has| (-419 |#2|) (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 120 (|has| (-419 |#2|) (-376)) ELT)) (-4005 (($ $) 214 T ELT)) (-3316 (($) 166 (|has| (-419 |#2|) (-363)) ELT)) (-1893 (((-114) $) 167 (|has| (-419 |#2|) (-363)) ELT)) (-1984 (($ $ (-791)) 158 (|has| (-419 |#2|) (-363)) ELT) (($ $) 157 (|has| (-419 |#2|) (-363)) ELT)) (-4235 (((-114) $) 133 (|has| (-419 |#2|) (-376)) ELT)) (-4284 (((-947) $) 169 (|has| (-419 |#2|) (-363)) ELT) (((-854 (-947)) $) 155 (|has| (-419 |#2|) (-363)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3879 (((-791)) 246 T ELT)) (-1866 (((-1297 $) (-1297 $)) 228 T ELT)) (-3616 (((-419 |#2|) $) 63 T ELT)) (-1853 (((-661 (-974 |#1|)) (-1207)) 209 (|has| |#1| (-376)) ELT)) (-3947 (((-711 $) $) 159 (|has| (-419 |#2|) (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| (-419 |#2|) (-376)) ELT)) (-2234 ((|#3| $) 56 (|has| (-419 |#2|) (-376)) ELT)) (-2230 (((-947) $) 107 (|has| (-419 |#2|) (-381)) ELT)) (-3562 ((|#3| $) 173 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 185 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 184 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-1297 $) $) 179 T ELT) (((-709 (-419 |#2|)) (-1297 $)) 178 T ELT)) (-2112 (($ (-661 $)) 118 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 117 (|has| (-419 |#2|) (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1861 (((-709 (-419 |#2|))) 223 T ELT)) (-1863 (((-709 (-419 |#2|))) 225 T ELT)) (-2884 (($ $) 134 (|has| (-419 |#2|) (-376)) ELT)) (-1858 (($ (-1297 |#2|) |#2|) 219 T ELT)) (-1862 (((-709 (-419 |#2|))) 224 T ELT)) (-1864 (((-709 (-419 |#2|))) 226 T ELT)) (-1857 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1859 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1870 (((-1297 $)) 232 T ELT)) (-4430 (((-1297 $)) 233 T ELT)) (-1869 (((-114) $) 231 T ELT)) (-1868 (((-114) $) 230 T ELT) (((-114) $ |#1|) 217 T ELT) (((-114) $ |#2|) 216 T ELT)) (-3948 (($) 160 (|has| (-419 |#2|) (-363)) CONST)) (-2641 (($ (-947)) 106 (|has| (-419 |#2|) (-381)) ELT)) (-1855 (((-3 |#2| "failed")) 211 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1879 (((-791)) 245 T ELT)) (-2650 (($) 177 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 119 (|has| (-419 |#2|) (-376)) ELT)) (-3644 (($ (-661 $)) 116 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 115 (|has| (-419 |#2|) (-376)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 163 (|has| (-419 |#2|) (-363)) ELT)) (-4244 (((-417 $) $) 130 (|has| (-419 |#2|) (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 127 (|has| (-419 |#2|) (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) 110 (|has| (-419 |#2|) (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 121 (|has| (-419 |#2|) (-376)) ELT)) (-1797 (((-791) $) 123 (|has| (-419 |#2|) (-376)) ELT)) (-4312 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1856 (((-3 |#2| "failed")) 212 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 124 (|has| (-419 |#2|) (-376)) ELT)) (-4269 (((-419 |#2|) (-1297 $)) 59 T ELT) (((-419 |#2|)) 73 T ELT)) (-1985 (((-791) $) 168 (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| (-419 |#2|) (-363)) ELT)) (-4270 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 142 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) 141 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-661 (-1207)) (-661 (-791))) 147 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1207) (-791)) 146 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-661 (-1207))) 145 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1207)) 143 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-791)) 153 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-3043 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 151 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-3043 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2649 (((-709 (-419 |#2|)) (-1297 $) (-1 (-419 |#2|) (-419 |#2|))) 171 (|has| (-419 |#2|) (-376)) ELT)) (-3685 ((|#3|) 176 T ELT)) (-1887 (($) 165 (|has| (-419 |#2|) (-363)) ELT)) (-3724 (((-1297 (-419 |#2|)) $ (-1297 $)) 62 T ELT) (((-709 (-419 |#2|)) (-1297 $) (-1297 $)) 61 T ELT) (((-1297 (-419 |#2|)) $) 79 T ELT) (((-709 (-419 |#2|)) (-1297 $)) 78 T ELT)) (-4484 (((-1297 (-419 |#2|)) $) 76 T ELT) (($ (-1297 (-419 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 162 (|has| (-419 |#2|) (-363)) ELT)) (-1867 (((-1297 $) (-1297 $)) 229 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 |#2|)) 49 T ELT) (($ (-419 (-558))) 104 (-4039 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1068 (-419 (-558))))) ELT) (($ $) 109 (|has| (-419 |#2|) (-376)) ELT)) (-3185 (($ $) 161 (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) 55 (|has| (-419 |#2|) (-147)) ELT)) (-2848 ((|#3| $) 57 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1876 (((-114)) 242 T ELT)) (-1875 (((-114) |#1|) 241 T ELT) (((-114) |#2|) 240 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 80 T ELT)) (-2282 (((-114) $ $) 113 (|has| (-419 |#2|) (-376)) ELT)) (-1854 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1878 (((-114)) 244 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 140 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) 139 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 150 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1207) (-791)) 149 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-661 (-1207))) 148 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1207)) 144 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-3043 (|has| (-419 |#2|) (-928 (-1207))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-791)) 154 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-3043 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 152 (-4039 (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-3043 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-3043 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 138 (|has| (-419 |#2|) (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 135 (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 |#2|)) 51 T ELT) (($ (-419 |#2|) $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| (-419 |#2|) (-376)) ELT))) +(((-355 |#1| |#2| |#3|) (-142) (-1252) (-1273 |t#1|) (-1273 (-419 |t#2|))) (T -355)) +((-3879 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-791)))) (-1879 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-791)))) (-1878 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1877 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1876 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1875 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1875 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) (-1874 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1873 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1873 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) (-1872 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1871 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1871 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) (-4430 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1870 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))))) (-1864 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1863 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1862 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1861 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-2010 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-419 *3))))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-419 *3))))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-2 (|:| |num| (-709 *5)) (|:| |den| *5))))) (-1868 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) (-1868 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) (-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-419 *3))))) (-4312 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-419 *3))))) (-1856 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-419 *2))) (-4 *2 (-1273 *3)))) (-1855 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-419 *2))) (-4 *2 (-1273 *3)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1252)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-4 *4 (-376)) (-5 *2 (-661 (-974 *4))))) (-1852 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-661 (-661 *3)))))) +(-13 (-744 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3879 ((-791))) (-15 -1879 ((-791))) (-15 -1878 ((-114))) (-15 -1877 ((-114) |t#1| |t#1|)) (-15 -1876 ((-114))) (-15 -1875 ((-114) |t#1|)) (-15 -1875 ((-114) |t#2|)) (-15 -1874 ((-114))) (-15 -1873 ((-114) |t#1|)) (-15 -1873 ((-114) |t#2|)) (-15 -1872 ((-114))) (-15 -1871 ((-114) |t#1|)) (-15 -1871 ((-114) |t#2|)) (-15 -4430 ((-1297 $))) (-15 -1870 ((-1297 $))) (-15 -1869 ((-114) $)) (-15 -1868 ((-114) $)) (-15 -1867 ((-1297 $) (-1297 $))) (-15 -1866 ((-1297 $) (-1297 $))) (-15 -1865 ((-1297 $) (-1297 $))) (-15 -1864 ((-709 (-419 |t#2|)))) (-15 -1863 ((-709 (-419 |t#2|)))) (-15 -1862 ((-709 (-419 |t#2|)))) (-15 -1861 ((-709 (-419 |t#2|)))) (-15 -1860 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2010 ($ (-1297 |t#2|) |t#2|)) (-15 -1859 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1858 ($ (-1297 |t#2|) |t#2|)) (-15 -1857 ((-2 (|:| |num| (-709 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1868 ((-114) $ |t#1|)) (-15 -1868 ((-114) $ |t#2|)) (-15 -4270 ($ $ (-1 |t#2| |t#2|))) (-15 -4005 ($ $)) (-15 -4312 (|t#1| $ |t#1| |t#1|)) (-15 -1856 ((-3 |t#2| "failed"))) (-15 -1855 ((-3 |t#2| "failed"))) (-15 -1854 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1853 ((-661 (-974 |t#1|)) (-1207))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1852 ((-661 (-661 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-38 #2=(-419 |#2|)) . T) ((-38 $) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-102) . T) ((-111 #1# #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-147))) ((-149) |has| (-419 |#2|) (-149)) ((-633 #1#) -4039 (|has| (-419 |#2|) (-1068 (-419 (-558)))) (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-633 #2#) . T) ((-633 (-558)) . T) ((-633 $) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-630 (-886)) . T) ((-175) . T) ((-631 |#3|) . T) ((-236 $) -4039 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-234 #2#) |has| (-419 |#2|) (-376)) ((-240) -4039 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-239) -4039 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-274 #2#) |has| (-419 |#2|) (-376)) ((-250) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-302) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-319) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-376) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-414) |has| (-419 |#2|) (-363)) ((-381) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-381))) ((-363) |has| (-419 |#2|) (-363)) ((-383 #2# |#3|) . T) ((-422 #2# |#3|) . T) ((-390 #2#) . T) ((-424 #2#) . T) ((-464) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-569) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-666 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-666 #2#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-668 #2#) . T) ((-668 #3=(-558)) |has| (-419 |#2|) (-658 (-558))) ((-668 $) . T) ((-660 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-660 #2#) . T) ((-660 $) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-658 #2#) . T) ((-658 #3#) |has| (-419 |#2|) (-658 (-558))) ((-737 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-737 #2#) . T) ((-737 $) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-744 #2# |#3|) . T) ((-746) . T) ((-920 $ #4=(-1207)) -4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207))))) ((-926 (-1207)) -12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) ((-928 #4#) -4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207))))) ((-949) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1068 (-419 (-558))) |has| (-419 |#2|) (-1068 (-419 (-558)))) ((-1068 #2#) . T) ((-1068 (-558)) |has| (-419 |#2|) (-1068 (-558))) ((-1081 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1081 #2#) . T) ((-1081 $) . T) ((-1086 #1#) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1086 #2#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| (-419 |#2|) (-363)) ((-1247) . T) ((-1252) -4039 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376)))) +((-4470 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4470 (|#8| (-1 |#5| |#1|) |#4|))) (-1252) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-1252) (-1273 |#5|) (-1273 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -356)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1273 (-419 *9)))))) +(-10 -7 (-15 -4470 (|#8| (-1 |#5| |#1|) |#4|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-934 |#1|) "failed") $) NIL T ELT)) (-3656 (((-934 |#1|) $) NIL T ELT)) (-2010 (($ (-1297 (-934 |#1|))) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1893 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT) (($ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2231 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3616 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 (-934 |#1|)) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2230 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1817 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1816 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-1201 (-934 |#1|)) "failed") $ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1818 (($ $ (-1201 (-934 |#1|))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-934 |#1|) (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1880 (((-986 (-1150))) NIL T ELT)) (-2650 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 (-934 |#1|))) NIL T ELT)) (-1887 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1819 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3724 (((-1297 (-934 |#1|)) $) NIL T ELT) (((-709 (-934 |#1|)) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-934 |#1|)) NIL T ELT)) (-3185 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT) (($ (-934 |#1|) $) NIL T ELT))) +(((-357 |#1| |#2|) (-13 (-341 (-934 |#1|)) (-10 -7 (-15 -1880 ((-986 (-1150)))))) (-947) (-947)) (T -357)) +((-1880 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947))))) +(-13 (-341 (-934 |#1|)) (-10 -7 (-15 -1880 ((-986 (-1150)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 58 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 56 (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) 142 T ELT)) (-3656 ((|#1| $) 113 T ELT)) (-2010 (($ (-1297 |#1|)) 130 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) 124 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) 160 (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) 60 (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) 62 T ELT)) (-2233 (($) 162 (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) 117 T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) 171 (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 178 T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) 96 (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) 147 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1880 (((-986 (-1150))) 57 T ELT)) (-2650 (($) 158 (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 119 (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) 90 T ELT) (((-947)) 91 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) 161 (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) 154 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 |#1|)) 122 T ELT)) (-1887 (($) 159 (|has| |#1| (-381)) ELT)) (-1819 (($) 167 (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) 77 T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) 174 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) 155 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 144 T ELT) (((-1297 $) (-947)) 98 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) 67 T CONST)) (-3147 (($) 103 T CONST)) (-4440 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) 65 T ELT)) (-4461 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-4349 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 86 T ELT)) (** (($ $ (-947)) 180 T ELT) (($ $ (-791)) 181 T ELT) (($ $ (-558)) 179 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) +(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-986 (-1150)))))) (-363) (-1201 |#1|)) (T -358)) +((-1880 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1201 *3))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-986 (-1150)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2010 (($ (-1297 |#1|)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1880 (((-986 (-1150))) NIL T ELT)) (-2650 (($) NIL (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 |#1|)) NIL T ELT)) (-1887 (($) NIL (|has| |#1| (-381)) ELT)) (-1819 (($) NIL (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-986 (-1150)))))) (-363) (-947)) (T -359)) +((-1880 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1880 ((-986 (-1150)))))) +((-1890 (((-791) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) 61 T ELT)) (-1881 (((-986 (-1150)) (-1201 |#1|)) 112 T ELT)) (-1882 (((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) (-1201 |#1|)) 103 T ELT)) (-1883 (((-709 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) 113 T ELT)) (-1884 (((-3 (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) "failed") (-947)) 13 T ELT)) (-1885 (((-3 (-1201 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) (-947)) 18 T ELT))) +(((-360 |#1|) (-10 -7 (-15 -1881 ((-986 (-1150)) (-1201 |#1|))) (-15 -1882 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) (-1201 |#1|))) (-15 -1883 ((-709 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1890 ((-791) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1884 ((-3 (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) "failed") (-947))) (-15 -1885 ((-3 (-1201 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) (-947)))) (-363)) (T -360)) +((-1885 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-3 (-1201 *4) (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1884 (*1 *2 *3) (|partial| -12 (-5 *3 (-947)) (-5 *2 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-4 *4 (-363)) (-5 *2 (-791)) (-5 *1 (-360 *4)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-4 *4 (-363)) (-5 *2 (-709 *4)) (-5 *1 (-360 *4)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-5 *1 (-360 *4)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-986 (-1150))) (-5 *1 (-360 *4))))) +(-10 -7 (-15 -1881 ((-986 (-1150)) (-1201 |#1|))) (-15 -1882 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) (-1201 |#1|))) (-15 -1883 ((-709 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1890 ((-791) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1884 ((-3 (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) "failed") (-947))) (-15 -1885 ((-3 (-1201 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) (-947)))) +((-4458 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4458 (|#3| |#1|)) (-15 -4458 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361)) +((-4458 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-4458 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4))))) +(-10 -7 (-15 -4458 (|#3| |#1|)) (-15 -4458 (|#1| |#3|))) +((-1893 (((-114) $) 65 T ELT)) (-4284 (((-854 (-947)) $) 26 T ELT) (((-947) $) 69 T ELT)) (-3947 (((-711 $) $) 21 T ELT)) (-3948 (($) 9 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 120 T ELT)) (-1985 (((-3 (-791) "failed") $ $) 98 T ELT) (((-791) $) 84 T ELT)) (-4270 (($ $) 8 T ELT) (($ $ (-791)) NIL T ELT)) (-1887 (($) 58 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 41 T ELT)) (-3185 (((-711 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-362 |#1|) (-10 -8 (-15 -4284 ((-947) |#1|)) (-15 -1985 ((-791) |#1|)) (-15 -1893 ((-114) |#1|)) (-15 -1887 (|#1|)) (-15 -3186 ((-3 (-1297 |#1|) "failed") (-709 |#1|))) (-15 -3185 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -1985 ((-3 (-791) "failed") |#1| |#1|)) (-15 -4284 ((-854 (-947)) |#1|)) (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-363)) (T -362)) +NIL +(-10 -8 (-15 -4284 ((-947) |#1|)) (-15 -1985 ((-791) |#1|)) (-15 -1893 ((-114) |#1|)) (-15 -1887 (|#1|)) (-15 -3186 ((-3 (-1297 |#1|) "failed") (-709 |#1|))) (-15 -3185 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -1985 ((-3 (-791) "failed") |#1| |#1|)) (-15 -4284 ((-854 (-947)) |#1|)) (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 110 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-3620 (((-791)) 120 T ELT)) (-4236 (($) 22 T CONST)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3477 (($) 123 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-3316 (($) 108 T ELT)) (-1893 (((-114) $) 107 T ELT)) (-1984 (($ $) 94 T ELT) (($ $ (-791)) 93 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-4284 (((-854 (-947)) $) 96 T ELT) (((-947) $) 105 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3947 (((-711 $) $) 119 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2230 (((-947) $) 122 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3948 (($) 118 T CONST)) (-2641 (($ (-947)) 121 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 111 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-1985 (((-3 (-791) "failed") $ $) 95 T ELT) (((-791) $) 106 T ELT)) (-4270 (($ $) 117 T ELT) (($ $ (-791)) 115 T ELT)) (-1887 (($) 109 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 112 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3185 (((-711 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $) 116 T ELT) (($ $ (-791)) 114 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-363) (-142)) (T -363)) -((-3189 (*1 *1 *1) (-4 *1 (-363))) (-3190 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1299 *1)))) (-1891 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))))) (-1890 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1221 (-949) (-793))))) (-1889 (*1 *1) (-4 *1 (-363))) (-3320 (*1 *1) (-4 *1 (-363))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-793)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-949)))) (-1888 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-416) (-381) (-1184) (-240) (-10 -8 (-15 -3189 ($ $)) (-15 -3190 ((-3 (-1299 $) "failed") (-711 $))) (-15 -1891 ((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560)))))) (-15 -1890 ((-1221 (-949) (-793)) (-560))) (-15 -1889 ($)) (-15 -3320 ($)) (-15 -1895 ((-114) $)) (-15 -1989 ((-793) $)) (-15 -4288 ((-949) $)) (-15 -1888 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) . T) ((-381) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) . T) ((-1249) . T) ((-1254) . T)) -((-4435 (((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|) 55 T ELT)) (-4434 (((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 53 T ELT))) -(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $)))) (-1275 |#1|) (-424 |#1| |#2|)) (T -364)) -((-4435 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-4434 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4))))) -(-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1892 (((-793)) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-936 |#1|) "failed") $) NIL T ELT)) (-3660 (((-936 |#1|) $) NIL T ELT)) (-2014 (($ (-1299 (-936 |#1|))) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1895 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT) (($ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2235 (((-114) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3620 (((-936 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 (-936 |#1|)) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2234 (((-949) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1819 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1818 (((-1203 (-936 |#1|)) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-1203 (-936 |#1|)) "failed") $ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1820 (($ $ (-1203 (-936 |#1|))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-936 |#1|) (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1894 (((-1299 (-663 (-2 (|:| -3908 (-936 |#1|)) (|:| -2645 (-1152)))))) NIL T ELT)) (-1893 (((-711 (-936 |#1|))) NIL T ELT)) (-2654 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 (-936 |#1|))) NIL T ELT)) (-1889 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-1821 (($) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3728 (((-1299 (-936 |#1|)) $) NIL T ELT) (((-711 (-936 |#1|)) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-936 |#1|)) NIL T ELT)) (-3189 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| (-936 |#1|) (-147)) (|has| (-936 |#1|) (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| (-936 |#1|) (-381)) ELT) (($ $) NIL (|has| (-936 |#1|) (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-936 |#1|)) NIL T ELT) (($ (-936 |#1|) $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-341 (-936 |#1|)) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 (-936 |#1|)) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 (-936 |#1|)))) (-15 -1892 ((-793))))) (-949) (-949)) (T -365)) -((-1894 (*1 *2) (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 (-936 *3)) (|:| -2645 (-1152)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-1893 (*1 *2) (-12 (-5 *2 (-711 (-936 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-1892 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) -(-13 (-341 (-936 |#1|)) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 (-936 |#1|)) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 (-936 |#1|)))) (-15 -1892 ((-793))))) -((-3053 (((-114) $ $) 73 T ELT)) (-3692 (((-114) $) 88 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) 106 T ELT) (($ $ (-949)) 104 (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 170 (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1892 (((-793)) 103 T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) 187 (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) 127 T ELT)) (-3660 ((|#1| $) 105 T ELT)) (-2014 (($ (-1299 |#1|)) 71 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) 182 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) 171 (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) 113 (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) 108 T ELT) (($ $ (-949)) 107 (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) 214 T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) 148 (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) 96 (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 218 T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) 150 (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) 123 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1894 (((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) 97 T ELT)) (-1893 (((-711 |#1|)) 101 T ELT)) (-2654 (($) 110 (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 173 (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) 174 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) 75 T ELT)) (-3689 (((-1203 |#1|)) 175 T ELT)) (-1889 (($) 147 (|has| |#1| (-381)) ELT)) (-1821 (($) NIL (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) 121 T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) 140 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) 180 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 197 T ELT) (((-1299 $) (-949)) 116 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) 186 T CONST)) (-3151 (($) 161 T CONST)) (-4444 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-793)) 114 (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) 208 T ELT)) (-4465 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-4353 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-4355 (($ $ $) 204 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 153 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 |#1|))) (-15 -1892 ((-793))))) (-363) (-3 (-1203 |#1|) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (T -366)) -((-1894 (*1 *2) (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1203 *3) *2)))) (-1893 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1203 *3) (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152))))))))) (-1892 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1203 *3) (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152)))))))))) -(-13 (-341 |#1|) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 |#1|))) (-15 -1892 ((-793))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1892 (((-793)) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2014 (($ (-1299 |#1|)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1894 (((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152)))))) NIL T ELT)) (-1893 (((-711 |#1|)) NIL T ELT)) (-2654 (($) NIL (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 |#1|)) NIL T ELT)) (-1889 (($) NIL (|has| |#1| (-381)) ELT)) (-1821 (($) NIL (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 |#1|))) (-15 -1892 ((-793))))) (-363) (-949)) (T -367)) -((-1894 (*1 *2) (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949)))) (-1893 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949)))) (-1892 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949))))) -(-13 (-341 |#1|) (-10 -7 (-15 -1894 ((-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))))) (-15 -1893 ((-711 |#1|))) (-15 -1892 ((-793))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 129 (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) 155 (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) 103 T ELT)) (-3660 ((|#1| $) 100 T ELT)) (-2014 (($ (-1299 |#1|)) 95 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) 92 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) 51 (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) 130 (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) 47 T ELT) (($ $ (-949)) 52 (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) 75 T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) 107 (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) 105 (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) 157 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) 44 (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 124 (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) 154 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) 67 T ELT)) (-3689 (((-1203 |#1|)) 98 T ELT)) (-1889 (($) 135 (|has| |#1| (-381)) ELT)) (-1821 (($) NIL (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) 63 T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) 153 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) 159 T CONST)) (-1389 (((-114) $ $) 161 T ELT)) (-2236 (((-1299 $)) 119 T ELT) (((-1299 $) (-949)) 58 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) 121 T CONST)) (-3151 (($) 40 T CONST)) (-4444 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) 117 T ELT)) (-4465 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-4353 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-4355 (($ $ $) 113 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 53 T ELT) (($ $ (-560)) 138 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1203 |#1|)) (T -368)) +((-3185 (*1 *1 *1) (-4 *1 (-363))) (-3186 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1)))) (-1889 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))))) (-1888 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1219 (-947) (-791))))) (-1887 (*1 *1) (-4 *1 (-363))) (-3316 (*1 *1) (-4 *1 (-363))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-791)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-947)))) (-1886 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-381) (-1182) (-240) (-10 -8 (-15 -3185 ($ $)) (-15 -3186 ((-3 (-1297 $) "failed") (-709 $))) (-15 -1889 ((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558)))))) (-15 -1888 ((-1219 (-947) (-791)) (-558))) (-15 -1887 ($)) (-15 -3316 ($)) (-15 -1893 ((-114) $)) (-15 -1985 ((-791) $)) (-15 -4284 ((-947) $)) (-15 -1886 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) . T) ((-381) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) . T) ((-1247) . T) ((-1252) . T)) +((-4431 (((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) |#1|) 55 T ELT)) (-4430 (((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))) 53 T ELT))) +(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -364)) +((-4431 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4430 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1890 (((-791)) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-934 |#1|) "failed") $) NIL T ELT)) (-3656 (((-934 |#1|) $) NIL T ELT)) (-2010 (($ (-1297 (-934 |#1|))) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1893 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT) (($ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2231 (((-114) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3616 (((-934 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 (-934 |#1|)) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2230 (((-947) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1817 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1816 (((-1201 (-934 |#1|)) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-1201 (-934 |#1|)) "failed") $ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1818 (($ $ (-1201 (-934 |#1|))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-934 |#1|) (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1892 (((-1297 (-661 (-2 (|:| -3904 (-934 |#1|)) (|:| -2641 (-1150)))))) NIL T ELT)) (-1891 (((-709 (-934 |#1|))) NIL T ELT)) (-2650 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 (-934 |#1|))) NIL T ELT)) (-1887 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-1819 (($) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3724 (((-1297 (-934 |#1|)) $) NIL T ELT) (((-709 (-934 |#1|)) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-934 |#1|)) NIL T ELT)) (-3185 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| (-934 |#1|) (-147)) (|has| (-934 |#1|) (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| (-934 |#1|) (-381)) ELT) (($ $) NIL (|has| (-934 |#1|) (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-934 |#1|)) NIL T ELT) (($ (-934 |#1|) $) NIL T ELT))) +(((-365 |#1| |#2|) (-13 (-341 (-934 |#1|)) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 (-934 |#1|)) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 (-934 |#1|)))) (-15 -1890 ((-791))))) (-947) (-947)) (T -365)) +((-1892 (*1 *2) (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 (-934 *3)) (|:| -2641 (-1150)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) (-1891 (*1 *2) (-12 (-5 *2 (-709 (-934 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) (-1890 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947))))) +(-13 (-341 (-934 |#1|)) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 (-934 |#1|)) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 (-934 |#1|)))) (-15 -1890 ((-791))))) +((-3049 (((-114) $ $) 73 T ELT)) (-3688 (((-114) $) 88 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) 106 T ELT) (($ $ (-947)) 104 (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 170 (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1890 (((-791)) 103 T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) 187 (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) 127 T ELT)) (-3656 ((|#1| $) 105 T ELT)) (-2010 (($ (-1297 |#1|)) 71 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) 182 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) 171 (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) 113 (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) 108 T ELT) (($ $ (-947)) 107 (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) 214 T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) 148 (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 96 (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 218 T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) 150 (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) 123 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1892 (((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) 97 T ELT)) (-1891 (((-709 |#1|)) 101 T ELT)) (-2650 (($) 110 (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 173 (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) 174 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) 75 T ELT)) (-3685 (((-1201 |#1|)) 175 T ELT)) (-1887 (($) 147 (|has| |#1| (-381)) ELT)) (-1819 (($) NIL (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) 121 T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) 140 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) 180 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 197 T ELT) (((-1297 $) (-947)) 116 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) 186 T CONST)) (-3147 (($) 161 T CONST)) (-4440 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-791)) 114 (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) 208 T ELT)) (-4461 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-4349 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-4351 (($ $ $) 204 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 153 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 |#1|))) (-15 -1890 ((-791))))) (-363) (-3 (-1201 |#1|) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (T -366)) +((-1892 (*1 *2) (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2)))) (-1891 (*1 *2) (-12 (-5 *2 (-709 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150))))))))) (-1890 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150)))))))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 |#1|))) (-15 -1890 ((-791))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1890 (((-791)) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2010 (($ (-1297 |#1|)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1892 (((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150)))))) NIL T ELT)) (-1891 (((-709 |#1|)) NIL T ELT)) (-2650 (($) NIL (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 |#1|)) NIL T ELT)) (-1887 (($) NIL (|has| |#1| (-381)) ELT)) (-1819 (($) NIL (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 |#1|))) (-15 -1890 ((-791))))) (-363) (-947)) (T -367)) +((-1892 (*1 *2) (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947)))) (-1891 (*1 *2) (-12 (-5 *2 (-709 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947)))) (-1890 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1892 ((-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))))) (-15 -1891 ((-709 |#1|))) (-15 -1890 ((-791))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 129 (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) 155 (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) 103 T ELT)) (-3656 ((|#1| $) 100 T ELT)) (-2010 (($ (-1297 |#1|)) 95 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) 92 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) 51 (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) 130 (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) 47 T ELT) (($ $ (-947)) 52 (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) 75 T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) 107 (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) 105 (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) 157 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) 44 (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 124 (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) 154 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) 67 T ELT)) (-3685 (((-1201 |#1|)) 98 T ELT)) (-1887 (($) 135 (|has| |#1| (-381)) ELT)) (-1819 (($) NIL (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) 63 T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) 153 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) 159 T CONST)) (-1387 (((-114) $ $) 161 T ELT)) (-2232 (((-1297 $)) 119 T ELT) (((-1297 $) (-947)) 58 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) 121 T CONST)) (-3147 (($) 40 T CONST)) (-4440 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) 117 T ELT)) (-4461 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-4349 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-4351 (($ $ $) 113 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 53 T ELT) (($ $ (-558)) 138 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1201 |#1|)) (T -368)) NIL (-341 |#1|) -((-1910 (((-988 (-1203 |#1|)) (-1203 |#1|)) 49 T ELT)) (-3481 (((-1203 |#1|) (-949) (-949)) 157 T ELT) (((-1203 |#1|) (-949)) 153 T ELT)) (-1895 (((-114) (-1203 |#1|)) 109 T ELT)) (-1897 (((-949) (-949)) 85 T ELT)) (-1898 (((-949) (-949)) 93 T ELT)) (-1896 (((-949) (-949)) 83 T ELT)) (-2235 (((-114) (-1203 |#1|)) 113 T ELT)) (-1905 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 137 T ELT)) (-1908 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 142 T ELT)) (-1907 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 141 T ELT)) (-1906 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 140 T ELT)) (-1904 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 133 T ELT)) (-1909 (((-1203 |#1|) (-1203 |#1|)) 71 T ELT)) (-1900 (((-1203 |#1|) (-949)) 147 T ELT)) (-1903 (((-1203 |#1|) (-949)) 150 T ELT)) (-1902 (((-1203 |#1|) (-949)) 149 T ELT)) (-1901 (((-1203 |#1|) (-949)) 148 T ELT)) (-1899 (((-1203 |#1|) (-949)) 145 T ELT))) -(((-369 |#1|) (-10 -7 (-15 -1895 ((-114) (-1203 |#1|))) (-15 -2235 ((-114) (-1203 |#1|))) (-15 -1896 ((-949) (-949))) (-15 -1897 ((-949) (-949))) (-15 -1898 ((-949) (-949))) (-15 -1899 ((-1203 |#1|) (-949))) (-15 -1900 ((-1203 |#1|) (-949))) (-15 -1901 ((-1203 |#1|) (-949))) (-15 -1902 ((-1203 |#1|) (-949))) (-15 -1903 ((-1203 |#1|) (-949))) (-15 -1904 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1905 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1906 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1907 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1908 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -3481 ((-1203 |#1|) (-949))) (-15 -3481 ((-1203 |#1|) (-949) (-949))) (-15 -1909 ((-1203 |#1|) (-1203 |#1|))) (-15 -1910 ((-988 (-1203 |#1|)) (-1203 |#1|)))) (-363)) (T -369)) -((-1910 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-988 (-1203 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1203 *4)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3481 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1908 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1907 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1906 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1905 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1904 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) -(-10 -7 (-15 -1895 ((-114) (-1203 |#1|))) (-15 -2235 ((-114) (-1203 |#1|))) (-15 -1896 ((-949) (-949))) (-15 -1897 ((-949) (-949))) (-15 -1898 ((-949) (-949))) (-15 -1899 ((-1203 |#1|) (-949))) (-15 -1900 ((-1203 |#1|) (-949))) (-15 -1901 ((-1203 |#1|) (-949))) (-15 -1902 ((-1203 |#1|) (-949))) (-15 -1903 ((-1203 |#1|) (-949))) (-15 -1904 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1905 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1906 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1907 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -1908 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -3481 ((-1203 |#1|) (-949))) (-15 -3481 ((-1203 |#1|) (-949) (-949))) (-15 -1909 ((-1203 |#1|) (-1203 |#1|))) (-15 -1910 ((-988 (-1203 |#1|)) (-1203 |#1|)))) -((-1911 ((|#1| (-1203 |#2|)) 60 T ELT))) -(((-370 |#1| |#2|) (-10 -7 (-15 -1911 (|#1| (-1203 |#2|)))) (-13 (-416) (-10 -7 (-15 -4462 (|#1| |#2|)) (-15 -2234 ((-949) |#1|)) (-15 -2236 ((-1299 |#1|) (-949))) (-15 -4444 (|#1| |#1|)))) (-363)) (T -370)) -((-1911 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-416) (-10 -7 (-15 -4462 (*2 *4)) (-15 -2234 ((-949) *2)) (-15 -2236 ((-1299 *2) (-949))) (-15 -4444 (*2 *2))))) (-5 *1 (-370 *2 *4))))) -(-10 -7 (-15 -1911 (|#1| (-1203 |#2|)))) -((-3191 (((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|) 40 T ELT))) -(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3191 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|))) (-363) (-1275 |#1|) (-1275 |#2|)) (T -371)) -((-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))) -(-10 -7 (-15 -3191 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2014 (($ (-1299 |#1|)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| |#1| (-381)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| |#1| (-381)) ELT)) (-2235 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3620 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-1819 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1818 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1820 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| |#1| (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL (|has| |#1| (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 |#1|)) NIL T ELT)) (-1889 (($) NIL (|has| |#1| (-381)) ELT)) (-1821 (($) NIL (|has| |#1| (-381)) ELT)) (-3728 (((-1299 |#1|) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3189 (($ $) NIL (|has| |#1| (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-341 |#1|) (-363) (-949)) (T -372)) +((-1908 (((-986 (-1201 |#1|)) (-1201 |#1|)) 49 T ELT)) (-3477 (((-1201 |#1|) (-947) (-947)) 157 T ELT) (((-1201 |#1|) (-947)) 153 T ELT)) (-1893 (((-114) (-1201 |#1|)) 109 T ELT)) (-1895 (((-947) (-947)) 85 T ELT)) (-1896 (((-947) (-947)) 93 T ELT)) (-1894 (((-947) (-947)) 83 T ELT)) (-2231 (((-114) (-1201 |#1|)) 113 T ELT)) (-1903 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 137 T ELT)) (-1906 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 142 T ELT)) (-1905 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 141 T ELT)) (-1904 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 140 T ELT)) (-1902 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 133 T ELT)) (-1907 (((-1201 |#1|) (-1201 |#1|)) 71 T ELT)) (-1898 (((-1201 |#1|) (-947)) 147 T ELT)) (-1901 (((-1201 |#1|) (-947)) 150 T ELT)) (-1900 (((-1201 |#1|) (-947)) 149 T ELT)) (-1899 (((-1201 |#1|) (-947)) 148 T ELT)) (-1897 (((-1201 |#1|) (-947)) 145 T ELT))) +(((-369 |#1|) (-10 -7 (-15 -1893 ((-114) (-1201 |#1|))) (-15 -2231 ((-114) (-1201 |#1|))) (-15 -1894 ((-947) (-947))) (-15 -1895 ((-947) (-947))) (-15 -1896 ((-947) (-947))) (-15 -1897 ((-1201 |#1|) (-947))) (-15 -1898 ((-1201 |#1|) (-947))) (-15 -1899 ((-1201 |#1|) (-947))) (-15 -1900 ((-1201 |#1|) (-947))) (-15 -1901 ((-1201 |#1|) (-947))) (-15 -1902 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1903 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1904 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1905 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1906 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3477 ((-1201 |#1|) (-947))) (-15 -3477 ((-1201 |#1|) (-947) (-947))) (-15 -1907 ((-1201 |#1|) (-1201 |#1|))) (-15 -1908 ((-986 (-1201 |#1|)) (-1201 |#1|)))) (-363)) (T -369)) +((-1908 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-986 (-1201 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1201 *4)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3477 (*1 *2 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1906 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1905 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1904 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1903 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1902 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) +(-10 -7 (-15 -1893 ((-114) (-1201 |#1|))) (-15 -2231 ((-114) (-1201 |#1|))) (-15 -1894 ((-947) (-947))) (-15 -1895 ((-947) (-947))) (-15 -1896 ((-947) (-947))) (-15 -1897 ((-1201 |#1|) (-947))) (-15 -1898 ((-1201 |#1|) (-947))) (-15 -1899 ((-1201 |#1|) (-947))) (-15 -1900 ((-1201 |#1|) (-947))) (-15 -1901 ((-1201 |#1|) (-947))) (-15 -1902 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1903 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1904 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1905 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1906 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3477 ((-1201 |#1|) (-947))) (-15 -3477 ((-1201 |#1|) (-947) (-947))) (-15 -1907 ((-1201 |#1|) (-1201 |#1|))) (-15 -1908 ((-986 (-1201 |#1|)) (-1201 |#1|)))) +((-1909 ((|#1| (-1201 |#2|)) 60 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -1909 (|#1| (-1201 |#2|)))) (-13 (-414) (-10 -7 (-15 -4458 (|#1| |#2|)) (-15 -2230 ((-947) |#1|)) (-15 -2232 ((-1297 |#1|) (-947))) (-15 -4440 (|#1| |#1|)))) (-363)) (T -370)) +((-1909 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4458 (*2 *4)) (-15 -2230 ((-947) *2)) (-15 -2232 ((-1297 *2) (-947))) (-15 -4440 (*2 *2))))) (-5 *1 (-370 *2 *4))))) +(-10 -7 (-15 -1909 (|#1| (-1201 |#2|)))) +((-3187 (((-3 (-661 |#3|) "failed") (-661 |#3|) |#3|) 40 T ELT))) +(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3187 ((-3 (-661 |#3|) "failed") (-661 |#3|) |#3|))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -371)) +((-3187 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))) +(-10 -7 (-15 -3187 ((-3 (-661 |#3|) "failed") (-661 |#3|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2010 (($ (-1297 |#1|)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| |#1| (-381)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| |#1| (-381)) ELT)) (-2231 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3616 ((|#1| $) NIL T ELT) (($ $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-1817 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1816 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-1818 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| |#1| (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL (|has| |#1| (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 |#1|)) NIL T ELT)) (-1887 (($) NIL (|has| |#1| (-381)) ELT)) (-1819 (($) NIL (|has| |#1| (-381)) ELT)) (-3724 (((-1297 |#1|) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3185 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-372 |#1| |#2|) (-341 |#1|) (-363) (-947)) (T -372)) NIL (-341 |#1|) -((-2477 (((-114) (-663 (-976 |#1|))) 41 T ELT)) (-2479 (((-663 (-976 |#1|)) (-663 (-976 |#1|))) 53 T ELT)) (-2478 (((-3 (-663 (-976 |#1|)) "failed") (-663 (-976 |#1|))) 48 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -2477 ((-114) (-663 (-976 |#1|)))) (-15 -2478 ((-3 (-663 (-976 |#1|)) "failed") (-663 (-976 |#1|)))) (-15 -2479 ((-663 (-976 |#1|)) (-663 (-976 |#1|))))) (-466) (-663 (-1209))) (T -373)) -((-2479 (*1 *2 *2) (-12 (-5 *2 (-663 (-976 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1209))))) (-2478 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-976 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1209))))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-466)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1209)))))) -(-10 -7 (-15 -2477 ((-114) (-663 (-976 |#1|)))) (-15 -2478 ((-3 (-663 (-976 |#1|)) "failed") (-663 (-976 |#1|)))) (-15 -2479 ((-663 (-976 |#1|)) (-663 (-976 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) 17 T ELT)) (-2526 ((|#1| $ (-560)) NIL T ELT)) (-2527 (((-560) $ (-560)) NIL T ELT)) (-2518 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2519 (($ (-1 (-560) (-560)) $) 26 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 28 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2001 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-560)))) $) 30 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 7 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ |#1| (-560)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-374 |#1|) (-13 (-487) (-1070 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -3624 ((-793) $)) (-15 -2527 ((-560) $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -2519 ($ (-1 (-560) (-560)) $)) (-15 -2518 ($ (-1 |#1| |#1|) $)) (-15 -2001 ((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-560)))) $)))) (-1133)) (T -374)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1133)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1133)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1133)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) (-2527 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1133)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) (-2518 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-374 *3)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 (-560))))) (-5 *1 (-374 *3)) (-4 *3 (-1133))))) -(-13 (-487) (-1070 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -3624 ((-793) $)) (-15 -2527 ((-560) $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -2519 ($ (-1 (-560) (-560)) $)) (-15 -2518 ($ (-1 |#1| |#1|) $)) (-15 -2001 ((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-560)))) $)))) -((-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 13 T ELT)) (-2287 (($ $) 14 T ELT)) (-4487 (((-419 $) $) 31 T ELT)) (-4239 (((-114) $) 27 T ELT)) (-2888 (($ $) 19 T ELT)) (-3648 (($ $ $) 22 T ELT) (($ (-663 $)) NIL T ELT)) (-4248 (((-419 $) $) 32 T ELT)) (-3972 (((-3 $ "failed") $ $) 21 T ELT)) (-1799 (((-793) $) 25 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 36 T ELT)) (-2286 (((-114) $ $) 16 T ELT)) (-4465 (($ $ $) 34 T ELT))) -(((-375 |#1|) (-10 -8 (-15 -4465 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -4239 ((-114) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -2286 ((-114) |#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) -NIL -(-10 -8 (-15 -4465 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -4239 ((-114) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|)) (-15 -2286 ((-114) |#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) +((-2473 (((-114) (-661 (-974 |#1|))) 41 T ELT)) (-2475 (((-661 (-974 |#1|)) (-661 (-974 |#1|))) 53 T ELT)) (-2474 (((-3 (-661 (-974 |#1|)) "failed") (-661 (-974 |#1|))) 48 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -2473 ((-114) (-661 (-974 |#1|)))) (-15 -2474 ((-3 (-661 (-974 |#1|)) "failed") (-661 (-974 |#1|)))) (-15 -2475 ((-661 (-974 |#1|)) (-661 (-974 |#1|))))) (-464) (-661 (-1207))) (T -373)) +((-2475 (*1 *2 *2) (-12 (-5 *2 (-661 (-974 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-661 (-1207))))) (-2474 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-974 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-661 (-1207))))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-464)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-661 (-1207)))))) +(-10 -7 (-15 -2473 ((-114) (-661 (-974 |#1|)))) (-15 -2474 ((-3 (-661 (-974 |#1|)) "failed") (-661 (-974 |#1|)))) (-15 -2475 ((-661 (-974 |#1|)) (-661 (-974 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) 17 T ELT)) (-2522 ((|#1| $ (-558)) NIL T ELT)) (-2523 (((-558) $ (-558)) NIL T ELT)) (-2514 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2515 (($ (-1 (-558) (-558)) $) 26 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 28 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1997 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-558)))) $) 30 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 7 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ |#1| (-558)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-374 |#1|) (-13 (-485) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -3620 ((-791) $)) (-15 -2523 ((-558) $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -2515 ($ (-1 (-558) (-558)) $)) (-15 -2514 ($ (-1 |#1| |#1|) $)) (-15 -1997 ((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-558)))) $)))) (-1131)) (T -374)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-2523 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (-2515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-374 *3)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 (-558))))) (-5 *1 (-374 *3)) (-4 *3 (-1131))))) +(-13 (-485) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -3620 ((-791) $)) (-15 -2523 ((-558) $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -2515 ($ (-1 (-558) (-558)) $)) (-15 -2514 ($ (-1 |#1| |#1|) $)) (-15 -1997 ((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-558)))) $)))) +((-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 13 T ELT)) (-2283 (($ $) 14 T ELT)) (-4483 (((-417 $) $) 31 T ELT)) (-4235 (((-114) $) 27 T ELT)) (-2884 (($ $) 19 T ELT)) (-3644 (($ $ $) 22 T ELT) (($ (-661 $)) NIL T ELT)) (-4244 (((-417 $) $) 32 T ELT)) (-3968 (((-3 $ "failed") $ $) 21 T ELT)) (-1797 (((-791) $) 25 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 36 T ELT)) (-2282 (((-114) $ $) 16 T ELT)) (-4461 (($ $ $) 34 T ELT))) +(((-375 |#1|) (-10 -8 (-15 -4461 (|#1| |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -4235 ((-114) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -2282 ((-114) |#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) +NIL +(-10 -8 (-15 -4461 (|#1| |#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -4235 ((-114) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -2282 ((-114) |#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-376) (-142)) (T -376)) -((-4465 (*1 *1 *1 *1) (-4 *1 (-376)))) -(-13 (-319) (-1254) (-250) (-10 -8 (-15 -4465 ($ $ $)) (-6 -4509) (-6 -4503))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-1912 ((|#1| $ |#1|) 35 T ELT)) (-1916 (($ $ (-1191)) 23 T ELT)) (-4135 (((-3 |#1| "failed") $) 34 T ELT)) (-1913 ((|#1| $) 32 T ELT)) (-1917 (($ (-402)) 22 T ELT) (($ (-402) (-1191)) 21 T ELT)) (-4056 (((-402) $) 25 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1914 (((-1191) $) 26 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 20 T ELT)) (-1915 (($ $) 24 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 19 T ELT))) -(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -4135 ((-3 |#1| "failed") $)))) (-1133)) (T -377)) -((-4135 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1133))))) -(-13 (-378 (-402) |#1|) (-10 -8 (-15 -4135 ((-3 |#1| "failed") $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-1912 ((|#2| $ |#2|) 17 T ELT)) (-1916 (($ $ (-1191)) 22 T ELT)) (-1913 ((|#2| $) 18 T ELT)) (-1917 (($ |#1|) 24 T ELT) (($ |#1| (-1191)) 23 T ELT)) (-4056 ((|#1| $) 20 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1914 (((-1191) $) 19 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1915 (($ $) 21 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-378 |#1| |#2|) (-142) (-1133) (-1133)) (T -378)) -((-1917 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-1917 (*1 *1 *2 *3) (-12 (-5 *3 (-1191)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1133)) (-4 *4 (-1133)))) (-1916 (*1 *1 *1 *2) (-12 (-5 *2 (-1191)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-1915 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-1191)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-1912 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -1917 ($ |t#1|)) (-15 -1917 ($ |t#1| (-1191))) (-15 -1916 ($ $ (-1191))) (-15 -1915 ($ $)) (-15 -4056 (|t#1| $)) (-15 -1914 ((-1191) $)) (-15 -1913 (|t#2| $)) (-15 -1912 (|t#2| $ |t#2|)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3727 (((-1299 (-711 |#2|)) (-1299 $)) 67 T ELT)) (-2010 (((-711 |#2|) (-1299 $)) 139 T ELT)) (-1942 ((|#2| $) 36 T ELT)) (-2008 (((-711 |#2|) $ (-1299 $)) 142 T ELT)) (-2649 (((-3 $ "failed") $) 89 T ELT)) (-1940 ((|#2| $) 39 T ELT)) (-1920 (((-1203 |#2|) $) 98 T ELT)) (-2012 ((|#2| (-1299 $)) 122 T ELT)) (-1938 (((-1203 |#2|) $) 32 T ELT)) (-1932 (((-114)) 116 T ELT)) (-2014 (($ (-1299 |#2|) (-1299 $)) 132 T ELT)) (-3973 (((-3 $ "failed") $) 93 T ELT)) (-1925 (((-114)) 111 T ELT)) (-1923 (((-114)) 106 T ELT)) (-1927 (((-114)) 58 T ELT)) (-2011 (((-711 |#2|) (-1299 $)) 137 T ELT)) (-1943 ((|#2| $) 35 T ELT)) (-2009 (((-711 |#2|) $ (-1299 $)) 141 T ELT)) (-2650 (((-3 $ "failed") $) 87 T ELT)) (-1941 ((|#2| $) 38 T ELT)) (-1921 (((-1203 |#2|) $) 97 T ELT)) (-2013 ((|#2| (-1299 $)) 120 T ELT)) (-1939 (((-1203 |#2|) $) 30 T ELT)) (-1933 (((-114)) 115 T ELT)) (-1924 (((-114)) 108 T ELT)) (-1926 (((-114)) 56 T ELT)) (-1928 (((-114)) 103 T ELT)) (-1931 (((-114)) 117 T ELT)) (-3728 (((-1299 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) 128 T ELT)) (-1937 (((-114)) 113 T ELT)) (-1922 (((-663 (-1299 |#2|))) 102 T ELT)) (-1935 (((-114)) 114 T ELT)) (-1936 (((-114)) 112 T ELT)) (-1934 (((-114)) 51 T ELT)) (-1930 (((-114)) 118 T ELT))) -(((-379 |#1| |#2|) (-10 -8 (-15 -1920 ((-1203 |#2|) |#1|)) (-15 -1921 ((-1203 |#2|) |#1|)) (-15 -1922 ((-663 (-1299 |#2|)))) (-15 -2649 ((-3 |#1| "failed") |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-114))) (-15 -1926 ((-114))) (-15 -1927 ((-114))) (-15 -1928 ((-114))) (-15 -1930 ((-114))) (-15 -1931 ((-114))) (-15 -1932 ((-114))) (-15 -1933 ((-114))) (-15 -1934 ((-114))) (-15 -1935 ((-114))) (-15 -1936 ((-114))) (-15 -1937 ((-114))) (-15 -1938 ((-1203 |#2|) |#1|)) (-15 -1939 ((-1203 |#2|) |#1|)) (-15 -2010 ((-711 |#2|) (-1299 |#1|))) (-15 -2011 ((-711 |#2|) (-1299 |#1|))) (-15 -2012 (|#2| (-1299 |#1|))) (-15 -2013 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -1940 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -1942 (|#2| |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -2008 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -3727 ((-1299 (-711 |#2|)) (-1299 |#1|)))) (-380 |#2|) (-175)) (T -379)) -((-1937 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1936 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1935 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1934 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1933 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1932 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1931 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1930 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1928 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1927 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1926 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1925 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1923 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1299 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) -(-10 -8 (-15 -1920 ((-1203 |#2|) |#1|)) (-15 -1921 ((-1203 |#2|) |#1|)) (-15 -1922 ((-663 (-1299 |#2|)))) (-15 -2649 ((-3 |#1| "failed") |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-114))) (-15 -1926 ((-114))) (-15 -1927 ((-114))) (-15 -1928 ((-114))) (-15 -1930 ((-114))) (-15 -1931 ((-114))) (-15 -1932 ((-114))) (-15 -1933 ((-114))) (-15 -1934 ((-114))) (-15 -1935 ((-114))) (-15 -1936 ((-114))) (-15 -1937 ((-114))) (-15 -1938 ((-1203 |#2|) |#1|)) (-15 -1939 ((-1203 |#2|) |#1|)) (-15 -2010 ((-711 |#2|) (-1299 |#1|))) (-15 -2011 ((-711 |#2|) (-1299 |#1|))) (-15 -2012 (|#2| (-1299 |#1|))) (-15 -2013 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -1940 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -1942 (|#2| |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -2008 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -3727 ((-1299 (-711 |#2|)) (-1299 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1994 (((-3 $ "failed")) 47 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3727 (((-1299 (-711 |#1|)) (-1299 $)) 88 T ELT)) (-1944 (((-1299 $)) 91 T ELT)) (-4240 (($) 22 T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed")) 50 (|has| |#1| (-571)) ELT)) (-1918 (((-3 $ "failed")) 48 (|has| |#1| (-571)) ELT)) (-2010 (((-711 |#1|) (-1299 $)) 75 T ELT)) (-1942 ((|#1| $) 84 T ELT)) (-2008 (((-711 |#1|) $ (-1299 $)) 86 T ELT)) (-2649 (((-3 $ "failed") $) 55 (|has| |#1| (-571)) ELT)) (-2652 (($ $ (-949)) 36 T ELT)) (-1940 ((|#1| $) 82 T ELT)) (-1920 (((-1203 |#1|) $) 52 (|has| |#1| (-571)) ELT)) (-2012 ((|#1| (-1299 $)) 77 T ELT)) (-1938 (((-1203 |#1|) $) 73 T ELT)) (-1932 (((-114)) 67 T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) 79 T ELT)) (-3973 (((-3 $ "failed") $) 57 (|has| |#1| (-571)) ELT)) (-3597 (((-949)) 90 T ELT)) (-1929 (((-114)) 64 T ELT)) (-2676 (($ $ (-949)) 43 T ELT)) (-1925 (((-114)) 60 T ELT)) (-1923 (((-114)) 58 T ELT)) (-1927 (((-114)) 62 T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed")) 51 (|has| |#1| (-571)) ELT)) (-1919 (((-3 $ "failed")) 49 (|has| |#1| (-571)) ELT)) (-2011 (((-711 |#1|) (-1299 $)) 76 T ELT)) (-1943 ((|#1| $) 85 T ELT)) (-2009 (((-711 |#1|) $ (-1299 $)) 87 T ELT)) (-2650 (((-3 $ "failed") $) 56 (|has| |#1| (-571)) ELT)) (-2651 (($ $ (-949)) 37 T ELT)) (-1941 ((|#1| $) 83 T ELT)) (-1921 (((-1203 |#1|) $) 53 (|has| |#1| (-571)) ELT)) (-2013 ((|#1| (-1299 $)) 78 T ELT)) (-1939 (((-1203 |#1|) $) 74 T ELT)) (-1933 (((-114)) 68 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1924 (((-114)) 59 T ELT)) (-1926 (((-114)) 61 T ELT)) (-1928 (((-114)) 63 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1931 (((-114)) 66 T ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 81 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 80 T ELT)) (-2117 (((-663 (-976 |#1|)) (-1299 $)) 89 T ELT)) (-2838 (($ $ $) 33 T ELT)) (-1937 (((-114)) 72 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-1922 (((-663 (-1299 |#1|))) 54 (|has| |#1| (-571)) ELT)) (-2839 (($ $ $ $) 34 T ELT)) (-1935 (((-114)) 70 T ELT)) (-2837 (($ $ $) 32 T ELT)) (-1936 (((-114)) 71 T ELT)) (-1934 (((-114)) 69 T ELT)) (-1930 (((-114)) 65 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 38 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +((-4461 (*1 *1 *1 *1) (-4 *1 (-376)))) +(-13 (-319) (-1252) (-250) (-10 -8 (-15 -4461 ($ $ $)) (-6 -4505) (-6 -4499))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-1910 ((|#1| $ |#1|) 35 T ELT)) (-1914 (($ $ (-1189)) 23 T ELT)) (-4131 (((-3 |#1| "failed") $) 34 T ELT)) (-1911 ((|#1| $) 32 T ELT)) (-1915 (($ (-402)) 22 T ELT) (($ (-402) (-1189)) 21 T ELT)) (-4052 (((-402) $) 25 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1912 (((-1189) $) 26 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 20 T ELT)) (-1913 (($ $) 24 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 19 T ELT))) +(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -4131 ((-3 |#1| "failed") $)))) (-1131)) (T -377)) +((-4131 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1131))))) +(-13 (-378 (-402) |#1|) (-10 -8 (-15 -4131 ((-3 |#1| "failed") $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-1910 ((|#2| $ |#2|) 17 T ELT)) (-1914 (($ $ (-1189)) 22 T ELT)) (-1911 ((|#2| $) 18 T ELT)) (-1915 (($ |#1|) 24 T ELT) (($ |#1| (-1189)) 23 T ELT)) (-4052 ((|#1| $) 20 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1912 (((-1189) $) 19 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1913 (($ $) 21 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-378 |#1| |#2|) (-142) (-1131) (-1131)) (T -378)) +((-1915 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-1915 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1131)) (-4 *4 (-1131)))) (-1914 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-1913 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-1189)))) (-1911 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-1910 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -1915 ($ |t#1|)) (-15 -1915 ($ |t#1| (-1189))) (-15 -1914 ($ $ (-1189))) (-15 -1913 ($ $)) (-15 -4052 (|t#1| $)) (-15 -1912 ((-1189) $)) (-15 -1911 (|t#2| $)) (-15 -1910 (|t#2| $ |t#2|)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3723 (((-1297 (-709 |#2|)) (-1297 $)) 67 T ELT)) (-2006 (((-709 |#2|) (-1297 $)) 139 T ELT)) (-1940 ((|#2| $) 36 T ELT)) (-2004 (((-709 |#2|) $ (-1297 $)) 142 T ELT)) (-2645 (((-3 $ "failed") $) 89 T ELT)) (-1938 ((|#2| $) 39 T ELT)) (-1918 (((-1201 |#2|) $) 98 T ELT)) (-2008 ((|#2| (-1297 $)) 122 T ELT)) (-1936 (((-1201 |#2|) $) 32 T ELT)) (-1930 (((-114)) 116 T ELT)) (-2010 (($ (-1297 |#2|) (-1297 $)) 132 T ELT)) (-3969 (((-3 $ "failed") $) 93 T ELT)) (-1923 (((-114)) 111 T ELT)) (-1921 (((-114)) 106 T ELT)) (-1925 (((-114)) 58 T ELT)) (-2007 (((-709 |#2|) (-1297 $)) 137 T ELT)) (-1941 ((|#2| $) 35 T ELT)) (-2005 (((-709 |#2|) $ (-1297 $)) 141 T ELT)) (-2646 (((-3 $ "failed") $) 87 T ELT)) (-1939 ((|#2| $) 38 T ELT)) (-1919 (((-1201 |#2|) $) 97 T ELT)) (-2009 ((|#2| (-1297 $)) 120 T ELT)) (-1937 (((-1201 |#2|) $) 30 T ELT)) (-1931 (((-114)) 115 T ELT)) (-1922 (((-114)) 108 T ELT)) (-1924 (((-114)) 56 T ELT)) (-1926 (((-114)) 103 T ELT)) (-1929 (((-114)) 117 T ELT)) (-3724 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) 128 T ELT)) (-1935 (((-114)) 113 T ELT)) (-1920 (((-661 (-1297 |#2|))) 102 T ELT)) (-1933 (((-114)) 114 T ELT)) (-1934 (((-114)) 112 T ELT)) (-1932 (((-114)) 51 T ELT)) (-1928 (((-114)) 118 T ELT))) +(((-379 |#1| |#2|) (-10 -8 (-15 -1918 ((-1201 |#2|) |#1|)) (-15 -1919 ((-1201 |#2|) |#1|)) (-15 -1920 ((-661 (-1297 |#2|)))) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -2646 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 -1921 ((-114))) (-15 -1922 ((-114))) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-114))) (-15 -1926 ((-114))) (-15 -1928 ((-114))) (-15 -1929 ((-114))) (-15 -1930 ((-114))) (-15 -1931 ((-114))) (-15 -1932 ((-114))) (-15 -1933 ((-114))) (-15 -1934 ((-114))) (-15 -1935 ((-114))) (-15 -1936 ((-1201 |#2|) |#1|)) (-15 -1937 ((-1201 |#2|) |#1|)) (-15 -2006 ((-709 |#2|) (-1297 |#1|))) (-15 -2007 ((-709 |#2|) (-1297 |#1|))) (-15 -2008 (|#2| (-1297 |#1|))) (-15 -2009 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1938 (|#2| |#1|)) (-15 -1939 (|#2| |#1|)) (-15 -1940 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -2004 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -2005 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -3723 ((-1297 (-709 |#2|)) (-1297 |#1|)))) (-380 |#2|) (-175)) (T -379)) +((-1935 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1934 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1933 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1932 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1931 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1930 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1929 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1928 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1926 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1925 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1923 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1920 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-661 (-1297 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) +(-10 -8 (-15 -1918 ((-1201 |#2|) |#1|)) (-15 -1919 ((-1201 |#2|) |#1|)) (-15 -1920 ((-661 (-1297 |#2|)))) (-15 -2645 ((-3 |#1| "failed") |#1|)) (-15 -2646 ((-3 |#1| "failed") |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 -1921 ((-114))) (-15 -1922 ((-114))) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-114))) (-15 -1926 ((-114))) (-15 -1928 ((-114))) (-15 -1929 ((-114))) (-15 -1930 ((-114))) (-15 -1931 ((-114))) (-15 -1932 ((-114))) (-15 -1933 ((-114))) (-15 -1934 ((-114))) (-15 -1935 ((-114))) (-15 -1936 ((-1201 |#2|) |#1|)) (-15 -1937 ((-1201 |#2|) |#1|)) (-15 -2006 ((-709 |#2|) (-1297 |#1|))) (-15 -2007 ((-709 |#2|) (-1297 |#1|))) (-15 -2008 (|#2| (-1297 |#1|))) (-15 -2009 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1938 (|#2| |#1|)) (-15 -1939 (|#2| |#1|)) (-15 -1940 (|#2| |#1|)) (-15 -1941 (|#2| |#1|)) (-15 -2004 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -2005 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -3723 ((-1297 (-709 |#2|)) (-1297 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1990 (((-3 $ "failed")) 47 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3723 (((-1297 (-709 |#1|)) (-1297 $)) 88 T ELT)) (-1942 (((-1297 $)) 91 T ELT)) (-4236 (($) 22 T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed")) 50 (|has| |#1| (-569)) ELT)) (-1916 (((-3 $ "failed")) 48 (|has| |#1| (-569)) ELT)) (-2006 (((-709 |#1|) (-1297 $)) 75 T ELT)) (-1940 ((|#1| $) 84 T ELT)) (-2004 (((-709 |#1|) $ (-1297 $)) 86 T ELT)) (-2645 (((-3 $ "failed") $) 55 (|has| |#1| (-569)) ELT)) (-2648 (($ $ (-947)) 36 T ELT)) (-1938 ((|#1| $) 82 T ELT)) (-1918 (((-1201 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-2008 ((|#1| (-1297 $)) 77 T ELT)) (-1936 (((-1201 |#1|) $) 73 T ELT)) (-1930 (((-114)) 67 T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) 79 T ELT)) (-3969 (((-3 $ "failed") $) 57 (|has| |#1| (-569)) ELT)) (-3593 (((-947)) 90 T ELT)) (-1927 (((-114)) 64 T ELT)) (-2672 (($ $ (-947)) 43 T ELT)) (-1923 (((-114)) 60 T ELT)) (-1921 (((-114)) 58 T ELT)) (-1925 (((-114)) 62 T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed")) 51 (|has| |#1| (-569)) ELT)) (-1917 (((-3 $ "failed")) 49 (|has| |#1| (-569)) ELT)) (-2007 (((-709 |#1|) (-1297 $)) 76 T ELT)) (-1941 ((|#1| $) 85 T ELT)) (-2005 (((-709 |#1|) $ (-1297 $)) 87 T ELT)) (-2646 (((-3 $ "failed") $) 56 (|has| |#1| (-569)) ELT)) (-2647 (($ $ (-947)) 37 T ELT)) (-1939 ((|#1| $) 83 T ELT)) (-1919 (((-1201 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-2009 ((|#1| (-1297 $)) 78 T ELT)) (-1937 (((-1201 |#1|) $) 74 T ELT)) (-1931 (((-114)) 68 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1922 (((-114)) 59 T ELT)) (-1924 (((-114)) 61 T ELT)) (-1926 (((-114)) 63 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1929 (((-114)) 66 T ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 81 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 80 T ELT)) (-2113 (((-661 (-974 |#1|)) (-1297 $)) 89 T ELT)) (-2834 (($ $ $) 33 T ELT)) (-1935 (((-114)) 72 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-1920 (((-661 (-1297 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2835 (($ $ $ $) 34 T ELT)) (-1933 (((-114)) 70 T ELT)) (-2833 (($ $ $) 32 T ELT)) (-1934 (((-114)) 71 T ELT)) (-1932 (((-114)) 69 T ELT)) (-1928 (((-114)) 65 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 38 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) (((-380 |#1|) (-142) (-175)) (T -380)) -((-1944 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1299 *1)) (-4 *1 (-380 *3)))) (-3597 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-949)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-663 (-976 *4))))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1299 (-711 *4))))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2008 (*1 *2 *1 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1299 *4)))) (-3728 (*1 *2 *3 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1299 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3)))) (-1937 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1936 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1935 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1934 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1933 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1932 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1931 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1930 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1929 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1928 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1927 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1926 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1925 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1924 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1923 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3973 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-2650 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-2649 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-1922 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-663 (-1299 *3))))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1203 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1203 *3)))) (-2132 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2236 (-663 *1)))) (-4 *1 (-380 *3)))) (-2131 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2236 (-663 *1)))) (-4 *1 (-380 *3)))) (-1919 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-1918 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-1994 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175))))) -(-13 (-766 |t#1|) (-10 -8 (-15 -1944 ((-1299 $))) (-15 -3597 ((-949))) (-15 -2117 ((-663 (-976 |t#1|)) (-1299 $))) (-15 -3727 ((-1299 (-711 |t#1|)) (-1299 $))) (-15 -2009 ((-711 |t#1|) $ (-1299 $))) (-15 -2008 ((-711 |t#1|) $ (-1299 $))) (-15 -1943 (|t#1| $)) (-15 -1942 (|t#1| $)) (-15 -1941 (|t#1| $)) (-15 -1940 (|t#1| $)) (-15 -3728 ((-1299 |t#1|) $ (-1299 $))) (-15 -3728 ((-711 |t#1|) (-1299 $) (-1299 $))) (-15 -2014 ($ (-1299 |t#1|) (-1299 $))) (-15 -2013 (|t#1| (-1299 $))) (-15 -2012 (|t#1| (-1299 $))) (-15 -2011 ((-711 |t#1|) (-1299 $))) (-15 -2010 ((-711 |t#1|) (-1299 $))) (-15 -1939 ((-1203 |t#1|) $)) (-15 -1938 ((-1203 |t#1|) $)) (-15 -1937 ((-114))) (-15 -1936 ((-114))) (-15 -1935 ((-114))) (-15 -1934 ((-114))) (-15 -1933 ((-114))) (-15 -1932 ((-114))) (-15 -1931 ((-114))) (-15 -1930 ((-114))) (-15 -1929 ((-114))) (-15 -1928 ((-114))) (-15 -1927 ((-114))) (-15 -1926 ((-114))) (-15 -1925 ((-114))) (-15 -1924 ((-114))) (-15 -1923 ((-114))) (IF (|has| |t#1| (-571)) (PROGN (-15 -3973 ((-3 $ "failed") $)) (-15 -2650 ((-3 $ "failed") $)) (-15 -2649 ((-3 $ "failed") $)) (-15 -1922 ((-663 (-1299 |t#1|)))) (-15 -1921 ((-1203 |t#1|) $)) (-15 -1920 ((-1203 |t#1|) $)) (-15 -2132 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -2131 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -1919 ((-3 $ "failed"))) (-15 -1918 ((-3 $ "failed"))) (-15 -1994 ((-3 $ "failed"))) (-6 -4508)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3624 (((-793)) 20 T ELT)) (-3481 (($) 17 T ELT)) (-2234 (((-949) $) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2645 (($ (-949)) 19 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-1942 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3)))) (-3593 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-947)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-661 (-974 *4))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 (-709 *4))))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-2004 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 *4)))) (-3724 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-2010 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-1935 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1934 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1933 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1932 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1931 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1930 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1929 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1928 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1927 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1926 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1925 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1924 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1923 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1922 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1921 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3969 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2646 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2645 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-1920 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-661 (-1297 *3))))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1201 *3)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1201 *3)))) (-2128 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2232 (-661 *1)))) (-4 *1 (-380 *3)))) (-2127 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2232 (-661 *1)))) (-4 *1 (-380 *3)))) (-1917 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1916 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1990 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) +(-13 (-764 |t#1|) (-10 -8 (-15 -1942 ((-1297 $))) (-15 -3593 ((-947))) (-15 -2113 ((-661 (-974 |t#1|)) (-1297 $))) (-15 -3723 ((-1297 (-709 |t#1|)) (-1297 $))) (-15 -2005 ((-709 |t#1|) $ (-1297 $))) (-15 -2004 ((-709 |t#1|) $ (-1297 $))) (-15 -1941 (|t#1| $)) (-15 -1940 (|t#1| $)) (-15 -1939 (|t#1| $)) (-15 -1938 (|t#1| $)) (-15 -3724 ((-1297 |t#1|) $ (-1297 $))) (-15 -3724 ((-709 |t#1|) (-1297 $) (-1297 $))) (-15 -2010 ($ (-1297 |t#1|) (-1297 $))) (-15 -2009 (|t#1| (-1297 $))) (-15 -2008 (|t#1| (-1297 $))) (-15 -2007 ((-709 |t#1|) (-1297 $))) (-15 -2006 ((-709 |t#1|) (-1297 $))) (-15 -1937 ((-1201 |t#1|) $)) (-15 -1936 ((-1201 |t#1|) $)) (-15 -1935 ((-114))) (-15 -1934 ((-114))) (-15 -1933 ((-114))) (-15 -1932 ((-114))) (-15 -1931 ((-114))) (-15 -1930 ((-114))) (-15 -1929 ((-114))) (-15 -1928 ((-114))) (-15 -1927 ((-114))) (-15 -1926 ((-114))) (-15 -1925 ((-114))) (-15 -1924 ((-114))) (-15 -1923 ((-114))) (-15 -1922 ((-114))) (-15 -1921 ((-114))) (IF (|has| |t#1| (-569)) (PROGN (-15 -3969 ((-3 $ "failed") $)) (-15 -2646 ((-3 $ "failed") $)) (-15 -2645 ((-3 $ "failed") $)) (-15 -1920 ((-661 (-1297 |t#1|)))) (-15 -1919 ((-1201 |t#1|) $)) (-15 -1918 ((-1201 |t#1|) $)) (-15 -2128 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -2127 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -1917 ((-3 $ "failed"))) (-15 -1916 ((-3 $ "failed"))) (-15 -1990 ((-3 $ "failed"))) (-6 -4504)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-764 |#1|) . T) ((-781) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3620 (((-791)) 20 T ELT)) (-3477 (($) 17 T ELT)) (-2230 (((-947) $) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2641 (($ (-947)) 19 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-381) (-142)) (T -381)) -((-3624 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) (-2645 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-381)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-949)))) (-3481 (*1 *1) (-4 *1 (-381)))) -(-13 (-1133) (-10 -8 (-15 -3624 ((-793))) (-15 -2645 ($ (-949))) (-15 -2234 ((-949) $)) (-15 -3481 ($)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-2004 (((-711 |#2|) (-1299 $)) 45 T ELT)) (-2014 (($ (-1299 |#2|) (-1299 $)) 39 T ELT)) (-2003 (((-711 |#2|) $ (-1299 $)) 47 T ELT)) (-4273 ((|#2| (-1299 $)) 13 T ELT)) (-3728 (((-1299 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) 27 T ELT))) -(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -2004 ((-711 |#2|) (-1299 |#1|))) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2003 ((-711 |#2|) |#1| (-1299 |#1|)))) (-383 |#2| |#3|) (-175) (-1275 |#2|)) (T -382)) -NIL -(-10 -8 (-15 -2004 ((-711 |#2|) (-1299 |#1|))) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2003 ((-711 |#2|) |#1| (-1299 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2004 (((-711 |#1|) (-1299 $)) 58 T ELT)) (-3836 ((|#1| $) 64 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2014 (($ (-1299 |#1|) (-1299 $)) 60 T ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) 65 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3597 (((-949)) 66 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3620 ((|#1| $) 63 T ELT)) (-2238 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4273 ((|#1| (-1299 $)) 59 T ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 62 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 61 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3189 (((-713 $) $) 55 (|has| |#1| (-147)) ELT)) (-2852 ((|#2| $) 57 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-383 |#1| |#2|) (-142) (-175) (-1275 |t#1|)) (T -383)) -((-3597 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-949)))) (-2003 (*1 *2 *1 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *4)))) (-3728 (*1 *2 *3 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1299 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1275 *4)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1275 *2)) (-4 *2 (-175)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1275 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3597 ((-949))) (-15 -2003 ((-711 |t#1|) $ (-1299 $))) (-15 -3836 (|t#1| $)) (-15 -3620 (|t#1| $)) (-15 -3728 ((-1299 |t#1|) $ (-1299 $))) (-15 -3728 ((-711 |t#1|) (-1299 $) (-1299 $))) (-15 -2014 ($ (-1299 |t#1|) (-1299 $))) (-15 -4273 (|t#1| (-1299 $))) (-15 -2004 ((-711 |t#1|) (-1299 $))) (-15 -2852 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -2238 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-1947 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1945 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3396 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2525 (($ $) 25 T ELT)) (-3925 (((-560) (-1 (-114) |#2|) $) NIL T ELT) (((-560) |#2| $) 11 T ELT) (((-560) |#2| $ (-560)) NIL T ELT)) (-4024 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-384 |#1| |#2|) (-10 -8 (-15 -1945 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3396 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1249)) (T -384)) -NIL -(-10 -8 (-15 -1945 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3396 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4512)) ELT) (($ $) 97 (-12 (|has| |#1| (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 99 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 109 T ELT)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) 106 T ELT) (((-560) |#1| $) 105 (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) 104 (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 91 (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 92 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 100 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 93 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 95 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) 94 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 96 (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-385 |#1|) (-142) (-1249)) (T -385)) -((-4024 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) (-2525 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)))) (-3396 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1249)) (-5 *2 (-560)))) (-3925 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-560)))) (-3925 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)))) (-4024 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-872)) (-5 *2 (-114)))) (-1946 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4512)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) (-2524 (*1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-385 *2)) (-4 *2 (-1249)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4512)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) (-1945 (*1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872))))) -(-13 (-673 |t#1|) (-10 -8 (-6 -4511) (-15 -4024 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -2525 ($ $)) (-15 -3396 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -1947 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -3925 ((-560) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1133)) (PROGN (-15 -3925 ((-560) |t#1| $)) (-15 -3925 ((-560) |t#1| $ (-560)))) |%noBranch|) (IF (|has| |t#1| (-872)) (PROGN (-6 (-872)) (-15 -4024 ($ $ $)) (-15 -3396 ($ $)) (-15 -1947 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4512)) (PROGN (-15 -1946 ($ $ $ (-560))) (-15 -2524 ($ $)) (-15 -1945 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-872)) (-15 -1945 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1133) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872))) ((-1249) . T)) -((-4357 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4358 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4474 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4358 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4357 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1249) (-385 |#1|) (-1249) (-385 |#3|)) (T -386)) -((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4358 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4357 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4450 (((-663 |#1|) $) 42 T ELT)) (-4463 (($ $ (-793)) 43 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4455 (((-1324 |#1| |#2|) (-1324 |#1| |#2|) $) 46 T ELT)) (-4452 (($ $) 44 T ELT)) (-4456 (((-1324 |#1| |#2|) (-1324 |#1| |#2|) $) 47 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4284 (($ $ |#1| $) 41 T ELT) (($ $ (-663 |#1|) (-663 $)) 40 T ELT)) (-4464 (((-793) $) 48 T ELT)) (-4036 (($ $ $) 39 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1315 |#1| |#2|) $) 50 T ELT) (((-1324 |#1| |#2|) $) 49 T ELT)) (-4470 ((|#2| (-1324 |#1| |#2|) $) 52 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-1948 (($ (-694 |#1|)) 45 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#2|) 38 (|has| |#2| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-387 |#1| |#2|) (-142) (-872) (-175)) (T -387)) -((-4470 (*1 *2 *3 *1) (-12 (-5 *3 (-1324 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-872)) (-4 *2 (-175)))) (-4462 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) (-4462 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-1315 *3 *4)))) (-4462 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-1324 *3 *4)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-793)))) (-4456 (*1 *2 *2 *1) (-12 (-5 *2 (-1324 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4455 (*1 *2 *2 *1) (-12 (-5 *2 (-1324 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-4452 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) (-4463 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4450 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-663 *3)))) (-4284 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-872)) (-4 *5 (-175))))) -(-13 (-654 |t#2|) (-10 -8 (-15 -4470 (|t#2| (-1324 |t#1| |t#2|) $)) (-15 -4462 ($ |t#1|)) (-15 -4462 ((-1315 |t#1| |t#2|) $)) (-15 -4462 ((-1324 |t#1| |t#2|) $)) (-15 -4464 ((-793) $)) (-15 -4456 ((-1324 |t#1| |t#2|) (-1324 |t#1| |t#2|) $)) (-15 -4455 ((-1324 |t#1| |t#2|) (-1324 |t#1| |t#2|) $)) (-15 -1948 ($ (-694 |t#1|))) (-15 -4452 ($ $)) (-15 -4463 ($ $ (-793))) (-15 -4450 ((-663 |t#1|) $)) (-15 -4284 ($ $ |t#1| $)) (-15 -4284 ($ $ (-663 |t#1|) (-663 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-670 |#2|) . T) ((-654 |#2|) . T) ((-662 |#2|) . T) ((-739 |#2|) . T) ((-1083 |#2|) . T) ((-1088 |#2|) . T) ((-1133) . T) ((-1249) . T)) -((-1951 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-1949 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-1950 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT))) -(((-388 |#1| |#2|) (-10 -7 (-15 -1949 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1950 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1951 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1249) (-13 (-385 |#1|) (-10 -7 (-6 -4512)))) (T -388)) -((-1951 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512)))))) (-1950 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512)))))) (-1949 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512))))))) -(-10 -7 (-15 -1949 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1950 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1951 (|#2| (-1 (-114) |#1| |#1|) |#2|))) -((-2507 (((-711 |#2|) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 22 T ELT) (((-711 (-560)) (-711 $)) 14 T ELT))) -(((-389 |#1| |#2|) (-10 -8 (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 |#2|) (-711 |#1|)))) (-390 |#2|) (-1081)) (T -389)) -NIL -(-10 -8 (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 |#2|) (-711 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2507 (((-711 |#1|) (-711 $)) 35 T ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 34 T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 46 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) 45 (|has| |#1| (-660 (-560))) ELT)) (-2508 (((-711 |#1|) (-1299 $)) 37 T ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 36 T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 44 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-1299 $)) 43 (|has| |#1| (-660 (-560))) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-390 |#1|) (-142) (-1081)) (T -390)) -NIL -(-13 (-660 |t#1|) (-10 -7 (IF (|has| |t#1| (-660 (-560))) (-6 (-660 (-560))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 35 T ELT)) (-3617 (((-560) $) 63 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4287 (($ $) 137 T ELT)) (-3998 (($ $) 100 T ELT)) (-4155 (($ $) 91 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) 47 T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3996 (($ $) 98 T ELT)) (-4154 (($ $) 86 T ELT)) (-4139 (((-560) $) 79 T ELT)) (-2844 (($ $ (-560)) 74 T ELT)) (-4000 (($ $) NIL T ELT)) (-4153 (($ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3615 (($ $) 139 T ELT)) (-3661 (((-3 (-560) #1="failed") $) 231 T ELT) (((-3 (-421 (-560)) #1#) $) 227 T ELT)) (-3660 (((-560) $) 229 T ELT) (((-421 (-560)) $) 225 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-1960 (((-560) $ $) 129 T ELT)) (-3973 (((-3 $ "failed") $) 142 T ELT)) (-1959 (((-421 (-560)) $ (-793)) 232 T ELT) (((-421 (-560)) $ (-793) (-793)) 224 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2619 (((-949)) 125 T ELT) (((-949) (-949)) 126 (|has| $ (-6 -4502)) ELT)) (-3690 (((-114) $) 57 T ELT)) (-4143 (($) 41 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL T ELT)) (-1952 (((-1305) (-793)) 192 T ELT)) (-1953 (((-1305)) 197 T ELT) (((-1305) (-793)) 198 T ELT)) (-1955 (((-1305)) 199 T ELT) (((-1305) (-793)) 200 T ELT)) (-1954 (((-1305)) 195 T ELT) (((-1305) (-793)) 196 T ELT)) (-4288 (((-560) $) 69 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-2846 (($ $) 51 T ELT)) (-3620 (($ $) NIL T ELT)) (-3691 (((-114) $) 37 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-3344 (($ $ $) NIL T ELT) (($) NIL (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-2620 (((-560) $) 17 T ELT)) (-1958 (($) 109 T ELT) (($ $) 116 T ELT)) (-1957 (($) 115 T ELT) (($ $) 117 T ELT)) (-4458 (($ $) 103 T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 144 T ELT)) (-1991 (((-949) (-560)) 46 (|has| $ (-6 -4502)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) 60 T ELT)) (-3618 (($ $) 136 T ELT)) (-3758 (($ (-560) (-560)) 132 T ELT) (($ (-560) (-560) (-949)) 133 T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-2646 (((-560) $) 19 T ELT)) (-1956 (($) 118 T ELT)) (-4459 (($ $) 97 T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3100 (((-949)) 127 T ELT) (((-949) (-949)) 128 (|has| $ (-6 -4502)) ELT)) (-4274 (($ $) 143 T ELT) (($ $ (-793)) NIL T ELT)) (-1990 (((-949) (-560)) 50 (|has| $ (-6 -4502)) ELT)) (-4001 (($ $) NIL T ELT)) (-4152 (($ $) NIL T ELT)) (-3999 (($ $) NIL T ELT)) (-4151 (($ $) NIL T ELT)) (-3997 (($ $) 99 T ELT)) (-4150 (($ $) 90 T ELT)) (-4488 (((-391) $) 216 T ELT) (((-229) $) 218 T ELT) (((-916 (-391)) $) NIL T ELT) (((-1191) $) 203 T ELT) (((-549) $) 214 T ELT) (($ (-229)) 223 T ELT)) (-4462 (((-888) $) 207 T ELT) (($ (-560)) 228 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 228 T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 219 T ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (($ $) 138 T ELT)) (-1992 (((-949)) 61 T ELT) (((-949) (-949)) 81 (|has| $ (-6 -4502)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (((-949)) 130 T ELT)) (-4004 (($ $) 106 T ELT)) (-3992 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4002 (($ $) 104 T ELT)) (-3990 (($ $) 39 T ELT)) (-4006 (($ $) NIL T ELT)) (-3994 (($ $) NIL T ELT)) (-4007 (($ $) NIL T ELT)) (-3995 (($ $) NIL T ELT)) (-4005 (($ $) NIL T ELT)) (-3993 (($ $) NIL T ELT)) (-4003 (($ $) 105 T ELT)) (-3991 (($ $) 52 T ELT)) (-3889 (($ $) 58 T ELT)) (-3145 (($) 36 T CONST)) (-3151 (($) 43 T CONST)) (-2982 (((-1191) $) 27 T ELT) (((-1191) $ (-114)) 29 T ELT) (((-1305) (-847) $) 30 T ELT) (((-1305) (-847) $ (-114)) 31 T ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3051 (((-114) $ $) 204 T ELT)) (-3052 (((-114) $ $) 45 T ELT)) (-3540 (((-114) $ $) 56 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 62 T ELT)) (-4465 (($ $ $) 48 T ELT) (($ $ (-560)) 42 T ELT)) (-4353 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-4355 (($ $ $) 73 T ELT)) (** (($ $ (-949)) 84 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 110 T ELT) (($ $ (-421 (-560))) 154 T ELT) (($ $ $) 146 T ELT)) (* (($ (-949) $) 80 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 85 T ELT) (($ $ $) 72 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-391) (-13 (-418) (-240) (-633 (-1191)) (-845) (-632 (-229)) (-1235) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -4465 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2846 ($ $)) (-15 -1960 ((-560) $ $)) (-15 -2844 ($ $ (-560))) (-15 -1959 ((-421 (-560)) $ (-793))) (-15 -1959 ((-421 (-560)) $ (-793) (-793))) (-15 -1958 ($)) (-15 -1957 ($)) (-15 -1956 ($)) (-15 -3992 ($ $ $)) (-15 -1958 ($ $)) (-15 -1957 ($ $)) (-15 -1955 ((-1305))) (-15 -1955 ((-1305) (-793))) (-15 -1954 ((-1305))) (-15 -1954 ((-1305) (-793))) (-15 -1953 ((-1305))) (-15 -1953 ((-1305) (-793))) (-15 -1952 ((-1305) (-793))) (-6 -4502) (-6 -4494)))) (T -391)) -((** (*1 *1 *1 *1) (-5 *1 (-391))) (-4465 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-2846 (*1 *1 *1) (-5 *1 (-391))) (-1960 (*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-2844 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-1959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-1958 (*1 *1) (-5 *1 (-391))) (-1957 (*1 *1) (-5 *1 (-391))) (-1956 (*1 *1) (-5 *1 (-391))) (-3992 (*1 *1 *1 *1) (-5 *1 (-391))) (-1958 (*1 *1 *1) (-5 *1 (-391))) (-1957 (*1 *1 *1) (-5 *1 (-391))) (-1955 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) (-1954 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) (-1953 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391))))) -(-13 (-418) (-240) (-633 (-1191)) (-845) (-632 (-229)) (-1235) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -4465 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2846 ($ $)) (-15 -1960 ((-560) $ $)) (-15 -2844 ($ $ (-560))) (-15 -1959 ((-421 (-560)) $ (-793))) (-15 -1959 ((-421 (-560)) $ (-793) (-793))) (-15 -1958 ($)) (-15 -1957 ($)) (-15 -1956 ($)) (-15 -3992 ($ $ $)) (-15 -1958 ($ $)) (-15 -1957 ($ $)) (-15 -1955 ((-1305))) (-15 -1955 ((-1305) (-793))) (-15 -1954 ((-1305))) (-15 -1954 ((-1305) (-793))) (-15 -1953 ((-1305))) (-15 -1953 ((-1305) (-793))) (-15 -1952 ((-1305) (-793))) (-6 -4502) (-6 -4494))) -((-1961 (((-663 (-305 (-976 (-171 |#1|)))) (-305 (-421 (-976 (-171 (-560))))) |#1|) 51 T ELT) (((-663 (-305 (-976 (-171 |#1|)))) (-421 (-976 (-171 (-560)))) |#1|) 50 T ELT) (((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-305 (-421 (-976 (-171 (-560)))))) |#1|) 47 T ELT) (((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-421 (-976 (-171 (-560))))) |#1|) 41 T ELT)) (-1962 (((-663 (-663 (-171 |#1|))) (-663 (-421 (-976 (-171 (-560))))) (-663 (-1209)) |#1|) 30 T ELT) (((-663 (-171 |#1|)) (-421 (-976 (-171 (-560)))) |#1|) 18 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -1961 ((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-421 (-976 (-171 (-560))))) |#1|)) (-15 -1961 ((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-305 (-421 (-976 (-171 (-560)))))) |#1|)) (-15 -1961 ((-663 (-305 (-976 (-171 |#1|)))) (-421 (-976 (-171 (-560)))) |#1|)) (-15 -1961 ((-663 (-305 (-976 (-171 |#1|)))) (-305 (-421 (-976 (-171 (-560))))) |#1|)) (-15 -1962 ((-663 (-171 |#1|)) (-421 (-976 (-171 (-560)))) |#1|)) (-15 -1962 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-976 (-171 (-560))))) (-663 (-1209)) |#1|))) (-13 (-376) (-871))) (T -392)) -((-1962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-976 (-171 (-560)))))) (-5 *4 (-663 (-1209))) (-5 *2 (-663 (-663 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-871))))) (-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 (-171 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-976 (-171 (-560)))))) (-5 *2 (-663 (-305 (-976 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 (-171 (-560))))) (-5 *2 (-663 (-305 (-976 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-976 (-171 (-560))))))) (-5 *2 (-663 (-663 (-305 (-976 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 (-171 (-560)))))) (-5 *2 (-663 (-663 (-305 (-976 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871)))))) -(-10 -7 (-15 -1961 ((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-421 (-976 (-171 (-560))))) |#1|)) (-15 -1961 ((-663 (-663 (-305 (-976 (-171 |#1|))))) (-663 (-305 (-421 (-976 (-171 (-560)))))) |#1|)) (-15 -1961 ((-663 (-305 (-976 (-171 |#1|)))) (-421 (-976 (-171 (-560)))) |#1|)) (-15 -1961 ((-663 (-305 (-976 (-171 |#1|)))) (-305 (-421 (-976 (-171 (-560))))) |#1|)) (-15 -1962 ((-663 (-171 |#1|)) (-421 (-976 (-171 (-560)))) |#1|)) (-15 -1962 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-976 (-171 (-560))))) (-663 (-1209)) |#1|))) -((-4087 (((-663 (-305 (-976 |#1|))) (-305 (-421 (-976 (-560)))) |#1|) 46 T ELT) (((-663 (-305 (-976 |#1|))) (-421 (-976 (-560))) |#1|) 45 T ELT) (((-663 (-663 (-305 (-976 |#1|)))) (-663 (-305 (-421 (-976 (-560))))) |#1|) 42 T ELT) (((-663 (-663 (-305 (-976 |#1|)))) (-663 (-421 (-976 (-560)))) |#1|) 36 T ELT)) (-1963 (((-663 |#1|) (-421 (-976 (-560))) |#1|) 20 T ELT) (((-663 (-663 |#1|)) (-663 (-421 (-976 (-560)))) (-663 (-1209)) |#1|) 30 T ELT))) -(((-393 |#1|) (-10 -7 (-15 -4087 ((-663 (-663 (-305 (-976 |#1|)))) (-663 (-421 (-976 (-560)))) |#1|)) (-15 -4087 ((-663 (-663 (-305 (-976 |#1|)))) (-663 (-305 (-421 (-976 (-560))))) |#1|)) (-15 -4087 ((-663 (-305 (-976 |#1|))) (-421 (-976 (-560))) |#1|)) (-15 -4087 ((-663 (-305 (-976 |#1|))) (-305 (-421 (-976 (-560)))) |#1|)) (-15 -1963 ((-663 (-663 |#1|)) (-663 (-421 (-976 (-560)))) (-663 (-1209)) |#1|)) (-15 -1963 ((-663 |#1|) (-421 (-976 (-560))) |#1|))) (-13 (-871) (-376))) (T -393)) -((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) (-1963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-976 (-560))))) (-5 *4 (-663 (-1209))) (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-871) (-376))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-976 (-560))))) (-5 *2 (-663 (-305 (-976 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 (-560)))) (-5 *2 (-663 (-305 (-976 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-976 (-560)))))) (-5 *2 (-663 (-663 (-305 (-976 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 (-560))))) (-5 *2 (-663 (-663 (-305 (-976 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376)))))) -(-10 -7 (-15 -4087 ((-663 (-663 (-305 (-976 |#1|)))) (-663 (-421 (-976 (-560)))) |#1|)) (-15 -4087 ((-663 (-663 (-305 (-976 |#1|)))) (-663 (-305 (-421 (-976 (-560))))) |#1|)) (-15 -4087 ((-663 (-305 (-976 |#1|))) (-421 (-976 (-560))) |#1|)) (-15 -4087 ((-663 (-305 (-976 |#1|))) (-305 (-421 (-976 (-560)))) |#1|)) (-15 -1963 ((-663 (-663 |#1|)) (-663 (-421 (-976 (-560)))) (-663 (-1209)) |#1|)) (-15 -1963 ((-663 |#1|) (-421 (-976 (-560))) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3380 (($ |#1| |#2|) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2209 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 33 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 12 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|))) (-1081) (-875)) (T -394)) -NIL -(-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| "failed") $) 29 T ELT)) (-3660 ((|#2| $) 31 T ELT)) (-4475 (($ $) NIL T ELT)) (-2663 (((-793) $) 11 T ELT)) (-3308 (((-663 $) $) 23 T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ |#2| |#1|) 21 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1964 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3381 ((|#2| $) 18 T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-4333 (((-663 |#1|) $) 20 T ELT)) (-4193 ((|#1| $ |#2|) 54 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 32 T CONST)) (-3150 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1081) (-872)) (T -395)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-872))))) +((-3620 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-791)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-381)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-947)))) (-3477 (*1 *1) (-4 *1 (-381)))) +(-13 (-1131) (-10 -8 (-15 -3620 ((-791))) (-15 -2641 ($ (-947))) (-15 -2230 ((-947) $)) (-15 -3477 ($)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-2000 (((-709 |#2|) (-1297 $)) 45 T ELT)) (-2010 (($ (-1297 |#2|) (-1297 $)) 39 T ELT)) (-1999 (((-709 |#2|) $ (-1297 $)) 47 T ELT)) (-4269 ((|#2| (-1297 $)) 13 T ELT)) (-3724 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) 27 T ELT))) +(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -2000 ((-709 |#2|) (-1297 |#1|))) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1999 ((-709 |#2|) |#1| (-1297 |#1|)))) (-383 |#2| |#3|) (-175) (-1273 |#2|)) (T -382)) +NIL +(-10 -8 (-15 -2000 ((-709 |#2|) (-1297 |#1|))) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1999 ((-709 |#2|) |#1| (-1297 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2000 (((-709 |#1|) (-1297 $)) 58 T ELT)) (-3832 ((|#1| $) 64 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2010 (($ (-1297 |#1|) (-1297 $)) 60 T ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) 65 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3593 (((-947)) 66 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3616 ((|#1| $) 63 T ELT)) (-2234 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4269 ((|#1| (-1297 $)) 59 T ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 62 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 61 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3185 (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2848 ((|#2| $) 57 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-383 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -383)) +((-3593 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-947)))) (-1999 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) (-3724 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) (-2010 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-175)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1273 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3593 ((-947))) (-15 -1999 ((-709 |t#1|) $ (-1297 $))) (-15 -3832 (|t#1| $)) (-15 -3616 (|t#1| $)) (-15 -3724 ((-1297 |t#1|) $ (-1297 $))) (-15 -3724 ((-709 |t#1|) (-1297 $) (-1297 $))) (-15 -2010 ($ (-1297 |t#1|) (-1297 $))) (-15 -4269 (|t#1| (-1297 $))) (-15 -2000 ((-709 |t#1|) (-1297 $))) (-15 -2848 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -2234 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-1945 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1943 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3392 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2521 (($ $) 25 T ELT)) (-3921 (((-558) (-1 (-114) |#2|) $) NIL T ELT) (((-558) |#2| $) 11 T ELT) (((-558) |#2| $ (-558)) NIL T ELT)) (-4020 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-384 |#1| |#2|) (-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1945 ((-114) |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3392 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1247)) (T -384)) +NIL +(-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1945 ((-114) |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3392 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4508)) ELT) (($ $) 97 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 99 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 109 T ELT)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 91 (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 92 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 100 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 93 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 95 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) 94 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 96 (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-385 |#1|) (-142) (-1247)) (T -385)) +((-4020 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-3392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3921 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-558)))) (-3921 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-558)))) (-3921 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-3392 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-114)))) (-1944 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4508)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2520 (*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-1943 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4508)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-1943 (*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) +(-13 (-671 |t#1|) (-10 -8 (-6 -4507) (-15 -4020 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -2521 ($ $)) (-15 -3392 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -1945 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -3921 ((-558) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -3921 ((-558) |t#1| $)) (-15 -3921 ((-558) |t#1| $ (-558)))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-6 (-870)) (-15 -4020 ($ $ $)) (-15 -3392 ($ $)) (-15 -1945 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4508)) (PROGN (-15 -1944 ($ $ $ (-558))) (-15 -2520 ($ $)) (-15 -1943 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-15 -1943 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1131) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870))) ((-1247) . T)) +((-4353 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4354 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4470 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4354 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4353 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1247) (-385 |#1|) (-1247) (-385 |#3|)) (T -386)) +((-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4354 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4353 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4446 (((-661 |#1|) $) 42 T ELT)) (-4459 (($ $ (-791)) 43 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4451 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 46 T ELT)) (-4448 (($ $) 44 T ELT)) (-4452 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 47 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4280 (($ $ |#1| $) 41 T ELT) (($ $ (-661 |#1|) (-661 $)) 40 T ELT)) (-4460 (((-791) $) 48 T ELT)) (-4032 (($ $ $) 39 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1313 |#1| |#2|) $) 50 T ELT) (((-1322 |#1| |#2|) $) 49 T ELT)) (-4466 ((|#2| (-1322 |#1| |#2|) $) 52 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-1946 (($ (-692 |#1|)) 45 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#2|) 38 (|has| |#2| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-387 |#1| |#2|) (-142) (-870) (-175)) (T -387)) +((-4466 (*1 *2 *3 *1) (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-870)) (-4 *2 (-175)))) (-4458 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) (-4458 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-1313 *3 *4)))) (-4458 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-1322 *3 *4)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-791)))) (-4452 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4451 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-4448 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) (-4459 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4446 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-661 *3)))) (-4280 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-870)) (-4 *5 (-175))))) +(-13 (-652 |t#2|) (-10 -8 (-15 -4466 (|t#2| (-1322 |t#1| |t#2|) $)) (-15 -4458 ($ |t#1|)) (-15 -4458 ((-1313 |t#1| |t#2|) $)) (-15 -4458 ((-1322 |t#1| |t#2|) $)) (-15 -4460 ((-791) $)) (-15 -4452 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -4451 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -1946 ($ (-692 |t#1|))) (-15 -4448 ($ $)) (-15 -4459 ($ $ (-791))) (-15 -4446 ((-661 |t#1|) $)) (-15 -4280 ($ $ |t#1| $)) (-15 -4280 ($ $ (-661 |t#1|) (-661 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-668 |#2|) . T) ((-652 |#2|) . T) ((-660 |#2|) . T) ((-737 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1131) . T) ((-1247) . T)) +((-1949 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-1947 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-1948 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT))) +(((-388 |#1| |#2|) (-10 -7 (-15 -1947 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1948 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1949 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1247) (-13 (-385 |#1|) (-10 -7 (-6 -4508)))) (T -388)) +((-1949 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508)))))) (-1948 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508)))))) (-1947 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508))))))) +(-10 -7 (-15 -1947 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1948 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1949 (|#2| (-1 (-114) |#1| |#1|) |#2|))) +((-2503 (((-709 |#2|) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 22 T ELT) (((-709 (-558)) (-709 $)) 14 T ELT))) +(((-389 |#1| |#2|) (-10 -8 (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 |#2|) (-709 |#1|)))) (-390 |#2|) (-1079)) (T -389)) +NIL +(-10 -8 (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 |#2|) (-709 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2503 (((-709 |#1|) (-709 $)) 35 T ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 34 T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 46 (|has| |#1| (-658 (-558))) ELT) (((-709 (-558)) (-709 $)) 45 (|has| |#1| (-658 (-558))) ELT)) (-2504 (((-709 |#1|) (-1297 $)) 37 T ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 36 T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 44 (|has| |#1| (-658 (-558))) ELT) (((-709 (-558)) (-1297 $)) 43 (|has| |#1| (-658 (-558))) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-390 |#1|) (-142) (-1079)) (T -390)) +NIL +(-13 (-658 |t#1|) (-10 -7 (IF (|has| |t#1| (-658 (-558))) (-6 (-658 (-558))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 #1=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-658 #1#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 35 T ELT)) (-3613 (((-558) $) 63 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4283 (($ $) 137 T ELT)) (-3994 (($ $) 100 T ELT)) (-4151 (($ $) 91 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) 47 T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3992 (($ $) 98 T ELT)) (-4150 (($ $) 86 T ELT)) (-4135 (((-558) $) 79 T ELT)) (-2840 (($ $ (-558)) 74 T ELT)) (-3996 (($ $) NIL T ELT)) (-4149 (($ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3611 (($ $) 139 T ELT)) (-3657 (((-3 (-558) #1="failed") $) 231 T ELT) (((-3 (-419 (-558)) #1#) $) 227 T ELT)) (-3656 (((-558) $) 229 T ELT) (((-419 (-558)) $) 225 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-1958 (((-558) $ $) 129 T ELT)) (-3969 (((-3 $ "failed") $) 142 T ELT)) (-1957 (((-419 (-558)) $ (-791)) 232 T ELT) (((-419 (-558)) $ (-791) (-791)) 224 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2615 (((-947)) 125 T ELT) (((-947) (-947)) 126 (|has| $ (-6 -4498)) ELT)) (-3686 (((-114) $) 57 T ELT)) (-4139 (($) 41 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL T ELT)) (-1950 (((-1303) (-791)) 192 T ELT)) (-1951 (((-1303)) 197 T ELT) (((-1303) (-791)) 198 T ELT)) (-1953 (((-1303)) 199 T ELT) (((-1303) (-791)) 200 T ELT)) (-1952 (((-1303)) 195 T ELT) (((-1303) (-791)) 196 T ELT)) (-4284 (((-558) $) 69 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-2842 (($ $) 51 T ELT)) (-3616 (($ $) NIL T ELT)) (-3687 (((-114) $) 37 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-3340 (($ $ $) NIL T ELT) (($) NIL (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-2616 (((-558) $) 17 T ELT)) (-1956 (($) 109 T ELT) (($ $) 116 T ELT)) (-1955 (($) 115 T ELT) (($ $) 117 T ELT)) (-4454 (($ $) 103 T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 144 T ELT)) (-1987 (((-947) (-558)) 46 (|has| $ (-6 -4498)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) 60 T ELT)) (-3614 (($ $) 136 T ELT)) (-3754 (($ (-558) (-558)) 132 T ELT) (($ (-558) (-558) (-947)) 133 T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2642 (((-558) $) 19 T ELT)) (-1954 (($) 118 T ELT)) (-4455 (($ $) 97 T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3096 (((-947)) 127 T ELT) (((-947) (-947)) 128 (|has| $ (-6 -4498)) ELT)) (-4270 (($ $) 143 T ELT) (($ $ (-791)) NIL T ELT)) (-1986 (((-947) (-558)) 50 (|has| $ (-6 -4498)) ELT)) (-3997 (($ $) NIL T ELT)) (-4148 (($ $) NIL T ELT)) (-3995 (($ $) NIL T ELT)) (-4147 (($ $) NIL T ELT)) (-3993 (($ $) 99 T ELT)) (-4146 (($ $) 90 T ELT)) (-4484 (((-391) $) 216 T ELT) (((-229) $) 218 T ELT) (((-914 (-391)) $) NIL T ELT) (((-1189) $) 203 T ELT) (((-547) $) 214 T ELT) (($ (-229)) 223 T ELT)) (-4458 (((-886) $) 207 T ELT) (($ (-558)) 228 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 228 T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 219 T ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (($ $) 138 T ELT)) (-1988 (((-947)) 61 T ELT) (((-947) (-947)) 81 (|has| $ (-6 -4498)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (((-947)) 130 T ELT)) (-4000 (($ $) 106 T ELT)) (-3988 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3998 (($ $) 104 T ELT)) (-3986 (($ $) 39 T ELT)) (-4002 (($ $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-4003 (($ $) NIL T ELT)) (-3991 (($ $) NIL T ELT)) (-4001 (($ $) NIL T ELT)) (-3989 (($ $) NIL T ELT)) (-3999 (($ $) 105 T ELT)) (-3987 (($ $) 52 T ELT)) (-3885 (($ $) 58 T ELT)) (-3141 (($) 36 T CONST)) (-3147 (($) 43 T CONST)) (-2978 (((-1189) $) 27 T ELT) (((-1189) $ (-114)) 29 T ELT) (((-1303) (-845) $) 30 T ELT) (((-1303) (-845) $ (-114)) 31 T ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3047 (((-114) $ $) 204 T ELT)) (-3048 (((-114) $ $) 45 T ELT)) (-3536 (((-114) $ $) 56 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 62 T ELT)) (-4461 (($ $ $) 48 T ELT) (($ $ (-558)) 42 T ELT)) (-4349 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-4351 (($ $ $) 73 T ELT)) (** (($ $ (-947)) 84 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 110 T ELT) (($ $ (-419 (-558))) 154 T ELT) (($ $ $) 146 T ELT)) (* (($ (-947) $) 80 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 85 T ELT) (($ $ $) 72 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-391) (-13 (-416) (-240) (-631 (-1189)) (-843) (-630 (-229)) (-1233) (-631 (-547)) (-635 (-229)) (-10 -8 (-15 -4461 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2842 ($ $)) (-15 -1958 ((-558) $ $)) (-15 -2840 ($ $ (-558))) (-15 -1957 ((-419 (-558)) $ (-791))) (-15 -1957 ((-419 (-558)) $ (-791) (-791))) (-15 -1956 ($)) (-15 -1955 ($)) (-15 -1954 ($)) (-15 -3988 ($ $ $)) (-15 -1956 ($ $)) (-15 -1955 ($ $)) (-15 -1953 ((-1303))) (-15 -1953 ((-1303) (-791))) (-15 -1952 ((-1303))) (-15 -1952 ((-1303) (-791))) (-15 -1951 ((-1303))) (-15 -1951 ((-1303) (-791))) (-15 -1950 ((-1303) (-791))) (-6 -4498) (-6 -4490)))) (T -391)) +((** (*1 *1 *1 *1) (-5 *1 (-391))) (-4461 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2842 (*1 *1 *1) (-5 *1 (-391))) (-1958 (*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-1957 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1957 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1956 (*1 *1) (-5 *1 (-391))) (-1955 (*1 *1) (-5 *1 (-391))) (-1954 (*1 *1) (-5 *1 (-391))) (-3988 (*1 *1 *1 *1) (-5 *1 (-391))) (-1956 (*1 *1 *1) (-5 *1 (-391))) (-1955 (*1 *1 *1) (-5 *1 (-391))) (-1953 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-1952 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-1951 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391))))) +(-13 (-416) (-240) (-631 (-1189)) (-843) (-630 (-229)) (-1233) (-631 (-547)) (-635 (-229)) (-10 -8 (-15 -4461 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2842 ($ $)) (-15 -1958 ((-558) $ $)) (-15 -2840 ($ $ (-558))) (-15 -1957 ((-419 (-558)) $ (-791))) (-15 -1957 ((-419 (-558)) $ (-791) (-791))) (-15 -1956 ($)) (-15 -1955 ($)) (-15 -1954 ($)) (-15 -3988 ($ $ $)) (-15 -1956 ($ $)) (-15 -1955 ($ $)) (-15 -1953 ((-1303))) (-15 -1953 ((-1303) (-791))) (-15 -1952 ((-1303))) (-15 -1952 ((-1303) (-791))) (-15 -1951 ((-1303))) (-15 -1951 ((-1303) (-791))) (-15 -1950 ((-1303) (-791))) (-6 -4498) (-6 -4490))) +((-1959 (((-661 (-305 (-974 (-171 |#1|)))) (-305 (-419 (-974 (-171 (-558))))) |#1|) 51 T ELT) (((-661 (-305 (-974 (-171 |#1|)))) (-419 (-974 (-171 (-558)))) |#1|) 50 T ELT) (((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-305 (-419 (-974 (-171 (-558)))))) |#1|) 47 T ELT) (((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-419 (-974 (-171 (-558))))) |#1|) 41 T ELT)) (-1960 (((-661 (-661 (-171 |#1|))) (-661 (-419 (-974 (-171 (-558))))) (-661 (-1207)) |#1|) 30 T ELT) (((-661 (-171 |#1|)) (-419 (-974 (-171 (-558)))) |#1|) 18 T ELT))) +(((-392 |#1|) (-10 -7 (-15 -1959 ((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-419 (-974 (-171 (-558))))) |#1|)) (-15 -1959 ((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-305 (-419 (-974 (-171 (-558)))))) |#1|)) (-15 -1959 ((-661 (-305 (-974 (-171 |#1|)))) (-419 (-974 (-171 (-558)))) |#1|)) (-15 -1959 ((-661 (-305 (-974 (-171 |#1|)))) (-305 (-419 (-974 (-171 (-558))))) |#1|)) (-15 -1960 ((-661 (-171 |#1|)) (-419 (-974 (-171 (-558)))) |#1|)) (-15 -1960 ((-661 (-661 (-171 |#1|))) (-661 (-419 (-974 (-171 (-558))))) (-661 (-1207)) |#1|))) (-13 (-376) (-869))) (T -392)) +((-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-419 (-974 (-171 (-558)))))) (-5 *4 (-661 (-1207))) (-5 *2 (-661 (-661 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-869))))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 (-171 (-558))))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-974 (-171 (-558)))))) (-5 *2 (-661 (-305 (-974 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 (-171 (-558))))) (-5 *2 (-661 (-305 (-974 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-974 (-171 (-558))))))) (-5 *2 (-661 (-661 (-305 (-974 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 (-171 (-558)))))) (-5 *2 (-661 (-661 (-305 (-974 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869)))))) +(-10 -7 (-15 -1959 ((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-419 (-974 (-171 (-558))))) |#1|)) (-15 -1959 ((-661 (-661 (-305 (-974 (-171 |#1|))))) (-661 (-305 (-419 (-974 (-171 (-558)))))) |#1|)) (-15 -1959 ((-661 (-305 (-974 (-171 |#1|)))) (-419 (-974 (-171 (-558)))) |#1|)) (-15 -1959 ((-661 (-305 (-974 (-171 |#1|)))) (-305 (-419 (-974 (-171 (-558))))) |#1|)) (-15 -1960 ((-661 (-171 |#1|)) (-419 (-974 (-171 (-558)))) |#1|)) (-15 -1960 ((-661 (-661 (-171 |#1|))) (-661 (-419 (-974 (-171 (-558))))) (-661 (-1207)) |#1|))) +((-4083 (((-661 (-305 (-974 |#1|))) (-305 (-419 (-974 (-558)))) |#1|) 46 T ELT) (((-661 (-305 (-974 |#1|))) (-419 (-974 (-558))) |#1|) 45 T ELT) (((-661 (-661 (-305 (-974 |#1|)))) (-661 (-305 (-419 (-974 (-558))))) |#1|) 42 T ELT) (((-661 (-661 (-305 (-974 |#1|)))) (-661 (-419 (-974 (-558)))) |#1|) 36 T ELT)) (-1961 (((-661 |#1|) (-419 (-974 (-558))) |#1|) 20 T ELT) (((-661 (-661 |#1|)) (-661 (-419 (-974 (-558)))) (-661 (-1207)) |#1|) 30 T ELT))) +(((-393 |#1|) (-10 -7 (-15 -4083 ((-661 (-661 (-305 (-974 |#1|)))) (-661 (-419 (-974 (-558)))) |#1|)) (-15 -4083 ((-661 (-661 (-305 (-974 |#1|)))) (-661 (-305 (-419 (-974 (-558))))) |#1|)) (-15 -4083 ((-661 (-305 (-974 |#1|))) (-419 (-974 (-558))) |#1|)) (-15 -4083 ((-661 (-305 (-974 |#1|))) (-305 (-419 (-974 (-558)))) |#1|)) (-15 -1961 ((-661 (-661 |#1|)) (-661 (-419 (-974 (-558)))) (-661 (-1207)) |#1|)) (-15 -1961 ((-661 |#1|) (-419 (-974 (-558))) |#1|))) (-13 (-869) (-376))) (T -393)) +((-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) (-1961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-419 (-974 (-558))))) (-5 *4 (-661 (-1207))) (-5 *2 (-661 (-661 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-869) (-376))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-974 (-558))))) (-5 *2 (-661 (-305 (-974 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 (-558)))) (-5 *2 (-661 (-305 (-974 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-974 (-558)))))) (-5 *2 (-661 (-661 (-305 (-974 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 (-558))))) (-5 *2 (-661 (-661 (-305 (-974 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376)))))) +(-10 -7 (-15 -4083 ((-661 (-661 (-305 (-974 |#1|)))) (-661 (-419 (-974 (-558)))) |#1|)) (-15 -4083 ((-661 (-661 (-305 (-974 |#1|)))) (-661 (-305 (-419 (-974 (-558))))) |#1|)) (-15 -4083 ((-661 (-305 (-974 |#1|))) (-419 (-974 (-558))) |#1|)) (-15 -4083 ((-661 (-305 (-974 |#1|))) (-305 (-419 (-974 (-558)))) |#1|)) (-15 -1961 ((-661 (-661 |#1|)) (-661 (-419 (-974 (-558)))) (-661 (-1207)) |#1|)) (-15 -1961 ((-661 |#1|) (-419 (-974 (-558))) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3376 (($ |#1| |#2|) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2205 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 33 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 12 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|))) (-1079) (-873)) (T -394)) +NIL +(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| "failed") $) 29 T ELT)) (-3656 ((|#2| $) 31 T ELT)) (-4471 (($ $) NIL T ELT)) (-2659 (((-791) $) 11 T ELT)) (-3304 (((-661 $) $) 23 T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ |#2| |#1|) 21 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1962 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3377 ((|#2| $) 18 T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-4329 (((-661 |#1|) $) 20 T ELT)) (-4189 ((|#1| $ |#2|) 54 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 32 T CONST)) (-3146 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1079) (-870)) (T -395)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870))))) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT) (($ (-711 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 11 T ELT))) +((-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT) (($ (-709 (-719))) 14 T ELT) (($ (-661 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 11 T ELT))) (((-396) (-142)) (T -396)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-4 *1 (-396))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-711 (-721)))) (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-342))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))))) -(((-632 (-888)) . T) ((-410) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#2| "failed") $) 54 T ELT)) (-3660 ((|#2| $) 55 T ELT)) (-4475 (($ $) 40 T ELT)) (-2663 (((-793) $) 44 T ELT)) (-3308 (((-663 $) $) 45 T ELT)) (-4453 (((-114) $) 48 T ELT)) (-4454 (($ |#2| |#1|) 49 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1964 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3381 ((|#2| $) 43 T ELT)) (-3678 ((|#1| $) 42 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-4333 (((-663 |#1|) $) 46 T ELT)) (-4193 ((|#1| $ |#2|) 51 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3150 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-397 |#1| |#2|) (-142) (-1081) (-1133)) (T -397)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1133)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1081)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)))) (-4454 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1133)))) (-4453 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-114)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-663 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-663 *3)))) (-3308 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-397 *3 *4)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-793)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1133)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1081)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4475 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1133))))) -(-13 (-111 |t#1| |t#1|) (-1070 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4193 (|t#1| $ |t#2|)) (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (-15 -4454 ($ |t#2| |t#1|)) (-15 -4453 ((-114) $)) (-15 -3150 ((-663 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4333 ((-663 |t#1|) $)) (-15 -3308 ((-663 $) $)) (-15 -2663 ((-793) $)) (-15 -3381 (|t#2| $)) (-15 -3678 (|t#1| $)) (-15 -1964 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4475 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 |#2|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1070 |#2|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3661 (((-3 $ "failed") (-711 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-711 (-976 (-391)))) 17 T ELT) (((-3 $ "failed") (-711 (-976 (-560)))) 15 T ELT) (((-3 $ "failed") (-711 (-421 (-976 (-391))))) 13 T ELT) (((-3 $ "failed") (-711 (-421 (-976 (-560))))) 11 T ELT)) (-3660 (($ (-711 (-326 (-391)))) 22 T ELT) (($ (-711 (-326 (-560)))) 20 T ELT) (($ (-711 (-976 (-391)))) 18 T ELT) (($ (-711 (-976 (-560)))) 16 T ELT) (($ (-711 (-421 (-976 (-391))))) 14 T ELT) (($ (-711 (-421 (-976 (-560))))) 12 T ELT)) (-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 23 T ELT))) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-709 (-719))) (-4 *1 (-396)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-396)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-396))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-709 (-719)))) (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-342))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))))) +(((-630 (-886)) . T) ((-408) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#2| "failed") $) 54 T ELT)) (-3656 ((|#2| $) 55 T ELT)) (-4471 (($ $) 40 T ELT)) (-2659 (((-791) $) 44 T ELT)) (-3304 (((-661 $) $) 45 T ELT)) (-4449 (((-114) $) 48 T ELT)) (-4450 (($ |#2| |#1|) 49 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1962 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3377 ((|#2| $) 43 T ELT)) (-3674 ((|#1| $) 42 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-4329 (((-661 |#1|) $) 46 T ELT)) (-4189 ((|#1| $ |#2|) 51 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3146 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-397 |#1| |#2|) (-142) (-1079) (-1131)) (T -397)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1131)))) (-4189 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1079)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)))) (-4450 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1131)))) (-4449 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-114)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-661 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-661 *3)))) (-3304 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-397 *3 *4)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-791)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1131)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1079)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4471 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1131))))) +(-13 (-111 |t#1| |t#1|) (-1068 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4189 (|t#1| $ |t#2|)) (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (-15 -4450 ($ |t#2| |t#1|)) (-15 -4449 ((-114) $)) (-15 -3146 ((-661 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4329 ((-661 |t#1|) $)) (-15 -3304 ((-661 $) $)) (-15 -2659 ((-791) $)) (-15 -3377 (|t#2| $)) (-15 -3674 (|t#1| $)) (-15 -1962 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4471 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 |#2|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-1068 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3657 (((-3 $ "failed") (-709 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-709 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-709 (-974 (-391)))) 17 T ELT) (((-3 $ "failed") (-709 (-974 (-558)))) 15 T ELT) (((-3 $ "failed") (-709 (-419 (-974 (-391))))) 13 T ELT) (((-3 $ "failed") (-709 (-419 (-974 (-558))))) 11 T ELT)) (-3656 (($ (-709 (-326 (-391)))) 22 T ELT) (($ (-709 (-326 (-558)))) 20 T ELT) (($ (-709 (-974 (-391)))) 18 T ELT) (($ (-709 (-974 (-558)))) 16 T ELT) (($ (-709 (-419 (-974 (-391))))) 14 T ELT) (($ (-709 (-419 (-974 (-558))))) 12 T ELT)) (-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 23 T ELT))) (((-398) (-142)) (T -398)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-976 (-391)))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-976 (-391)))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-976 (-560)))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-976 (-560)))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-976 (-391))))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-976 (-391))))) (-4 *1 (-398)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-976 (-560))))) (-4 *1 (-398)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-976 (-560))))) (-4 *1 (-398))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-342))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))) (-15 -3660 ($ (-711 (-326 (-391))))) (-15 -3661 ((-3 $ "failed") (-711 (-326 (-391))))) (-15 -3660 ($ (-711 (-326 (-560))))) (-15 -3661 ((-3 $ "failed") (-711 (-326 (-560))))) (-15 -3660 ($ (-711 (-976 (-391))))) (-15 -3661 ((-3 $ "failed") (-711 (-976 (-391))))) (-15 -3660 ($ (-711 (-976 (-560))))) (-15 -3661 ((-3 $ "failed") (-711 (-976 (-560))))) (-15 -3660 ($ (-711 (-421 (-976 (-391)))))) (-15 -3661 ((-3 $ "failed") (-711 (-421 (-976 (-391)))))) (-15 -3660 ($ (-711 (-421 (-976 (-560)))))) (-15 -3661 ((-3 $ "failed") (-711 (-421 (-976 (-560)))))))) -(((-632 (-888)) . T) ((-410) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3624 (((-793) $) 40 T ELT)) (-4240 (($) 23 T CONST)) (-4455 (((-3 $ "failed") $ $) 43 T ELT)) (-3661 (((-3 |#1| "failed") $) 51 T ELT)) (-3660 ((|#1| $) 52 T ELT)) (-3973 (((-3 $ "failed") $) 20 T ELT)) (-1965 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2655 (((-114) $) 22 T ELT)) (-2526 ((|#1| $ (-560)) 37 T ELT)) (-2527 (((-793) $ (-560)) 38 T ELT)) (-3016 (($ $ $) 29 (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) 30 (|has| |#1| (-872)) ELT)) (-2518 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2519 (($ (-1 (-793) (-793)) $) 36 T ELT)) (-4456 (((-3 $ "failed") $ $) 44 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1966 (($ $ $) 45 T ELT)) (-1967 (($ $ $) 46 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2001 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-793)))) $) 39 T ELT)) (-3366 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 24 T CONST)) (-3051 (((-114) $ $) 31 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 33 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 32 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 34 (|has| |#1| (-872)) ELT)) (** (($ $ (-949)) 17 T ELT) (($ $ (-793)) 21 T ELT) (($ |#1| (-793)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-399 |#1|) (-142) (-1133)) (T -399)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-1967 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-1966 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-4456 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-4455 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-3366 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1133)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1965 (*1 *2 *1 *1) (-12 (-4 *3 (-1133)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1133)) (-5 *2 (-793)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1133)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 (-793))))))) (-2527 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1133)) (-5 *2 (-793)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1133)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1133)))) (-2518 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1133))))) -(-13 (-748) (-1070 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-793))) (-15 -1967 ($ $ $)) (-15 -1966 ($ $ $)) (-15 -4456 ((-3 $ "failed") $ $)) (-15 -4455 ((-3 $ "failed") $ $)) (-15 -3366 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1965 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3624 ((-793) $)) (-15 -2001 ((-663 (-2 (|:| |gen| |t#1|) (|:| -4459 (-793)))) $)) (-15 -2527 ((-793) $ (-560))) (-15 -2526 (|t#1| $ (-560))) (-15 -2519 ($ (-1 (-793) (-793)) $)) (-15 -2518 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-872)) (-6 (-872)) |%noBranch|))) -(((-102) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-748) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1070 |#1|) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793) $) 74 T ELT)) (-4240 (($) NIL T CONST)) (-4455 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-1965 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2655 (((-114) $) 17 T ELT)) (-2526 ((|#1| $ (-560)) NIL T ELT)) (-2527 (((-793) $ (-560)) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2518 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2519 (($ (-1 (-793) (-793)) $) 37 T ELT)) (-4456 (((-3 $ #1#) $ $) 60 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1966 (($ $ $) 28 T ELT)) (-1967 (($ $ $) 26 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2001 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-793)))) $) 34 T ELT)) (-3366 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4462 (((-888) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 7 T CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 83 (|has| |#1| (-872)) ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-400 |#1|) (-399 |#1|) (-1133)) (T -400)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-398)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-974 (-391)))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-974 (-391)))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-974 (-558)))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-974 (-558)))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-974 (-391))))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-419 (-974 (-391))))) (-4 *1 (-398)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-974 (-558))))) (-4 *1 (-398)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-419 (-974 (-558))))) (-4 *1 (-398))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-342))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))) (-15 -3656 ($ (-709 (-326 (-391))))) (-15 -3657 ((-3 $ "failed") (-709 (-326 (-391))))) (-15 -3656 ($ (-709 (-326 (-558))))) (-15 -3657 ((-3 $ "failed") (-709 (-326 (-558))))) (-15 -3656 ($ (-709 (-974 (-391))))) (-15 -3657 ((-3 $ "failed") (-709 (-974 (-391))))) (-15 -3656 ($ (-709 (-974 (-558))))) (-15 -3657 ((-3 $ "failed") (-709 (-974 (-558))))) (-15 -3656 ($ (-709 (-419 (-974 (-391)))))) (-15 -3657 ((-3 $ "failed") (-709 (-419 (-974 (-391)))))) (-15 -3656 ($ (-709 (-419 (-974 (-558)))))) (-15 -3657 ((-3 $ "failed") (-709 (-419 (-974 (-558)))))))) +(((-630 (-886)) . T) ((-408) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3620 (((-791) $) 40 T ELT)) (-4236 (($) 23 T CONST)) (-4451 (((-3 $ "failed") $ $) 43 T ELT)) (-3657 (((-3 |#1| "failed") $) 51 T ELT)) (-3656 ((|#1| $) 52 T ELT)) (-3969 (((-3 $ "failed") $) 20 T ELT)) (-1963 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2651 (((-114) $) 22 T ELT)) (-2522 ((|#1| $ (-558)) 37 T ELT)) (-2523 (((-791) $ (-558)) 38 T ELT)) (-3012 (($ $ $) 29 (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) 30 (|has| |#1| (-870)) ELT)) (-2514 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2515 (($ (-1 (-791) (-791)) $) 36 T ELT)) (-4452 (((-3 $ "failed") $ $) 44 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1964 (($ $ $) 45 T ELT)) (-1965 (($ $ $) 46 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1997 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-791)))) $) 39 T ELT)) (-3362 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 24 T CONST)) (-3047 (((-114) $ $) 31 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 33 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 32 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 34 (|has| |#1| (-870)) ELT)) (** (($ $ (-947)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ |#1| (-791)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-399 |#1|) (-142) (-1131)) (T -399)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-1965 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-1964 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-4452 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-4451 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-3362 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1963 (*1 *2 *1 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-791)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 (-791))))))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1131)) (-5 *2 (-791)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-2515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-791) (-791))) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1131))))) +(-13 (-746) (-1068 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-791))) (-15 -1965 ($ $ $)) (-15 -1964 ($ $ $)) (-15 -4452 ((-3 $ "failed") $ $)) (-15 -4451 ((-3 $ "failed") $ $)) (-15 -3362 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1963 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3620 ((-791) $)) (-15 -1997 ((-661 (-2 (|:| |gen| |t#1|) (|:| -4455 (-791)))) $)) (-15 -2523 ((-791) $ (-558))) (-15 -2522 (|t#1| $ (-558))) (-15 -2515 ($ (-1 (-791) (-791)) $)) (-15 -2514 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|))) +(((-102) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-746) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 |#1|) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791) $) 74 T ELT)) (-4236 (($) NIL T CONST)) (-4451 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-1963 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2651 (((-114) $) 17 T ELT)) (-2522 ((|#1| $ (-558)) NIL T ELT)) (-2523 (((-791) $ (-558)) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2514 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2515 (($ (-1 (-791) (-791)) $) 37 T ELT)) (-4452 (((-3 $ #1#) $ $) 60 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1964 (($ $ $) 28 T ELT)) (-1965 (($ $ $) 26 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1997 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-791)))) $) 34 T ELT)) (-3362 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4458 (((-886) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 7 T CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 83 (|has| |#1| (-870)) ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ |#1| (-791)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-400 |#1|) (-399 |#1|) (-1131)) (T -400)) NIL (-399 |#1|) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) "failed") $) 59 T ELT)) (-3660 (((-560) $) 60 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3016 (($ $ $) 61 T ELT)) (-3344 (($ $ $) 62 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-560)) 58 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 63 T ELT)) (-3052 (((-114) $ $) 65 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 64 T ELT)) (-3172 (((-114) $ $) 66 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) "failed") $) 59 T ELT)) (-3656 (((-558) $) 60 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3012 (($ $ $) 61 T ELT)) (-3340 (($ $ $) 62 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 58 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 63 T ELT)) (-3048 (((-114) $ $) 65 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 64 T ELT)) (-3168 (((-114) $ $) 66 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-401) (-142)) (T -401)) NIL -(-13 (-571) (-872) (-1070 (-560))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-872) . T) ((-875) . T) ((-1070 (-560)) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-1968 (((-114) $) 25 T ELT)) (-1969 (((-114) $) 22 T ELT)) (-4130 (($ (-1191) (-1191) (-1191)) 26 T ELT)) (-4056 (((-1191) $) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1973 (($ (-1191) (-1191) (-1191)) 14 T ELT)) (-1971 (((-1191) $) 17 T ELT)) (-1970 (((-114) $) 18 T ELT)) (-1972 (((-1191) $) 15 T ELT)) (-4462 (((-888) $) 12 T ELT) (($ (-1191)) 13 T ELT) (((-1191) $) 9 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 7 T ELT))) +(-13 (-569) (-870) (-1068 (-558))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-870) . T) ((-873) . T) ((-1068 (-558)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-1966 (((-114) $) 25 T ELT)) (-1967 (((-114) $) 22 T ELT)) (-4126 (($ (-1189) (-1189) (-1189)) 26 T ELT)) (-4052 (((-1189) $) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1971 (($ (-1189) (-1189) (-1189)) 14 T ELT)) (-1969 (((-1189) $) 17 T ELT)) (-1968 (((-114) $) 18 T ELT)) (-1970 (((-1189) $) 15 T ELT)) (-4458 (((-886) $) 12 T ELT) (($ (-1189)) 13 T ELT) (((-1189) $) 9 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 7 T ELT))) (((-402) (-403)) (T -402)) NIL (-403) -((-3053 (((-114) $ $) 7 T ELT)) (-1968 (((-114) $) 20 T ELT)) (-1969 (((-114) $) 21 T ELT)) (-4130 (($ (-1191) (-1191) (-1191)) 19 T ELT)) (-4056 (((-1191) $) 24 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1973 (($ (-1191) (-1191) (-1191)) 26 T ELT)) (-1971 (((-1191) $) 23 T ELT)) (-1970 (((-114) $) 22 T ELT)) (-1972 (((-1191) $) 25 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-1191)) 28 T ELT) (((-1191) $) 27 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-3049 (((-114) $ $) 7 T ELT)) (-1966 (((-114) $) 20 T ELT)) (-1967 (((-114) $) 21 T ELT)) (-4126 (($ (-1189) (-1189) (-1189)) 19 T ELT)) (-4052 (((-1189) $) 24 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1971 (($ (-1189) (-1189) (-1189)) 26 T ELT)) (-1969 (((-1189) $) 23 T ELT)) (-1968 (((-114) $) 22 T ELT)) (-1970 (((-1189) $) 25 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-1189)) 28 T ELT) (((-1189) $) 27 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) (((-403) (-142)) (T -403)) -((-1973 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1191)) (-4 *1 (-403)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4130 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1191)) (-4 *1 (-403))))) -(-13 (-1133) (-504 (-1191)) (-10 -8 (-15 -1973 ($ (-1191) (-1191) (-1191))) (-15 -1972 ((-1191) $)) (-15 -4056 ((-1191) $)) (-15 -1971 ((-1191) $)) (-15 -1970 ((-114) $)) (-15 -1969 ((-114) $)) (-15 -1968 ((-114) $)) (-15 -4130 ($ (-1191) (-1191) (-1191))))) -(((-102) . T) ((-635 #1=(-1191)) . T) ((-632 (-888)) . T) ((-632 #1#) . T) ((-504 #1#) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1974 (((-888) $) 64 T ELT)) (-4240 (($) NIL T CONST)) (-2652 (($ $ (-949)) NIL T ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($ (-793)) 38 T ELT)) (-4427 (((-793)) 18 T ELT)) (-1975 (((-888) $) 66 T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-2837 (($ $ $) NIL T ELT)) (-3145 (($) 24 T CONST)) (-3540 (((-114) $ $) 41 T ELT)) (-4353 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-4355 (($ $ $) 51 T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-404 |#1| |#2| |#3|) (-13 (-766 |#3|) (-10 -8 (-15 -4427 ((-793))) (-15 -1975 ((-888) $)) (-15 -1974 ((-888) $)) (-15 -2654 ($ (-793))))) (-793) (-793) (-175)) (T -404)) -((-4427 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) -(-13 (-766 |#3|) (-10 -8 (-15 -4427 ((-793))) (-15 -1975 ((-888) $)) (-15 -1974 ((-888) $)) (-15 -2654 ($ (-793))))) -((-1980 (((-1191)) 12 T ELT)) (-1977 (((-1180 (-1191))) 30 T ELT)) (-1979 (((-1305) (-1191)) 27 T ELT) (((-1305) (-402)) 26 T ELT)) (-1978 (((-1305)) 28 T ELT)) (-1976 (((-1180 (-1191))) 29 T ELT))) -(((-405) (-10 -7 (-15 -1976 ((-1180 (-1191)))) (-15 -1977 ((-1180 (-1191)))) (-15 -1978 ((-1305))) (-15 -1979 ((-1305) (-402))) (-15 -1979 ((-1305) (-1191))) (-15 -1980 ((-1191))))) (T -405)) -((-1980 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-405)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-405)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1305)) (-5 *1 (-405)))) (-1978 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-405)))) (-1977 (*1 *2) (-12 (-5 *2 (-1180 (-1191))) (-5 *1 (-405)))) (-1976 (*1 *2) (-12 (-5 *2 (-1180 (-1191))) (-5 *1 (-405))))) -(-10 -7 (-15 -1976 ((-1180 (-1191)))) (-15 -1977 ((-1180 (-1191)))) (-15 -1978 ((-1305))) (-15 -1979 ((-1305) (-402))) (-15 -1979 ((-1305) (-1191))) (-15 -1980 ((-1191)))) -((-4288 (((-793) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4288 ((-793) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) -((-4288 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7))))) -(-10 -7 (-15 -4288 ((-793) (-346 |#1| |#2| |#3| |#4|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4126 (((-663 (-1191)) $ (-663 (-1191))) 42 T ELT)) (-1981 (((-663 (-1191)) $ (-663 (-1191))) 43 T ELT)) (-4128 (((-663 (-1191)) $ (-663 (-1191))) 44 T ELT)) (-4129 (((-663 (-1191)) $) 39 T ELT)) (-4130 (($) 30 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1982 (((-663 (-1191)) $) 40 T ELT)) (-4132 (((-663 (-1191)) $) 41 T ELT)) (-4133 (((-1305) $ (-560)) 37 T ELT) (((-1305) $) 38 T ELT)) (-4488 (($ (-888) (-560)) 35 T ELT)) (-4462 (((-888) $) 49 T ELT) (($ (-888)) 32 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-407) (-13 (-1133) (-635 (-888)) (-10 -8 (-15 -4488 ($ (-888) (-560))) (-15 -4133 ((-1305) $ (-560))) (-15 -4133 ((-1305) $)) (-15 -4132 ((-663 (-1191)) $)) (-15 -1982 ((-663 (-1191)) $)) (-15 -4130 ($)) (-15 -4129 ((-663 (-1191)) $)) (-15 -4128 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -1981 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4126 ((-663 (-1191)) $ (-663 (-1191))))))) (T -407)) -((-4488 (*1 *1 *2 *3) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-407)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-407)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-407)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) (-4130 (*1 *1) (-5 *1 (-407))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) (-1981 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) (-4126 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407))))) -(-13 (-1133) (-635 (-888)) (-10 -8 (-15 -4488 ($ (-888) (-560))) (-15 -4133 ((-1305) $ (-560))) (-15 -4133 ((-1305) $)) (-15 -4132 ((-663 (-1191)) $)) (-15 -1982 ((-663 (-1191)) $)) (-15 -4130 ($)) (-15 -4129 ((-663 (-1191)) $)) (-15 -4128 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -1981 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4126 ((-663 (-1191)) $ (-663 (-1191)))))) -((-4462 (((-407) |#1|) 11 T ELT))) -(((-408 |#1|) (-10 -7 (-15 -4462 ((-407) |#1|))) (-1133)) (T -408)) -((-4462 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1133))))) -(-10 -7 (-15 -4462 ((-407) |#1|))) -((-1984 (((-663 (-1191)) (-663 (-1191))) 9 T ELT)) (-3886 (((-1305) (-402)) 26 T ELT)) (-1983 (((-1135) (-1209) (-663 (-1209)) (-1212) (-663 (-1209))) 59 T ELT) (((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209)) (-1209)) 34 T ELT) (((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209))) 33 T ELT))) -(((-409) (-10 -7 (-15 -1983 ((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209)))) (-15 -1983 ((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209)) (-1209))) (-15 -1983 ((-1135) (-1209) (-663 (-1209)) (-1212) (-663 (-1209)))) (-15 -3886 ((-1305) (-402))) (-15 -1984 ((-663 (-1191)) (-663 (-1191)))))) (T -409)) -((-1984 (*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-409)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1305)) (-5 *1 (-409)))) (-1983 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-663 (-1209))) (-5 *5 (-1212)) (-5 *3 (-1209)) (-5 *2 (-1135)) (-5 *1 (-409)))) (-1983 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1209))))) (-5 *6 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1135)) (-5 *1 (-409)))) (-1983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1209))))) (-5 *6 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1135)) (-5 *1 (-409))))) -(-10 -7 (-15 -1983 ((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209)))) (-15 -1983 ((-1135) (-1209) (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209)))) (-663 (-663 (-3 (|:| |array| (-663 (-1209))) (|:| |scalar| (-1209))))) (-663 (-1209)) (-1209))) (-15 -1983 ((-1135) (-1209) (-663 (-1209)) (-1212) (-663 (-1209)))) (-15 -3886 ((-1305) (-402))) (-15 -1984 ((-663 (-1191)) (-663 (-1191))))) -((-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT))) -(((-410) (-142)) (T -410)) -((-3886 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1305))))) -(-13 (-1249) (-632 (-888)) (-10 -8 (-15 -3886 ((-1305) $)))) -(((-632 (-888)) . T) ((-1249) . T)) -((-3661 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-560))) 19 T ELT) (((-3 $ "failed") (-976 (-391))) 17 T ELT) (((-3 $ "failed") (-976 (-560))) 15 T ELT) (((-3 $ "failed") (-421 (-976 (-391)))) 13 T ELT) (((-3 $ "failed") (-421 (-976 (-560)))) 11 T ELT)) (-3660 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-560))) 20 T ELT) (($ (-976 (-391))) 18 T ELT) (($ (-976 (-560))) 16 T ELT) (($ (-421 (-976 (-391)))) 14 T ELT) (($ (-421 (-976 (-560)))) 12 T ELT)) (-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 23 T ELT))) -(((-411) (-142)) (T -411)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-976 (-391))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-391))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-976 (-560))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-560))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-391)))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-391)))) (-4 *1 (-411)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-560)))) (-4 *1 (-411)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-560)))) (-4 *1 (-411))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-342))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))) (-15 -3660 ($ (-326 (-391)))) (-15 -3661 ((-3 $ "failed") (-326 (-391)))) (-15 -3660 ($ (-326 (-560)))) (-15 -3661 ((-3 $ "failed") (-326 (-560)))) (-15 -3660 ($ (-976 (-391)))) (-15 -3661 ((-3 $ "failed") (-976 (-391)))) (-15 -3660 ($ (-976 (-560)))) (-15 -3661 ((-3 $ "failed") (-976 (-560)))) (-15 -3660 ($ (-421 (-976 (-391))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-391))))) (-15 -3660 ($ (-421 (-976 (-560))))) (-15 -3661 ((-3 $ "failed") (-421 (-976 (-560))))))) -(((-632 (-888)) . T) ((-410) . T) ((-1249) . T)) -((-3886 (((-1305) $) 35 T ELT)) (-4462 (((-888) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-663 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 96 T ELT) (($ (-326 (-723))) 52 T ELT) (($ (-326 (-721))) 72 T ELT) (($ (-326 (-716))) 85 T ELT) (($ (-305 (-326 (-723)))) 67 T ELT) (($ (-305 (-326 (-721)))) 80 T ELT) (($ (-305 (-326 (-716)))) 93 T ELT) (($ (-326 (-560))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-560)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT))) -(((-412 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -4462 ($ (-342))) (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))) (-15 -4462 ($ (-326 (-723)))) (-15 -4462 ($ (-326 (-721)))) (-15 -4462 ($ (-326 (-716)))) (-15 -4462 ($ (-305 (-326 (-723))))) (-15 -4462 ($ (-305 (-326 (-721))))) (-15 -4462 ($ (-305 (-326 (-716))))) (-15 -4462 ($ (-326 (-560)))) (-15 -4462 ($ (-326 (-391)))) (-15 -4462 ($ (-326 (-171 (-391))))) (-15 -4462 ($ (-305 (-326 (-560))))) (-15 -4462 ($ (-305 (-326 (-391))))) (-15 -4462 ($ (-305 (-326 (-171 (-391)))))))) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 "void")) (-663 (-1209)) (-1213)) (T -412)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) (-14 *6 (-1213))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-342))) (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))) (-15 -4462 ($ (-326 (-723)))) (-15 -4462 ($ (-326 (-721)))) (-15 -4462 ($ (-326 (-716)))) (-15 -4462 ($ (-305 (-326 (-723))))) (-15 -4462 ($ (-305 (-326 (-721))))) (-15 -4462 ($ (-305 (-326 (-716))))) (-15 -4462 ($ (-326 (-560)))) (-15 -4462 ($ (-326 (-391)))) (-15 -4462 ($ (-326 (-171 (-391))))) (-15 -4462 ($ (-305 (-326 (-560))))) (-15 -4462 ($ (-305 (-326 (-391))))) (-15 -4462 ($ (-305 (-326 (-171 (-391)))))))) -((-3053 (((-114) $ $) NIL T ELT)) (-1986 ((|#2| $) 38 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1987 (($ (-421 |#2|)) 93 T ELT)) (-1985 (((-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-4274 (($ $ (-793)) 36 T ELT) (($ $) 34 T ELT)) (-4488 (((-421 |#2|) $) 49 T ELT)) (-4036 (($ (-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4462 (((-888) $) 131 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3156 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4355 (($ |#2| $) 41 T ELT))) -(((-413 |#1| |#2|) (-13 (-1133) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -4355 ($ |#2| $)) (-15 -1987 ($ (-421 |#2|))) (-15 -1986 (|#2| $)) (-15 -1985 ((-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|))) $)) (-15 -4036 ($ (-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1275 |#1|)) (T -413)) -((-4355 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) (-4 *2 (-1275 *3)))) (-1987 (*1 *1 *2) (-12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) (-1986 (*1 *2 *1) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-413 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-1985 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-663 (-2 (|:| -2646 (-793)) (|:| -4289 *4) (|:| |num| *4)))) (-5 *1 (-413 *3 *4)) (-4 *4 (-1275 *3)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2646 (-793)) (|:| -4289 *4) (|:| |num| *4)))) (-4 *4 (-1275 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4))))) -(-13 (-1133) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -4355 ($ |#2| $)) (-15 -1987 ($ (-421 |#2|))) (-15 -1986 (|#2| $)) (-15 -1985 ((-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|))) $)) (-15 -4036 ($ (-663 (-2 (|:| -2646 (-793)) (|:| -4289 |#2|) (|:| |num| |#2|))))))) -((-3053 (((-114) $ $) 10 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 16 (|has| |#1| (-912 (-391))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 15 (|has| |#1| (-912 (-560))) ELT)) (-3746 (((-1191) $) 14 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT)) (-3747 (((-1152) $) 13 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT)) (-4462 (((-888) $) 12 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT)) (-1389 (((-114) $ $) 11 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT)) (-3540 (((-114) $ $) 9 (-4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ELT))) -(((-414 |#1|) (-142) (-1249)) (T -414)) -NIL -(-13 (-1249) (-10 -7 (IF (|has| |t#1| (-912 (-560))) (-6 (-912 (-560))) |%noBranch|) (IF (|has| |t#1| (-912 (-391))) (-6 (-912 (-391))) |%noBranch|))) -(((-102) -4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ((-632 (-888)) -4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ((-912 (-391)) |has| |#1| (-912 (-391))) ((-912 (-560)) |has| |#1| (-912 (-560))) ((-1133) -4043 (|has| |#1| (-912 (-560))) (|has| |#1| (-912 (-391)))) ((-1249) . T)) -((-1988 (($ $) 10 T ELT) (($ $ (-793)) 12 T ELT))) -(((-415 |#1|) (-10 -8 (-15 -1988 (|#1| |#1| (-793))) (-15 -1988 (|#1| |#1|))) (-416)) (T -415)) -NIL -(-10 -8 (-15 -1988 (|#1| |#1| (-793))) (-15 -1988 (|#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-1988 (($ $) 94 T ELT) (($ $ (-793)) 93 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-4288 (((-856 (-949)) $) 96 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-1989 (((-3 (-793) "failed") $ $) 95 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT)) (-3189 (((-713 $) $) 97 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) +((-1971 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4126 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))) +(-13 (-1131) (-502 (-1189)) (-10 -8 (-15 -1971 ($ (-1189) (-1189) (-1189))) (-15 -1970 ((-1189) $)) (-15 -4052 ((-1189) $)) (-15 -1969 ((-1189) $)) (-15 -1968 ((-114) $)) (-15 -1967 ((-114) $)) (-15 -1966 ((-114) $)) (-15 -4126 ($ (-1189) (-1189) (-1189))))) +(((-102) . T) ((-633 #1=(-1189)) . T) ((-630 (-886)) . T) ((-630 #1#) . T) ((-502 #1#) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1972 (((-886) $) 64 T ELT)) (-4236 (($) NIL T CONST)) (-2648 (($ $ (-947)) NIL T ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($ (-791)) 38 T ELT)) (-4423 (((-791)) 18 T ELT)) (-1973 (((-886) $) 66 T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-2833 (($ $ $) NIL T ELT)) (-3141 (($) 24 T CONST)) (-3536 (((-114) $ $) 41 T ELT)) (-4349 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-4351 (($ $ $) 51 T ELT)) (** (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-404 |#1| |#2| |#3|) (-13 (-764 |#3|) (-10 -8 (-15 -4423 ((-791))) (-15 -1973 ((-886) $)) (-15 -1972 ((-886) $)) (-15 -2650 ($ (-791))))) (-791) (-791) (-175)) (T -404)) +((-4423 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) +(-13 (-764 |#3|) (-10 -8 (-15 -4423 ((-791))) (-15 -1973 ((-886) $)) (-15 -1972 ((-886) $)) (-15 -2650 ($ (-791))))) +((-1978 (((-1189)) 12 T ELT)) (-1975 (((-1178 (-1189))) 30 T ELT)) (-1977 (((-1303) (-1189)) 27 T ELT) (((-1303) (-402)) 26 T ELT)) (-1976 (((-1303)) 28 T ELT)) (-1974 (((-1178 (-1189))) 29 T ELT))) +(((-405) (-10 -7 (-15 -1974 ((-1178 (-1189)))) (-15 -1975 ((-1178 (-1189)))) (-15 -1976 ((-1303))) (-15 -1977 ((-1303) (-402))) (-15 -1977 ((-1303) (-1189))) (-15 -1978 ((-1189))))) (T -405)) +((-1978 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-1976 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))) (-1975 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))) (-1974 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(-10 -7 (-15 -1974 ((-1178 (-1189)))) (-15 -1975 ((-1178 (-1189)))) (-15 -1976 ((-1303))) (-15 -1977 ((-1303) (-402))) (-15 -1977 ((-1303) (-1189))) (-15 -1978 ((-1189)))) +((-4284 (((-791) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4284 ((-791) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) +((-4284 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-791)) (-5 *1 (-406 *4 *5 *6 *7))))) +(-10 -7 (-15 -4284 ((-791) (-346 |#1| |#2| |#3| |#4|)))) +((-1980 (((-661 (-1189)) (-661 (-1189))) 9 T ELT)) (-3882 (((-1303) (-402)) 26 T ELT)) (-1979 (((-1133) (-1207) (-661 (-1207)) (-1210) (-661 (-1207))) 59 T ELT) (((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207)) (-1207)) 34 T ELT) (((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207))) 33 T ELT))) +(((-407) (-10 -7 (-15 -1979 ((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207)))) (-15 -1979 ((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207)) (-1207))) (-15 -1979 ((-1133) (-1207) (-661 (-1207)) (-1210) (-661 (-1207)))) (-15 -3882 ((-1303) (-402))) (-15 -1980 ((-661 (-1189)) (-661 (-1189)))))) (T -407)) +((-1980 (*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-407)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-407)))) (-1979 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-661 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) (-5 *2 (-1133)) (-5 *1 (-407)))) (-1979 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1133)) (-5 *1 (-407)))) (-1979 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1133)) (-5 *1 (-407))))) +(-10 -7 (-15 -1979 ((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207)))) (-15 -1979 ((-1133) (-1207) (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207)))) (-661 (-661 (-3 (|:| |array| (-661 (-1207))) (|:| |scalar| (-1207))))) (-661 (-1207)) (-1207))) (-15 -1979 ((-1133) (-1207) (-661 (-1207)) (-1210) (-661 (-1207)))) (-15 -3882 ((-1303) (-402))) (-15 -1980 ((-661 (-1189)) (-661 (-1189))))) +((-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT))) +(((-408) (-142)) (T -408)) +((-3882 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1303))))) +(-13 (-1247) (-630 (-886)) (-10 -8 (-15 -3882 ((-1303) $)))) +(((-630 (-886)) . T) ((-1247) . T)) +((-3657 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-558))) 19 T ELT) (((-3 $ "failed") (-974 (-391))) 17 T ELT) (((-3 $ "failed") (-974 (-558))) 15 T ELT) (((-3 $ "failed") (-419 (-974 (-391)))) 13 T ELT) (((-3 $ "failed") (-419 (-974 (-558)))) 11 T ELT)) (-3656 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-558))) 20 T ELT) (($ (-974 (-391))) 18 T ELT) (($ (-974 (-558))) 16 T ELT) (($ (-419 (-974 (-391)))) 14 T ELT) (($ (-419 (-974 (-558)))) 12 T ELT)) (-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 23 T ELT))) +(((-409) (-142)) (T -409)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-409)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-974 (-391))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-391))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-974 (-558))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-558))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-391)))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-391)))) (-4 *1 (-409)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-558)))) (-4 *1 (-409)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-558)))) (-4 *1 (-409))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-342))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))) (-15 -3656 ($ (-326 (-391)))) (-15 -3657 ((-3 $ "failed") (-326 (-391)))) (-15 -3656 ($ (-326 (-558)))) (-15 -3657 ((-3 $ "failed") (-326 (-558)))) (-15 -3656 ($ (-974 (-391)))) (-15 -3657 ((-3 $ "failed") (-974 (-391)))) (-15 -3656 ($ (-974 (-558)))) (-15 -3657 ((-3 $ "failed") (-974 (-558)))) (-15 -3656 ($ (-419 (-974 (-391))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-391))))) (-15 -3656 ($ (-419 (-974 (-558))))) (-15 -3657 ((-3 $ "failed") (-419 (-974 (-558))))))) +(((-630 (-886)) . T) ((-408) . T) ((-1247) . T)) +((-3882 (((-1303) $) 35 T ELT)) (-4458 (((-886) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-661 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 96 T ELT) (($ (-326 (-721))) 52 T ELT) (($ (-326 (-719))) 72 T ELT) (($ (-326 (-714))) 85 T ELT) (($ (-305 (-326 (-721)))) 67 T ELT) (($ (-305 (-326 (-719)))) 80 T ELT) (($ (-305 (-326 (-714)))) 93 T ELT) (($ (-326 (-558))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-558)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -4458 ($ (-342))) (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))) (-15 -4458 ($ (-326 (-721)))) (-15 -4458 ($ (-326 (-719)))) (-15 -4458 ($ (-326 (-714)))) (-15 -4458 ($ (-305 (-326 (-721))))) (-15 -4458 ($ (-305 (-326 (-719))))) (-15 -4458 ($ (-305 (-326 (-714))))) (-15 -4458 ($ (-326 (-558)))) (-15 -4458 ($ (-326 (-391)))) (-15 -4458 ($ (-326 (-171 (-391))))) (-15 -4458 ($ (-305 (-326 (-558))))) (-15 -4458 ($ (-305 (-326 (-391))))) (-15 -4458 ($ (-305 (-326 (-171 (-391)))))))) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 "void")) (-661 (-1207)) (-1211)) (T -410)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) (-14 *6 (-1211))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-342))) (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))) (-15 -4458 ($ (-326 (-721)))) (-15 -4458 ($ (-326 (-719)))) (-15 -4458 ($ (-326 (-714)))) (-15 -4458 ($ (-305 (-326 (-721))))) (-15 -4458 ($ (-305 (-326 (-719))))) (-15 -4458 ($ (-305 (-326 (-714))))) (-15 -4458 ($ (-326 (-558)))) (-15 -4458 ($ (-326 (-391)))) (-15 -4458 ($ (-326 (-171 (-391))))) (-15 -4458 ($ (-305 (-326 (-558))))) (-15 -4458 ($ (-305 (-326 (-391))))) (-15 -4458 ($ (-305 (-326 (-171 (-391)))))))) +((-3049 (((-114) $ $) NIL T ELT)) (-1982 ((|#2| $) 38 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1983 (($ (-419 |#2|)) 93 T ELT)) (-1981 (((-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-4270 (($ $ (-791)) 36 T ELT) (($ $) 34 T ELT)) (-4484 (((-419 |#2|) $) 49 T ELT)) (-4032 (($ (-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4458 (((-886) $) 131 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3152 (($ $ (-791)) 37 T ELT) (($ $) 35 T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4351 (($ |#2| $) 41 T ELT))) +(((-411 |#1| |#2|) (-13 (-1131) (-239) (-631 (-419 |#2|)) (-10 -8 (-15 -4351 ($ |#2| $)) (-15 -1983 ($ (-419 |#2|))) (-15 -1982 (|#2| $)) (-15 -1981 ((-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|))) $)) (-15 -4032 ($ (-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1273 |#1|)) (T -411)) +((-4351 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1273 *3)))) (-1983 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) (-1982 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-1981 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-661 (-2 (|:| -2642 (-791)) (|:| -4285 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1273 *3)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -2642 (-791)) (|:| -4285 *4) (|:| |num| *4)))) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4))))) +(-13 (-1131) (-239) (-631 (-419 |#2|)) (-10 -8 (-15 -4351 ($ |#2| $)) (-15 -1983 ($ (-419 |#2|))) (-15 -1982 (|#2| $)) (-15 -1981 ((-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|))) $)) (-15 -4032 ($ (-661 (-2 (|:| -2642 (-791)) (|:| -4285 |#2|) (|:| |num| |#2|))))))) +((-3049 (((-114) $ $) 10 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 16 (|has| |#1| (-910 (-391))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 15 (|has| |#1| (-910 (-558))) ELT)) (-3742 (((-1189) $) 14 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT)) (-3743 (((-1150) $) 13 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT)) (-4458 (((-886) $) 12 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT)) (-1387 (((-114) $ $) 11 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT)) (-3536 (((-114) $ $) 9 (-4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ELT))) +(((-412 |#1|) (-142) (-1247)) (T -412)) +NIL +(-13 (-1247) (-10 -7 (IF (|has| |t#1| (-910 (-558))) (-6 (-910 (-558))) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|))) +(((-102) -4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ((-630 (-886)) -4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-558)) |has| |#1| (-910 (-558))) ((-1131) -4039 (|has| |#1| (-910 (-558))) (|has| |#1| (-910 (-391)))) ((-1247) . T)) +((-1984 (($ $) 10 T ELT) (($ $ (-791)) 12 T ELT))) +(((-413 |#1|) (-10 -8 (-15 -1984 (|#1| |#1| (-791))) (-15 -1984 (|#1| |#1|))) (-414)) (T -413)) +NIL +(-10 -8 (-15 -1984 (|#1| |#1| (-791))) (-15 -1984 (|#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-1984 (($ $) 94 T ELT) (($ $ (-791)) 93 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-4284 (((-854 (-947)) $) 96 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-1985 (((-3 (-791) "failed") $ $) 95 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3185 (((-711 $) $) 97 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +(((-414) (-142)) (T -414)) +((-4284 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-854 (-947))))) (-1985 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-791)))) (-1984 (*1 *1 *1) (-4 *1 (-414))) (-1984 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-791))))) +(-13 (-376) (-147) (-10 -8 (-15 -4284 ((-854 (-947)) $)) (-15 -1985 ((-3 (-791) "failed") $ $)) (-15 -1984 ($ $)) (-15 -1984 ($ $ (-791))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3754 (($ (-558) (-558)) 11 T ELT) (($ (-558) (-558) (-947)) NIL T ELT)) (-3096 (((-947)) 19 T ELT) (((-947) (-947)) NIL T ELT))) +(((-415 |#1|) (-10 -8 (-15 -3096 ((-947) (-947))) (-15 -3096 ((-947))) (-15 -3754 (|#1| (-558) (-558) (-947))) (-15 -3754 (|#1| (-558) (-558)))) (-416)) (T -415)) +((-3096 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +(-10 -8 (-15 -3096 ((-947) (-947))) (-15 -3096 ((-947))) (-15 -3754 (|#1| (-558) (-558) (-947))) (-15 -3754 (|#1| (-558) (-558)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3613 (((-558) $) 105 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-4283 (($ $) 103 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-3520 (($ $) 113 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4135 (((-558) $) 130 T ELT)) (-4236 (($) 22 T CONST)) (-3611 (($ $) 102 T ELT)) (-3657 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3656 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-2615 (((-947)) 146 T ELT) (((-947) (-947)) 143 (|has| $ (-6 -4498)) ELT)) (-3686 (((-114) $) 128 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 109 T ELT)) (-4284 (((-558) $) 152 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 112 T ELT)) (-3616 (($ $) 108 T ELT)) (-3687 (((-114) $) 129 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-3012 (($ $ $) 122 T ELT) (($) 140 (-12 (-3041 (|has| $ (-6 -4498))) (-3041 (|has| $ (-6 -4490)))) ELT)) (-3340 (($ $ $) 123 T ELT) (($) 139 (-12 (-3041 (|has| $ (-6 -4498))) (-3041 (|has| $ (-6 -4490)))) ELT)) (-2616 (((-558) $) 149 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-1987 (((-947) (-558)) 142 (|has| $ (-6 -4498)) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3612 (($ $) 104 T ELT)) (-3614 (($ $) 106 T ELT)) (-3754 (($ (-558) (-558)) 154 T ELT) (($ (-558) (-558) (-947)) 153 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-2642 (((-558) $) 150 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-3096 (((-947)) 147 T ELT) (((-947) (-947)) 144 (|has| $ (-6 -4498)) ELT)) (-1986 (((-947) (-558)) 141 (|has| $ (-6 -4498)) ELT)) (-4484 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-914 (-391)) $) 110 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3610 (((-791)) 37 T CONST)) (-3615 (($ $) 107 T ELT)) (-1988 (((-947)) 148 T ELT) (((-947) (-947)) 145 (|has| $ (-6 -4498)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3177 (((-947)) 151 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3885 (($ $) 131 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 124 T ELT)) (-3048 (((-114) $ $) 126 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 125 T ELT)) (-3168 (((-114) $ $) 127 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-416) (-142)) (T -416)) -((-4288 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-856 (-949))))) (-1989 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793)))) (-1988 (*1 *1 *1) (-4 *1 (-416))) (-1988 (*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793))))) -(-13 (-376) (-147) (-10 -8 (-15 -4288 ((-856 (-949)) $)) (-15 -1989 ((-3 (-793) "failed") $ $)) (-15 -1988 ($ $)) (-15 -1988 ($ $ (-793))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3758 (($ (-560) (-560)) 11 T ELT) (($ (-560) (-560) (-949)) NIL T ELT)) (-3100 (((-949)) 19 T ELT) (((-949) (-949)) NIL T ELT))) -(((-417 |#1|) (-10 -8 (-15 -3100 ((-949) (-949))) (-15 -3100 ((-949))) (-15 -3758 (|#1| (-560) (-560) (-949))) (-15 -3758 (|#1| (-560) (-560)))) (-418)) (T -417)) -((-3100 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-417 *3)) (-4 *3 (-418))))) -(-10 -8 (-15 -3100 ((-949) (-949))) (-15 -3100 ((-949))) (-15 -3758 (|#1| (-560) (-560) (-949))) (-15 -3758 (|#1| (-560) (-560)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3617 (((-560) $) 105 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-4287 (($ $) 103 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-3524 (($ $) 113 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4139 (((-560) $) 130 T ELT)) (-4240 (($) 22 T CONST)) (-3615 (($ $) 102 T ELT)) (-3661 (((-3 (-560) #1="failed") $) 118 T ELT) (((-3 (-421 (-560)) #1#) $) 115 T ELT)) (-3660 (((-560) $) 119 T ELT) (((-421 (-560)) $) 116 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-2619 (((-949)) 146 T ELT) (((-949) (-949)) 143 (|has| $ (-6 -4502)) ELT)) (-3690 (((-114) $) 128 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 109 T ELT)) (-4288 (((-560) $) 152 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 112 T ELT)) (-3620 (($ $) 108 T ELT)) (-3691 (((-114) $) 129 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 65 T ELT)) (-3016 (($ $ $) 122 T ELT) (($) 140 (-12 (-3045 (|has| $ (-6 -4502))) (-3045 (|has| $ (-6 -4494)))) ELT)) (-3344 (($ $ $) 123 T ELT) (($) 139 (-12 (-3045 (|has| $ (-6 -4502))) (-3045 (|has| $ (-6 -4494)))) ELT)) (-2620 (((-560) $) 149 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-1991 (((-949) (-560)) 142 (|has| $ (-6 -4502)) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3616 (($ $) 104 T ELT)) (-3618 (($ $) 106 T ELT)) (-3758 (($ (-560) (-560)) 154 T ELT) (($ (-560) (-560) (-949)) 153 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-2646 (((-560) $) 150 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-3100 (((-949)) 147 T ELT) (((-949) (-949)) 144 (|has| $ (-6 -4502)) ELT)) (-1990 (((-949) (-560)) 141 (|has| $ (-6 -4502)) ELT)) (-4488 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-916 (-391)) $) 110 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ (-560)) 117 T ELT) (($ (-421 (-560))) 114 T ELT)) (-3614 (((-793)) 37 T CONST)) (-3619 (($ $) 107 T ELT)) (-1992 (((-949)) 148 T ELT) (((-949) (-949)) 145 (|has| $ (-6 -4502)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3181 (((-949)) 151 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3889 (($ $) 131 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 124 T ELT)) (-3052 (((-114) $ $) 126 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 125 T ELT)) (-3172 (((-114) $ $) 127 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT) (($ $ (-421 (-560))) 111 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) -(((-418) (-142)) (T -418)) -((-3758 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418)))) (-3758 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-949)) (-4 *1 (-418)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-3181 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-1992 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) (-3100 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) (-2619 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4502)) (-4 *1 (-418)) (-5 *2 (-949)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4502)) (-4 *1 (-418)) (-5 *2 (-949)))) (-3016 (*1 *1) (-12 (-4 *1 (-418)) (-3045 (|has| *1 (-6 -4502))) (-3045 (|has| *1 (-6 -4494))))) (-3344 (*1 *1) (-12 (-4 *1 (-418)) (-3045 (|has| *1 (-6 -4502))) (-3045 (|has| *1 (-6 -4494)))))) -(-13 (-1092) (-10 -8 (-6 -4286) (-15 -3758 ($ (-560) (-560))) (-15 -3758 ($ (-560) (-560) (-949))) (-15 -4288 ((-560) $)) (-15 -3181 ((-949))) (-15 -2646 ((-560) $)) (-15 -2620 ((-560) $)) (-15 -1992 ((-949))) (-15 -3100 ((-949))) (-15 -2619 ((-949))) (IF (|has| $ (-6 -4502)) (PROGN (-15 -1992 ((-949) (-949))) (-15 -3100 ((-949) (-949))) (-15 -2619 ((-949) (-949))) (-15 -1991 ((-949) (-560))) (-15 -1990 ((-949) (-560)))) |%noBranch|) (IF (|has| $ (-6 -4494)) |%noBranch| (IF (|has| $ (-6 -4502)) |%noBranch| (PROGN (-15 -3016 ($)) (-15 -3344 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-916 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-871) . T) ((-872) . T) ((-875) . T) ((-912 (-391)) . T) ((-951) . T) ((-1034) . T) ((-1052) . T) ((-1092) . T) ((-1070 (-421 (-560))) . T) ((-1070 (-560)) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 59 T ELT)) (-1993 (($ $) 77 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 190 T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) 48 T ELT)) (-1994 ((|#1| $) 16 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-1254)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-1254)) ELT)) (-1996 (($ |#1| (-560)) 42 T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 73 T ELT)) (-3973 (((-3 $ "failed") $) 164 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 84 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 80 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 91 (|has| |#1| (-559)) ELT)) (-1997 (($ |#1| (-560)) 44 T ELT)) (-4239 (((-114) $) 210 (|has| |#1| (-1254)) ELT)) (-2655 (((-114) $) 61 T ELT)) (-2059 (((-793) $) 51 T ELT)) (-1998 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-560)) 175 T ELT)) (-2526 ((|#1| $ (-560)) 174 T ELT)) (-1999 (((-560) $ (-560)) 173 T ELT)) (-2002 (($ |#1| (-560)) 41 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-2056 (($ |#1| (-663 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-560))))) 78 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2000 (($ |#1| (-560)) 43 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 191 (|has| |#1| (-466)) ELT)) (-1995 (($ |#1| (-560) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-2001 (((-663 (-2 (|:| -4248 |#1|) (|:| -2646 (-560)))) $) 72 T ELT)) (-2177 (((-663 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $) 12 T ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-1254)) ELT)) (-3972 (((-3 $ "failed") $ $) 176 T ELT)) (-2646 (((-560) $) 167 T ELT)) (-4479 ((|#1| $) 74 T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 100 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 106 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) $) NIL (|has| |#1| (-528 (-1209) $)) ELT) (($ $ (-663 (-1209)) (-663 $)) 107 (|has| |#1| (-528 (-1209) $)) ELT) (($ $ (-663 (-305 $))) 103 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-663 $) (-663 $)) NIL (|has| |#1| (-321 $)) ELT)) (-4316 (($ $ |#1|) 92 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-298 $ $)) ELT)) (-4274 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-4488 (((-549) $) 39 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 113 (|has| |#1| (-1052)) ELT) (((-229) $) 119 (|has| |#1| (-1052)) ELT)) (-4462 (((-888) $) 146 T ELT) (($ (-560)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT)) (-3614 (((-793)) 66 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 53 T CONST)) (-3151 (($) 52 T CONST)) (-3156 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 159 T ELT)) (-4353 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 180 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 125 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-419 |#1|) (-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -4479 (|#1| $)) (-15 -2646 ((-560) $)) (-15 -2056 ($ |#1| (-663 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -2177 ((-663 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2002 ($ |#1| (-560))) (-15 -2001 ((-663 (-2 (|:| -4248 |#1|) (|:| -2646 (-560)))) $)) (-15 -2000 ($ |#1| (-560))) (-15 -1999 ((-560) $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -1998 ((-3 #1# #2# #3# #4#) $ (-560))) (-15 -2059 ((-793) $)) (-15 -1997 ($ |#1| (-560))) (-15 -1996 ($ |#1| (-560))) (-15 -1995 ($ |#1| (-560) (-3 #1# #2# #3# #4#))) (-15 -1994 (|#1| $)) (-15 -1993 ($ $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1254)) (-6 (-1254)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1209) $)) (-6 (-528 (-1209) $)) |%noBranch|))) (-571)) (T -419)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3)))) (-4479 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2056 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-560))))) (-4 *2 (-571)) (-5 *1 (-419 *2)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2002 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4248 *3) (|:| -2646 (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2000 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1999 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1998 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-419 *4)) (-4 *4 (-571)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-1997 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1996 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1995 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1994 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1993 (*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-3511 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571))))) -(-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -4479 (|#1| $)) (-15 -2646 ((-560) $)) (-15 -2056 ($ |#1| (-663 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -2177 ((-663 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2002 ($ |#1| (-560))) (-15 -2001 ((-663 (-2 (|:| -4248 |#1|) (|:| -2646 (-560)))) $)) (-15 -2000 ($ |#1| (-560))) (-15 -1999 ((-560) $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -1998 ((-3 #1# #2# #3# #4#) $ (-560))) (-15 -2059 ((-793) $)) (-15 -1997 ($ |#1| (-560))) (-15 -1996 ($ |#1| (-560))) (-15 -1995 ($ |#1| (-560) (-3 #1# #2# #3# #4#))) (-15 -1994 (|#1| $)) (-15 -1993 ($ $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1254)) (-6 (-1254)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1209) $)) (-6 (-528 (-1209) $)) |%noBranch|))) -((-4474 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 20 T ELT))) -(((-420 |#1| |#2|) (-10 -7 (-15 -4474 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-571) (-571)) (T -420)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))) -(-10 -7 (-15 -4474 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 13 T ELT)) (-3617 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| |#1| (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) 17 T ELT) (((-3 (-1209) #2#) $) NIL (|has| |#1| (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) 71 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT)) (-3660 ((|#1| $) 15 T ELT) (((-1209) $) NIL (|has| |#1| (-1070 (-1209))) ELT) (((-421 (-560)) $) 68 (|has| |#1| (-1070 (-560))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) 50 T ELT)) (-3481 (($) NIL (|has| |#1| (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#1| (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| |#1| (-912 (-391))) ELT)) (-2655 (((-114) $) 56 T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 ((|#1| $) 72 T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-1184)) ELT)) (-3691 (((-114) $) 22 (|has| |#1| (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| |#1| (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 99 T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3618 ((|#1| $) 26 (|has| |#1| (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 152 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 145 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 ((|#1| $) 74 T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1052)) ELT) (((-229) $) NIL (|has| |#1| (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 129 (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1209)) NIL (|has| |#1| (-1070 (-1209))) ELT)) (-3189 (((-713 $) $) 109 (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 110 T CONST)) (-3619 ((|#1| $) 24 (|has| |#1| (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| |#1| (-844)) ELT)) (-3145 (($) 46 T CONST)) (-3151 (($) 8 T CONST)) (-2982 (((-1191) $) 42 (-12 (|has| |#1| (-559)) (|has| |#1| (-845))) ELT) (((-1191) $ (-114)) 43 (-12 (|has| |#1| (-559)) (|has| |#1| (-845))) ELT) (((-1305) (-847) $) 44 (-12 (|has| |#1| (-559)) (|has| |#1| (-845))) ELT) (((-1305) (-847) $ (-114)) 45 (-12 (|has| |#1| (-559)) (|has| |#1| (-845))) ELT)) (-3156 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 65 T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4465 (($ $ $) 140 T ELT) (($ |#1| |#1|) 52 T ELT)) (-4353 (($ $) 23 T ELT) (($ $ $) 55 T ELT)) (-4355 (($ $ $) 53 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 139 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 60 T ELT) (($ $ $) 57 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) 87 T ELT))) -(((-421 |#1|) (-13 (-1023 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4509)) (-6 -4498) |%noBranch|) |%noBranch|) |%noBranch|))) (-571)) (T -421)) -NIL -(-13 (-1023 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4509)) (-6 -4498) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4474 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 13 T ELT))) -(((-422 |#1| |#2|) (-10 -7 (-15 -4474 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-571) (-571)) (T -422)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6))))) -(-10 -7 (-15 -4474 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) -((-2004 (((-711 |#2|) (-1299 $)) NIL T ELT) (((-711 |#2|)) 18 T ELT)) (-2014 (($ (-1299 |#2|) (-1299 $)) NIL T ELT) (($ (-1299 |#2|)) 24 T ELT)) (-2003 (((-711 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) $) 40 T ELT)) (-2238 ((|#3| $) 69 T ELT)) (-4273 ((|#2| (-1299 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3728 (((-1299 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#2|) $) 22 T ELT) (((-711 |#2|) (-1299 $)) 38 T ELT)) (-4488 (((-1299 |#2|) $) 11 T ELT) (($ (-1299 |#2|)) 13 T ELT)) (-2852 ((|#3| $) 55 T ELT))) -(((-423 |#1| |#2| |#3|) (-10 -8 (-15 -2003 ((-711 |#2|) |#1|)) (-15 -4273 (|#2|)) (-15 -2004 ((-711 |#2|))) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -2238 (|#3| |#1|)) (-15 -2852 (|#3| |#1|)) (-15 -2004 ((-711 |#2|) (-1299 |#1|))) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2003 ((-711 |#2|) |#1| (-1299 |#1|)))) (-424 |#2| |#3|) (-175) (-1275 |#2|)) (T -423)) -((-2004 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)) (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5)))) (-4273 (*1 *2) (-12 (-4 *4 (-1275 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4)) (-4 *3 (-424 *2 *4))))) -(-10 -8 (-15 -2003 ((-711 |#2|) |#1|)) (-15 -4273 (|#2|)) (-15 -2004 ((-711 |#2|))) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -2238 (|#3| |#1|)) (-15 -2852 (|#3| |#1|)) (-15 -2004 ((-711 |#2|) (-1299 |#1|))) (-15 -4273 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2003 ((-711 |#2|) |#1| (-1299 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2004 (((-711 |#1|) (-1299 $)) 58 T ELT) (((-711 |#1|)) 74 T ELT)) (-3836 ((|#1| $) 64 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2014 (($ (-1299 |#1|) (-1299 $)) 60 T ELT) (($ (-1299 |#1|)) 77 T ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) 65 T ELT) (((-711 |#1|) $) 72 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3597 (((-949)) 66 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3620 ((|#1| $) 63 T ELT)) (-2238 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4273 ((|#1| (-1299 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 62 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 61 T ELT) (((-1299 |#1|) $) 79 T ELT) (((-711 |#1|) (-1299 $)) 78 T ELT)) (-4488 (((-1299 |#1|) $) 76 T ELT) (($ (-1299 |#1|)) 75 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3189 (((-713 $) $) 55 (|has| |#1| (-147)) ELT)) (-2852 ((|#2| $) 57 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 80 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-424 |#1| |#2|) (-142) (-175) (-1275 |t#1|)) (T -424)) -((-2236 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-1299 *1)) (-4 *1 (-424 *3 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-1299 *3)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1275 *3)))) (-4488 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-1299 *3)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1275 *3)))) (-2004 (*1 *2) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-711 *3)))) (-4273 (*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-711 *3))))) -(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -2236 ((-1299 $))) (-15 -3728 ((-1299 |t#1|) $)) (-15 -3728 ((-711 |t#1|) (-1299 $))) (-15 -2014 ($ (-1299 |t#1|))) (-15 -4488 ((-1299 |t#1|) $)) (-15 -4488 ($ (-1299 |t#1|))) (-15 -2004 ((-711 |t#1|))) (-15 -4273 (|t#1|)) (-15 -2003 ((-711 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-383 |#1| |#2|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3661 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) 27 T ELT) (((-3 (-560) #1#) $) 19 T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) 24 T ELT) (((-560) $) 14 T ELT)) (-4462 (($ |#2|) NIL T ELT) (($ (-421 (-560))) 22 T ELT) (($ (-560)) 11 T ELT))) -(((-425 |#1| |#2|) (-10 -8 (-15 -4462 (|#1| (-560))) (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|))) (-426 |#2|) (-1249)) (T -425)) -NIL -(-10 -8 (-15 -4462 (|#1| (-560))) (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|))) -((-3661 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-421 (-560)) #1#) $) 16 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #1#) $) 13 (|has| |#1| (-1070 (-560))) ELT)) (-3660 ((|#1| $) 8 T ELT) (((-421 (-560)) $) 17 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) 14 (|has| |#1| (-1070 (-560))) ELT)) (-4462 (($ |#1|) 6 T ELT) (($ (-421 (-560))) 15 (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ (-560)) 12 (|has| |#1| (-1070 (-560))) ELT))) -(((-426 |#1|) (-142) (-1249)) (T -426)) -NIL -(-13 (-1070 |t#1|) (-10 -7 (IF (|has| |t#1| (-1070 (-560))) (-6 (-1070 (-560))) |%noBranch|) (IF (|has| |t#1| (-1070 (-421 (-560)))) (-6 (-1070 (-421 (-560)))) |%noBranch|))) -(((-635 #1=(-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-635 #2=(-560)) |has| |#1| (-1070 (-560))) ((-635 |#1|) . T) ((-1070 #1#) |has| |#1| (-1070 (-421 (-560)))) ((-1070 #2#) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2005 ((|#4| (-793) (-1299 |#4|)) 55 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3485 (((-1299 |#4|) $) 15 T ELT)) (-3620 ((|#2| $) 53 T ELT)) (-2006 (($ $) 156 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 103 T ELT)) (-2194 (($ (-1299 |#4|)) 102 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3484 ((|#1| $) 16 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) 147 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 |#4|) $) 140 T ELT)) (-3151 (($) 11 T CONST)) (-3540 (((-114) $ $) 39 T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-427 |#1| |#2| |#3| |#4|) (-13 (-487) (-10 -8 (-15 -2194 ($ (-1299 |#4|))) (-15 -2236 ((-1299 |#4|) $)) (-15 -3620 (|#2| $)) (-15 -3485 ((-1299 |#4|) $)) (-15 -3484 (|#1| $)) (-15 -2006 ($ $)) (-15 -2005 (|#4| (-793) (-1299 |#4|))))) (-319) (-1023 |#1|) (-1275 |#2|) (-13 (-424 |#2| |#3|) (-1070 |#2|))) (T -427)) -((-2194 (*1 *1 *2) (-12 (-5 *2 (-1299 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6)))) (-2236 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))))) (-3620 (*1 *2 *1) (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-427 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1070 *2))))) (-3485 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-1023 *2)) (-4 *4 (-1275 *3)) (-4 *2 (-319)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1070 *3))))) (-2006 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1023 *2)) (-4 *4 (-1275 *3)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1070 *3))))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1299 *2)) (-4 *5 (-319)) (-4 *6 (-1023 *5)) (-4 *2 (-13 (-424 *6 *7) (-1070 *6))) (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1275 *6))))) -(-13 (-487) (-10 -8 (-15 -2194 ($ (-1299 |#4|))) (-15 -2236 ((-1299 |#4|) $)) (-15 -3620 (|#2| $)) (-15 -3485 ((-1299 |#4|) $)) (-15 -3484 (|#1| $)) (-15 -2006 ($ $)) (-15 -2005 (|#4| (-793) (-1299 |#4|))))) -((-4474 (((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-428 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4474 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) (-319) (-1023 |#1|) (-1275 |#2|) (-13 (-424 |#2| |#3|) (-1070 |#2|)) (-319) (-1023 |#5|) (-1275 |#6|) (-13 (-424 |#6| |#7|) (-1070 |#6|))) (T -428)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1023 *5)) (-4 *7 (-1275 *6)) (-4 *8 (-13 (-424 *6 *7) (-1070 *6))) (-4 *9 (-319)) (-4 *10 (-1023 *9)) (-4 *11 (-1275 *10)) (-5 *2 (-427 *9 *10 *11 *12)) (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-424 *10 *11) (-1070 *10)))))) -(-10 -7 (-15 -4474 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3620 ((|#2| $) 71 T ELT)) (-2007 (($ (-1299 |#4|)) 27 T ELT) (($ (-427 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1070 |#2|)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 37 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 |#4|) $) 28 T ELT)) (-3151 (($) 25 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-429 |#1| |#2| |#3| |#4| |#5|) (-13 (-748) (-10 -8 (-15 -2236 ((-1299 |#4|) $)) (-15 -3620 (|#2| $)) (-15 -2007 ($ (-1299 |#4|))) (IF (|has| |#4| (-1070 |#2|)) (-15 -2007 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1023 |#1|) (-1275 |#2|) (-424 |#2| |#3|) (-1299 |#4|)) (T -429)) -((-2236 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-4 *6 (-424 *4 *5)) (-14 *7 *2))) (-3620 (*1 *2 *1) (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-429 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-424 *2 *4)) (-14 *6 (-1299 *5)))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1299 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1070 *4)) (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-4 *6 (-424 *4 *5)) (-14 *7 (-1299 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7))))) -(-13 (-748) (-10 -8 (-15 -2236 ((-1299 |#4|) $)) (-15 -3620 (|#2| $)) (-15 -2007 ($ (-1299 |#4|))) (IF (|has| |#4| (-1070 |#2|)) (-15 -2007 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4474 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) (-432 |#2|) (-175) (-432 |#4|) (-175)) (T -430)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-432 *6)) (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5))))) -(-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) -((-1994 (((-3 $ #1="failed")) 99 T ELT)) (-3727 (((-1299 (-711 |#2|)) (-1299 $)) NIL T ELT) (((-1299 (-711 |#2|))) 104 T ELT)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) 97 T ELT)) (-1918 (((-3 $ #1#)) 96 T ELT)) (-2010 (((-711 |#2|) (-1299 $)) NIL T ELT) (((-711 |#2|)) 115 T ELT)) (-2008 (((-711 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) $) 123 T ELT)) (-2125 (((-1203 (-976 |#2|))) 64 T ELT)) (-2012 ((|#2| (-1299 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-2014 (($ (-1299 |#2|) (-1299 $)) NIL T ELT) (($ (-1299 |#2|)) 125 T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) 95 T ELT)) (-1919 (((-3 $ #1#)) 87 T ELT)) (-2011 (((-711 |#2|) (-1299 $)) NIL T ELT) (((-711 |#2|)) 113 T ELT)) (-2009 (((-711 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) $) 121 T ELT)) (-2129 (((-1203 (-976 |#2|))) 63 T ELT)) (-2013 ((|#2| (-1299 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3728 (((-1299 |#2|) $ (-1299 $)) NIL T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#2|) $) 124 T ELT) (((-711 |#2|) (-1299 $)) 133 T ELT)) (-4488 (((-1299 |#2|) $) 109 T ELT) (($ (-1299 |#2|)) 111 T ELT)) (-2117 (((-663 (-976 |#2|)) (-1299 $)) NIL T ELT) (((-663 (-976 |#2|))) 107 T ELT)) (-3030 (($ (-711 |#2|) $) 103 T ELT))) -(((-431 |#1| |#2|) (-10 -8 (-15 -3030 (|#1| (-711 |#2|) |#1|)) (-15 -2125 ((-1203 (-976 |#2|)))) (-15 -2129 ((-1203 (-976 |#2|)))) (-15 -2008 ((-711 |#2|) |#1|)) (-15 -2009 ((-711 |#2|) |#1|)) (-15 -2010 ((-711 |#2|))) (-15 -2011 ((-711 |#2|))) (-15 -2012 (|#2|)) (-15 -2013 (|#2|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -2117 ((-663 (-976 |#2|)))) (-15 -3727 ((-1299 (-711 |#2|)))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -1994 ((-3 |#1| #1="failed"))) (-15 -1918 ((-3 |#1| #1#))) (-15 -1919 ((-3 |#1| #1#))) (-15 -2131 ((-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) #1#))) (-15 -2132 ((-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) #1#))) (-15 -2010 ((-711 |#2|) (-1299 |#1|))) (-15 -2011 ((-711 |#2|) (-1299 |#1|))) (-15 -2012 (|#2| (-1299 |#1|))) (-15 -2013 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2008 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -3727 ((-1299 (-711 |#2|)) (-1299 |#1|))) (-15 -2117 ((-663 (-976 |#2|)) (-1299 |#1|)))) (-432 |#2|) (-175)) (T -431)) -((-3727 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1299 (-711 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2117 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-976 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2013 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-2012 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-2011 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2010 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2129 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-976 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2125 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-976 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4))))) -(-10 -8 (-15 -3030 (|#1| (-711 |#2|) |#1|)) (-15 -2125 ((-1203 (-976 |#2|)))) (-15 -2129 ((-1203 (-976 |#2|)))) (-15 -2008 ((-711 |#2|) |#1|)) (-15 -2009 ((-711 |#2|) |#1|)) (-15 -2010 ((-711 |#2|))) (-15 -2011 ((-711 |#2|))) (-15 -2012 (|#2|)) (-15 -2013 (|#2|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2014 (|#1| (-1299 |#2|))) (-15 -2117 ((-663 (-976 |#2|)))) (-15 -3727 ((-1299 (-711 |#2|)))) (-15 -3728 ((-711 |#2|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1|)) (-15 -1994 ((-3 |#1| #1="failed"))) (-15 -1918 ((-3 |#1| #1#))) (-15 -1919 ((-3 |#1| #1#))) (-15 -2131 ((-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) #1#))) (-15 -2132 ((-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) #1#))) (-15 -2010 ((-711 |#2|) (-1299 |#1|))) (-15 -2011 ((-711 |#2|) (-1299 |#1|))) (-15 -2012 (|#2| (-1299 |#1|))) (-15 -2013 (|#2| (-1299 |#1|))) (-15 -2014 (|#1| (-1299 |#2|) (-1299 |#1|))) (-15 -3728 ((-711 |#2|) (-1299 |#1|) (-1299 |#1|))) (-15 -3728 ((-1299 |#2|) |#1| (-1299 |#1|))) (-15 -2008 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1299 |#1|))) (-15 -3727 ((-1299 (-711 |#2|)) (-1299 |#1|))) (-15 -2117 ((-663 (-976 |#2|)) (-1299 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1994 (((-3 $ #1="failed")) 47 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3727 (((-1299 (-711 |#1|)) (-1299 $)) 88 T ELT) (((-1299 (-711 |#1|))) 114 T ELT)) (-1944 (((-1299 $)) 91 T ELT)) (-4240 (($) 22 T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) 50 (|has| |#1| (-571)) ELT)) (-1918 (((-3 $ #1#)) 48 (|has| |#1| (-571)) ELT)) (-2010 (((-711 |#1|) (-1299 $)) 75 T ELT) (((-711 |#1|)) 106 T ELT)) (-1942 ((|#1| $) 84 T ELT)) (-2008 (((-711 |#1|) $ (-1299 $)) 86 T ELT) (((-711 |#1|) $) 104 T ELT)) (-2649 (((-3 $ #1#) $) 55 (|has| |#1| (-571)) ELT)) (-2125 (((-1203 (-976 |#1|))) 102 (|has| |#1| (-376)) ELT)) (-2652 (($ $ (-949)) 36 T ELT)) (-1940 ((|#1| $) 82 T ELT)) (-1920 (((-1203 |#1|) $) 52 (|has| |#1| (-571)) ELT)) (-2012 ((|#1| (-1299 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1938 (((-1203 |#1|) $) 73 T ELT)) (-1932 (((-114)) 67 T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) 79 T ELT) (($ (-1299 |#1|)) 112 T ELT)) (-3973 (((-3 $ #1#) $) 57 (|has| |#1| (-571)) ELT)) (-3597 (((-949)) 90 T ELT)) (-1929 (((-114)) 64 T ELT)) (-2676 (($ $ (-949)) 43 T ELT)) (-1925 (((-114)) 60 T ELT)) (-1923 (((-114)) 58 T ELT)) (-1927 (((-114)) 62 T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) 51 (|has| |#1| (-571)) ELT)) (-1919 (((-3 $ #1#)) 49 (|has| |#1| (-571)) ELT)) (-2011 (((-711 |#1|) (-1299 $)) 76 T ELT) (((-711 |#1|)) 107 T ELT)) (-1943 ((|#1| $) 85 T ELT)) (-2009 (((-711 |#1|) $ (-1299 $)) 87 T ELT) (((-711 |#1|) $) 105 T ELT)) (-2650 (((-3 $ #1#) $) 56 (|has| |#1| (-571)) ELT)) (-2129 (((-1203 (-976 |#1|))) 103 (|has| |#1| (-376)) ELT)) (-2651 (($ $ (-949)) 37 T ELT)) (-1941 ((|#1| $) 83 T ELT)) (-1921 (((-1203 |#1|) $) 53 (|has| |#1| (-571)) ELT)) (-2013 ((|#1| (-1299 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1939 (((-1203 |#1|) $) 74 T ELT)) (-1933 (((-114)) 68 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1924 (((-114)) 59 T ELT)) (-1926 (((-114)) 61 T ELT)) (-1928 (((-114)) 63 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1931 (((-114)) 66 T ELT)) (-4316 ((|#1| $ (-560)) 118 T ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 81 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 80 T ELT) (((-1299 |#1|) $) 116 T ELT) (((-711 |#1|) (-1299 $)) 115 T ELT)) (-4488 (((-1299 |#1|) $) 111 T ELT) (($ (-1299 |#1|)) 110 T ELT)) (-2117 (((-663 (-976 |#1|)) (-1299 $)) 89 T ELT) (((-663 (-976 |#1|))) 113 T ELT)) (-2838 (($ $ $) 33 T ELT)) (-1937 (((-114)) 72 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 117 T ELT)) (-1922 (((-663 (-1299 |#1|))) 54 (|has| |#1| (-571)) ELT)) (-2839 (($ $ $ $) 34 T ELT)) (-1935 (((-114)) 70 T ELT)) (-3030 (($ (-711 |#1|) $) 101 T ELT)) (-2837 (($ $ $) 32 T ELT)) (-1936 (((-114)) 71 T ELT)) (-1934 (((-114)) 69 T ELT)) (-1930 (((-114)) 65 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 38 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-432 |#1|) (-142) (-175)) (T -432)) -((-2236 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1299 *1)) (-4 *1 (-432 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 *3)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3727 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 (-711 *3))))) (-2117 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-976 *3))))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-4488 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 *3)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-2013 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-2012 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-2011 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2010 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2129 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1203 (-976 *3))))) (-2125 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1203 (-976 *3))))) (-3030 (*1 *1 *2 *1) (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175))))) -(-13 (-380 |t#1|) (-298 (-560) |t#1|) (-10 -8 (-15 -2236 ((-1299 $))) (-15 -3728 ((-1299 |t#1|) $)) (-15 -3728 ((-711 |t#1|) (-1299 $))) (-15 -3727 ((-1299 (-711 |t#1|)))) (-15 -2117 ((-663 (-976 |t#1|)))) (-15 -2014 ($ (-1299 |t#1|))) (-15 -4488 ((-1299 |t#1|) $)) (-15 -4488 ($ (-1299 |t#1|))) (-15 -2013 (|t#1|)) (-15 -2012 (|t#1|)) (-15 -2011 ((-711 |t#1|))) (-15 -2010 ((-711 |t#1|))) (-15 -2009 ((-711 |t#1|) $)) (-15 -2008 ((-711 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2129 ((-1203 (-976 |t#1|)))) (-15 -2125 ((-1203 (-976 |t#1|))))) |%noBranch|) (-15 -3030 ($ (-711 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-298 (-560) |#1|) . T) ((-380 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3622 (((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|)) 28 T ELT)) (-2015 (((-419 |#1|) (-419 |#1|) (-419 |#1|)) 17 T ELT))) -(((-433 |#1|) (-10 -7 (-15 -3622 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -2015 ((-419 |#1|) (-419 |#1|) (-419 |#1|)))) (-571)) (T -433)) -((-2015 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3)))) (-3622 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4)) (-5 *1 (-433 *4))))) -(-10 -7 (-15 -3622 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -2015 ((-419 |#1|) (-419 |#1|) (-419 |#1|)))) -((-3570 (((-663 (-1209)) $) 81 T ELT)) (-3572 (((-421 (-1203 $)) $ (-630 $)) 313 T ELT)) (-1759 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 277 T ELT)) (-3661 (((-3 (-630 $) #1="failed") $) NIL T ELT) (((-3 (-1209) #1#) $) 84 T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-421 (-976 |#2|)) #1#) $) 363 T ELT) (((-3 (-976 |#2|) #1#) $) 275 T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT)) (-3660 (((-630 $) $) NIL T ELT) (((-1209) $) 28 T ELT) (((-560) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-421 (-976 |#2|)) $) 345 T ELT) (((-976 |#2|) $) 272 T ELT) (((-421 (-560)) $) NIL T ELT)) (-4109 (((-115) (-115)) 47 T ELT)) (-3483 (($ $) 99 T ELT)) (-1757 (((-3 (-630 $) "failed") $) 268 T ELT)) (-1756 (((-663 (-630 $)) $) 269 T ELT)) (-3310 (((-3 (-663 $) "failed") $) 287 T ELT)) (-3312 (((-3 (-2 (|:| |val| $) (|:| -2646 (-560))) "failed") $) 294 T ELT)) (-3309 (((-3 (-663 $) "failed") $) 285 T ELT)) (-2016 (((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 $))) "failed") $) 304 T ELT)) (-3311 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-1209)) 257 T ELT)) (-2019 (((-114) $) 17 T ELT)) (-2018 ((|#2| $) 19 T ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 276 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) 109 T ELT) (($ $ (-1209) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1209) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1209)) 62 T ELT) (($ $ (-663 (-1209))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1209)) 65 T ELT) (($ $ (-663 (-115)) (-663 $) (-1209)) 72 T ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ $))) 120 T ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 282 T ELT) (($ $ (-1209) (-793) (-1 $ (-663 $))) 105 T ELT) (($ $ (-1209) (-793) (-1 $ $)) 104 T ELT)) (-4316 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) 119 T ELT)) (-4274 (($ $ (-1209)) 278 T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-3482 (($ $) 324 T ELT)) (-4488 (((-916 (-560)) $) 297 T ELT) (((-916 (-391)) $) 301 T ELT) (($ (-419 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-4462 (((-888) $) 279 T ELT) (($ (-630 $)) 93 T ELT) (($ (-1209)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1157 |#2| (-630 $))) NIL T ELT) (($ (-421 |#2|)) 329 T ELT) (($ (-976 (-421 |#2|))) 368 T ELT) (($ (-421 (-976 (-421 |#2|)))) 341 T ELT) (($ (-421 (-976 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-976 |#2|)) 216 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 373 T ELT)) (-3614 (((-793)) 88 T ELT)) (-2482 (((-114) (-115)) 42 T ELT)) (-2017 (($ (-1209) $) 31 T ELT) (($ (-1209) $ $) 32 T ELT) (($ (-1209) $ $ $) 33 T ELT) (($ (-1209) $ $ $ $) 34 T ELT) (($ (-1209) (-663 $)) 39 T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-421 (-560)) #1="failed") |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4462 (|#1| (-560))) (-15 -3614 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4462 (|#1| (-976 |#2|))) (-15 -3661 ((-3 (-976 |#2|) #1#) |#1|)) (-15 -3660 ((-976 |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 * (|#1| |#1| |#2|)) (-15 -4462 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4462 (|#1| (-421 (-976 |#2|)))) (-15 -3661 ((-3 (-421 (-976 |#2|)) #1#) |#1|)) (-15 -3660 ((-421 (-976 |#2|)) |#1|)) (-15 -3572 ((-421 (-1203 |#1|)) |#1| (-630 |#1|))) (-15 -4462 (|#1| (-421 (-976 (-421 |#2|))))) (-15 -4462 (|#1| (-976 (-421 |#2|)))) (-15 -4462 (|#1| (-421 |#2|))) (-15 -3482 (|#1| |#1|)) (-15 -4488 (|#1| (-419 |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-793) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-793) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -3312 ((-3 (-2 (|:| |val| |#1|) (|:| -2646 (-560))) "failed") |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1| (-1209))) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1| (-115))) (-15 -3483 (|#1| |#1|)) (-15 -4462 (|#1| (-1157 |#2| (-630 |#1|)))) (-15 -2016 ((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3309 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1|)) (-15 -3310 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1209))) (-15 -4284 (|#1| |#1| (-115) |#1| (-1209))) (-15 -4284 (|#1| |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1209)))) (-15 -4284 (|#1| |#1| (-1209))) (-15 -2017 (|#1| (-1209) (-663 |#1|))) (-15 -2017 (|#1| (-1209) |#1| |#1| |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1| |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1|)) (-15 -3570 ((-663 (-1209)) |#1|)) (-15 -2018 (|#2| |#1|)) (-15 -2019 ((-114) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4462 (|#1| (-1209))) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| |#1|)))) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1756 ((-663 (-630 |#1|)) |#1|)) (-15 -1757 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1759 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1759 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1759 (|#1| |#1| (-305 |#1|))) (-15 -4316 (|#1| (-115) (-663 |#1|))) (-15 -4316 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -4462 (|#1| (-630 |#1|))) (-15 -3661 ((-3 (-630 |#1|) #1#) |#1|)) (-15 -3660 ((-630 |#1|) |#1|)) (-15 -4462 ((-888) |#1|))) (-435 |#2|) (-1133)) (T -434)) -((-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1133)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-3614 (*1 *2) (-12 (-4 *4 (-1133)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) -(-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-421 (-560)) #1="failed") |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4462 (|#1| (-560))) (-15 -3614 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4462 (|#1| (-976 |#2|))) (-15 -3661 ((-3 (-976 |#2|) #1#) |#1|)) (-15 -3660 ((-976 |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 * (|#1| |#1| |#2|)) (-15 -4462 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4462 (|#1| (-421 (-976 |#2|)))) (-15 -3661 ((-3 (-421 (-976 |#2|)) #1#) |#1|)) (-15 -3660 ((-421 (-976 |#2|)) |#1|)) (-15 -3572 ((-421 (-1203 |#1|)) |#1| (-630 |#1|))) (-15 -4462 (|#1| (-421 (-976 (-421 |#2|))))) (-15 -4462 (|#1| (-976 (-421 |#2|)))) (-15 -4462 (|#1| (-421 |#2|))) (-15 -3482 (|#1| |#1|)) (-15 -4488 (|#1| (-419 |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-793) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-793) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -3312 ((-3 (-2 (|:| |val| |#1|) (|:| -2646 (-560))) "failed") |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1| (-1209))) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1| (-115))) (-15 -3483 (|#1| |#1|)) (-15 -4462 (|#1| (-1157 |#2| (-630 |#1|)))) (-15 -2016 ((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3309 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2646 (-560))) "failed") |#1|)) (-15 -3310 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1209))) (-15 -4284 (|#1| |#1| (-115) |#1| (-1209))) (-15 -4284 (|#1| |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1209)))) (-15 -4284 (|#1| |#1| (-1209))) (-15 -2017 (|#1| (-1209) (-663 |#1|))) (-15 -2017 (|#1| (-1209) |#1| |#1| |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1| |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1| |#1|)) (-15 -2017 (|#1| (-1209) |#1|)) (-15 -3570 ((-663 (-1209)) |#1|)) (-15 -2018 (|#2| |#1|)) (-15 -2019 ((-114) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4462 (|#1| (-1209))) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| |#1|))) (-15 -4284 (|#1| |#1| (-1209) (-1 |#1| (-663 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4284 (|#1| |#1| (-663 (-1209)) (-663 (-1 |#1| |#1|)))) (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -1756 ((-663 (-630 |#1|)) |#1|)) (-15 -1757 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1759 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1759 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1759 (|#1| |#1| (-305 |#1|))) (-15 -4316 (|#1| (-115) (-663 |#1|))) (-15 -4316 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1| |#1|)) (-15 -4316 (|#1| (-115) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4284 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -4462 (|#1| (-630 |#1|))) (-15 -3661 ((-3 (-630 |#1|) #1#) |#1|)) (-15 -3660 ((-630 |#1|) |#1|)) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 129 (|has| |#1| (-25)) ELT)) (-3570 (((-663 (-1209)) $) 220 T ELT)) (-3572 (((-421 (-1203 $)) $ (-630 $)) 188 (|has| |#1| (-571)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 160 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 161 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 163 (|has| |#1| (-571)) ELT)) (-1755 (((-663 (-630 $)) $) 42 T ELT)) (-1438 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1759 (($ $ (-305 $)) 54 T ELT) (($ $ (-663 (-305 $))) 53 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 52 T ELT)) (-4291 (($ $) 180 (|has| |#1| (-571)) ELT)) (-4487 (((-419 $) $) 181 (|has| |#1| (-571)) ELT)) (-1800 (((-114) $ $) 171 (|has| |#1| (-571)) ELT)) (-4240 (($) 117 (-4043 (|has| |#1| (-1144)) (|has| |#1| (-25))) CONST)) (-3661 (((-3 (-630 $) #1="failed") $) 67 T ELT) (((-3 (-1209) #1#) $) 233 T ELT) (((-3 (-560) #1#) $) 227 (|has| |#1| (-1070 (-560))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-421 (-976 |#1|)) #1#) $) 186 (|has| |#1| (-571)) ELT) (((-3 (-976 |#1|) #1#) $) 136 (|has| |#1| (-1081)) ELT) (((-3 (-421 (-560)) #1#) $) 111 (-4043 (-12 (|has| |#1| (-1070 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3660 (((-630 $) $) 68 T ELT) (((-1209) $) 234 T ELT) (((-560) $) 226 (|has| |#1| (-1070 (-560))) ELT) ((|#1| $) 225 T ELT) (((-421 (-976 |#1|)) $) 187 (|has| |#1| (-571)) ELT) (((-976 |#1|) $) 137 (|has| |#1| (-1081)) ELT) (((-421 (-560)) $) 112 (-4043 (-12 (|has| |#1| (-1070 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3049 (($ $ $) 175 (|has| |#1| (-571)) ELT)) (-2507 (((-711 (-560)) (-711 $)) 153 (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 152 (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 151 (|has| |#1| (-1081)) ELT) (((-711 |#1|) (-711 $)) 150 (|has| |#1| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) 119 (|has| |#1| (-1144)) ELT)) (-3048 (($ $ $) 174 (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 169 (|has| |#1| (-571)) ELT)) (-4239 (((-114) $) 182 (|has| |#1| (-571)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 229 (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 228 (|has| |#1| (-912 (-391))) ELT)) (-3058 (($ $) 49 T ELT) (($ (-663 $)) 48 T ELT)) (-1754 (((-663 (-115)) $) 41 T ELT)) (-4109 (((-115) (-115)) 40 T ELT)) (-2655 (((-114) $) 118 (|has| |#1| (-1144)) ELT)) (-3160 (((-114) $) 20 (|has| $ (-1070 (-560))) ELT)) (-3483 (($ $) 203 (|has| |#1| (-1081)) ELT)) (-3485 (((-1157 |#1| (-630 $)) $) 204 (|has| |#1| (-1081)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 178 (|has| |#1| (-571)) ELT)) (-1752 (((-1203 $) (-630 $)) 23 (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) 34 T ELT)) (-1757 (((-3 (-630 $) "failed") $) 44 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 155 (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 154 (-3047 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 149 (|has| |#1| (-1081)) ELT) (((-711 |#1|) (-1299 $)) 148 (|has| |#1| (-1081)) ELT)) (-2116 (($ (-663 $)) 167 (|has| |#1| (-571)) ELT) (($ $ $) 166 (|has| |#1| (-571)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-1756 (((-663 (-630 $)) $) 43 T ELT)) (-2463 (($ (-115) $) 36 T ELT) (($ (-115) (-663 $)) 35 T ELT)) (-3310 (((-3 (-663 $) "failed") $) 209 (|has| |#1| (-1144)) ELT)) (-3312 (((-3 (-2 (|:| |val| $) (|:| -2646 (-560))) "failed") $) 200 (|has| |#1| (-1081)) ELT)) (-3309 (((-3 (-663 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-2016 (((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-3311 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $) 208 (|has| |#1| (-1144)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-115)) 202 (|has| |#1| (-1081)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-1209)) 201 (|has| |#1| (-1081)) ELT)) (-3118 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1209)) 37 T ELT)) (-2888 (($ $) 121 (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-3088 (((-793) $) 45 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 222 T ELT)) (-2018 ((|#1| $) 221 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 168 (|has| |#1| (-571)) ELT)) (-3648 (($ (-663 $)) 165 (|has| |#1| (-571)) ELT) (($ $ $) 164 (|has| |#1| (-571)) ELT)) (-1753 (((-114) $ $) 33 T ELT) (((-114) $ (-1209)) 32 T ELT)) (-4248 (((-419 $) $) 179 (|has| |#1| (-571)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 176 (|has| |#1| (-571)) ELT)) (-3972 (((-3 $ "failed") $ $) 159 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 170 (|has| |#1| (-571)) ELT)) (-3161 (((-114) $) 21 (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) 65 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 64 T ELT) (($ $ (-663 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-663 $) (-663 $)) 60 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) 31 T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) 30 T ELT) (($ $ (-1209) (-1 $ (-663 $))) 29 T ELT) (($ $ (-1209) (-1 $ $)) 28 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 27 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-663 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT) (($ $ (-1209)) 214 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1209))) 213 (|has| |#1| (-633 (-549))) ELT) (($ $) 212 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1209)) 211 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1209)) 210 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ $))) 199 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 198 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793) (-1 $ (-663 $))) 197 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793) (-1 $ $)) 196 (|has| |#1| (-1081)) ELT)) (-1799 (((-793) $) 172 (|has| |#1| (-571)) ELT)) (-4316 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-663 $)) 55 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 173 (|has| |#1| (-571)) ELT)) (-1758 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-4274 (($ $ (-1209)) 146 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) 144 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) 143 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 142 (|has| |#1| (-1081)) ELT)) (-3482 (($ $) 193 (|has| |#1| (-571)) ELT)) (-3484 (((-1157 |#1| (-630 $)) $) 194 (|has| |#1| (-571)) ELT)) (-3689 (($ $) 22 (|has| $ (-1081)) ELT)) (-4488 (((-916 (-560)) $) 231 (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) 230 (|has| |#1| (-633 (-916 (-391)))) ELT) (($ (-419 $)) 195 (|has| |#1| (-571)) ELT) (((-549) $) 113 (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $ $) 124 (|has| |#1| (-487)) ELT)) (-2838 (($ $ $) 125 (|has| |#1| (-487)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-630 $)) 66 T ELT) (($ (-1209)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1157 |#1| (-630 $))) 205 (|has| |#1| (-1081)) ELT) (($ (-421 |#1|)) 191 (|has| |#1| (-571)) ELT) (($ (-976 (-421 |#1|))) 190 (|has| |#1| (-571)) ELT) (($ (-421 (-976 (-421 |#1|)))) 189 (|has| |#1| (-571)) ELT) (($ (-421 (-976 |#1|))) 185 (|has| |#1| (-571)) ELT) (($ $) 158 (|has| |#1| (-571)) ELT) (($ (-976 |#1|)) 135 (|has| |#1| (-1081)) ELT) (($ (-421 (-560))) 110 (-4043 (|has| |#1| (-571)) (-12 (|has| |#1| (-1070 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ (-560)) 109 (-4043 (|has| |#1| (-1081)) (|has| |#1| (-1070 (-560)))) ELT)) (-3189 (((-713 $) $) 156 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 138 (|has| |#1| (-1081)) CONST)) (-3075 (($ $) 51 T ELT) (($ (-663 $)) 50 T ELT)) (-2482 (((-114) (-115)) 39 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 162 (|has| |#1| (-571)) ELT)) (-2017 (($ (-1209) $) 219 T ELT) (($ (-1209) $ $) 218 T ELT) (($ (-1209) $ $ $) 217 T ELT) (($ (-1209) $ $ $ $) 216 T ELT) (($ (-1209) (-663 $)) 215 T ELT)) (-3145 (($) 128 (|has| |#1| (-25)) CONST)) (-3151 (($) 116 (|has| |#1| (-1144)) CONST)) (-3156 (($ $ (-1209)) 145 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209))) 141 (|has| |#1| (-1081)) ELT) (($ $ (-1209) (-793)) 140 (|has| |#1| (-1081)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 139 (|has| |#1| (-1081)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ (-1157 |#1| (-630 $)) (-1157 |#1| (-630 $))) 192 (|has| |#1| (-571)) ELT) (($ $ $) 122 (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-4353 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) 123 (-4043 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 120 (|has| |#1| (-1144)) ELT) (($ $ (-949)) 115 (|has| |#1| (-1144)) ELT)) (* (($ (-421 (-560)) $) 184 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 183 (|has| |#1| (-571)) ELT) (($ $ |#1|) 157 (|has| |#1| (-175)) ELT) (($ |#1| $) 147 (|has| |#1| (-1081)) ELT) (($ (-560) $) 132 (|has| |#1| (-21)) ELT) (($ (-793) $) 130 (|has| |#1| (-25)) ELT) (($ (-949) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1144)) ELT))) -(((-435 |#1|) (-142) (-1133)) (T -435)) -((-2019 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-5 *2 (-663 (-1209))))) (-2017 (*1 *1 *2 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) (-2017 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) (-2017 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) (-2017 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) (-2017 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1133)))) (-4284 (*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-4 *3 (-633 (-549))))) (-4284 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1209))) (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-4 *3 (-633 (-549))))) (-4284 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-633 (-549))))) (-4284 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1209)) (-4 *1 (-435 *4)) (-4 *4 (-1133)) (-4 *4 (-633 (-549))))) (-4284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1209)) (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-633 (-549))))) (-3310 (*1 *2 *1) (|partial| -12 (-4 *3 (-1144)) (-4 *3 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-3311 (*1 *2 *1) (|partial| -12 (-4 *3 (-1144)) (-4 *3 (-1133)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *3)))) (-3309 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-2016 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1133)) (-5 *2 (-2 (|:| -4470 (-560)) (|:| |var| (-630 *1)))) (-4 *1 (-435 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 (-630 *1))) (-4 *3 (-1081)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) (-3485 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *3 (-1133)) (-5 *2 (-1157 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-1081)))) (-3311 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1081)) (-4 *4 (-1133)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *4)))) (-3311 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1209)) (-4 *4 (-1081)) (-4 *4 (-1133)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *4)))) (-3312 (*1 *2 *1) (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-1133)) (-5 *2 (-2 (|:| |val| *1) (|:| -2646 (-560)))) (-4 *1 (-435 *3)))) (-4284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) (-4284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) (-4284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) (-4284 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571)) (-4 *3 (-1133)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1133)) (-5 *2 (-1157 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-3482 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-571)))) (-4465 (*1 *1 *2 *2) (-12 (-5 *2 (-1157 *3 (-630 *1))) (-4 *3 (-571)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-976 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1133)) (-4 *4 (-571)) (-5 *2 (-421 (-1203 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-4 *3 (-1144))))) -(-13 (-310) (-1070 (-1209)) (-910 |t#1|) (-414 |t#1|) (-426 |t#1|) (-10 -8 (-15 -2019 ((-114) $)) (-15 -2018 (|t#1| $)) (-15 -3570 ((-663 (-1209)) $)) (-15 -2017 ($ (-1209) $)) (-15 -2017 ($ (-1209) $ $)) (-15 -2017 ($ (-1209) $ $ $)) (-15 -2017 ($ (-1209) $ $ $ $)) (-15 -2017 ($ (-1209) (-663 $))) (IF (|has| |t#1| (-633 (-549))) (PROGN (-6 (-633 (-549))) (-15 -4284 ($ $ (-1209))) (-15 -4284 ($ $ (-663 (-1209)))) (-15 -4284 ($ $)) (-15 -4284 ($ $ (-115) $ (-1209))) (-15 -4284 ($ $ (-663 (-115)) (-663 $) (-1209)))) |%noBranch|) (IF (|has| |t#1| (-1144)) (PROGN (-6 (-748)) (-15 ** ($ $ (-793))) (-15 -3310 ((-3 (-663 $) "failed") $)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-487)) (-6 (-487)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3309 ((-3 (-663 $) "failed") $)) (-15 -2016 ((-3 (-2 (|:| -4470 (-560)) (|:| |var| (-630 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1081)) (PROGN (-6 (-1081)) (-6 (-1070 (-976 |t#1|))) (-6 (-928 (-1209))) (-6 (-390 |t#1|)) (-15 -4462 ($ (-1157 |t#1| (-630 $)))) (-15 -3485 ((-1157 |t#1| (-630 $)) $)) (-15 -3483 ($ $)) (-15 -3311 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-115))) (-15 -3311 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2646 (-560))) "failed") $ (-1209))) (-15 -3312 ((-3 (-2 (|:| |val| $) (|:| -2646 (-560))) "failed") $)) (-15 -4284 ($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ $)))) (-15 -4284 ($ $ (-663 (-1209)) (-663 (-793)) (-663 (-1 $ (-663 $))))) (-15 -4284 ($ $ (-1209) (-793) (-1 $ (-663 $)))) (-15 -4284 ($ $ (-1209) (-793) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-376)) (-6 (-1070 (-421 (-976 |t#1|)))) (-15 -4488 ($ (-419 $))) (-15 -3484 ((-1157 |t#1| (-630 $)) $)) (-15 -3482 ($ $)) (-15 -4465 ($ (-1157 |t#1| (-630 $)) (-1157 |t#1| (-630 $)))) (-15 -4462 ($ (-421 |t#1|))) (-15 -4462 ($ (-976 (-421 |t#1|)))) (-15 -4462 ($ (-421 (-976 (-421 |t#1|))))) (-15 -3572 ((-421 (-1203 $)) $ (-630 $))) (IF (|has| |t#1| (-1070 (-560))) (-6 (-1070 (-421 (-560)))) |%noBranch|)) |%noBranch|))) -(((-21) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-421 (-560))) |has| |#1| (-571)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-571)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-571)) ((-133) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-571))) ((-635 #2=(-421 (-976 |#1|))) |has| |#1| (-571)) ((-635 (-560)) -4043 (|has| |#1| (-1081)) (|has| |#1| (-1070 (-560))) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-635 #3=(-630 $)) . T) ((-635 #4=(-976 |#1|)) |has| |#1| (-1081)) ((-635 #5=(-1209)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) |has| |#1| (-571)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-916 (-391))) |has| |#1| (-633 (-916 (-391)))) ((-633 (-916 (-560))) |has| |#1| (-633 (-916 (-560)))) ((-250) |has| |#1| (-571)) ((-302) |has| |#1| (-571)) ((-319) |has| |#1| (-571)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-571)) ((-390 |#1|) |has| |#1| (-1081)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) |has| |#1| (-571)) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-571)) ((-668 (-560)) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-668 |#1|) -4043 (|has| |#1| (-1081)) (|has| |#1| (-175))) ((-668 $) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-670 #1#) |has| |#1| (-571)) ((-670 #6=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ((-670 |#1|) -4043 (|has| |#1| (-1081)) (|has| |#1| (-175))) ((-670 $) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-662 #1#) |has| |#1| (-571)) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-660 #6#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1081))) ((-660 |#1|) |has| |#1| (-1081)) ((-739 #1#) |has| |#1| (-571)) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) -4043 (|has| |#1| (-1144)) (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-922 $ #7=(-1209)) |has| |#1| (-1081)) ((-928 #7#) |has| |#1| (-1081)) ((-930 #7#) |has| |#1| (-1081)) ((-912 (-391)) |has| |#1| (-912 (-391))) ((-912 (-560)) |has| |#1| (-912 (-560))) ((-910 |#1|) . T) ((-951) |has| |#1| (-571)) ((-1070 (-421 (-560))) -4043 (|has| |#1| (-1070 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1070 (-560))))) ((-1070 #2#) |has| |#1| (-571)) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 #3#) . T) ((-1070 #4#) |has| |#1| (-1081)) ((-1070 #5#) . T) ((-1070 |#1|) . T) ((-1083 #1#) |has| |#1| (-571)) ((-1083 |#1|) |has| |#1| (-175)) ((-1083 $) |has| |#1| (-571)) ((-1088 #1#) |has| |#1| (-571)) ((-1088 |#1|) |has| |#1| (-175)) ((-1088 $) |has| |#1| (-571)) ((-1081) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1089) -4043 (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1144) -4043 (|has| |#1| (-1144)) (|has| |#1| (-1081)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1133) . T) ((-1249) . T) ((-1254) |has| |#1| (-571))) -((-4474 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|))) (-1081) (-435 |#1|) (-1081) (-435 |#3|)) (T -436)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-435 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|))) -((-2023 ((|#2| |#2|) 182 T ELT)) (-2020 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114)) 60 T ELT))) -(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2020 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114))) (-15 -2023 (|#2| |#2|))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|)) (-1209) |#2|) (T -437)) -((-2023 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1235) (-435 *3))) (-14 *4 (-1209)) (-14 *5 *2))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-14 *6 (-1209)) (-14 *7 *3)))) -(-10 -7 (-15 -2020 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114))) (-15 -2023 (|#2| |#2|))) -((-2023 ((|#2| |#2|) 105 T ELT)) (-2021 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191)) 52 T ELT)) (-2022 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191)) 169 T ELT))) -(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2021 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191))) (-15 -2022 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191))) (-15 -2023 (|#2| |#2|))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|) (-10 -8 (-15 -4462 ($ |#3|)))) (-871) (-13 (-1278 |#2| |#3|) (-376) (-1235) (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $)))) (-1015 |#4|) (-1209)) (T -438)) -((-2023 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-4 *2 (-13 (-27) (-1235) (-435 *3) (-10 -8 (-15 -4462 ($ *4))))) (-4 *4 (-871)) (-4 *5 (-13 (-1278 *2 *4) (-376) (-1235) (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1015 *5)) (-14 *7 (-1209)))) (-2022 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1235) (-435 *6) (-10 -8 (-15 -4462 ($ *7))))) (-4 *7 (-871)) (-4 *8 (-13 (-1278 *3 *7) (-376) (-1235) (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1191)) (-4 *9 (-1015 *8)) (-14 *10 (-1209)))) (-2021 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1235) (-435 *6) (-10 -8 (-15 -4462 ($ *7))))) (-4 *7 (-871)) (-4 *8 (-13 (-1278 *3 *7) (-376) (-1235) (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1191)) (-4 *9 (-1015 *8)) (-14 *10 (-1209))))) -(-10 -7 (-15 -2021 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191))) (-15 -2022 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191))))) |#2| (-114) (-1191))) (-15 -2023 (|#2| |#2|))) -((-2024 (($) 51 T ELT)) (-3738 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3740 (($ $ $) 46 T ELT)) (-3739 (((-114) $ $) 35 T ELT)) (-3624 (((-793)) 55 T ELT)) (-3743 (($ (-663 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3481 (($) 66 T ELT)) (-3745 (((-114) $ $) 15 T ELT)) (-3016 ((|#2| $) 77 T ELT)) (-3344 ((|#2| $) 75 T ELT)) (-2234 (((-949) $) 70 T ELT)) (-3742 (($ $ $) 42 T ELT)) (-2645 (($ (-949)) 60 T ELT)) (-3741 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL T ELT) (((-793) |#2| $) 31 T ELT)) (-4036 (($ (-663 |#2|)) 27 T ELT)) (-2025 (($ $) 53 T ELT)) (-4462 (((-888) $) 40 T ELT)) (-2026 (((-793) $) 24 T ELT)) (-3744 (($ (-663 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3540 (((-114) $ $) 19 T ELT))) -(((-439 |#1| |#2|) (-10 -8 (-15 -3624 ((-793))) (-15 -2645 (|#1| (-949))) (-15 -2234 ((-949) |#1|)) (-15 -3481 (|#1|)) (-15 -3016 (|#2| |#1|)) (-15 -3344 (|#2| |#1|)) (-15 -2024 (|#1|)) (-15 -2025 (|#1| |#1|)) (-15 -2026 ((-793) |#1|)) (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3745 ((-114) |#1| |#1|)) (-15 -3744 (|#1|)) (-15 -3744 (|#1| (-663 |#2|))) (-15 -3743 (|#1|)) (-15 -3743 (|#1| (-663 |#2|))) (-15 -3742 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#2|)) (-15 -3740 (|#1| |#1| |#1|)) (-15 -3739 ((-114) |#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#2| |#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|))) (-440 |#2|) (-1133)) (T -439)) -((-3624 (*1 *2) (-12 (-4 *4 (-1133)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4))))) -(-10 -8 (-15 -3624 ((-793))) (-15 -2645 (|#1| (-949))) (-15 -2234 ((-949) |#1|)) (-15 -3481 (|#1|)) (-15 -3016 (|#2| |#1|)) (-15 -3344 (|#2| |#1|)) (-15 -2024 (|#1|)) (-15 -2025 (|#1| |#1|)) (-15 -2026 ((-793) |#1|)) (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3745 ((-114) |#1| |#1|)) (-15 -3744 (|#1|)) (-15 -3744 (|#1| (-663 |#2|))) (-15 -3743 (|#1|)) (-15 -3743 (|#1| (-663 |#2|))) (-15 -3742 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#2|)) (-15 -3740 (|#1| |#1| |#1|)) (-15 -3739 ((-114) |#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#2| |#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -2171 ((-793) |#2| |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|))) -((-3053 (((-114) $ $) 19 T ELT)) (-2024 (($) 71 (|has| |#1| (-381)) ELT)) (-3738 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3740 (($ $ $) 82 T ELT)) (-3739 (((-114) $ $) 83 T ELT)) (-3624 (((-793)) 65 (|has| |#1| (-381)) ELT)) (-3743 (($ (-663 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3481 (($) 68 (|has| |#1| (-381)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) 74 T ELT)) (-3016 ((|#1| $) 69 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3344 ((|#1| $) 70 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2234 (((-949) $) 67 (|has| |#1| (-381)) ELT)) (-3746 (((-1191) $) 22 T ELT)) (-3742 (($ $ $) 79 T ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-2645 (($ (-949)) 66 (|has| |#1| (-381)) ELT)) (-3747 (((-1152) $) 21 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-3741 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-2025 (($ $) 72 (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) 17 T ELT)) (-2026 (((-793) $) 73 T ELT)) (-3744 (($ (-663 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1389 (((-114) $ $) 20 T ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 T ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-440 |#1|) (-142) (-1133)) (T -440)) -((-2026 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1133)) (-5 *2 (-793)))) (-2025 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-381)))) (-2024 (*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1133)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-872)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-872))))) -(-13 (-233 |t#1|) (-1131 |t#1|) (-10 -8 (-6 -4511) (-15 -2026 ((-793) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2025 ($ $)) (-15 -2024 ($))) |%noBranch|) (IF (|has| |t#1| (-872)) (PROGN (-15 -3344 (|t#1| $)) (-15 -3016 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-888)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-381) |has| |#1| (-381)) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1131 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-4357 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4358 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4474 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4358 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4357 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1133) (-440 |#1|) (-1133) (-440 |#3|)) (T -441)) -((-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-4 *2 (-440 *5)) (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1133)) (-4 *2 (-1133)) (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-440 *6)) (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4358 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4357 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2027 (((-597 |#2|) |#2| (-1209)) 36 T ELT)) (-2329 (((-597 |#2|) |#2| (-1209)) 21 T ELT)) (-2378 ((|#2| |#2| (-1209)) 26 T ELT))) -(((-442 |#1| |#2|) (-10 -7 (-15 -2329 ((-597 |#2|) |#2| (-1209))) (-15 -2027 ((-597 |#2|) |#2| (-1209))) (-15 -2378 (|#2| |#2| (-1209)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-29 |#1|))) (T -442)) -((-2378 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1235) (-29 *4))))) (-2027 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1235) (-29 *5))))) (-2329 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1235) (-29 *5)))))) -(-10 -7 (-15 -2329 ((-597 |#2|) |#2| (-1209))) (-15 -2027 ((-597 |#2|) |#2| (-1209))) (-15 -2378 (|#2| |#2| (-1209)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2029 (($ |#2| |#1|) 37 T ELT)) (-2028 (($ |#2| |#1|) 35 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 10 T CONST)) (-3151 (($) 16 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 36 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-443 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4498)) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|) |%noBranch|) (-15 -4462 ($ |#1|)) (-15 -4462 ($ (-343 |#2|))) (-15 -2029 ($ |#2| |#1|)) (-15 -2028 ($ |#2| |#1|)))) (-13 (-175) (-38 (-421 (-560)))) (-13 (-872) (-21))) (T -443)) -((-4462 (*1 *1 *2) (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560))))) (-4 *3 (-13 (-872) (-21))))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-872) (-21))) (-5 *1 (-443 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))))) (-2029 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-872) (-21))))) (-2028 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-872) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4498)) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|) |%noBranch|) (-15 -4462 ($ |#1|)) (-15 -4462 ($ (-343 |#2|))) (-15 -2029 ($ |#2| |#1|)) (-15 -2028 ($ |#2| |#1|)))) -((-4328 (((-3 |#2| (-663 |#2|)) |#2| (-1209)) 115 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -4328 ((-3 |#2| (-663 |#2|)) |#2| (-1209)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-990) (-29 |#1|))) (T -444)) -((-4328 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3)) (-4 *3 (-13 (-1235) (-990) (-29 *5)))))) -(-10 -7 (-15 -4328 ((-3 |#2| (-663 |#2|)) |#2| (-1209)))) -((-3892 ((|#2| |#2| |#2|) 31 T ELT)) (-4109 (((-115) (-115)) 43 T ELT)) (-2031 ((|#2| |#2|) 63 T ELT)) (-2030 ((|#2| |#2|) 66 T ELT)) (-3891 ((|#2| |#2|) 30 T ELT)) (-3895 ((|#2| |#2| |#2|) 33 T ELT)) (-3897 ((|#2| |#2| |#2|) 35 T ELT)) (-3894 ((|#2| |#2| |#2|) 32 T ELT)) (-3896 ((|#2| |#2| |#2|) 34 T ELT)) (-2482 (((-114) (-115)) 41 T ELT)) (-3899 ((|#2| |#2|) 37 T ELT)) (-3898 ((|#2| |#2|) 36 T ELT)) (-3889 ((|#2| |#2|) 25 T ELT)) (-3893 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3890 ((|#2| |#2| |#2|) 29 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -3889 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3890 (|#2| |#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2| |#2|)) (-15 -3894 (|#2| |#2| |#2|)) (-15 -3895 (|#2| |#2| |#2|)) (-15 -3896 (|#2| |#2| |#2|)) (-15 -3897 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2031 (|#2| |#2|))) (-571) (-435 |#1|)) (T -445)) -((-2031 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3896 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3895 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3894 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3892 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3890 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3893 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4)) (-4 *4 (-435 *3)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-445 *4 *5)) (-4 *5 (-435 *4))))) -(-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -3889 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3890 (|#2| |#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2| |#2|)) (-15 -3894 (|#2| |#2| |#2|)) (-15 -3895 (|#2| |#2| |#2|)) (-15 -3896 (|#2| |#2| |#2|)) (-15 -3897 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2031 (|#2| |#2|))) -((-3320 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-663 |#2|)) 65 T ELT))) -(((-446 |#1| |#2|) (-10 -7 (-15 -3320 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -3320 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-571) (-149)) (-435 |#1|)) (T -446)) -((-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1203 *3)) (|:| |pol2| (-1203 *3)) (|:| |prim| (-1203 *3)))) (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1203 *5))) (|:| |prim| (-1203 *5)))) (-5 *1 (-446 *4 *5))))) -(-10 -7 (-15 -3320 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -3320 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2033 (((-1305)) 18 T ELT)) (-2032 (((-1203 (-421 (-560))) |#2| (-630 |#2|)) 40 T ELT) (((-421 (-560)) |#2|) 24 T ELT))) -(((-447 |#1| |#2|) (-10 -7 (-15 -2032 ((-421 (-560)) |#2|)) (-15 -2032 ((-1203 (-421 (-560))) |#2| (-630 |#2|))) (-15 -2033 ((-1305)))) (-13 (-571) (-1070 (-560))) (-435 |#1|)) (T -447)) -((-2033 (*1 *2) (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *2 (-1305)) (-5 *1 (-447 *3 *4)) (-4 *4 (-435 *3)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-447 *5 *3)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4))))) -(-10 -7 (-15 -2032 ((-421 (-560)) |#2|)) (-15 -2032 ((-1203 (-421 (-560))) |#2| (-630 |#2|))) (-15 -2033 ((-1305)))) -((-4161 (((-114) $) 33 T ELT)) (-2034 (((-114) $) 35 T ELT)) (-3763 (((-114) $) 36 T ELT)) (-2036 (((-114) $) 39 T ELT)) (-2038 (((-114) $) 34 T ELT)) (-2037 (((-114) $) 38 T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-1191)) 32 T ELT) (($ (-1209)) 30 T ELT) (((-1209) $) 24 T ELT) (((-1135) $) 23 T ELT)) (-2035 (((-114) $) 37 T ELT)) (-3540 (((-114) $ $) 17 T ELT))) -(((-448) (-13 (-632 (-888)) (-10 -8 (-15 -4462 ($ (-1191))) (-15 -4462 ($ (-1209))) (-15 -4462 ((-1209) $)) (-15 -4462 ((-1135) $)) (-15 -4161 ((-114) $)) (-15 -2038 ((-114) $)) (-15 -3763 ((-114) $)) (-15 -2037 ((-114) $)) (-15 -2036 ((-114) $)) (-15 -2035 ((-114) $)) (-15 -2034 ((-114) $)) (-15 -3540 ((-114) $ $))))) (T -448)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-448)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-448)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-448)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-448)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3540 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4462 ($ (-1191))) (-15 -4462 ($ (-1209))) (-15 -4462 ((-1209) $)) (-15 -4462 ((-1135) $)) (-15 -4161 ((-114) $)) (-15 -2038 ((-114) $)) (-15 -3763 ((-114) $)) (-15 -2037 ((-114) $)) (-15 -2036 ((-114) $)) (-15 -2035 ((-114) $)) (-15 -2034 ((-114) $)) (-15 -3540 ((-114) $ $)))) -((-2040 (((-3 (-419 (-1203 (-421 (-560)))) "failed") |#3|) 72 T ELT)) (-2039 (((-419 |#3|) |#3|) 34 T ELT)) (-2042 (((-3 (-419 (-1203 (-48))) "failed") |#3|) 46 (|has| |#2| (-1070 (-48))) ELT)) (-2041 (((-3 (|:| |overq| (-1203 (-421 (-560)))) (|:| |overan| (-1203 (-48))) (|:| -3124 (-114))) |#3|) 37 T ELT))) -(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -2039 ((-419 |#3|) |#3|)) (-15 -2040 ((-3 (-419 (-1203 (-421 (-560)))) "failed") |#3|)) (-15 -2041 ((-3 (|:| |overq| (-1203 (-421 (-560)))) (|:| |overan| (-1203 (-48))) (|:| -3124 (-114))) |#3|)) (IF (|has| |#2| (-1070 (-48))) (-15 -2042 ((-3 (-419 (-1203 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-571) (-1070 (-560))) (-435 |#1|) (-1275 |#2|)) (T -449)) -((-2042 (*1 *2 *3) (|partial| -12 (-4 *5 (-1070 (-48))) (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1203 (-48)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1203 (-421 (-560)))) (|:| |overan| (-1203 (-48))) (|:| -3124 (-114)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5)))) (-2040 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1203 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5))))) -(-10 -7 (-15 -2039 ((-419 |#3|) |#3|)) (-15 -2040 ((-3 (-419 (-1203 (-421 (-560)))) "failed") |#3|)) (-15 -2041 ((-3 (|:| |overq| (-1203 (-421 (-560)))) (|:| |overan| (-1203 (-48))) (|:| -3124 (-114))) |#3|)) (IF (|has| |#2| (-1070 (-48))) (-15 -2042 ((-3 (-419 (-1203 (-48))) "failed") |#3|)) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-2051 (((-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) $) 11 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2049 (($) 35 T ELT)) (-2046 (($) 41 T ELT)) (-2047 (($) 37 T ELT)) (-2044 (($) 39 T ELT)) (-2048 (($) 36 T ELT)) (-2045 (($) 38 T ELT)) (-2043 (($) 40 T ELT)) (-2050 (((-114) $) 8 T ELT)) (-2834 (((-663 (-976 (-560))) $) 19 T ELT)) (-4036 (($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-1209)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-976 (-560))) (-114)) 30 T ELT)) (-4462 (((-888) $) 24 T ELT) (($ (-448)) 32 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-450) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-448))) (-15 -2051 ((-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) $)) (-15 -2834 ((-663 (-976 (-560))) $)) (-15 -2050 ((-114) $)) (-15 -4036 ($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-1209)) (-114))) (-15 -4036 ($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-976 (-560))) (-114))) (-15 -2049 ($)) (-15 -2048 ($)) (-15 -2047 ($)) (-15 -2046 ($)) (-15 -2045 ($)) (-15 -2044 ($)) (-15 -2043 ($))))) (T -450)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) (-5 *1 (-450)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-663 (-976 (-560)))) (-5 *1 (-450)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450)))) (-4036 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *3 (-663 (-1209))) (-5 *4 (-114)) (-5 *1 (-450)))) (-4036 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-114)) (-5 *1 (-450)))) (-2049 (*1 *1) (-5 *1 (-450))) (-2048 (*1 *1) (-5 *1 (-450))) (-2047 (*1 *1) (-5 *1 (-450))) (-2046 (*1 *1) (-5 *1 (-450))) (-2045 (*1 *1) (-5 *1 (-450))) (-2044 (*1 *1) (-5 *1 (-450))) (-2043 (*1 *1) (-5 *1 (-450)))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-448))) (-15 -2051 ((-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) $)) (-15 -2834 ((-663 (-976 (-560))) $)) (-15 -2050 ((-114) $)) (-15 -4036 ($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-1209)) (-114))) (-15 -4036 ($ (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-663 (-976 (-560))) (-114))) (-15 -2049 ($)) (-15 -2048 ($)) (-15 -2047 ($)) (-15 -2046 ($)) (-15 -2045 ($)) (-15 -2044 ($)) (-15 -2043 ($)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1912 (((-1191) $ (-1191)) NIL T ELT)) (-1916 (($ $ (-1191)) NIL T ELT)) (-1913 (((-1191) $) NIL T ELT)) (-2055 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-1917 (($ (-402)) NIL T ELT) (($ (-402) (-1191)) NIL T ELT)) (-4056 (((-402) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1914 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2054 (((-1305) (-1191)) 9 T ELT)) (-2053 (((-1305) (-1191)) 10 T ELT)) (-2052 (((-1305)) 11 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1915 (($ $) 39 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-451) (-13 (-378 (-402) (-1191)) (-10 -7 (-15 -2055 ((-402) (-402) (-402))) (-15 -2055 ((-402) (-402))) (-15 -2054 ((-1305) (-1191))) (-15 -2053 ((-1305) (-1191))) (-15 -2052 ((-1305)))))) (T -451)) -((-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-451)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-451)))) (-2052 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-451))))) -(-13 (-378 (-402) (-1191)) (-10 -7 (-15 -2055 ((-402) (-402) (-402))) (-15 -2055 ((-402) (-402))) (-15 -2054 ((-1305) (-1191))) (-15 -2053 ((-1305) (-1191))) (-15 -2052 ((-1305))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4056 (((-1209) $) 8 T ELT)) (-3746 (((-1191) $) 17 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 14 T ELT))) -(((-452 |#1|) (-13 (-1133) (-10 -8 (-15 -4056 ((-1209) $)))) (-1209)) (T -452)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-452 *3)) (-14 *3 *2)))) -(-13 (-1133) (-10 -8 (-15 -4056 ((-1209) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3823 (((-1147) $) 7 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 9 T ELT))) -(((-453) (-13 (-1133) (-10 -8 (-15 -3823 ((-1147) $))))) (T -453)) -((-3823 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-453))))) -(-13 (-1133) (-10 -8 (-15 -3823 ((-1147) $)))) -((-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT) (($ (-1299 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 11 T ELT))) -(((-454) (-142)) (T -454)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-721))) (-4 *1 (-454)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-4 *1 (-454))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-1299 (-721)))) (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-342))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))))) -(((-632 (-888)) . T) ((-410) . T) ((-1249) . T)) -((-3661 (((-3 $ "failed") (-1299 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1299 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-1299 (-976 (-391)))) 17 T ELT) (((-3 $ "failed") (-1299 (-976 (-560)))) 15 T ELT) (((-3 $ "failed") (-1299 (-421 (-976 (-391))))) 13 T ELT) (((-3 $ "failed") (-1299 (-421 (-976 (-560))))) 11 T ELT)) (-3660 (($ (-1299 (-326 (-391)))) 22 T ELT) (($ (-1299 (-326 (-560)))) 20 T ELT) (($ (-1299 (-976 (-391)))) 18 T ELT) (($ (-1299 (-976 (-560)))) 16 T ELT) (($ (-1299 (-421 (-976 (-391))))) 14 T ELT) (($ (-1299 (-421 (-976 (-560))))) 12 T ELT)) (-3886 (((-1305) $) 7 T ELT)) (-4462 (((-888) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) 23 T ELT))) -(((-455) (-142)) (T -455)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-326 (-391)))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-326 (-391)))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-326 (-560)))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-326 (-560)))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-976 (-391)))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-976 (-391)))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-976 (-560)))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-976 (-560)))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-421 (-976 (-391))))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-421 (-976 (-391))))) (-4 *1 (-455)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1299 (-421 (-976 (-560))))) (-4 *1 (-455)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-421 (-976 (-560))))) (-4 *1 (-455))))) -(-13 (-410) (-10 -8 (-15 -4462 ($ (-663 (-342)))) (-15 -4462 ($ (-342))) (-15 -4462 ($ (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342)))))) (-15 -3660 ($ (-1299 (-326 (-391))))) (-15 -3661 ((-3 $ "failed") (-1299 (-326 (-391))))) (-15 -3660 ($ (-1299 (-326 (-560))))) (-15 -3661 ((-3 $ "failed") (-1299 (-326 (-560))))) (-15 -3660 ($ (-1299 (-976 (-391))))) (-15 -3661 ((-3 $ "failed") (-1299 (-976 (-391))))) (-15 -3660 ($ (-1299 (-976 (-560))))) (-15 -3661 ((-3 $ "failed") (-1299 (-976 (-560))))) (-15 -3660 ($ (-1299 (-421 (-976 (-391)))))) (-15 -3661 ((-3 $ "failed") (-1299 (-421 (-976 (-391)))))) (-15 -3660 ($ (-1299 (-421 (-976 (-560)))))) (-15 -3661 ((-3 $ "failed") (-1299 (-421 (-976 (-560)))))))) -(((-632 (-888)) . T) ((-410) . T) ((-1249) . T)) -((-2061 (((-114)) 18 T ELT)) (-2062 (((-114) (-114)) 19 T ELT)) (-2063 (((-114)) 14 T ELT)) (-2064 (((-114) (-114)) 15 T ELT)) (-2066 (((-114)) 16 T ELT)) (-2067 (((-114) (-114)) 17 T ELT)) (-2058 (((-949) (-949)) 22 T ELT) (((-949)) 21 T ELT)) (-2059 (((-793) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560))))) 52 T ELT)) (-2057 (((-949) (-949)) 24 T ELT) (((-949)) 23 T ELT)) (-2060 (((-2 (|:| -3063 (-560)) (|:| -2001 (-663 |#1|))) |#1|) 94 T ELT)) (-2056 (((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560))))))) 176 T ELT)) (-4250 (((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114)) 210 T ELT)) (-4249 (((-419 |#1|) |#1| (-793) (-793)) 225 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 222 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 224 T ELT) (((-419 |#1|) |#1| (-793)) 223 T ELT) (((-419 |#1|) |#1|) 221 T ELT)) (-2078 (((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793) (-114)) 227 T ELT) (((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793)) 228 T ELT) (((-3 |#1| "failed") (-949) |#1| (-663 (-793))) 230 T ELT) (((-3 |#1| "failed") (-949) |#1| (-793)) 229 T ELT) (((-3 |#1| "failed") (-949) |#1|) 231 T ELT)) (-4248 (((-419 |#1|) |#1| (-793) (-793)) 220 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 216 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 218 T ELT) (((-419 |#1|) |#1| (-793)) 217 T ELT) (((-419 |#1|) |#1|) 215 T ELT)) (-2065 (((-114) |#1|) 44 T ELT)) (-2077 (((-758 (-793)) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560))))) 99 T ELT)) (-2068 (((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114) (-1129 (-793)) (-793)) 214 T ELT))) -(((-456 |#1|) (-10 -7 (-15 -2056 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))))) (-15 -2077 ((-758 (-793)) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))))) (-15 -2057 ((-949))) (-15 -2057 ((-949) (-949))) (-15 -2058 ((-949))) (-15 -2058 ((-949) (-949))) (-15 -2059 ((-793) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))))) (-15 -2060 ((-2 (|:| -3063 (-560)) (|:| -2001 (-663 |#1|))) |#1|)) (-15 -2061 ((-114))) (-15 -2062 ((-114) (-114))) (-15 -2063 ((-114))) (-15 -2064 ((-114) (-114))) (-15 -2065 ((-114) |#1|)) (-15 -2066 ((-114))) (-15 -2067 ((-114) (-114))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4248 ((-419 |#1|) |#1| (-793))) (-15 -4248 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4248 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4248 ((-419 |#1|) |#1| (-793) (-793))) (-15 -4249 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1| (-793))) (-15 -4249 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4249 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4249 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1|)) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793) (-114))) (-15 -4250 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114))) (-15 -2068 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114) (-1129 (-793)) (-793)))) (-1275 (-560))) (T -456)) -((-2068 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1129 (-793))) (-5 *6 (-793)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2078 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) (-2078 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) (-2078 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) (-2078 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) (-2078 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-949)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) (-4249 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4249 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4249 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4249 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4249 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2066 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2065 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2063 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2061 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2060 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3063 (-560)) (|:| -2001 (-663 *3)))) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4248 *4) (|:| -4464 (-560))))) (-4 *4 (-1275 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2058 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2057 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2057 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4248 *4) (|:| -4464 (-560))))) (-4 *4 (-1275 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| *4) (|:| -2640 (-560))))))) (-4 *4 (-1275 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4))))) -(-10 -7 (-15 -2056 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))))) (-15 -2077 ((-758 (-793)) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))))) (-15 -2057 ((-949))) (-15 -2057 ((-949) (-949))) (-15 -2058 ((-949))) (-15 -2058 ((-949) (-949))) (-15 -2059 ((-793) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))))) (-15 -2060 ((-2 (|:| -3063 (-560)) (|:| -2001 (-663 |#1|))) |#1|)) (-15 -2061 ((-114))) (-15 -2062 ((-114) (-114))) (-15 -2063 ((-114))) (-15 -2064 ((-114) (-114))) (-15 -2065 ((-114) |#1|)) (-15 -2066 ((-114))) (-15 -2067 ((-114) (-114))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4248 ((-419 |#1|) |#1| (-793))) (-15 -4248 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4248 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4248 ((-419 |#1|) |#1| (-793) (-793))) (-15 -4249 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1| (-793))) (-15 -4249 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4249 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4249 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1|)) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793))) (-15 -2078 ((-3 |#1| "failed") (-949) |#1| (-663 (-793)) (-793) (-114))) (-15 -4250 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114))) (-15 -2068 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114) (-1129 (-793)) (-793)))) -((-2072 (((-560) |#2|) 52 T ELT) (((-560) |#2| (-793)) 51 T ELT)) (-2071 (((-560) |#2|) 64 T ELT)) (-2073 ((|#3| |#2|) 26 T ELT)) (-3620 ((|#3| |#2| (-949)) 15 T ELT)) (-4349 ((|#3| |#2|) 16 T ELT)) (-2074 ((|#3| |#2|) 9 T ELT)) (-3088 ((|#3| |#2|) 10 T ELT)) (-2070 ((|#3| |#2| (-949)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2069 (((-560) |#2|) 66 T ELT))) -(((-457 |#1| |#2| |#3|) (-10 -7 (-15 -2069 ((-560) |#2|)) (-15 -2070 (|#3| |#2|)) (-15 -2070 (|#3| |#2| (-949))) (-15 -2071 ((-560) |#2|)) (-15 -2072 ((-560) |#2| (-793))) (-15 -2072 ((-560) |#2|)) (-15 -3620 (|#3| |#2| (-949))) (-15 -2073 (|#3| |#2|)) (-15 -2074 (|#3| |#2|)) (-15 -3088 (|#3| |#2|)) (-15 -4349 (|#3| |#2|))) (-1081) (-1275 |#1|) (-13 (-418) (-1070 |#1|) (-376) (-1235) (-296))) (T -457)) -((-4349 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) (-2074 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) (-2073 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *2 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1275 *5)))) (-2072 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))))) (-2072 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1275 *5)) (-4 *6 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))))) (-2071 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *2 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1275 *5)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296)))))) -(-10 -7 (-15 -2069 ((-560) |#2|)) (-15 -2070 (|#3| |#2|)) (-15 -2070 (|#3| |#2| (-949))) (-15 -2071 ((-560) |#2|)) (-15 -2072 ((-560) |#2| (-793))) (-15 -2072 ((-560) |#2|)) (-15 -3620 (|#3| |#2| (-949))) (-15 -2073 (|#3| |#2|)) (-15 -2074 (|#3| |#2|)) (-15 -3088 (|#3| |#2|)) (-15 -4349 (|#3| |#2|))) -((-3860 ((|#2| (-1299 |#1|)) 42 T ELT)) (-2076 ((|#2| |#2| |#1|) 58 T ELT)) (-2075 ((|#2| |#2| |#1|) 49 T ELT)) (-2525 ((|#2| |#2|) 44 T ELT)) (-3677 (((-114) |#2|) 32 T ELT)) (-2079 (((-663 |#2|) (-949) (-419 |#2|)) 21 T ELT)) (-2078 ((|#2| (-949) (-419 |#2|)) 25 T ELT)) (-2077 (((-758 (-793)) (-419 |#2|)) 29 T ELT))) -(((-458 |#1| |#2|) (-10 -7 (-15 -3677 ((-114) |#2|)) (-15 -3860 (|#2| (-1299 |#1|))) (-15 -2525 (|#2| |#2|)) (-15 -2075 (|#2| |#2| |#1|)) (-15 -2076 (|#2| |#2| |#1|)) (-15 -2077 ((-758 (-793)) (-419 |#2|))) (-15 -2078 (|#2| (-949) (-419 |#2|))) (-15 -2079 ((-663 |#2|) (-949) (-419 |#2|)))) (-1081) (-1275 |#1|)) (T -458)) -((-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-419 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-1081)) (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-419 *2)) (-4 *2 (-1275 *5)) (-5 *1 (-458 *5 *2)) (-4 *5 (-1081)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-1081)) (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5)))) (-2076 (*1 *2 *2 *3) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3)))) (-2075 (*1 *2 *2 *3) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3)))) (-2525 (*1 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-1081)) (-4 *2 (-1275 *4)) (-5 *1 (-458 *4 *2)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -3677 ((-114) |#2|)) (-15 -3860 (|#2| (-1299 |#1|))) (-15 -2525 (|#2| |#2|)) (-15 -2075 (|#2| |#2| |#1|)) (-15 -2076 (|#2| |#2| |#1|)) (-15 -2077 ((-758 (-793)) (-419 |#2|))) (-15 -2078 (|#2| (-949) (-419 |#2|))) (-15 -2079 ((-663 |#2|) (-949) (-419 |#2|)))) -((-2082 (((-793)) 59 T ELT)) (-2086 (((-793)) 29 (|has| |#1| (-418)) ELT) (((-793) (-793)) 28 (|has| |#1| (-418)) ELT)) (-2085 (((-560) |#1|) 25 (|has| |#1| (-418)) ELT)) (-2084 (((-560) |#1|) 27 (|has| |#1| (-418)) ELT)) (-2081 (((-793)) 58 T ELT) (((-793) (-793)) 57 T ELT)) (-2080 ((|#1| (-793) (-560)) 37 T ELT)) (-2083 (((-1305)) 61 T ELT))) -(((-459 |#1|) (-10 -7 (-15 -2080 (|#1| (-793) (-560))) (-15 -2081 ((-793) (-793))) (-15 -2081 ((-793))) (-15 -2082 ((-793))) (-15 -2083 ((-1305))) (IF (|has| |#1| (-418)) (PROGN (-15 -2084 ((-560) |#1|)) (-15 -2085 ((-560) |#1|)) (-15 -2086 ((-793) (-793))) (-15 -2086 ((-793)))) |%noBranch|)) (-1081)) (T -459)) -((-2086 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081)))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081)))) (-2084 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081)))) (-2083 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-459 *3)) (-4 *3 (-1081)))) (-2082 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081)))) (-2081 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1081))))) -(-10 -7 (-15 -2080 (|#1| (-793) (-560))) (-15 -2081 ((-793) (-793))) (-15 -2081 ((-793))) (-15 -2082 ((-793))) (-15 -2083 ((-1305))) (IF (|has| |#1| (-418)) (PROGN (-15 -2084 ((-560) |#1|)) (-15 -2085 ((-560) |#1|)) (-15 -2086 ((-793) (-793))) (-15 -2086 ((-793)))) |%noBranch|)) -((-2087 (((-663 (-560)) (-560)) 76 T ELT)) (-4239 (((-114) (-171 (-560))) 84 T ELT)) (-4248 (((-419 (-171 (-560))) (-171 (-560))) 75 T ELT))) -(((-460) (-10 -7 (-15 -4248 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -2087 ((-663 (-560)) (-560))) (-15 -4239 ((-114) (-171 (-560)))))) (T -460)) -((-4239 (*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460)))) (-2087 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560)))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460)) (-5 *3 (-171 (-560)))))) -(-10 -7 (-15 -4248 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -2087 ((-663 (-560)) (-560))) (-15 -4239 ((-114) (-171 (-560))))) -((-3433 ((|#4| |#4| (-663 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2479 (((-663 |#4|) (-663 |#4|) (-1191) (-1191)) 46 T ELT) (((-663 |#4|) (-663 |#4|) (-1191)) 45 T ELT) (((-663 |#4|) (-663 |#4|)) 34 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-663 |#4|) (-663 |#4|))) (-15 -2479 ((-663 |#4|) (-663 |#4|) (-1191))) (-15 -2479 ((-663 |#4|) (-663 |#4|) (-1191) (-1191))) (IF (|has| |#1| (-376)) (-15 -3433 (|#4| |#4| (-663 |#4|))) |%noBranch|)) (-466) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -461)) -((-3433 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *2)))) (-2479 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-461 *3 *4 *5 *6))))) -(-10 -7 (-15 -2479 ((-663 |#4|) (-663 |#4|))) (-15 -2479 ((-663 |#4|) (-663 |#4|) (-1191))) (-15 -2479 ((-663 |#4|) (-663 |#4|) (-1191) (-1191))) (IF (|has| |#1| (-376)) (-15 -3433 (|#4| |#4| (-663 |#4|))) |%noBranch|)) -((-2088 ((|#4| |#4| (-663 |#4|)) 82 T ELT)) (-2089 (((-663 |#4|) (-663 |#4|) (-1191) (-1191)) 22 T ELT) (((-663 |#4|) (-663 |#4|) (-1191)) 21 T ELT) (((-663 |#4|) (-663 |#4|)) 13 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 (|#4| |#4| (-663 |#4|))) (-15 -2089 ((-663 |#4|) (-663 |#4|))) (-15 -2089 ((-663 |#4|) (-663 |#4|) (-1191))) (-15 -2089 ((-663 |#4|) (-663 |#4|) (-1191) (-1191)))) (-319) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -462)) -((-2089 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2088 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *2))))) -(-10 -7 (-15 -2088 (|#4| |#4| (-663 |#4|))) (-15 -2089 ((-663 |#4|) (-663 |#4|))) (-15 -2089 ((-663 |#4|) (-663 |#4|) (-1191))) (-15 -2089 ((-663 |#4|) (-663 |#4|) (-1191) (-1191)))) -((-2091 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 90 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 89 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114)) 83 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|)) 84 T ELT)) (-2090 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 56 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 78 T ELT))) -(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2090 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2090 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-114)))) (-13 (-319) (-149)) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -463)) -((-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2091 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-2091 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) -(-10 -7 (-15 -2090 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2090 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2091 ((-663 (-663 |#4|)) (-663 |#4|) (-114)))) -((-2115 (((-793) |#4|) 12 T ELT)) (-2103 (((-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|)))) 39 T ELT)) (-2105 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2104 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2093 ((|#4| |#4| (-663 |#4|)) 54 T ELT)) (-2101 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|)) 96 T ELT)) (-2108 (((-1305) |#4|) 59 T ELT)) (-2111 (((-1305) (-663 |#4|)) 69 T ELT)) (-2109 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560)) 66 T ELT)) (-2112 (((-1305) (-560)) 110 T ELT)) (-2106 (((-663 |#4|) (-663 |#4|)) 104 T ELT)) (-2114 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|)) |#4| (-793)) 31 T ELT)) (-2107 (((-560) |#4|) 109 T ELT)) (-2102 ((|#4| |#4|) 37 T ELT)) (-2094 (((-663 |#4|) (-663 |#4|) (-560) (-560)) 74 T ELT)) (-2110 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560)) 123 T ELT)) (-2113 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2095 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2100 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2099 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2096 (((-114) |#2| |#2|) 75 T ELT)) (-2098 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2097 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2092 ((|#4| |#4| (-663 |#4|)) 97 T ELT))) -(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2092 (|#4| |#4| (-663 |#4|))) (-15 -2093 (|#4| |#4| (-663 |#4|))) (-15 -2094 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2095 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2096 ((-114) |#2| |#2|)) (-15 -2097 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2098 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2099 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2100 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2101 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -2102 (|#4| |#4|)) (-15 -2103 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|))))) (-15 -2104 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2105 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2106 ((-663 |#4|) (-663 |#4|))) (-15 -2107 ((-560) |#4|)) (-15 -2108 ((-1305) |#4|)) (-15 -2109 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -2110 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -2111 ((-1305) (-663 |#4|))) (-15 -2112 ((-1305) (-560))) (-15 -2113 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2114 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|)) |#4| (-793))) (-15 -2115 ((-793) |#4|))) (-466) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -464)) -((-2115 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-793)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -2228 *4))) (-5 *5 (-793)) (-4 *4 (-980 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-464 *6 *7 *8 *4)))) (-2113 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-817)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1305)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1305)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2110 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-817)) (-4 *4 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-872)) (-5 *1 (-464 *5 *6 *7 *4)))) (-2109 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-817)) (-4 *4 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-872)) (-5 *1 (-464 *5 *6 *7 *4)))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1305)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-560)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *6)))) (-2105 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-817)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *6)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-817)) (-4 *2 (-980 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2)) (-4 *4 (-466)) (-4 *6 (-872)))) (-2103 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 *3)))) (-5 *4 (-793)) (-4 *3 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-464 *5 *6 *7 *3)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-980 *3 *4 *5)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-464 *5 *6 *7 *3)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-817)) (-4 *6 (-980 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-872)) (-5 *1 (-464 *4 *3 *5 *6)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-817)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *6)))) (-2098 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-817)) (-4 *3 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *3)))) (-2097 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-980 *4 *3 *5)))) (-2096 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-980 *4 *3 *5)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-817)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2094 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2093 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *2)))) (-2092 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *2))))) -(-10 -7 (-15 -2092 (|#4| |#4| (-663 |#4|))) (-15 -2093 (|#4| |#4| (-663 |#4|))) (-15 -2094 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2095 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2096 ((-114) |#2| |#2|)) (-15 -2097 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2098 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2099 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2100 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2101 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -2102 (|#4| |#4|)) (-15 -2103 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|))))) (-15 -2104 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2105 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2106 ((-663 |#4|) (-663 |#4|))) (-15 -2107 ((-560) |#4|)) (-15 -2108 ((-1305) |#4|)) (-15 -2109 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -2110 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -2111 ((-1305) (-663 |#4|))) (-15 -2112 ((-1305) (-560))) (-15 -2113 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2114 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2228 |#4|)) |#4| (-793))) (-15 -2115 ((-793) |#4|))) -((-2116 (($ $ $) 14 T ELT) (($ (-663 $)) 21 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 45 T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) 22 T ELT))) -(((-465 |#1|) (-10 -8 (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2116 (|#1| (-663 |#1|))) (-15 -2116 (|#1| |#1| |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|))) (-466)) (T -465)) -NIL -(-10 -8 (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2116 (|#1| (-663 |#1|))) (-15 -2116 (|#1| |#1| |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -3648 (|#1| |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-466) (-142)) (T -466)) -((-3648 (*1 *1 *1 *1) (-4 *1 (-466))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-2116 (*1 *1 *1 *1) (-4 *1 (-466))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-3195 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-466))))) -(-13 (-571) (-10 -8 (-15 -3648 ($ $ $)) (-15 -3648 ($ (-663 $))) (-15 -2116 ($ $ $)) (-15 -2116 ($ (-663 $))) (-15 -3195 ((-1203 $) (-1203 $) (-1203 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1994 (((-3 $ #1="failed")) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (((-1299 (-711 (-421 (-976 |#1|)))) (-1299 $)) NIL T ELT) (((-1299 (-711 (-421 (-976 |#1|))))) NIL T ELT)) (-1944 (((-1299 $)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed")) NIL T ELT)) (-1918 (((-3 $ #1#)) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2010 (((-711 (-421 (-976 |#1|))) (-1299 $)) NIL T ELT) (((-711 (-421 (-976 |#1|)))) NIL T ELT)) (-1942 (((-421 (-976 |#1|)) $) NIL T ELT)) (-2008 (((-711 (-421 (-976 |#1|))) $ (-1299 $)) NIL T ELT) (((-711 (-421 (-976 |#1|))) $) NIL T ELT)) (-2649 (((-3 $ #1#) $) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2125 (((-1203 (-976 (-421 (-976 |#1|))))) NIL (|has| (-421 (-976 |#1|)) (-376)) ELT) (((-1203 (-421 (-976 |#1|)))) 91 (|has| |#1| (-571)) ELT)) (-2652 (($ $ (-949)) NIL T ELT)) (-1940 (((-421 (-976 |#1|)) $) NIL T ELT)) (-1920 (((-1203 (-421 (-976 |#1|))) $) 89 (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2012 (((-421 (-976 |#1|)) (-1299 $)) NIL T ELT) (((-421 (-976 |#1|))) NIL T ELT)) (-1938 (((-1203 (-421 (-976 |#1|))) $) NIL T ELT)) (-1932 (((-114)) NIL T ELT)) (-2014 (($ (-1299 (-421 (-976 |#1|))) (-1299 $)) 115 T ELT) (($ (-1299 (-421 (-976 |#1|)))) NIL T ELT)) (-3973 (((-3 $ #1#) $) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-3597 (((-949)) NIL T ELT)) (-1929 (((-114)) NIL T ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1927 (((-114)) NIL T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed")) NIL T ELT)) (-1919 (((-3 $ #1#)) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2011 (((-711 (-421 (-976 |#1|))) (-1299 $)) NIL T ELT) (((-711 (-421 (-976 |#1|)))) NIL T ELT)) (-1943 (((-421 (-976 |#1|)) $) NIL T ELT)) (-2009 (((-711 (-421 (-976 |#1|))) $ (-1299 $)) NIL T ELT) (((-711 (-421 (-976 |#1|))) $) NIL T ELT)) (-2650 (((-3 $ #1#) $) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2129 (((-1203 (-976 (-421 (-976 |#1|))))) NIL (|has| (-421 (-976 |#1|)) (-376)) ELT) (((-1203 (-421 (-976 |#1|)))) 90 (|has| |#1| (-571)) ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-1941 (((-421 (-976 |#1|)) $) NIL T ELT)) (-1921 (((-1203 (-421 (-976 |#1|))) $) 86 (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2013 (((-421 (-976 |#1|)) (-1299 $)) NIL T ELT) (((-421 (-976 |#1|))) NIL T ELT)) (-1939 (((-1203 (-421 (-976 |#1|))) $) NIL T ELT)) (-1933 (((-114)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1926 (((-114)) NIL T ELT)) (-1928 (((-114)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2119 (((-421 (-976 |#1|)) $ $) 77 (|has| |#1| (-571)) ELT)) (-2123 (((-421 (-976 |#1|)) $) 101 (|has| |#1| (-571)) ELT)) (-2122 (((-421 (-976 |#1|)) $) 105 (|has| |#1| (-571)) ELT)) (-2124 (((-1203 (-421 (-976 |#1|))) $) 95 (|has| |#1| (-571)) ELT)) (-2118 (((-421 (-976 |#1|))) 78 (|has| |#1| (-571)) ELT)) (-2121 (((-421 (-976 |#1|)) $ $) 70 (|has| |#1| (-571)) ELT)) (-2127 (((-421 (-976 |#1|)) $) 100 (|has| |#1| (-571)) ELT)) (-2126 (((-421 (-976 |#1|)) $) 104 (|has| |#1| (-571)) ELT)) (-2128 (((-1203 (-421 (-976 |#1|))) $) 94 (|has| |#1| (-571)) ELT)) (-2120 (((-421 (-976 |#1|))) 74 (|has| |#1| (-571)) ELT)) (-2130 (($) 111 T ELT) (($ (-1209)) 119 T ELT) (($ (-1299 (-1209))) 118 T ELT) (($ (-1299 $)) 106 T ELT) (($ (-1209) (-1299 $)) 117 T ELT) (($ (-1299 (-1209)) (-1299 $)) 116 T ELT)) (-1931 (((-114)) NIL T ELT)) (-4316 (((-421 (-976 |#1|)) $ (-560)) NIL T ELT)) (-3728 (((-1299 (-421 (-976 |#1|))) $ (-1299 $)) 108 T ELT) (((-711 (-421 (-976 |#1|))) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 (-421 (-976 |#1|))) $) 44 T ELT) (((-711 (-421 (-976 |#1|))) (-1299 $)) NIL T ELT)) (-4488 (((-1299 (-421 (-976 |#1|))) $) NIL T ELT) (($ (-1299 (-421 (-976 |#1|)))) 41 T ELT)) (-2117 (((-663 (-976 (-421 (-976 |#1|)))) (-1299 $)) NIL T ELT) (((-663 (-976 (-421 (-976 |#1|))))) NIL T ELT) (((-663 (-976 |#1|)) (-1299 $)) 109 (|has| |#1| (-571)) ELT) (((-663 (-976 |#1|))) 110 (|has| |#1| (-571)) ELT)) (-2838 (($ $ $) NIL T ELT)) (-1937 (((-114)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-1299 (-421 (-976 |#1|)))) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 66 T ELT)) (-1922 (((-663 (-1299 (-421 (-976 |#1|))))) NIL (|has| (-421 (-976 |#1|)) (-571)) ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-1935 (((-114)) NIL T ELT)) (-3030 (($ (-711 (-421 (-976 |#1|))) $) NIL T ELT)) (-2837 (($ $ $) NIL T ELT)) (-1936 (((-114)) NIL T ELT)) (-1934 (((-114)) NIL T ELT)) (-1930 (((-114)) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-421 (-976 |#1|))) NIL T ELT) (($ (-421 (-976 |#1|)) $) NIL T ELT) (($ (-1174 |#2| (-421 (-976 |#1|))) $) NIL T ELT))) -(((-467 |#1| |#2| |#3| |#4|) (-13 (-432 (-421 (-976 |#1|))) (-670 (-1174 |#2| (-421 (-976 |#1|)))) (-10 -8 (-15 -4462 ($ (-1299 (-421 (-976 |#1|))))) (-15 -2132 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -2131 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -2130 ($)) (-15 -2130 ($ (-1209))) (-15 -2130 ($ (-1299 (-1209)))) (-15 -2130 ($ (-1299 $))) (-15 -2130 ($ (-1209) (-1299 $))) (-15 -2130 ($ (-1299 (-1209)) (-1299 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -2129 ((-1203 (-421 (-976 |#1|))))) (-15 -2128 ((-1203 (-421 (-976 |#1|))) $)) (-15 -2127 ((-421 (-976 |#1|)) $)) (-15 -2126 ((-421 (-976 |#1|)) $)) (-15 -2125 ((-1203 (-421 (-976 |#1|))))) (-15 -2124 ((-1203 (-421 (-976 |#1|))) $)) (-15 -2123 ((-421 (-976 |#1|)) $)) (-15 -2122 ((-421 (-976 |#1|)) $)) (-15 -2121 ((-421 (-976 |#1|)) $ $)) (-15 -2120 ((-421 (-976 |#1|)))) (-15 -2119 ((-421 (-976 |#1|)) $ $)) (-15 -2118 ((-421 (-976 |#1|)))) (-15 -2117 ((-663 (-976 |#1|)) (-1299 $))) (-15 -2117 ((-663 (-976 |#1|))))) |%noBranch|))) (-175) (-949) (-663 (-1209)) (-1299 (-711 |#1|))) (T -467)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1299 (-421 (-976 *3)))) (-4 *3 (-175)) (-14 *6 (-1299 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))))) (-2132 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -2236 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2131 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -2236 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2130 (*1 *1) (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-949)) (-14 *4 (-663 (-1209))) (-14 *5 (-1299 (-711 *2))))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 *2)) (-14 *6 (-1299 (-711 *3))))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-1299 (-1209))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-1299 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2130 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-949)) (-14 *6 (-663 *2)) (-14 *7 (-1299 (-711 *4))))) (-2130 (*1 *1 *2 *3) (-12 (-5 *2 (-1299 (-1209))) (-5 *3 (-1299 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-949)) (-14 *6 (-663 (-1209))) (-14 *7 (-1299 (-711 *4))))) (-2129 (*1 *2) (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2125 (*1 *2) (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2121 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2120 (*1 *2) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2119 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2118 (*1 *2) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-1299 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-976 *4))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175)) (-14 *5 (-949)) (-14 *6 (-663 (-1209))) (-14 *7 (-1299 (-711 *4))))) (-2117 (*1 *2) (-12 (-5 *2 (-663 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3)))))) -(-13 (-432 (-421 (-976 |#1|))) (-670 (-1174 |#2| (-421 (-976 |#1|)))) (-10 -8 (-15 -4462 ($ (-1299 (-421 (-976 |#1|))))) (-15 -2132 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -2131 ((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) "failed"))) (-15 -2130 ($)) (-15 -2130 ($ (-1209))) (-15 -2130 ($ (-1299 (-1209)))) (-15 -2130 ($ (-1299 $))) (-15 -2130 ($ (-1209) (-1299 $))) (-15 -2130 ($ (-1299 (-1209)) (-1299 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -2129 ((-1203 (-421 (-976 |#1|))))) (-15 -2128 ((-1203 (-421 (-976 |#1|))) $)) (-15 -2127 ((-421 (-976 |#1|)) $)) (-15 -2126 ((-421 (-976 |#1|)) $)) (-15 -2125 ((-1203 (-421 (-976 |#1|))))) (-15 -2124 ((-1203 (-421 (-976 |#1|))) $)) (-15 -2123 ((-421 (-976 |#1|)) $)) (-15 -2122 ((-421 (-976 |#1|)) $)) (-15 -2121 ((-421 (-976 |#1|)) $ $)) (-15 -2120 ((-421 (-976 |#1|)))) (-15 -2119 ((-421 (-976 |#1|)) $ $)) (-15 -2118 ((-421 (-976 |#1|)))) (-15 -2117 ((-663 (-976 |#1|)) (-1299 $))) (-15 -2117 ((-663 (-976 |#1|))))) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 18 T ELT)) (-3570 (((-663 (-889 |#1|)) $) 87 T ELT)) (-3572 (((-1203 $) $ (-889 |#1|)) 52 T ELT) (((-1203 |#2|) $) 139 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3306 (((-793) $) 27 T ELT) (((-793) $ (-663 (-889 |#1|))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) 50 T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-889 |#1|) #2#) $) NIL T ELT)) (-3660 ((|#2| $) 48 T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-889 |#1|) $) NIL T ELT)) (-4272 (($ $ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2162 (($ $ (-663 (-560))) 94 T ELT)) (-4475 (($ $) 80 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-940)) ELT)) (-1816 (($ $ |#2| |#3| $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) 65 T ELT)) (-3573 (($ (-1203 |#2|) (-889 |#1|)) 144 T ELT) (($ (-1203 $) (-889 |#1|)) 58 T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) 68 T ELT)) (-3380 (($ |#2| |#3|) 35 T ELT) (($ $ (-889 |#1|) (-793)) 37 T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-889 |#1|)) NIL T ELT)) (-3307 ((|#3| $) NIL T ELT) (((-793) $ (-889 |#1|)) 56 T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) 63 T ELT)) (-1817 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3571 (((-3 (-889 |#1|) #3="failed") $) 45 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#2| $) 47 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-889 |#1|)) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) 46 T ELT)) (-2018 ((|#2| $) 137 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) 150 (|has| |#2| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-889 |#1|) |#2|) 101 T ELT) (($ $ (-663 (-889 |#1|)) (-663 |#2|)) 107 T ELT) (($ $ (-889 |#1|) $) 99 T ELT) (($ $ (-663 (-889 |#1|)) (-663 $)) 125 T ELT)) (-4273 (($ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4274 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) 59 T ELT)) (-4464 ((|#3| $) 79 T ELT) (((-793) $ (-889 |#1|)) 42 T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) 62 T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-889 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#2| $) 146 (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4462 (((-888) $) 174 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-889 |#1|)) 39 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ |#3|) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-3145 (($) 22 T CONST)) (-3151 (($) 31 T CONST)) (-3156 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 132 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 130 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-468 |#1| |#2| |#3|) (-13 (-980 |#2| |#3| (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) (-663 (-1209)) (-1081) (-245 (-4473 |#1|) (-793))) (T -468)) -((-2162 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1209))) (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-245 (-4473 *3) (-793)))))) -(-13 (-980 |#2| |#3| (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) -((-2136 (((-114) |#1| (-663 |#2|)) 90 T ELT)) (-2134 (((-3 (-1299 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|)) 99 T ELT)) (-2135 (((-3 (-663 |#2|) "failed") |#2| |#1| (-1299 (-663 |#2|))) 101 T ELT)) (-2261 ((|#2| |#2| |#1|) 35 T ELT)) (-2133 (((-793) |#2| (-663 |#2|)) 26 T ELT))) -(((-469 |#1| |#2|) (-10 -7 (-15 -2261 (|#2| |#2| |#1|)) (-15 -2133 ((-793) |#2| (-663 |#2|))) (-15 -2134 ((-3 (-1299 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2135 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1299 (-663 |#2|)))) (-15 -2136 ((-114) |#1| (-663 |#2|)))) (-319) (-1275 |#1|)) (T -469)) -((-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-1275 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-469 *3 *5)))) (-2135 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1299 (-663 *3))) (-4 *4 (-319)) (-5 *2 (-663 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1275 *4)))) (-2134 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1275 *4)) (-5 *2 (-1299 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-319)) (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))) (-2261 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1275 *3))))) -(-10 -7 (-15 -2261 (|#2| |#2| |#1|)) (-15 -2133 ((-793) |#2| (-663 |#2|))) (-15 -2134 ((-3 (-1299 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2135 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1299 (-663 |#2|)))) (-15 -2136 ((-114) |#1| (-663 |#2|)))) -((-4248 (((-419 |#5|) |#5|) 24 T ELT))) -(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4248 ((-419 |#5|) |#5|))) (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209))))) (-817) (-571) (-571) (-980 |#4| |#2| |#1|)) (T -470)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209)))))) (-4 *5 (-817)) (-4 *7 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571)) (-4 *3 (-980 *7 *5 *4))))) -(-10 -7 (-15 -4248 ((-419 |#5|) |#5|))) -((-3187 ((|#3|) 43 T ELT)) (-3195 (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 34 T ELT))) -(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3195 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3187 (|#3|))) (-817) (-872) (-940) (-980 |#3| |#1| |#2|)) (T -471)) -((-3187 (*1 *2) (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-940)) (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-980 *2 *3 *4)))) (-3195 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-940)) (-5 *1 (-471 *3 *4 *5 *6))))) -(-10 -7 (-15 -3195 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3187 (|#3|))) -((-4248 (((-419 (-1203 |#1|)) (-1203 |#1|)) 43 T ELT))) -(((-472 |#1|) (-10 -7 (-15 -4248 ((-419 (-1203 |#1|)) (-1203 |#1|)))) (-319)) (T -472)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1203 *4))) (-5 *1 (-472 *4)) (-5 *3 (-1203 *4))))) -(-10 -7 (-15 -4248 ((-419 (-1203 |#1|)) (-1203 |#1|)))) -((-4245 (((-51) |#2| (-1209) (-305 |#2|) (-1266 (-793))) 44 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-793))) 43 T ELT) (((-51) |#2| (-1209) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 29 T ELT)) (-4334 (((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))) 88 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))) 87 T ELT) (((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560))) 86 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560))) 85 T ELT) (((-51) |#2| (-1209) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 79 T ELT)) (-4298 (((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))) 74 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))) 72 T ELT)) (-4295 (((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560))) 51 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560))) 50 T ELT))) -(((-473 |#1| |#2|) (-10 -7 (-15 -4245 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -4245 ((-51) |#2| (-1209) (-305 |#2|))) (-15 -4245 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-793)))) (-15 -4245 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-793)))) (-15 -4295 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560)))) (-15 -4295 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560)))) (-15 -4298 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4298 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4334 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|))) (-15 -4334 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560)))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560)))) (-15 -4334 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))))) (-13 (-571) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -473)) -((-4334 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *8))) (-4 *8 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-4334 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1266 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-4334 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-4334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-560))) (-4 *7 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-4334 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6)))) (-4298 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *8))) (-4 *8 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-4298 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1266 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-4295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-4295 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-560))) (-4 *7 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-4245 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-793))) (-4 *3 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-4245 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-793))) (-4 *7 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-4245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6))))) -(-10 -7 (-15 -4245 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -4245 ((-51) |#2| (-1209) (-305 |#2|))) (-15 -4245 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-793)))) (-15 -4245 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-793)))) (-15 -4295 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560)))) (-15 -4295 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560)))) (-15 -4298 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4298 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4334 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|))) (-15 -4334 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1266 (-560)))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-560)))) (-15 -4334 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560)))) (-15 -4334 ((-51) |#2| (-1209) (-305 |#2|) (-1266 (-421 (-560))) (-421 (-560))))) -((-2261 ((|#2| |#2| |#1|) 15 T ELT)) (-2138 (((-663 |#2|) |#2| (-663 |#2|) |#1| (-949)) 82 T ELT)) (-2137 (((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-949)) 71 T ELT))) -(((-474 |#1| |#2|) (-10 -7 (-15 -2137 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-949))) (-15 -2138 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-949))) (-15 -2261 (|#2| |#2| |#1|))) (-319) (-1275 |#1|)) (T -474)) -((-2261 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1275 *3)))) (-2138 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-663 *3)) (-5 *5 (-949)) (-4 *3 (-1275 *4)) (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))) (-2137 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-949)) (-4 *5 (-319)) (-4 *3 (-1275 *5)) (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5))) (-5 *1 (-474 *5 *3)) (-5 *4 (-663 *3))))) -(-10 -7 (-15 -2137 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-949))) (-15 -2138 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-949))) (-15 -2261 (|#2| |#2| |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 28 T ELT)) (-4223 (($ |#3|) 25 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) 32 T ELT)) (-2139 (($ |#2| |#4| $) 33 T ELT)) (-3380 (($ |#2| (-735 |#3| |#4| |#5|)) 24 T ELT)) (-3381 (((-735 |#3| |#4| |#5|) $) 15 T ELT)) (-2141 ((|#3| $) 19 T ELT)) (-2142 ((|#4| $) 17 T ELT)) (-3678 ((|#2| $) 29 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-2140 (($ |#2| |#3| |#4|) 26 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 36 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-475 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3678 (|#2| $)) (-15 -3381 ((-735 |#3| |#4| |#5|) $)) (-15 -2142 (|#4| $)) (-15 -2141 (|#3| $)) (-15 -4475 ($ $)) (-15 -3380 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -4223 ($ |#3|)) (-15 -2140 ($ |#2| |#3| |#4|)) (-15 -2139 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-663 (-1209)) (-175) (-872) (-245 (-4473 |#1|) (-793)) (-1 (-114) (-2 (|:| -2645 |#3|) (|:| -2646 |#4|)) (-2 (|:| -2645 |#3|) (|:| -2646 |#4|))) (-980 |#2| |#4| (-889 |#1|))) (T -475)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *6 (-245 (-4473 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) (-2 (|:| -2645 *5) (|:| -2646 *6)))) (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-872)) (-4 *2 (-980 *4 *6 (-889 *3))))) (-3678 (*1 *2 *1) (-12 (-14 *3 (-663 (-1209))) (-4 *5 (-245 (-4473 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *4) (|:| -2646 *5)) (-2 (|:| -2645 *4) (|:| -2646 *5)))) (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-872)) (-4 *7 (-980 *2 *5 (-889 *3))))) (-3381 (*1 *2 *1) (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *6 (-245 (-4473 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) (-2 (|:| -2645 *5) (|:| -2646 *6)))) (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872)) (-4 *8 (-980 *4 *6 (-889 *3))))) (-2142 (*1 *2 *1) (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *2)) (-2 (|:| -2645 *5) (|:| -2646 *2)))) (-4 *2 (-245 (-4473 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) (-4 *5 (-872)) (-4 *7 (-980 *4 *2 (-889 *3))))) (-2141 (*1 *2 *1) (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *5 (-245 (-4473 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *5)) (-2 (|:| -2645 *2) (|:| -2646 *5)))) (-4 *2 (-872)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *7 (-980 *4 *5 (-889 *3))))) (-4475 (*1 *1 *1) (-12 (-14 *2 (-663 (-1209))) (-4 *3 (-175)) (-4 *5 (-245 (-4473 *2) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *4) (|:| -2646 *5)) (-2 (|:| -2645 *4) (|:| -2646 *5)))) (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-872)) (-4 *7 (-980 *3 *5 (-889 *2))))) (-3380 (*1 *1 *2 *3) (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-872)) (-4 *6 (-245 (-4473 *4) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) (-2 (|:| -2645 *5) (|:| -2646 *6)))) (-14 *4 (-663 (-1209))) (-4 *2 (-175)) (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-980 *2 *6 (-889 *4))))) (-4223 (*1 *1 *2) (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *5 (-245 (-4473 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *5)) (-2 (|:| -2645 *2) (|:| -2646 *5)))) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-872)) (-4 *7 (-980 *4 *5 (-889 *3))))) (-2140 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-663 (-1209))) (-4 *2 (-175)) (-4 *4 (-245 (-4473 *5) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *3) (|:| -2646 *4)) (-2 (|:| -2645 *3) (|:| -2646 *4)))) (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-872)) (-4 *7 (-980 *2 *4 (-889 *5))))) (-2139 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-663 (-1209))) (-4 *2 (-175)) (-4 *3 (-245 (-4473 *4) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *3)) (-2 (|:| -2645 *5) (|:| -2646 *3)))) (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-872)) (-4 *7 (-980 *2 *3 (-889 *4)))))) -(-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3678 (|#2| $)) (-15 -3381 ((-735 |#3| |#4| |#5|) $)) (-15 -2142 (|#4| $)) (-15 -2141 (|#3| $)) (-15 -4475 ($ $)) (-15 -3380 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -4223 ($ |#3|)) (-15 -2140 ($ |#2| |#3| |#4|)) (-15 -2139 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2143 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-476 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2143 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-817) (-872) (-571) (-980 |#3| |#1| |#2|) (-13 (-1070 (-421 (-560))) (-376) (-10 -8 (-15 -4462 ($ |#4|)) (-15 -3485 (|#4| $)) (-15 -3484 (|#4| $))))) (T -476)) -((-2143 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-872)) (-4 *5 (-817)) (-4 *6 (-571)) (-4 *7 (-980 *6 *5 *3)) (-5 *1 (-476 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1070 (-421 (-560))) (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) -(-10 -7 (-15 -2143 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3570 (((-663 |#3|) $) 41 T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4226 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 49 T ELT)) (-3660 (($ (-663 |#4|)) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3912 (($ |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#4|) $) 18 (|has| $ (-6 -4511)) ELT)) (-3684 ((|#3| $) 47 T ELT)) (-3093 (((-663 |#4|) $) 14 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3401 (((-663 |#3|) $) NIL T ELT)) (-3400 (((-114) |#3| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 39 T ELT)) (-4079 (($) 17 T ELT)) (-2171 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 16 T ELT)) (-4488 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT) (($ (-663 |#4|)) 51 T ELT)) (-4036 (($ (-663 |#4|)) 13 T ELT)) (-3397 (($ $ |#3|) NIL T ELT)) (-3399 (($ $ |#3|) NIL T ELT)) (-3398 (($ $ |#3|) NIL T ELT)) (-4462 (((-888) $) 38 T ELT) (((-663 |#4|) $) 50 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 30 T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-477 |#1| |#2| |#3| |#4|) (-13 (-1008 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4488 ($ (-663 |#4|))) (-6 -4511) (-6 -4512))) (-1081) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -477)) -((-4488 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-477 *3 *4 *5 *6))))) -(-13 (-1008 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4488 ($ (-663 |#4|))) (-6 -4511) (-6 -4512))) -((-3145 (($) 11 T ELT)) (-3151 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -3151 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3145 (|#1|))) (-479 |#2| |#3|) (-175) (-23)) (T -478)) -NIL -(-10 -8 (-15 -3151 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3145 (|#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3661 (((-3 |#1| "failed") $) 30 T ELT)) (-3660 ((|#1| $) 31 T ELT)) (-4460 (($ $ $) 27 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4464 ((|#2| $) 23 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 22 T CONST)) (-3151 (($) 28 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-479 |#1| |#2|) (-142) (-175) (-23)) (T -479)) -((-3151 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4460 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-484 |t#1| |t#2|) (-1070 |t#1|) (-10 -8 (-15 (-3151) ($) -4468) (-15 -4460 ($ $ $)))) -(((-102) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-484 |#1| |#2|) . T) ((-1070 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-2144 (((-1299 (-1299 (-560))) (-1299 (-1299 (-560))) (-949)) 26 T ELT)) (-2145 (((-1299 (-1299 (-560))) (-949)) 21 T ELT))) -(((-480) (-10 -7 (-15 -2144 ((-1299 (-1299 (-560))) (-1299 (-1299 (-560))) (-949))) (-15 -2145 ((-1299 (-1299 (-560))) (-949))))) (T -480)) -((-2145 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1299 (-1299 (-560)))) (-5 *1 (-480)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 (-1299 (-560)))) (-5 *3 (-949)) (-5 *1 (-480))))) -(-10 -7 (-15 -2144 ((-1299 (-1299 (-560))) (-1299 (-1299 (-560))) (-949))) (-15 -2145 ((-1299 (-1299 (-560))) (-949)))) -((-3257 (((-560) (-560)) 32 T ELT) (((-560)) 24 T ELT)) (-3261 (((-560) (-560)) 28 T ELT) (((-560)) 20 T ELT)) (-3259 (((-560) (-560)) 30 T ELT) (((-560)) 22 T ELT)) (-2147 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2146 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2148 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT))) -(((-481) (-10 -7 (-15 -2146 ((-114))) (-15 -2147 ((-114))) (-15 -2146 ((-114) (-114))) (-15 -2147 ((-114) (-114))) (-15 -2148 ((-114))) (-15 -3259 ((-560))) (-15 -3261 ((-560))) (-15 -3257 ((-560))) (-15 -2148 ((-114) (-114))) (-15 -3259 ((-560) (-560))) (-15 -3261 ((-560) (-560))) (-15 -3257 ((-560) (-560))))) (T -481)) -((-3257 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2148 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3257 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3261 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3259 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2148 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2147 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2146 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))) -(-10 -7 (-15 -2146 ((-114))) (-15 -2147 ((-114))) (-15 -2146 ((-114) (-114))) (-15 -2147 ((-114) (-114))) (-15 -2148 ((-114))) (-15 -3259 ((-560))) (-15 -3261 ((-560))) (-15 -3257 ((-560))) (-15 -2148 ((-114) (-114))) (-15 -3259 ((-560) (-560))) (-15 -3261 ((-560) (-560))) (-15 -3257 ((-560) (-560)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4367 (((-663 (-391)) $) 34 T ELT) (((-663 (-391)) $ (-663 (-391))) 145 T ELT)) (-2153 (((-663 (-1121 (-391))) $) 16 T ELT) (((-663 (-1121 (-391))) $ (-663 (-1121 (-391)))) 142 T ELT)) (-2150 (((-663 (-663 (-973 (-229)))) (-663 (-663 (-973 (-229)))) (-663 (-899))) 58 T ELT)) (-2154 (((-663 (-663 (-973 (-229)))) $) 137 T ELT)) (-4222 (((-1305) $ (-973 (-229)) (-899)) 162 T ELT)) (-2155 (($ $) 136 T ELT) (($ (-663 (-663 (-973 (-229))))) 148 T ELT) (($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949))) 147 T ELT) (($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949)) (-663 (-270))) 149 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4376 (((-560) $) 110 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2156 (($) 146 T ELT)) (-2149 (((-663 (-229)) (-663 (-663 (-973 (-229))))) 89 T ELT)) (-2152 (((-1305) $ (-663 (-973 (-229))) (-899) (-899) (-949)) 154 T ELT) (((-1305) $ (-973 (-229))) 156 T ELT) (((-1305) $ (-973 (-229)) (-899) (-899) (-949)) 155 T ELT)) (-4462 (((-888) $) 168 T ELT) (($ (-663 (-663 (-973 (-229))))) 163 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2151 (((-1305) $ (-973 (-229))) 161 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-482) (-13 (-1133) (-10 -8 (-15 -2156 ($)) (-15 -2155 ($ $)) (-15 -2155 ($ (-663 (-663 (-973 (-229)))))) (-15 -2155 ($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949)))) (-15 -2155 ($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949)) (-663 (-270)))) (-15 -2154 ((-663 (-663 (-973 (-229)))) $)) (-15 -4376 ((-560) $)) (-15 -2153 ((-663 (-1121 (-391))) $)) (-15 -2153 ((-663 (-1121 (-391))) $ (-663 (-1121 (-391))))) (-15 -4367 ((-663 (-391)) $)) (-15 -4367 ((-663 (-391)) $ (-663 (-391)))) (-15 -2152 ((-1305) $ (-663 (-973 (-229))) (-899) (-899) (-949))) (-15 -2152 ((-1305) $ (-973 (-229)))) (-15 -2152 ((-1305) $ (-973 (-229)) (-899) (-899) (-949))) (-15 -2151 ((-1305) $ (-973 (-229)))) (-15 -4222 ((-1305) $ (-973 (-229)) (-899))) (-15 -4462 ($ (-663 (-663 (-973 (-229)))))) (-15 -4462 ((-888) $)) (-15 -2150 ((-663 (-663 (-973 (-229)))) (-663 (-663 (-973 (-229)))) (-663 (-899)))) (-15 -2149 ((-663 (-229)) (-663 (-663 (-973 (-229))))))))) (T -482)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-482)))) (-2156 (*1 *1) (-5 *1 (-482))) (-2155 (*1 *1 *1) (-5 *1 (-482))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482)))) (-2155 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) (-5 *4 (-663 (-949))) (-5 *1 (-482)))) (-2155 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) (-5 *4 (-663 (-949))) (-5 *5 (-663 (-270))) (-5 *1 (-482)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-482)))) (-2153 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-482)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-4367 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-2152 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *4 (-899)) (-5 *5 (-949)) (-5 *2 (-1305)) (-5 *1 (-482)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-482)))) (-2152 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-973 (-229))) (-5 *4 (-899)) (-5 *5 (-949)) (-5 *2 (-1305)) (-5 *1 (-482)))) (-2151 (*1 *2 *1 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-482)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-973 (-229))) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-482)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482)))) (-2150 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) (-5 *1 (-482)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-663 (-229))) (-5 *1 (-482))))) -(-13 (-1133) (-10 -8 (-15 -2156 ($)) (-15 -2155 ($ $)) (-15 -2155 ($ (-663 (-663 (-973 (-229)))))) (-15 -2155 ($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949)))) (-15 -2155 ($ (-663 (-663 (-973 (-229)))) (-663 (-899)) (-663 (-899)) (-663 (-949)) (-663 (-270)))) (-15 -2154 ((-663 (-663 (-973 (-229)))) $)) (-15 -4376 ((-560) $)) (-15 -2153 ((-663 (-1121 (-391))) $)) (-15 -2153 ((-663 (-1121 (-391))) $ (-663 (-1121 (-391))))) (-15 -4367 ((-663 (-391)) $)) (-15 -4367 ((-663 (-391)) $ (-663 (-391)))) (-15 -2152 ((-1305) $ (-663 (-973 (-229))) (-899) (-899) (-949))) (-15 -2152 ((-1305) $ (-973 (-229)))) (-15 -2152 ((-1305) $ (-973 (-229)) (-899) (-899) (-949))) (-15 -2151 ((-1305) $ (-973 (-229)))) (-15 -4222 ((-1305) $ (-973 (-229)) (-899))) (-15 -4462 ($ (-663 (-663 (-973 (-229)))))) (-15 -4462 ((-888) $)) (-15 -2150 ((-663 (-663 (-973 (-229)))) (-663 (-663 (-973 (-229)))) (-663 (-899)))) (-15 -2149 ((-663 (-229)) (-663 (-663 (-973 (-229)))))))) -((-4353 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|))) (-484 |#2| |#3|) (-175) (-23)) (T -483)) -NIL -(-10 -8 (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4464 ((|#2| $) 23 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 22 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-484 |#1| |#2|) (-142) (-175) (-23)) (T -484)) -((-4464 (*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-3145 (*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4353 (*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4355 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-1133) (-10 -8 (-15 -4464 (|t#2| $)) (-15 (-3145) ($) -4468) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4353 ($ $)) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-2158 (((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-889 |#1|))) 135 T ELT)) (-2157 (((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|))) 132 T ELT)) (-2159 (((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|))) 87 T ELT))) -(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -2157 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|)))) (-15 -2158 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-889 |#1|)))) (-15 -2159 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|))))) (-663 (-1209)) (-466) (-466)) (T -485)) -((-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-889 *5))) (-14 *5 (-663 (-1209))) (-4 *6 (-466)) (-5 *2 (-2 (|:| |dpolys| (-663 (-255 *5 *6))) (|:| |coords| (-663 (-560))))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))) (-2158 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-889 *4))) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) (-4 *6 (-466)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-889 *5))) (-14 *5 (-663 (-1209))) (-4 *6 (-466)) (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466))))) -(-10 -7 (-15 -2157 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|)))) (-15 -2158 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-889 |#1|)))) (-15 -2159 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-889 |#1|))))) -((-3973 (((-3 $ "failed") $) 11 T ELT)) (-3496 (($ $ $) 22 T ELT)) (-2838 (($ $ $) 23 T ELT)) (-4465 (($ $ $) 9 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 21 T ELT))) -(((-486 |#1|) (-10 -8 (-15 -2838 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4465 (|#1| |#1| |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949)))) (-487)) (T -486)) -NIL -(-10 -8 (-15 -2838 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4465 (|#1| |#1| |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-4240 (($) 23 T CONST)) (-3973 (((-3 $ "failed") $) 20 T ELT)) (-2655 (((-114) $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 30 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3496 (($ $ $) 27 T ELT)) (-2838 (($ $ $) 26 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 24 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 29 T ELT)) (** (($ $ (-949)) 17 T ELT) (($ $ (-793)) 21 T ELT) (($ $ (-560)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-487) (-142)) (T -487)) -((-2888 (*1 *1 *1) (-4 *1 (-487))) (-4465 (*1 *1 *1 *1) (-4 *1 (-487))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-560)))) (-3496 (*1 *1 *1 *1) (-4 *1 (-487))) (-2838 (*1 *1 *1 *1) (-4 *1 (-487)))) -(-13 (-748) (-10 -8 (-15 -2888 ($ $)) (-15 -4465 ($ $ $)) (-15 ** ($ $ (-560))) (-6 -4508) (-15 -3496 ($ $ $)) (-15 -2838 ($ $ $)))) -(((-102) . T) ((-632 (-888)) . T) ((-748) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 18 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1114) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) 29 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 35 (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 30 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 28 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) 16 T ELT)) (-4464 (((-421 (-560)) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1296 |#2|)) NIL T ELT) (($ (-1280 |#1| |#2| |#3|)) 9 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 21 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-488 |#1| |#2| |#3|) (-13 (-1282 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (-15 -4462 ($ (-1280 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -488)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-1081)) (-14 *5 *3))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1280 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) (-5 *1 (-488 *3 *4 *5)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1282 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (-15 -4462 ($ (-1280 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) NIL T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-489 |#1| |#2| |#3| |#4|) (-1226 |#1| |#2|) (-1133) (-1133) (-1226 |#1| |#2|) |#2|) (T -489)) -NIL -(-1226 |#1| |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-4198 (((-663 $) (-663 |#4|)) NIL T ELT)) (-3570 (((-663 |#3|) $) NIL T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4204 ((|#4| |#4| $) NIL T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4226 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3660 (($ (-663 |#4|)) NIL T ELT)) (-4315 (((-3 $ #1#) $) 45 T ELT)) (-4201 ((|#4| |#4| $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3912 (($ |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) NIL T ELT)) (-3376 (((-663 |#4|) $) 18 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 19 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3401 (((-663 |#3|) $) NIL T ELT)) (-3400 (((-114) |#3| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4314 (((-3 |#4| #1#) $) 42 T ELT)) (-4213 (((-663 |#4|) $) NIL T ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4202 ((|#4| |#4| $) NIL T ELT)) (-4215 (((-114) $ $) NIL T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4203 ((|#4| |#4| $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-3 |#4| #1#) $) 40 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-4285 (($ $ |#4|) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 14 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-2171 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 13 T ELT)) (-4488 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 22 T ELT)) (-3397 (($ $ |#3|) 52 T ELT)) (-3399 (($ $ |#3|) 54 T ELT)) (-4200 (($ $) NIL T ELT)) (-3398 (($ $ |#3|) NIL T ELT)) (-4462 (((-888) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-4194 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) NIL T ELT)) (-4449 (((-114) |#3| $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-490 |#1| |#2| |#3| |#4|) (-1244 |#1| |#2| |#3| |#4|) (-571) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -490)) -NIL -(-1244 |#1| |#2| |#3| |#4|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-4143 (($) 17 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4488 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-421 (-1203 (-560))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-4462 (((-888) $) 51 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 37 T CONST)) (-3151 (($) 8 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-491) (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))) (-1052) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1203 (-560)))) (-633 (-549)) (-10 -8 (-15 -4143 ($))))) (T -491)) -((-4143 (*1 *1) (-5 *1 (-491)))) -(-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))) (-1052) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1203 (-560)))) (-633 (-549)) (-10 -8 (-15 -4143 ($)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 (((-1167) $) 11 T ELT)) (-4035 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-492) (-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $))))) (T -492)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-492)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-492))))) -(-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $)))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) 13 T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 19 T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 11 (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) 15 (|has| $ (-6 -4511)) ELT))) -(((-493 |#1| |#2| |#3|) (-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) (-1133) (-1133) (-1191)) (T -493)) -NIL -(-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) -((-2160 (((-560) (-560) (-560)) 19 T ELT)) (-2161 (((-114) (-560) (-560) (-560) (-560)) 28 T ELT)) (-3963 (((-1299 (-663 (-560))) (-793) (-793)) 42 T ELT))) -(((-494) (-10 -7 (-15 -2160 ((-560) (-560) (-560))) (-15 -2161 ((-114) (-560) (-560) (-560) (-560))) (-15 -3963 ((-1299 (-663 (-560))) (-793) (-793))))) (T -494)) -((-3963 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1299 (-663 (-560)))) (-5 *1 (-494)))) (-2161 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494))))) -(-10 -7 (-15 -2160 ((-560) (-560) (-560))) (-15 -2161 ((-114) (-560) (-560) (-560) (-560))) (-15 -3963 ((-1299 (-663 (-560))) (-793) (-793)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-889 |#1|)) $) NIL T ELT)) (-3572 (((-1203 $) $ (-889 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-889 |#1|))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-889 |#1|) #2#) $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-889 |#1|) $) NIL T ELT)) (-4272 (($ $ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2162 (($ $ (-663 (-560))) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-940)) ELT)) (-1816 (($ $ |#2| (-496 (-4473 |#1|) (-793)) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#2|) (-889 |#1|)) NIL T ELT) (($ (-1203 $) (-889 |#1|)) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-496 (-4473 |#1|) (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-889 |#1|)) NIL T ELT)) (-3307 (((-496 (-4473 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-1817 (($ (-1 (-496 (-4473 |#1|) (-793)) (-496 (-4473 |#1|) (-793))) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3571 (((-3 (-889 |#1|) #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-889 |#1|)) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#2| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-889 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-889 |#1|) $) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 $)) NIL T ELT)) (-4273 (($ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4274 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-4464 (((-496 (-4473 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-889 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-889 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-496 (-4473 |#1|) (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-495 |#1| |#2|) (-13 (-980 |#2| (-496 (-4473 |#1|) (-793)) (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) (-663 (-1209)) (-1081)) (T -495)) -((-2162 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4)) (-14 *3 (-663 (-1209))) (-4 *4 (-1081))))) -(-13 (-980 |#2| (-496 (-4473 |#1|) (-793)) (-889 |#1|)) (-10 -8 (-15 -2162 ($ $ (-663 (-560)))))) -((-3053 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3692 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4223 (($ (-949)) NIL (|has| |#2| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) NIL (|has| |#2| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3624 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4304 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1133)) ELT)) (-3660 (((-560) $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) ((|#2| $) NIL (|has| |#2| (-1133)) ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#2| (-1081)) ELT)) (-3481 (($) NIL (|has| |#2| (-381)) ELT)) (-1731 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ (-560)) 11 T ELT)) (-3690 (((-114) $) NIL (|has| |#2| (-817)) ELT)) (-3376 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#2| (-1081)) ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-3093 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-2174 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#2| (-381)) ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-1299 $)) NIL (|has| |#2| (-1081)) ELT)) (-3746 (((-1191) $) NIL (|has| |#2| (-1133)) ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#2| (-381)) ELT)) (-3747 (((-1152) $) NIL (|has| |#2| (-1133)) ELT)) (-4317 ((|#2| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-4352 ((|#2| $ $) NIL (|has| |#2| (-1081)) ELT)) (-1612 (($ (-1299 |#2|)) NIL T ELT)) (-4427 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4274 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#2|) $) NIL T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (($ |#2|) NIL (|has| |#2| (-1133)) ELT) (((-888) $) NIL (|has| |#2| (-632 (-888))) ELT)) (-3614 (((-793)) NIL (|has| |#2| (-1081)) CONST)) (-1389 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) NIL (|has| |#2| (-23)) CONST)) (-3151 (($) NIL (|has| |#2| (-1081)) CONST)) (-3156 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3172 (((-114) $ $) 17 (|has| |#2| (-872)) ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1081)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1081)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-496 |#1| |#2|) (-245 |#1| |#2|) (-793) (-817)) (T -496)) +((-3754 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-416)))) (-3754 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-947)) (-4 *1 (-416)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-3177 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-1988 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) (-3096 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) (-2615 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4498)) (-4 *1 (-416)) (-5 *2 (-947)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4498)) (-4 *1 (-416)) (-5 *2 (-947)))) (-3012 (*1 *1) (-12 (-4 *1 (-416)) (-3041 (|has| *1 (-6 -4498))) (-3041 (|has| *1 (-6 -4490))))) (-3340 (*1 *1) (-12 (-4 *1 (-416)) (-3041 (|has| *1 (-6 -4498))) (-3041 (|has| *1 (-6 -4490)))))) +(-13 (-1090) (-10 -8 (-6 -4282) (-15 -3754 ($ (-558) (-558))) (-15 -3754 ($ (-558) (-558) (-947))) (-15 -4284 ((-558) $)) (-15 -3177 ((-947))) (-15 -2642 ((-558) $)) (-15 -2616 ((-558) $)) (-15 -1988 ((-947))) (-15 -3096 ((-947))) (-15 -2615 ((-947))) (IF (|has| $ (-6 -4498)) (PROGN (-15 -1988 ((-947) (-947))) (-15 -3096 ((-947) (-947))) (-15 -2615 ((-947) (-947))) (-15 -1987 ((-947) (-558))) (-15 -1986 ((-947) (-558)))) |%noBranch|) (IF (|has| $ (-6 -4490)) |%noBranch| (IF (|has| $ (-6 -4498)) |%noBranch| (PROGN (-15 -3012 ($)) (-15 -3340 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-914 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-949) . T) ((-1032) . T) ((-1050) . T) ((-1090) . T) ((-1068 (-419 (-558))) . T) ((-1068 (-558)) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 59 T ELT)) (-1989 (($ $) 77 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 190 T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) 48 T ELT)) (-1990 ((|#1| $) 16 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-1252)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-1252)) ELT)) (-1992 (($ |#1| (-558)) 42 T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 73 T ELT)) (-3969 (((-3 $ "failed") $) 164 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 84 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 80 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 91 (|has| |#1| (-557)) ELT)) (-1993 (($ |#1| (-558)) 44 T ELT)) (-4235 (((-114) $) 210 (|has| |#1| (-1252)) ELT)) (-2651 (((-114) $) 61 T ELT)) (-2055 (((-791) $) 51 T ELT)) (-1994 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-558)) 175 T ELT)) (-2522 ((|#1| $ (-558)) 174 T ELT)) (-1995 (((-558) $ (-558)) 173 T ELT)) (-1998 (($ |#1| (-558)) 41 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-2052 (($ |#1| (-661 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558))))) 78 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1996 (($ |#1| (-558)) 43 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 191 (|has| |#1| (-464)) ELT)) (-1991 (($ |#1| (-558) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1997 (((-661 (-2 (|:| -4244 |#1|) (|:| -2642 (-558)))) $) 72 T ELT)) (-2173 (((-661 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $) 12 T ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-1252)) ELT)) (-3968 (((-3 $ "failed") $ $) 176 T ELT)) (-2642 (((-558) $) 167 T ELT)) (-4475 ((|#1| $) 74 T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 100 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 106 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) $) NIL (|has| |#1| (-526 (-1207) $)) ELT) (($ $ (-661 (-1207)) (-661 $)) 107 (|has| |#1| (-526 (-1207) $)) ELT) (($ $ (-661 (-305 $))) 103 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-661 $) (-661 $)) NIL (|has| |#1| (-321 $)) ELT)) (-4312 (($ $ |#1|) 92 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-298 $ $)) ELT)) (-4270 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-4484 (((-547) $) 39 (|has| |#1| (-631 (-547))) ELT) (((-391) $) 113 (|has| |#1| (-1050)) ELT) (((-229) $) 119 (|has| |#1| (-1050)) ELT)) (-4458 (((-886) $) 146 T ELT) (($ (-558)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT)) (-3610 (((-791)) 66 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 53 T CONST)) (-3147 (($) 52 T CONST)) (-3152 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 159 T ELT)) (-4349 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 180 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 125 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-417 |#1|) (-13 (-569) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-424 |#1|) (-10 -8 (-15 -4475 (|#1| $)) (-15 -2642 ((-558) $)) (-15 -2052 ($ |#1| (-661 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -2173 ((-661 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1998 ($ |#1| (-558))) (-15 -1997 ((-661 (-2 (|:| -4244 |#1|) (|:| -2642 (-558)))) $)) (-15 -1996 ($ |#1| (-558))) (-15 -1995 ((-558) $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -1994 ((-3 #1# #2# #3# #4#) $ (-558))) (-15 -2055 ((-791) $)) (-15 -1993 ($ |#1| (-558))) (-15 -1992 ($ |#1| (-558))) (-15 -1991 ($ |#1| (-558) (-3 #1# #2# #3# #4#))) (-15 -1990 (|#1| $)) (-15 -1989 ($ $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1050)) (-6 (-1050)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1207) $)) (-6 (-526 (-1207) $)) |%noBranch|))) (-569)) (T -417)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-417 *3)))) (-4475 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2052 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-569)) (-5 *1 (-417 *2)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1998 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4244 *3) (|:| -2642 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1996 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1995 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1994 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *4)) (-4 *4 (-569)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1993 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1992 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1990 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3507 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569))))) +(-13 (-569) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-424 |#1|) (-10 -8 (-15 -4475 (|#1| $)) (-15 -2642 ((-558) $)) (-15 -2052 ($ |#1| (-661 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -2173 ((-661 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1998 ($ |#1| (-558))) (-15 -1997 ((-661 (-2 (|:| -4244 |#1|) (|:| -2642 (-558)))) $)) (-15 -1996 ($ |#1| (-558))) (-15 -1995 ((-558) $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -1994 ((-3 #1# #2# #3# #4#) $ (-558))) (-15 -2055 ((-791) $)) (-15 -1993 ($ |#1| (-558))) (-15 -1992 ($ |#1| (-558))) (-15 -1991 ($ |#1| (-558) (-3 #1# #2# #3# #4#))) (-15 -1990 (|#1| $)) (-15 -1989 ($ $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1050)) (-6 (-1050)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1207) $)) (-6 (-526 (-1207) $)) |%noBranch|))) +((-4470 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20 T ELT))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4470 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-569) (-569)) (T -418)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4470 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 13 T ELT)) (-3613 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| |#1| (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) 17 T ELT) (((-3 (-1207) #2#) $) NIL (|has| |#1| (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) 71 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT)) (-3656 ((|#1| $) 15 T ELT) (((-1207) $) NIL (|has| |#1| (-1068 (-1207))) ELT) (((-419 (-558)) $) 68 (|has| |#1| (-1068 (-558))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) 50 T ELT)) (-3477 (($) NIL (|has| |#1| (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-2651 (((-114) $) 56 T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 ((|#1| $) 72 T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-1182)) ELT)) (-3687 (((-114) $) 22 (|has| |#1| (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| |#1| (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 99 T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3614 ((|#1| $) 26 (|has| |#1| (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 152 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 145 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 ((|#1| $) 74 T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| |#1| (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT) (((-391) $) NIL (|has| |#1| (-1050)) ELT) (((-229) $) NIL (|has| |#1| (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 129 (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1207)) NIL (|has| |#1| (-1068 (-1207))) ELT)) (-3185 (((-711 $) $) 109 (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 110 T CONST)) (-3615 ((|#1| $) 24 (|has| |#1| (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| |#1| (-842)) ELT)) (-3141 (($) 46 T CONST)) (-3147 (($) 8 T CONST)) (-2978 (((-1189) $) 42 (-12 (|has| |#1| (-557)) (|has| |#1| (-843))) ELT) (((-1189) $ (-114)) 43 (-12 (|has| |#1| (-557)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $ (-114)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-843))) ELT)) (-3152 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 65 T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4461 (($ $ $) 140 T ELT) (($ |#1| |#1|) 52 T ELT)) (-4349 (($ $) 23 T ELT) (($ $ $) 55 T ELT)) (-4351 (($ $ $) 53 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 139 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 60 T ELT) (($ $ $) 57 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) 87 T ELT))) +(((-419 |#1|) (-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4494)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4505)) (-6 -4494) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -419)) +NIL +(-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4494)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4505)) (-6 -4494) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4470 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13 T ELT))) +(((-420 |#1| |#2|) (-10 -7 (-15 -4470 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-569) (-569)) (T -420)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))) +(-10 -7 (-15 -4470 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) +((-2000 (((-709 |#2|) (-1297 $)) NIL T ELT) (((-709 |#2|)) 18 T ELT)) (-2010 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 24 T ELT)) (-1999 (((-709 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) $) 40 T ELT)) (-2234 ((|#3| $) 69 T ELT)) (-4269 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3724 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 22 T ELT) (((-709 |#2|) (-1297 $)) 38 T ELT)) (-4484 (((-1297 |#2|) $) 11 T ELT) (($ (-1297 |#2|)) 13 T ELT)) (-2848 ((|#3| $) 55 T ELT))) +(((-421 |#1| |#2| |#3|) (-10 -8 (-15 -1999 ((-709 |#2|) |#1|)) (-15 -4269 (|#2|)) (-15 -2000 ((-709 |#2|))) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -2234 (|#3| |#1|)) (-15 -2848 (|#3| |#1|)) (-15 -2000 ((-709 |#2|) (-1297 |#1|))) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1999 ((-709 |#2|) |#1| (-1297 |#1|)))) (-422 |#2| |#3|) (-175) (-1273 |#2|)) (T -421)) +((-2000 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-4269 (*1 *2) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) +(-10 -8 (-15 -1999 ((-709 |#2|) |#1|)) (-15 -4269 (|#2|)) (-15 -2000 ((-709 |#2|))) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -2234 (|#3| |#1|)) (-15 -2848 (|#3| |#1|)) (-15 -2000 ((-709 |#2|) (-1297 |#1|))) (-15 -4269 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1999 ((-709 |#2|) |#1| (-1297 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2000 (((-709 |#1|) (-1297 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3832 ((|#1| $) 64 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2010 (($ (-1297 |#1|) (-1297 $)) 60 T ELT) (($ (-1297 |#1|)) 77 T ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3593 (((-947)) 66 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3616 ((|#1| $) 63 T ELT)) (-2234 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4269 ((|#1| (-1297 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 62 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 61 T ELT) (((-1297 |#1|) $) 79 T ELT) (((-709 |#1|) (-1297 $)) 78 T ELT)) (-4484 (((-1297 |#1|) $) 76 T ELT) (($ (-1297 |#1|)) 75 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3185 (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2848 ((|#2| $) 57 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 80 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-422 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -422)) +((-2232 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) (-4 *1 (-422 *3 *4)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-4484 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-2000 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-709 *3)))) (-4269 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-709 *3))))) +(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -2232 ((-1297 $))) (-15 -3724 ((-1297 |t#1|) $)) (-15 -3724 ((-709 |t#1|) (-1297 $))) (-15 -2010 ($ (-1297 |t#1|))) (-15 -4484 ((-1297 |t#1|) $)) (-15 -4484 ($ (-1297 |t#1|))) (-15 -2000 ((-709 |t#1|))) (-15 -4269 (|t#1|)) (-15 -1999 ((-709 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-383 |#1| |#2|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3657 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) 27 T ELT) (((-3 (-558) #1#) $) 19 T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) 24 T ELT) (((-558) $) 14 T ELT)) (-4458 (($ |#2|) NIL T ELT) (($ (-419 (-558))) 22 T ELT) (($ (-558)) 11 T ELT))) +(((-423 |#1| |#2|) (-10 -8 (-15 -4458 (|#1| (-558))) (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|))) (-424 |#2|) (-1247)) (T -423)) +NIL +(-10 -8 (-15 -4458 (|#1| (-558))) (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|))) +((-3657 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-419 (-558)) #1#) $) 16 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) 13 (|has| |#1| (-1068 (-558))) ELT)) (-3656 ((|#1| $) 8 T ELT) (((-419 (-558)) $) 17 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) 14 (|has| |#1| (-1068 (-558))) ELT)) (-4458 (($ |#1|) 6 T ELT) (($ (-419 (-558))) 15 (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ (-558)) 12 (|has| |#1| (-1068 (-558))) ELT))) +(((-424 |#1|) (-142) (-1247)) (T -424)) +NIL +(-13 (-1068 |t#1|) (-10 -7 (IF (|has| |t#1| (-1068 (-558))) (-6 (-1068 (-558))) |%noBranch|) (IF (|has| |t#1| (-1068 (-419 (-558)))) (-6 (-1068 (-419 (-558)))) |%noBranch|))) +(((-633 #1=(-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-633 #2=(-558)) |has| |#1| (-1068 (-558))) ((-633 |#1|) . T) ((-1068 #1#) |has| |#1| (-1068 (-419 (-558)))) ((-1068 #2#) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2001 ((|#4| (-791) (-1297 |#4|)) 55 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3481 (((-1297 |#4|) $) 15 T ELT)) (-3616 ((|#2| $) 53 T ELT)) (-2002 (($ $) 156 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 103 T ELT)) (-2190 (($ (-1297 |#4|)) 102 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3480 ((|#1| $) 16 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) 147 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 |#4|) $) 140 T ELT)) (-3147 (($) 11 T CONST)) (-3536 (((-114) $ $) 39 T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2190 ($ (-1297 |#4|))) (-15 -2232 ((-1297 |#4|) $)) (-15 -3616 (|#2| $)) (-15 -3481 ((-1297 |#4|) $)) (-15 -3480 (|#1| $)) (-15 -2002 ($ $)) (-15 -2001 (|#4| (-791) (-1297 |#4|))))) (-319) (-1021 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|))) (T -425)) +((-2190 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2232 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-3616 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1021 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-1021 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-2002 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1021 *2)) (-4 *4 (-1273 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1297 *2)) (-4 *5 (-319)) (-4 *6 (-1021 *5)) (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1273 *6))))) +(-13 (-485) (-10 -8 (-15 -2190 ($ (-1297 |#4|))) (-15 -2232 ((-1297 |#4|) $)) (-15 -3616 (|#2| $)) (-15 -3481 ((-1297 |#4|) $)) (-15 -3480 (|#1| $)) (-15 -2002 ($ $)) (-15 -2001 (|#4| (-791) (-1297 |#4|))))) +((-4470 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-426 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4470 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-319) (-1021 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|)) (-319) (-1021 |#5|) (-1273 |#6|) (-13 (-422 |#6| |#7|) (-1068 |#6|))) (T -426)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1021 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) (-4 *9 (-319)) (-4 *10 (-1021 *9)) (-4 *11 (-1273 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1068 *10)))))) +(-10 -7 (-15 -4470 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3616 ((|#2| $) 71 T ELT)) (-2003 (($ (-1297 |#4|)) 27 T ELT) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1068 |#2|)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 37 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 |#4|) $) 28 T ELT)) (-3147 (($) 25 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-746) (-10 -8 (-15 -2232 ((-1297 |#4|) $)) (-15 -3616 (|#2| $)) (-15 -2003 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -2003 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1021 |#1|) (-1273 |#2|) (-422 |#2| |#3|) (-1297 |#4|)) (T -427)) +((-2232 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-3616 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1021 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1297 *5)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) +(-13 (-746) (-10 -8 (-15 -2232 ((-1297 |#4|) $)) (-15 -3616 (|#2| $)) (-15 -2003 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -2003 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4470 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-175) (-430 |#4|) (-175)) (T -428)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) +((-1990 (((-3 $ #1="failed")) 99 T ELT)) (-3723 (((-1297 (-709 |#2|)) (-1297 $)) NIL T ELT) (((-1297 (-709 |#2|))) 104 T ELT)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) 97 T ELT)) (-1916 (((-3 $ #1#)) 96 T ELT)) (-2006 (((-709 |#2|) (-1297 $)) NIL T ELT) (((-709 |#2|)) 115 T ELT)) (-2004 (((-709 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) $) 123 T ELT)) (-2121 (((-1201 (-974 |#2|))) 64 T ELT)) (-2008 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-2010 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 125 T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) 95 T ELT)) (-1917 (((-3 $ #1#)) 87 T ELT)) (-2007 (((-709 |#2|) (-1297 $)) NIL T ELT) (((-709 |#2|)) 113 T ELT)) (-2005 (((-709 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) $) 121 T ELT)) (-2125 (((-1201 (-974 |#2|))) 63 T ELT)) (-2009 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3724 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 124 T ELT) (((-709 |#2|) (-1297 $)) 133 T ELT)) (-4484 (((-1297 |#2|) $) 109 T ELT) (($ (-1297 |#2|)) 111 T ELT)) (-2113 (((-661 (-974 |#2|)) (-1297 $)) NIL T ELT) (((-661 (-974 |#2|))) 107 T ELT)) (-3026 (($ (-709 |#2|) $) 103 T ELT))) +(((-429 |#1| |#2|) (-10 -8 (-15 -3026 (|#1| (-709 |#2|) |#1|)) (-15 -2121 ((-1201 (-974 |#2|)))) (-15 -2125 ((-1201 (-974 |#2|)))) (-15 -2004 ((-709 |#2|) |#1|)) (-15 -2005 ((-709 |#2|) |#1|)) (-15 -2006 ((-709 |#2|))) (-15 -2007 ((-709 |#2|))) (-15 -2008 (|#2|)) (-15 -2009 (|#2|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -2113 ((-661 (-974 |#2|)))) (-15 -3723 ((-1297 (-709 |#2|)))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -1990 ((-3 |#1| #1="failed"))) (-15 -1916 ((-3 |#1| #1#))) (-15 -1917 ((-3 |#1| #1#))) (-15 -2127 ((-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) #1#))) (-15 -2128 ((-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) #1#))) (-15 -2006 ((-709 |#2|) (-1297 |#1|))) (-15 -2007 ((-709 |#2|) (-1297 |#1|))) (-15 -2008 (|#2| (-1297 |#1|))) (-15 -2009 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2004 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -2005 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -3723 ((-1297 (-709 |#2|)) (-1297 |#1|))) (-15 -2113 ((-661 (-974 |#2|)) (-1297 |#1|)))) (-430 |#2|) (-175)) (T -429)) +((-3723 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-709 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2113 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-661 (-974 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2009 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-2008 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-2007 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2006 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2125 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-974 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2121 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-974 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 -3026 (|#1| (-709 |#2|) |#1|)) (-15 -2121 ((-1201 (-974 |#2|)))) (-15 -2125 ((-1201 (-974 |#2|)))) (-15 -2004 ((-709 |#2|) |#1|)) (-15 -2005 ((-709 |#2|) |#1|)) (-15 -2006 ((-709 |#2|))) (-15 -2007 ((-709 |#2|))) (-15 -2008 (|#2|)) (-15 -2009 (|#2|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2010 (|#1| (-1297 |#2|))) (-15 -2113 ((-661 (-974 |#2|)))) (-15 -3723 ((-1297 (-709 |#2|)))) (-15 -3724 ((-709 |#2|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1|)) (-15 -1990 ((-3 |#1| #1="failed"))) (-15 -1916 ((-3 |#1| #1#))) (-15 -1917 ((-3 |#1| #1#))) (-15 -2127 ((-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) #1#))) (-15 -2128 ((-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) #1#))) (-15 -2006 ((-709 |#2|) (-1297 |#1|))) (-15 -2007 ((-709 |#2|) (-1297 |#1|))) (-15 -2008 (|#2| (-1297 |#1|))) (-15 -2009 (|#2| (-1297 |#1|))) (-15 -2010 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3724 ((-709 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3724 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2004 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -2005 ((-709 |#2|) |#1| (-1297 |#1|))) (-15 -3723 ((-1297 (-709 |#2|)) (-1297 |#1|))) (-15 -2113 ((-661 (-974 |#2|)) (-1297 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1990 (((-3 $ #1="failed")) 47 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3723 (((-1297 (-709 |#1|)) (-1297 $)) 88 T ELT) (((-1297 (-709 |#1|))) 114 T ELT)) (-1942 (((-1297 $)) 91 T ELT)) (-4236 (($) 22 T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) 50 (|has| |#1| (-569)) ELT)) (-1916 (((-3 $ #1#)) 48 (|has| |#1| (-569)) ELT)) (-2006 (((-709 |#1|) (-1297 $)) 75 T ELT) (((-709 |#1|)) 106 T ELT)) (-1940 ((|#1| $) 84 T ELT)) (-2004 (((-709 |#1|) $ (-1297 $)) 86 T ELT) (((-709 |#1|) $) 104 T ELT)) (-2645 (((-3 $ #1#) $) 55 (|has| |#1| (-569)) ELT)) (-2121 (((-1201 (-974 |#1|))) 102 (|has| |#1| (-376)) ELT)) (-2648 (($ $ (-947)) 36 T ELT)) (-1938 ((|#1| $) 82 T ELT)) (-1918 (((-1201 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-2008 ((|#1| (-1297 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1936 (((-1201 |#1|) $) 73 T ELT)) (-1930 (((-114)) 67 T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) 79 T ELT) (($ (-1297 |#1|)) 112 T ELT)) (-3969 (((-3 $ #1#) $) 57 (|has| |#1| (-569)) ELT)) (-3593 (((-947)) 90 T ELT)) (-1927 (((-114)) 64 T ELT)) (-2672 (($ $ (-947)) 43 T ELT)) (-1923 (((-114)) 60 T ELT)) (-1921 (((-114)) 58 T ELT)) (-1925 (((-114)) 62 T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) 51 (|has| |#1| (-569)) ELT)) (-1917 (((-3 $ #1#)) 49 (|has| |#1| (-569)) ELT)) (-2007 (((-709 |#1|) (-1297 $)) 76 T ELT) (((-709 |#1|)) 107 T ELT)) (-1941 ((|#1| $) 85 T ELT)) (-2005 (((-709 |#1|) $ (-1297 $)) 87 T ELT) (((-709 |#1|) $) 105 T ELT)) (-2646 (((-3 $ #1#) $) 56 (|has| |#1| (-569)) ELT)) (-2125 (((-1201 (-974 |#1|))) 103 (|has| |#1| (-376)) ELT)) (-2647 (($ $ (-947)) 37 T ELT)) (-1939 ((|#1| $) 83 T ELT)) (-1919 (((-1201 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-2009 ((|#1| (-1297 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1937 (((-1201 |#1|) $) 74 T ELT)) (-1931 (((-114)) 68 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1922 (((-114)) 59 T ELT)) (-1924 (((-114)) 61 T ELT)) (-1926 (((-114)) 63 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1929 (((-114)) 66 T ELT)) (-4312 ((|#1| $ (-558)) 118 T ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 81 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 80 T ELT) (((-1297 |#1|) $) 116 T ELT) (((-709 |#1|) (-1297 $)) 115 T ELT)) (-4484 (((-1297 |#1|) $) 111 T ELT) (($ (-1297 |#1|)) 110 T ELT)) (-2113 (((-661 (-974 |#1|)) (-1297 $)) 89 T ELT) (((-661 (-974 |#1|))) 113 T ELT)) (-2834 (($ $ $) 33 T ELT)) (-1935 (((-114)) 72 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 117 T ELT)) (-1920 (((-661 (-1297 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2835 (($ $ $ $) 34 T ELT)) (-1933 (((-114)) 70 T ELT)) (-3026 (($ (-709 |#1|) $) 101 T ELT)) (-2833 (($ $ $) 32 T ELT)) (-1934 (((-114)) 71 T ELT)) (-1932 (((-114)) 69 T ELT)) (-1928 (((-114)) 65 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 38 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-430 |#1|) (-142) (-175)) (T -430)) +((-2232 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-3723 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-709 *3))))) (-2113 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-661 (-974 *3))))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-4484 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-2009 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-2008 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-2007 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-2006 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-2125 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-974 *3))))) (-2121 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-974 *3))))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-709 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175))))) +(-13 (-380 |t#1|) (-298 (-558) |t#1|) (-10 -8 (-15 -2232 ((-1297 $))) (-15 -3724 ((-1297 |t#1|) $)) (-15 -3724 ((-709 |t#1|) (-1297 $))) (-15 -3723 ((-1297 (-709 |t#1|)))) (-15 -2113 ((-661 (-974 |t#1|)))) (-15 -2010 ($ (-1297 |t#1|))) (-15 -4484 ((-1297 |t#1|) $)) (-15 -4484 ($ (-1297 |t#1|))) (-15 -2009 (|t#1|)) (-15 -2008 (|t#1|)) (-15 -2007 ((-709 |t#1|))) (-15 -2006 ((-709 |t#1|))) (-15 -2005 ((-709 |t#1|) $)) (-15 -2004 ((-709 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2125 ((-1201 (-974 |t#1|)))) (-15 -2121 ((-1201 (-974 |t#1|))))) |%noBranch|) (-15 -3026 ($ (-709 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-298 (-558) |#1|) . T) ((-380 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-764 |#1|) . T) ((-781) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3618 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 28 T ELT)) (-2011 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 17 T ELT))) +(((-431 |#1|) (-10 -7 (-15 -3618 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -2011 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-569)) (T -431)) +((-2011 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-569)) (-5 *2 (-417 *4)) (-5 *1 (-431 *4))))) +(-10 -7 (-15 -3618 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -2011 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) +((-3566 (((-661 (-1207)) $) 81 T ELT)) (-3568 (((-419 (-1201 $)) $ (-628 $)) 313 T ELT)) (-1757 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 277 T ELT)) (-3657 (((-3 (-628 $) #1="failed") $) NIL T ELT) (((-3 (-1207) #1#) $) 84 T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-419 (-974 |#2|)) #1#) $) 363 T ELT) (((-3 (-974 |#2|) #1#) $) 275 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3656 (((-628 $) $) NIL T ELT) (((-1207) $) 28 T ELT) (((-558) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-419 (-974 |#2|)) $) 345 T ELT) (((-974 |#2|) $) 272 T ELT) (((-419 (-558)) $) NIL T ELT)) (-4105 (((-115) (-115)) 47 T ELT)) (-3479 (($ $) 99 T ELT)) (-1755 (((-3 (-628 $) "failed") $) 268 T ELT)) (-1754 (((-661 (-628 $)) $) 269 T ELT)) (-3306 (((-3 (-661 $) "failed") $) 287 T ELT)) (-3308 (((-3 (-2 (|:| |val| $) (|:| -2642 (-558))) "failed") $) 294 T ELT)) (-3305 (((-3 (-661 $) "failed") $) 285 T ELT)) (-2012 (((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 $))) "failed") $) 304 T ELT)) (-3307 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-1207)) 257 T ELT)) (-2015 (((-114) $) 17 T ELT)) (-2014 ((|#2| $) 19 T ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 276 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) 109 T ELT) (($ $ (-1207) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) 62 T ELT) (($ $ (-661 (-1207))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1207)) 65 T ELT) (($ $ (-661 (-115)) (-661 $) (-1207)) 72 T ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ $))) 120 T ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 282 T ELT) (($ $ (-1207) (-791) (-1 $ (-661 $))) 105 T ELT) (($ $ (-1207) (-791) (-1 $ $)) 104 T ELT)) (-4312 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) 119 T ELT)) (-4270 (($ $ (-1207)) 278 T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-3478 (($ $) 324 T ELT)) (-4484 (((-914 (-558)) $) 297 T ELT) (((-914 (-391)) $) 301 T ELT) (($ (-417 $)) 359 T ELT) (((-547) $) NIL T ELT)) (-4458 (((-886) $) 279 T ELT) (($ (-628 $)) 93 T ELT) (($ (-1207)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#2| (-628 $))) NIL T ELT) (($ (-419 |#2|)) 329 T ELT) (($ (-974 (-419 |#2|))) 368 T ELT) (($ (-419 (-974 (-419 |#2|)))) 341 T ELT) (($ (-419 (-974 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-974 |#2|)) 216 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 373 T ELT)) (-3610 (((-791)) 88 T ELT)) (-2478 (((-114) (-115)) 42 T ELT)) (-2013 (($ (-1207) $) 31 T ELT) (($ (-1207) $ $) 32 T ELT) (($ (-1207) $ $ $) 33 T ELT) (($ (-1207) $ $ $ $) 34 T ELT) (($ (-1207) (-661 $)) 39 T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT))) +(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-947) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4458 (|#1| (-558))) (-15 -3610 ((-791))) (-15 * (|#1| |#2| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4458 (|#1| (-974 |#2|))) (-15 -3657 ((-3 (-974 |#2|) #1#) |#1|)) (-15 -3656 ((-974 |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -4458 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4458 (|#1| (-419 (-974 |#2|)))) (-15 -3657 ((-3 (-419 (-974 |#2|)) #1#) |#1|)) (-15 -3656 ((-419 (-974 |#2|)) |#1|)) (-15 -3568 ((-419 (-1201 |#1|)) |#1| (-628 |#1|))) (-15 -4458 (|#1| (-419 (-974 (-419 |#2|))))) (-15 -4458 (|#1| (-974 (-419 |#2|)))) (-15 -4458 (|#1| (-419 |#2|))) (-15 -3478 (|#1| |#1|)) (-15 -4484 (|#1| (-417 |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-791) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-791) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-791)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-791)) (-661 (-1 |#1| |#1|)))) (-15 -3308 ((-3 (-2 (|:| |val| |#1|) (|:| -2642 (-558))) "failed") |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1| (-1207))) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1| (-115))) (-15 -3479 (|#1| |#1|)) (-15 -4458 (|#1| (-1155 |#2| (-628 |#1|)))) (-15 -2012 ((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 |#1|))) "failed") |#1|)) (-15 -3305 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1|)) (-15 -3306 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 |#1|) (-1207))) (-15 -4280 (|#1| |#1| (-115) |#1| (-1207))) (-15 -4280 (|#1| |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1207)))) (-15 -4280 (|#1| |#1| (-1207))) (-15 -2013 (|#1| (-1207) (-661 |#1|))) (-15 -2013 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1|)) (-15 -3566 ((-661 (-1207)) |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -2015 ((-114) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4458 (|#1| (-1207))) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| |#1|)))) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1754 ((-661 (-628 |#1|)) |#1|)) (-15 -1755 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -1757 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1757 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1757 (|#1| |#1| (-305 |#1|))) (-15 -4312 (|#1| (-115) (-661 |#1|))) (-15 -4312 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -4458 (|#1| (-628 |#1|))) (-15 -3657 ((-3 (-628 |#1|) #1#) |#1|)) (-15 -3656 ((-628 |#1|) |#1|)) (-15 -4458 ((-886) |#1|))) (-433 |#2|) (-1131)) (T -432)) +((-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1131)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-3610 (*1 *2) (-12 (-4 *4 (-1131)) (-5 *2 (-791)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) +(-10 -8 (-15 * (|#1| (-947) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4458 (|#1| (-558))) (-15 -3610 ((-791))) (-15 * (|#1| |#2| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4458 (|#1| (-974 |#2|))) (-15 -3657 ((-3 (-974 |#2|) #1#) |#1|)) (-15 -3656 ((-974 |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -4458 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4458 (|#1| (-419 (-974 |#2|)))) (-15 -3657 ((-3 (-419 (-974 |#2|)) #1#) |#1|)) (-15 -3656 ((-419 (-974 |#2|)) |#1|)) (-15 -3568 ((-419 (-1201 |#1|)) |#1| (-628 |#1|))) (-15 -4458 (|#1| (-419 (-974 (-419 |#2|))))) (-15 -4458 (|#1| (-974 (-419 |#2|)))) (-15 -4458 (|#1| (-419 |#2|))) (-15 -3478 (|#1| |#1|)) (-15 -4484 (|#1| (-417 |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-791) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-791) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-791)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-791)) (-661 (-1 |#1| |#1|)))) (-15 -3308 ((-3 (-2 (|:| |val| |#1|) (|:| -2642 (-558))) "failed") |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1| (-1207))) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1| (-115))) (-15 -3479 (|#1| |#1|)) (-15 -4458 (|#1| (-1155 |#2| (-628 |#1|)))) (-15 -2012 ((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 |#1|))) "failed") |#1|)) (-15 -3305 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2642 (-558))) "failed") |#1|)) (-15 -3306 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 |#1|) (-1207))) (-15 -4280 (|#1| |#1| (-115) |#1| (-1207))) (-15 -4280 (|#1| |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1207)))) (-15 -4280 (|#1| |#1| (-1207))) (-15 -2013 (|#1| (-1207) (-661 |#1|))) (-15 -2013 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1| |#1|)) (-15 -2013 (|#1| (-1207) |#1|)) (-15 -3566 ((-661 (-1207)) |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -2015 ((-114) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4458 (|#1| (-1207))) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4280 (|#1| |#1| (-1207) (-1 |#1| (-661 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4280 (|#1| |#1| (-661 (-1207)) (-661 (-1 |#1| |#1|)))) (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -1754 ((-661 (-628 |#1|)) |#1|)) (-15 -1755 ((-3 (-628 |#1|) "failed") |#1|)) (-15 -1757 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1757 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1757 (|#1| |#1| (-305 |#1|))) (-15 -4312 (|#1| (-115) (-661 |#1|))) (-15 -4312 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1| |#1|)) (-15 -4312 (|#1| (-115) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4280 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -4458 (|#1| (-628 |#1|))) (-15 -3657 ((-3 (-628 |#1|) #1#) |#1|)) (-15 -3656 ((-628 |#1|) |#1|)) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 129 (|has| |#1| (-25)) ELT)) (-3566 (((-661 (-1207)) $) 220 T ELT)) (-3568 (((-419 (-1201 $)) $ (-628 $)) 188 (|has| |#1| (-569)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 160 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 161 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 163 (|has| |#1| (-569)) ELT)) (-1753 (((-661 (-628 $)) $) 42 T ELT)) (-1436 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1757 (($ $ (-305 $)) 54 T ELT) (($ $ (-661 (-305 $))) 53 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 52 T ELT)) (-4287 (($ $) 180 (|has| |#1| (-569)) ELT)) (-4483 (((-417 $) $) 181 (|has| |#1| (-569)) ELT)) (-1798 (((-114) $ $) 171 (|has| |#1| (-569)) ELT)) (-4236 (($) 117 (-4039 (|has| |#1| (-1142)) (|has| |#1| (-25))) CONST)) (-3657 (((-3 (-628 $) #1="failed") $) 67 T ELT) (((-3 (-1207) #1#) $) 233 T ELT) (((-3 (-558) #1#) $) 227 (|has| |#1| (-1068 (-558))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-419 (-974 |#1|)) #1#) $) 186 (|has| |#1| (-569)) ELT) (((-3 (-974 |#1|) #1#) $) 136 (|has| |#1| (-1079)) ELT) (((-3 (-419 (-558)) #1#) $) 111 (-4039 (-12 (|has| |#1| (-1068 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3656 (((-628 $) $) 68 T ELT) (((-1207) $) 234 T ELT) (((-558) $) 226 (|has| |#1| (-1068 (-558))) ELT) ((|#1| $) 225 T ELT) (((-419 (-974 |#1|)) $) 187 (|has| |#1| (-569)) ELT) (((-974 |#1|) $) 137 (|has| |#1| (-1079)) ELT) (((-419 (-558)) $) 112 (-4039 (-12 (|has| |#1| (-1068 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3045 (($ $ $) 175 (|has| |#1| (-569)) ELT)) (-2503 (((-709 (-558)) (-709 $)) 153 (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 152 (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 151 (|has| |#1| (-1079)) ELT) (((-709 |#1|) (-709 $)) 150 (|has| |#1| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) 119 (|has| |#1| (-1142)) ELT)) (-3044 (($ $ $) 174 (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 169 (|has| |#1| (-569)) ELT)) (-4235 (((-114) $) 182 (|has| |#1| (-569)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 229 (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 228 (|has| |#1| (-910 (-391))) ELT)) (-3054 (($ $) 49 T ELT) (($ (-661 $)) 48 T ELT)) (-1752 (((-661 (-115)) $) 41 T ELT)) (-4105 (((-115) (-115)) 40 T ELT)) (-2651 (((-114) $) 118 (|has| |#1| (-1142)) ELT)) (-3156 (((-114) $) 20 (|has| $ (-1068 (-558))) ELT)) (-3479 (($ $) 203 (|has| |#1| (-1079)) ELT)) (-3481 (((-1155 |#1| (-628 $)) $) 204 (|has| |#1| (-1079)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 178 (|has| |#1| (-569)) ELT)) (-1750 (((-1201 $) (-628 $)) 23 (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) 34 T ELT)) (-1755 (((-3 (-628 $) "failed") $) 44 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 155 (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 154 (-3043 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 149 (|has| |#1| (-1079)) ELT) (((-709 |#1|) (-1297 $)) 148 (|has| |#1| (-1079)) ELT)) (-2112 (($ (-661 $)) 167 (|has| |#1| (-569)) ELT) (($ $ $) 166 (|has| |#1| (-569)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-1754 (((-661 (-628 $)) $) 43 T ELT)) (-2459 (($ (-115) $) 36 T ELT) (($ (-115) (-661 $)) 35 T ELT)) (-3306 (((-3 (-661 $) "failed") $) 209 (|has| |#1| (-1142)) ELT)) (-3308 (((-3 (-2 (|:| |val| $) (|:| -2642 (-558))) "failed") $) 200 (|has| |#1| (-1079)) ELT)) (-3305 (((-3 (-661 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-2012 (((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-3307 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $) 208 (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-115)) 202 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-1207)) 201 (|has| |#1| (-1079)) ELT)) (-3114 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1207)) 37 T ELT)) (-2884 (($ $) 121 (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3084 (((-791) $) 45 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 222 T ELT)) (-2014 ((|#1| $) 221 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 168 (|has| |#1| (-569)) ELT)) (-3644 (($ (-661 $)) 165 (|has| |#1| (-569)) ELT) (($ $ $) 164 (|has| |#1| (-569)) ELT)) (-1751 (((-114) $ $) 33 T ELT) (((-114) $ (-1207)) 32 T ELT)) (-4244 (((-417 $) $) 179 (|has| |#1| (-569)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 176 (|has| |#1| (-569)) ELT)) (-3968 (((-3 $ "failed") $ $) 159 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 170 (|has| |#1| (-569)) ELT)) (-3157 (((-114) $) 21 (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) 65 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 64 T ELT) (($ $ (-661 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-661 $) (-661 $)) 60 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) 31 T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) 30 T ELT) (($ $ (-1207) (-1 $ (-661 $))) 29 T ELT) (($ $ (-1207) (-1 $ $)) 28 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 27 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-661 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT) (($ $ (-1207)) 214 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1207))) 213 (|has| |#1| (-631 (-547))) ELT) (($ $) 212 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1207)) 211 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-115)) (-661 $) (-1207)) 210 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ $))) 199 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 198 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791) (-1 $ (-661 $))) 197 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791) (-1 $ $)) 196 (|has| |#1| (-1079)) ELT)) (-1797 (((-791) $) 172 (|has| |#1| (-569)) ELT)) (-4312 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-661 $)) 55 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 173 (|has| |#1| (-569)) ELT)) (-1756 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-4270 (($ $ (-1207)) 146 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) 144 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) 143 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 142 (|has| |#1| (-1079)) ELT)) (-3478 (($ $) 193 (|has| |#1| (-569)) ELT)) (-3480 (((-1155 |#1| (-628 $)) $) 194 (|has| |#1| (-569)) ELT)) (-3685 (($ $) 22 (|has| $ (-1079)) ELT)) (-4484 (((-914 (-558)) $) 231 (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) 230 (|has| |#1| (-631 (-914 (-391)))) ELT) (($ (-417 $)) 195 (|has| |#1| (-569)) ELT) (((-547) $) 113 (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $ $) 124 (|has| |#1| (-485)) ELT)) (-2834 (($ $ $) 125 (|has| |#1| (-485)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-628 $)) 66 T ELT) (($ (-1207)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1155 |#1| (-628 $))) 205 (|has| |#1| (-1079)) ELT) (($ (-419 |#1|)) 191 (|has| |#1| (-569)) ELT) (($ (-974 (-419 |#1|))) 190 (|has| |#1| (-569)) ELT) (($ (-419 (-974 (-419 |#1|)))) 189 (|has| |#1| (-569)) ELT) (($ (-419 (-974 |#1|))) 185 (|has| |#1| (-569)) ELT) (($ $) 158 (|has| |#1| (-569)) ELT) (($ (-974 |#1|)) 135 (|has| |#1| (-1079)) ELT) (($ (-419 (-558))) 110 (-4039 (|has| |#1| (-569)) (-12 (|has| |#1| (-1068 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ (-558)) 109 (-4039 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-558)))) ELT)) (-3185 (((-711 $) $) 156 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 138 (|has| |#1| (-1079)) CONST)) (-3071 (($ $) 51 T ELT) (($ (-661 $)) 50 T ELT)) (-2478 (((-114) (-115)) 39 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 162 (|has| |#1| (-569)) ELT)) (-2013 (($ (-1207) $) 219 T ELT) (($ (-1207) $ $) 218 T ELT) (($ (-1207) $ $ $) 217 T ELT) (($ (-1207) $ $ $ $) 216 T ELT) (($ (-1207) (-661 $)) 215 T ELT)) (-3141 (($) 128 (|has| |#1| (-25)) CONST)) (-3147 (($) 116 (|has| |#1| (-1142)) CONST)) (-3152 (($ $ (-1207)) 145 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207))) 141 (|has| |#1| (-1079)) ELT) (($ $ (-1207) (-791)) 140 (|has| |#1| (-1079)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 139 (|has| |#1| (-1079)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ (-1155 |#1| (-628 $)) (-1155 |#1| (-628 $))) 192 (|has| |#1| (-569)) ELT) (($ $ $) 122 (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4349 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) 123 (-4039 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-791)) 120 (|has| |#1| (-1142)) ELT) (($ $ (-947)) 115 (|has| |#1| (-1142)) ELT)) (* (($ (-419 (-558)) $) 184 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 183 (|has| |#1| (-569)) ELT) (($ $ |#1|) 157 (|has| |#1| (-175)) ELT) (($ |#1| $) 147 (|has| |#1| (-1079)) ELT) (($ (-558) $) 132 (|has| |#1| (-21)) ELT) (($ (-791) $) 130 (|has| |#1| (-25)) ELT) (($ (-947) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1142)) ELT))) +(((-433 |#1|) (-142) (-1131)) (T -433)) +((-2015 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-5 *2 (-661 (-1207))))) (-2013 (*1 *1 *2 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) (-2013 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) (-2013 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) (-2013 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) (-2013 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-661 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1131)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-4 *3 (-631 (-547))))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1207))) (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-4 *3 (-631 (-547))))) (-4280 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-631 (-547))))) (-4280 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-433 *4)) (-4 *4 (-1131)) (-4 *4 (-631 (-547))))) (-4280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 *1)) (-5 *4 (-1207)) (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-631 (-547))))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-433 *3)))) (-3307 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *3)))) (-3305 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-433 *3)))) (-2012 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| -4466 (-558)) (|:| |var| (-628 *1)))) (-4 *1 (-433 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 (-628 *1))) (-4 *3 (-1079)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *3 (-1131)) (-5 *2 (-1155 *3 (-628 *1))) (-4 *1 (-433 *3)))) (-3479 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-1079)))) (-3307 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *4)))) (-3307 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1079)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *4)))) (-3308 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| |val| *1) (|:| -2642 (-558)))) (-4 *1 (-433 *3)))) (-4280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) (-4280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) (-4280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *4 (-1 *1 (-661 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) (-4280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1131)))) (-3480 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1131)) (-5 *2 (-1155 *3 (-628 *1))) (-4 *1 (-433 *3)))) (-3478 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-569)))) (-4461 (*1 *1 *2 *2) (-12 (-5 *2 (-1155 *3 (-628 *1))) (-4 *3 (-569)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-974 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1131)) (-4 *4 (-569)) (-5 *2 (-419 (-1201 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-4 *3 (-1142))))) +(-13 (-310) (-1068 (-1207)) (-908 |t#1|) (-412 |t#1|) (-424 |t#1|) (-10 -8 (-15 -2015 ((-114) $)) (-15 -2014 (|t#1| $)) (-15 -3566 ((-661 (-1207)) $)) (-15 -2013 ($ (-1207) $)) (-15 -2013 ($ (-1207) $ $)) (-15 -2013 ($ (-1207) $ $ $)) (-15 -2013 ($ (-1207) $ $ $ $)) (-15 -2013 ($ (-1207) (-661 $))) (IF (|has| |t#1| (-631 (-547))) (PROGN (-6 (-631 (-547))) (-15 -4280 ($ $ (-1207))) (-15 -4280 ($ $ (-661 (-1207)))) (-15 -4280 ($ $)) (-15 -4280 ($ $ (-115) $ (-1207))) (-15 -4280 ($ $ (-661 (-115)) (-661 $) (-1207)))) |%noBranch|) (IF (|has| |t#1| (-1142)) (PROGN (-6 (-746)) (-15 ** ($ $ (-791))) (-15 -3306 ((-3 (-661 $) "failed") $)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3305 ((-3 (-661 $) "failed") $)) (-15 -2012 ((-3 (-2 (|:| -4466 (-558)) (|:| |var| (-628 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-1068 (-974 |t#1|))) (-6 (-926 (-1207))) (-6 (-390 |t#1|)) (-15 -4458 ($ (-1155 |t#1| (-628 $)))) (-15 -3481 ((-1155 |t#1| (-628 $)) $)) (-15 -3479 ($ $)) (-15 -3307 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-115))) (-15 -3307 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2642 (-558))) "failed") $ (-1207))) (-15 -3308 ((-3 (-2 (|:| |val| $) (|:| -2642 (-558))) "failed") $)) (-15 -4280 ($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ $)))) (-15 -4280 ($ $ (-661 (-1207)) (-661 (-791)) (-661 (-1 $ (-661 $))))) (-15 -4280 ($ $ (-1207) (-791) (-1 $ (-661 $)))) (-15 -4280 ($ $ (-1207) (-791) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-376)) (-6 (-1068 (-419 (-974 |t#1|)))) (-15 -4484 ($ (-417 $))) (-15 -3480 ((-1155 |t#1| (-628 $)) $)) (-15 -3478 ($ $)) (-15 -4461 ($ (-1155 |t#1| (-628 $)) (-1155 |t#1| (-628 $)))) (-15 -4458 ($ (-419 |t#1|))) (-15 -4458 ($ (-974 (-419 |t#1|)))) (-15 -4458 ($ (-419 (-974 (-419 |t#1|))))) (-15 -3568 ((-419 (-1201 $)) $ (-628 $))) (IF (|has| |t#1| (-1068 (-558))) (-6 (-1068 (-419 (-558)))) |%noBranch|)) |%noBranch|))) +(((-21) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-419 (-558))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-569)) ((-133) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-569))) ((-633 #2=(-419 (-974 |#1|))) |has| |#1| (-569)) ((-633 (-558)) -4039 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-558))) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-633 #3=(-628 $)) . T) ((-633 #4=(-974 |#1|)) |has| |#1| (-1079)) ((-633 #5=(-1207)) . T) ((-633 |#1|) . T) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) |has| |#1| (-569)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-914 (-391))) |has| |#1| (-631 (-914 (-391)))) ((-631 (-914 (-558))) |has| |#1| (-631 (-914 (-558)))) ((-250) |has| |#1| (-569)) ((-302) |has| |#1| (-569)) ((-319) |has| |#1| (-569)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-569)) ((-390 |#1|) |has| |#1| (-1079)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) |has| |#1| (-569)) ((-485) |has| |#1| (-485)) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-666 #1#) |has| |#1| (-569)) ((-666 (-558)) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-666 |#1|) -4039 (|has| |#1| (-1079)) (|has| |#1| (-175))) ((-666 $) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-668 #1#) |has| |#1| (-569)) ((-668 #6=(-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ((-668 |#1|) -4039 (|has| |#1| (-1079)) (|has| |#1| (-175))) ((-668 $) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-660 #1#) |has| |#1| (-569)) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-658 #6#) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1079))) ((-658 |#1|) |has| |#1| (-1079)) ((-737 #1#) |has| |#1| (-569)) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) -4039 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-920 $ #7=(-1207)) |has| |#1| (-1079)) ((-926 #7#) |has| |#1| (-1079)) ((-928 #7#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-558)) |has| |#1| (-910 (-558))) ((-908 |#1|) . T) ((-949) |has| |#1| (-569)) ((-1068 (-419 (-558))) -4039 (|has| |#1| (-1068 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-558))))) ((-1068 #2#) |has| |#1| (-569)) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 #3#) . T) ((-1068 #4#) |has| |#1| (-1079)) ((-1068 #5#) . T) ((-1068 |#1|) . T) ((-1081 #1#) |has| |#1| (-569)) ((-1081 |#1|) |has| |#1| (-175)) ((-1081 $) |has| |#1| (-569)) ((-1086 #1#) |has| |#1| (-569)) ((-1086 |#1|) |has| |#1| (-175)) ((-1086 $) |has| |#1| (-569)) ((-1079) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1087) -4039 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1142) -4039 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1131) . T) ((-1247) . T) ((-1252) |has| |#1| (-569))) +((-4470 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-433 |#1|) (-1079) (-433 |#3|)) (T -434)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-433 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|))) +((-2019 ((|#2| |#2|) 182 T ELT)) (-2016 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114)) 60 T ELT))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -2019 (|#2| |#2|))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|)) (-1207) |#2|) (T -435)) +((-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-433 *3))) (-14 *4 (-1207)) (-14 *5 *2))) (-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-14 *6 (-1207)) (-14 *7 *3)))) +(-10 -7 (-15 -2016 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -2019 (|#2| |#2|))) +((-2019 ((|#2| |#2|) 105 T ELT)) (-2017 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 52 T ELT)) (-2018 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 169 T ELT))) +(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2017 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2018 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2019 (|#2| |#2|))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|) (-10 -8 (-15 -4458 ($ |#3|)))) (-869) (-13 (-1276 |#2| |#3|) (-376) (-1233) (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $)))) (-1013 |#4|) (-1207)) (T -436)) +((-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-4 *2 (-13 (-27) (-1233) (-433 *3) (-10 -8 (-15 -4458 ($ *4))))) (-4 *4 (-869)) (-4 *5 (-13 (-1276 *2 *4) (-376) (-1233) (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) (-14 *7 (-1207)))) (-2018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-4 *3 (-13 (-27) (-1233) (-433 *6) (-10 -8 (-15 -4458 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1013 *8)) (-14 *10 (-1207)))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-4 *3 (-13 (-27) (-1233) (-433 *6) (-10 -8 (-15 -4458 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1013 *8)) (-14 *10 (-1207))))) +(-10 -7 (-15 -2017 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2018 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2019 (|#2| |#2|))) +((-2020 (($) 51 T ELT)) (-3734 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3736 (($ $ $) 46 T ELT)) (-3735 (((-114) $ $) 35 T ELT)) (-3620 (((-791)) 55 T ELT)) (-3739 (($ (-661 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3477 (($) 66 T ELT)) (-3741 (((-114) $ $) 15 T ELT)) (-3012 ((|#2| $) 77 T ELT)) (-3340 ((|#2| $) 75 T ELT)) (-2230 (((-947) $) 70 T ELT)) (-3738 (($ $ $) 42 T ELT)) (-2641 (($ (-947)) 60 T ELT)) (-3737 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL T ELT) (((-791) |#2| $) 31 T ELT)) (-4032 (($ (-661 |#2|)) 27 T ELT)) (-2021 (($ $) 53 T ELT)) (-4458 (((-886) $) 40 T ELT)) (-2022 (((-791) $) 24 T ELT)) (-3740 (($ (-661 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3536 (((-114) $ $) 19 T ELT))) +(((-437 |#1| |#2|) (-10 -8 (-15 -3620 ((-791))) (-15 -2641 (|#1| (-947))) (-15 -2230 ((-947) |#1|)) (-15 -3477 (|#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -2020 (|#1|)) (-15 -2021 (|#1| |#1|)) (-15 -2022 ((-791) |#1|)) (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3741 ((-114) |#1| |#1|)) (-15 -3740 (|#1|)) (-15 -3740 (|#1| (-661 |#2|))) (-15 -3739 (|#1|)) (-15 -3739 (|#1| (-661 |#2|))) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#2|)) (-15 -3736 (|#1| |#1| |#1|)) (-15 -3735 ((-114) |#1| |#1|)) (-15 -3734 (|#1| |#1| |#1|)) (-15 -3734 (|#1| |#1| |#2|)) (-15 -3734 (|#1| |#2| |#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|))) (-438 |#2|) (-1131)) (T -437)) +((-3620 (*1 *2) (-12 (-4 *4 (-1131)) (-5 *2 (-791)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) +(-10 -8 (-15 -3620 ((-791))) (-15 -2641 (|#1| (-947))) (-15 -2230 ((-947) |#1|)) (-15 -3477 (|#1|)) (-15 -3012 (|#2| |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -2020 (|#1|)) (-15 -2021 (|#1| |#1|)) (-15 -2022 ((-791) |#1|)) (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3741 ((-114) |#1| |#1|)) (-15 -3740 (|#1|)) (-15 -3740 (|#1| (-661 |#2|))) (-15 -3739 (|#1|)) (-15 -3739 (|#1| (-661 |#2|))) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#2|)) (-15 -3736 (|#1| |#1| |#1|)) (-15 -3735 ((-114) |#1| |#1|)) (-15 -3734 (|#1| |#1| |#1|)) (-15 -3734 (|#1| |#1| |#2|)) (-15 -3734 (|#1| |#2| |#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -2167 ((-791) |#2| |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|))) +((-3049 (((-114) $ $) 19 T ELT)) (-2020 (($) 71 (|has| |#1| (-381)) ELT)) (-3734 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3736 (($ $ $) 82 T ELT)) (-3735 (((-114) $ $) 83 T ELT)) (-3620 (((-791)) 65 (|has| |#1| (-381)) ELT)) (-3739 (($ (-661 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3477 (($) 68 (|has| |#1| (-381)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) 74 T ELT)) (-3012 ((|#1| $) 69 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3340 ((|#1| $) 70 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2230 (((-947) $) 67 (|has| |#1| (-381)) ELT)) (-3742 (((-1189) $) 22 T ELT)) (-3738 (($ $ $) 79 T ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-2641 (($ (-947)) 66 (|has| |#1| (-381)) ELT)) (-3743 (((-1150) $) 21 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-3737 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-2021 (($ $) 72 (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) 17 T ELT)) (-2022 (((-791) $) 73 T ELT)) (-3740 (($ (-661 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1387 (((-114) $ $) 20 T ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 T ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-438 |#1|) (-142) (-1131)) (T -438)) +((-2022 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1131)) (-5 *2 (-791)))) (-2021 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-381)))) (-2020 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1131)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-870)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-870))))) +(-13 (-233 |t#1|) (-1129 |t#1|) (-10 -8 (-6 -4507) (-15 -2022 ((-791) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2021 ($ $)) (-15 -2020 ($))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -3340 (|t#1| $)) (-15 -3012 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-886)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-381) |has| |#1| (-381)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1129 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-4353 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4354 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4470 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4354 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4353 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1131) (-438 |#1|) (-1131) (-438 |#3|)) (T -439)) +((-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-438 *5)) (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-438 *6)) (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4354 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4353 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2023 (((-595 |#2|) |#2| (-1207)) 36 T ELT)) (-2325 (((-595 |#2|) |#2| (-1207)) 21 T ELT)) (-2374 ((|#2| |#2| (-1207)) 26 T ELT))) +(((-440 |#1| |#2|) (-10 -7 (-15 -2325 ((-595 |#2|) |#2| (-1207))) (-15 -2023 ((-595 |#2|) |#2| (-1207))) (-15 -2374 (|#2| |#2| (-1207)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-29 |#1|))) (T -440)) +((-2374 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5)))))) +(-10 -7 (-15 -2325 ((-595 |#2|) |#2| (-1207))) (-15 -2023 ((-595 |#2|) |#2| (-1207))) (-15 -2374 (|#2| |#2| (-1207)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2025 (($ |#2| |#1|) 37 T ELT)) (-2024 (($ |#2| |#1|) 35 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 10 T CONST)) (-3147 (($) 16 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 36 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-441 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4494)) (IF (|has| |#1| (-6 -4494)) (-6 -4494) |%noBranch|) |%noBranch|) (-15 -4458 ($ |#1|)) (-15 -4458 ($ (-343 |#2|))) (-15 -2025 ($ |#2| |#1|)) (-15 -2024 ($ |#2| |#1|)))) (-13 (-175) (-38 (-419 (-558)))) (-13 (-870) (-21))) (T -441)) +((-4458 (*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-558))))) (-4 *3 (-13 (-870) (-21))))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-870) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))))) (-2025 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-870) (-21))))) (-2024 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-870) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4494)) (IF (|has| |#1| (-6 -4494)) (-6 -4494) |%noBranch|) |%noBranch|) (-15 -4458 ($ |#1|)) (-15 -4458 ($ (-343 |#2|))) (-15 -2025 ($ |#2| |#1|)) (-15 -2024 ($ |#2| |#1|)))) +((-4324 (((-3 |#2| (-661 |#2|)) |#2| (-1207)) 115 T ELT))) +(((-442 |#1| |#2|) (-10 -7 (-15 -4324 ((-3 |#2| (-661 |#2|)) |#2| (-1207)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-988) (-29 |#1|))) (T -442)) +((-4324 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 *3 (-661 *3))) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-988) (-29 *5)))))) +(-10 -7 (-15 -4324 ((-3 |#2| (-661 |#2|)) |#2| (-1207)))) +((-3888 ((|#2| |#2| |#2|) 31 T ELT)) (-4105 (((-115) (-115)) 43 T ELT)) (-2027 ((|#2| |#2|) 63 T ELT)) (-2026 ((|#2| |#2|) 66 T ELT)) (-3887 ((|#2| |#2|) 30 T ELT)) (-3891 ((|#2| |#2| |#2|) 33 T ELT)) (-3893 ((|#2| |#2| |#2|) 35 T ELT)) (-3890 ((|#2| |#2| |#2|) 32 T ELT)) (-3892 ((|#2| |#2| |#2|) 34 T ELT)) (-2478 (((-114) (-115)) 41 T ELT)) (-3895 ((|#2| |#2|) 37 T ELT)) (-3894 ((|#2| |#2|) 36 T ELT)) (-3885 ((|#2| |#2|) 25 T ELT)) (-3889 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3886 ((|#2| |#2| |#2|) 29 T ELT))) +(((-443 |#1| |#2|) (-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -3885 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3889 (|#2| |#2| |#2|)) (-15 -3886 (|#2| |#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2| |#2|)) (-15 -3890 (|#2| |#2| |#2|)) (-15 -3891 (|#2| |#2| |#2|)) (-15 -3892 (|#2| |#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -2027 (|#2| |#2|))) (-569) (-433 |#1|)) (T -443)) +((-2027 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-2026 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3893 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3892 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3891 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3890 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3888 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3886 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3889 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) (-4 *5 (-433 *4))))) +(-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -3885 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3889 (|#2| |#2| |#2|)) (-15 -3886 (|#2| |#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2| |#2|)) (-15 -3890 (|#2| |#2| |#2|)) (-15 -3891 (|#2| |#2| |#2|)) (-15 -3892 (|#2| |#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -2027 (|#2| |#2|))) +((-3316 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-661 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-661 |#2|)) 65 T ELT))) +(((-444 |#1| |#2|) (-10 -7 (-15 -3316 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-661 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-661 |#2|))) (IF (|has| |#2| (-27)) (-15 -3316 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-149)) (-433 |#1|)) (T -444)) +((-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3)) (|:| |pol2| (-1201 *3)) (|:| |prim| (-1201 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-661 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-444 *4 *5))))) +(-10 -7 (-15 -3316 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-661 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-661 |#2|))) (IF (|has| |#2| (-27)) (-15 -3316 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2029 (((-1303)) 18 T ELT)) (-2028 (((-1201 (-419 (-558))) |#2| (-628 |#2|)) 40 T ELT) (((-419 (-558)) |#2|) 24 T ELT))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2028 ((-419 (-558)) |#2|)) (-15 -2028 ((-1201 (-419 (-558))) |#2| (-628 |#2|))) (-15 -2029 ((-1303)))) (-13 (-569) (-1068 (-558))) (-433 |#1|)) (T -445)) +((-2029 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *2 (-1303)) (-5 *1 (-445 *3 *4)) (-4 *4 (-433 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-628 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-445 *5 *3)))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4))))) +(-10 -7 (-15 -2028 ((-419 (-558)) |#2|)) (-15 -2028 ((-1201 (-419 (-558))) |#2| (-628 |#2|))) (-15 -2029 ((-1303)))) +((-4157 (((-114) $) 33 T ELT)) (-2030 (((-114) $) 35 T ELT)) (-3759 (((-114) $) 36 T ELT)) (-2032 (((-114) $) 39 T ELT)) (-2034 (((-114) $) 34 T ELT)) (-2033 (((-114) $) 38 T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-1189)) 32 T ELT) (($ (-1207)) 30 T ELT) (((-1207) $) 24 T ELT) (((-1133) $) 23 T ELT)) (-2031 (((-114) $) 37 T ELT)) (-3536 (((-114) $ $) 17 T ELT))) +(((-446) (-13 (-630 (-886)) (-10 -8 (-15 -4458 ($ (-1189))) (-15 -4458 ($ (-1207))) (-15 -4458 ((-1207) $)) (-15 -4458 ((-1133) $)) (-15 -4157 ((-114) $)) (-15 -2034 ((-114) $)) (-15 -3759 ((-114) $)) (-15 -2033 ((-114) $)) (-15 -2032 ((-114) $)) (-15 -2031 ((-114) $)) (-15 -2030 ((-114) $)) (-15 -3536 ((-114) $ $))))) (T -446)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-446)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-446)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-446)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-446)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3759 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3536 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4458 ($ (-1189))) (-15 -4458 ($ (-1207))) (-15 -4458 ((-1207) $)) (-15 -4458 ((-1133) $)) (-15 -4157 ((-114) $)) (-15 -2034 ((-114) $)) (-15 -3759 ((-114) $)) (-15 -2033 ((-114) $)) (-15 -2032 ((-114) $)) (-15 -2031 ((-114) $)) (-15 -2030 ((-114) $)) (-15 -3536 ((-114) $ $)))) +((-2036 (((-3 (-417 (-1201 (-419 (-558)))) "failed") |#3|) 72 T ELT)) (-2035 (((-417 |#3|) |#3|) 34 T ELT)) (-2038 (((-3 (-417 (-1201 (-48))) "failed") |#3|) 46 (|has| |#2| (-1068 (-48))) ELT)) (-2037 (((-3 (|:| |overq| (-1201 (-419 (-558)))) (|:| |overan| (-1201 (-48))) (|:| -3120 (-114))) |#3|) 37 T ELT))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2035 ((-417 |#3|) |#3|)) (-15 -2036 ((-3 (-417 (-1201 (-419 (-558)))) "failed") |#3|)) (-15 -2037 ((-3 (|:| |overq| (-1201 (-419 (-558)))) (|:| |overan| (-1201 (-48))) (|:| -3120 (-114))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -2038 ((-3 (-417 (-1201 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-569) (-1068 (-558))) (-433 |#1|) (-1273 |#2|)) (T -447)) +((-2038 (*1 *2 *3) (|partial| -12 (-4 *5 (-1068 (-48))) (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1201 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2037 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1201 (-419 (-558)))) (|:| |overan| (-1201 (-48))) (|:| -3120 (-114)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2036 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1201 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -2035 ((-417 |#3|) |#3|)) (-15 -2036 ((-3 (-417 (-1201 (-419 (-558)))) "failed") |#3|)) (-15 -2037 ((-3 (|:| |overq| (-1201 (-419 (-558)))) (|:| |overan| (-1201 (-48))) (|:| -3120 (-114))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -2038 ((-3 (-417 (-1201 (-48))) "failed") |#3|)) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-2047 (((-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) $) 11 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2045 (($) 35 T ELT)) (-2042 (($) 41 T ELT)) (-2043 (($) 37 T ELT)) (-2040 (($) 39 T ELT)) (-2044 (($) 36 T ELT)) (-2041 (($) 38 T ELT)) (-2039 (($) 40 T ELT)) (-2046 (((-114) $) 8 T ELT)) (-2830 (((-661 (-974 (-558))) $) 19 T ELT)) (-4032 (($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-1207)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-974 (-558))) (-114)) 30 T ELT)) (-4458 (((-886) $) 24 T ELT) (($ (-446)) 32 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-448) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-446))) (-15 -2047 ((-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) $)) (-15 -2830 ((-661 (-974 (-558))) $)) (-15 -2046 ((-114) $)) (-15 -4032 ($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-1207)) (-114))) (-15 -4032 ($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-974 (-558))) (-114))) (-15 -2045 ($)) (-15 -2044 ($)) (-15 -2043 ($)) (-15 -2042 ($)) (-15 -2041 ($)) (-15 -2040 ($)) (-15 -2039 ($))))) (T -448)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) (-5 *1 (-448)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-661 (-974 (-558)))) (-5 *1 (-448)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-4032 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *3 (-661 (-1207))) (-5 *4 (-114)) (-5 *1 (-448)))) (-4032 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) (-2045 (*1 *1) (-5 *1 (-448))) (-2044 (*1 *1) (-5 *1 (-448))) (-2043 (*1 *1) (-5 *1 (-448))) (-2042 (*1 *1) (-5 *1 (-448))) (-2041 (*1 *1) (-5 *1 (-448))) (-2040 (*1 *1) (-5 *1 (-448))) (-2039 (*1 *1) (-5 *1 (-448)))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-446))) (-15 -2047 ((-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) $)) (-15 -2830 ((-661 (-974 (-558))) $)) (-15 -2046 ((-114) $)) (-15 -4032 ($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-1207)) (-114))) (-15 -4032 ($ (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-661 (-974 (-558))) (-114))) (-15 -2045 ($)) (-15 -2044 ($)) (-15 -2043 ($)) (-15 -2042 ($)) (-15 -2041 ($)) (-15 -2040 ($)) (-15 -2039 ($)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1910 (((-1189) $ (-1189)) NIL T ELT)) (-1914 (($ $ (-1189)) NIL T ELT)) (-1911 (((-1189) $) NIL T ELT)) (-2051 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-1915 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4052 (((-402) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1912 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2050 (((-1303) (-1189)) 9 T ELT)) (-2049 (((-1303) (-1189)) 10 T ELT)) (-2048 (((-1303)) 11 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1913 (($ $) 39 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-449) (-13 (-378 (-402) (-1189)) (-10 -7 (-15 -2051 ((-402) (-402) (-402))) (-15 -2051 ((-402) (-402))) (-15 -2050 ((-1303) (-1189))) (-15 -2049 ((-1303) (-1189))) (-15 -2048 ((-1303)))))) (T -449)) +((-2051 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2051 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-449)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-449)))) (-2048 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-449))))) +(-13 (-378 (-402) (-1189)) (-10 -7 (-15 -2051 ((-402) (-402) (-402))) (-15 -2051 ((-402) (-402))) (-15 -2050 ((-1303) (-1189))) (-15 -2049 ((-1303) (-1189))) (-15 -2048 ((-1303))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4052 (((-1207) $) 8 T ELT)) (-3742 (((-1189) $) 17 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 14 T ELT))) +(((-450 |#1|) (-13 (-1131) (-10 -8 (-15 -4052 ((-1207) $)))) (-1207)) (T -450)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +(-13 (-1131) (-10 -8 (-15 -4052 ((-1207) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3819 (((-1145) $) 7 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 9 T ELT))) +(((-451) (-13 (-1131) (-10 -8 (-15 -3819 ((-1145) $))))) (T -451)) +((-3819 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-451))))) +(-13 (-1131) (-10 -8 (-15 -3819 ((-1145) $)))) +((-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT) (($ (-1297 (-719))) 14 T ELT) (($ (-661 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 11 T ELT))) +(((-452) (-142)) (T -452)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-719))) (-4 *1 (-452)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-452)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-452))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-1297 (-719)))) (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-342))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))))) +(((-630 (-886)) . T) ((-408) . T) ((-1247) . T)) +((-3657 (((-3 $ "failed") (-1297 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1297 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-1297 (-974 (-391)))) 17 T ELT) (((-3 $ "failed") (-1297 (-974 (-558)))) 15 T ELT) (((-3 $ "failed") (-1297 (-419 (-974 (-391))))) 13 T ELT) (((-3 $ "failed") (-1297 (-419 (-974 (-558))))) 11 T ELT)) (-3656 (($ (-1297 (-326 (-391)))) 22 T ELT) (($ (-1297 (-326 (-558)))) 20 T ELT) (($ (-1297 (-974 (-391)))) 18 T ELT) (($ (-1297 (-974 (-558)))) 16 T ELT) (($ (-1297 (-419 (-974 (-391))))) 14 T ELT) (($ (-1297 (-419 (-974 (-558))))) 12 T ELT)) (-3882 (((-1303) $) 7 T ELT)) (-4458 (((-886) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) 23 T ELT))) +(((-453) (-142)) (T -453)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-453)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-558)))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-558)))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-974 (-391)))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-974 (-391)))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-974 (-558)))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-974 (-558)))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-419 (-974 (-391))))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-419 (-974 (-391))))) (-4 *1 (-453)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1297 (-419 (-974 (-558))))) (-4 *1 (-453)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-419 (-974 (-558))))) (-4 *1 (-453))))) +(-13 (-408) (-10 -8 (-15 -4458 ($ (-661 (-342)))) (-15 -4458 ($ (-342))) (-15 -4458 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342)))))) (-15 -3656 ($ (-1297 (-326 (-391))))) (-15 -3657 ((-3 $ "failed") (-1297 (-326 (-391))))) (-15 -3656 ($ (-1297 (-326 (-558))))) (-15 -3657 ((-3 $ "failed") (-1297 (-326 (-558))))) (-15 -3656 ($ (-1297 (-974 (-391))))) (-15 -3657 ((-3 $ "failed") (-1297 (-974 (-391))))) (-15 -3656 ($ (-1297 (-974 (-558))))) (-15 -3657 ((-3 $ "failed") (-1297 (-974 (-558))))) (-15 -3656 ($ (-1297 (-419 (-974 (-391)))))) (-15 -3657 ((-3 $ "failed") (-1297 (-419 (-974 (-391)))))) (-15 -3656 ($ (-1297 (-419 (-974 (-558)))))) (-15 -3657 ((-3 $ "failed") (-1297 (-419 (-974 (-558)))))))) +(((-630 (-886)) . T) ((-408) . T) ((-1247) . T)) +((-2057 (((-114)) 18 T ELT)) (-2058 (((-114) (-114)) 19 T ELT)) (-2059 (((-114)) 14 T ELT)) (-2060 (((-114) (-114)) 15 T ELT)) (-2062 (((-114)) 16 T ELT)) (-2063 (((-114) (-114)) 17 T ELT)) (-2054 (((-947) (-947)) 22 T ELT) (((-947)) 21 T ELT)) (-2055 (((-791) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558))))) 52 T ELT)) (-2053 (((-947) (-947)) 24 T ELT) (((-947)) 23 T ELT)) (-2056 (((-2 (|:| -3059 (-558)) (|:| -1997 (-661 |#1|))) |#1|) 94 T ELT)) (-2052 (((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558))))))) 176 T ELT)) (-4246 (((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114)) 210 T ELT)) (-4245 (((-417 |#1|) |#1| (-791) (-791)) 225 T ELT) (((-417 |#1|) |#1| (-661 (-791)) (-791)) 222 T ELT) (((-417 |#1|) |#1| (-661 (-791))) 224 T ELT) (((-417 |#1|) |#1| (-791)) 223 T ELT) (((-417 |#1|) |#1|) 221 T ELT)) (-2074 (((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791) (-114)) 227 T ELT) (((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791)) 228 T ELT) (((-3 |#1| "failed") (-947) |#1| (-661 (-791))) 230 T ELT) (((-3 |#1| "failed") (-947) |#1| (-791)) 229 T ELT) (((-3 |#1| "failed") (-947) |#1|) 231 T ELT)) (-4244 (((-417 |#1|) |#1| (-791) (-791)) 220 T ELT) (((-417 |#1|) |#1| (-661 (-791)) (-791)) 216 T ELT) (((-417 |#1|) |#1| (-661 (-791))) 218 T ELT) (((-417 |#1|) |#1| (-791)) 217 T ELT) (((-417 |#1|) |#1|) 215 T ELT)) (-2061 (((-114) |#1|) 44 T ELT)) (-2073 (((-756 (-791)) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558))))) 99 T ELT)) (-2064 (((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114) (-1127 (-791)) (-791)) 214 T ELT))) +(((-454 |#1|) (-10 -7 (-15 -2052 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))))) (-15 -2073 ((-756 (-791)) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))))) (-15 -2053 ((-947))) (-15 -2053 ((-947) (-947))) (-15 -2054 ((-947))) (-15 -2054 ((-947) (-947))) (-15 -2055 ((-791) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))))) (-15 -2056 ((-2 (|:| -3059 (-558)) (|:| -1997 (-661 |#1|))) |#1|)) (-15 -2057 ((-114))) (-15 -2058 ((-114) (-114))) (-15 -2059 ((-114))) (-15 -2060 ((-114) (-114))) (-15 -2061 ((-114) |#1|)) (-15 -2062 ((-114))) (-15 -2063 ((-114) (-114))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4244 ((-417 |#1|) |#1| (-791))) (-15 -4244 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4244 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4244 ((-417 |#1|) |#1| (-791) (-791))) (-15 -4245 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1| (-791))) (-15 -4245 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4245 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4245 ((-417 |#1|) |#1| (-791) (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1|)) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791) (-114))) (-15 -4246 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114))) (-15 -2064 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114) (-1127 (-791)) (-791)))) (-1273 (-558))) (T -454)) +((-2064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1127 (-791))) (-5 *6 (-791)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2074 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) (-2074 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) (-2074 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) (-2074 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-947)) (-5 *4 (-791)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) (-2074 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-947)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) (-4245 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4245 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4245 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4245 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2062 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2061 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2059 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2057 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2056 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3059 (-558)) (|:| -1997 (-661 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4244 *4) (|:| -4460 (-558))))) (-4 *4 (-1273 (-558))) (-5 *2 (-791)) (-5 *1 (-454 *4)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2054 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2053 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4244 *4) (|:| -4460 (-558))))) (-4 *4 (-1273 (-558))) (-5 *2 (-756 (-791))) (-5 *1 (-454 *4)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| *4) (|:| -2636 (-558))))))) (-4 *4 (-1273 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) +(-10 -7 (-15 -2052 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))))) (-15 -2073 ((-756 (-791)) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))))) (-15 -2053 ((-947))) (-15 -2053 ((-947) (-947))) (-15 -2054 ((-947))) (-15 -2054 ((-947) (-947))) (-15 -2055 ((-791) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))))) (-15 -2056 ((-2 (|:| -3059 (-558)) (|:| -1997 (-661 |#1|))) |#1|)) (-15 -2057 ((-114))) (-15 -2058 ((-114) (-114))) (-15 -2059 ((-114))) (-15 -2060 ((-114) (-114))) (-15 -2061 ((-114) |#1|)) (-15 -2062 ((-114))) (-15 -2063 ((-114) (-114))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4244 ((-417 |#1|) |#1| (-791))) (-15 -4244 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4244 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4244 ((-417 |#1|) |#1| (-791) (-791))) (-15 -4245 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1| (-791))) (-15 -4245 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4245 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4245 ((-417 |#1|) |#1| (-791) (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1|)) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791))) (-15 -2074 ((-3 |#1| "failed") (-947) |#1| (-661 (-791)) (-791) (-114))) (-15 -4246 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114))) (-15 -2064 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114) (-1127 (-791)) (-791)))) +((-2068 (((-558) |#2|) 52 T ELT) (((-558) |#2| (-791)) 51 T ELT)) (-2067 (((-558) |#2|) 64 T ELT)) (-2069 ((|#3| |#2|) 26 T ELT)) (-3616 ((|#3| |#2| (-947)) 15 T ELT)) (-4345 ((|#3| |#2|) 16 T ELT)) (-2070 ((|#3| |#2|) 9 T ELT)) (-3084 ((|#3| |#2|) 10 T ELT)) (-2066 ((|#3| |#2| (-947)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2065 (((-558) |#2|) 66 T ELT))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2065 ((-558) |#2|)) (-15 -2066 (|#3| |#2|)) (-15 -2066 (|#3| |#2| (-947))) (-15 -2067 ((-558) |#2|)) (-15 -2068 ((-558) |#2| (-791))) (-15 -2068 ((-558) |#2|)) (-15 -3616 (|#3| |#2| (-947))) (-15 -2069 (|#3| |#2|)) (-15 -2070 (|#3| |#2|)) (-15 -3084 (|#3| |#2|)) (-15 -4345 (|#3| |#2|))) (-1079) (-1273 |#1|) (-13 (-416) (-1068 |#1|) (-376) (-1233) (-296))) (T -455)) +((-4345 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3084 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *2 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1273 *5)) (-4 *6 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))))) (-2066 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *2 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-2066 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2065 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296)))))) +(-10 -7 (-15 -2065 ((-558) |#2|)) (-15 -2066 (|#3| |#2|)) (-15 -2066 (|#3| |#2| (-947))) (-15 -2067 ((-558) |#2|)) (-15 -2068 ((-558) |#2| (-791))) (-15 -2068 ((-558) |#2|)) (-15 -3616 (|#3| |#2| (-947))) (-15 -2069 (|#3| |#2|)) (-15 -2070 (|#3| |#2|)) (-15 -3084 (|#3| |#2|)) (-15 -4345 (|#3| |#2|))) +((-3856 ((|#2| (-1297 |#1|)) 42 T ELT)) (-2072 ((|#2| |#2| |#1|) 58 T ELT)) (-2071 ((|#2| |#2| |#1|) 49 T ELT)) (-2521 ((|#2| |#2|) 44 T ELT)) (-3673 (((-114) |#2|) 32 T ELT)) (-2075 (((-661 |#2|) (-947) (-417 |#2|)) 21 T ELT)) (-2074 ((|#2| (-947) (-417 |#2|)) 25 T ELT)) (-2073 (((-756 (-791)) (-417 |#2|)) 29 T ELT))) +(((-456 |#1| |#2|) (-10 -7 (-15 -3673 ((-114) |#2|)) (-15 -3856 (|#2| (-1297 |#1|))) (-15 -2521 (|#2| |#2|)) (-15 -2071 (|#2| |#2| |#1|)) (-15 -2072 (|#2| |#2| |#1|)) (-15 -2073 ((-756 (-791)) (-417 |#2|))) (-15 -2074 (|#2| (-947) (-417 |#2|))) (-15 -2075 ((-661 |#2|) (-947) (-417 |#2|)))) (-1079) (-1273 |#1|)) (T -456)) +((-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-417 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1079)) (-5 *2 (-661 *6)) (-5 *1 (-456 *5 *6)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-417 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1079)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-756 (-791))) (-5 *1 (-456 *4 *5)))) (-2072 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3)))) (-2071 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) (-5 *1 (-456 *4 *2)))) (-3673 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3673 ((-114) |#2|)) (-15 -3856 (|#2| (-1297 |#1|))) (-15 -2521 (|#2| |#2|)) (-15 -2071 (|#2| |#2| |#1|)) (-15 -2072 (|#2| |#2| |#1|)) (-15 -2073 ((-756 (-791)) (-417 |#2|))) (-15 -2074 (|#2| (-947) (-417 |#2|))) (-15 -2075 ((-661 |#2|) (-947) (-417 |#2|)))) +((-2078 (((-791)) 59 T ELT)) (-2082 (((-791)) 29 (|has| |#1| (-416)) ELT) (((-791) (-791)) 28 (|has| |#1| (-416)) ELT)) (-2081 (((-558) |#1|) 25 (|has| |#1| (-416)) ELT)) (-2080 (((-558) |#1|) 27 (|has| |#1| (-416)) ELT)) (-2077 (((-791)) 58 T ELT) (((-791) (-791)) 57 T ELT)) (-2076 ((|#1| (-791) (-558)) 37 T ELT)) (-2079 (((-1303)) 61 T ELT))) +(((-457 |#1|) (-10 -7 (-15 -2076 (|#1| (-791) (-558))) (-15 -2077 ((-791) (-791))) (-15 -2077 ((-791))) (-15 -2078 ((-791))) (-15 -2079 ((-1303))) (IF (|has| |#1| (-416)) (PROGN (-15 -2080 ((-558) |#1|)) (-15 -2081 ((-558) |#1|)) (-15 -2082 ((-791) (-791))) (-15 -2082 ((-791)))) |%noBranch|)) (-1079)) (T -457)) +((-2082 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079)))) (-2079 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-457 *3)) (-4 *3 (-1079)))) (-2078 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079)))) (-2077 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1079))))) +(-10 -7 (-15 -2076 (|#1| (-791) (-558))) (-15 -2077 ((-791) (-791))) (-15 -2077 ((-791))) (-15 -2078 ((-791))) (-15 -2079 ((-1303))) (IF (|has| |#1| (-416)) (PROGN (-15 -2080 ((-558) |#1|)) (-15 -2081 ((-558) |#1|)) (-15 -2082 ((-791) (-791))) (-15 -2082 ((-791)))) |%noBranch|)) +((-2083 (((-661 (-558)) (-558)) 76 T ELT)) (-4235 (((-114) (-171 (-558))) 84 T ELT)) (-4244 (((-417 (-171 (-558))) (-171 (-558))) 75 T ELT))) +(((-458) (-10 -7 (-15 -4244 ((-417 (-171 (-558))) (-171 (-558)))) (-15 -2083 ((-661 (-558)) (-558))) (-15 -4235 ((-114) (-171 (-558)))))) (T -458)) +((-4235 (*1 *2 *3) (-12 (-5 *3 (-171 (-558))) (-5 *2 (-114)) (-5 *1 (-458)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-458)) (-5 *3 (-558)))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 (-171 (-558)))) (-5 *1 (-458)) (-5 *3 (-171 (-558)))))) +(-10 -7 (-15 -4244 ((-417 (-171 (-558))) (-171 (-558)))) (-15 -2083 ((-661 (-558)) (-558))) (-15 -4235 ((-114) (-171 (-558))))) +((-3429 ((|#4| |#4| (-661 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2475 (((-661 |#4|) (-661 |#4|) (-1189) (-1189)) 46 T ELT) (((-661 |#4|) (-661 |#4|) (-1189)) 45 T ELT) (((-661 |#4|) (-661 |#4|)) 34 T ELT))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 ((-661 |#4|) (-661 |#4|))) (-15 -2475 ((-661 |#4|) (-661 |#4|) (-1189))) (-15 -2475 ((-661 |#4|) (-661 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -3429 (|#4| |#4| (-661 |#4|))) |%noBranch|)) (-464) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -459)) +((-3429 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2475 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-459 *3 *4 *5 *6))))) +(-10 -7 (-15 -2475 ((-661 |#4|) (-661 |#4|))) (-15 -2475 ((-661 |#4|) (-661 |#4|) (-1189))) (-15 -2475 ((-661 |#4|) (-661 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -3429 (|#4| |#4| (-661 |#4|))) |%noBranch|)) +((-2084 ((|#4| |#4| (-661 |#4|)) 82 T ELT)) (-2085 (((-661 |#4|) (-661 |#4|) (-1189) (-1189)) 22 T ELT) (((-661 |#4|) (-661 |#4|) (-1189)) 21 T ELT) (((-661 |#4|) (-661 |#4|)) 13 T ELT))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2084 (|#4| |#4| (-661 |#4|))) (-15 -2085 ((-661 |#4|) (-661 |#4|))) (-15 -2085 ((-661 |#4|) (-661 |#4|) (-1189))) (-15 -2085 ((-661 |#4|) (-661 |#4|) (-1189) (-1189)))) (-319) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -460)) +((-2085 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) +(-10 -7 (-15 -2084 (|#4| |#4| (-661 |#4|))) (-15 -2085 ((-661 |#4|) (-661 |#4|))) (-15 -2085 ((-661 |#4|) (-661 |#4|) (-1189))) (-15 -2085 ((-661 |#4|) (-661 |#4|) (-1189) (-1189)))) +((-2087 (((-661 (-661 |#4|)) (-661 |#4|) (-114)) 90 T ELT) (((-661 (-661 |#4|)) (-661 |#4|)) 89 T ELT) (((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|) (-114)) 83 T ELT) (((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|)) 84 T ELT)) (-2086 (((-661 (-661 |#4|)) (-661 |#4|) (-114)) 56 T ELT) (((-661 (-661 |#4|)) (-661 |#4|)) 78 T ELT))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2086 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2086 ((-661 (-661 |#4|)) (-661 |#4|) (-114))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|) (-114))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-114)))) (-13 (-319) (-149)) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -461)) +((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-2087 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) +(-10 -7 (-15 -2086 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2086 ((-661 (-661 |#4|)) (-661 |#4|) (-114))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|) (-114))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2087 ((-661 (-661 |#4|)) (-661 |#4|) (-114)))) +((-2111 (((-791) |#4|) 12 T ELT)) (-2099 (((-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|))) |#4| (-791) (-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|)))) 39 T ELT)) (-2101 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2100 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2089 ((|#4| |#4| (-661 |#4|)) 54 T ELT)) (-2097 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-661 |#4|)) 96 T ELT)) (-2104 (((-1303) |#4|) 59 T ELT)) (-2107 (((-1303) (-661 |#4|)) 69 T ELT)) (-2105 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558)) 66 T ELT)) (-2108 (((-1303) (-558)) 110 T ELT)) (-2102 (((-661 |#4|) (-661 |#4|)) 104 T ELT)) (-2110 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|)) |#4| (-791)) 31 T ELT)) (-2103 (((-558) |#4|) 109 T ELT)) (-2098 ((|#4| |#4|) 37 T ELT)) (-2090 (((-661 |#4|) (-661 |#4|) (-558) (-558)) 74 T ELT)) (-2106 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558)) 123 T ELT)) (-2109 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2091 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2096 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2095 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2092 (((-114) |#2| |#2|) 75 T ELT)) (-2094 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2093 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2088 ((|#4| |#4| (-661 |#4|)) 97 T ELT))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 (|#4| |#4| (-661 |#4|))) (-15 -2089 (|#4| |#4| (-661 |#4|))) (-15 -2090 ((-661 |#4|) (-661 |#4|) (-558) (-558))) (-15 -2091 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2092 ((-114) |#2| |#2|)) (-15 -2093 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2094 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2095 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2096 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2097 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-661 |#4|))) (-15 -2098 (|#4| |#4|)) (-15 -2099 ((-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|))) |#4| (-791) (-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|))))) (-15 -2100 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2101 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2102 ((-661 |#4|) (-661 |#4|))) (-15 -2103 ((-558) |#4|)) (-15 -2104 ((-1303) |#4|)) (-15 -2105 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -2106 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2107 ((-1303) (-661 |#4|))) (-15 -2108 ((-1303) (-558))) (-15 -2109 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2110 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|)) |#4| (-791))) (-15 -2111 ((-791) |#4|))) (-464) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -462)) +((-2111 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-791)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2110 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-791)) (|:| -2224 *4))) (-5 *5 (-791)) (-4 *4 (-978 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2109 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1303)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1303)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2106 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2105 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2104 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1303)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-558)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2101 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-815)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-870)))) (-2099 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 *3)))) (-5 *4 (-791)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-2096 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-815)) (-4 *6 (-978 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-870)) (-5 *1 (-462 *4 *3 *5 *6)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-815)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *3)))) (-2093 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5)))) (-2092 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-558)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2088 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) +(-10 -7 (-15 -2088 (|#4| |#4| (-661 |#4|))) (-15 -2089 (|#4| |#4| (-661 |#4|))) (-15 -2090 ((-661 |#4|) (-661 |#4|) (-558) (-558))) (-15 -2091 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2092 ((-114) |#2| |#2|)) (-15 -2093 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2094 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2095 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2096 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2097 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-661 |#4|))) (-15 -2098 (|#4| |#4|)) (-15 -2099 ((-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|))) |#4| (-791) (-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|))))) (-15 -2100 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2101 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2102 ((-661 |#4|) (-661 |#4|))) (-15 -2103 ((-558) |#4|)) (-15 -2104 ((-1303) |#4|)) (-15 -2105 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -2106 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2107 ((-1303) (-661 |#4|))) (-15 -2108 ((-1303) (-558))) (-15 -2109 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2110 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-791)) (|:| -2224 |#4|)) |#4| (-791))) (-15 -2111 ((-791) |#4|))) +((-2112 (($ $ $) 14 T ELT) (($ (-661 $)) 21 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 45 T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) 22 T ELT))) +(((-463 |#1|) (-10 -8 (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2112 (|#1| (-661 |#1|))) (-15 -2112 (|#1| |#1| |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2112 (|#1| (-661 |#1|))) (-15 -2112 (|#1| |#1| |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -3644 (|#1| |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-464) (-142)) (T -464)) +((-3644 (*1 *1 *1 *1) (-4 *1 (-464))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) (-2112 (*1 *1 *1 *1) (-4 *1 (-464))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) (-3191 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-464))))) +(-13 (-569) (-10 -8 (-15 -3644 ($ $ $)) (-15 -3644 ($ (-661 $))) (-15 -2112 ($ $ $)) (-15 -2112 ($ (-661 $))) (-15 -3191 ((-1201 $) (-1201 $) (-1201 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1990 (((-3 $ #1="failed")) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (((-1297 (-709 (-419 (-974 |#1|)))) (-1297 $)) NIL T ELT) (((-1297 (-709 (-419 (-974 |#1|))))) NIL T ELT)) (-1942 (((-1297 $)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed")) NIL T ELT)) (-1916 (((-3 $ #1#)) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2006 (((-709 (-419 (-974 |#1|))) (-1297 $)) NIL T ELT) (((-709 (-419 (-974 |#1|)))) NIL T ELT)) (-1940 (((-419 (-974 |#1|)) $) NIL T ELT)) (-2004 (((-709 (-419 (-974 |#1|))) $ (-1297 $)) NIL T ELT) (((-709 (-419 (-974 |#1|))) $) NIL T ELT)) (-2645 (((-3 $ #1#) $) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2121 (((-1201 (-974 (-419 (-974 |#1|))))) NIL (|has| (-419 (-974 |#1|)) (-376)) ELT) (((-1201 (-419 (-974 |#1|)))) 91 (|has| |#1| (-569)) ELT)) (-2648 (($ $ (-947)) NIL T ELT)) (-1938 (((-419 (-974 |#1|)) $) NIL T ELT)) (-1918 (((-1201 (-419 (-974 |#1|))) $) 89 (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2008 (((-419 (-974 |#1|)) (-1297 $)) NIL T ELT) (((-419 (-974 |#1|))) NIL T ELT)) (-1936 (((-1201 (-419 (-974 |#1|))) $) NIL T ELT)) (-1930 (((-114)) NIL T ELT)) (-2010 (($ (-1297 (-419 (-974 |#1|))) (-1297 $)) 115 T ELT) (($ (-1297 (-419 (-974 |#1|)))) NIL T ELT)) (-3969 (((-3 $ #1#) $) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-3593 (((-947)) NIL T ELT)) (-1927 (((-114)) NIL T ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed")) NIL T ELT)) (-1917 (((-3 $ #1#)) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2007 (((-709 (-419 (-974 |#1|))) (-1297 $)) NIL T ELT) (((-709 (-419 (-974 |#1|)))) NIL T ELT)) (-1941 (((-419 (-974 |#1|)) $) NIL T ELT)) (-2005 (((-709 (-419 (-974 |#1|))) $ (-1297 $)) NIL T ELT) (((-709 (-419 (-974 |#1|))) $) NIL T ELT)) (-2646 (((-3 $ #1#) $) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2125 (((-1201 (-974 (-419 (-974 |#1|))))) NIL (|has| (-419 (-974 |#1|)) (-376)) ELT) (((-1201 (-419 (-974 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-1939 (((-419 (-974 |#1|)) $) NIL T ELT)) (-1919 (((-1201 (-419 (-974 |#1|))) $) 86 (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2009 (((-419 (-974 |#1|)) (-1297 $)) NIL T ELT) (((-419 (-974 |#1|))) NIL T ELT)) (-1937 (((-1201 (-419 (-974 |#1|))) $) NIL T ELT)) (-1931 (((-114)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1926 (((-114)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2115 (((-419 (-974 |#1|)) $ $) 77 (|has| |#1| (-569)) ELT)) (-2119 (((-419 (-974 |#1|)) $) 101 (|has| |#1| (-569)) ELT)) (-2118 (((-419 (-974 |#1|)) $) 105 (|has| |#1| (-569)) ELT)) (-2120 (((-1201 (-419 (-974 |#1|))) $) 95 (|has| |#1| (-569)) ELT)) (-2114 (((-419 (-974 |#1|))) 78 (|has| |#1| (-569)) ELT)) (-2117 (((-419 (-974 |#1|)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2123 (((-419 (-974 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-2122 (((-419 (-974 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-2124 (((-1201 (-419 (-974 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-2116 (((-419 (-974 |#1|))) 74 (|has| |#1| (-569)) ELT)) (-2126 (($) 111 T ELT) (($ (-1207)) 119 T ELT) (($ (-1297 (-1207))) 118 T ELT) (($ (-1297 $)) 106 T ELT) (($ (-1207) (-1297 $)) 117 T ELT) (($ (-1297 (-1207)) (-1297 $)) 116 T ELT)) (-1929 (((-114)) NIL T ELT)) (-4312 (((-419 (-974 |#1|)) $ (-558)) NIL T ELT)) (-3724 (((-1297 (-419 (-974 |#1|))) $ (-1297 $)) 108 T ELT) (((-709 (-419 (-974 |#1|))) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-419 (-974 |#1|))) $) 44 T ELT) (((-709 (-419 (-974 |#1|))) (-1297 $)) NIL T ELT)) (-4484 (((-1297 (-419 (-974 |#1|))) $) NIL T ELT) (($ (-1297 (-419 (-974 |#1|)))) 41 T ELT)) (-2113 (((-661 (-974 (-419 (-974 |#1|)))) (-1297 $)) NIL T ELT) (((-661 (-974 (-419 (-974 |#1|))))) NIL T ELT) (((-661 (-974 |#1|)) (-1297 $)) 109 (|has| |#1| (-569)) ELT) (((-661 (-974 |#1|))) 110 (|has| |#1| (-569)) ELT)) (-2834 (($ $ $) NIL T ELT)) (-1935 (((-114)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-1297 (-419 (-974 |#1|)))) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 66 T ELT)) (-1920 (((-661 (-1297 (-419 (-974 |#1|))))) NIL (|has| (-419 (-974 |#1|)) (-569)) ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-1933 (((-114)) NIL T ELT)) (-3026 (($ (-709 (-419 (-974 |#1|))) $) NIL T ELT)) (-2833 (($ $ $) NIL T ELT)) (-1934 (((-114)) NIL T ELT)) (-1932 (((-114)) NIL T ELT)) (-1928 (((-114)) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-974 |#1|))) NIL T ELT) (($ (-419 (-974 |#1|)) $) NIL T ELT) (($ (-1172 |#2| (-419 (-974 |#1|))) $) NIL T ELT))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-430 (-419 (-974 |#1|))) (-668 (-1172 |#2| (-419 (-974 |#1|)))) (-10 -8 (-15 -4458 ($ (-1297 (-419 (-974 |#1|))))) (-15 -2128 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -2127 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -2126 ($)) (-15 -2126 ($ (-1207))) (-15 -2126 ($ (-1297 (-1207)))) (-15 -2126 ($ (-1297 $))) (-15 -2126 ($ (-1207) (-1297 $))) (-15 -2126 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2125 ((-1201 (-419 (-974 |#1|))))) (-15 -2124 ((-1201 (-419 (-974 |#1|))) $)) (-15 -2123 ((-419 (-974 |#1|)) $)) (-15 -2122 ((-419 (-974 |#1|)) $)) (-15 -2121 ((-1201 (-419 (-974 |#1|))))) (-15 -2120 ((-1201 (-419 (-974 |#1|))) $)) (-15 -2119 ((-419 (-974 |#1|)) $)) (-15 -2118 ((-419 (-974 |#1|)) $)) (-15 -2117 ((-419 (-974 |#1|)) $ $)) (-15 -2116 ((-419 (-974 |#1|)))) (-15 -2115 ((-419 (-974 |#1|)) $ $)) (-15 -2114 ((-419 (-974 |#1|)))) (-15 -2113 ((-661 (-974 |#1|)) (-1297 $))) (-15 -2113 ((-661 (-974 |#1|))))) |%noBranch|))) (-175) (-947) (-661 (-1207)) (-1297 (-709 |#1|))) (T -465)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1297 (-419 (-974 *3)))) (-4 *3 (-175)) (-14 *6 (-1297 (-709 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))))) (-2128 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2232 (-661 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2127 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2232 (-661 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2126 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-947)) (-14 *4 (-661 (-1207))) (-14 *5 (-1297 (-709 *2))))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 *2)) (-14 *6 (-1297 (-709 *3))))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1297 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-947)) (-14 *6 (-661 *2)) (-14 *7 (-1297 (-709 *4))))) (-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-947)) (-14 *6 (-661 (-1207))) (-14 *7 (-1297 (-709 *4))))) (-2125 (*1 *2) (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2121 (*1 *2) (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2117 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2116 (*1 *2) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2115 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2114 (*1 *2) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1297 (-465 *4 *5 *6 *7))) (-5 *2 (-661 (-974 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-947)) (-14 *6 (-661 (-1207))) (-14 *7 (-1297 (-709 *4))))) (-2113 (*1 *2) (-12 (-5 *2 (-661 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3)))))) +(-13 (-430 (-419 (-974 |#1|))) (-668 (-1172 |#2| (-419 (-974 |#1|)))) (-10 -8 (-15 -4458 ($ (-1297 (-419 (-974 |#1|))))) (-15 -2128 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -2127 ((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) "failed"))) (-15 -2126 ($)) (-15 -2126 ($ (-1207))) (-15 -2126 ($ (-1297 (-1207)))) (-15 -2126 ($ (-1297 $))) (-15 -2126 ($ (-1207) (-1297 $))) (-15 -2126 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2125 ((-1201 (-419 (-974 |#1|))))) (-15 -2124 ((-1201 (-419 (-974 |#1|))) $)) (-15 -2123 ((-419 (-974 |#1|)) $)) (-15 -2122 ((-419 (-974 |#1|)) $)) (-15 -2121 ((-1201 (-419 (-974 |#1|))))) (-15 -2120 ((-1201 (-419 (-974 |#1|))) $)) (-15 -2119 ((-419 (-974 |#1|)) $)) (-15 -2118 ((-419 (-974 |#1|)) $)) (-15 -2117 ((-419 (-974 |#1|)) $ $)) (-15 -2116 ((-419 (-974 |#1|)))) (-15 -2115 ((-419 (-974 |#1|)) $ $)) (-15 -2114 ((-419 (-974 |#1|)))) (-15 -2113 ((-661 (-974 |#1|)) (-1297 $))) (-15 -2113 ((-661 (-974 |#1|))))) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 18 T ELT)) (-3566 (((-661 (-887 |#1|)) $) 87 T ELT)) (-3568 (((-1201 $) $ (-887 |#1|)) 52 T ELT) (((-1201 |#2|) $) 139 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3302 (((-791) $) 27 T ELT) (((-791) $ (-661 (-887 |#1|))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) 50 T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-887 |#1|) #2#) $) NIL T ELT)) (-3656 ((|#2| $) 48 T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-887 |#1|) $) NIL T ELT)) (-4268 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2158 (($ $ (-661 (-558))) 94 T ELT)) (-4471 (($ $) 80 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-938)) ELT)) (-1814 (($ $ |#2| |#3| $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) 65 T ELT)) (-3569 (($ (-1201 |#2|) (-887 |#1|)) 144 T ELT) (($ (-1201 $) (-887 |#1|)) 58 T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) 68 T ELT)) (-3376 (($ |#2| |#3|) 35 T ELT) (($ $ (-887 |#1|) (-791)) 37 T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3303 ((|#3| $) NIL T ELT) (((-791) $ (-887 |#1|)) 56 T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) 63 T ELT)) (-1815 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3567 (((-3 (-887 |#1|) #3="failed") $) 45 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#2| $) 47 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) 46 T ELT)) (-2014 ((|#2| $) 137 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) 150 (|has| |#2| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) 101 T ELT) (($ $ (-661 (-887 |#1|)) (-661 |#2|)) 107 T ELT) (($ $ (-887 |#1|) $) 99 T ELT) (($ $ (-661 (-887 |#1|)) (-661 $)) 125 T ELT)) (-4269 (($ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4270 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) 59 T ELT)) (-4460 ((|#3| $) 79 T ELT) (((-791) $ (-887 |#1|)) 42 T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) 62 T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-887 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#2| $) 146 (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4458 (((-886) $) 174 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-887 |#1|)) 39 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ |#3|) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (($) 22 T CONST)) (-3147 (($) 31 T CONST)) (-3152 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 132 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 130 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-466 |#1| |#2| |#3|) (-13 (-978 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) (-661 (-1207)) (-1079) (-245 (-4469 |#1|) (-791))) (T -466)) +((-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-14 *3 (-661 (-1207))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-245 (-4469 *3) (-791)))))) +(-13 (-978 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) +((-2132 (((-114) |#1| (-661 |#2|)) 90 T ELT)) (-2130 (((-3 (-1297 (-661 |#2|)) "failed") (-791) |#1| (-661 |#2|)) 99 T ELT)) (-2131 (((-3 (-661 |#2|) "failed") |#2| |#1| (-1297 (-661 |#2|))) 101 T ELT)) (-2257 ((|#2| |#2| |#1|) 35 T ELT)) (-2129 (((-791) |#2| (-661 |#2|)) 26 T ELT))) +(((-467 |#1| |#2|) (-10 -7 (-15 -2257 (|#2| |#2| |#1|)) (-15 -2129 ((-791) |#2| (-661 |#2|))) (-15 -2130 ((-3 (-1297 (-661 |#2|)) "failed") (-791) |#1| (-661 |#2|))) (-15 -2131 ((-3 (-661 |#2|) "failed") |#2| |#1| (-1297 (-661 |#2|)))) (-15 -2132 ((-114) |#1| (-661 |#2|)))) (-319) (-1273 |#1|)) (T -467)) +((-2132 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-467 *3 *5)))) (-2131 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1297 (-661 *3))) (-4 *4 (-319)) (-5 *2 (-661 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1273 *4)))) (-2130 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-319)) (-4 *6 (-1273 *4)) (-5 *2 (-1297 (-661 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-661 *6)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319)) (-5 *2 (-791)) (-5 *1 (-467 *5 *3)))) (-2257 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -2257 (|#2| |#2| |#1|)) (-15 -2129 ((-791) |#2| (-661 |#2|))) (-15 -2130 ((-3 (-1297 (-661 |#2|)) "failed") (-791) |#1| (-661 |#2|))) (-15 -2131 ((-3 (-661 |#2|) "failed") |#2| |#1| (-1297 (-661 |#2|)))) (-15 -2132 ((-114) |#1| (-661 |#2|)))) +((-4244 (((-417 |#5|) |#5|) 24 T ELT))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4244 ((-417 |#5|) |#5|))) (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207))))) (-815) (-569) (-569) (-978 |#4| |#2| |#1|)) (T -468)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207)))))) (-4 *5 (-815)) (-4 *7 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-978 *7 *5 *4))))) +(-10 -7 (-15 -4244 ((-417 |#5|) |#5|))) +((-3183 ((|#3|) 43 T ELT)) (-3191 (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 34 T ELT))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3191 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3183 (|#3|))) (-815) (-870) (-938) (-978 |#3| |#1| |#2|)) (T -469)) +((-3183 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-938)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-978 *2 *3 *4)))) (-3191 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-938)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-10 -7 (-15 -3191 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3183 (|#3|))) +((-4244 (((-417 (-1201 |#1|)) (-1201 |#1|)) 43 T ELT))) +(((-470 |#1|) (-10 -7 (-15 -4244 ((-417 (-1201 |#1|)) (-1201 |#1|)))) (-319)) (T -470)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1201 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1201 *4))))) +(-10 -7 (-15 -4244 ((-417 (-1201 |#1|)) (-1201 |#1|)))) +((-4241 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-791))) 44 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-791))) 43 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 29 T ELT)) (-4330 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))) 88 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))) 87 T ELT) (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558))) 86 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558))) 85 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 79 T ELT)) (-4294 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))) 74 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))) 72 T ELT)) (-4291 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558))) 51 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558))) 50 T ELT))) +(((-471 |#1| |#2|) (-10 -7 (-15 -4241 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4241 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -4241 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-791)))) (-15 -4241 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-791)))) (-15 -4291 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558)))) (-15 -4291 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558)))) (-15 -4294 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4294 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4330 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -4330 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558)))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558)))) (-15 -4330 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))))) (-13 (-569) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -471)) +((-4330 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *8))) (-4 *8 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4330 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4330 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-558))) (-4 *7 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4330 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) (-4294 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *8))) (-4 *8 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4294 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4291 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-558))) (-4 *7 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4241 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-791))) (-4 *3 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-791))) (-4 *7 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6))))) +(-10 -7 (-15 -4241 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4241 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -4241 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-791)))) (-15 -4241 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-791)))) (-15 -4291 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558)))) (-15 -4291 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558)))) (-15 -4294 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4294 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4330 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -4330 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1264 (-558)))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-558)))) (-15 -4330 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558)))) (-15 -4330 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-419 (-558))) (-419 (-558))))) +((-2257 ((|#2| |#2| |#1|) 15 T ELT)) (-2134 (((-661 |#2|) |#2| (-661 |#2|) |#1| (-947)) 82 T ELT)) (-2133 (((-2 (|:| |plist| (-661 |#2|)) (|:| |modulo| |#1|)) |#2| (-661 |#2|) |#1| (-947)) 71 T ELT))) +(((-472 |#1| |#2|) (-10 -7 (-15 -2133 ((-2 (|:| |plist| (-661 |#2|)) (|:| |modulo| |#1|)) |#2| (-661 |#2|) |#1| (-947))) (-15 -2134 ((-661 |#2|) |#2| (-661 |#2|) |#1| (-947))) (-15 -2257 (|#2| |#2| |#1|))) (-319) (-1273 |#1|)) (T -472)) +((-2257 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1273 *3)))) (-2134 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-661 *3)) (-5 *5 (-947)) (-4 *3 (-1273 *4)) (-4 *4 (-319)) (-5 *1 (-472 *4 *3)))) (-2133 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-947)) (-4 *5 (-319)) (-4 *3 (-1273 *5)) (-5 *2 (-2 (|:| |plist| (-661 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-661 *3))))) +(-10 -7 (-15 -2133 ((-2 (|:| |plist| (-661 |#2|)) (|:| |modulo| |#1|)) |#2| (-661 |#2|) |#1| (-947))) (-15 -2134 ((-661 |#2|) |#2| (-661 |#2|) |#1| (-947))) (-15 -2257 (|#2| |#2| |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 28 T ELT)) (-4219 (($ |#3|) 25 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) 32 T ELT)) (-2135 (($ |#2| |#4| $) 33 T ELT)) (-3376 (($ |#2| (-733 |#3| |#4| |#5|)) 24 T ELT)) (-3377 (((-733 |#3| |#4| |#5|) $) 15 T ELT)) (-2137 ((|#3| $) 19 T ELT)) (-2138 ((|#4| $) 17 T ELT)) (-3674 ((|#2| $) 29 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-2136 (($ |#2| |#3| |#4|) 26 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 36 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 34 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-737 |#6|) (-737 |#2|) (-10 -8 (-15 -3674 (|#2| $)) (-15 -3377 ((-733 |#3| |#4| |#5|) $)) (-15 -2138 (|#4| $)) (-15 -2137 (|#3| $)) (-15 -4471 ($ $)) (-15 -3376 ($ |#2| (-733 |#3| |#4| |#5|))) (-15 -4219 ($ |#3|)) (-15 -2136 ($ |#2| |#3| |#4|)) (-15 -2135 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-661 (-1207)) (-175) (-870) (-245 (-4469 |#1|) (-791)) (-1 (-114) (-2 (|:| -2641 |#3|) (|:| -2642 |#4|)) (-2 (|:| -2641 |#3|) (|:| -2642 |#4|))) (-978 |#2| |#4| (-887 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-4469 *3) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) (-2 (|:| -2641 *5) (|:| -2642 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) (-4 *2 (-978 *4 *6 (-887 *3))))) (-3674 (*1 *2 *1) (-12 (-14 *3 (-661 (-1207))) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *4) (|:| -2642 *5)) (-2 (|:| -2641 *4) (|:| -2642 *5)))) (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-978 *2 *5 (-887 *3))))) (-3377 (*1 *2 *1) (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-4469 *3) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) (-2 (|:| -2641 *5) (|:| -2642 *6)))) (-5 *2 (-733 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870)) (-4 *8 (-978 *4 *6 (-887 *3))))) (-2138 (*1 *2 *1) (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *2)) (-2 (|:| -2641 *5) (|:| -2642 *2)))) (-4 *2 (-245 (-4469 *3) (-791))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-870)) (-4 *7 (-978 *4 *2 (-887 *3))))) (-2137 (*1 *2 *1) (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *5)) (-2 (|:| -2641 *2) (|:| -2642 *5)))) (-4 *2 (-870)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-978 *4 *5 (-887 *3))))) (-4471 (*1 *1 *1) (-12 (-14 *2 (-661 (-1207))) (-4 *3 (-175)) (-4 *5 (-245 (-4469 *2) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *4) (|:| -2642 *5)) (-2 (|:| -2641 *4) (|:| -2642 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-978 *3 *5 (-887 *2))))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-733 *5 *6 *7)) (-4 *5 (-870)) (-4 *6 (-245 (-4469 *4) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) (-2 (|:| -2641 *5) (|:| -2642 *6)))) (-14 *4 (-661 (-1207))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-978 *2 *6 (-887 *4))))) (-4219 (*1 *1 *2) (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *5)) (-2 (|:| -2641 *2) (|:| -2642 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) (-4 *7 (-978 *4 *5 (-887 *3))))) (-2136 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-661 (-1207))) (-4 *2 (-175)) (-4 *4 (-245 (-4469 *5) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *3) (|:| -2642 *4)) (-2 (|:| -2641 *3) (|:| -2642 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) (-4 *7 (-978 *2 *4 (-887 *5))))) (-2135 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-661 (-1207))) (-4 *2 (-175)) (-4 *3 (-245 (-4469 *4) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *3)) (-2 (|:| -2641 *5) (|:| -2642 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) (-4 *7 (-978 *2 *3 (-887 *4)))))) +(-13 (-737 |#6|) (-737 |#2|) (-10 -8 (-15 -3674 (|#2| $)) (-15 -3377 ((-733 |#3| |#4| |#5|) $)) (-15 -2138 (|#4| $)) (-15 -2137 (|#3| $)) (-15 -4471 ($ $)) (-15 -3376 ($ |#2| (-733 |#3| |#4| |#5|))) (-15 -4219 ($ |#3|)) (-15 -2136 ($ |#2| |#3| |#4|)) (-15 -2135 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2139 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2139 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-815) (-870) (-569) (-978 |#3| |#1| |#2|) (-13 (-1068 (-419 (-558))) (-376) (-10 -8 (-15 -4458 ($ |#4|)) (-15 -3481 (|#4| $)) (-15 -3480 (|#4| $))))) (T -474)) +((-2139 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-815)) (-4 *6 (-569)) (-4 *7 (-978 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1068 (-419 (-558))) (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) +(-10 -7 (-15 -2139 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3566 (((-661 |#3|) $) 41 T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4222 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 49 T ELT)) (-3656 (($ (-661 |#4|)) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3908 (($ |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#4|) $) 18 (|has| $ (-6 -4507)) ELT)) (-3680 ((|#3| $) 47 T ELT)) (-3089 (((-661 |#4|) $) 14 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3397 (((-661 |#3|) $) NIL T ELT)) (-3396 (((-114) |#3| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 39 T ELT)) (-4075 (($) 17 T ELT)) (-2167 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 16 T ELT)) (-4484 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT) (($ (-661 |#4|)) 51 T ELT)) (-4032 (($ (-661 |#4|)) 13 T ELT)) (-3393 (($ $ |#3|) NIL T ELT)) (-3395 (($ $ |#3|) NIL T ELT)) (-3394 (($ $ |#3|) NIL T ELT)) (-4458 (((-886) $) 38 T ELT) (((-661 |#4|) $) 50 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 30 T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4484 ($ (-661 |#4|))) (-6 -4507) (-6 -4508))) (-1079) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -475)) +((-4484 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-475 *3 *4 *5 *6))))) +(-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4484 ($ (-661 |#4|))) (-6 -4507) (-6 -4508))) +((-3141 (($) 11 T ELT)) (-3147 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -3147 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3141 (|#1|))) (-477 |#2| |#3|) (-175) (-23)) (T -476)) +NIL +(-10 -8 (-15 -3147 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3141 (|#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3657 (((-3 |#1| "failed") $) 30 T ELT)) (-3656 ((|#1| $) 31 T ELT)) (-4456 (($ $ $) 27 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4460 ((|#2| $) 23 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 22 T CONST)) (-3147 (($) 28 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-477 |#1| |#2|) (-142) (-175) (-23)) (T -477)) +((-3147 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4456 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1068 |t#1|) (-10 -8 (-15 (-3147) ($) -4464) (-15 -4456 ($ $ $)))) +(((-102) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-482 |#1| |#2|) . T) ((-1068 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-2140 (((-1297 (-1297 (-558))) (-1297 (-1297 (-558))) (-947)) 26 T ELT)) (-2141 (((-1297 (-1297 (-558))) (-947)) 21 T ELT))) +(((-478) (-10 -7 (-15 -2140 ((-1297 (-1297 (-558))) (-1297 (-1297 (-558))) (-947))) (-15 -2141 ((-1297 (-1297 (-558))) (-947))))) (T -478)) +((-2141 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1297 (-1297 (-558)))) (-5 *1 (-478)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 (-1297 (-558)))) (-5 *3 (-947)) (-5 *1 (-478))))) +(-10 -7 (-15 -2140 ((-1297 (-1297 (-558))) (-1297 (-1297 (-558))) (-947))) (-15 -2141 ((-1297 (-1297 (-558))) (-947)))) +((-3253 (((-558) (-558)) 32 T ELT) (((-558)) 24 T ELT)) (-3257 (((-558) (-558)) 28 T ELT) (((-558)) 20 T ELT)) (-3255 (((-558) (-558)) 30 T ELT) (((-558)) 22 T ELT)) (-2143 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2142 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2144 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT))) +(((-479) (-10 -7 (-15 -2142 ((-114))) (-15 -2143 ((-114))) (-15 -2142 ((-114) (-114))) (-15 -2143 ((-114) (-114))) (-15 -2144 ((-114))) (-15 -3255 ((-558))) (-15 -3257 ((-558))) (-15 -3253 ((-558))) (-15 -2144 ((-114) (-114))) (-15 -3255 ((-558) (-558))) (-15 -3257 ((-558) (-558))) (-15 -3253 ((-558) (-558))))) (T -479)) +((-3253 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-3253 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3257 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3255 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2144 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2143 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2142 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) +(-10 -7 (-15 -2142 ((-114))) (-15 -2143 ((-114))) (-15 -2142 ((-114) (-114))) (-15 -2143 ((-114) (-114))) (-15 -2144 ((-114))) (-15 -3255 ((-558))) (-15 -3257 ((-558))) (-15 -3253 ((-558))) (-15 -2144 ((-114) (-114))) (-15 -3255 ((-558) (-558))) (-15 -3257 ((-558) (-558))) (-15 -3253 ((-558) (-558)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4363 (((-661 (-391)) $) 34 T ELT) (((-661 (-391)) $ (-661 (-391))) 145 T ELT)) (-2149 (((-661 (-1119 (-391))) $) 16 T ELT) (((-661 (-1119 (-391))) $ (-661 (-1119 (-391)))) 142 T ELT)) (-2146 (((-661 (-661 (-971 (-229)))) (-661 (-661 (-971 (-229)))) (-661 (-897))) 58 T ELT)) (-2150 (((-661 (-661 (-971 (-229)))) $) 137 T ELT)) (-4218 (((-1303) $ (-971 (-229)) (-897)) 162 T ELT)) (-2151 (($ $) 136 T ELT) (($ (-661 (-661 (-971 (-229))))) 148 T ELT) (($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947))) 147 T ELT) (($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947)) (-661 (-270))) 149 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4372 (((-558) $) 110 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2152 (($) 146 T ELT)) (-2145 (((-661 (-229)) (-661 (-661 (-971 (-229))))) 89 T ELT)) (-2148 (((-1303) $ (-661 (-971 (-229))) (-897) (-897) (-947)) 154 T ELT) (((-1303) $ (-971 (-229))) 156 T ELT) (((-1303) $ (-971 (-229)) (-897) (-897) (-947)) 155 T ELT)) (-4458 (((-886) $) 168 T ELT) (($ (-661 (-661 (-971 (-229))))) 163 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2147 (((-1303) $ (-971 (-229))) 161 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-480) (-13 (-1131) (-10 -8 (-15 -2152 ($)) (-15 -2151 ($ $)) (-15 -2151 ($ (-661 (-661 (-971 (-229)))))) (-15 -2151 ($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947)))) (-15 -2151 ($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947)) (-661 (-270)))) (-15 -2150 ((-661 (-661 (-971 (-229)))) $)) (-15 -4372 ((-558) $)) (-15 -2149 ((-661 (-1119 (-391))) $)) (-15 -2149 ((-661 (-1119 (-391))) $ (-661 (-1119 (-391))))) (-15 -4363 ((-661 (-391)) $)) (-15 -4363 ((-661 (-391)) $ (-661 (-391)))) (-15 -2148 ((-1303) $ (-661 (-971 (-229))) (-897) (-897) (-947))) (-15 -2148 ((-1303) $ (-971 (-229)))) (-15 -2148 ((-1303) $ (-971 (-229)) (-897) (-897) (-947))) (-15 -2147 ((-1303) $ (-971 (-229)))) (-15 -4218 ((-1303) $ (-971 (-229)) (-897))) (-15 -4458 ($ (-661 (-661 (-971 (-229)))))) (-15 -4458 ((-886) $)) (-15 -2146 ((-661 (-661 (-971 (-229)))) (-661 (-661 (-971 (-229)))) (-661 (-897)))) (-15 -2145 ((-661 (-229)) (-661 (-661 (-971 (-229))))))))) (T -480)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-480)))) (-2152 (*1 *1) (-5 *1 (-480))) (-2151 (*1 *1 *1) (-5 *1 (-480))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480)))) (-2151 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) (-5 *4 (-661 (-947))) (-5 *1 (-480)))) (-2151 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) (-5 *4 (-661 (-947))) (-5 *5 (-661 (-270))) (-5 *1 (-480)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-480)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-480)))) (-2149 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-480)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) (-4363 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) (-2148 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *4 (-897)) (-5 *5 (-947)) (-5 *2 (-1303)) (-5 *1 (-480)))) (-2148 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-480)))) (-2148 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-971 (-229))) (-5 *4 (-897)) (-5 *5 (-947)) (-5 *2 (-1303)) (-5 *1 (-480)))) (-2147 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-480)))) (-4218 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-971 (-229))) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-480)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480)))) (-2146 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) (-5 *1 (-480)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-661 (-229))) (-5 *1 (-480))))) +(-13 (-1131) (-10 -8 (-15 -2152 ($)) (-15 -2151 ($ $)) (-15 -2151 ($ (-661 (-661 (-971 (-229)))))) (-15 -2151 ($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947)))) (-15 -2151 ($ (-661 (-661 (-971 (-229)))) (-661 (-897)) (-661 (-897)) (-661 (-947)) (-661 (-270)))) (-15 -2150 ((-661 (-661 (-971 (-229)))) $)) (-15 -4372 ((-558) $)) (-15 -2149 ((-661 (-1119 (-391))) $)) (-15 -2149 ((-661 (-1119 (-391))) $ (-661 (-1119 (-391))))) (-15 -4363 ((-661 (-391)) $)) (-15 -4363 ((-661 (-391)) $ (-661 (-391)))) (-15 -2148 ((-1303) $ (-661 (-971 (-229))) (-897) (-897) (-947))) (-15 -2148 ((-1303) $ (-971 (-229)))) (-15 -2148 ((-1303) $ (-971 (-229)) (-897) (-897) (-947))) (-15 -2147 ((-1303) $ (-971 (-229)))) (-15 -4218 ((-1303) $ (-971 (-229)) (-897))) (-15 -4458 ($ (-661 (-661 (-971 (-229)))))) (-15 -4458 ((-886) $)) (-15 -2146 ((-661 (-661 (-971 (-229)))) (-661 (-661 (-971 (-229)))) (-661 (-897)))) (-15 -2145 ((-661 (-229)) (-661 (-661 (-971 (-229)))))))) +((-4349 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|))) (-482 |#2| |#3|) (-175) (-23)) (T -481)) +NIL +(-10 -8 (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4460 ((|#2| $) 23 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 22 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-482 |#1| |#2|) (-142) (-175) (-23)) (T -482)) +((-4460 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-3141 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4349 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-1131) (-10 -8 (-15 -4460 (|t#2| $)) (-15 (-3141) ($) -4464) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4349 ($ $)) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-2154 (((-3 (-661 (-493 |#1| |#2|)) "failed") (-661 (-493 |#1| |#2|)) (-661 (-887 |#1|))) 135 T ELT)) (-2153 (((-661 (-661 (-255 |#1| |#2|))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|))) 132 T ELT)) (-2155 (((-2 (|:| |dpolys| (-661 (-255 |#1| |#2|))) (|:| |coords| (-661 (-558)))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|))) 87 T ELT))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2153 ((-661 (-661 (-255 |#1| |#2|))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|)))) (-15 -2154 ((-3 (-661 (-493 |#1| |#2|)) "failed") (-661 (-493 |#1| |#2|)) (-661 (-887 |#1|)))) (-15 -2155 ((-2 (|:| |dpolys| (-661 (-255 |#1| |#2|))) (|:| |coords| (-661 (-558)))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|))))) (-661 (-1207)) (-464) (-464)) (T -483)) +((-2155 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-887 *5))) (-14 *5 (-661 (-1207))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-661 (-255 *5 *6))) (|:| |coords| (-661 (-558))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464)))) (-2154 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-661 (-887 *4))) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-887 *5))) (-14 *5 (-661 (-1207))) (-4 *6 (-464)) (-5 *2 (-661 (-661 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) +(-10 -7 (-15 -2153 ((-661 (-661 (-255 |#1| |#2|))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|)))) (-15 -2154 ((-3 (-661 (-493 |#1| |#2|)) "failed") (-661 (-493 |#1| |#2|)) (-661 (-887 |#1|)))) (-15 -2155 ((-2 (|:| |dpolys| (-661 (-255 |#1| |#2|))) (|:| |coords| (-661 (-558)))) (-661 (-255 |#1| |#2|)) (-661 (-887 |#1|))))) +((-3969 (((-3 $ "failed") $) 11 T ELT)) (-3492 (($ $ $) 22 T ELT)) (-2834 (($ $ $) 23 T ELT)) (-4461 (($ $ $) 9 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 21 T ELT))) +(((-484 |#1|) (-10 -8 (-15 -2834 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4461 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947)))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -2834 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4461 (|#1| |#1| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-4236 (($) 23 T CONST)) (-3969 (((-3 $ "failed") $) 20 T ELT)) (-2651 (((-114) $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 30 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3492 (($ $ $) 27 T ELT)) (-2834 (($ $ $) 26 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 24 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 29 T ELT)) (** (($ $ (-947)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-485) (-142)) (T -485)) +((-2884 (*1 *1 *1) (-4 *1 (-485))) (-4461 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-558)))) (-3492 (*1 *1 *1 *1) (-4 *1 (-485))) (-2834 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-746) (-10 -8 (-15 -2884 ($ $)) (-15 -4461 ($ $ $)) (-15 ** ($ $ (-558))) (-6 -4504) (-15 -3492 ($ $ $)) (-15 -2834 ($ $ $)))) +(((-102) . T) ((-630 (-886)) . T) ((-746) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 18 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1112) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) 29 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 35 (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 30 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 28 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) 16 T ELT)) (-4460 (((-419 (-558)) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1294 |#2|)) NIL T ELT) (($ (-1278 |#1| |#2| |#3|)) 9 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 21 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-486 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (-15 -4458 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -486)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1280 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (-15 -4458 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) NIL T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-487 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2|) (-1131) (-1131) (-1224 |#1| |#2|) |#2|) (T -487)) +NIL +(-1224 |#1| |#2|) +((-3049 (((-114) $ $) NIL T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4194 (((-661 $) (-661 |#4|)) NIL T ELT)) (-3566 (((-661 |#3|) $) NIL T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4200 ((|#4| |#4| $) NIL T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4222 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) NIL T ELT)) (-3656 (($ (-661 |#4|)) NIL T ELT)) (-4311 (((-3 $ #1#) $) 45 T ELT)) (-4197 ((|#4| |#4| $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3908 (($ |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4195 ((|#4| |#4| $) NIL T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) NIL T ELT)) (-3372 (((-661 |#4|) $) 18 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 19 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3397 (((-661 |#3|) $) NIL T ELT)) (-3396 (((-114) |#3| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4310 (((-3 |#4| #1#) $) 42 T ELT)) (-4209 (((-661 |#4|) $) NIL T ELT)) (-4203 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4198 ((|#4| |#4| $) NIL T ELT)) (-4211 (((-114) $ $) NIL T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-3 |#4| #1#) $) 40 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-4281 (($ $ |#4|) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 14 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-2167 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 13 T ELT)) (-4484 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 22 T ELT)) (-3393 (($ $ |#3|) 52 T ELT)) (-3395 (($ $ |#3|) 54 T ELT)) (-4196 (($ $) NIL T ELT)) (-3394 (($ $ |#3|) NIL T ELT)) (-4458 (((-886) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4190 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) NIL T ELT)) (-4445 (((-114) |#3| $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-488 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|) (-569) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -488)) +NIL +(-1242 |#1| |#2| |#3| |#4|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-4139 (($) 17 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4484 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-419 (-1201 (-558))) $) 18 T ELT) (((-547) $) 53 T ELT)) (-4458 (((-886) $) 51 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 37 T CONST)) (-3147 (($) 8 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-489) (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))) (-1050) (-630 (-229)) (-630 (-391)) (-631 (-419 (-1201 (-558)))) (-631 (-547)) (-10 -8 (-15 -4139 ($))))) (T -489)) +((-4139 (*1 *1) (-5 *1 (-489)))) +(-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))) (-1050) (-630 (-229)) (-630 (-391)) (-631 (-419 (-1201 (-558)))) (-631 (-547)) (-10 -8 (-15 -4139 ($)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 (((-1165) $) 11 T ELT)) (-4031 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-490) (-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $))))) (T -490)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-490)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-490))))) +(-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $)))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) 13 T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 19 T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 11 (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) 15 (|has| $ (-6 -4507)) ELT))) +(((-491 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) (-1131) (-1131) (-1189)) (T -491)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) +((-2156 (((-558) (-558) (-558)) 19 T ELT)) (-2157 (((-114) (-558) (-558) (-558) (-558)) 28 T ELT)) (-3959 (((-1297 (-661 (-558))) (-791) (-791)) 42 T ELT))) +(((-492) (-10 -7 (-15 -2156 ((-558) (-558) (-558))) (-15 -2157 ((-114) (-558) (-558) (-558) (-558))) (-15 -3959 ((-1297 (-661 (-558))) (-791) (-791))))) (T -492)) +((-3959 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1297 (-661 (-558)))) (-5 *1 (-492)))) (-2157 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-492)))) (-2156 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-492))))) +(-10 -7 (-15 -2156 ((-558) (-558) (-558))) (-15 -2157 ((-114) (-558) (-558) (-558) (-558))) (-15 -3959 ((-1297 (-661 (-558))) (-791) (-791)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-887 |#1|)) $) NIL T ELT)) (-3568 (((-1201 $) $ (-887 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-887 |#1|))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-887 |#1|) #2#) $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-887 |#1|) $) NIL T ELT)) (-4268 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2158 (($ $ (-661 (-558))) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-938)) ELT)) (-1814 (($ $ |#2| (-494 (-4469 |#1|) (-791)) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1201 $) (-887 |#1|)) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-494 (-4469 |#1|) (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3303 (((-494 (-4469 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-1815 (($ (-1 (-494 (-4469 |#1|) (-791)) (-494 (-4469 |#1|) (-791))) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3567 (((-3 (-887 |#1|) #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#2| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 $)) NIL T ELT)) (-4269 (($ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4270 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-4460 (((-494 (-4469 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-887 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-494 (-4469 |#1|) (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-493 |#1| |#2|) (-13 (-978 |#2| (-494 (-4469 |#1|) (-791)) (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) (-661 (-1207)) (-1079)) (T -493)) +((-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-661 (-1207))) (-4 *4 (-1079))))) +(-13 (-978 |#2| (-494 (-4469 |#1|) (-791)) (-887 |#1|)) (-10 -8 (-15 -2158 ($ $ (-661 (-558)))))) +((-3049 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3688 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4219 (($ (-947)) NIL (|has| |#2| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3620 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4300 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1131)) ELT)) (-3656 (((-558) $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) ((|#2| $) NIL (|has| |#2| (-1131)) ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-3477 (($) NIL (|has| |#2| (-381)) ELT)) (-1729 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ (-558)) 11 T ELT)) (-3686 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3372 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#2| (-1079)) ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3089 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2170 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#2| (-381)) ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3742 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#2| (-381)) ELT)) (-3743 (((-1150) $) NIL (|has| |#2| (-1131)) ELT)) (-4313 ((|#2| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4348 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-1610 (($ (-1297 |#2|)) NIL T ELT)) (-4423 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4270 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#2|) $) NIL T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (($ |#2|) NIL (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-630 (-886))) ELT)) (-3610 (((-791)) NIL (|has| |#2| (-1079)) CONST)) (-1387 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) NIL (|has| |#2| (-23)) CONST)) (-3147 (($) NIL (|has| |#2| (-1079)) CONST)) (-3152 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3168 (((-114) $ $) 17 (|has| |#2| (-870)) ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-746)) ELT) (($ |#2| $) NIL (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-947) $) NIL (|has| |#2| (-25)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-494 |#1| |#2|) (-245 |#1| |#2|) (-791) (-815)) (T -494)) NIL (-245 |#1| |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-2163 (((-663 (-901)) $) 15 T ELT)) (-4056 (((-520) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2164 (($ (-520) (-663 (-901))) 11 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 22 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-497) (-13 (-1115) (-10 -8 (-15 -2164 ($ (-520) (-663 (-901)))) (-15 -4056 ((-520) $)) (-15 -2163 ((-663 (-901)) $))))) (T -497)) -((-2164 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-901))) (-5 *1 (-497)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-663 (-901))) (-5 *1 (-497))))) -(-13 (-1115) (-10 -8 (-15 -2164 ($ (-520) (-663 (-901)))) (-15 -4056 ((-520) $)) (-15 -2163 ((-663 (-901)) $)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4240 (($) NIL T CONST)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3343 (($ $ $) 48 T ELT)) (-4024 (($ $ $) 47 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3344 ((|#1| $) 40 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 41 T ELT)) (-4123 (($ |#1| $) 18 T ELT)) (-2165 (($ (-663 |#1|)) 19 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 34 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 11 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 45 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 29 (|has| $ (-6 -4511)) ELT))) -(((-498 |#1|) (-13 (-1000 |#1|) (-10 -8 (-15 -2165 ($ (-663 |#1|))))) (-872)) (T -498)) -((-2165 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-498 *3))))) -(-13 (-1000 |#1|) (-10 -8 (-15 -2165 ($ (-663 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4358 (($ $) 71 T ELT)) (-1851 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2194 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 45 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (((-3 |#4| "failed") $) 117 T ELT)) (-1852 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-560)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3941 (((-2 (|:| -2569 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4462 (((-888) $) 110 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 32 T CONST)) (-3540 (((-114) $ $) 121 T ELT)) (-4353 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 72 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 77 T ELT))) -(((-499 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -499)) +((-3049 (((-114) $ $) NIL T ELT)) (-2159 (((-661 (-899)) $) 15 T ELT)) (-4052 (((-518) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2160 (($ (-518) (-661 (-899))) 11 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 22 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-495) (-13 (-1113) (-10 -8 (-15 -2160 ($ (-518) (-661 (-899)))) (-15 -4052 ((-518) $)) (-15 -2159 ((-661 (-899)) $))))) (T -495)) +((-2160 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-899))) (-5 *1 (-495)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-661 (-899))) (-5 *1 (-495))))) +(-13 (-1113) (-10 -8 (-15 -2160 ($ (-518) (-661 (-899)))) (-15 -4052 ((-518) $)) (-15 -2159 ((-661 (-899)) $)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4236 (($) NIL T CONST)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3339 (($ $ $) 48 T ELT)) (-4020 (($ $ $) 47 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3340 ((|#1| $) 40 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 41 T ELT)) (-4119 (($ |#1| $) 18 T ELT)) (-2161 (($ (-661 |#1|)) 19 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 34 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 11 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 45 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 29 (|has| $ (-6 -4507)) ELT))) +(((-496 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -2161 ($ (-661 |#1|))))) (-870)) (T -496)) +((-2161 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-496 *3))))) +(-13 (-998 |#1|) (-10 -8 (-15 -2161 ($ (-661 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4354 (($ $) 71 T ELT)) (-1849 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2190 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (((-3 |#4| "failed") $) 117 T ELT)) (-1850 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-558)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3937 (((-2 (|:| -2565 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4458 (((-886) $) 110 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 32 T CONST)) (-3536 (((-114) $ $) 121 T ELT)) (-4349 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 72 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 77 T ELT))) +(((-497 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -497)) NIL (-349 |#1| |#2| |#3| |#4|) -((-2169 (((-560) (-663 (-560))) 53 T ELT)) (-2166 ((|#1| (-663 |#1|)) 94 T ELT)) (-2168 (((-663 |#1|) (-663 |#1|)) 95 T ELT)) (-2167 (((-663 |#1|) (-663 |#1|)) 97 T ELT)) (-3648 ((|#1| (-663 |#1|)) 96 T ELT)) (-3304 (((-663 (-560)) (-663 |#1|)) 56 T ELT))) -(((-500 |#1|) (-10 -7 (-15 -3648 (|#1| (-663 |#1|))) (-15 -2166 (|#1| (-663 |#1|))) (-15 -2167 ((-663 |#1|) (-663 |#1|))) (-15 -2168 ((-663 |#1|) (-663 |#1|))) (-15 -3304 ((-663 (-560)) (-663 |#1|))) (-15 -2169 ((-560) (-663 (-560))))) (-1275 (-560))) (T -500)) -((-2169 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4)) (-4 *4 (-1275 *2)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1275 (-560))) (-5 *2 (-663 (-560))) (-5 *1 (-500 *4)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1275 (-560))) (-5 *1 (-500 *3)))) (-2167 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1275 (-560))) (-5 *1 (-500 *3)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1275 (-560))))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1275 (-560)))))) -(-10 -7 (-15 -3648 (|#1| (-663 |#1|))) (-15 -2166 (|#1| (-663 |#1|))) (-15 -2167 ((-663 |#1|) (-663 |#1|))) (-15 -2168 ((-663 |#1|) (-663 |#1|))) (-15 -3304 ((-663 (-560)) (-663 |#1|))) (-15 -2169 ((-560) (-663 (-560))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-560) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3660 (((-560) $) NIL T ELT) (((-1209) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-560) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-560) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-560) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-560) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-560) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-4474 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-560) (-1184)) CONST)) (-2170 (($ (-421 (-560))) 9 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3618 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1209)) (-663 (-560))) NIL (|has| (-560) (-528 (-1209) (-560))) ELT) (($ $ (-1209) (-560)) NIL (|has| (-560) (-528 (-1209) (-560))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-560) $) NIL T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-560) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-560) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1052)) ELT) (((-229) $) NIL (|has| (-560) (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1209)) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1036 16) $) 10 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-560) (-940))) (|has| (-560) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| (-560) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-4465 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT))) -(((-501) (-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 16)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -2170 ($ (-421 (-560))))))) (T -501)) -((-3616 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501))))) -(-13 (-1023 (-560)) (-632 (-421 (-560))) (-632 (-1036 16)) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -2170 ($ (-421 (-560)))))) -((-3093 (((-663 |#2|) $) 31 T ELT)) (-3749 (((-114) |#2| $) 39 T ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4284 (($ $ (-663 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 30 T ELT) (((-793) |#2| $) 37 T ELT)) (-4462 (((-888) $) 45 T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3540 (((-114) $ $) 35 T ELT)) (-4473 (((-793) $) 18 T ELT))) -(((-502 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -3749 ((-114) |#2| |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -3093 ((-663 |#2|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) (-503 |#2|) (-1249)) (T -502)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#2| |#2|)) (-15 -4284 (|#1| |#1| (-305 |#2|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -3749 ((-114) |#2| |#1|)) (-15 -2171 ((-793) |#2| |#1|)) (-15 -3093 ((-663 |#2|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4240 (($) 7 T CONST)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-503 |#1|) (-142) (-1249)) (T -503)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1249)))) (-2174 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4512)) (-4 *1 (-503 *3)) (-4 *3 (-1249)))) (-2173 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-2172 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-2171 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) (-4 *4 (-1249)) (-5 *2 (-793)))) (-3376 (*1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-5 *2 (-663 *3)))) (-3093 (*1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-5 *2 (-663 *3)))) (-2171 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-793)))) (-3749 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |t#1| (-1133)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4512)) (-15 -2174 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4511)) (PROGN (-15 -2173 ((-114) (-1 (-114) |t#1|) $)) (-15 -2172 ((-114) (-1 (-114) |t#1|) $)) (-15 -2171 ((-793) (-1 (-114) |t#1|) $)) (-15 -3376 ((-663 |t#1|) $)) (-15 -3093 ((-663 |t#1|) $)) (IF (|has| |t#1| (-1133)) (PROGN (-15 -2171 ((-793) |t#1| $)) (-15 -3749 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-4462 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-504 |#1|) (-142) (-1249)) (T -504)) -NIL -(-13 (-632 |t#1|) (-635 |t#1|)) -(((-635 |#1|) . T) ((-632 |#1|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2175 (($ (-1191)) 8 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT) (((-1191) $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 11 T ELT))) -(((-505) (-13 (-1133) (-632 (-1191)) (-10 -8 (-15 -2175 ($ (-1191)))))) (T -505)) -((-2175 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-505))))) -(-13 (-1133) (-632 (-1191)) (-10 -8 (-15 -2175 ($ (-1191))))) -((-3998 (($ $) 15 T ELT)) (-3996 (($ $) 24 T ELT)) (-4000 (($ $) 12 T ELT)) (-4001 (($ $) 10 T ELT)) (-3999 (($ $) 17 T ELT)) (-3997 (($ $) 22 T ELT))) -(((-506 |#1|) (-10 -8 (-15 -3997 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|))) (-507)) (T -506)) -NIL -(-10 -8 (-15 -3997 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|))) -((-3998 (($ $) 11 T ELT)) (-3996 (($ $) 10 T ELT)) (-4000 (($ $) 9 T ELT)) (-4001 (($ $) 8 T ELT)) (-3999 (($ $) 7 T ELT)) (-3997 (($ $) 6 T ELT))) -(((-507) (-142)) (T -507)) -((-3998 (*1 *1 *1) (-4 *1 (-507))) (-3996 (*1 *1 *1) (-4 *1 (-507))) (-4000 (*1 *1 *1) (-4 *1 (-507))) (-4001 (*1 *1 *1) (-4 *1 (-507))) (-3999 (*1 *1 *1) (-4 *1 (-507))) (-3997 (*1 *1 *1) (-4 *1 (-507)))) -(-13 (-10 -8 (-15 -3997 ($ $)) (-15 -3999 ($ $)) (-15 -4001 ($ $)) (-15 -4000 ($ $)) (-15 -3996 ($ $)) (-15 -3998 ($ $)))) -((-4248 (((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)) 54 T ELT))) -(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)))) (-376) (-1275 |#1|) (-13 (-376) (-149) (-746 |#1| |#2|)) (-1275 |#3|)) (T -508)) -((-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3)) (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1275 *7))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1762 (((-663 $) (-1203 $) (-1209)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-976 $)) NIL T ELT)) (-1334 (($ (-1203 $) (-1209)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-976 $)) NIL T ELT)) (-3692 (((-114) $) 39 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2176 (((-114) $ $) 72 T ELT)) (-1755 (((-663 (-630 $)) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1759 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1335 (((-663 $) (-1203 $) (-1209)) NIL T ELT) (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-976 $)) NIL T ELT)) (-3687 (($ (-1203 $) (-1209)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-976 $)) NIL T ELT)) (-3661 (((-3 (-630 $) #1="failed") $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT)) (-3660 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) 54 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-421 (-560)))) (|:| |vec| (-1299 (-421 (-560))))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-4358 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3058 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1754 (((-663 (-115)) $) NIL T ELT)) (-4109 (((-115) (-115)) NIL T ELT)) (-2655 (((-114) $) 42 T ELT)) (-3160 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-3485 (((-1157 (-560) (-630 $)) $) 37 T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3620 (((-1203 $) (-1203 $) (-630 $)) 86 T ELT) (((-1203 $) (-1203 $) (-663 (-630 $))) 61 T ELT) (($ $ (-630 $)) 75 T ELT) (($ $ (-663 (-630 $))) 76 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-1752 (((-1203 $) (-630 $)) 73 (|has| $ (-1081)) ELT)) (-4474 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1757 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-421 (-560)))) (|:| |vec| (-1299 (-421 (-560))))) (-1299 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1756 (((-663 (-630 $)) $) NIL T ELT)) (-2463 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3118 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3088 (((-793) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1753 (((-114) $ $) NIL T ELT) (((-114) $ (-1209)) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) NIL (|has| $ (-1070 (-560))) ELT)) (-4284 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1209) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1209) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1758 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4274 (($ $) 36 T ELT) (($ $ (-793)) NIL T ELT)) (-3484 (((-1157 (-560) (-630 $)) $) 20 T ELT)) (-3689 (($ $) NIL (|has| $ (-1081)) ELT)) (-4488 (((-391) $) 100 T ELT) (((-229) $) 108 T ELT) (((-171 (-391)) $) 116 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1157 (-560) (-630 $))) 21 T ELT)) (-3614 (((-793)) NIL T CONST)) (-3075 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2482 (((-114) (-115)) 92 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 10 T CONST)) (-3151 (($) 22 T CONST)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3540 (((-114) $ $) 24 T ELT)) (-4465 (($ $ $) 44 T ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) 47 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-509) (-13 (-310) (-27) (-1070 (-560)) (-1070 (-421 (-560))) (-660 (-560)) (-1052) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -4462 ($ (-1157 (-560) (-630 $)))) (-15 -3485 ((-1157 (-560) (-630 $)) $)) (-15 -3484 ((-1157 (-560) (-630 $)) $)) (-15 -4358 ($ $)) (-15 -2176 ((-114) $ $)) (-15 -3620 ((-1203 $) (-1203 $) (-630 $))) (-15 -3620 ((-1203 $) (-1203 $) (-663 (-630 $)))) (-15 -3620 ($ $ (-630 $))) (-15 -3620 ($ $ (-663 (-630 $))))))) (T -509)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-4358 (*1 *1 *1) (-5 *1 (-509))) (-2176 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-663 (-630 (-509)))) (-5 *1 (-509)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509))))) -(-13 (-310) (-27) (-1070 (-560)) (-1070 (-421 (-560))) (-660 (-560)) (-1052) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -4462 ($ (-1157 (-560) (-630 $)))) (-15 -3485 ((-1157 (-560) (-630 $)) $)) (-15 -3484 ((-1157 (-560) (-630 $)) $)) (-15 -4358 ($ $)) (-15 -2176 ((-114) $ $)) (-15 -3620 ((-1203 $) (-1203 $) (-630 $))) (-15 -3620 ((-1203 $) (-1203 $) (-663 (-630 $)))) (-15 -3620 ($ $ (-630 $))) (-15 -3620 ($ $ (-663 (-630 $)))))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 42 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 38 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 37 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 21 T ELT)) (-2429 (((-560) $) 17 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) 39 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) 15 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 19 T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 41 T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 13 T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 24 T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 11 (|has| $ (-6 -4511)) ELT))) -(((-510 |#1| |#2|) (-19 |#1|) (-1249) (-560)) (T -510)) +((-2165 (((-558) (-661 (-558))) 53 T ELT)) (-2162 ((|#1| (-661 |#1|)) 94 T ELT)) (-2164 (((-661 |#1|) (-661 |#1|)) 95 T ELT)) (-2163 (((-661 |#1|) (-661 |#1|)) 97 T ELT)) (-3644 ((|#1| (-661 |#1|)) 96 T ELT)) (-3300 (((-661 (-558)) (-661 |#1|)) 56 T ELT))) +(((-498 |#1|) (-10 -7 (-15 -3644 (|#1| (-661 |#1|))) (-15 -2162 (|#1| (-661 |#1|))) (-15 -2163 ((-661 |#1|) (-661 |#1|))) (-15 -2164 ((-661 |#1|) (-661 |#1|))) (-15 -3300 ((-661 (-558)) (-661 |#1|))) (-15 -2165 ((-558) (-661 (-558))))) (-1273 (-558))) (T -498)) +((-2165 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) (-4 *4 (-1273 *2)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1273 (-558))) (-5 *2 (-661 (-558))) (-5 *1 (-498 *4)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1273 (-558))) (-5 *1 (-498 *3)))) (-2163 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1273 (-558))) (-5 *1 (-498 *3)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1273 (-558))))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1273 (-558)))))) +(-10 -7 (-15 -3644 (|#1| (-661 |#1|))) (-15 -2162 (|#1| (-661 |#1|))) (-15 -2163 ((-661 |#1|) (-661 |#1|))) (-15 -2164 ((-661 |#1|) (-661 |#1|))) (-15 -3300 ((-661 (-558)) (-661 |#1|))) (-15 -2165 ((-558) (-661 (-558))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3656 (((-558) $) NIL T ELT) (((-1207) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-558) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-558) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-558) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-558) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-558) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-4470 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-558) (-1182)) CONST)) (-2166 (($ (-419 (-558))) 9 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3614 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1207)) (-661 (-558))) NIL (|has| (-558) (-526 (-1207) (-558))) ELT) (($ $ (-1207) (-558)) NIL (|has| (-558) (-526 (-1207) (-558))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-558) $) NIL T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-558) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-558) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1050)) ELT) (((-229) $) NIL (|has| (-558) (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1207)) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1034 16) $) 10 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-558) (-938))) (|has| (-558) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-4461 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-499) (-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 16)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -2166 ($ (-419 (-558))))))) (T -499)) +((-3612 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499))))) +(-13 (-1021 (-558)) (-630 (-419 (-558))) (-630 (-1034 16)) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -2166 ($ (-419 (-558)))))) +((-3089 (((-661 |#2|) $) 31 T ELT)) (-3745 (((-114) |#2| $) 39 T ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4280 (($ $ (-661 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 30 T ELT) (((-791) |#2| $) 37 T ELT)) (-4458 (((-886) $) 45 T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3536 (((-114) $ $) 35 T ELT)) (-4469 (((-791) $) 18 T ELT))) +(((-500 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -3745 ((-114) |#2| |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -3089 ((-661 |#2|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) (-501 |#2|) (-1247)) (T -500)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#2| |#2|)) (-15 -4280 (|#1| |#1| (-305 |#2|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -3745 ((-114) |#2| |#1|)) (-15 -2167 ((-791) |#2| |#1|)) (-15 -3089 ((-661 |#2|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4236 (($) 7 T CONST)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-501 |#1|) (-142) (-1247)) (T -501)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1247)))) (-2170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4508)) (-4 *1 (-501 *3)) (-4 *3 (-1247)))) (-2169 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2167 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) (-4 *4 (-1247)) (-5 *2 (-791)))) (-3372 (*1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-5 *2 (-661 *3)))) (-3089 (*1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-5 *2 (-661 *3)))) (-2167 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-791)))) (-3745 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |t#1| (-1131)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4508)) (-15 -2170 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4507)) (PROGN (-15 -2169 ((-114) (-1 (-114) |t#1|) $)) (-15 -2168 ((-114) (-1 (-114) |t#1|) $)) (-15 -2167 ((-791) (-1 (-114) |t#1|) $)) (-15 -3372 ((-661 |t#1|) $)) (-15 -3089 ((-661 |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -2167 ((-791) |t#1| $)) (-15 -3745 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-4458 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-502 |#1|) (-142) (-1247)) (T -502)) +NIL +(-13 (-630 |t#1|) (-633 |t#1|)) +(((-633 |#1|) . T) ((-630 |#1|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2171 (($ (-1189)) 8 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT) (((-1189) $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 11 T ELT))) +(((-503) (-13 (-1131) (-630 (-1189)) (-10 -8 (-15 -2171 ($ (-1189)))))) (T -503)) +((-2171 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-503))))) +(-13 (-1131) (-630 (-1189)) (-10 -8 (-15 -2171 ($ (-1189))))) +((-3994 (($ $) 15 T ELT)) (-3992 (($ $) 24 T ELT)) (-3996 (($ $) 12 T ELT)) (-3997 (($ $) 10 T ELT)) (-3995 (($ $) 17 T ELT)) (-3993 (($ $) 22 T ELT))) +(((-504 |#1|) (-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|))) (-505)) (T -504)) +NIL +(-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|))) +((-3994 (($ $) 11 T ELT)) (-3992 (($ $) 10 T ELT)) (-3996 (($ $) 9 T ELT)) (-3997 (($ $) 8 T ELT)) (-3995 (($ $) 7 T ELT)) (-3993 (($ $) 6 T ELT))) +(((-505) (-142)) (T -505)) +((-3994 (*1 *1 *1) (-4 *1 (-505))) (-3992 (*1 *1 *1) (-4 *1 (-505))) (-3996 (*1 *1 *1) (-4 *1 (-505))) (-3997 (*1 *1 *1) (-4 *1 (-505))) (-3995 (*1 *1 *1) (-4 *1 (-505))) (-3993 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -3993 ($ $)) (-15 -3995 ($ $)) (-15 -3997 ($ $)) (-15 -3996 ($ $)) (-15 -3992 ($ $)) (-15 -3994 ($ $)))) +((-4244 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 54 T ELT))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-376) (-1273 |#1|) (-13 (-376) (-149) (-744 |#1| |#2|)) (-1273 |#3|)) (T -506)) +((-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-744 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1273 *7))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1760 (((-661 $) (-1201 $) (-1207)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-974 $)) NIL T ELT)) (-1332 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-974 $)) NIL T ELT)) (-3688 (((-114) $) 39 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2172 (((-114) $ $) 72 T ELT)) (-1753 (((-661 (-628 $)) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1333 (((-661 $) (-1201 $) (-1207)) NIL T ELT) (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-974 $)) NIL T ELT)) (-3683 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-974 $)) NIL T ELT)) (-3657 (((-3 (-628 $) #1="failed") $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3656 (((-628 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) 54 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-419 (-558)))) (|:| |vec| (-1297 (-419 (-558))))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-419 (-558))) (-709 $)) NIL T ELT)) (-4354 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3054 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1752 (((-661 (-115)) $) NIL T ELT)) (-4105 (((-115) (-115)) NIL T ELT)) (-2651 (((-114) $) 42 T ELT)) (-3156 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-3481 (((-1155 (-558) (-628 $)) $) 37 T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3616 (((-1201 $) (-1201 $) (-628 $)) 86 T ELT) (((-1201 $) (-1201 $) (-661 (-628 $))) 61 T ELT) (($ $ (-628 $)) 75 T ELT) (($ $ (-661 (-628 $))) 76 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-1750 (((-1201 $) (-628 $)) 73 (|has| $ (-1079)) ELT)) (-4470 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1755 (((-3 (-628 $) "failed") $) NIL T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-419 (-558)))) (|:| |vec| (-1297 (-419 (-558))))) (-1297 $) $) NIL T ELT) (((-709 (-419 (-558))) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1754 (((-661 (-628 $)) $) NIL T ELT)) (-2459 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3114 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3084 (((-791) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1751 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) NIL (|has| $ (-1068 (-558))) ELT)) (-4280 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1756 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4270 (($ $) 36 T ELT) (($ $ (-791)) NIL T ELT)) (-3480 (((-1155 (-558) (-628 $)) $) 20 T ELT)) (-3685 (($ $) NIL (|has| $ (-1079)) ELT)) (-4484 (((-391) $) 100 T ELT) (((-229) $) 108 T ELT) (((-171 (-391)) $) 116 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1155 (-558) (-628 $))) 21 T ELT)) (-3610 (((-791)) NIL T CONST)) (-3071 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2478 (((-114) (-115)) 92 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 10 T CONST)) (-3147 (($) 22 T CONST)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3536 (((-114) $ $) 24 T ELT)) (-4461 (($ $ $) 44 T ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) 47 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-947) $) NIL T ELT))) +(((-507) (-13 (-310) (-27) (-1068 (-558)) (-1068 (-419 (-558))) (-658 (-558)) (-1050) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4458 ($ (-1155 (-558) (-628 $)))) (-15 -3481 ((-1155 (-558) (-628 $)) $)) (-15 -3480 ((-1155 (-558) (-628 $)) $)) (-15 -4354 ($ $)) (-15 -2172 ((-114) $ $)) (-15 -3616 ((-1201 $) (-1201 $) (-628 $))) (-15 -3616 ((-1201 $) (-1201 $) (-661 (-628 $)))) (-15 -3616 ($ $ (-628 $))) (-15 -3616 ($ $ (-661 (-628 $))))))) (T -507)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-4354 (*1 *1 *1) (-5 *1 (-507))) (-2172 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-507))) (-5 *3 (-628 (-507))) (-5 *1 (-507)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-507))) (-5 *3 (-661 (-628 (-507)))) (-5 *1 (-507)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-628 (-507))) (-5 *1 (-507)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-507)))) (-5 *1 (-507))))) +(-13 (-310) (-27) (-1068 (-558)) (-1068 (-419 (-558))) (-658 (-558)) (-1050) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4458 ($ (-1155 (-558) (-628 $)))) (-15 -3481 ((-1155 (-558) (-628 $)) $)) (-15 -3480 ((-1155 (-558) (-628 $)) $)) (-15 -4354 ($ $)) (-15 -2172 ((-114) $ $)) (-15 -3616 ((-1201 $) (-1201 $) (-628 $))) (-15 -3616 ((-1201 $) (-1201 $) (-661 (-628 $)))) (-15 -3616 ($ $ (-628 $))) (-15 -3616 ($ $ (-661 (-628 $)))))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 38 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 37 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 21 T ELT)) (-2425 (((-558) $) 17 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) 39 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) 15 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 19 T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 41 T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 13 T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 24 T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 11 (|has| $ (-6 -4507)) ELT))) +(((-508 |#1| |#2|) (-19 |#1|) (-1247) (-558)) (T -508)) NIL (-19 |#1|) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-1375 (($ $ (-560) (-510 |#1| |#3|)) NIL T ELT)) (-1374 (($ $ (-560) (-510 |#1| |#2|)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3600 (((-510 |#1| |#3|) $ (-560)) NIL T ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3601 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3603 (((-793) $) NIL T ELT)) (-4130 (($ (-793) (-793) |#1|) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3599 (((-510 |#1| |#2|) $ (-560)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-511 |#1| |#2| |#3|) (-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) (-1249) (-560) (-560)) (T -511)) -NIL -(-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) -((-2178 (((-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793)) 32 T ELT)) (-2177 (((-663 (-1203 |#1|)) |#1| (-793) (-793) (-793)) 43 T ELT)) (-2306 (((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)) 107 T ELT))) -(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -2177 ((-663 (-1203 |#1|)) |#1| (-793) (-793) (-793))) (-15 -2178 ((-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -2306 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) (-363) (-1275 |#1|) (-1275 |#2|)) (T -512)) -((-2306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-2 (|:| -2236 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7))))) (-5 *5 (-793)) (-4 *8 (-1275 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2236 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7)))) (-5 *1 (-512 *6 *7 *8)))) (-2178 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-2 (|:| -2236 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6))))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-2 (|:| -2236 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6)))) (-4 *7 (-1275 *6)))) (-2177 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1275 *3)) (-5 *2 (-663 (-1203 *3))) (-5 *1 (-512 *3 *5 *6)) (-4 *6 (-1275 *5))))) -(-10 -7 (-15 -2177 ((-663 (-1203 |#1|)) |#1| (-793) (-793) (-793))) (-15 -2178 ((-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -2306 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) -((-2184 (((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 70 T ELT)) (-2179 ((|#1| (-711 |#1|) |#1| (-793)) 24 T ELT)) (-2181 (((-793) (-793) (-793)) 34 T ELT)) (-2183 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 50 T ELT)) (-2182 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 58 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 55 T ELT)) (-2180 ((|#1| (-711 |#1|) (-711 |#1|) |#1| (-560)) 28 T ELT)) (-3835 ((|#1| (-711 |#1|)) 18 T ELT))) -(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -3835 (|#1| (-711 |#1|))) (-15 -2179 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2180 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -2181 ((-793) (-793) (-793))) (-15 -2182 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2182 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2183 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2184 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $)))) (-1275 |#1|) (-424 |#1| |#2|)) (T -513)) -((-2184 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2182 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2182 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2181 (*1 *2 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2180 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-560)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *5 (-1275 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-2179 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *5 (-1275 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-711 *2)) (-4 *4 (-1275 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4))))) -(-10 -7 (-15 -3835 (|#1| (-711 |#1|))) (-15 -2179 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2180 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -2181 ((-793) (-793) (-793))) (-15 -2182 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2182 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2183 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2184 ((-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -2236 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3828 (($ $ $) 41 T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) NIL (|has| (-114) (-872)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1945 (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-114) (-872))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) NIL (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4304 (((-114) $ (-1266 (-560)) (-114)) NIL (|has| $ (-6 -4512)) ELT) (((-114) $ (-560) (-114)) 43 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-3912 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-4358 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-1731 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-114) $ (-560)) NIL T ELT)) (-3925 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1133)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1133)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-3376 (((-663 (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3046 (($ $ $) 39 T ELT)) (-3045 (($ $) NIL T ELT)) (-1426 (($ $ $) NIL T ELT)) (-4130 (($ (-793) (-114)) 27 T ELT)) (-1427 (($ $ $) NIL T ELT)) (-2429 (((-560) $) 8 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL T ELT)) (-4024 (($ $ $) NIL (|has| (-114) (-872)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3093 (((-663 (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL T ELT)) (-2174 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-114) (-114) (-114)) $ $) 36 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-114) $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2428 (($ $ (-114)) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT)) (-2434 (((-663 (-114)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 29 T ELT)) (-4316 (($ $ (-1266 (-560))) NIL T ELT) (((-114) $ (-560)) 22 T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2171 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-114) (-1133))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 30 T ELT)) (-4488 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-4036 (($ (-663 (-114))) NIL T ELT)) (-4318 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4462 (((-888) $) 26 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3047 (($ $ $) 37 T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3825 (($ $ $) 46 T ELT)) (-3827 (($ $) 44 T ELT)) (-3826 (($ $ $) 45 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 31 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 32 T ELT)) (-2539 (($ $ $) NIL T ELT)) (-4473 (((-793) $) 13 (|has| $ (-6 -4511)) ELT))) -(((-514 |#1|) (-13 (-125) (-10 -8 (-15 -3827 ($ $)) (-15 -3825 ($ $ $)) (-15 -3826 ($ $ $)))) (-560)) (T -514)) -((-3827 (*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3825 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3826 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))) -(-13 (-125) (-10 -8 (-15 -3827 ($ $)) (-15 -3825 ($ $ $)) (-15 -3826 ($ $ $)))) -((-2186 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|)) 35 T ELT)) (-2185 (((-1203 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1203 |#4|)) 22 T ELT)) (-2187 (((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|))) 46 T ELT)) (-2188 (((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2185 (|#2| (-1 |#1| |#4|) (-1203 |#4|))) (-15 -2185 ((-1203 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2186 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|))) (-15 -2187 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|)))) (-15 -2188 ((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|))) (-1081) (-1275 |#1|) (-1275 |#2|) (-1081)) (T -515)) -((-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *6 (-1275 *5)) (-5 *2 (-1203 (-1203 *7))) (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1275 *6)))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-711 (-1203 *8))) (-4 *5 (-1081)) (-4 *8 (-1081)) (-4 *6 (-1275 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8)) (-4 *7 (-1275 *6)))) (-2186 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *2 (-1275 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1275 *2)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *4 (-1275 *5)) (-5 *2 (-1203 *7)) (-5 *1 (-515 *5 *4 *6 *7)) (-4 *6 (-1275 *4)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *2 (-1275 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1275 *2))))) -(-10 -7 (-15 -2185 (|#2| (-1 |#1| |#4|) (-1203 |#4|))) (-15 -2185 ((-1203 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2186 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|))) (-15 -2187 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|)))) (-15 -2188 ((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2189 (((-1305) $) 25 T ELT)) (-4316 (((-1191) $ (-1209)) 30 T ELT)) (-4133 (((-1305) $) 19 T ELT)) (-4462 (((-888) $) 27 T ELT) (($ (-1191)) 26 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 11 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 9 T ELT))) -(((-516) (-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $)) (-15 -4462 ($ (-1191)))))) (T -516)) -((-4316 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1191)) (-5 *1 (-516)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-516)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-516)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-516))))) -(-13 (-872) (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) (-15 -2189 ((-1305) $)) (-15 -4462 ($ (-1191))))) -((-4257 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4255 ((|#1| |#4|) 10 T ELT)) (-4256 ((|#3| |#4|) 17 T ELT))) -(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4255 (|#1| |#4|)) (-15 -4256 (|#3| |#4|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-571) (-1023 |#1|) (-385 |#1|) (-385 |#2|)) (T -517)) -((-4257 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) (-4 *2 (-385 *4)) (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4255 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -4255 (|#1| |#4|)) (-15 -4256 (|#3| |#4|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3053 (((-114) $ $) NIL T ELT)) (-2199 (((-114) $ (-663 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-3692 (((-114) $) 177 T ELT)) (-2191 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-663 |#3|)) 121 T ELT)) (-2190 (((-1198 (-663 (-976 |#1|)) (-663 (-305 (-976 |#1|)))) (-663 |#4|)) 170 (|has| |#3| (-633 (-1209))) ELT)) (-2198 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2655 (((-114) $) 176 T ELT)) (-2195 (($ $) 131 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3742 (($ $ $) 99 T ELT) (($ (-663 $)) 101 T ELT)) (-2200 (((-114) |#4| $) 129 T ELT)) (-2201 (((-114) $ $) 82 T ELT)) (-2194 (($ (-663 |#4|)) 106 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2193 (($ (-663 |#4|)) 174 T ELT)) (-2192 (((-114) $) 175 T ELT)) (-2479 (($ $) 85 T ELT)) (-3182 (((-663 |#4|) $) 73 T ELT)) (-2197 (((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|)) NIL T ELT)) (-2202 (((-114) |#4| $) 89 T ELT)) (-4427 (((-560) $ (-663 |#3|)) 133 T ELT) (((-560) $) 134 T ELT)) (-4462 (((-888) $) 173 T ELT) (($ (-663 |#4|)) 102 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2196 (($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3540 (((-114) $ $) 84 T ELT)) (-4355 (($ $ $) 109 T ELT)) (** (($ $ (-793)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-518 |#1| |#2| |#3| |#4|) (-13 (-1133) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -4355 ($ $ $)) (-15 -2655 ((-114) $)) (-15 -3692 ((-114) $)) (-15 -2202 ((-114) |#4| $)) (-15 -2201 ((-114) $ $)) (-15 -2200 ((-114) |#4| $)) (-15 -2199 ((-114) $ (-663 |#3|))) (-15 -2199 ((-114) $)) (-15 -3742 ($ $ $)) (-15 -3742 ($ (-663 $))) (-15 -2198 ($ $ $)) (-15 -2198 ($ $ |#4|)) (-15 -2479 ($ $)) (-15 -2197 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -2196 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -4427 ((-560) $ (-663 |#3|))) (-15 -4427 ((-560) $)) (-15 -2195 ($ $)) (-15 -2194 ($ (-663 |#4|))) (-15 -2193 ($ (-663 |#4|))) (-15 -2192 ((-114) $)) (-15 -3182 ((-663 |#4|) $)) (-15 -4462 ($ (-663 |#4|))) (-15 -2191 ($ $ |#4|)) (-15 -2191 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1209))) (-15 -2190 ((-1198 (-663 (-976 |#1|)) (-663 (-305 (-976 |#1|)))) (-663 |#4|))) |%noBranch|))) (-376) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -518)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-4355 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-2655 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-3692 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-2202 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6)))) (-2201 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6)))) (-2199 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-3742 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-2198 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-2198 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-980 *3 *4 *5)))) (-2479 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-2197 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) (-5 *2 (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) (|:| |genIdeal| (-518 *4 *5 *6 *7)))) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6)))) (-2196 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) (|:| |genIdeal| (-518 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-4427 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6)))) (-4427 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-560)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-2195 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2192 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-3182 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *6)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2191 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-980 *3 *4 *5)))) (-2191 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-980 *4 *5 *6)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *5 *6)) (-4 *6 (-633 (-1209))) (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1198 (-663 (-976 *4)) (-663 (-305 (-976 *4))))) (-5 *1 (-518 *4 *5 *6 *7))))) -(-13 (-1133) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -4355 ($ $ $)) (-15 -2655 ((-114) $)) (-15 -3692 ((-114) $)) (-15 -2202 ((-114) |#4| $)) (-15 -2201 ((-114) $ $)) (-15 -2200 ((-114) |#4| $)) (-15 -2199 ((-114) $ (-663 |#3|))) (-15 -2199 ((-114) $)) (-15 -3742 ($ $ $)) (-15 -3742 ($ (-663 $))) (-15 -2198 ($ $ $)) (-15 -2198 ($ $ |#4|)) (-15 -2479 ($ $)) (-15 -2197 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -2196 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -4427 ((-560) $ (-663 |#3|))) (-15 -4427 ((-560) $)) (-15 -2195 ($ $)) (-15 -2194 ($ (-663 |#4|))) (-15 -2193 ($ (-663 |#4|))) (-15 -2192 ((-114) $)) (-15 -3182 ((-663 |#4|) $)) (-15 -4462 ($ (-663 |#4|))) (-15 -2191 ($ $ |#4|)) (-15 -2191 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1209))) (-15 -2190 ((-1198 (-663 (-976 |#1|)) (-663 (-305 (-976 |#1|)))) (-663 |#4|))) |%noBranch|))) -((-2203 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) 177 T ELT)) (-2204 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) 178 T ELT)) (-2205 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) 128 T ELT)) (-4239 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) NIL T ELT)) (-2206 (((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) 180 T ELT)) (-2207 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-889 |#1|))) 196 T ELT))) -(((-519 |#1| |#2|) (-10 -7 (-15 -2203 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2204 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4239 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2205 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2206 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2207 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-889 |#1|))))) (-663 (-1209)) (-793)) (T -519)) -((-2207 (*1 *2 *2 *3) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) (-5 *3 (-663 (-889 *4))) (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *1 (-519 *4 *5)))) (-2206 (*1 *2 *3) (-12 (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-663 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560)))))) (-5 *1 (-519 *4 *5)) (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *4 (-793)) (-889 *3) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1209))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5))))) -(-10 -7 (-15 -2203 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2204 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4239 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2205 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2206 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2207 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-889 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-889 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2208 (($) 6 T ELT)) (-4462 (((-888) $) 14 T ELT) (((-1209) $) 10 T ELT) (((-1191) $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-520) (-13 (-1133) (-632 (-1209)) (-632 (-1191)) (-10 -8 (-15 -2208 ($))))) (T -520)) -((-2208 (*1 *1) (-5 *1 (-520)))) -(-13 (-1133) (-632 (-1209)) (-632 (-1191)) (-10 -8 (-15 -2208 ($)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) 12 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3380 (($ |#1| |#2|) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2209 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 16 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 26 T ELT))) -(((-521 |#1| |#2|) (-13 (-21) (-523 |#1| |#2|)) (-21) (-875)) (T -521)) -NIL -(-13 (-21) (-523 |#1| |#2|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 17 T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) 14 T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) 44 T ELT)) (-3380 (($ |#1| |#2|) 41 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2209 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) 45 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 13 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) 40 T ELT))) -(((-522 |#1| |#2|) (-13 (-23) (-523 |#1| |#2|)) (-23) (-875)) (T -522)) -NIL -(-13 (-23) (-523 |#1| |#2|)) -((-3053 (((-114) $ $) 7 T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) 15 T ELT)) (-4475 (($ $) 16 T ELT)) (-3380 (($ |#1| |#2|) 19 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2209 ((|#2| $) 17 T ELT)) (-3678 ((|#1| $) 18 T ELT)) (-3746 (((-1191) $) 14 (-12 (|has| |#2| (-1133)) (|has| |#1| (-1133))) ELT)) (-3747 (((-1152) $) 13 (-12 (|has| |#2| (-1133)) (|has| |#1| (-1133))) ELT)) (-4462 (((-888) $) 12 (-12 (|has| |#2| (-1133)) (|has| |#1| (-1133))) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-523 |#1| |#2|) (-142) (-102) (-875)) (T -523)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-875)))) (-3380 (*1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-875)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-875)) (-4 *2 (-102)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-875)))) (-4475 (*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-875)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-875)) (-5 *2 (-663 (-898 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1133)) (IF (|has| |t#2| (-1133)) (-6 (-1133)) |%noBranch|) |%noBranch|) (-15 -4474 ($ (-1 |t#1| |t#1|) $)) (-15 -3380 ($ |t#1| |t#2|)) (-15 -3678 (|t#1| $)) (-15 -2209 (|t#2| $)) (-15 -4475 ($ $)) (-15 -4290 ((-663 (-898 |t#2| |t#1|)) $)))) -(((-102) . T) ((-632 (-888)) -12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ((-1133) -12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) 39 T ELT)) (-4475 (($ $) 34 T ELT)) (-3380 (($ |#1| |#2|) 30 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2209 ((|#2| $) 38 T ELT)) (-3678 ((|#1| $) 37 T ELT)) (-3746 (((-1191) $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-3747 (((-1152) $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-4462 (((-888) $) 28 (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 21 T ELT))) -(((-524 |#1| |#2|) (-523 |#1| |#2|) (-102) (-875)) (T -524)) -NIL -(-523 |#1| |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-3380 (($ |#1| |#2|) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2209 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 22 T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT))) -(((-525 |#1| |#2|) (-13 (-816) (-523 |#1| |#2|)) (-816) (-875)) (T -525)) -NIL -(-13 (-816) (-523 |#1| |#2|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 |#2| |#1|)) $) NIL T ELT)) (-2887 (($ $ $) 23 T ELT)) (-1438 (((-3 $ "failed") $ $) 19 T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-3380 (($ |#1| |#2|) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2209 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT))) -(((-526 |#1| |#2|) (-13 (-817) (-523 |#1| |#2|)) (-817) (-872)) (T -526)) -NIL -(-13 (-817) (-523 |#1| |#2|)) -((-4284 (($ $ (-663 |#2|) (-663 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-527 |#1| |#2| |#3|) (-10 -8 (-15 -4284 (|#1| |#1| |#2| |#3|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#3|)))) (-528 |#2| |#3|) (-1133) (-1249)) (T -527)) -NIL -(-10 -8 (-15 -4284 (|#1| |#1| |#2| |#3|)) (-15 -4284 (|#1| |#1| (-663 |#2|) (-663 |#3|)))) -((-4284 (($ $ (-663 |#1|) (-663 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-528 |#1| |#2|) (-142) (-1133) (-1249)) (T -528)) -((-4284 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1249)))) (-4284 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1249))))) -(-13 (-10 -8 (-15 -4284 ($ $ |t#1| |t#2|)) (-15 -4284 ($ $ (-663 |t#1|) (-663 |t#2|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 17 T ELT)) (-4290 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))) $) 19 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2526 ((|#1| $ (-560)) 24 T ELT)) (-1814 ((|#2| $ (-560)) 22 T ELT)) (-2518 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1813 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1812 (($ $ $) 55 (|has| |#2| (-816)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4193 ((|#2| |#1| $) 51 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 11 T CONST)) (-3540 (((-114) $ $) 30 T ELT)) (-4355 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-529 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1133) (-133) |#2|) (T -529)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1373 (($ $ (-558) (-508 |#1| |#3|)) NIL T ELT)) (-1372 (($ $ (-558) (-508 |#1| |#2|)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3596 (((-508 |#1| |#3|) $ (-558)) NIL T ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3597 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3599 (((-791) $) NIL T ELT)) (-4126 (($ (-791) (-791) |#1|) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3595 (((-508 |#1| |#2|) $ (-558)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1247) (-558) (-558)) (T -509)) +NIL +(-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) +((-2174 (((-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-791) (-791)) 32 T ELT)) (-2173 (((-661 (-1201 |#1|)) |#1| (-791) (-791) (-791)) 43 T ELT)) (-2302 (((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-661 |#3|) (-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-791)) 107 T ELT))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2173 ((-661 (-1201 |#1|)) |#1| (-791) (-791) (-791))) (-15 -2174 ((-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-791) (-791))) (-15 -2302 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-661 |#3|) (-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-791)))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -510)) +((-2302 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-2 (|:| -2232 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7))))) (-5 *5 (-791)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2232 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-2174 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-4 *5 (-363)) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-2 (|:| -2232 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2232 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6)))) (-4 *7 (-1273 *6)))) (-2173 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-791)) (-4 *3 (-363)) (-4 *5 (-1273 *3)) (-5 *2 (-661 (-1201 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1273 *5))))) +(-10 -7 (-15 -2173 ((-661 (-1201 |#1|)) |#1| (-791) (-791) (-791))) (-15 -2174 ((-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-791) (-791))) (-15 -2302 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-661 |#3|) (-661 (-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-791)))) +((-2180 (((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))) 70 T ELT)) (-2175 ((|#1| (-709 |#1|) |#1| (-791)) 24 T ELT)) (-2177 (((-791) (-791) (-791)) 34 T ELT)) (-2179 (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 50 T ELT)) (-2178 (((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|) 58 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 55 T ELT)) (-2176 ((|#1| (-709 |#1|) (-709 |#1|) |#1| (-558)) 28 T ELT)) (-3831 ((|#1| (-709 |#1|)) 18 T ELT))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3831 (|#1| (-709 |#1|))) (-15 -2175 (|#1| (-709 |#1|) |#1| (-791))) (-15 -2176 (|#1| (-709 |#1|) (-709 |#1|) |#1| (-558))) (-15 -2177 ((-791) (-791) (-791))) (-15 -2178 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2178 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2179 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2180 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))))) (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -511)) +((-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2179 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2178 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2178 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2177 (*1 *2 *2 *2) (-12 (-5 *2 (-791)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2176 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-709 *2)) (-5 *4 (-558)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2175 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-709 *2)) (-5 *4 (-791)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-709 *2)) (-4 *4 (-1273 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) +(-10 -7 (-15 -3831 (|#1| (-709 |#1|))) (-15 -2175 (|#1| (-709 |#1|) |#1| (-791))) (-15 -2176 (|#1| (-709 |#1|) (-709 |#1|) |#1| (-558))) (-15 -2177 ((-791) (-791) (-791))) (-15 -2178 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2178 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2179 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2180 ((-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2232 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3824 (($ $ $) 41 T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) NIL (|has| (-114) (-870)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-870))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) NIL (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4300 (((-114) $ (-1264 (-558)) (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) $ (-558) (-114)) 43 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-3908 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-4354 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-1729 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-114) $ (-558)) NIL T ELT)) (-3921 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1131)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1131)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3372 (((-661 (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3042 (($ $ $) 39 T ELT)) (-3041 (($ $) NIL T ELT)) (-1424 (($ $ $) NIL T ELT)) (-4126 (($ (-791) (-114)) 27 T ELT)) (-1425 (($ $ $) NIL T ELT)) (-2425 (((-558) $) 8 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL T ELT)) (-4020 (($ $ $) NIL (|has| (-114) (-870)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3089 (((-661 (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL T ELT)) (-2170 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-114) (-114) (-114)) $ $) 36 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-114) $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2424 (($ $ (-114)) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-114)) (-661 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT) (($ $ (-661 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT)) (-2430 (((-661 (-114)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 29 T ELT)) (-4312 (($ $ (-1264 (-558))) NIL T ELT) (((-114) $ (-558)) 22 T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2167 (((-791) (-114) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-114) (-1131))) ELT) (((-791) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 30 T ELT)) (-4484 (((-547) $) NIL (|has| (-114) (-631 (-547))) ELT)) (-4032 (($ (-661 (-114))) NIL T ELT)) (-4314 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4458 (((-886) $) 26 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3043 (($ $ $) 37 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3821 (($ $ $) 46 T ELT)) (-3823 (($ $) 44 T ELT)) (-3822 (($ $ $) 45 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 31 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 32 T ELT)) (-2535 (($ $ $) NIL T ELT)) (-4469 (((-791) $) 13 (|has| $ (-6 -4507)) ELT))) +(((-512 |#1|) (-13 (-125) (-10 -8 (-15 -3823 ($ $)) (-15 -3821 ($ $ $)) (-15 -3822 ($ $ $)))) (-558)) (T -512)) +((-3823 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3821 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558))))) +(-13 (-125) (-10 -8 (-15 -3823 ($ $)) (-15 -3821 ($ $ $)) (-15 -3822 ($ $ $)))) +((-2182 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|)) 35 T ELT)) (-2181 (((-1201 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1201 |#4|)) 22 T ELT)) (-2183 (((-3 (-709 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-709 (-1201 |#4|))) 46 T ELT)) (-2184 (((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2181 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -2181 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2182 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -2183 ((-3 (-709 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-709 (-1201 |#4|)))) (-15 -2184 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|) (-1079)) (T -513)) +((-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))) (-2183 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-709 (-1201 *8))) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-709 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1273 *6)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *4 (-1273 *5)) (-5 *2 (-1201 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1273 *4)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) +(-10 -7 (-15 -2181 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -2181 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2182 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -2183 ((-3 (-709 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-709 (-1201 |#4|)))) (-15 -2184 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2185 (((-1303) $) 25 T ELT)) (-4312 (((-1189) $ (-1207)) 30 T ELT)) (-4129 (((-1303) $) 19 T ELT)) (-4458 (((-886) $) 27 T ELT) (($ (-1189)) 26 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 11 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 9 T ELT))) +(((-514) (-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $)) (-15 -4458 ($ (-1189)))))) (T -514)) +((-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-514)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-514)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-514)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-514))))) +(-13 (-870) (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) (-15 -2185 ((-1303) $)) (-15 -4458 ($ (-1189))))) +((-4253 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4251 ((|#1| |#4|) 10 T ELT)) (-4252 ((|#3| |#4|) 17 T ELT))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4251 (|#1| |#4|)) (-15 -4252 (|#3| |#4|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1021 |#1|) (-385 |#1|) (-385 |#2|)) (T -515)) +((-4253 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-4252 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-4 *2 (-385 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4251 (*1 *2 *3) (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -4251 (|#1| |#4|)) (-15 -4252 (|#3| |#4|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3049 (((-114) $ $) NIL T ELT)) (-2195 (((-114) $ (-661 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-3688 (((-114) $) 177 T ELT)) (-2187 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-661 |#3|)) 121 T ELT)) (-2186 (((-1196 (-661 (-974 |#1|)) (-661 (-305 (-974 |#1|)))) (-661 |#4|)) 170 (|has| |#3| (-631 (-1207))) ELT)) (-2194 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2651 (((-114) $) 176 T ELT)) (-2191 (($ $) 131 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3738 (($ $ $) 99 T ELT) (($ (-661 $)) 101 T ELT)) (-2196 (((-114) |#4| $) 129 T ELT)) (-2197 (((-114) $ $) 82 T ELT)) (-2190 (($ (-661 |#4|)) 106 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2189 (($ (-661 |#4|)) 174 T ELT)) (-2188 (((-114) $) 175 T ELT)) (-2475 (($ $) 85 T ELT)) (-3178 (((-661 |#4|) $) 73 T ELT)) (-2193 (((-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)) $ (-661 |#3|)) NIL T ELT)) (-2198 (((-114) |#4| $) 89 T ELT)) (-4423 (((-558) $ (-661 |#3|)) 133 T ELT) (((-558) $) 134 T ELT)) (-4458 (((-886) $) 173 T ELT) (($ (-661 |#4|)) 102 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2192 (($ (-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3536 (((-114) $ $) 84 T ELT)) (-4351 (($ $ $) 109 T ELT)) (** (($ $ (-791)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1131) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 -4351 ($ $ $)) (-15 -2651 ((-114) $)) (-15 -3688 ((-114) $)) (-15 -2198 ((-114) |#4| $)) (-15 -2197 ((-114) $ $)) (-15 -2196 ((-114) |#4| $)) (-15 -2195 ((-114) $ (-661 |#3|))) (-15 -2195 ((-114) $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ (-661 $))) (-15 -2194 ($ $ $)) (-15 -2194 ($ $ |#4|)) (-15 -2475 ($ $)) (-15 -2193 ((-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)) $ (-661 |#3|))) (-15 -2192 ($ (-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)))) (-15 -4423 ((-558) $ (-661 |#3|))) (-15 -4423 ((-558) $)) (-15 -2191 ($ $)) (-15 -2190 ($ (-661 |#4|))) (-15 -2189 ($ (-661 |#4|))) (-15 -2188 ((-114) $)) (-15 -3178 ((-661 |#4|) $)) (-15 -4458 ($ (-661 |#4|))) (-15 -2187 ($ $ |#4|)) (-15 -2187 ($ $ |#4| (-661 |#3|))) (IF (|has| |#3| (-631 (-1207))) (-15 -2186 ((-1196 (-661 (-974 |#1|)) (-661 (-305 (-974 |#1|)))) (-661 |#4|))) |%noBranch|))) (-376) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-2651 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2198 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2197 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2196 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-2195 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-3738 (*1 *1 *2) (-12 (-5 *2 (-661 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-2194 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-2475 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-2193 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-2 (|:| |mval| (-709 *4)) (|:| |invmval| (-709 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-709 *3)) (|:| |invmval| (-709 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4423 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-4423 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-558)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2191 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2188 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2187 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-2187 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-978 *4 *5 *6)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *6 (-631 (-1207))) (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1196 (-661 (-974 *4)) (-661 (-305 (-974 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +(-13 (-1131) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 -4351 ($ $ $)) (-15 -2651 ((-114) $)) (-15 -3688 ((-114) $)) (-15 -2198 ((-114) |#4| $)) (-15 -2197 ((-114) $ $)) (-15 -2196 ((-114) |#4| $)) (-15 -2195 ((-114) $ (-661 |#3|))) (-15 -2195 ((-114) $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ (-661 $))) (-15 -2194 ($ $ $)) (-15 -2194 ($ $ |#4|)) (-15 -2475 ($ $)) (-15 -2193 ((-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)) $ (-661 |#3|))) (-15 -2192 ($ (-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)))) (-15 -4423 ((-558) $ (-661 |#3|))) (-15 -4423 ((-558) $)) (-15 -2191 ($ $)) (-15 -2190 ($ (-661 |#4|))) (-15 -2189 ($ (-661 |#4|))) (-15 -2188 ((-114) $)) (-15 -3178 ((-661 |#4|) $)) (-15 -4458 ($ (-661 |#4|))) (-15 -2187 ($ $ |#4|)) (-15 -2187 ($ $ |#4| (-661 |#3|))) (IF (|has| |#3| (-631 (-1207))) (-15 -2186 ((-1196 (-661 (-974 |#1|)) (-661 (-305 (-974 |#1|)))) (-661 |#4|))) |%noBranch|))) +((-2199 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) 177 T ELT)) (-2200 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) 178 T ELT)) (-2201 (((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) 128 T ELT)) (-4235 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) NIL T ELT)) (-2202 (((-661 (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) 180 T ELT)) (-2203 (((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-661 (-887 |#1|))) 196 T ELT))) +(((-517 |#1| |#2|) (-10 -7 (-15 -2199 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2200 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -4235 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2201 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2202 ((-661 (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2203 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-661 (-887 |#1|))))) (-661 (-1207)) (-791)) (T -517)) +((-2203 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) (-5 *3 (-661 (-887 *4))) (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *1 (-517 *4 *5)))) (-2202 (*1 *2 *3) (-12 (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-661 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *4 (-791)) (-887 *3) (-255 *3 (-419 (-558))))) (-14 *3 (-661 (-1207))) (-14 *4 (-791)) (-5 *1 (-517 *3 *4)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) +(-10 -7 (-15 -2199 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2200 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -4235 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2201 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2202 ((-661 (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2203 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-887 |#1|) (-255 |#1| (-419 (-558)))) (-661 (-887 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2204 (($) 6 T ELT)) (-4458 (((-886) $) 14 T ELT) (((-1207) $) 10 T ELT) (((-1189) $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-518) (-13 (-1131) (-630 (-1207)) (-630 (-1189)) (-10 -8 (-15 -2204 ($))))) (T -518)) +((-2204 (*1 *1) (-5 *1 (-518)))) +(-13 (-1131) (-630 (-1207)) (-630 (-1189)) (-10 -8 (-15 -2204 ($)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) 12 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3376 (($ |#1| |#2|) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2205 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 16 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 26 T ELT))) +(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-873)) (T -519)) +NIL +(-13 (-21) (-521 |#1| |#2|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 17 T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) 14 T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) 44 T ELT)) (-3376 (($ |#1| |#2|) 41 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2205 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) 45 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 13 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) 31 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) 40 T ELT))) +(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-873)) (T -520)) +NIL +(-13 (-23) (-521 |#1| |#2|)) +((-3049 (((-114) $ $) 7 T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) 15 T ELT)) (-4471 (($ $) 16 T ELT)) (-3376 (($ |#1| |#2|) 19 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2205 ((|#2| $) 17 T ELT)) (-3674 ((|#1| $) 18 T ELT)) (-3742 (((-1189) $) 14 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-3743 (((-1150) $) 13 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-4458 (((-886) $) 12 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-521 |#1| |#2|) (-142) (-102) (-873)) (T -521)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)))) (-3376 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873)))) (-4471 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) (-5 *2 (-661 (-896 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1131)) (IF (|has| |t#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -4470 ($ (-1 |t#1| |t#1|) $)) (-15 -3376 ($ |t#1| |t#2|)) (-15 -3674 (|t#1| $)) (-15 -2205 (|t#2| $)) (-15 -4471 ($ $)) (-15 -4286 ((-661 (-896 |t#2| |t#1|)) $)))) +(((-102) . T) ((-630 (-886)) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ((-1131) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) 39 T ELT)) (-4471 (($ $) 34 T ELT)) (-3376 (($ |#1| |#2|) 30 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2205 ((|#2| $) 38 T ELT)) (-3674 ((|#1| $) 37 T ELT)) (-3742 (((-1189) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-3743 (((-1150) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4458 (((-886) $) 28 (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 21 T ELT))) +(((-522 |#1| |#2|) (-521 |#1| |#2|) (-102) (-873)) (T -522)) +NIL +(-521 |#1| |#2|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-3376 (($ |#1| |#2|) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2205 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 22 T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT))) +(((-523 |#1| |#2|) (-13 (-814) (-521 |#1| |#2|)) (-814) (-873)) (T -523)) +NIL +(-13 (-814) (-521 |#1| |#2|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 |#2| |#1|)) $) NIL T ELT)) (-2883 (($ $ $) 23 T ELT)) (-1436 (((-3 $ "failed") $ $) 19 T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-3376 (($ |#1| |#2|) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2205 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT))) +(((-524 |#1| |#2|) (-13 (-815) (-521 |#1| |#2|)) (-815) (-870)) (T -524)) +NIL +(-13 (-815) (-521 |#1| |#2|)) +((-4280 (($ $ (-661 |#2|) (-661 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -4280 (|#1| |#1| |#2| |#3|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#3|)))) (-526 |#2| |#3|) (-1131) (-1247)) (T -525)) +NIL +(-10 -8 (-15 -4280 (|#1| |#1| |#2| |#3|)) (-15 -4280 (|#1| |#1| (-661 |#2|) (-661 |#3|)))) +((-4280 (($ $ (-661 |#1|) (-661 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-526 |#1| |#2|) (-142) (-1131) (-1247)) (T -526)) +((-4280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1247)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1247))))) +(-13 (-10 -8 (-15 -4280 ($ $ |t#1| |t#2|)) (-15 -4280 ($ $ (-661 |t#1|) (-661 |t#2|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 17 T ELT)) (-4286 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))) $) 19 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2522 ((|#1| $ (-558)) 24 T ELT)) (-1812 ((|#2| $ (-558)) 22 T ELT)) (-2514 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1811 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1810 (($ $ $) 55 (|has| |#2| (-814)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4189 ((|#2| |#1| $) 51 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 11 T CONST)) (-3536 (((-114) $ $) 30 T ELT)) (-4351 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-527 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1131) (-133) |#2|) (T -527)) NIL (-335 |#1| |#2|) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-2210 (((-114) (-114)) 32 T ELT)) (-4304 ((|#1| $ (-560) |#1|) 42 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-2608 (($ $) 83 (|has| |#1| (-1133)) ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) NIL (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) 66 T ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-2211 (($ $ (-560)) 19 T ELT)) (-2212 (((-793) $) 13 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 31 T ELT)) (-2429 (((-560) $) 29 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 57 T ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) 28 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4123 (($ $ $ (-560)) 75 T ELT) (($ |#1| $ (-560)) 59 T ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2213 (($ (-663 |#1|)) 43 T ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) 24 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 62 T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 21 T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 55 T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-1726 (($ $ (-1266 (-560))) 73 T ELT) (($ $ (-560)) 67 T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) 63 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 53 T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4307 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 22 (|has| $ (-6 -4511)) ELT))) -(((-530 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2213 ($ (-663 |#1|))) (-15 -2212 ((-793) $)) (-15 -2211 ($ $ (-560))) (-15 -2210 ((-114) (-114))))) (-1249) (-560)) (T -530)) -((-2213 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-530 *3 *4)) (-14 *4 (-560)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 (-560)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 *2))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 (-560))))) -(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2213 ($ (-663 |#1|))) (-15 -2212 ((-793) $)) (-15 -2211 ($ $ (-560))) (-15 -2210 ((-114) (-114))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2215 (((-1167) $) 11 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2214 (((-1167) $) 13 T ELT)) (-4438 (((-1167) $) 9 T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-531) (-13 (-1115) (-10 -8 (-15 -4438 ((-1167) $)) (-15 -2215 ((-1167) $)) (-15 -2214 ((-1167) $))))) (T -531)) -((-4438 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531))))) -(-13 (-1115) (-10 -8 (-15 -4438 ((-1167) $)) (-15 -2215 ((-1167) $)) (-15 -2214 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (((-595 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-595 |#1|) "failed") $) NIL T ELT)) (-3660 (((-595 |#1|) $) NIL T ELT)) (-2014 (($ (-1299 (-595 |#1|))) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1895 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1988 (($ $ (-793)) NIL (-4043 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT) (($ $) NIL (-4043 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-949) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-856 (-949)) $) NIL (-4043 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2235 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3620 (((-595 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 (-595 |#1|)) $) NIL T ELT) (((-1203 $) $ (-949)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2234 (((-949) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1819 (((-1203 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1818 (((-1203 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-1203 (-595 |#1|)) "failed") $ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1820 (($ $ (-1203 (-595 |#1|))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-595 |#1|) (-381)) CONST)) (-2645 (($ (-949)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-856 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-793) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-4043 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4464 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3689 (((-1203 (-595 |#1|))) NIL T ELT)) (-1889 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1821 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3728 (((-1299 (-595 |#1|)) $) NIL T ELT) (((-711 (-595 |#1|)) (-1299 $)) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-595 |#1|)) NIL T ELT)) (-3189 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-713 $) $) NIL (-4043 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT) (((-1299 $) (-949)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3156 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT) (($ (-595 |#1|) $) NIL T ELT))) -(((-532 |#1| |#2|) (-341 (-595 |#1|)) (-949) (-949)) (T -532)) -NIL -(-341 (-595 |#1|)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) 51 T ELT)) (-1375 (($ $ (-560) |#4|) NIL T ELT)) (-1374 (($ $ (-560) |#5|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3600 ((|#4| $ (-560)) NIL T ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) 50 T ELT)) (-3601 ((|#1| $ (-560) (-560)) 45 T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3603 (((-793) $) 33 T ELT)) (-4130 (($ (-793) (-793) |#1|) 30 T ELT)) (-3602 (((-793) $) 38 T ELT)) (-3607 (((-560) $) 31 T ELT)) (-3605 (((-560) $) 32 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) 37 T ELT)) (-3604 (((-560) $) 39 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3746 (((-1191) $) 55 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 14 T ELT)) (-4079 (($) 16 T ELT)) (-4316 ((|#1| $ (-560) (-560)) 48 T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3599 ((|#5| $ (-560)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-533 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1249) (-560) (-560) (-385 |#1|) (-385 |#1|)) (T -533)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2206 (((-114) (-114)) 32 T ELT)) (-4300 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-2604 (($ $) 83 (|has| |#1| (-1131)) ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) 66 T ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-2207 (($ $ (-558)) 19 T ELT)) (-2208 (((-791) $) 13 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 31 T ELT)) (-2425 (((-558) $) 29 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 57 T ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) 28 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4119 (($ $ $ (-558)) 75 T ELT) (($ |#1| $ (-558)) 59 T ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2209 (($ (-661 |#1|)) 43 T ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) 24 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 62 T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 21 T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 55 T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-1724 (($ $ (-1264 (-558))) 73 T ELT) (($ $ (-558)) 67 T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) 63 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 53 T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4303 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 22 (|has| $ (-6 -4507)) ELT))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2209 ($ (-661 |#1|))) (-15 -2208 ((-791) $)) (-15 -2207 ($ $ (-558))) (-15 -2206 ((-114) (-114))))) (-1247) (-558)) (T -528)) +((-2209 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-558)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))) (-2206 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-558))))) +(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2209 ($ (-661 |#1|))) (-15 -2208 ((-791) $)) (-15 -2207 ($ $ (-558))) (-15 -2206 ((-114) (-114))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2211 (((-1165) $) 11 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2210 (((-1165) $) 13 T ELT)) (-4434 (((-1165) $) 9 T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-529) (-13 (-1113) (-10 -8 (-15 -4434 ((-1165) $)) (-15 -2211 ((-1165) $)) (-15 -2210 ((-1165) $))))) (T -529)) +((-4434 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529))))) +(-13 (-1113) (-10 -8 (-15 -4434 ((-1165) $)) (-15 -2211 ((-1165) $)) (-15 -2210 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (((-593 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-593 |#1|) "failed") $) NIL T ELT)) (-3656 (((-593 |#1|) $) NIL T ELT)) (-2010 (($ (-1297 (-593 |#1|))) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1893 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1984 (($ $ (-791)) NIL (-4039 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT) (($ $) NIL (-4039 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-947) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-854 (-947)) $) NIL (-4039 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2231 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3616 (((-593 |#1|) $) NIL T ELT) (($ $ (-947)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 (-593 |#1|)) $) NIL T ELT) (((-1201 $) $ (-947)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2230 (((-947) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1817 (((-1201 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1816 (((-1201 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-1201 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1818 (($ $ (-1201 (-593 |#1|))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-593 |#1|) (-381)) CONST)) (-2641 (($ (-947)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-854 (-947))) NIL T ELT) (((-947)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-791) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-791) "failed") $ $) NIL (-4039 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4460 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-3685 (((-1201 (-593 |#1|))) NIL T ELT)) (-1887 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1819 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3724 (((-1297 (-593 |#1|)) $) NIL T ELT) (((-709 (-593 |#1|)) (-1297 $)) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-593 |#1|)) NIL T ELT)) (-3185 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-711 $) $) NIL (-4039 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT) (((-1297 $) (-947)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3152 (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT) (($ (-593 |#1|) $) NIL T ELT))) +(((-530 |#1| |#2|) (-341 (-593 |#1|)) (-947) (-947)) (T -530)) +NIL +(-341 (-593 |#1|)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-1373 (($ $ (-558) |#4|) NIL T ELT)) (-1372 (($ $ (-558) |#5|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3596 ((|#4| $ (-558)) NIL T ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) 50 T ELT)) (-3597 ((|#1| $ (-558) (-558)) 45 T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3599 (((-791) $) 33 T ELT)) (-4126 (($ (-791) (-791) |#1|) 30 T ELT)) (-3598 (((-791) $) 38 T ELT)) (-3603 (((-558) $) 31 T ELT)) (-3601 (((-558) $) 32 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) 37 T ELT)) (-3600 (((-558) $) 39 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3742 (((-1189) $) 55 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 14 T ELT)) (-4075 (($) 16 T ELT)) (-4312 ((|#1| $ (-558) (-558)) 48 T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3595 ((|#5| $ (-558)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1247) (-558) (-558) (-385 |#1|) (-385 |#1|)) (T -531)) NIL (-57 |#1| |#4| |#5|) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) NIL T ELT)) (-4311 ((|#1| $) NIL T ELT)) (-4313 (($ $) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 70 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) NIL (|has| |#1| (-872)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1945 (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3948 (((-114) $ (-793)) NIL T ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 23 (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 21 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) 24 (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4312 ((|#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) 28 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 29 T ELT)) (-4315 (($ $) 18 T ELT) (($ $ (-793)) 32 T ELT)) (-2608 (($ $) 62 (|has| |#1| (-1133)) ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) NIL (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3912 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3949 (((-114) $) NIL T ELT)) (-3925 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3376 (((-663 |#1|) $) 27 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-4235 (((-114) $ (-793)) NIL T ELT)) (-2429 (((-560) $) 31 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-4024 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4048 (($ |#1|) NIL T ELT)) (-4232 (((-114) $ (-793)) NIL T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) 58 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4123 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3950 (((-114) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 12 T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 16 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 15 T ELT) (($ $ #3#) 20 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-1726 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4149 (((-114) $) 35 T ELT)) (-4308 (($ $) NIL T ELT)) (-4306 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) NIL T ELT)) (-4310 (($ $) 40 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 36 T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 26 T ELT)) (-4307 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-4318 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4462 (((-888) $) 50 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 9 (|has| $ (-6 -4511)) ELT))) -(((-534 |#1| |#2|) (-688 |#1|) (-1249) (-560)) (T -534)) -NIL -(-688 |#1|) -((-3598 ((|#4| |#4|) 38 T ELT)) (-3597 (((-793) |#4|) 45 T ELT)) (-3596 (((-793) |#4|) 46 T ELT)) (-3595 (((-663 |#3|) |#4|) 57 (|has| |#3| (-6 -4512)) ELT)) (-4104 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2216 ((|#4| |#4|) 61 T ELT)) (-3834 ((|#1| |#4|) 60 T ELT))) -(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3598 (|#4| |#4|)) (-15 -3597 ((-793) |#4|)) (-15 -3596 ((-793) |#4|)) (IF (|has| |#3| (-6 -4512)) (-15 -3595 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -3834 (|#1| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -4104 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -535)) -((-4104 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-3595 (*1 *2 *3) (-12 (|has| *6 (-6 -4512)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3596 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -3598 (|#4| |#4|)) (-15 -3597 ((-793) |#4|)) (-15 -3596 ((-793) |#4|)) (IF (|has| |#3| (-6 -4512)) (-15 -3595 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -3834 (|#1| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -4104 ((-3 |#4| "failed") |#4|))) -((-3598 ((|#8| |#4|) 20 T ELT)) (-3595 (((-663 |#3|) |#4|) 29 (|has| |#7| (-6 -4512)) ELT)) (-4104 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3598 (|#8| |#4|)) (-15 -4104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4512)) (-15 -3595 ((-663 |#3|) |#4|)) |%noBranch|)) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1023 |#1|) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -536)) -((-3595 (*1 *2 *3) (-12 (|has| *9 (-6 -4512)) (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1023 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-663 *6)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) (-4 *10 (-708 *7 *8 *9)))) (-4104 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1023 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1023 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) -(-10 -7 (-15 -3598 (|#8| |#4|)) (-15 -4104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4512)) (-15 -3595 ((-663 |#3|) |#4|)) |%noBranch|)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793) (-793)) NIL T ELT)) (-2583 (($ $ $) NIL T ELT)) (-3920 (($ (-616 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3609 (((-114) $) NIL T ELT)) (-2582 (($ $ (-560) (-560)) 21 T ELT)) (-2581 (($ $ (-560) (-560)) NIL T ELT)) (-2580 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2585 (($ $) NIL T ELT)) (-3611 (((-114) $) NIL T ELT)) (-2579 (($ $ (-560) (-560) $) NIL T ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-1375 (($ $ (-560) (-616 |#1| |#3|)) NIL T ELT)) (-1374 (($ $ (-560) (-616 |#1| |#2|)) NIL T ELT)) (-3839 (($ (-793) |#1|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3600 (((-616 |#1| |#3|) $ (-560)) NIL T ELT)) (-3597 (((-793) $) 33 (|has| |#1| (-571)) ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3601 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3596 (((-793) $) 35 (|has| |#1| (-571)) ELT)) (-3595 (((-663 (-616 |#1| |#2|)) $) 38 (|has| |#1| (-571)) ELT)) (-3603 (((-793) $) NIL T ELT)) (-4130 (($ (-793) (-793) |#1|) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3833 ((|#1| $) 28 (|has| |#1| (-6 (-4513 #1="*"))) ELT)) (-3607 (((-560) $) 10 T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) 13 T ELT)) (-3604 (((-560) $) NIL T ELT)) (-3612 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4108 (((-663 (-663 |#1|)) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4104 (((-3 $ #2="failed") $) 42 (|has| |#1| (-376)) ELT)) (-2584 (($ $ $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-3972 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3838 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3610 (((-114) $) NIL T ELT)) (-3834 ((|#1| $) 26 (|has| |#1| (-6 (-4513 #1#))) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3599 (((-616 |#1| |#2|) $ (-560)) NIL T ELT)) (-4462 (($ (-616 |#1| |#2|)) NIL T ELT) (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-616 |#1| |#2|) $ (-616 |#1| |#2|)) NIL T ELT) (((-616 |#1| |#3|) (-616 |#1| |#3|) $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-537 |#1| |#2| |#3|) (-708 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) (-1081) (-560) (-560)) (T -537)) -NIL -(-708 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2217 (((-663 (-1250)) $) 13 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT) (($ (-663 (-1250))) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-538) (-13 (-1115) (-10 -8 (-15 -4462 ($ (-663 (-1250)))) (-15 -2217 ((-663 (-1250)) $))))) (T -538)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-538)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-538))))) -(-13 (-1115) (-10 -8 (-15 -4462 ($ (-663 (-1250)))) (-15 -2217 ((-663 (-1250)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2218 (((-1167) $) 14 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3956 (((-520) $) 11 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 21 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-539) (-13 (-1115) (-10 -8 (-15 -3956 ((-520) $)) (-15 -2218 ((-1167) $))))) (T -539)) -((-3956 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-539))))) -(-13 (-1115) (-10 -8 (-15 -3956 ((-520) $)) (-15 -2218 ((-1167) $)))) -((-2224 (((-713 (-1258)) $) 15 T ELT)) (-2220 (((-713 (-1256)) $) 38 T ELT)) (-2222 (((-713 (-1255)) $) 29 T ELT)) (-2225 (((-713 (-564)) $) 12 T ELT)) (-2221 (((-713 (-562)) $) 42 T ELT)) (-2223 (((-713 (-561)) $) 33 T ELT)) (-2219 (((-793) $ (-131)) 54 T ELT))) -(((-540 |#1|) (-10 -8 (-15 -2219 ((-793) |#1| (-131))) (-15 -2220 ((-713 (-1256)) |#1|)) (-15 -2221 ((-713 (-562)) |#1|)) (-15 -2222 ((-713 (-1255)) |#1|)) (-15 -2223 ((-713 (-561)) |#1|)) (-15 -2224 ((-713 (-1258)) |#1|)) (-15 -2225 ((-713 (-564)) |#1|))) (-541)) (T -540)) -NIL -(-10 -8 (-15 -2219 ((-793) |#1| (-131))) (-15 -2220 ((-713 (-1256)) |#1|)) (-15 -2221 ((-713 (-562)) |#1|)) (-15 -2222 ((-713 (-1255)) |#1|)) (-15 -2223 ((-713 (-561)) |#1|)) (-15 -2224 ((-713 (-1258)) |#1|)) (-15 -2225 ((-713 (-564)) |#1|))) -((-2224 (((-713 (-1258)) $) 12 T ELT)) (-2220 (((-713 (-1256)) $) 8 T ELT)) (-2222 (((-713 (-1255)) $) 10 T ELT)) (-2225 (((-713 (-564)) $) 13 T ELT)) (-2221 (((-713 (-562)) $) 9 T ELT)) (-2223 (((-713 (-561)) $) 11 T ELT)) (-2219 (((-793) $ (-131)) 7 T ELT)) (-2226 (((-713 (-130)) $) 14 T ELT)) (-1915 (($ $) 6 T ELT))) -(((-541) (-142)) (T -541)) -((-2226 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130))))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564))))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1258))))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1255))))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562))))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))) (-2219 (*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793))))) -(-13 (-176) (-10 -8 (-15 -2226 ((-713 (-130)) $)) (-15 -2225 ((-713 (-564)) $)) (-15 -2224 ((-713 (-1258)) $)) (-15 -2223 ((-713 (-561)) $)) (-15 -2222 ((-713 (-1255)) $)) (-15 -2221 ((-713 (-562)) $)) (-15 -2220 ((-713 (-1256)) $)) (-15 -2219 ((-793) $ (-131))))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) NIL T ELT)) (-4307 ((|#1| $) NIL T ELT)) (-4309 (($ $) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 70 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) NIL (|has| |#1| (-870)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3944 (((-114) $ (-791)) NIL T ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 23 (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 21 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) 24 (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4308 ((|#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) 28 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 29 T ELT)) (-4311 (($ $) 18 T ELT) (($ $ (-791)) 32 T ELT)) (-2604 (($ $) 62 (|has| |#1| (-1131)) ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3908 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3921 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3372 (((-661 |#1|) $) 27 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-4231 (((-114) $ (-791)) NIL T ELT)) (-2425 (((-558) $) 31 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-4020 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4044 (($ |#1|) NIL T ELT)) (-4228 (((-114) $ (-791)) NIL T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) 58 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4119 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 13 T ELT) (($ $ (-791)) NIL T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3946 (((-114) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 12 T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 16 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 15 T ELT) (($ $ #3#) 20 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-1724 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4145 (((-114) $) 35 T ELT)) (-4304 (($ $) NIL T ELT)) (-4302 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) NIL T ELT)) (-4306 (($ $) 40 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 36 T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 26 T ELT)) (-4303 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-4314 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4458 (((-886) $) 50 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 9 (|has| $ (-6 -4507)) ELT))) +(((-532 |#1| |#2|) (-686 |#1|) (-1247) (-558)) (T -532)) +NIL +(-686 |#1|) +((-3594 ((|#4| |#4|) 38 T ELT)) (-3593 (((-791) |#4|) 45 T ELT)) (-3592 (((-791) |#4|) 46 T ELT)) (-3591 (((-661 |#3|) |#4|) 57 (|has| |#3| (-6 -4508)) ELT)) (-4100 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2212 ((|#4| |#4|) 61 T ELT)) (-3830 ((|#1| |#4|) 60 T ELT))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3594 (|#4| |#4|)) (-15 -3593 ((-791) |#4|)) (-15 -3592 ((-791) |#4|)) (IF (|has| |#3| (-6 -4508)) (-15 -3591 ((-661 |#3|) |#4|)) |%noBranch|) (-15 -3830 (|#1| |#4|)) (-15 -2212 (|#4| |#4|)) (-15 -4100 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -533)) +((-4100 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) (-3591 (*1 *2 *3) (-12 (|has| *6 (-6 -4508)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-661 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3594 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) +(-10 -7 (-15 -3594 (|#4| |#4|)) (-15 -3593 ((-791) |#4|)) (-15 -3592 ((-791) |#4|)) (IF (|has| |#3| (-6 -4508)) (-15 -3591 ((-661 |#3|) |#4|)) |%noBranch|) (-15 -3830 (|#1| |#4|)) (-15 -2212 (|#4| |#4|)) (-15 -4100 ((-3 |#4| "failed") |#4|))) +((-3594 ((|#8| |#4|) 20 T ELT)) (-3591 (((-661 |#3|) |#4|) 29 (|has| |#7| (-6 -4508)) ELT)) (-4100 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3594 (|#8| |#4|)) (-15 -4100 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4508)) (-15 -3591 ((-661 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|) (-1021 |#1|) (-385 |#5|) (-385 |#5|) (-706 |#5| |#6| |#7|)) (T -534)) +((-3591 (*1 *2 *3) (-12 (|has| *9 (-6 -4508)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1021 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-661 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-706 *4 *5 *6)) (-4 *10 (-706 *7 *8 *9)))) (-4100 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1021 *4)) (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3594 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1021 *4)) (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) +(-10 -7 (-15 -3594 (|#8| |#4|)) (-15 -4100 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4508)) (-15 -3591 ((-661 |#3|) |#4|)) |%noBranch|)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791) (-791)) NIL T ELT)) (-2579 (($ $ $) NIL T ELT)) (-3916 (($ (-614 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2578 (($ $ (-558) (-558)) 21 T ELT)) (-2577 (($ $ (-558) (-558)) NIL T ELT)) (-2576 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2581 (($ $) NIL T ELT)) (-3607 (((-114) $) NIL T ELT)) (-2575 (($ $ (-558) (-558) $) NIL T ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1373 (($ $ (-558) (-614 |#1| |#3|)) NIL T ELT)) (-1372 (($ $ (-558) (-614 |#1| |#2|)) NIL T ELT)) (-3835 (($ (-791) |#1|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3596 (((-614 |#1| |#3|) $ (-558)) NIL T ELT)) (-3593 (((-791) $) 33 (|has| |#1| (-569)) ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3597 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3592 (((-791) $) 35 (|has| |#1| (-569)) ELT)) (-3591 (((-661 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-3599 (((-791) $) NIL T ELT)) (-4126 (($ (-791) (-791) |#1|) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3829 ((|#1| $) 28 (|has| |#1| (-6 (-4509 #1="*"))) ELT)) (-3603 (((-558) $) 10 T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) 13 T ELT)) (-3600 (((-558) $) NIL T ELT)) (-3608 (($ (-661 (-661 |#1|))) NIL T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4104 (((-661 (-661 |#1|)) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4100 (((-3 $ #2="failed") $) 42 (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-3968 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3834 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3830 ((|#1| $) 26 (|has| |#1| (-6 (-4509 #1#))) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3595 (((-614 |#1| |#2|) $ (-558)) NIL T ELT)) (-4458 (($ (-614 |#1| |#2|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL T ELT) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-535 |#1| |#2| |#3|) (-706 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1079) (-558) (-558)) (T -535)) +NIL +(-706 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2213 (((-661 (-1248)) $) 13 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (($ (-661 (-1248))) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-536) (-13 (-1113) (-10 -8 (-15 -4458 ($ (-661 (-1248)))) (-15 -2213 ((-661 (-1248)) $))))) (T -536)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-536)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-536))))) +(-13 (-1113) (-10 -8 (-15 -4458 ($ (-661 (-1248)))) (-15 -2213 ((-661 (-1248)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2214 (((-1165) $) 14 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3952 (((-518) $) 11 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 21 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-537) (-13 (-1113) (-10 -8 (-15 -3952 ((-518) $)) (-15 -2214 ((-1165) $))))) (T -537)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-537))))) +(-13 (-1113) (-10 -8 (-15 -3952 ((-518) $)) (-15 -2214 ((-1165) $)))) +((-2220 (((-711 (-1256)) $) 15 T ELT)) (-2216 (((-711 (-1254)) $) 38 T ELT)) (-2218 (((-711 (-1253)) $) 29 T ELT)) (-2221 (((-711 (-562)) $) 12 T ELT)) (-2217 (((-711 (-560)) $) 42 T ELT)) (-2219 (((-711 (-559)) $) 33 T ELT)) (-2215 (((-791) $ (-131)) 54 T ELT))) +(((-538 |#1|) (-10 -8 (-15 -2215 ((-791) |#1| (-131))) (-15 -2216 ((-711 (-1254)) |#1|)) (-15 -2217 ((-711 (-560)) |#1|)) (-15 -2218 ((-711 (-1253)) |#1|)) (-15 -2219 ((-711 (-559)) |#1|)) (-15 -2220 ((-711 (-1256)) |#1|)) (-15 -2221 ((-711 (-562)) |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -2215 ((-791) |#1| (-131))) (-15 -2216 ((-711 (-1254)) |#1|)) (-15 -2217 ((-711 (-560)) |#1|)) (-15 -2218 ((-711 (-1253)) |#1|)) (-15 -2219 ((-711 (-559)) |#1|)) (-15 -2220 ((-711 (-1256)) |#1|)) (-15 -2221 ((-711 (-562)) |#1|))) +((-2220 (((-711 (-1256)) $) 12 T ELT)) (-2216 (((-711 (-1254)) $) 8 T ELT)) (-2218 (((-711 (-1253)) $) 10 T ELT)) (-2221 (((-711 (-562)) $) 13 T ELT)) (-2217 (((-711 (-560)) $) 9 T ELT)) (-2219 (((-711 (-559)) $) 11 T ELT)) (-2215 (((-791) $ (-131)) 7 T ELT)) (-2222 (((-711 (-130)) $) 14 T ELT)) (-1913 (($ $) 6 T ELT))) +(((-539) (-142)) (T -539)) +((-2222 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-130))))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-562))))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1256))))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-559))))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1253))))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-560))))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1254))))) (-2215 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-791))))) +(-13 (-176) (-10 -8 (-15 -2222 ((-711 (-130)) $)) (-15 -2221 ((-711 (-562)) $)) (-15 -2220 ((-711 (-1256)) $)) (-15 -2219 ((-711 (-559)) $)) (-15 -2218 ((-711 (-1253)) $)) (-15 -2217 ((-711 (-560)) $)) (-15 -2216 ((-711 (-1254)) $)) (-15 -2215 ((-791) $ (-131))))) (((-176) . T)) -((-2229 (((-1203 |#1|) (-793)) 114 T ELT)) (-3836 (((-1299 |#1|) (-1299 |#1|) (-949)) 107 T ELT)) (-2227 (((-1305) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) |#1|) 122 T ELT)) (-2231 (((-1299 |#1|) (-1299 |#1|) (-793)) 53 T ELT)) (-3481 (((-1299 |#1|) (-949)) 109 T ELT)) (-2233 (((-1299 |#1|) (-1299 |#1|) (-560)) 30 T ELT)) (-2228 (((-1203 |#1|) (-1299 |#1|)) 115 T ELT)) (-2237 (((-1299 |#1|) (-949)) 136 T ELT)) (-2235 (((-114) (-1299 |#1|)) 119 T ELT)) (-3620 (((-1299 |#1|) (-1299 |#1|) (-949)) 99 T ELT)) (-2238 (((-1203 |#1|) (-1299 |#1|)) 130 T ELT)) (-2234 (((-949) (-1299 |#1|)) 95 T ELT)) (-2888 (((-1299 |#1|) (-1299 |#1|)) 38 T ELT)) (-2645 (((-1299 |#1|) (-949) (-949)) 139 T ELT)) (-2232 (((-1299 |#1|) (-1299 |#1|) (-1152) (-1152)) 29 T ELT)) (-2230 (((-1299 |#1|) (-1299 |#1|) (-793) (-1152)) 54 T ELT)) (-2236 (((-1299 (-1299 |#1|)) (-949)) 135 T ELT)) (-4465 (((-1299 |#1|) (-1299 |#1|) (-1299 |#1|)) 120 T ELT)) (** (((-1299 |#1|) (-1299 |#1|) (-560)) 67 T ELT)) (* (((-1299 |#1|) (-1299 |#1|) (-1299 |#1|)) 31 T ELT))) -(((-542 |#1|) (-10 -7 (-15 -2227 ((-1305) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) |#1|)) (-15 -3481 ((-1299 |#1|) (-949))) (-15 -2645 ((-1299 |#1|) (-949) (-949))) (-15 -2228 ((-1203 |#1|) (-1299 |#1|))) (-15 -2229 ((-1203 |#1|) (-793))) (-15 -2230 ((-1299 |#1|) (-1299 |#1|) (-793) (-1152))) (-15 -2231 ((-1299 |#1|) (-1299 |#1|) (-793))) (-15 -2232 ((-1299 |#1|) (-1299 |#1|) (-1152) (-1152))) (-15 -2233 ((-1299 |#1|) (-1299 |#1|) (-560))) (-15 ** ((-1299 |#1|) (-1299 |#1|) (-560))) (-15 * ((-1299 |#1|) (-1299 |#1|) (-1299 |#1|))) (-15 -4465 ((-1299 |#1|) (-1299 |#1|) (-1299 |#1|))) (-15 -3620 ((-1299 |#1|) (-1299 |#1|) (-949))) (-15 -3836 ((-1299 |#1|) (-1299 |#1|) (-949))) (-15 -2888 ((-1299 |#1|) (-1299 |#1|))) (-15 -2234 ((-949) (-1299 |#1|))) (-15 -2235 ((-114) (-1299 |#1|))) (-15 -2236 ((-1299 (-1299 |#1|)) (-949))) (-15 -2237 ((-1299 |#1|) (-949))) (-15 -2238 ((-1203 |#1|) (-1299 |#1|)))) (-363)) (T -542)) -((-2238 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1299 (-1299 *4))) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-542 *4)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-949)) (-5 *1 (-542 *4)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-949)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-949)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-4465 (*1 *2 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2232 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1152)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2230 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1299 *5)) (-5 *3 (-793)) (-5 *4 (-1152)) (-4 *5 (-363)) (-5 *1 (-542 *5)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)))) (-2645 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) (-4 *4 (-363)) (-5 *2 (-1305)) (-5 *1 (-542 *4))))) -(-10 -7 (-15 -2227 ((-1305) (-1299 (-663 (-2 (|:| -3908 |#1|) (|:| -2645 (-1152))))) |#1|)) (-15 -3481 ((-1299 |#1|) (-949))) (-15 -2645 ((-1299 |#1|) (-949) (-949))) (-15 -2228 ((-1203 |#1|) (-1299 |#1|))) (-15 -2229 ((-1203 |#1|) (-793))) (-15 -2230 ((-1299 |#1|) (-1299 |#1|) (-793) (-1152))) (-15 -2231 ((-1299 |#1|) (-1299 |#1|) (-793))) (-15 -2232 ((-1299 |#1|) (-1299 |#1|) (-1152) (-1152))) (-15 -2233 ((-1299 |#1|) (-1299 |#1|) (-560))) (-15 ** ((-1299 |#1|) (-1299 |#1|) (-560))) (-15 * ((-1299 |#1|) (-1299 |#1|) (-1299 |#1|))) (-15 -4465 ((-1299 |#1|) (-1299 |#1|) (-1299 |#1|))) (-15 -3620 ((-1299 |#1|) (-1299 |#1|) (-949))) (-15 -3836 ((-1299 |#1|) (-1299 |#1|) (-949))) (-15 -2888 ((-1299 |#1|) (-1299 |#1|))) (-15 -2234 ((-949) (-1299 |#1|))) (-15 -2235 ((-114) (-1299 |#1|))) (-15 -2236 ((-1299 (-1299 |#1|)) (-949))) (-15 -2237 ((-1299 |#1|) (-949))) (-15 -2238 ((-1203 |#1|) (-1299 |#1|)))) -((-2224 (((-713 (-1258)) $) NIL T ELT)) (-2220 (((-713 (-1256)) $) NIL T ELT)) (-2222 (((-713 (-1255)) $) NIL T ELT)) (-2225 (((-713 (-564)) $) NIL T ELT)) (-2221 (((-713 (-562)) $) NIL T ELT)) (-2223 (((-713 (-561)) $) NIL T ELT)) (-2219 (((-793) $ (-131)) NIL T ELT)) (-2226 (((-713 (-130)) $) 26 T ELT)) (-2239 (((-1152) $ (-1152)) 31 T ELT)) (-3925 (((-1152) $) 30 T ELT)) (-3043 (((-114) $) 20 T ELT)) (-2241 (($ (-402)) 14 T ELT) (($ (-1191)) 16 T ELT)) (-2240 (((-114) $) 27 T ELT)) (-4462 (((-888) $) 34 T ELT)) (-1915 (($ $) 28 T ELT))) -(((-543) (-13 (-541) (-632 (-888)) (-10 -8 (-15 -2241 ($ (-402))) (-15 -2241 ($ (-1191))) (-15 -2240 ((-114) $)) (-15 -3043 ((-114) $)) (-15 -3925 ((-1152) $)) (-15 -2239 ((-1152) $ (-1152)))))) (T -543)) -((-2241 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))) (-2241 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-543)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-543)))) (-2239 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-543))))) -(-13 (-541) (-632 (-888)) (-10 -8 (-15 -2241 ($ (-402))) (-15 -2241 ($ (-1191))) (-15 -2240 ((-114) $)) (-15 -3043 ((-114) $)) (-15 -3925 ((-1152) $)) (-15 -2239 ((-1152) $ (-1152))))) -((-2243 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2242 (((-1 |#1| |#1|)) 10 T ELT))) -(((-544 |#1|) (-10 -7 (-15 -2242 ((-1 |#1| |#1|))) (-15 -2243 ((-1 |#1| |#1|) |#1|))) (-13 (-748) (-25))) (T -544)) -((-2243 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))) (-2242 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) -(-10 -7 (-15 -2242 ((-1 |#1| |#1|))) (-15 -2243 ((-1 |#1| |#1|) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 |#1| (-793))) $) NIL T ELT)) (-2887 (($ $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-3380 (($ (-793) |#1|) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4474 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2209 ((|#1| $) NIL T ELT)) (-3678 (((-793) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 27 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT))) -(((-545 |#1|) (-13 (-817) (-523 (-793) |#1|)) (-872)) (T -545)) -NIL -(-13 (-817) (-523 (-793) |#1|)) -((-2245 (((-663 |#2|) (-1203 |#1|) |#3|) 98 T ELT)) (-2246 (((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1203 |#1|)) (-1203 |#1|))) 114 T ELT)) (-2244 (((-1203 |#1|) (-711 |#1|)) 110 T ELT))) -(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-1203 |#1|) (-711 |#1|))) (-15 -2245 ((-663 |#2|) (-1203 |#1|) |#3|)) (-15 -2246 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1203 |#1|)) (-1203 |#1|))))) (-376) (-376) (-13 (-376) (-871))) (T -546)) -((-2246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1203 *6)) (-1203 *6))) (-4 *6 (-376)) (-5 *2 (-663 (-2 (|:| |outval| *7) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *7)))))) (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-871))))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871))))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1203 *4)) (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-871)))))) -(-10 -7 (-15 -2244 ((-1203 |#1|) (-711 |#1|))) (-15 -2245 ((-663 |#2|) (-1203 |#1|) |#3|)) (-15 -2246 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1203 |#1|)) (-1203 |#1|))))) -((-3040 (((-713 (-1258)) $ (-1258)) NIL T ELT)) (-3041 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3039 (((-793) $ (-131)) 39 T ELT)) (-3042 (((-713 (-130)) $ (-130)) 40 T ELT)) (-2224 (((-713 (-1258)) $) NIL T ELT)) (-2220 (((-713 (-1256)) $) NIL T ELT)) (-2222 (((-713 (-1255)) $) NIL T ELT)) (-2225 (((-713 (-564)) $) NIL T ELT)) (-2221 (((-713 (-562)) $) NIL T ELT)) (-2223 (((-713 (-561)) $) NIL T ELT)) (-2219 (((-793) $ (-131)) 35 T ELT)) (-2226 (((-713 (-130)) $) 37 T ELT)) (-2842 (((-114) $) 27 T ELT)) (-2843 (((-713 $) (-593) (-984)) 18 T ELT) (((-713 $) (-505) (-984)) 24 T ELT)) (-4462 (((-888) $) 48 T ELT)) (-1915 (($ $) 42 T ELT))) -(((-547) (-13 (-789 (-593)) (-632 (-888)) (-10 -8 (-15 -2843 ((-713 $) (-505) (-984)))))) (T -547)) -((-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-505)) (-5 *4 (-984)) (-5 *2 (-713 (-547))) (-5 *1 (-547))))) -(-13 (-789 (-593)) (-632 (-888)) (-10 -8 (-15 -2843 ((-713 $) (-505) (-984))))) -((-3012 (((-866 (-560))) 12 T ELT)) (-3011 (((-866 (-560))) 14 T ELT)) (-2996 (((-856 (-560))) 9 T ELT))) -(((-548) (-10 -7 (-15 -2996 ((-856 (-560)))) (-15 -3012 ((-866 (-560)))) (-15 -3011 ((-866 (-560)))))) (T -548)) -((-3011 (*1 *2) (-12 (-5 *2 (-866 (-560))) (-5 *1 (-548)))) (-3012 (*1 *2) (-12 (-5 *2 (-866 (-560))) (-5 *1 (-548)))) (-2996 (*1 *2) (-12 (-5 *2 (-856 (-560))) (-5 *1 (-548))))) -(-10 -7 (-15 -2996 ((-856 (-560)))) (-15 -3012 ((-866 (-560)))) (-15 -3011 ((-866 (-560))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2250 (((-1191) $) 55 T ELT)) (-3764 (((-114) $) 51 T ELT)) (-3760 (((-1209) $) 52 T ELT)) (-3765 (((-114) $) 49 T ELT)) (-4049 (((-1191) $) 50 T ELT)) (-2249 (($ (-1191)) 56 T ELT)) (-3767 (((-114) $) NIL T ELT)) (-3769 (((-114) $) NIL T ELT)) (-3766 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2252 (($ $ (-663 (-1209))) 21 T ELT)) (-2255 (((-51) $) 23 T ELT)) (-3763 (((-114) $) NIL T ELT)) (-3759 (((-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2628 (($ $ (-663 (-1209)) (-1209)) 73 T ELT)) (-3762 (((-114) $) NIL T ELT)) (-3758 (((-229) $) NIL T ELT)) (-2251 (($ $) 44 T ELT)) (-3757 (((-888) $) NIL T ELT)) (-3770 (((-114) $ $) NIL T ELT)) (-4316 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-3761 (((-663 $) $) 30 T ELT)) (-2248 (((-1209) (-663 $)) 57 T ELT)) (-4488 (($ (-1191)) NIL T ELT) (($ (-1209)) 19 T ELT) (($ (-560)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-888)) NIL T ELT) (($ (-663 $)) 65 T ELT) (((-1135) $) 12 T ELT) (($ (-1135)) 13 T ELT)) (-2247 (((-1209) (-1209) (-663 $)) 60 T ELT)) (-4462 (((-888) $) 54 T ELT)) (-3755 (($ $) 59 T ELT)) (-3756 (($ $) 58 T ELT)) (-2253 (($ $ (-663 $)) 66 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3768 (((-114) $) 29 T ELT)) (-3145 (($) 9 T CONST)) (-3151 (($) 11 T CONST)) (-3540 (((-114) $ $) 74 T ELT)) (-4465 (($ $ $) 82 T ELT)) (-4355 (($ $ $) 75 T ELT)) (** (($ $ (-793)) 81 T ELT) (($ $ (-560)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4473 (((-560) $) NIL T ELT))) -(((-549) (-13 (-1136 (-1191) (-1209) (-560) (-229) (-888)) (-633 (-1135)) (-10 -8 (-15 -2255 ((-51) $)) (-15 -4488 ($ (-1135))) (-15 -2253 ($ $ (-663 $))) (-15 -2628 ($ $ (-663 (-1209)) (-1209))) (-15 -2252 ($ $ (-663 (-1209)))) (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 -4465 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 0 ($) -4468) (-15 1 ($) -4468) (-15 -2251 ($ $)) (-15 -2250 ((-1191) $)) (-15 -2249 ($ (-1191))) (-15 -2248 ((-1209) (-663 $))) (-15 -2247 ((-1209) (-1209) (-663 $)))))) (T -549)) -((-2255 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-549)))) (-2253 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549)))) (-2628 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-1209)) (-5 *1 (-549)))) (-2252 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-549)))) (-4355 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-4465 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-549)))) (-3145 (*1 *1) (-5 *1 (-549))) (-3151 (*1 *1) (-5 *1 (-549))) (-2251 (*1 *1 *1) (-5 *1 (-549))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-549)))) (-2249 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-549)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1209)) (-5 *1 (-549)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-549))) (-5 *1 (-549))))) -(-13 (-1136 (-1191) (-1209) (-560) (-229) (-888)) (-633 (-1135)) (-10 -8 (-15 -2255 ((-51) $)) (-15 -4488 ($ (-1135))) (-15 -2253 ($ $ (-663 $))) (-15 -2628 ($ $ (-663 (-1209)) (-1209))) (-15 -2252 ($ $ (-663 (-1209)))) (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 -4465 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 (-3145) ($) -4468) (-15 (-3151) ($) -4468) (-15 -2251 ($ $)) (-15 -2250 ((-1191) $)) (-15 -2249 ($ (-1191))) (-15 -2248 ((-1209) (-663 $))) (-15 -2247 ((-1209) (-1209) (-663 $))))) -((-2254 (((-549) (-1209)) 15 T ELT)) (-2255 ((|#1| (-549)) 20 T ELT))) -(((-550 |#1|) (-10 -7 (-15 -2254 ((-549) (-1209))) (-15 -2255 (|#1| (-549)))) (-1249)) (T -550)) -((-2255 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1249)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-549)) (-5 *1 (-550 *4)) (-4 *4 (-1249))))) -(-10 -7 (-15 -2254 ((-549) (-1209))) (-15 -2255 (|#1| (-549)))) -((-3959 ((|#2| |#2|) 17 T ELT)) (-3957 ((|#2| |#2|) 13 T ELT)) (-3960 ((|#2| |#2| (-560) (-560)) 20 T ELT)) (-3958 ((|#2| |#2|) 15 T ELT))) -(((-551 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3960 (|#2| |#2| (-560) (-560)))) (-13 (-571) (-149)) (-1292 |#1|)) (T -551)) -((-3960 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1292 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3))))) -(-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3960 (|#2| |#2| (-560) (-560)))) -((-2258 (((-663 (-305 (-976 |#2|))) (-663 |#2|) (-663 (-1209))) 32 T ELT)) (-2256 (((-663 |#2|) (-976 |#1|) |#3|) 54 T ELT) (((-663 |#2|) (-1203 |#1|) |#3|) 53 T ELT)) (-2257 (((-663 (-663 |#2|)) (-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209)) |#3|) 106 T ELT))) -(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2256 ((-663 |#2|) (-1203 |#1|) |#3|)) (-15 -2256 ((-663 |#2|) (-976 |#1|) |#3|)) (-15 -2257 ((-663 (-663 |#2|)) (-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209)) |#3|)) (-15 -2258 ((-663 (-305 (-976 |#2|))) (-663 |#2|) (-663 (-1209))))) (-466) (-376) (-13 (-376) (-871))) (T -552)) -((-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1209))) (-4 *6 (-376)) (-5 *2 (-663 (-305 (-976 *6)))) (-5 *1 (-552 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-13 (-376) (-871))))) (-2257 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) (-4 *6 (-466)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-871))))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-976 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871))))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871)))))) -(-10 -7 (-15 -2256 ((-663 |#2|) (-1203 |#1|) |#3|)) (-15 -2256 ((-663 |#2|) (-976 |#1|) |#3|)) (-15 -2257 ((-663 (-663 |#2|)) (-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209)) |#3|)) (-15 -2258 ((-663 (-305 (-976 |#2|))) (-663 |#2|) (-663 (-1209))))) -((-2261 ((|#2| |#2| |#1|) 17 T ELT)) (-2259 ((|#2| (-663 |#2|)) 30 T ELT)) (-2260 ((|#2| (-663 |#2|)) 51 T ELT))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2259 (|#2| (-663 |#2|))) (-15 -2260 (|#2| (-663 |#2|))) (-15 -2261 (|#2| |#2| |#1|))) (-319) (-1275 |#1|) |#1| (-1 |#1| |#1| (-793))) (T -553)) -((-2261 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1275 *3)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) -(-10 -7 (-15 -2259 (|#2| (-663 |#2|))) (-15 -2260 (|#2| (-663 |#2|))) (-15 -2261 (|#2| |#2| |#1|))) -((-4248 (((-419 (-1203 |#4|)) (-1203 |#4|) (-1 (-419 (-1203 |#3|)) (-1203 |#3|))) 89 T ELT) (((-419 |#4|) |#4| (-1 (-419 (-1203 |#3|)) (-1203 |#3|))) 212 T ELT))) -(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4| (-1 (-419 (-1203 |#3|)) (-1203 |#3|)))) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|) (-1 (-419 (-1203 |#3|)) (-1203 |#3|))))) (-872) (-817) (-13 (-319) (-149)) (-980 |#3| |#2| |#1|)) (T -554)) -((-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-872)) (-4 *6 (-817)) (-4 *8 (-980 *7 *6 *5)) (-5 *2 (-419 (-1203 *8))) (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1203 *8)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-872)) (-4 *6 (-817)) (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3)) (-4 *3 (-980 *7 *6 *5))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4| (-1 (-419 (-1203 |#3|)) (-1203 |#3|)))) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|) (-1 (-419 (-1203 |#3|)) (-1203 |#3|))))) -((-3959 ((|#4| |#4|) 74 T ELT)) (-3957 ((|#4| |#4|) 70 T ELT)) (-3960 ((|#4| |#4| (-560) (-560)) 76 T ELT)) (-3958 ((|#4| |#4|) 72 T ELT))) -(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| |#4|)) (-15 -3958 (|#4| |#4|)) (-15 -3959 (|#4| |#4|)) (-15 -3960 (|#4| |#4| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1275 |#1|) (-746 |#1| |#2|) (-1292 |#3|)) (T -555)) -((-3960 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-4 *5 (-1275 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) (-4 *2 (-1292 *6)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5))))) -(-10 -7 (-15 -3957 (|#4| |#4|)) (-15 -3958 (|#4| |#4|)) (-15 -3959 (|#4| |#4|)) (-15 -3960 (|#4| |#4| (-560) (-560)))) -((-3959 ((|#2| |#2|) 27 T ELT)) (-3957 ((|#2| |#2|) 23 T ELT)) (-3960 ((|#2| |#2| (-560) (-560)) 29 T ELT)) (-3958 ((|#2| |#2|) 25 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3960 (|#2| |#2| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1292 |#1|)) (T -556)) -((-3960 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-5 *1 (-556 *4 *2)) (-4 *2 (-1292 *4)))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1292 *3)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1292 *3)))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1292 *3))))) -(-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -3960 (|#2| |#2| (-560) (-560)))) -((-2262 (((-3 (-560) #1="failed") |#2| |#1| (-1 (-3 (-560) #1#) |#1|)) 18 T ELT) (((-3 (-560) #1#) |#2| |#1| (-560) (-1 (-3 (-560) #1#) |#1|)) 14 T ELT) (((-3 (-560) #1#) |#2| (-560) (-1 (-3 (-560) #1#) |#1|)) 30 T ELT))) -(((-557 |#1| |#2|) (-10 -7 (-15 -2262 ((-3 (-560) #1="failed") |#2| (-560) (-1 (-3 (-560) #1#) |#1|))) (-15 -2262 ((-3 (-560) #1#) |#2| |#1| (-560) (-1 (-3 (-560) #1#) |#1|))) (-15 -2262 ((-3 (-560) #1#) |#2| |#1| (-1 (-3 (-560) #1#) |#1|)))) (-1081) (-1275 |#1|)) (T -557)) -((-2262 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) #1="failed") *4)) (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1275 *4)))) (-2262 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) #1#) *4)) (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1275 *4)))) (-2262 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-560) #1#) *5)) (-4 *5 (-1081)) (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1275 *5))))) -(-10 -7 (-15 -2262 ((-3 (-560) #1="failed") |#2| (-560) (-1 (-3 (-560) #1#) |#1|))) (-15 -2262 ((-3 (-560) #1#) |#2| |#1| (-560) (-1 (-3 (-560) #1#) |#1|))) (-15 -2262 ((-3 (-560) #1#) |#2| |#1| (-1 (-3 (-560) #1#) |#1|)))) -((-2271 (($ $ $) 87 T ELT)) (-4487 (((-419 $) $) 50 T ELT)) (-3661 (((-3 (-560) "failed") $) 62 T ELT)) (-3660 (((-560) $) 40 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 80 T ELT)) (-3510 (((-114) $) 24 T ELT)) (-3509 (((-421 (-560)) $) 78 T ELT)) (-4239 (((-114) $) 53 T ELT)) (-2264 (($ $ $ $) 94 T ELT)) (-1495 (($ $ $) 60 T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 75 T ELT)) (-3951 (((-713 $) $) 70 T ELT)) (-2268 (($ $) 22 T ELT)) (-2263 (($ $ $) 92 T ELT)) (-3952 (($) 63 T ELT)) (-1493 (($ $) 56 T ELT)) (-4248 (((-419 $) $) 48 T ELT)) (-3161 (((-114) $) 15 T ELT)) (-1799 (((-793) $) 30 T ELT)) (-4274 (($ $) 11 T ELT) (($ $ (-793)) NIL T ELT)) (-3906 (($ $) 16 T ELT)) (-4488 (((-560) $) NIL T ELT) (((-549) $) 39 T ELT) (((-916 (-560)) $) 43 T ELT) (((-391) $) 33 T ELT) (((-229) $) 36 T ELT)) (-3614 (((-793)) 9 T ELT)) (-2273 (((-114) $ $) 19 T ELT)) (-3590 (($ $ $) 58 T ELT))) -(((-558 |#1|) (-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2264 (|#1| |#1| |#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -2273 ((-114) |#1| |#1|)) (-15 -3161 ((-114) |#1|)) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -3661 ((-3 (-560) "failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -4488 ((-560) |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4239 ((-114) |#1|)) (-15 -3614 ((-793)))) (-559)) (T -558)) -((-3614 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559))))) -(-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2264 (|#1| |#1| |#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -2273 ((-114) |#1| |#1|)) (-15 -3161 ((-114) |#1|)) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -3661 ((-3 (-560) "failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -4488 ((-560) |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -1799 ((-793) |#1|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4239 ((-114) |#1|)) (-15 -3614 ((-793)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-2271 (($ $ $) 99 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-2266 (($ $ $ $) 88 T ELT)) (-4291 (($ $) 63 T ELT)) (-4487 (((-419 $) $) 64 T ELT)) (-1800 (((-114) $ $) 142 T ELT)) (-4139 (((-560) $) 131 T ELT)) (-2844 (($ $ $) 102 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) "failed") $) 123 T ELT)) (-3660 (((-560) $) 124 T ELT)) (-3049 (($ $ $) 146 T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 121 T ELT) (((-711 (-560)) (-711 $)) 120 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 96 T ELT)) (-3510 (((-114) $) 98 T ELT)) (-3509 (((-421 (-560)) $) 97 T ELT)) (-3481 (($) 95 T ELT) (($ $) 94 T ELT)) (-3048 (($ $ $) 145 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 140 T ELT)) (-4239 (((-114) $) 65 T ELT)) (-2264 (($ $ $ $) 86 T ELT)) (-2272 (($ $ $) 100 T ELT)) (-3690 (((-114) $) 133 T ELT)) (-1495 (($ $ $) 111 T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 114 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3160 (((-114) $) 106 T ELT)) (-3951 (((-713 $) $) 108 T ELT)) (-3691 (((-114) $) 132 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 149 T ELT)) (-2265 (($ $ $ $) 87 T ELT)) (-3016 (($ $ $) 139 T ELT)) (-3344 (($ $ $) 138 T ELT)) (-2268 (($ $) 90 T ELT)) (-4349 (($ $) 103 T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 119 T ELT) (((-711 (-560)) (-1299 $)) 118 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2263 (($ $ $) 85 T ELT)) (-3952 (($) 107 T CONST)) (-2270 (($ $) 92 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1493 (($ $) 112 T ELT)) (-4248 (((-419 $) $) 62 T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 147 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 141 T ELT)) (-3161 (((-114) $) 105 T ELT)) (-1799 (((-793) $) 143 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 144 T ELT)) (-4274 (($ $) 129 T ELT) (($ $ (-793)) 127 T ELT)) (-2269 (($ $) 91 T ELT)) (-3906 (($ $) 93 T ELT)) (-4488 (((-560) $) 125 T ELT) (((-549) $) 116 T ELT) (((-916 (-560)) $) 115 T ELT) (((-391) $) 110 T ELT) (((-229) $) 109 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-560)) 122 T ELT)) (-3614 (((-793)) 37 T CONST)) (-2273 (((-114) $ $) 101 T ELT)) (-3590 (($ $ $) 113 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3181 (($) 104 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-2267 (($ $ $ $) 89 T ELT)) (-3889 (($ $) 130 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $) 128 T ELT) (($ $ (-793)) 126 T ELT)) (-3051 (((-114) $ $) 137 T ELT)) (-3052 (((-114) $ $) 135 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 136 T ELT)) (-3172 (((-114) $ $) 134 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-560) $) 117 T ELT))) -(((-559) (-142)) (T -559)) -((-3160 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-3181 (*1 *1) (-4 *1 (-559))) (-4349 (*1 *1 *1) (-4 *1 (-559))) (-2844 (*1 *1 *1 *1) (-4 *1 (-559))) (-2273 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-2272 (*1 *1 *1 *1) (-4 *1 (-559))) (-2271 (*1 *1 *1 *1) (-4 *1 (-559))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-3481 (*1 *1) (-4 *1 (-559))) (-3481 (*1 *1 *1) (-4 *1 (-559))) (-3906 (*1 *1 *1) (-4 *1 (-559))) (-2270 (*1 *1 *1) (-4 *1 (-559))) (-2269 (*1 *1 *1) (-4 *1 (-559))) (-2268 (*1 *1 *1) (-4 *1 (-559))) (-2267 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2266 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2265 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2264 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2263 (*1 *1 *1 *1) (-4 *1 (-559)))) -(-13 (-1254) (-319) (-844) (-240) (-633 (-560)) (-1070 (-560)) (-660 (-560)) (-633 (-549)) (-633 (-916 (-560))) (-912 (-560)) (-145) (-1052) (-149) (-1184) (-10 -8 (-15 -3160 ((-114) $)) (-15 -3161 ((-114) $)) (-6 -4510) (-15 -3181 ($)) (-15 -4349 ($ $)) (-15 -2844 ($ $ $)) (-15 -2273 ((-114) $ $)) (-15 -2272 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $)) (-15 -3481 ($)) (-15 -3481 ($ $)) (-15 -3906 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $ $ $)) (-15 -2266 ($ $ $ $)) (-15 -2265 ($ $ $ $)) (-15 -2264 ($ $ $ $)) (-15 -2263 ($ $ $)) (-6 -4509))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-145) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-549)) . T) ((-633 (-560)) . T) ((-633 (-916 (-560))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1=(-560)) . T) ((-670 $) . T) ((-662 $) . T) ((-660 #1#) . T) ((-739 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-844) . T) ((-871) . T) ((-872) . T) ((-875) . T) ((-912 (-560)) . T) ((-951) . T) ((-1052) . T) ((-1070 (-560)) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) . T) ((-1249) . T) ((-1254) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 28 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 95 T ELT)) (-2287 (($ $) 96 T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2271 (($ $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2266 (($ $ $ $) 50 T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL T ELT)) (-2844 (($ $ $) 89 T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) "failed") $) NIL T ELT)) (-3660 (((-560) $) NIL T ELT)) (-3049 (($ $ $) 51 T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 72 T ELT) (((-711 (-560)) (-711 $)) 68 T ELT)) (-3973 (((-3 $ "failed") $) 92 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3510 (((-114) $) NIL T ELT)) (-3509 (((-421 (-560)) $) NIL T ELT)) (-3481 (($) 74 T ELT) (($ $) 75 T ELT)) (-3048 (($ $ $) 88 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2264 (($ $ $ $) NIL T ELT)) (-2272 (($ $ $) 65 T ELT)) (-3690 (((-114) $) 41 T ELT)) (-1495 (($ $ $) NIL T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL T ELT)) (-2655 (((-114) $) 29 T ELT)) (-3160 (((-114) $) 82 T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-3691 (((-114) $) 7 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2265 (($ $ $ $) 52 T ELT)) (-3016 (($ $ $) 85 T ELT)) (-3344 (($ $ $) 84 T ELT)) (-2268 (($ $) NIL T ELT)) (-4349 (($ $) 47 T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) 64 T ELT)) (-2263 (($ $ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2270 (($ $) 35 T ELT)) (-3747 (((-1152) $) 39 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 127 T ELT)) (-3648 (($ $ $) 93 T ELT) (($ (-663 $)) NIL T ELT)) (-1493 (($ $) NIL T ELT)) (-4248 (((-419 $) $) 113 T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) 111 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) 83 T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 87 T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2269 (($ $) 37 T ELT)) (-3906 (($ $) 33 T ELT)) (-4488 (((-560) $) 46 T ELT) (((-549) $) 61 T ELT) (((-916 (-560)) $) NIL T ELT) (((-391) $) 55 T ELT) (((-229) $) 58 T ELT) (((-1191) $) 62 T ELT)) (-4462 (((-888) $) 44 T ELT) (($ (-560)) 45 T ELT) (($ $) NIL T ELT) (($ (-560)) 45 T ELT)) (-3614 (((-793)) NIL T CONST)) (-2273 (((-114) $ $) NIL T ELT)) (-3590 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (($) 32 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-2267 (($ $ $ $) 49 T ELT)) (-3889 (($ $) 73 T ELT)) (-3145 (($) 30 T CONST)) (-3151 (($) 31 T CONST)) (-2982 (((-1191) $) 23 T ELT) (((-1191) $ (-114)) 24 T ELT) (((-1305) (-847) $) 25 T ELT) (((-1305) (-847) $ (-114)) 26 T ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3051 (((-114) $ $) 48 T ELT)) (-3052 (((-114) $ $) 76 T ELT)) (-3540 (((-114) $ $) 27 T ELT)) (-3171 (((-114) $ $) 77 T ELT)) (-3172 (((-114) $ $) 40 T ELT)) (-4353 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-4355 (($ $ $) 34 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 81 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 79 T ELT) (($ $ $) 78 T ELT) (($ (-560) $) 79 T ELT))) -(((-560) (-13 (-559) (-633 (-1191)) (-845) (-10 -7 (-6 -4498) (-6 -4503) (-6 -4499) (-6 -4493)))) (T -560)) -NIL -(-13 (-559) (-633 (-1191)) (-845) (-10 -7 (-6 -4498) (-6 -4503) (-6 -4499) (-6 -4493))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-561) (-13 (-868) (-10 -8 (-15 -4240 ($) -4468)))) (T -561)) -((-4240 (*1 *1) (-5 *1 (-561)))) -(-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) +((-2225 (((-1201 |#1|) (-791)) 114 T ELT)) (-3832 (((-1297 |#1|) (-1297 |#1|) (-947)) 107 T ELT)) (-2223 (((-1303) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) |#1|) 122 T ELT)) (-2227 (((-1297 |#1|) (-1297 |#1|) (-791)) 53 T ELT)) (-3477 (((-1297 |#1|) (-947)) 109 T ELT)) (-2229 (((-1297 |#1|) (-1297 |#1|) (-558)) 30 T ELT)) (-2224 (((-1201 |#1|) (-1297 |#1|)) 115 T ELT)) (-2233 (((-1297 |#1|) (-947)) 136 T ELT)) (-2231 (((-114) (-1297 |#1|)) 119 T ELT)) (-3616 (((-1297 |#1|) (-1297 |#1|) (-947)) 99 T ELT)) (-2234 (((-1201 |#1|) (-1297 |#1|)) 130 T ELT)) (-2230 (((-947) (-1297 |#1|)) 95 T ELT)) (-2884 (((-1297 |#1|) (-1297 |#1|)) 38 T ELT)) (-2641 (((-1297 |#1|) (-947) (-947)) 139 T ELT)) (-2228 (((-1297 |#1|) (-1297 |#1|) (-1150) (-1150)) 29 T ELT)) (-2226 (((-1297 |#1|) (-1297 |#1|) (-791) (-1150)) 54 T ELT)) (-2232 (((-1297 (-1297 |#1|)) (-947)) 135 T ELT)) (-4461 (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 120 T ELT)) (** (((-1297 |#1|) (-1297 |#1|) (-558)) 67 T ELT)) (* (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 31 T ELT))) +(((-540 |#1|) (-10 -7 (-15 -2223 ((-1303) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) |#1|)) (-15 -3477 ((-1297 |#1|) (-947))) (-15 -2641 ((-1297 |#1|) (-947) (-947))) (-15 -2224 ((-1201 |#1|) (-1297 |#1|))) (-15 -2225 ((-1201 |#1|) (-791))) (-15 -2226 ((-1297 |#1|) (-1297 |#1|) (-791) (-1150))) (-15 -2227 ((-1297 |#1|) (-1297 |#1|) (-791))) (-15 -2228 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -2229 ((-1297 |#1|) (-1297 |#1|) (-558))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-558))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -4461 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -3616 ((-1297 |#1|) (-1297 |#1|) (-947))) (-15 -3832 ((-1297 |#1|) (-1297 |#1|) (-947))) (-15 -2884 ((-1297 |#1|) (-1297 |#1|))) (-15 -2230 ((-947) (-1297 |#1|))) (-15 -2231 ((-114) (-1297 |#1|))) (-15 -2232 ((-1297 (-1297 |#1|)) (-947))) (-15 -2233 ((-1297 |#1|) (-947))) (-15 -2234 ((-1201 |#1|) (-1297 |#1|)))) (-363)) (T -540)) +((-2234 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-947)) (-5 *1 (-540 *4)))) (-2884 (*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (-3832 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-947)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-947)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-4461 (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2228 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2227 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2226 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1297 *5)) (-5 *3 (-791)) (-5 *4 (-1150)) (-4 *5 (-363)) (-5 *1 (-540 *5)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4)))) (-2641 (*1 *2 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-540 *4))))) +(-10 -7 (-15 -2223 ((-1303) (-1297 (-661 (-2 (|:| -3904 |#1|) (|:| -2641 (-1150))))) |#1|)) (-15 -3477 ((-1297 |#1|) (-947))) (-15 -2641 ((-1297 |#1|) (-947) (-947))) (-15 -2224 ((-1201 |#1|) (-1297 |#1|))) (-15 -2225 ((-1201 |#1|) (-791))) (-15 -2226 ((-1297 |#1|) (-1297 |#1|) (-791) (-1150))) (-15 -2227 ((-1297 |#1|) (-1297 |#1|) (-791))) (-15 -2228 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -2229 ((-1297 |#1|) (-1297 |#1|) (-558))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-558))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -4461 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -3616 ((-1297 |#1|) (-1297 |#1|) (-947))) (-15 -3832 ((-1297 |#1|) (-1297 |#1|) (-947))) (-15 -2884 ((-1297 |#1|) (-1297 |#1|))) (-15 -2230 ((-947) (-1297 |#1|))) (-15 -2231 ((-114) (-1297 |#1|))) (-15 -2232 ((-1297 (-1297 |#1|)) (-947))) (-15 -2233 ((-1297 |#1|) (-947))) (-15 -2234 ((-1201 |#1|) (-1297 |#1|)))) +((-2220 (((-711 (-1256)) $) NIL T ELT)) (-2216 (((-711 (-1254)) $) NIL T ELT)) (-2218 (((-711 (-1253)) $) NIL T ELT)) (-2221 (((-711 (-562)) $) NIL T ELT)) (-2217 (((-711 (-560)) $) NIL T ELT)) (-2219 (((-711 (-559)) $) NIL T ELT)) (-2215 (((-791) $ (-131)) NIL T ELT)) (-2222 (((-711 (-130)) $) 26 T ELT)) (-2235 (((-1150) $ (-1150)) 31 T ELT)) (-3921 (((-1150) $) 30 T ELT)) (-3039 (((-114) $) 20 T ELT)) (-2237 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-2236 (((-114) $) 27 T ELT)) (-4458 (((-886) $) 34 T ELT)) (-1913 (($ $) 28 T ELT))) +(((-541) (-13 (-539) (-630 (-886)) (-10 -8 (-15 -2237 ($ (-402))) (-15 -2237 ($ (-1189))) (-15 -2236 ((-114) $)) (-15 -3039 ((-114) $)) (-15 -3921 ((-1150) $)) (-15 -2235 ((-1150) $ (-1150)))))) (T -541)) +((-2237 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-541)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-541)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-541)))) (-2235 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-541))))) +(-13 (-539) (-630 (-886)) (-10 -8 (-15 -2237 ($ (-402))) (-15 -2237 ($ (-1189))) (-15 -2236 ((-114) $)) (-15 -3039 ((-114) $)) (-15 -3921 ((-1150) $)) (-15 -2235 ((-1150) $ (-1150))))) +((-2239 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2238 (((-1 |#1| |#1|)) 10 T ELT))) +(((-542 |#1|) (-10 -7 (-15 -2238 ((-1 |#1| |#1|))) (-15 -2239 ((-1 |#1| |#1|) |#1|))) (-13 (-746) (-25))) (T -542)) +((-2239 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25))))) (-2238 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) +(-10 -7 (-15 -2238 ((-1 |#1| |#1|))) (-15 -2239 ((-1 |#1| |#1|) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 |#1| (-791))) $) NIL T ELT)) (-2883 (($ $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-3376 (($ (-791) |#1|) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4470 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-2205 ((|#1| $) NIL T ELT)) (-3674 (((-791) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 27 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT))) +(((-543 |#1|) (-13 (-815) (-521 (-791) |#1|)) (-870)) (T -543)) +NIL +(-13 (-815) (-521 (-791) |#1|)) +((-2241 (((-661 |#2|) (-1201 |#1|) |#3|) 98 T ELT)) (-2242 (((-661 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#2|))))) (-709 |#1|) |#3| (-1 (-417 (-1201 |#1|)) (-1201 |#1|))) 114 T ELT)) (-2240 (((-1201 |#1|) (-709 |#1|)) 110 T ELT))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-1201 |#1|) (-709 |#1|))) (-15 -2241 ((-661 |#2|) (-1201 |#1|) |#3|)) (-15 -2242 ((-661 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#2|))))) (-709 |#1|) |#3| (-1 (-417 (-1201 |#1|)) (-1201 |#1|))))) (-376) (-376) (-13 (-376) (-869))) (T -544)) +((-2242 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *6)) (-5 *5 (-1 (-417 (-1201 *6)) (-1201 *6))) (-4 *6 (-376)) (-5 *2 (-661 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-869))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-661 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869))))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-869)))))) +(-10 -7 (-15 -2240 ((-1201 |#1|) (-709 |#1|))) (-15 -2241 ((-661 |#2|) (-1201 |#1|) |#3|)) (-15 -2242 ((-661 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#2|))))) (-709 |#1|) |#3| (-1 (-417 (-1201 |#1|)) (-1201 |#1|))))) +((-3036 (((-711 (-1256)) $ (-1256)) NIL T ELT)) (-3037 (((-711 (-562)) $ (-562)) NIL T ELT)) (-3035 (((-791) $ (-131)) 39 T ELT)) (-3038 (((-711 (-130)) $ (-130)) 40 T ELT)) (-2220 (((-711 (-1256)) $) NIL T ELT)) (-2216 (((-711 (-1254)) $) NIL T ELT)) (-2218 (((-711 (-1253)) $) NIL T ELT)) (-2221 (((-711 (-562)) $) NIL T ELT)) (-2217 (((-711 (-560)) $) NIL T ELT)) (-2219 (((-711 (-559)) $) NIL T ELT)) (-2215 (((-791) $ (-131)) 35 T ELT)) (-2222 (((-711 (-130)) $) 37 T ELT)) (-2838 (((-114) $) 27 T ELT)) (-2839 (((-711 $) (-591) (-982)) 18 T ELT) (((-711 $) (-503) (-982)) 24 T ELT)) (-4458 (((-886) $) 48 T ELT)) (-1913 (($ $) 42 T ELT))) +(((-545) (-13 (-787 (-591)) (-630 (-886)) (-10 -8 (-15 -2839 ((-711 $) (-503) (-982)))))) (T -545)) +((-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-982)) (-5 *2 (-711 (-545))) (-5 *1 (-545))))) +(-13 (-787 (-591)) (-630 (-886)) (-10 -8 (-15 -2839 ((-711 $) (-503) (-982))))) +((-3008 (((-864 (-558))) 12 T ELT)) (-3007 (((-864 (-558))) 14 T ELT)) (-2992 (((-854 (-558))) 9 T ELT))) +(((-546) (-10 -7 (-15 -2992 ((-854 (-558)))) (-15 -3008 ((-864 (-558)))) (-15 -3007 ((-864 (-558)))))) (T -546)) +((-3007 (*1 *2) (-12 (-5 *2 (-864 (-558))) (-5 *1 (-546)))) (-3008 (*1 *2) (-12 (-5 *2 (-864 (-558))) (-5 *1 (-546)))) (-2992 (*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546))))) +(-10 -7 (-15 -2992 ((-854 (-558)))) (-15 -3008 ((-864 (-558)))) (-15 -3007 ((-864 (-558))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2246 (((-1189) $) 55 T ELT)) (-3760 (((-114) $) 51 T ELT)) (-3756 (((-1207) $) 52 T ELT)) (-3761 (((-114) $) 49 T ELT)) (-4045 (((-1189) $) 50 T ELT)) (-2245 (($ (-1189)) 56 T ELT)) (-3763 (((-114) $) NIL T ELT)) (-3765 (((-114) $) NIL T ELT)) (-3762 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2248 (($ $ (-661 (-1207))) 21 T ELT)) (-2251 (((-51) $) 23 T ELT)) (-3759 (((-114) $) NIL T ELT)) (-3755 (((-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2624 (($ $ (-661 (-1207)) (-1207)) 73 T ELT)) (-3758 (((-114) $) NIL T ELT)) (-3754 (((-229) $) NIL T ELT)) (-2247 (($ $) 44 T ELT)) (-3753 (((-886) $) NIL T ELT)) (-3766 (((-114) $ $) NIL T ELT)) (-4312 (($ $ (-558)) NIL T ELT) (($ $ (-661 (-558))) NIL T ELT)) (-3757 (((-661 $) $) 30 T ELT)) (-2244 (((-1207) (-661 $)) 57 T ELT)) (-4484 (($ (-1189)) NIL T ELT) (($ (-1207)) 19 T ELT) (($ (-558)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-886)) NIL T ELT) (($ (-661 $)) 65 T ELT) (((-1133) $) 12 T ELT) (($ (-1133)) 13 T ELT)) (-2243 (((-1207) (-1207) (-661 $)) 60 T ELT)) (-4458 (((-886) $) 54 T ELT)) (-3751 (($ $) 59 T ELT)) (-3752 (($ $) 58 T ELT)) (-2249 (($ $ (-661 $)) 66 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3764 (((-114) $) 29 T ELT)) (-3141 (($) 9 T CONST)) (-3147 (($) 11 T CONST)) (-3536 (((-114) $ $) 74 T ELT)) (-4461 (($ $ $) 82 T ELT)) (-4351 (($ $ $) 75 T ELT)) (** (($ $ (-791)) 81 T ELT) (($ $ (-558)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4469 (((-558) $) NIL T ELT))) +(((-547) (-13 (-1134 (-1189) (-1207) (-558) (-229) (-886)) (-631 (-1133)) (-10 -8 (-15 -2251 ((-51) $)) (-15 -4484 ($ (-1133))) (-15 -2249 ($ $ (-661 $))) (-15 -2624 ($ $ (-661 (-1207)) (-1207))) (-15 -2248 ($ $ (-661 (-1207)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -4461 ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ (-558))) (-15 0 ($) -4464) (-15 1 ($) -4464) (-15 -2247 ($ $)) (-15 -2246 ((-1189) $)) (-15 -2245 ($ (-1189))) (-15 -2244 ((-1207) (-661 $))) (-15 -2243 ((-1207) (-1207) (-661 $)))))) (T -547)) +((-2251 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-547)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-547)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-547))) (-5 *1 (-547)))) (-2624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-1207)) (-5 *1 (-547)))) (-2248 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-547)))) (-4351 (*1 *1 *1 *1) (-5 *1 (-547))) (* (*1 *1 *1 *1) (-5 *1 (-547))) (-4461 (*1 *1 *1 *1) (-5 *1 (-547))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-547)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) (-3141 (*1 *1) (-5 *1 (-547))) (-3147 (*1 *1) (-5 *1 (-547))) (-2247 (*1 *1 *1) (-5 *1 (-547))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-547)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-547)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-661 (-547))) (-5 *2 (-1207)) (-5 *1 (-547)))) (-2243 (*1 *2 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-547))) (-5 *1 (-547))))) +(-13 (-1134 (-1189) (-1207) (-558) (-229) (-886)) (-631 (-1133)) (-10 -8 (-15 -2251 ((-51) $)) (-15 -4484 ($ (-1133))) (-15 -2249 ($ $ (-661 $))) (-15 -2624 ($ $ (-661 (-1207)) (-1207))) (-15 -2248 ($ $ (-661 (-1207)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -4461 ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ (-558))) (-15 (-3141) ($) -4464) (-15 (-3147) ($) -4464) (-15 -2247 ($ $)) (-15 -2246 ((-1189) $)) (-15 -2245 ($ (-1189))) (-15 -2244 ((-1207) (-661 $))) (-15 -2243 ((-1207) (-1207) (-661 $))))) +((-2250 (((-547) (-1207)) 15 T ELT)) (-2251 ((|#1| (-547)) 20 T ELT))) +(((-548 |#1|) (-10 -7 (-15 -2250 ((-547) (-1207))) (-15 -2251 (|#1| (-547)))) (-1247)) (T -548)) +((-2251 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1247)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -2250 ((-547) (-1207))) (-15 -2251 (|#1| (-547)))) +((-3955 ((|#2| |#2|) 17 T ELT)) (-3953 ((|#2| |#2|) 13 T ELT)) (-3956 ((|#2| |#2| (-558) (-558)) 20 T ELT)) (-3954 ((|#2| |#2|) 15 T ELT))) +(((-549 |#1| |#2|) (-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2| (-558) (-558)))) (-13 (-569) (-149)) (-1290 |#1|)) (T -549)) +((-3956 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1290 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3)))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3))))) +(-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2| (-558) (-558)))) +((-2254 (((-661 (-305 (-974 |#2|))) (-661 |#2|) (-661 (-1207))) 32 T ELT)) (-2252 (((-661 |#2|) (-974 |#1|) |#3|) 54 T ELT) (((-661 |#2|) (-1201 |#1|) |#3|) 53 T ELT)) (-2253 (((-661 (-661 |#2|)) (-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207)) |#3|) 106 T ELT))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2252 ((-661 |#2|) (-1201 |#1|) |#3|)) (-15 -2252 ((-661 |#2|) (-974 |#1|) |#3|)) (-15 -2253 ((-661 (-661 |#2|)) (-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207)) |#3|)) (-15 -2254 ((-661 (-305 (-974 |#2|))) (-661 |#2|) (-661 (-1207))))) (-464) (-376) (-13 (-376) (-869))) (T -550)) +((-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1207))) (-4 *6 (-376)) (-5 *2 (-661 (-305 (-974 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-376) (-869))))) (-2253 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) (-4 *6 (-464)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-869))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-974 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869)))))) +(-10 -7 (-15 -2252 ((-661 |#2|) (-1201 |#1|) |#3|)) (-15 -2252 ((-661 |#2|) (-974 |#1|) |#3|)) (-15 -2253 ((-661 (-661 |#2|)) (-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207)) |#3|)) (-15 -2254 ((-661 (-305 (-974 |#2|))) (-661 |#2|) (-661 (-1207))))) +((-2257 ((|#2| |#2| |#1|) 17 T ELT)) (-2255 ((|#2| (-661 |#2|)) 30 T ELT)) (-2256 ((|#2| (-661 |#2|)) 51 T ELT))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2255 (|#2| (-661 |#2|))) (-15 -2256 (|#2| (-661 |#2|))) (-15 -2257 (|#2| |#2| |#1|))) (-319) (-1273 |#1|) |#1| (-1 |#1| |#1| (-791))) (T -551)) +((-2257 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-791))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) +(-10 -7 (-15 -2255 (|#2| (-661 |#2|))) (-15 -2256 (|#2| (-661 |#2|))) (-15 -2257 (|#2| |#2| |#1|))) +((-4244 (((-417 (-1201 |#4|)) (-1201 |#4|) (-1 (-417 (-1201 |#3|)) (-1201 |#3|))) 89 T ELT) (((-417 |#4|) |#4| (-1 (-417 (-1201 |#3|)) (-1201 |#3|))) 212 T ELT))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4| (-1 (-417 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|) (-1 (-417 (-1201 |#3|)) (-1201 |#3|))))) (-870) (-815) (-13 (-319) (-149)) (-978 |#3| |#2| |#1|)) (T -552)) +((-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-870)) (-4 *6 (-815)) (-4 *8 (-978 *7 *6 *5)) (-5 *2 (-417 (-1201 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1201 *8)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-870)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-978 *7 *6 *5))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4| (-1 (-417 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|) (-1 (-417 (-1201 |#3|)) (-1201 |#3|))))) +((-3955 ((|#4| |#4|) 74 T ELT)) (-3953 ((|#4| |#4|) 70 T ELT)) (-3956 ((|#4| |#4| (-558) (-558)) 76 T ELT)) (-3954 ((|#4| |#4|) 72 T ELT))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3953 (|#4| |#4|)) (-15 -3954 (|#4| |#4|)) (-15 -3955 (|#4| |#4|)) (-15 -3956 (|#4| |#4| (-558) (-558)))) (-13 (-376) (-381) (-631 (-558))) (-1273 |#1|) (-744 |#1| |#2|) (-1290 |#3|)) (T -553)) +((-3956 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-4 *5 (-1273 *4)) (-4 *6 (-744 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1290 *6)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))) +(-10 -7 (-15 -3953 (|#4| |#4|)) (-15 -3954 (|#4| |#4|)) (-15 -3955 (|#4| |#4|)) (-15 -3956 (|#4| |#4| (-558) (-558)))) +((-3955 ((|#2| |#2|) 27 T ELT)) (-3953 ((|#2| |#2|) 23 T ELT)) (-3956 ((|#2| |#2| (-558) (-558)) 29 T ELT)) (-3954 ((|#2| |#2|) 25 T ELT))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2| (-558) (-558)))) (-13 (-376) (-381) (-631 (-558))) (-1290 |#1|)) (T -554)) +((-3956 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1290 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1290 *3)))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1290 *3)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1290 *3))))) +(-10 -7 (-15 -3953 (|#2| |#2|)) (-15 -3954 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3956 (|#2| |#2| (-558) (-558)))) +((-2258 (((-3 (-558) #1="failed") |#2| |#1| (-1 (-3 (-558) #1#) |#1|)) 18 T ELT) (((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|)) 14 T ELT) (((-3 (-558) #1#) |#2| (-558) (-1 (-3 (-558) #1#) |#1|)) 30 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2258 ((-3 (-558) #1="failed") |#2| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2258 ((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2258 ((-3 (-558) #1#) |#2| |#1| (-1 (-3 (-558) #1#) |#1|)))) (-1079) (-1273 |#1|)) (T -555)) +((-2258 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1="failed") *4)) (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1273 *4)))) (-2258 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1273 *4)))) (-2258 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-558) #1#) *5)) (-4 *5 (-1079)) (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -2258 ((-3 (-558) #1="failed") |#2| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2258 ((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2258 ((-3 (-558) #1#) |#2| |#1| (-1 (-3 (-558) #1#) |#1|)))) +((-2267 (($ $ $) 87 T ELT)) (-4483 (((-417 $) $) 50 T ELT)) (-3657 (((-3 (-558) "failed") $) 62 T ELT)) (-3656 (((-558) $) 40 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 80 T ELT)) (-3506 (((-114) $) 24 T ELT)) (-3505 (((-419 (-558)) $) 78 T ELT)) (-4235 (((-114) $) 53 T ELT)) (-2260 (($ $ $ $) 94 T ELT)) (-1493 (($ $ $) 60 T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 75 T ELT)) (-3947 (((-711 $) $) 70 T ELT)) (-2264 (($ $) 22 T ELT)) (-2259 (($ $ $) 92 T ELT)) (-3948 (($) 63 T ELT)) (-1491 (($ $) 56 T ELT)) (-4244 (((-417 $) $) 48 T ELT)) (-3157 (((-114) $) 15 T ELT)) (-1797 (((-791) $) 30 T ELT)) (-4270 (($ $) 11 T ELT) (($ $ (-791)) NIL T ELT)) (-3902 (($ $) 16 T ELT)) (-4484 (((-558) $) NIL T ELT) (((-547) $) 39 T ELT) (((-914 (-558)) $) 43 T ELT) (((-391) $) 33 T ELT) (((-229) $) 36 T ELT)) (-3610 (((-791)) 9 T ELT)) (-2269 (((-114) $ $) 19 T ELT)) (-3586 (($ $ $) 58 T ELT))) +(((-556 |#1|) (-10 -8 (-15 -2259 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -2267 (|#1| |#1| |#1|)) (-15 -2269 ((-114) |#1| |#1|)) (-15 -3157 ((-114) |#1|)) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -3657 ((-3 (-558) "failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -4484 ((-558) |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4235 ((-114) |#1|)) (-15 -3610 ((-791)))) (-557)) (T -556)) +((-3610 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +(-10 -8 (-15 -2259 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -2267 (|#1| |#1| |#1|)) (-15 -2269 ((-114) |#1| |#1|)) (-15 -3157 ((-114) |#1|)) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -1491 (|#1| |#1|)) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -3657 ((-3 (-558) "failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -4484 ((-558) |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -1797 ((-791) |#1|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4235 ((-114) |#1|)) (-15 -3610 ((-791)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-2267 (($ $ $) 99 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-2262 (($ $ $ $) 88 T ELT)) (-4287 (($ $) 63 T ELT)) (-4483 (((-417 $) $) 64 T ELT)) (-1798 (((-114) $ $) 142 T ELT)) (-4135 (((-558) $) 131 T ELT)) (-2840 (($ $ $) 102 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) "failed") $) 123 T ELT)) (-3656 (((-558) $) 124 T ELT)) (-3045 (($ $ $) 146 T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 121 T ELT) (((-709 (-558)) (-709 $)) 120 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 96 T ELT)) (-3506 (((-114) $) 98 T ELT)) (-3505 (((-419 (-558)) $) 97 T ELT)) (-3477 (($) 95 T ELT) (($ $) 94 T ELT)) (-3044 (($ $ $) 145 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 140 T ELT)) (-4235 (((-114) $) 65 T ELT)) (-2260 (($ $ $ $) 86 T ELT)) (-2268 (($ $ $) 100 T ELT)) (-3686 (((-114) $) 133 T ELT)) (-1493 (($ $ $) 111 T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 114 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3156 (((-114) $) 106 T ELT)) (-3947 (((-711 $) $) 108 T ELT)) (-3687 (((-114) $) 132 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 149 T ELT)) (-2261 (($ $ $ $) 87 T ELT)) (-3012 (($ $ $) 139 T ELT)) (-3340 (($ $ $) 138 T ELT)) (-2264 (($ $) 90 T ELT)) (-4345 (($ $) 103 T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 119 T ELT) (((-709 (-558)) (-1297 $)) 118 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2259 (($ $ $) 85 T ELT)) (-3948 (($) 107 T CONST)) (-2266 (($ $) 92 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1491 (($ $) 112 T ELT)) (-4244 (((-417 $) $) 62 T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 147 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 141 T ELT)) (-3157 (((-114) $) 105 T ELT)) (-1797 (((-791) $) 143 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 144 T ELT)) (-4270 (($ $) 129 T ELT) (($ $ (-791)) 127 T ELT)) (-2265 (($ $) 91 T ELT)) (-3902 (($ $) 93 T ELT)) (-4484 (((-558) $) 125 T ELT) (((-547) $) 116 T ELT) (((-914 (-558)) $) 115 T ELT) (((-391) $) 110 T ELT) (((-229) $) 109 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 122 T ELT)) (-3610 (((-791)) 37 T CONST)) (-2269 (((-114) $ $) 101 T ELT)) (-3586 (($ $ $) 113 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3177 (($) 104 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-2263 (($ $ $ $) 89 T ELT)) (-3885 (($ $) 130 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $) 128 T ELT) (($ $ (-791)) 126 T ELT)) (-3047 (((-114) $ $) 137 T ELT)) (-3048 (((-114) $ $) 135 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 136 T ELT)) (-3168 (((-114) $ $) 134 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-558) $) 117 T ELT))) +(((-557) (-142)) (T -557)) +((-3156 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3177 (*1 *1) (-4 *1 (-557))) (-4345 (*1 *1 *1) (-4 *1 (-557))) (-2840 (*1 *1 *1 *1) (-4 *1 (-557))) (-2269 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-2268 (*1 *1 *1 *1) (-4 *1 (-557))) (-2267 (*1 *1 *1 *1) (-4 *1 (-557))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3507 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3477 (*1 *1) (-4 *1 (-557))) (-3477 (*1 *1 *1) (-4 *1 (-557))) (-3902 (*1 *1 *1) (-4 *1 (-557))) (-2266 (*1 *1 *1) (-4 *1 (-557))) (-2265 (*1 *1 *1) (-4 *1 (-557))) (-2264 (*1 *1 *1) (-4 *1 (-557))) (-2263 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2262 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2261 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2260 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2259 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1252) (-319) (-842) (-240) (-631 (-558)) (-1068 (-558)) (-658 (-558)) (-631 (-547)) (-631 (-914 (-558))) (-910 (-558)) (-145) (-1050) (-149) (-1182) (-10 -8 (-15 -3156 ((-114) $)) (-15 -3157 ((-114) $)) (-6 -4506) (-15 -3177 ($)) (-15 -4345 ($ $)) (-15 -2840 ($ $ $)) (-15 -2269 ((-114) $ $)) (-15 -2268 ($ $ $)) (-15 -2267 ($ $ $)) (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $)) (-15 -3477 ($)) (-15 -3477 ($ $)) (-15 -3902 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $ $ $)) (-15 -2262 ($ $ $ $)) (-15 -2261 ($ $ $ $)) (-15 -2260 ($ $ $ $)) (-15 -2259 ($ $ $)) (-6 -4505))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-145) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-547)) . T) ((-631 (-558)) . T) ((-631 (-914 (-558))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1=(-558)) . T) ((-668 $) . T) ((-660 $) . T) ((-658 #1#) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-842) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-558)) . T) ((-949) . T) ((-1050) . T) ((-1068 (-558)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) . T) ((-1247) . T) ((-1252) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 28 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 95 T ELT)) (-2283 (($ $) 96 T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2267 (($ $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2262 (($ $ $ $) 50 T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL T ELT)) (-2840 (($ $ $) 89 T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) "failed") $) NIL T ELT)) (-3656 (((-558) $) NIL T ELT)) (-3045 (($ $ $) 51 T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 72 T ELT) (((-709 (-558)) (-709 $)) 68 T ELT)) (-3969 (((-3 $ "failed") $) 92 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL T ELT)) (-3506 (((-114) $) NIL T ELT)) (-3505 (((-419 (-558)) $) NIL T ELT)) (-3477 (($) 74 T ELT) (($ $) 75 T ELT)) (-3044 (($ $ $) 88 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2260 (($ $ $ $) NIL T ELT)) (-2268 (($ $ $) 65 T ELT)) (-3686 (((-114) $) 41 T ELT)) (-1493 (($ $ $) NIL T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL T ELT)) (-2651 (((-114) $) 29 T ELT)) (-3156 (((-114) $) 82 T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-3687 (((-114) $) 7 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2261 (($ $ $ $) 52 T ELT)) (-3012 (($ $ $) 85 T ELT)) (-3340 (($ $ $) 84 T ELT)) (-2264 (($ $) NIL T ELT)) (-4345 (($ $) 47 T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) 64 T ELT)) (-2259 (($ $ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2266 (($ $) 35 T ELT)) (-3743 (((-1150) $) 39 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 127 T ELT)) (-3644 (($ $ $) 93 T ELT) (($ (-661 $)) NIL T ELT)) (-1491 (($ $) NIL T ELT)) (-4244 (((-417 $) $) 113 T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) 111 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) 83 T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 87 T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2265 (($ $) 37 T ELT)) (-3902 (($ $) 33 T ELT)) (-4484 (((-558) $) 46 T ELT) (((-547) $) 61 T ELT) (((-914 (-558)) $) NIL T ELT) (((-391) $) 55 T ELT) (((-229) $) 58 T ELT) (((-1189) $) 62 T ELT)) (-4458 (((-886) $) 44 T ELT) (($ (-558)) 45 T ELT) (($ $) NIL T ELT) (($ (-558)) 45 T ELT)) (-3610 (((-791)) NIL T CONST)) (-2269 (((-114) $ $) NIL T ELT)) (-3586 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (($) 32 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-2263 (($ $ $ $) 49 T ELT)) (-3885 (($ $) 73 T ELT)) (-3141 (($) 30 T CONST)) (-3147 (($) 31 T CONST)) (-2978 (((-1189) $) 23 T ELT) (((-1189) $ (-114)) 24 T ELT) (((-1303) (-845) $) 25 T ELT) (((-1303) (-845) $ (-114)) 26 T ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3047 (((-114) $ $) 48 T ELT)) (-3048 (((-114) $ $) 76 T ELT)) (-3536 (((-114) $ $) 27 T ELT)) (-3167 (((-114) $ $) 77 T ELT)) (-3168 (((-114) $ $) 40 T ELT)) (-4349 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-4351 (($ $ $) 34 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 81 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 79 T ELT) (($ $ $) 78 T ELT) (($ (-558) $) 79 T ELT))) +(((-558) (-13 (-557) (-631 (-1189)) (-843) (-10 -7 (-6 -4494) (-6 -4499) (-6 -4495) (-6 -4489)))) (T -558)) +NIL +(-13 (-557) (-631 (-1189)) (-843) (-10 -7 (-6 -4494) (-6 -4499) (-6 -4495) (-6 -4489))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-559) (-13 (-866) (-10 -8 (-15 -4236 ($) -4464)))) (T -559)) +((-4236 (*1 *1) (-5 *1 (-559)))) +(-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) ((|Integer|) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-562) (-13 (-868) (-10 -8 (-15 -4240 ($) -4468)))) (T -562)) -((-4240 (*1 *1) (-5 *1 (-562)))) -(-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-560) (-13 (-866) (-10 -8 (-15 -4236 ($) -4464)))) (T -560)) +((-4236 (*1 *1) (-5 *1 (-560)))) +(-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) ((|Integer|) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-563) (-13 (-868) (-10 -8 (-15 -4240 ($) -4468)))) (T -563)) -((-4240 (*1 *1) (-5 *1 (-563)))) -(-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-561) (-13 (-866) (-10 -8 (-15 -4236 ($) -4464)))) (T -561)) +((-4236 (*1 *1) (-5 *1 (-561)))) +(-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) ((|Integer|) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-564) (-13 (-868) (-10 -8 (-15 -4240 ($) -4468)))) (T -564)) -((-4240 (*1 *1) (-5 *1 (-564)))) -(-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-562) (-13 (-866) (-10 -8 (-15 -4236 ($) -4464)))) (T -562)) +((-4236 (*1 *1) (-5 *1 (-562)))) +(-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) ((|Integer|) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) NIL T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-565 |#1| |#2| |#3|) (-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) (-1133) (-1133) (-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511)))) (T -565)) -NIL -(-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) -((-2274 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))) 50 T ELT))) -(((-566 |#1| |#2|) (-10 -7 (-15 -2274 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))))) (-571) (-13 (-27) (-435 |#1|))) (T -566)) -((-2274 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1203 *3) (-1203 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3)) (-5 *1 (-566 *6 *3))))) -(-10 -7 (-15 -2274 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))))) -((-2276 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2277 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2275 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-567 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2275 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2276 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2277 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-571) (-1070 (-560))) (-13 (-27) (-435 |#1|)) (-1275 |#2|) (-1275 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -567)) -((-2277 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *7 (-1275 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1070 (-560)))) (-4 *8 (-1275 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1070 (-560)))) (-4 *8 (-1275 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) -(-10 -7 (-15 -2275 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2276 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2277 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2280 (((-114) (-560) (-560)) 12 T ELT)) (-2278 (((-560) (-560)) 7 T ELT)) (-2279 (((-560) (-560) (-560)) 10 T ELT))) -(((-568) (-10 -7 (-15 -2278 ((-560) (-560))) (-15 -2279 ((-560) (-560) (-560))) (-15 -2280 ((-114) (-560) (-560))))) (T -568)) -((-2280 (*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568)))) (-2279 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))) (-2278 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568))))) -(-10 -7 (-15 -2278 ((-560) (-560))) (-15 -2279 ((-560) (-560) (-560))) (-15 -2280 ((-114) (-560) (-560)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3089 ((|#1| $) 74 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-3998 (($ $) 104 T ELT)) (-4155 (($ $) 87 T ELT)) (-2887 ((|#1| $) 75 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (($ $) 86 T ELT)) (-3996 (($ $) 103 T ELT)) (-4154 (($ $) 88 T ELT)) (-4000 (($ $) 102 T ELT)) (-4153 (($ $) 89 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) "failed") $) 82 T ELT)) (-3660 (((-560) $) 83 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2283 (($ |#1| |#1|) 79 T ELT)) (-3690 (((-114) $) 73 T ELT)) (-4143 (($) 114 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 85 T ELT)) (-3691 (((-114) $) 72 T ELT)) (-3016 (($ $ $) 115 T ELT)) (-3344 (($ $ $) 116 T ELT)) (-4458 (($ $) 111 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2284 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-421 (-560))) 77 T ELT)) (-2282 ((|#1| $) 76 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4459 (($ $) 112 T ELT)) (-4001 (($ $) 101 T ELT)) (-4152 (($ $) 90 T ELT)) (-3999 (($ $) 100 T ELT)) (-4151 (($ $) 91 T ELT)) (-3997 (($ $) 99 T ELT)) (-4150 (($ $) 92 T ELT)) (-2281 (((-114) $ |#1|) 71 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-560)) 81 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 110 T ELT)) (-3992 (($ $) 98 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-4002 (($ $) 109 T ELT)) (-3990 (($ $) 97 T ELT)) (-4006 (($ $) 108 T ELT)) (-3994 (($ $) 96 T ELT)) (-4007 (($ $) 107 T ELT)) (-3995 (($ $) 95 T ELT)) (-4005 (($ $) 106 T ELT)) (-3993 (($ $) 94 T ELT)) (-4003 (($ $) 105 T ELT)) (-3991 (($ $) 93 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 117 T ELT)) (-3052 (((-114) $ $) 119 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 118 T ELT)) (-3172 (((-114) $ $) 120 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-421 (-560))) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-569 |#1|) (-142) (-13 (-418) (-1235))) (T -569)) -((-2284 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-2283 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-2284 (*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114)))) (-2281 (*1 *2 *1 *3) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114))))) -(-13 (-466) (-872) (-1235) (-1034) (-1070 (-560)) (-10 -8 (-6 -4286) (-15 -2284 ($ |t#1| |t#1|)) (-15 -2283 ($ |t#1| |t#1|)) (-15 -2284 ($ |t#1|)) (-15 -2284 ($ (-421 (-560)))) (-15 -2282 (|t#1| $)) (-15 -2887 (|t#1| $)) (-15 -3089 (|t#1| $)) (-15 -3690 ((-114) $)) (-15 -3691 ((-114) $)) (-15 -2281 ((-114) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-466) . T) ((-507) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-872) . T) ((-875) . T) ((-1034) . T) ((-1070 (-560)) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) . T) ((-1238) . T) ((-1249) . T)) -((-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 9 T ELT)) (-2287 (($ $) 11 T ELT)) (-2285 (((-114) $) 20 T ELT)) (-3973 (((-3 $ "failed") $) 16 T ELT)) (-2286 (((-114) $ $) 22 T ELT))) -(((-570 |#1|) (-10 -8 (-15 -2285 ((-114) |#1|)) (-15 -2286 ((-114) |#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|))) (-571)) (T -570)) -NIL -(-10 -8 (-15 -2285 ((-114) |#1|)) (-15 -2286 ((-114) |#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2288 ((-2 (|:| -1994 |#1|) (|:| -4498 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-571) (-142)) (T -571)) -((-3972 (*1 *1 *1 *1) (|partial| -4 *1 (-571))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1994 *1) (|:| -4498 *1) (|:| |associate| *1))) (-4 *1 (-571)))) (-2287 (*1 *1 *1) (-4 *1 (-571))) (-2286 (*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114))))) -(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3972 ((-3 $ "failed") $ $)) (-15 -2288 ((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $)) (-15 -2287 ($ $)) (-15 -2286 ((-114) $ $)) (-15 -2285 ((-114) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-2290 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1209) (-663 |#2|)) 38 T ELT)) (-2292 (((-597 |#2|) |#2| (-1209)) 63 T ELT)) (-2291 (((-3 |#2| "failed") |#2| (-1209)) 156 T ELT)) (-2293 (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1209) (-630 |#2|) (-663 (-630 |#2|))) 159 T ELT)) (-2289 (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1209) |#2|) 41 T ELT))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2289 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1209) |#2|)) (-15 -2290 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1209) (-663 |#2|))) (-15 -2291 ((-3 |#2| "failed") |#2| (-1209))) (-15 -2292 ((-597 |#2|) |#2| (-1209))) (-15 -2293 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1209) (-630 |#2|) (-663 (-630 |#2|))))) (-13 (-466) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -572)) -((-2293 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1209)) (-5 *6 (-663 (-630 *3))) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *7))) (-4 *7 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-572 *7 *3)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-2291 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-2290 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *3)))) (-2289 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) -(-10 -7 (-15 -2289 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1209) |#2|)) (-15 -2290 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1209) (-663 |#2|))) (-15 -2291 ((-3 |#2| "failed") |#2| (-1209))) (-15 -2292 ((-597 |#2|) |#2| (-1209))) (-15 -2293 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1209) (-630 |#2|) (-663 (-630 |#2|))))) -((-4487 (((-419 |#1|) |#1|) 17 T ELT)) (-4248 (((-419 |#1|) |#1|) 32 T ELT)) (-2295 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2294 (((-419 |#1|) |#1|) 59 T ELT))) -(((-573 |#1|) (-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -2294 ((-419 |#1|) |#1|)) (-15 -2295 ((-3 |#1| "failed") |#1|))) (-559)) (T -573)) -((-2295 (*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559)))) (-2294 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-4487 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))) -(-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -2294 ((-419 |#1|) |#1|)) (-15 -2295 ((-3 |#1| "failed") |#1|))) -((-2296 (($) 9 T ELT)) (-2299 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2898 (((-663 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4123 (($ (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28 T ELT)) (-2298 (($ (-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26 T ELT)) (-2300 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-2434 (((-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36 T ELT)) (-2297 (((-1305)) 11 T ELT))) -(((-574) (-10 -8 (-15 -2296 ($)) (-15 -2297 ((-1305))) (-15 -2898 ((-663 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2298 ($ (-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4123 ($ (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2299 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2434 ((-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2300 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -574)) -((-2300 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-574)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-574)))) (-2299 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-574)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-574)))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-574)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-574)))) (-2297 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-574)))) (-2296 (*1 *1) (-5 *1 (-574)))) -(-10 -8 (-15 -2296 ($)) (-15 -2297 ((-1305))) (-15 -2898 ((-663 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2298 ($ (-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1650 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4123 ($ (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2299 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2434 ((-663 (-2 (|:| -4376 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2300 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-229))) (|:| |notEvaluated| #6#))) (|:| -1650 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) -((-3572 (((-1203 (-421 (-1203 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1203 |#2|)) 35 T ELT)) (-2303 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1203 |#2|)) 115 T ELT)) (-2301 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|))) 85 T ELT) (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|)) 55 T ELT)) (-2302 (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1203 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1203 |#2|)) 114 T ELT)) (-2304 (((-3 |#2| #3="failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) (-630 |#2|) |#2| (-421 (-1203 |#2|))) 110 T ELT) (((-3 |#2| #3#) |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) |#2| (-1203 |#2|)) 116 T ELT)) (-2305 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|))) 133 (|has| |#3| (-680 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|)) 132 (|has| |#3| (-680 |#2|)) ELT)) (-3573 ((|#2| (-1203 (-421 (-1203 |#2|))) (-630 |#2|) |#2|) 53 T ELT)) (-3566 (((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-630 |#2|)) 34 T ELT))) -(((-575 |#1| |#2| |#3|) (-10 -7 (-15 -2301 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|))) (-15 -2301 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2302 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1203 |#2|))) (-15 -2302 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2303 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1203 |#2|))) (-15 -2303 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2304 ((-3 |#2| #3="failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) |#2| (-1203 |#2|))) (-15 -2304 ((-3 |#2| #3#) |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -3572 ((-1203 (-421 (-1203 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1203 |#2|))) (-15 -3573 (|#2| (-1203 (-421 (-1203 |#2|))) (-630 |#2|) |#2|)) (-15 -3566 ((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -2305 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|))) (-15 -2305 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|))))) |%noBranch|)) (-13 (-466) (-1070 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1235)) (-1133)) (T -575)) -((-2305 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1203 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1235))) (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133)))) (-2305 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1203 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1235))) (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2236 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1235))) (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1203 (-421 (-1203 *6)))) (-5 *1 (-575 *5 *6 *7)) (-5 *3 (-1203 *6)) (-4 *7 (-1133)))) (-3573 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1203 (-421 (-1203 *2)))) (-5 *4 (-630 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1235))) (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1133)))) (-3572 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1203 (-421 (-1203 *3)))) (-5 *1 (-575 *6 *3 *7)) (-5 *5 (-1203 *3)) (-4 *7 (-1133)))) (-2304 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1209))) (-5 *5 (-421 (-1203 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1133)))) (-2304 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1209))) (-5 *5 (-1203 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1133)))) (-2303 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-421 (-1203 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1235))) (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1133)))) (-2303 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-1203 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1235))) (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1133)))) (-2302 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1203 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133)))) (-2302 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1203 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133)))) (-2301 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1203 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133)))) (-2301 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1203 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133))))) -(-10 -7 (-15 -2301 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|))) (-15 -2301 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2302 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1203 |#2|))) (-15 -2302 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2303 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1203 |#2|))) (-15 -2303 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2304 ((-3 |#2| #3="failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) |#2| (-1203 |#2|))) (-15 -2304 ((-3 |#2| #3#) |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1209)) (-630 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -3572 ((-1203 (-421 (-1203 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1203 |#2|))) (-15 -3573 (|#2| (-1203 (-421 (-1203 |#2|))) (-630 |#2|) |#2|)) (-15 -3566 ((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -2305 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1203 |#2|))) (-15 -2305 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1203 |#2|))))) |%noBranch|)) -((-2315 (((-560) (-560) (-793)) 87 T ELT)) (-2314 (((-560) (-560)) 85 T ELT)) (-2313 (((-560) (-560)) 83 T ELT)) (-2312 (((-560) (-560)) 89 T ELT)) (-3292 (((-560) (-560) (-560)) 67 T ELT)) (-2311 (((-560) (-560) (-560)) 64 T ELT)) (-2310 (((-421 (-560)) (-560)) 29 T ELT)) (-2309 (((-560) (-560)) 34 T ELT)) (-2308 (((-560) (-560)) 76 T ELT)) (-3289 (((-560) (-560)) 47 T ELT)) (-2307 (((-663 (-560)) (-560)) 82 T ELT)) (-2306 (((-560) (-560) (-560) (-560) (-560)) 60 T ELT)) (-3285 (((-421 (-560)) (-560)) 56 T ELT))) -(((-576) (-10 -7 (-15 -3285 ((-421 (-560)) (-560))) (-15 -2306 ((-560) (-560) (-560) (-560) (-560))) (-15 -2307 ((-663 (-560)) (-560))) (-15 -3289 ((-560) (-560))) (-15 -2308 ((-560) (-560))) (-15 -2309 ((-560) (-560))) (-15 -2310 ((-421 (-560)) (-560))) (-15 -2311 ((-560) (-560) (-560))) (-15 -3292 ((-560) (-560) (-560))) (-15 -2312 ((-560) (-560))) (-15 -2313 ((-560) (-560))) (-15 -2314 ((-560) (-560))) (-15 -2315 ((-560) (-560) (-793))))) (T -576)) -((-2315 (*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3292 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2311 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2310 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2307 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-2306 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3285 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560))))) -(-10 -7 (-15 -3285 ((-421 (-560)) (-560))) (-15 -2306 ((-560) (-560) (-560) (-560) (-560))) (-15 -2307 ((-663 (-560)) (-560))) (-15 -3289 ((-560) (-560))) (-15 -2308 ((-560) (-560))) (-15 -2309 ((-560) (-560))) (-15 -2310 ((-421 (-560)) (-560))) (-15 -2311 ((-560) (-560) (-560))) (-15 -3292 ((-560) (-560) (-560))) (-15 -2312 ((-560) (-560))) (-15 -2313 ((-560) (-560))) (-15 -2314 ((-560) (-560))) (-15 -2315 ((-560) (-560) (-793)))) -((-2316 (((-2 (|:| |answer| |#4|) (|:| -2364 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |answer| |#4|) (|:| -2364 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -577)) -((-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-4 *7 (-1275 (-421 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2364 *3))) (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) -(-10 -7 (-15 -2316 ((-2 (|:| |answer| |#4|) (|:| -2364 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2316 (((-2 (|:| |answer| (-421 |#2|)) (|:| -2364 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2316 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2364 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1275 |#1|)) (T -578)) -((-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-421 *6)) (|:| -2364 (-421 *6)) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6))))) -(-10 -7 (-15 -2316 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2364 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) -((-3155 (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791) (-1095)) 116 T ELT) (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791)) 118 T ELT)) (-4328 (((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1209)) 195 T ELT) (((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1191)) 194 T ELT) (((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391) (-1095)) 199 T ELT) (((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391)) 200 T ELT) (((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391)) 201 T ELT) (((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391))))) 202 T ELT) (((-1067) (-326 (-391)) (-1121 (-866 (-391)))) 190 T ELT) (((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391)) 189 T ELT) (((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391)) 185 T ELT) (((-1067) (-791)) 177 T ELT) (((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391) (-1095)) 184 T ELT))) -(((-579) (-10 -7 (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391) (-1095))) (-15 -4328 ((-1067) (-791))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391) (-1095))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791) (-1095))) (-15 -4328 ((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1191))) (-15 -4328 ((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1209))))) (T -579)) -((-4328 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1124 (-866 (-391)))) (-5 *5 (-1209)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1124 (-866 (-391)))) (-5 *5 (-1191)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1095)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) (-5 *1 (-579)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) (-5 *5 (-391)) (-5 *6 (-1095)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1067)) (-5 *1 (-579)))) (-4328 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) (-5 *6 (-1095)) (-5 *2 (-1067)) (-5 *1 (-579))))) -(-10 -7 (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391) (-1095))) (-15 -4328 ((-1067) (-791))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-1121 (-866 (-391))))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391))) (-15 -4328 ((-1067) (-326 (-391)) (-663 (-1121 (-866 (-391)))) (-391) (-391) (-1095))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067))) (-791) (-1095))) (-15 -4328 ((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1191))) (-15 -4328 ((-3 (-1067) "failed") (-326 (-391)) (-1124 (-866 (-391))) (-1209)))) -((-2319 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|)) 195 T ELT)) (-2317 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|)) 97 T ELT)) (-2318 (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|) 191 T ELT)) (-2320 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1209))) 200 T ELT)) (-2321 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1209)) 209 (|has| |#3| (-680 |#2|)) ELT))) -(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2317 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -2318 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2319 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2320 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1209)))) (IF (|has| |#3| (-680 |#2|)) (-15 -2321 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1209))) |%noBranch|)) (-13 (-466) (-1070 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1235)) (-1133)) (T -580)) -((-2321 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1209)) (-4 *4 (-13 (-435 *7) (-27) (-1235))) (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133)))) (-2320 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1209))) (-4 *2 (-13 (-435 *5) (-27) (-1235))) (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1133)))) (-2319 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1235))) (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1133)))) (-2318 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1235))) (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1133)))) (-2317 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1235))) (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1133))))) -(-10 -7 (-15 -2317 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -2318 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2319 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2320 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1209)))) (IF (|has| |#3| (-680 |#2|)) (-15 -2321 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2236 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1209))) |%noBranch|)) -((-2322 (((-2 (|:| -2571 |#2|) (|:| |nconst| |#2|)) |#2| (-1209)) 64 T ELT)) (-2324 (((-3 |#2| "failed") |#2| (-1209) (-866 |#2|) (-866 |#2|)) 175 (-12 (|has| |#2| (-1171)) (|has| |#1| (-633 (-916 (-560)))) (|has| |#1| (-912 (-560)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)) 155 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-916 (-560)))) (|has| |#1| (-912 (-560)))) ELT)) (-2323 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)) 157 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-916 (-560)))) (|has| |#1| (-912 (-560)))) ELT))) -(((-581 |#1| |#2|) (-10 -7 (-15 -2322 ((-2 (|:| -2571 |#2|) (|:| |nconst| |#2|)) |#2| (-1209))) (IF (|has| |#1| (-633 (-916 (-560)))) (IF (|has| |#1| (-912 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -2323 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209))) (-15 -2324 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)))) |%noBranch|) (IF (|has| |#2| (-1171)) (-15 -2324 ((-3 |#2| "failed") |#2| (-1209) (-866 |#2|) (-866 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1070 (-560)) (-466) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -581)) -((-2324 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1209)) (-5 *4 (-866 *2)) (-4 *2 (-1171)) (-4 *2 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-633 (-916 (-560)))) (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) (-5 *1 (-581 *5 *2)))) (-2324 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-633 (-916 (-560)))) (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-2323 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-633 (-916 (-560)))) (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| -2571 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) -(-10 -7 (-15 -2322 ((-2 (|:| -2571 |#2|) (|:| |nconst| |#2|)) |#2| (-1209))) (IF (|has| |#1| (-633 (-916 (-560)))) (IF (|has| |#1| (-912 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -2323 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209))) (-15 -2324 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)))) |%noBranch|) (IF (|has| |#2| (-1171)) (-15 -2324 ((-3 |#2| "failed") |#2| (-1209) (-866 |#2|) (-866 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2327 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))) 41 T ELT)) (-4328 (((-597 (-421 |#2|)) (-421 |#2|)) 28 T ELT)) (-2325 (((-3 (-421 |#2|) "failed") (-421 |#2|)) 17 T ELT)) (-2326 (((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|)) 48 T ELT))) -(((-582 |#1| |#2|) (-10 -7 (-15 -4328 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -2325 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -2326 ((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -2327 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1070 (-560))) (-1275 |#1|)) (T -582)) -((-2327 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *5 *6)))) (-2326 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| -2365 (-421 *5)) (|:| |coeff| (-421 *5)))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-13 (-376) (-149) (-1070 (-560)))) (-5 *1 (-582 *3 *4)))) (-4328 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))) -(-10 -7 (-15 -4328 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -2325 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -2326 ((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -2327 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))))) -((-2328 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-3763 (((-114) |#1|) 13 T ELT)) (-3759 (((-560) |#1|) 9 T ELT))) -(((-583 |#1|) (-10 -7 (-15 -3759 ((-560) |#1|)) (-15 -3763 ((-114) |#1|)) (-15 -2328 ((-3 (-560) "failed") |#1|))) (-1070 (-560))) (T -583)) -((-2328 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1070 *2)))) (-3763 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1070 (-560))))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1070 *2))))) -(-10 -7 (-15 -3759 ((-560) |#1|)) (-15 -3763 ((-114) |#1|)) (-15 -2328 ((-3 (-560) "failed") |#1|))) -((-2331 (((-3 (-2 (|:| |mainpart| (-421 (-976 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-976 |#1|))) (|:| |logand| (-421 (-976 |#1|))))))) "failed") (-421 (-976 |#1|)) (-1209) (-663 (-421 (-976 |#1|)))) 48 T ELT)) (-2329 (((-597 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-1209)) 28 T ELT)) (-2330 (((-3 (-421 (-976 |#1|)) "failed") (-421 (-976 |#1|)) (-1209)) 23 T ELT)) (-2332 (((-3 (-2 (|:| -2365 (-421 (-976 |#1|))) (|:| |coeff| (-421 (-976 |#1|)))) "failed") (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|))) 35 T ELT))) -(((-584 |#1|) (-10 -7 (-15 -2329 ((-597 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -2330 ((-3 (-421 (-976 |#1|)) "failed") (-421 (-976 |#1|)) (-1209))) (-15 -2331 ((-3 (-2 (|:| |mainpart| (-421 (-976 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-976 |#1|))) (|:| |logand| (-421 (-976 |#1|))))))) "failed") (-421 (-976 |#1|)) (-1209) (-663 (-421 (-976 |#1|))))) (-15 -2332 ((-3 (-2 (|:| -2365 (-421 (-976 |#1|))) (|:| |coeff| (-421 (-976 |#1|)))) "failed") (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|))))) (-13 (-571) (-1070 (-560)) (-149))) (T -584)) -((-2332 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-149))) (-5 *2 (-2 (|:| -2365 (-421 (-976 *5))) (|:| |coeff| (-421 (-976 *5))))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-976 *5))))) (-2331 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 (-421 (-976 *6)))) (-5 *3 (-421 (-976 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6)))) (-2330 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-421 (-976 *4))) (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-149))) (-5 *1 (-584 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-149))) (-5 *2 (-597 (-421 (-976 *5)))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-976 *5)))))) -(-10 -7 (-15 -2329 ((-597 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -2330 ((-3 (-421 (-976 |#1|)) "failed") (-421 (-976 |#1|)) (-1209))) (-15 -2331 ((-3 (-2 (|:| |mainpart| (-421 (-976 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-976 |#1|))) (|:| |logand| (-421 (-976 |#1|))))))) "failed") (-421 (-976 |#1|)) (-1209) (-663 (-421 (-976 |#1|))))) (-15 -2332 ((-3 (-2 (|:| -2365 (-421 (-976 |#1|))) (|:| |coeff| (-421 (-976 |#1|)))) "failed") (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|))))) -((-3053 (((-114) $ $) 77 T ELT)) (-3692 (((-114) $) 49 T ELT)) (-3089 ((|#1| $) 39 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) 81 T ELT)) (-3998 (($ $) 142 T ELT)) (-4155 (($ $) 120 T ELT)) (-2887 ((|#1| $) 37 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $) NIL T ELT)) (-3996 (($ $) 144 T ELT)) (-4154 (($ $) 116 T ELT)) (-4000 (($ $) 146 T ELT)) (-4153 (($ $) 124 T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) "failed") $) 95 T ELT)) (-3660 (((-560) $) 97 T ELT)) (-3973 (((-3 $ "failed") $) 80 T ELT)) (-2283 (($ |#1| |#1|) 35 T ELT)) (-3690 (((-114) $) 44 T ELT)) (-4143 (($) 106 T ELT)) (-2655 (((-114) $) 56 T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3691 (((-114) $) 46 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4458 (($ $) 108 T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2284 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-421 (-560))) 94 T ELT)) (-2282 ((|#1| $) 36 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) 83 T ELT) (($ (-663 $)) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) 82 T ELT)) (-4459 (($ $) 110 T ELT)) (-4001 (($ $) 150 T ELT)) (-4152 (($ $) 122 T ELT)) (-3999 (($ $) 152 T ELT)) (-4151 (($ $) 126 T ELT)) (-3997 (($ $) 148 T ELT)) (-4150 (($ $) 118 T ELT)) (-2281 (((-114) $ |#1|) 42 T ELT)) (-4462 (((-888) $) 102 T ELT) (($ (-560)) 85 T ELT) (($ $) NIL T ELT) (($ (-560)) 85 T ELT)) (-3614 (((-793)) 104 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 164 T ELT)) (-3992 (($ $) 132 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4002 (($ $) 162 T ELT)) (-3990 (($ $) 128 T ELT)) (-4006 (($ $) 160 T ELT)) (-3994 (($ $) 140 T ELT)) (-4007 (($ $) 158 T ELT)) (-3995 (($ $) 138 T ELT)) (-4005 (($ $) 156 T ELT)) (-3993 (($ $) 134 T ELT)) (-4003 (($ $) 154 T ELT)) (-3991 (($ $) 130 T ELT)) (-3145 (($) 30 T CONST)) (-3151 (($) 10 T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 50 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 48 T ELT)) (-4353 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-4355 (($ $ $) 53 T ELT)) (** (($ $ (-949)) 73 T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-421 (-560))) 166 T ELT)) (* (($ (-949) $) 67 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-585 |#1|) (-569 |#1|) (-13 (-418) (-1235))) (T -585)) -NIL -(-569 |#1|) -((-3191 (((-3 (-663 (-1203 (-560))) "failed") (-663 (-1203 (-560))) (-1203 (-560))) 27 T ELT))) -(((-586) (-10 -7 (-15 -3191 ((-3 (-663 (-1203 (-560))) "failed") (-663 (-1203 (-560))) (-1203 (-560)))))) (T -586)) -((-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 (-560)))) (-5 *3 (-1203 (-560))) (-5 *1 (-586))))) -(-10 -7 (-15 -3191 ((-3 (-663 (-1203 (-560))) "failed") (-663 (-1203 (-560))) (-1203 (-560))))) -((-2333 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1209)) 19 T ELT)) (-2336 (((-663 (-630 |#2|)) (-663 |#2|) (-1209)) 23 T ELT)) (-3738 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|))) 11 T ELT)) (-2337 ((|#2| |#2| (-1209)) 59 (|has| |#1| (-571)) ELT)) (-2338 ((|#2| |#2| (-1209)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-466))) ELT)) (-2335 (((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1209)) 25 T ELT)) (-2334 (((-630 |#2|) (-663 (-630 |#2|))) 24 T ELT)) (-2339 (((-597 |#2|) |#2| (-1209) (-1 (-597 |#2|) |#2| (-1209)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-649)) (|has| |#2| (-1070 (-1209))) (|has| |#1| (-633 (-916 (-560)))) (|has| |#1| (-466)) (|has| |#1| (-912 (-560)))) ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2333 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1209))) (-15 -2334 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -2335 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1209))) (-15 -3738 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -2336 ((-663 (-630 |#2|)) (-663 |#2|) (-1209))) (IF (|has| |#1| (-571)) (-15 -2337 (|#2| |#2| (-1209))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2338 (|#2| |#2| (-1209))) (IF (|has| |#1| (-633 (-916 (-560)))) (IF (|has| |#1| (-912 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1070 (-1209))) (-15 -2339 ((-597 |#2|) |#2| (-1209) (-1 (-597 |#2|) |#2| (-1209)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1133) (-435 |#1|)) (T -587)) -((-2339 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-597 *3) *3 (-1209))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1209))) (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1070 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1209)) (-4 *7 (-633 (-916 (-560)))) (-4 *7 (-466)) (-4 *7 (-912 (-560))) (-4 *7 (-1133)) (-5 *2 (-597 *3)) (-5 *1 (-587 *7 *3)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-466)) (-4 *4 (-1133)) (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-435 *4)))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-4 *4 (-1133)) (-5 *1 (-587 *4 *2)) (-4 *2 (-435 *4)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-1209)) (-4 *6 (-435 *5)) (-4 *5 (-1133)) (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1133)) (-5 *1 (-587 *3 *4)))) (-2335 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1209)) (-5 *2 (-630 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1133)) (-5 *1 (-587 *5 *6)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1133)) (-5 *2 (-630 *5)) (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4)))) (-2333 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1209)) (-4 *5 (-435 *4)) (-4 *4 (-1133)) (-5 *1 (-587 *4 *5))))) -(-10 -7 (-15 -2333 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1209))) (-15 -2334 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -2335 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1209))) (-15 -3738 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -2336 ((-663 (-630 |#2|)) (-663 |#2|) (-1209))) (IF (|has| |#1| (-571)) (-15 -2337 (|#2| |#2| (-1209))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2338 (|#2| |#2| (-1209))) (IF (|has| |#1| (-633 (-916 (-560)))) (IF (|has| |#1| (-912 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1070 (-1209))) (-15 -2339 ((-597 |#2|) |#2| (-1209) (-1 (-597 |#2|) |#2| (-1209)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1209)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2342 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|)) 199 T ELT)) (-2345 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-663 (-421 |#2|))) 174 T ELT)) (-2348 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|))) 171 T ELT)) (-2349 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2340 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2347 (((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|)) 202 T ELT)) (-2343 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-421 |#2|)) 205 T ELT)) (-2351 (((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2352 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2346 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|))) 178 T ELT)) (-2350 (((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 166 T ELT)) (-2341 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 189 T ELT)) (-2344 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|)) 210 T ELT))) -(((-588 |#1| |#2|) (-10 -7 (-15 -2340 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2341 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2342 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -2343 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-421 |#2|))) (-15 -2344 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -2345 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-663 (-421 |#2|)))) (-15 -2346 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -2347 ((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -2348 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2350 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2351 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2352 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1275 |#1|)) (T -588)) -((-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-588 *5 *3)))) (-2351 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2350 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3625 *4) (|:| |sol?| (-114))) (-560) *4)) (-4 *4 (-376)) (-4 *5 (-1275 *4)) (-5 *1 (-588 *4 *5)))) (-2349 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1275 *4)))) (-2348 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-663 (-421 *7))) (-4 *7 (-1275 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-588 *6 *7)))) (-2347 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2365 (-421 *6)) (|:| |coeff| (-421 *6)))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2346 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3625 *7) (|:| |sol?| (-114))) (-560) *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1275 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2345 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2365 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1275 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2344 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3625 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -2365 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2343 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2365 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -2365 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2342 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3625 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2365 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) -(-10 -7 (-15 -2340 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2341 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2342 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -2343 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-421 |#2|))) (-15 -2344 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -2345 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-663 (-421 |#2|)))) (-15 -2346 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -2347 ((-3 (-2 (|:| -2365 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -2348 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2350 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3625 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2351 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2352 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2353 (((-3 |#2| "failed") |#2| (-1209) (-1209)) 10 T ELT))) -(((-589 |#1| |#2|) (-10 -7 (-15 -2353 ((-3 |#2| "failed") |#2| (-1209) (-1209)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-990) (-1171) (-29 |#1|))) (T -589)) -((-2353 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1235) (-990) (-1171) (-29 *4)))))) -(-10 -7 (-15 -2353 ((-3 |#2| "failed") |#2| (-1209) (-1209)))) -((-3040 (((-713 (-1258)) $ (-1258)) 27 T ELT)) (-3041 (((-713 (-564)) $ (-564)) 26 T ELT)) (-3039 (((-793) $ (-131)) 28 T ELT)) (-3042 (((-713 (-130)) $ (-130)) 25 T ELT)) (-2224 (((-713 (-1258)) $) 12 T ELT)) (-2220 (((-713 (-1256)) $) 8 T ELT)) (-2222 (((-713 (-1255)) $) 10 T ELT)) (-2225 (((-713 (-564)) $) 13 T ELT)) (-2221 (((-713 (-562)) $) 9 T ELT)) (-2223 (((-713 (-561)) $) 11 T ELT)) (-2219 (((-793) $ (-131)) 7 T ELT)) (-2226 (((-713 (-130)) $) 14 T ELT)) (-1915 (($ $) 6 T ELT))) -(((-590) (-142)) (T -590)) -NIL -(-13 (-541) (-886)) -(((-176) . T) ((-541) . T) ((-886) . T)) -((-3040 (((-713 (-1258)) $ (-1258)) NIL T ELT)) (-3041 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3039 (((-793) $ (-131)) NIL T ELT)) (-3042 (((-713 (-130)) $ (-130)) NIL T ELT)) (-2224 (((-713 (-1258)) $) NIL T ELT)) (-2220 (((-713 (-1256)) $) NIL T ELT)) (-2222 (((-713 (-1255)) $) NIL T ELT)) (-2225 (((-713 (-564)) $) NIL T ELT)) (-2221 (((-713 (-562)) $) NIL T ELT)) (-2223 (((-713 (-561)) $) NIL T ELT)) (-2219 (((-793) $ (-131)) NIL T ELT)) (-2226 (((-713 (-130)) $) NIL T ELT)) (-3043 (((-114) $) NIL T ELT)) (-2354 (($ (-402)) 14 T ELT) (($ (-1191)) 16 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1915 (($ $) NIL T ELT))) -(((-591) (-13 (-590) (-632 (-888)) (-10 -8 (-15 -2354 ($ (-402))) (-15 -2354 ($ (-1191))) (-15 -3043 ((-114) $))))) (T -591)) -((-2354 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-591)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591))))) -(-13 (-590) (-632 (-888)) (-10 -8 (-15 -2354 ($ (-402))) (-15 -2354 ($ (-1191))) (-15 -3043 ((-114) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3966 (($) 7 T CONST)) (-3746 (((-1191) $) NIL T ELT)) (-2357 (($) 6 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT)) (-2355 (($) 9 T CONST)) (-2356 (($) 8 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 11 T ELT))) -(((-592) (-13 (-1133) (-10 -8 (-15 -2357 ($) -4468) (-15 -3966 ($) -4468) (-15 -2356 ($) -4468) (-15 -2355 ($) -4468)))) (T -592)) -((-2357 (*1 *1) (-5 *1 (-592))) (-3966 (*1 *1) (-5 *1 (-592))) (-2356 (*1 *1) (-5 *1 (-592))) (-2355 (*1 *1) (-5 *1 (-592)))) -(-13 (-1133) (-10 -8 (-15 -2357 ($) -4468) (-15 -3966 ($) -4468) (-15 -2356 ($) -4468) (-15 -2355 ($) -4468))) -((-3053 (((-114) $ $) NIL T ELT)) (-2358 (((-713 $) (-505)) 21 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2360 (($ (-1191)) 14 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 33 T ELT)) (-2359 (((-216 4 (-130)) $) 24 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 26 T ELT))) -(((-593) (-13 (-1133) (-10 -8 (-15 -2360 ($ (-1191))) (-15 -2359 ((-216 4 (-130)) $)) (-15 -2358 ((-713 $) (-505)))))) (T -593)) -((-2360 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-593)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593))))) -(-13 (-1133) (-10 -8 (-15 -2360 ($ (-1191))) (-15 -2359 ((-216 4 (-130)) $)) (-15 -2358 ((-713 $) (-505))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $ (-560)) 76 T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3096 (($ (-1203 (-560)) (-560)) 82 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 66 T ELT)) (-3097 (($ $) 43 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4288 (((-793) $) 16 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-3099 (((-560)) 37 T ELT)) (-3098 (((-560) $) 41 T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4285 (($ $ (-560)) 24 T ELT)) (-3972 (((-3 $ "failed") $ $) 72 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) 17 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 73 T ELT)) (-3100 (((-1187 (-560)) $) 19 T ELT)) (-3378 (($ $) 26 T ELT)) (-4462 (((-888) $) 103 T ELT) (($ (-560)) 61 T ELT) (($ $) NIL T ELT)) (-3614 (((-793)) 15 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-560) $ (-560)) 46 T ELT)) (-3145 (($) 44 T CONST)) (-3151 (($) 21 T CONST)) (-3540 (((-114) $ $) 52 T ELT)) (-4353 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-4355 (($ $ $) 59 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-594 |#1| |#2|) (-895 |#1|) (-560) (-114)) (T -594)) -NIL -(-895 |#1|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 30 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (($ $ (-949)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 59 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 $ "failed") $) 95 T ELT)) (-3660 (($ $) 94 T ELT)) (-2014 (($ (-1299 $)) 93 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 47 T ELT)) (-3481 (($) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) 61 T ELT)) (-1895 (((-114) $) NIL T ELT)) (-1988 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) 49 (|has| $ (-381)) ELT)) (-2235 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3620 (($ $ (-949)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 $) $ (-949)) NIL (|has| $ (-381)) ELT) (((-1203 $) $) 104 T ELT)) (-2234 (((-949) $) 67 T ELT)) (-1819 (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-1818 (((-3 (-1203 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-1820 (($ $ (-1203 $)) NIL (|has| $ (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2645 (($ (-949)) 60 T ELT)) (-4447 (((-114) $) 87 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) 28 (|has| $ (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 54 T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-949)) 86 T ELT) (((-856 (-949))) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4464 (((-949) $) 85 T ELT) (((-856 (-949)) $) NIL T ELT)) (-3689 (((-1203 $)) 102 T ELT)) (-1889 (($) 66 T ELT)) (-1821 (($) 50 (|has| $ (-381)) ELT)) (-3728 (((-711 $) (-1299 $)) NIL T ELT) (((-1299 $) $) 91 T ELT)) (-4488 (((-560) $) 42 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 45 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-3189 (((-713 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3614 (((-793)) 51 T CONST)) (-1389 (((-114) $ $) 107 T ELT)) (-2236 (((-1299 $) (-949)) 97 T ELT) (((-1299 $)) 96 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) 31 T CONST)) (-3151 (($) 27 T CONST)) (-4444 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-595 |#1|) (-13 (-363) (-341 $) (-633 (-560))) (-949)) (T -595)) -NIL -(-13 (-363) (-341 $) (-633 (-560))) -((-2361 (((-1305) (-1191)) 10 T ELT))) -(((-596) (-10 -7 (-15 -2361 ((-1305) (-1191))))) (T -596)) -((-2361 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-596))))) -(-10 -7 (-15 -2361 ((-1305) (-1191)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| "failed") $) 77 T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2365 ((|#1| $) 30 T ELT)) (-2363 (((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2366 (($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2364 (((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $) 31 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3319 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1209)) 49 (|has| |#1| (-1070 (-1209))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2362 (((-114) $) 35 T ELT)) (-4274 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1209)) 90 (|has| |#1| (-928 (-1209))) ELT)) (-4462 (((-888) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 18 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 86 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 16 T ELT) (($ (-421 (-560)) $) 41 T ELT) (($ $ (-421 (-560))) NIL T ELT))) -(((-597 |#1|) (-13 (-739 (-421 (-560))) (-1070 |#1|) (-10 -8 (-15 -2366 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2365 (|#1| $)) (-15 -2364 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $)) (-15 -2363 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2362 ((-114) $)) (-15 -3319 ($ |#1| |#1|)) (-15 -4274 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-928 (-1209))) (-15 -4274 (|#1| $ (-1209))) |%noBranch|) (IF (|has| |#1| (-1070 (-1209))) (-15 -3319 ($ |#1| (-1209))) |%noBranch|))) (-376)) (T -597)) -((-2366 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 *2)) (|:| |logand| (-1203 *2))))) (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-597 *2)))) (-2365 (*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 *3)) (|:| |logand| (-1203 *3))))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-3319 (*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-4274 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-928 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1209)))) (-3319 (*1 *1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *1 (-597 *2)) (-4 *2 (-1070 *3)) (-4 *2 (-376))))) -(-13 (-739 (-421 (-560))) (-1070 |#1|) (-10 -8 (-15 -2366 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2365 (|#1| $)) (-15 -2364 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $)) (-15 -2363 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2362 ((-114) $)) (-15 -3319 ($ |#1| |#1|)) (-15 -4274 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-928 (-1209))) (-15 -4274 (|#1| $ (-1209))) |%noBranch|) (IF (|has| |#1| (-1070 (-1209))) (-15 -3319 ($ |#1| (-1209))) |%noBranch|))) -((-4474 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 30 T ELT))) -(((-598 |#1| |#2|) (-10 -7 (-15 -4474 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -4474 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4474 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4474 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-376) (-376)) (T -598)) -((-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-598 *5 *6)))) (-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) (-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2365 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -2365 *6) (|:| |coeff| *6))) (-5 *1 (-598 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6))))) -(-10 -7 (-15 -4474 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -4474 ((-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2365 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4474 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4474 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3924 (((-597 |#2|) (-597 |#2|)) 42 T ELT)) (-4479 (((-663 |#2|) (-597 |#2|)) 44 T ELT)) (-2377 ((|#2| (-597 |#2|)) 50 T ELT))) -(((-599 |#1| |#2|) (-10 -7 (-15 -3924 ((-597 |#2|) (-597 |#2|))) (-15 -4479 ((-663 |#2|) (-597 |#2|))) (-15 -2377 (|#2| (-597 |#2|)))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-29 |#1|) (-1235))) (T -599)) -((-2377 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1235))) (-5 *1 (-599 *4 *2)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))))) (-4479 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1235))) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-663 *5)) (-5 *1 (-599 *4 *5)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1235))) (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-599 *3 *4))))) -(-10 -7 (-15 -3924 ((-597 |#2|) (-597 |#2|))) (-15 -4479 ((-663 |#2|) (-597 |#2|))) (-15 -2377 (|#2| (-597 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2369 (($ (-520) (-611)) 14 T ELT)) (-2367 (($ (-520) (-611) $) 16 T ELT)) (-2368 (($ (-520) (-611)) 15 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-1214)) 7 T ELT) (((-1214) $) 6 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-600) (-13 (-1133) (-504 (-1214)) (-10 -8 (-15 -2369 ($ (-520) (-611))) (-15 -2368 ($ (-520) (-611))) (-15 -2367 ($ (-520) (-611) $))))) (T -600)) -((-2369 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-2368 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-2367 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600))))) -(-13 (-1133) (-504 (-1214)) (-10 -8 (-15 -2369 ($ (-520) (-611))) (-15 -2368 ($ (-520) (-611))) (-15 -2367 ($ (-520) (-611) $)))) -((-2373 (((-114) |#1|) 16 T ELT)) (-2374 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2371 (((-2 (|:| -3181 |#1|) (|:| -2646 (-793))) |#1|) 37 T ELT) (((-3 |#1| "failed") |#1| (-793)) 18 T ELT)) (-2370 (((-114) |#1| (-793)) 19 T ELT)) (-2375 ((|#1| |#1|) 41 T ELT)) (-2372 ((|#1| |#1| (-793)) 44 T ELT))) -(((-601 |#1|) (-10 -7 (-15 -2370 ((-114) |#1| (-793))) (-15 -2371 ((-3 |#1| "failed") |#1| (-793))) (-15 -2371 ((-2 (|:| -3181 |#1|) (|:| -2646 (-793))) |#1|)) (-15 -2372 (|#1| |#1| (-793))) (-15 -2373 ((-114) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1|)) (-15 -2375 (|#1| |#1|))) (-559)) (T -601)) -((-2375 (*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2374 (*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2373 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-2372 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2371 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3181 *3) (|:| -2646 (-793)))) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-2371 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) -(-10 -7 (-15 -2370 ((-114) |#1| (-793))) (-15 -2371 ((-3 |#1| "failed") |#1| (-793))) (-15 -2371 ((-2 (|:| -3181 |#1|) (|:| -2646 (-793))) |#1|)) (-15 -2372 (|#1| |#1| (-793))) (-15 -2373 ((-114) |#1|)) (-15 -2374 ((-3 |#1| "failed") |#1|)) (-15 -2375 (|#1| |#1|))) -((-2376 (((-1203 |#1|) (-949)) 44 T ELT))) -(((-602 |#1|) (-10 -7 (-15 -2376 ((-1203 |#1|) (-949)))) (-363)) (T -602)) -((-2376 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-602 *4)) (-4 *4 (-363))))) -(-10 -7 (-15 -2376 ((-1203 |#1|) (-949)))) -((-3924 (((-597 (-421 (-976 |#1|))) (-597 (-421 (-976 |#1|)))) 27 T ELT)) (-4328 (((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-976 |#1|)) (-1209)) 34 (|has| |#1| (-149)) ELT)) (-4479 (((-663 (-326 |#1|)) (-597 (-421 (-976 |#1|)))) 19 T ELT)) (-2378 (((-326 |#1|) (-421 (-976 |#1|)) (-1209)) 32 (|has| |#1| (-149)) ELT)) (-2377 (((-326 |#1|) (-597 (-421 (-976 |#1|)))) 21 T ELT))) -(((-603 |#1|) (-10 -7 (-15 -3924 ((-597 (-421 (-976 |#1|))) (-597 (-421 (-976 |#1|))))) (-15 -4479 ((-663 (-326 |#1|)) (-597 (-421 (-976 |#1|))))) (-15 -2377 ((-326 |#1|) (-597 (-421 (-976 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4328 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -2378 ((-326 |#1|) (-421 (-976 |#1|)) (-1209)))) |%noBranch|)) (-13 (-466) (-1070 (-560)) (-660 (-560)))) (T -603)) -((-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-326 *5)) (-5 *1 (-603 *5)))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-976 *4)))) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-603 *4)))) (-4479 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-976 *4)))) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-663 (-326 *4))) (-5 *1 (-603 *4)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-597 (-421 (-976 *3)))) (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-603 *3))))) -(-10 -7 (-15 -3924 ((-597 (-421 (-976 |#1|))) (-597 (-421 (-976 |#1|))))) (-15 -4479 ((-663 (-326 |#1|)) (-597 (-421 (-976 |#1|))))) (-15 -2377 ((-326 |#1|) (-597 (-421 (-976 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4328 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -2378 ((-326 |#1|) (-421 (-976 |#1|)) (-1209)))) |%noBranch|)) -((-2380 (((-663 (-711 (-560))) (-663 (-949)) (-663 (-932 (-560)))) 80 T ELT) (((-663 (-711 (-560))) (-663 (-949))) 81 T ELT) (((-711 (-560)) (-663 (-949)) (-932 (-560))) 74 T ELT)) (-2379 (((-793) (-663 (-949))) 71 T ELT))) -(((-604) (-10 -7 (-15 -2379 ((-793) (-663 (-949)))) (-15 -2380 ((-711 (-560)) (-663 (-949)) (-932 (-560)))) (-15 -2380 ((-663 (-711 (-560))) (-663 (-949)))) (-15 -2380 ((-663 (-711 (-560))) (-663 (-949)) (-663 (-932 (-560))))))) (T -604)) -((-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-949))) (-5 *4 (-663 (-932 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-949))) (-5 *4 (-932 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-604)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-793)) (-5 *1 (-604))))) -(-10 -7 (-15 -2379 ((-793) (-663 (-949)))) (-15 -2380 ((-711 (-560)) (-663 (-949)) (-932 (-560)))) (-15 -2380 ((-663 (-711 (-560))) (-663 (-949)))) (-15 -2380 ((-663 (-711 (-560))) (-663 (-949)) (-663 (-932 (-560)))))) -((-3717 (((-663 |#5|) |#5| (-114)) 97 T ELT)) (-2381 (((-114) |#5| (-663 |#5|)) 34 T ELT))) -(((-605 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3717 ((-663 |#5|) |#5| (-114))) (-15 -2381 ((-114) |#5| (-663 |#5|)))) (-13 (-319) (-149)) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3| |#4|)) (T -605)) -((-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1141 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-605 *5 *6 *7 *8 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-663 *3)) (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1141 *5 *6 *7 *8))))) -(-10 -7 (-15 -3717 ((-663 |#5|) |#5| (-114))) (-15 -2381 ((-114) |#5| (-663 |#5|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 (((-1167) $) 11 T ELT)) (-4035 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-606) (-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $))))) (T -606)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-606)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-606))))) -(-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $)))) -((-3053 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3932 (($ $) 38 T ELT)) (-3933 (($ $) NIL T ELT)) (-3923 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3930 (((-114) $ $) 68 T ELT)) (-3929 (((-114) $ $ (-560)) 63 T ELT)) (-3924 (((-663 $) $ (-146)) 77 T ELT) (((-663 $) $ (-143)) 78 T ELT)) (-1947 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-872)) ELT)) (-1945 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-146) (-872))) ELT)) (-3396 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-872)) ELT)) (-4304 (((-146) $ (-560) (-146)) 60 (|has| $ (-6 -4512)) ELT) (((-146) $ (-1266 (-560)) (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-3921 (($ $ (-146)) 81 T ELT) (($ $ (-143)) 82 T ELT)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-3926 (($ $ (-1266 (-560)) $) 58 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-3912 (($ (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4511)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-146) $ (-560)) NIL T ELT)) (-3931 (((-114) $ $) 90 T ELT)) (-3925 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1133)) ELT) (((-560) (-146) $ (-560)) 65 (|has| (-146) (-1133)) ELT) (((-560) $ $ (-560)) 64 T ELT) (((-560) (-143) $ (-560)) 67 T ELT)) (-3376 (((-663 (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) (-146)) 9 T ELT)) (-2429 (((-560) $) 32 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-4024 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-3093 (((-663 (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-2430 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-3927 (((-114) $ $ (-146)) 91 T ELT)) (-3928 (((-793) $ $ (-146)) 88 T ELT)) (-2174 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3934 (($ $) 41 T ELT)) (-3935 (($ $) NIL T ELT)) (-3922 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-3746 (((-1191) $) 43 (|has| (-146) (-1133)) ELT)) (-2531 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) 27 T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) 87 (|has| (-146) (-1133)) ELT)) (-4317 (((-146) $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2428 (($ $ (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-2434 (((-663 (-146)) $) NIL T ELT)) (-3909 (((-114) $) 15 T ELT)) (-4079 (($) 12 T ELT)) (-4316 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) 70 T ELT) (($ $ (-1266 (-560))) 25 T ELT) (($ $ $) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-1946 (($ $ $ (-560)) 83 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 20 T ELT)) (-4488 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-4036 (($ (-663 (-146))) NIL T ELT)) (-4318 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-663 $)) 84 T ELT)) (-4462 (($ (-146)) NIL T ELT) (((-888) $) 31 (|has| (-146) (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2173 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3540 (((-114) $ $) 17 (|has| (-146) (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3172 (((-114) $ $) 18 (|has| (-146) (-872)) ELT)) (-4473 (((-793) $) 16 (|has| $ (-6 -4511)) ELT))) -(((-607 |#1|) (-1176) (-560)) (T -607)) -NIL -(-1176) -((-4038 (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1121 |#4|)) 32 T ELT))) -(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4038 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1121 |#4|))) (-15 -4038 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) (-817) (-872) (-571) (-980 |#3| |#1| |#2|)) (T -608)) -((-4038 (*1 *2 *3 *4) (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-980 *6 *5 *4)))) (-4038 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1121 *3)) (-4 *3 (-980 *7 *6 *4)) (-4 *6 (-817)) (-4 *4 (-872)) (-4 *7 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *6 *4 *7 *3))))) -(-10 -7 (-15 -4038 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1121 |#4|))) (-15 -4038 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 71 T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-560)) 58 T ELT) (($ $ (-560) (-560)) 59 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 65 T ELT)) (-2412 (($ $) 109 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-888) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1058 (-866 (-560))) (-1209) |#1| (-421 (-560))) 241 T ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 36 T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3379 (((-114) $) NIL T ELT)) (-4288 (((-560) $) 63 T ELT) (((-560) $ (-560)) 64 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4293 (($ $ (-949)) 83 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 80 T ELT)) (-4453 (((-114) $) 26 T ELT)) (-3380 (($ |#1| (-560)) 22 T ELT) (($ $ (-1114) (-560)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-560))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2416 (($ (-1058 (-866 (-560))) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 13 T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4328 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2413 (((-3 $ "failed") $ $ (-114)) 108 T ELT)) (-2411 (($ $ $) 116 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2414 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 15 T ELT)) (-2415 (((-1058 (-866 (-560))) $) 14 T ELT)) (-4285 (($ $ (-560)) 47 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-4316 ((|#1| $ (-560)) 62 T ELT) (($ $ $) NIL (|has| (-560) (-1144)) ELT)) (-4274 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-4464 (((-560) $) NIL T ELT)) (-3378 (($ $) 48 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 29 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-4193 ((|#1| $ (-560)) 61 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 39 T CONST)) (-4289 ((|#1| $) NIL T ELT)) (-2391 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2403 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2393 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2405 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2389 (($ $) 201 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2401 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2408 (($ $ (-421 (-560))) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2409 (($ $ |#1|) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2406 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2407 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2388 (($ $) 203 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2400 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2390 (($ $) 199 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2402 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2392 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2404 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2385 (($ $) 209 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2397 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2387 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2399 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2383 (($ $) 213 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2395 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2382 (($ $) 215 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2394 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2384 (($ $) 211 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2396 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2386 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2398 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4286 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-3145 (($) 30 T CONST)) (-3151 (($) 40 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3540 (((-114) $ $) 73 T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-4355 (($ $ $) 88 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 111 T ELT)) (* (($ (-949) $) 98 T ELT) (($ (-793) $) 96 T ELT) (($ (-560) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-609 |#1|) (-13 (-1278 |#1| (-560)) (-10 -8 (-15 -2416 ($ (-1058 (-866 (-560))) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2415 ((-1058 (-866 (-560))) $)) (-15 -2414 ((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -4334 ($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -4453 ((-114) $)) (-15 -4331 ($ (-1 |#1| (-560)) $)) (-15 -2413 ((-3 $ "failed") $ $ (-114))) (-15 -2412 ($ $)) (-15 -2411 ($ $ $)) (-15 -2410 ((-888) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1058 (-866 (-560))) (-1209) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $)) (-15 -2409 ($ $ |#1|)) (-15 -2408 ($ $ (-421 (-560)))) (-15 -2407 ($ $)) (-15 -2406 ($ $)) (-15 -2405 ($ $)) (-15 -2404 ($ $)) (-15 -2403 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $)) (-15 -2400 ($ $)) (-15 -2399 ($ $)) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -2396 ($ $)) (-15 -2395 ($ $)) (-15 -2394 ($ $)) (-15 -2393 ($ $)) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $))) |%noBranch|))) (-1081)) (T -609)) -((-4453 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1081)))) (-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-1058 (-866 (-560)))) (-5 *3 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1081)) (-5 *1 (-609 *4)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-1058 (-866 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1081)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1081)))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1081)) (-5 *1 (-609 *3)))) (-4331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1081)) (-5 *1 (-609 *3)))) (-2413 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1081)))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1081)))) (-2411 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1081)))) (-2410 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *6)))) (-5 *4 (-1058 (-866 (-560)))) (-5 *5 (-1209)) (-5 *7 (-421 (-560))) (-4 *6 (-1081)) (-5 *2 (-888)) (-5 *1 (-609 *6)))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2408 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1081)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2405 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2401 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2400 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2394 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2393 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2389 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) -(-13 (-1278 |#1| (-560)) (-10 -8 (-15 -2416 ($ (-1058 (-866 (-560))) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2415 ((-1058 (-866 (-560))) $)) (-15 -2414 ((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -4334 ($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -4453 ((-114) $)) (-15 -4331 ($ (-1 |#1| (-560)) $)) (-15 -2413 ((-3 $ "failed") $ $ (-114))) (-15 -2412 ($ $)) (-15 -2411 ($ $ $)) (-15 -2410 ((-888) (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1058 (-866 (-560))) (-1209) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $)) (-15 -2409 ($ $ |#1|)) (-15 -2408 ($ $ (-421 (-560)))) (-15 -2407 ($ $)) (-15 -2406 ($ $)) (-15 -2405 ($ $)) (-15 -2404 ($ $)) (-15 -2403 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $)) (-15 -2400 ($ $)) (-15 -2399 ($ $)) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -2396 ($ $)) (-15 -2395 ($ $)) (-15 -2394 ($ $)) (-15 -2393 ($ $)) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $))) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 63 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4334 (($ (-1187 |#1|)) 9 T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) 44 T ELT)) (-3379 (((-114) $) 56 T ELT)) (-4288 (((-793) $) 61 T ELT) (((-793) $ (-793)) 60 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) 46 (|has| |#1| (-571)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-1187 |#1|) $) 25 T ELT)) (-3614 (((-793)) 55 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 10 T CONST)) (-3151 (($) 14 T CONST)) (-3540 (((-114) $ $) 24 T ELT)) (-4353 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-4355 (($ $ $) 27 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 53 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-560)) 38 T ELT))) -(((-610 |#1|) (-13 (-1081) (-111 |#1| |#1|) (-10 -8 (-15 -4333 ((-1187 |#1|) $)) (-15 -4334 ($ (-1187 |#1|))) (-15 -3379 ((-114) $)) (-15 -4288 ((-793) $)) (-15 -4288 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|))) (-1081)) (T -610)) -((-4333 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-610 *3)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) (-4288 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-610 *3)) (-4 *3 (-1081))))) -(-13 (-1081) (-111 |#1| |#1|) (-10 -8 (-15 -4333 ((-1187 |#1|) $)) (-15 -4334 ($ (-1187 |#1|))) (-15 -3379 ((-114) $)) (-15 -4288 ((-793) $)) (-15 -4288 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-2419 (($) 8 T CONST)) (-2420 (($) 7 T CONST)) (-2417 (($ $ (-663 $)) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2421 (($) 6 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-1214)) 15 T ELT) (((-1214) $) 10 T ELT)) (-2418 (($) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-611) (-13 (-1133) (-504 (-1214)) (-10 -8 (-15 -2421 ($) -4468) (-15 -2420 ($) -4468) (-15 -2419 ($) -4468) (-15 -2418 ($) -4468) (-15 -2417 ($ $ (-663 $)))))) (T -611)) -((-2421 (*1 *1) (-5 *1 (-611))) (-2420 (*1 *1) (-5 *1 (-611))) (-2419 (*1 *1) (-5 *1 (-611))) (-2418 (*1 *1) (-5 *1 (-611))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611))))) -(-13 (-1133) (-504 (-1214)) (-10 -8 (-15 -2421 ($) -4468) (-15 -2420 ($) -4468) (-15 -2419 ($) -4468) (-15 -2418 ($) -4468) (-15 -2417 ($ $ (-663 $))))) -((-4474 (((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)) 15 T ELT))) -(((-612 |#1| |#2|) (-13 (-1249) (-10 -7 (-15 -4474 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|))))) (-1249) (-1249)) (T -612)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6))))) -(-13 (-1249) (-10 -7 (-15 -4474 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|))))) -((-4474 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1187 |#2|)) 20 T ELT) (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-615 |#2|)) 19 T ELT) (((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|)) 18 T ELT))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -4474 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-615 |#2|))) (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1187 |#2|)))) (-1249) (-1249) (-1249)) (T -613)) -((-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) (-5 *1 (-613 *6 *7 *8)))) (-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) (-5 *1 (-613 *6 *7 *8)))) (-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-615 *8)) (-5 *1 (-613 *6 *7 *8))))) -(-10 -7 (-15 -4474 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-615 |#2|))) (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1187 |#2|)))) -((-2426 ((|#3| |#3| (-663 (-630 |#3|)) (-663 (-1209))) 57 T ELT)) (-2425 (((-171 |#2|) |#3|) 122 T ELT)) (-2422 ((|#3| (-171 |#2|)) 46 T ELT)) (-2423 ((|#2| |#3|) 21 T ELT)) (-2424 ((|#3| |#2|) 35 T ELT))) -(((-614 |#1| |#2| |#3|) (-10 -7 (-15 -2422 (|#3| (-171 |#2|))) (-15 -2423 (|#2| |#3|)) (-15 -2424 (|#3| |#2|)) (-15 -2425 ((-171 |#2|) |#3|)) (-15 -2426 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1209))))) (-571) (-13 (-435 |#1|) (-1034) (-1235)) (-13 (-435 (-171 |#1|)) (-1034) (-1235))) (T -614)) -((-2426 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1209))) (-4 *2 (-13 (-435 (-171 *5)) (-1034) (-1235))) (-4 *5 (-571)) (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1034) (-1235))))) (-2425 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1034) (-1235))) (-4 *3 (-13 (-435 (-171 *4)) (-1034) (-1235))))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1034) (-1235))) (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1034) (-1235))))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1034) (-1235))) (-5 *1 (-614 *4 *2 *3)) (-4 *3 (-13 (-435 (-171 *4)) (-1034) (-1235))))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1034) (-1235))) (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1034) (-1235))) (-5 *1 (-614 *4 *5 *2))))) -(-10 -7 (-15 -2422 (|#3| (-171 |#2|))) (-15 -2423 (|#2| |#3|)) (-15 -2424 (|#3| |#2|)) (-15 -2425 ((-171 |#2|) |#3|)) (-15 -2426 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1209))))) -((-4226 (($ (-1 (-114) |#1|) $) 19 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3963 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3962 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3961 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-4036 (((-1187 |#1|) $) 20 T ELT)) (-4462 (((-888) $) 25 T ELT))) -(((-615 |#1|) (-13 (-632 (-888)) (-10 -8 (-15 -4474 ($ (-1 |#1| |#1|) $)) (-15 -3962 ($ (-1 (-114) |#1|) $)) (-15 -3961 ($ (-1 (-114) |#1|) $)) (-15 -4226 ($ (-1 (-114) |#1|) $)) (-15 -3963 ($ (-1 |#1| |#1|) |#1|)) (-15 -4036 ((-1187 |#1|) $)))) (-1249)) (T -615)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) (-3962 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) (-4226 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1249))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4474 ($ (-1 |#1| |#1|) $)) (-15 -3962 ($ (-1 (-114) |#1|) $)) (-15 -3961 ($ (-1 (-114) |#1|) $)) (-15 -4226 ($ (-1 (-114) |#1|) $)) (-15 -3963 ($ (-1 |#1| |#1|) |#1|)) (-15 -4036 ((-1187 |#1|) $)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4351 (((-711 |#1|) $ $) NIL (|has| |#1| (-1081)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4348 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-4349 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4352 ((|#1| $ $) NIL (|has| |#1| (-1081)) ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4350 (($ $ $) NIL (|has| |#1| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4353 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-616 |#1| |#2|) (-1298 |#1|) (-1249) (-560)) (T -616)) -NIL -(-1298 |#1|) -((-2427 (((-1305) $ |#2| |#2|) 35 T ELT)) (-2429 ((|#2| $) 23 T ELT)) (-2430 ((|#2| $) 21 T ELT)) (-2174 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4474 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4317 ((|#3| $) 26 T ELT)) (-2428 (($ $ |#3|) 33 T ELT)) (-2431 (((-114) |#3| $) 17 T ELT)) (-2434 (((-663 |#3|) $) 15 T ELT)) (-4316 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -2427 ((-1305) |#1| |#2| |#2|)) (-15 -2428 (|#1| |#1| |#3|)) (-15 -4317 (|#3| |#1|)) (-15 -2429 (|#2| |#1|)) (-15 -2430 (|#2| |#1|)) (-15 -2431 ((-114) |#3| |#1|)) (-15 -2434 ((-663 |#3|) |#1|)) (-15 -4316 (|#3| |#1| |#2|)) (-15 -4316 (|#3| |#1| |#2| |#3|)) (-15 -2174 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4474 (|#1| (-1 |#3| |#3|) |#1|))) (-618 |#2| |#3|) (-1133) (-1249)) (T -617)) -NIL -(-10 -8 (-15 -2427 ((-1305) |#1| |#2| |#2|)) (-15 -2428 (|#1| |#1| |#3|)) (-15 -4317 (|#3| |#1|)) (-15 -2429 (|#2| |#1|)) (-15 -2430 (|#2| |#1|)) (-15 -2431 ((-114) |#3| |#1|)) (-15 -2434 ((-663 |#3|) |#1|)) (-15 -4316 (|#3| |#1| |#2|)) (-15 -4316 (|#3| |#1| |#2| |#3|)) (-15 -2174 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4474 (|#1| (-1 |#3| |#3|) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2427 (((-1305) $ |#1| |#1|) 44 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-1731 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) 55 T ELT)) (-3376 (((-663 |#2|) $) 30 (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) 47 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#2|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 ((|#1| $) 48 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#2| (-1133)) ELT)) (-2432 (((-663 |#1|) $) 50 T ELT)) (-2433 (((-114) |#1| $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#2| (-1133)) ELT)) (-4317 ((|#2| $) 46 (|has| |#1| (-872)) ELT)) (-2428 (($ $ |#2|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) 28 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#2| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-618 |#1| |#2|) (-142) (-1133) (-1249)) (T -618)) -((-2434 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-663 *4)))) (-2433 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-663 *3)))) (-2431 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1133)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1133)) (-4 *2 (-872)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1133)) (-4 *2 (-872)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1133)) (-4 *3 (-872)) (-4 *2 (-1249)))) (-2428 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) (-2427 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-1305))))) -(-13 (-503 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -2434 ((-663 |t#2|) $)) (-15 -2433 ((-114) |t#1| $)) (-15 -2432 ((-663 |t#1|) $)) (IF (|has| |t#2| (-1133)) (IF (|has| $ (-6 -4511)) (-15 -2431 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-872)) (PROGN (-15 -2430 (|t#1| $)) (-15 -2429 (|t#1| $)) (-15 -4317 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4512)) (PROGN (-15 -2428 ($ $ |t#2|)) (-15 -2427 ((-1305) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#2| (-1133)) (|has| |#2| (-102))) ((-632 (-888)) -4043 (|has| |#2| (-1133)) (|has| |#2| (-632 (-888)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-1133) |has| |#2| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT) (((-1250) $) 14 T ELT) (($ (-663 (-1250))) 13 T ELT)) (-2435 (((-663 (-1250)) $) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-619) (-13 (-1115) (-632 (-1250)) (-10 -8 (-15 -4462 ($ (-663 (-1250)))) (-15 -2435 ((-663 (-1250)) $))))) (T -619)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-619)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-619))))) -(-13 (-1115) (-632 (-1250)) (-10 -8 (-15 -4462 ($ (-663 (-1250)))) (-15 -2435 ((-663 (-1250)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1994 (((-3 $ #1="failed")) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (((-1299 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 (-711 |#1|)) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1944 (((-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4240 (($) NIL T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1918 (((-3 $ #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2010 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1942 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2008 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2649 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2125 (((-1203 (-976 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2652 (($ $ (-949)) NIL T ELT)) (-1940 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-1203 |#1|) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2012 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1938 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2014 (($ (-1299 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1299 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3973 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3597 (((-949)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1919 (((-3 $ #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2011 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1943 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2009 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2650 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2129 (((-1203 (-976 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-1941 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-1203 |#1|) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2013 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1939 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1933 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1931 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4316 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-3728 (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1299 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4488 (($ (-1299 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2117 (((-663 (-976 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-976 |#1|)) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2838 (($ $ $) NIL T ELT)) (-1937 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4462 (((-888) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1922 (((-663 (-1299 |#1|))) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-1935 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3030 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2837 (($ $ $) NIL T ELT)) (-1936 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1934 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3145 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-620 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -4462 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -620)) -((-4462 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3))))) -(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -4462 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-621) (-13 (-1133) (-504 (-130)))) (T -621)) -NIL -(-13 (-1133) (-504 (-130))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2437 (($) 12 T CONST)) (-2459 (($) 10 T CONST)) (-2436 (($) 13 T CONST)) (-2455 (($) 11 T CONST)) (-2452 (($) 14 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-622) (-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2455 ($) -4468) (-15 -2437 ($) -4468) (-15 -2436 ($) -4468) (-15 -2452 ($) -4468)))) (T -622)) -((-2459 (*1 *1) (-5 *1 (-622))) (-2455 (*1 *1) (-5 *1 (-622))) (-2437 (*1 *1) (-5 *1 (-622))) (-2436 (*1 *1) (-5 *1 (-622))) (-2452 (*1 *1) (-5 *1 (-622)))) -(-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2455 ($) -4468) (-15 -2437 ($) -4468) (-15 -2436 ($) -4468) (-15 -2452 ($) -4468))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2448 (($) 11 T CONST)) (-2442 (($) 17 T CONST)) (-2438 (($) 21 T CONST)) (-2440 (($) 19 T CONST)) (-2445 (($) 14 T CONST)) (-2439 (($) 20 T CONST)) (-2447 (($) 12 T CONST)) (-2446 (($) 13 T CONST)) (-2441 (($) 18 T CONST)) (-2444 (($) 15 T CONST)) (-2443 (($) 16 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (((-130) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-623) (-13 (-1133) (-632 (-130)) (-10 -8 (-15 -2448 ($) -4468) (-15 -2447 ($) -4468) (-15 -2446 ($) -4468) (-15 -2445 ($) -4468) (-15 -2444 ($) -4468) (-15 -2443 ($) -4468) (-15 -2442 ($) -4468) (-15 -2441 ($) -4468) (-15 -2440 ($) -4468) (-15 -2439 ($) -4468) (-15 -2438 ($) -4468)))) (T -623)) -((-2448 (*1 *1) (-5 *1 (-623))) (-2447 (*1 *1) (-5 *1 (-623))) (-2446 (*1 *1) (-5 *1 (-623))) (-2445 (*1 *1) (-5 *1 (-623))) (-2444 (*1 *1) (-5 *1 (-623))) (-2443 (*1 *1) (-5 *1 (-623))) (-2442 (*1 *1) (-5 *1 (-623))) (-2441 (*1 *1) (-5 *1 (-623))) (-2440 (*1 *1) (-5 *1 (-623))) (-2439 (*1 *1) (-5 *1 (-623))) (-2438 (*1 *1) (-5 *1 (-623)))) -(-13 (-1133) (-632 (-130)) (-10 -8 (-15 -2448 ($) -4468) (-15 -2447 ($) -4468) (-15 -2446 ($) -4468) (-15 -2445 ($) -4468) (-15 -2444 ($) -4468) (-15 -2443 ($) -4468) (-15 -2442 ($) -4468) (-15 -2441 ($) -4468) (-15 -2440 ($) -4468) (-15 -2439 ($) -4468) (-15 -2438 ($) -4468))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2450 (($) 15 T CONST)) (-2449 (($) 16 T CONST)) (-2456 (($) 13 T CONST)) (-2459 (($) 10 T CONST)) (-2457 (($) 12 T CONST)) (-2458 (($) 11 T CONST)) (-2455 (($) 14 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-624) (-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2458 ($) -4468) (-15 -2457 ($) -4468) (-15 -2456 ($) -4468) (-15 -2455 ($) -4468) (-15 -2450 ($) -4468) (-15 -2449 ($) -4468)))) (T -624)) -((-2459 (*1 *1) (-5 *1 (-624))) (-2458 (*1 *1) (-5 *1 (-624))) (-2457 (*1 *1) (-5 *1 (-624))) (-2456 (*1 *1) (-5 *1 (-624))) (-2455 (*1 *1) (-5 *1 (-624))) (-2450 (*1 *1) (-5 *1 (-624))) (-2449 (*1 *1) (-5 *1 (-624)))) -(-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2458 ($) -4468) (-15 -2457 ($) -4468) (-15 -2456 ($) -4468) (-15 -2455 ($) -4468) (-15 -2450 ($) -4468) (-15 -2449 ($) -4468))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2454 (($) 15 T CONST)) (-2451 (($) 18 T CONST)) (-2456 (($) 13 T CONST)) (-2459 (($) 10 T CONST)) (-2457 (($) 12 T CONST)) (-2458 (($) 11 T CONST)) (-2453 (($) 16 T CONST)) (-2455 (($) 14 T CONST)) (-2452 (($) 17 T CONST)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-625) (-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2458 ($) -4468) (-15 -2457 ($) -4468) (-15 -2456 ($) -4468) (-15 -2455 ($) -4468) (-15 -2454 ($) -4468) (-15 -2453 ($) -4468) (-15 -2452 ($) -4468) (-15 -2451 ($) -4468)))) (T -625)) -((-2459 (*1 *1) (-5 *1 (-625))) (-2458 (*1 *1) (-5 *1 (-625))) (-2457 (*1 *1) (-5 *1 (-625))) (-2456 (*1 *1) (-5 *1 (-625))) (-2455 (*1 *1) (-5 *1 (-625))) (-2454 (*1 *1) (-5 *1 (-625))) (-2453 (*1 *1) (-5 *1 (-625))) (-2452 (*1 *1) (-5 *1 (-625))) (-2451 (*1 *1) (-5 *1 (-625)))) -(-13 (-1133) (-684) (-10 -8 (-15 -2459 ($) -4468) (-15 -2458 ($) -4468) (-15 -2457 ($) -4468) (-15 -2456 ($) -4468) (-15 -2455 ($) -4468) (-15 -2454 ($) -4468) (-15 -2453 ($) -4468) (-15 -2452 ($) -4468) (-15 -2451 ($) -4468))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-621)) 12 T ELT) (((-621) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-626) (-13 (-1133) (-504 (-621)) (-504 (-130)))) (T -626)) -NIL -(-13 (-1133) (-504 (-621)) (-504 (-130))) -((-3053 (((-114) $ $) NIL T ELT)) (-1912 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) 40 T ELT)) (-4113 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2427 (((-1305) $ (-1191) (-1191)) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ (-1191) |#1|) 50 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#1| #1="failed") (-1191) $) 53 T ELT)) (-4240 (($) NIL T CONST)) (-1916 (($ $ (-1191)) 25 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-3911 (((-3 |#1| #1#) (-1191) $) 54 T ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3912 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-4358 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-1913 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) 39 T ELT)) (-1731 ((|#1| $ (-1191) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-1191)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2499 (($ $) 55 T ELT)) (-1917 (($ (-402)) 23 T ELT) (($ (-402) (-1191)) 22 T ELT)) (-4056 (((-402) $) 41 T ELT)) (-2429 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (((-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-2430 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2898 (((-663 (-1191)) $) 46 T ELT)) (-2461 (((-114) (-1191) $) NIL T ELT)) (-1914 (((-1191) $) 42 T ELT)) (-1400 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-2432 (((-663 (-1191)) $) NIL T ELT)) (-2433 (((-114) (-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 ((|#1| $) NIL (|has| (-1191) (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) "failed") (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-663 (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 44 T ELT)) (-4316 ((|#1| $ (-1191) |#1|) NIL T ELT) ((|#1| $ (-1191)) 49 T ELT)) (-1610 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (((-793) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (((-793) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-4462 (((-888) $) 21 T ELT)) (-1915 (($ $) 26 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1402 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 20 T ELT)) (-4473 (((-793) $) 48 (|has| $ (-6 -4511)) ELT))) -(((-627 |#1|) (-13 (-378 (-402) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) (-1226 (-1191) |#1|) (-10 -8 (-6 -4511) (-15 -2499 ($ $)))) (-1133)) (T -627)) -((-2499 (*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1133))))) -(-13 (-378 (-402) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) (-1226 (-1191) |#1|) (-10 -8 (-6 -4511) (-15 -2499 ($ $)))) -((-3749 (((-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) 16 T ELT)) (-2898 (((-663 |#2|) $) 20 T ELT)) (-2461 (((-114) |#2| $) 12 T ELT))) -(((-628 |#1| |#2| |#3|) (-10 -8 (-15 -2898 ((-663 |#2|) |#1|)) (-15 -2461 ((-114) |#2| |#1|)) (-15 -3749 ((-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|))) (-629 |#2| |#3|) (-1133) (-1133)) (T -628)) -NIL -(-10 -8 (-15 -2898 ((-663 |#2|) |#1|)) (-15 -2461 ((-114) |#2| |#1|)) (-15 -3749 ((-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|))) -((-3053 (((-114) $ $) 19 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 59 (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 62 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 50 (|has| $ (-6 -4511)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 60 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 57 (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-2898 (((-663 |#1|) $) 67 T ELT)) (-2461 (((-114) |#1| $) 68 T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 43 T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 55 T ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 45 T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 23 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 52 T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 54 T ELT)) (-4462 (((-888) $) 17 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 46 T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-629 |#1| |#2|) (-142) (-1133) (-1133)) (T -629)) -((-2461 (*1 *2 *3 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-114)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-663 *3)))) (-3911 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-2460 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) -(-13 (-233 (-2 (|:| -4376 |t#1|) (|:| -2300 |t#2|))) (-10 -8 (-15 -2461 ((-114) |t#1| $)) (-15 -2898 ((-663 |t#1|) $)) (-15 -3911 ((-3 |t#2| "failed") |t#1| $)) (-15 -2460 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((-102) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ((-632 (-888)) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888)))) ((-153 #1#) . T) ((-633 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ((-233 #1#) . T) ((-242 #1#) . T) ((-321 #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-503 #1#) . T) ((-528 #1# #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-1133) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-2462 (((-3 (-1209) "failed") $) 46 T ELT)) (-1439 (((-1305) $ (-793)) 22 T ELT)) (-3925 (((-793) $) 20 T ELT)) (-4109 (((-115) $) 9 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2463 (($ (-115) (-663 |#1|) (-793)) 32 T ELT) (($ (-1209)) 33 T ELT)) (-3118 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1209)) 13 T ELT)) (-3088 (((-793) $) 17 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4488 (((-916 (-560)) $) 99 (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) 106 (|has| |#1| (-633 (-916 (-391)))) ELT) (((-549) $) 92 (|has| |#1| (-633 (-549))) ELT)) (-4462 (((-888) $) 74 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2464 (((-663 |#1|) $) 19 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 51 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 53 T ELT))) -(((-630 |#1|) (-13 (-134) (-872) (-910 |#1|) (-10 -8 (-15 -4109 ((-115) $)) (-15 -2464 ((-663 |#1|) $)) (-15 -3088 ((-793) $)) (-15 -2463 ($ (-115) (-663 |#1|) (-793))) (-15 -2463 ($ (-1209))) (-15 -2462 ((-3 (-1209) "failed") $)) (-15 -3118 ((-114) $ (-115))) (-15 -3118 ((-114) $ (-1209))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-1133)) (T -630)) -((-4109 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) (-2463 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1133)) (-5 *1 (-630 *5)))) (-2463 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) (-2462 (*1 *2 *1) (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) (-3118 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1133)))) (-3118 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1133))))) -(-13 (-134) (-872) (-910 |#1|) (-10 -8 (-15 -4109 ((-115) $)) (-15 -2464 ((-663 |#1|) $)) (-15 -3088 ((-793) $)) (-15 -2463 ($ (-115) (-663 |#1|) (-793))) (-15 -2463 ($ (-1209))) (-15 -2462 ((-3 (-1209) "failed") $)) (-15 -3118 ((-114) $ (-115))) (-15 -3118 ((-114) $ (-1209))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) -((-2465 (((-630 |#2|) |#1|) 17 T ELT)) (-2466 (((-3 |#1| "failed") (-630 |#2|)) 21 T ELT))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2465 ((-630 |#2|) |#1|)) (-15 -2466 ((-3 |#1| "failed") (-630 |#2|)))) (-1133) (-1133)) (T -631)) -((-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1133)) (-4 *2 (-1133)) (-5 *1 (-631 *2 *4)))) (-2465 (*1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) -(-10 -7 (-15 -2465 ((-630 |#2|) |#1|)) (-15 -2466 ((-3 |#1| "failed") (-630 |#2|)))) -((-4462 ((|#1| $) 6 T ELT))) -(((-632 |#1|) (-142) (-1249)) (T -632)) -((-4462 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1249))))) -(-13 (-10 -8 (-15 -4462 (|t#1| $)))) -((-4488 ((|#1| $) 6 T ELT))) -(((-633 |#1|) (-142) (-1249)) (T -633)) -((-4488 (*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1249))))) -(-13 (-10 -8 (-15 -4488 (|t#1| $)))) -((-2467 (((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)) 15 T ELT) (((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 16 T ELT))) -(((-634 |#1| |#2|) (-10 -7 (-15 -2467 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -2467 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)))) (-13 (-149) (-27) (-1070 (-560)) (-1070 (-421 (-560)))) (-1275 |#1|)) (T -634)) -((-2467 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-149) (-27) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-1203 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))) (-2467 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-1203 (-421 *5))) (-5 *1 (-634 *4 *5)) (-5 *3 (-421 *5))))) -(-10 -7 (-15 -2467 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -2467 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)))) -((-4462 (($ |#1|) 6 T ELT))) -(((-635 |#1|) (-142) (-1249)) (T -635)) -((-4462 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1249))))) -(-13 (-10 -8 (-15 -4462 ($ |t#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-2468 (($) 14 T CONST)) (-3342 (($) 15 T CONST)) (-3046 (($ $ $) 29 T ELT)) (-3045 (($ $) 27 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3340 (($ $ $) 30 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3341 (($) 11 T CONST)) (-3339 (($ $ $) 31 T ELT)) (-4462 (((-888) $) 35 T ELT)) (-4080 (((-114) $ (|[\|\|]| -3341)) 24 T ELT) (((-114) $ (|[\|\|]| -2468)) 26 T ELT) (((-114) $ (|[\|\|]| -3342)) 21 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3047 (($ $ $) 28 T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3540 (((-114) $ $) 18 T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-636) (-13 (-999) (-10 -8 (-15 -2468 ($) -4468) (-15 -4080 ((-114) $ (|[\|\|]| -3341))) (-15 -4080 ((-114) $ (|[\|\|]| -2468))) (-15 -4080 ((-114) $ (|[\|\|]| -3342)))))) (T -636)) -((-2468 (*1 *1) (-5 *1 (-636))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3341)) (-5 *2 (-114)) (-5 *1 (-636)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2468)) (-5 *2 (-114)) (-5 *1 (-636)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3342)) (-5 *2 (-114)) (-5 *1 (-636))))) -(-13 (-999) (-10 -8 (-15 -2468 ($) -4468) (-15 -4080 ((-114) $ (|[\|\|]| -3341))) (-15 -4080 ((-114) $ (|[\|\|]| -2468))) (-15 -4080 ((-114) $ (|[\|\|]| -3342))))) -((-4488 (($ |#1|) 6 T ELT))) -(((-637 |#1|) (-142) (-1249)) (T -637)) -((-4488 (*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1249))))) -(-13 (-10 -8 (-15 -4488 ($ |t#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| |#1| (-871)) ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3485 ((|#1| $) 13 T ELT)) (-3691 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3484 ((|#3| $) 15 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3614 (((-793)) 20 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| |#1| (-871)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) 12 T CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-4465 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-638 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (-15 -4465 ($ $ |#3|)) (-15 -4465 ($ |#1| |#3|)) (-15 -3485 (|#1| $)) (-15 -3484 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -638)) -((-4465 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-4465 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-3485 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-3484 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (-15 -4465 ($ $ |#3|)) (-15 -4465 ($ |#1| |#3|)) (-15 -3485 (|#1| $)) (-15 -3484 (|#3| $)))) -((-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-639 |#1| |#2|) (-10 -8 (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-640 |#2|) (-1081)) (T -639)) -NIL -(-10 -8 (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) -(((-640 |#1|) (-142) (-1081)) (T -640)) -((-4462 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1081))))) -(-13 (-1081) (-670 |t#1|) (-10 -8 (-15 -4462 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-748) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-2469 ((|#2| |#2| (-1209) (-1209)) 16 T ELT))) -(((-641 |#1| |#2|) (-10 -7 (-15 -2469 (|#2| |#2| (-1209) (-1209)))) (-13 (-319) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-990) (-29 |#1|))) (T -641)) -((-2469 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1235) (-990) (-29 *4)))))) -(-10 -7 (-15 -2469 (|#2| |#2| (-1209) (-1209)))) -((-3053 (((-114) $ $) 64 T ELT)) (-3692 (((-114) $) 58 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2470 ((|#1| $) 55 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (((-2 (|:| -1986 $) (|:| -1985 (-421 |#2|))) (-421 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) 27 T ELT)) (-3973 (((-3 $ "failed") $) 88 T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4288 (((-560) $) 22 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) 40 T ELT)) (-3380 (($ |#1| (-560)) 24 T ELT)) (-3678 ((|#1| $) 57 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) 93 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1799 (((-793) $) 115 (|has| |#1| (-376)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-4464 (((-560) $) 38 T ELT)) (-4488 (((-421 |#2|) $) 47 T ELT)) (-4462 (((-888) $) 69 T ELT) (($ (-560)) 35 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4193 ((|#1| $ (-560)) 72 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 32 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 9 T CONST)) (-3151 (($) 14 T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 21 T ELT)) (-4353 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 90 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-642 |#1| |#2|) (-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1070 |#2|) (-10 -8 (-15 -4453 ((-114) $)) (-15 -4464 ((-560) $)) (-15 -4288 ((-560) $)) (-15 -4475 ($ $)) (-15 -3678 (|#1| $)) (-15 -2470 (|#1| $)) (-15 -4193 (|#1| $ (-560))) (-15 -3380 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4267 ((-2 (|:| -1986 $) (|:| -1985 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) (-571) (-1275 |#1|)) (T -642)) -((-4453 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-114)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) (-4464 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) (-4288 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) (-4475 (*1 *1 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2)))) (-3678 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2)))) (-2470 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1275 *2)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1275 *2)))) (-4267 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| -1986 (-642 *4 *5)) (|:| -1985 (-421 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5))))) -(-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1070 |#2|) (-10 -8 (-15 -4453 ((-114) $)) (-15 -4464 ((-560) $)) (-15 -4288 ((-560) $)) (-15 -4475 ($ $)) (-15 -3678 (|#1| $)) (-15 -2470 (|#1| $)) (-15 -4193 (|#1| $ (-560))) (-15 -3380 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4267 ((-2 (|:| -1986 $) (|:| -1985 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) -((-4198 (((-663 |#6|) (-663 |#4|) (-114)) 54 T ELT)) (-2471 ((|#6| |#6|) 48 T ELT))) -(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2471 (|#6| |#6|)) (-15 -4198 ((-663 |#6|) (-663 |#4|) (-114)))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) (T -643)) -((-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 *10)) (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *10 (-1141 *5 *6 *7 *8)))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *2 (-1141 *3 *4 *5 *6))))) -(-10 -7 (-15 -2471 (|#6| |#6|)) (-15 -4198 ((-663 |#6|) (-663 |#4|) (-114)))) -((-2472 (((-114) |#3| (-793) (-663 |#3|)) 30 T ELT)) (-2473 (((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1203 |#3|)))) "failed") |#3| (-663 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2001 (-663 (-2 (|:| |irr| |#4|) (|:| -2640 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)) 68 T ELT))) -(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2472 ((-114) |#3| (-793) (-663 |#3|))) (-15 -2473 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1203 |#3|)))) "failed") |#3| (-663 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2001 (-663 (-2 (|:| |irr| |#4|) (|:| -2640 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)))) (-872) (-817) (-319) (-980 |#3| |#2| |#1|)) (T -644)) -((-2473 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2001 (-663 (-2 (|:| |irr| *10) (|:| -2640 (-560))))))) (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-872)) (-4 *3 (-319)) (-4 *10 (-980 *3 *9 *8)) (-4 *9 (-817)) (-5 *2 (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3) (|:| |corrfact| (-663 (-1203 *3))))) (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1203 *3))))) (-2472 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-872)) (-4 *7 (-817)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8)) (-4 *8 (-980 *3 *7 *6))))) -(-10 -7 (-15 -2472 ((-114) |#3| (-793) (-663 |#3|))) (-15 -2473 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1203 |#3|)))) "failed") |#3| (-663 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2001 (-663 (-2 (|:| |irr| |#4|) (|:| -2640 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 (((-1167) $) 11 T ELT)) (-4035 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-645) (-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $))))) (T -645)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-645)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-645))))) -(-13 (-1115) (-10 -8 (-15 -4035 ((-1167) $)) (-15 -4034 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4450 (((-663 |#1|) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4452 (($ $) 77 T ELT)) (-4458 (((-686 |#1| |#2|) $) 60 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 81 T ELT)) (-2474 (((-663 (-305 |#2|)) $ $) 42 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4459 (($ (-686 |#1| |#2|)) 56 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) 66 T ELT) (((-1315 |#1| |#2|) $) NIL T ELT) (((-1320 |#1| |#2|) $) 74 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 61 T CONST)) (-2475 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2476 (((-663 (-686 |#1| |#2|)) (-663 |#1|)) 73 T ELT)) (-3150 (((-663 (-2 (|:| |k| (-919 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3540 (((-114) $ $) 62 T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-646 |#1| |#2| |#3|) (-13 (-487) (-10 -8 (-15 -4459 ($ (-686 |#1| |#2|))) (-15 -4458 ((-686 |#1| |#2|) $)) (-15 -3150 ((-663 (-2 (|:| |k| (-919 |#1|)) (|:| |c| |#2|))) $)) (-15 -4462 ((-1315 |#1| |#2|) $)) (-15 -4462 ((-1320 |#1| |#2|) $)) (-15 -4452 ($ $)) (-15 -4450 ((-663 |#1|) $)) (-15 -2476 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -2475 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -2474 ((-663 (-305 |#2|)) $ $)))) (-872) (-13 (-175) (-739 (-421 (-560)))) (-949)) (T -646)) -((-4459 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-949)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-919 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1320 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-4452 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-872)) (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-949)))) (-4450 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-872)) (-5 *2 (-663 (-686 *4 *5))) (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560))))) (-14 *6 (-949)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) (-2474 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949))))) -(-13 (-487) (-10 -8 (-15 -4459 ($ (-686 |#1| |#2|))) (-15 -4458 ((-686 |#1| |#2|) $)) (-15 -3150 ((-663 (-2 (|:| |k| (-919 |#1|)) (|:| |c| |#2|))) $)) (-15 -4462 ((-1315 |#1| |#2|) $)) (-15 -4462 ((-1320 |#1| |#2|) $)) (-15 -4452 ($ $)) (-15 -4450 ((-663 |#1|) $)) (-15 -2476 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -2475 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -2474 ((-663 (-305 |#2|)) $ $)))) -((-4198 (((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114)) 103 T ELT) (((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114)) 77 T ELT)) (-2477 (((-114) (-663 (-802 |#1| (-889 |#2|)))) 26 T ELT)) (-2481 (((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114)) 102 T ELT)) (-2480 (((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114)) 76 T ELT)) (-2479 (((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|)))) 30 T ELT)) (-2478 (((-3 (-663 (-802 |#1| (-889 |#2|))) "failed") (-663 (-802 |#1| (-889 |#2|)))) 29 T ELT))) -(((-647 |#1| |#2|) (-10 -7 (-15 -2477 ((-114) (-663 (-802 |#1| (-889 |#2|))))) (-15 -2478 ((-3 (-663 (-802 |#1| (-889 |#2|))) "failed") (-663 (-802 |#1| (-889 |#2|))))) (-15 -2479 ((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|))))) (-15 -2480 ((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -2481 ((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -4198 ((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -4198 ((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114)))) (-466) (-663 (-1209))) (T -647)) -((-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1178 *5 (-545 (-889 *6)) (-889 *6) (-802 *5 (-889 *6))))) (-5 *1 (-647 *5 *6)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-647 *5 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1178 *5 (-545 (-889 *6)) (-889 *6) (-802 *5 (-889 *6))))) (-5 *1 (-647 *5 *6)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-647 *5 *6)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-663 (-802 *3 (-889 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1209))) (-5 *1 (-647 *3 *4)))) (-2478 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-802 *3 (-889 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1209))) (-5 *1 (-647 *3 *4)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-663 (-802 *4 (-889 *5)))) (-4 *4 (-466)) (-14 *5 (-663 (-1209))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5))))) -(-10 -7 (-15 -2477 ((-114) (-663 (-802 |#1| (-889 |#2|))))) (-15 -2478 ((-3 (-663 (-802 |#1| (-889 |#2|))) "failed") (-663 (-802 |#1| (-889 |#2|))))) (-15 -2479 ((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|))))) (-15 -2480 ((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -2481 ((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -4198 ((-663 (-1078 |#1| |#2|)) (-663 (-802 |#1| (-889 |#2|))) (-114))) (-15 -4198 ((-663 (-1178 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|)))) (-663 (-802 |#1| (-889 |#2|))) (-114)))) -((-4109 (((-115) (-115)) 88 T ELT)) (-2485 ((|#2| |#2|) 28 T ELT)) (-3319 ((|#2| |#2| (-1124 |#2|)) 84 T ELT) ((|#2| |#2| (-1209)) 50 T ELT)) (-2483 ((|#2| |#2|) 27 T ELT)) (-2484 ((|#2| |#2|) 29 T ELT)) (-2482 (((-114) (-115)) 33 T ELT)) (-2487 ((|#2| |#2|) 24 T ELT)) (-2488 ((|#2| |#2|) 26 T ELT)) (-2486 ((|#2| |#2|) 25 T ELT))) -(((-648 |#1| |#2|) (-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -2488 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2483 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1209))) (-15 -3319 (|#2| |#2| (-1124 |#2|)))) (-571) (-13 (-435 |#1|) (-1034) (-1235))) (T -648)) -((-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-13 (-435 *4) (-1034) (-1235))) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)))) (-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)) (-4 *2 (-13 (-435 *4) (-1034) (-1235))))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-2483 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4)) (-4 *4 (-13 (-435 *3) (-1034) (-1235))))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-435 *4) (-1034) (-1235)))))) -(-10 -7 (-15 -2482 ((-114) (-115))) (-15 -4109 ((-115) (-115))) (-15 -2488 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2483 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -3319 (|#2| |#2| (-1209))) (-15 -3319 (|#2| |#2| (-1124 |#2|)))) -((-3998 (($ $) 38 T ELT)) (-4155 (($ $) 21 T ELT)) (-3996 (($ $) 37 T ELT)) (-4154 (($ $) 22 T ELT)) (-4000 (($ $) 36 T ELT)) (-4153 (($ $) 23 T ELT)) (-4143 (($) 48 T ELT)) (-4458 (($ $) 45 T ELT)) (-2485 (($ $) 17 T ELT)) (-3319 (($ $ (-1124 $)) 7 T ELT) (($ $ (-1209)) 6 T ELT)) (-4459 (($ $) 46 T ELT)) (-2483 (($ $) 15 T ELT)) (-2484 (($ $) 16 T ELT)) (-4001 (($ $) 35 T ELT)) (-4152 (($ $) 24 T ELT)) (-3999 (($ $) 34 T ELT)) (-4151 (($ $) 25 T ELT)) (-3997 (($ $) 33 T ELT)) (-4150 (($ $) 26 T ELT)) (-4004 (($ $) 44 T ELT)) (-3992 (($ $) 32 T ELT)) (-4002 (($ $) 43 T ELT)) (-3990 (($ $) 31 T ELT)) (-4006 (($ $) 42 T ELT)) (-3994 (($ $) 30 T ELT)) (-4007 (($ $) 41 T ELT)) (-3995 (($ $) 29 T ELT)) (-4005 (($ $) 40 T ELT)) (-3993 (($ $) 28 T ELT)) (-4003 (($ $) 39 T ELT)) (-3991 (($ $) 27 T ELT)) (-2487 (($ $) 19 T ELT)) (-2488 (($ $) 20 T ELT)) (-2486 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-649) (-142)) (T -649)) -((-2488 (*1 *1 *1) (-4 *1 (-649))) (-2487 (*1 *1 *1) (-4 *1 (-649))) (-2486 (*1 *1 *1) (-4 *1 (-649))) (-2485 (*1 *1 *1) (-4 *1 (-649))) (-2484 (*1 *1 *1) (-4 *1 (-649))) (-2483 (*1 *1 *1) (-4 *1 (-649)))) -(-13 (-990) (-1235) (-10 -8 (-15 -2488 ($ $)) (-15 -2487 ($ $)) (-15 -2486 ($ $)) (-15 -2485 ($ $)) (-15 -2484 ($ $)) (-15 -2483 ($ $)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-990) . T) ((-1235) . T) ((-1238) . T)) -((-2498 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 65 T ELT)) (-2491 (((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 90 T ELT)) (-2492 (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-889 |#1|)) 92 T ELT) (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-889 |#1|)) 91 T ELT)) (-2489 (((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|))) 136 T ELT)) (-2496 (((-663 (-495 |#1| |#2|)) (-889 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 105 T ELT)) (-2490 (((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|))) 147 T ELT)) (-2494 (((-1299 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|))) 70 T ELT)) (-2493 (((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 47 T ELT)) (-2497 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 61 T ELT)) (-2495 (((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 113 T ELT))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2489 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -2490 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2491 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2492 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-889 |#1|))) (-15 -2492 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-889 |#1|))) (-15 -2493 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2494 ((-1299 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -2495 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2496 ((-663 (-495 |#1| |#2|)) (-889 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2497 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2498 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) (-663 (-1209)) (-466)) (T -650)) -((-2498 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))) (-2497 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-2496 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-889 *4)) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-2495 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466)) (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1209))) (-5 *1 (-650 *5 *6)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) (-14 *5 (-663 (-1209))) (-4 *6 (-466)) (-5 *2 (-1299 *6)) (-5 *1 (-650 *5 *6)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1209))) (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-889 *5)) (-14 *5 (-663 (-1209))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2492 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-889 *5)) (-14 *5 (-663 (-1209))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))) (-2490 (*1 *2 *3) (-12 (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560))))) (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5))))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |gblist| (-663 (-255 *4 *5))) (|:| |gvlist| (-663 (-560))))) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -2489 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -2490 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2491 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2492 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-889 |#1|))) (-15 -2492 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-889 |#1|))) (-15 -2493 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2494 ((-1299 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -2495 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2496 ((-663 (-495 |#1| |#2|)) (-889 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2497 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2498 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL T ELT)) (-2427 (((-1305) $ (-1191) (-1191)) NIL (|has| $ (-6 -4512)) ELT)) (-4304 (((-51) $ (-1191) (-51)) NIL T ELT) (((-51) $ (-1209) (-51)) 16 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 (-51) #1="failed") (-1191) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 (-51) #1#) (-1191) $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 (((-51) $ (-1191) (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-51) $ (-1191)) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-2499 (($ $) NIL T ELT)) (-2429 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2430 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2500 (($ (-402)) 8 T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT)) (-2898 (((-663 (-1191)) $) NIL T ELT)) (-2461 (((-114) (-1191) $) NIL T ELT)) (-1400 (((-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL T ELT)) (-2432 (((-663 (-1191)) $) NIL T ELT)) (-2433 (((-114) (-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT)) (-4317 (((-51) $) NIL (|has| (-1191) (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) "failed") (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL T ELT)) (-2428 (($ $ (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2434 (((-663 (-51)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 (((-51) $ (-1191)) NIL T ELT) (((-51) $ (-1191) (-51)) NIL T ELT) (((-51) $ (-1209)) 14 T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-1133))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-632 (-888))) (|has| (-51) (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 (-51))) (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-651) (-13 (-1226 (-1191) (-51)) (-298 (-1209) (-51)) (-10 -8 (-15 -2500 ($ (-402))) (-15 -2499 ($ $)) (-15 -4304 ((-51) $ (-1209) (-51)))))) (T -651)) -((-2500 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))) (-2499 (*1 *1 *1) (-5 *1 (-651))) (-4304 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1209)) (-5 *1 (-651))))) -(-13 (-1226 (-1191) (-51)) (-298 (-1209) (-51)) (-10 -8 (-15 -2500 ($ (-402))) (-15 -2499 ($ $)) (-15 -4304 ((-51) $ (-1209) (-51))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1994 (((-3 $ #1="failed")) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (((-1299 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 (-711 |#1|)) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1944 (((-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4240 (($) NIL T CONST)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1918 (((-3 $ #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2010 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1942 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2008 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2649 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2125 (((-1203 (-976 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2652 (($ $ (-949)) NIL T ELT)) (-1940 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-1203 |#1|) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2012 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1938 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2014 (($ (-1299 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1299 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3973 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3597 (((-949)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1919 (((-3 $ #1#)) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2011 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1943 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2009 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2650 (((-3 $ #1#) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2129 (((-1203 (-976 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-1941 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-1203 |#1|) $) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2013 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1939 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1933 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1931 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4316 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-3728 (((-711 |#1|) (-1299 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1299 $) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1299 |#1|) $ (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4488 (($ (-1299 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1299 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2117 (((-663 (-976 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-976 |#1|)) (-1299 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2838 (($ $ $) NIL T ELT)) (-1937 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4462 (((-888) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1922 (((-663 (-1299 |#1|))) NIL (-4043 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-1935 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3030 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2837 (($ $ $) NIL T ELT)) (-1936 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1934 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3145 (($) 18 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 19 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-652 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -4462 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -652)) -((-4462 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3))))) -(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -4462 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) -((-4465 (($ $ |#2|) 10 T ELT))) -(((-653 |#1| |#2|) (-10 -8 (-15 -4465 (|#1| |#1| |#2|))) (-654 |#2|) (-175)) (T -653)) -NIL -(-10 -8 (-15 -4465 (|#1| |#1| |#2|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4036 (($ $ $) 39 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 38 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-654 |#1|) (-142) (-175)) (T -654)) -((-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)))) (-4465 (*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-739 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4036 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -4465 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-2502 (((-3 (-866 |#2|) #1="failed") |#2| (-305 |#2|) (-1191)) 105 T ELT) (((-3 (-866 |#2|) (-2 (|:| |leftHandLimit| (-3 (-866 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-866 |#2|) #1#))) "failed") |#2| (-305 (-866 |#2|))) 130 T ELT)) (-2501 (((-3 (-856 |#2|) "failed") |#2| (-305 (-856 |#2|))) 135 T ELT))) -(((-655 |#1| |#2|) (-10 -7 (-15 -2502 ((-3 (-866 |#2|) (-2 (|:| |leftHandLimit| (-3 (-866 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-866 |#2|) #1#))) "failed") |#2| (-305 (-866 |#2|)))) (-15 -2501 ((-3 (-856 |#2|) "failed") |#2| (-305 (-856 |#2|)))) (-15 -2502 ((-3 (-866 |#2|) #1#) |#2| (-305 |#2|) (-1191)))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -655)) -((-2502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1191)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-866 *3)) (-5 *1 (-655 *6 *3)))) (-2501 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-856 *3))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-856 *3)) (-5 *1 (-655 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-866 *3))) (-4 *3 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-3 (-866 *3) (-2 (|:| |leftHandLimit| (-3 (-866 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-866 *3) #1#))) "failed")) (-5 *1 (-655 *5 *3))))) -(-10 -7 (-15 -2502 ((-3 (-866 |#2|) (-2 (|:| |leftHandLimit| (-3 (-866 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-866 |#2|) #1#))) "failed") |#2| (-305 (-866 |#2|)))) (-15 -2501 ((-3 (-856 |#2|) "failed") |#2| (-305 (-856 |#2|)))) (-15 -2502 ((-3 (-866 |#2|) #1#) |#2| (-305 |#2|) (-1191)))) -((-2502 (((-3 (-866 (-421 (-976 |#1|))) #1="failed") (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))) (-1191)) 86 T ELT) (((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2="failed") (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|)))) 20 T ELT) (((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2#) (-421 (-976 |#1|)) (-305 (-866 (-976 |#1|)))) 35 T ELT)) (-2501 (((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|)))) 23 T ELT) (((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-856 (-976 |#1|)))) 43 T ELT))) -(((-656 |#1|) (-10 -7 (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2="failed") (-421 (-976 |#1|)) (-305 (-866 (-976 |#1|))))) (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2#) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -2501 ((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-856 (-976 |#1|))))) (-15 -2501 ((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) #1#) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))) (-1191)))) (-466)) (T -656)) -((-2502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-421 (-976 *6)))) (-5 *5 (-1191)) (-5 *3 (-421 (-976 *6))) (-4 *6 (-466)) (-5 *2 (-866 *3)) (-5 *1 (-656 *6)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-466)) (-5 *2 (-856 *3)) (-5 *1 (-656 *5)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-856 (-976 *5)))) (-4 *5 (-466)) (-5 *2 (-856 (-421 (-976 *5)))) (-5 *1 (-656 *5)) (-5 *3 (-421 (-976 *5))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-466)) (-5 *2 (-3 (-866 *3) (-2 (|:| |leftHandLimit| (-3 (-866 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-866 *3) #1#))) #2="failed")) (-5 *1 (-656 *5)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-866 (-976 *5)))) (-4 *5 (-466)) (-5 *2 (-3 (-866 (-421 (-976 *5))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 *5))) #1#)) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 *5))) #1#))) #2#)) (-5 *1 (-656 *5)) (-5 *3 (-421 (-976 *5)))))) -(-10 -7 (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2="failed") (-421 (-976 |#1|)) (-305 (-866 (-976 |#1|))))) (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-866 (-421 (-976 |#1|))) #1#))) #2#) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -2501 ((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-856 (-976 |#1|))))) (-15 -2501 ((-856 (-421 (-976 |#1|))) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -2502 ((-3 (-866 (-421 (-976 |#1|))) #1#) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))) (-1191)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 11 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3338 (($ (-218 |#1|)) 12 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-889 |#1|)) 7 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-657 |#1|) (-13 (-868) (-635 (-889 |#1|)) (-10 -8 (-15 -3338 ($ (-218 |#1|))))) (-663 (-1209))) (T -657)) -((-3338 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1209))) (-5 *1 (-657 *3))))) -(-13 (-868) (-635 (-889 |#1|)) (-10 -8 (-15 -3338 ($ (-218 |#1|))))) -((-2505 (((-3 (-1299 (-421 |#1|)) "failed") (-1299 |#2|) |#2|) 64 (-3045 (|has| |#1| (-376))) ELT) (((-3 (-1299 |#1|) "failed") (-1299 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2503 (((-114) (-1299 |#2|)) 33 T ELT)) (-2504 (((-3 (-1299 |#1|) "failed") (-1299 |#2|)) 40 T ELT))) -(((-658 |#1| |#2|) (-10 -7 (-15 -2503 ((-114) (-1299 |#2|))) (-15 -2504 ((-3 (-1299 |#1|) "failed") (-1299 |#2|))) (IF (|has| |#1| (-376)) (-15 -2505 ((-3 (-1299 |#1|) "failed") (-1299 |#2|) |#2|)) (-15 -2505 ((-3 (-1299 (-421 |#1|)) "failed") (-1299 |#2|) |#2|)))) (-571) (-13 (-1081) (-660 |#1|))) (T -658)) -((-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 *5))) (-3045 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1299 (-421 *5))) (-5 *1 (-658 *5 *4)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 *5))) (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1299 *5)) (-5 *1 (-658 *5 *4)))) (-2504 (*1 *2 *3) (|partial| -12 (-5 *3 (-1299 *5)) (-4 *5 (-13 (-1081) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-1299 *4)) (-5 *1 (-658 *4 *5)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1299 *5)) (-4 *5 (-13 (-1081) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-658 *4 *5))))) -(-10 -7 (-15 -2503 ((-114) (-1299 |#2|))) (-15 -2504 ((-3 (-1299 |#1|) "failed") (-1299 |#2|))) (IF (|has| |#1| (-376)) (-15 -2505 ((-3 (-1299 |#1|) "failed") (-1299 |#2|) |#2|)) (-15 -2505 ((-3 (-1299 (-421 |#1|)) "failed") (-1299 |#2|) |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4290 (((-663 (-898 (-657 |#2|) |#1|)) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3380 (($ |#1| (-657 |#2|)) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2506 (($ (-663 |#1|)) 25 T ELT)) (-2209 (((-657 |#2|) $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4427 (((-136)) 16 T ELT)) (-3728 (((-1299 |#1|) $) 44 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-657 |#2|)) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 20 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 17 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-659 |#1| |#2|) (-13 (-1307 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2506 ($ (-663 |#1|))) (-15 -3728 ((-1299 |#1|) $)))) (-376) (-663 (-1209))) (T -659)) -((-2506 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-663 (-1209))))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1299 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1209)))))) -(-13 (-1307 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2506 ($ (-663 |#1|))) (-15 -3728 ((-1299 |#1|) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2507 (((-711 |#1|) (-711 $)) 35 T ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 34 T ELT)) (-2508 (((-711 |#1|) (-1299 $)) 37 T ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 36 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-660 |#1|) (-142) (-1081)) (T -660)) -((-2508 (*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) (-5 *2 (-711 *4)))) (-2508 (*1 *2 *3 *1) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) (-5 *2 (-2 (|:| -1795 (-711 *4)) (|:| |vec| (-1299 *4)))))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) (-5 *2 (-711 *4)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *1)) (-5 *4 (-1299 *1)) (-4 *1 (-660 *5)) (-4 *5 (-1081)) (-5 *2 (-2 (|:| -1795 (-711 *5)) (|:| |vec| (-1299 *5))))))) -(-13 (-670 |t#1|) (-10 -8 (-15 -2508 ((-711 |t#1|) (-1299 $))) (-15 -2508 ((-2 (|:| -1795 (-711 |t#1|)) (|:| |vec| (-1299 |t#1|))) (-1299 $) $)) (-15 -2507 ((-711 |t#1|) (-711 $))) (-15 -2507 ((-2 (|:| -1795 (-711 |t#1|)) (|:| |vec| (-1299 |t#1|))) (-711 $) (-1299 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2509 (($ (-663 |#1|)) 23 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#1| $ (-659 |#1| |#2|)) 46 T ELT)) (-4427 (((-136)) 13 T ELT)) (-3728 (((-1299 |#1|) $) 42 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 18 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 14 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-661 |#1| |#2|) (-13 (-1307 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2509 ($ (-663 |#1|))) (-15 -3728 ((-1299 |#1|) $)))) (-376) (-663 (-1209))) (T -661)) -((-2509 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) (-14 *4 (-663 (-1209))))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1299 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1209)))))) -(-13 (-1307 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2509 ($ (-663 |#1|))) (-15 -3728 ((-1299 |#1|) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-662 |#1|) (-142) (-1144)) (T -662)) -NIL -(-13 (-668 |t#1|) (-1083 |t#1|)) -(((-102) . T) ((-632 (-888)) . T) ((-668 |#1|) . T) ((-1083 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) NIL T ELT)) (-4311 ((|#1| $) NIL T ELT)) (-4313 (($ $) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) NIL (|has| |#1| (-872)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1945 (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3948 (((-114) $ (-793)) NIL T ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-2512 (($ $ $) 37 (|has| |#1| (-1133)) ELT)) (-2511 (($ $ $) 41 (|has| |#1| (-1133)) ELT)) (-2510 (($ $ $) 44 (|has| |#1| (-1133)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4312 ((|#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-4315 (($ $) 23 T ELT) (($ $ (-793)) NIL T ELT)) (-2608 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-1479 (($ $) 36 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) NIL (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3912 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3949 (((-114) $) NIL T ELT)) (-3925 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2514 (((-114) $) 11 T ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-2515 (($) 9 T CONST)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-4235 (((-114) $ (-793)) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4024 (($ $ $) NIL (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 40 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4048 (($ |#1|) NIL T ELT)) (-4232 (((-114) $ (-793)) NIL T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4123 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 20 T ELT) (($ $ (-793)) NIL T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3950 (((-114) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) 39 T ELT)) (-4079 (($) 38 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) ((|#1| $ (-560)) 42 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-1726 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-4308 (($ $) NIL T ELT)) (-4306 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) NIL T ELT)) (-4310 (($ $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) 53 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-3967 (($ |#1| $) 12 T ELT)) (-4307 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4318 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2513 (($ $ $) 13 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2982 (((-1191) $) 31 (|has| |#1| (-845)) ELT) (((-1191) $ (-114)) 32 (|has| |#1| (-845)) ELT) (((-1305) (-847) $) 33 (|has| |#1| (-845)) ELT) (((-1305) (-847) $ (-114)) 34 (|has| |#1| (-845)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-663 |#1|) (-13 (-688 |#1|) (-10 -8 (-15 -2515 ($) -4468) (-15 -2514 ((-114) $)) (-15 -3967 ($ |#1| $)) (-15 -2513 ($ $ $)) (IF (|has| |#1| (-1133)) (PROGN (-15 -2512 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2510 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-1249)) (T -663)) -((-2515 (*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1249)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249)))) (-2513 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249)))) (-2512 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249)))) (-2511 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249)))) (-2510 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249))))) -(-13 (-688 |#1|) (-10 -8 (-15 -2515 ($) -4468) (-15 -2514 ((-114) $)) (-15 -3967 ($ |#1| $)) (-15 -2513 ($ $ $)) (IF (|has| |#1| (-1133)) (PROGN (-15 -2512 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2510 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) -((-4357 (((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 16 T ELT)) (-4358 ((|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 18 T ELT)) (-4474 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 13 T ELT))) -(((-664 |#1| |#2|) (-10 -7 (-15 -4357 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4474 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1249) (-1249)) (T -664)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-664 *5 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5))))) -(-10 -7 (-15 -4357 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4474 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) -((-3928 ((|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|) 17 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|)) 12 T ELT))) -(((-665 |#1| |#2|) (-10 -7 (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)))) (-1133) (-1249)) (T -665)) -((-3928 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1133)) (-4 *2 (-1249)) (-5 *1 (-665 *5 *2)))) (-3928 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1133)) (-4 *6 (-1249)) (-5 *1 (-665 *5 *6)))) (-3928 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1133)) (-4 *2 (-1249)) (-5 *1 (-665 *5 *2)))) (-3928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1133)) (-4 *5 (-1249)) (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5)))) (-3928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1133)) (-4 *2 (-1249)) (-5 *1 (-665 *5 *2)))) (-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1133)) (-4 *6 (-1249)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6))))) -(-10 -7 (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -3928 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -3928 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)))) -((-4474 (((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)) 21 T ELT))) -(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -4474 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)))) (-1249) (-1249) (-1249)) (T -666)) -((-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-663 *8)) (-5 *1 (-666 *6 *7 *8))))) -(-10 -7 (-15 -4474 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 11 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-667 |#1|) (-13 (-1115) (-632 |#1|)) (-1133)) (T -667)) -NIL -(-13 (-1115) (-632 |#1|)) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-668 |#1|) (-142) (-1144)) (T -668)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1144))))) -(-13 (-1133) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2516 (($ |#1| |#1| $) 44 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) 60 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2608 (($ $) 46 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) 57 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 9 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 48 T ELT)) (-4123 (($ |#1| $) 29 T ELT) (($ |#1| $ (-793)) 43 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1401 ((|#1| $) 51 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 23 T ELT)) (-4079 (($) 28 T ELT)) (-2517 (((-114) $) 55 T ELT)) (-2607 (((-663 (-2 (|:| -2300 |#1|) (|:| -2171 (-793)))) $) 68 T ELT)) (-1610 (($) 26 T ELT) (($ (-663 |#1|)) 19 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 64 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 20 T ELT)) (-4488 (((-549) $) 35 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4462 (((-888) $) 14 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 24 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 70 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 17 (|has| $ (-6 -4511)) ELT))) -(((-669 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4511) (-15 -2517 ((-114) $)) (-15 -2516 ($ |#1| |#1| $)))) (-1133)) (T -669)) -((-2517 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1133)))) (-2516 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1133))))) -(-13 (-717 |#1|) (-10 -8 (-6 -4511) (-15 -2517 ((-114) $)) (-15 -2516 ($ |#1| |#1| $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-670 |#1|) (-142) (-1089)) (T -670)) -NIL -(-13 (-21) (-668 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793) $) 17 T ELT)) (-2522 (($ $ |#1|) 69 T ELT)) (-2524 (($ $) 39 T ELT)) (-2525 (($ $) 37 T ELT)) (-3661 (((-3 |#1| "failed") $) 61 T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2559 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-4039 (((-888) $ (-1 (-888) (-888) (-888)) (-1 (-888) (-888) (-888)) (-560)) 56 T ELT)) (-2526 ((|#1| $ (-560)) 35 T ELT)) (-2527 ((|#2| $ (-560)) 34 T ELT)) (-2518 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2519 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2523 (($) 11 T ELT)) (-2529 (($ |#1| |#2|) 24 T ELT)) (-2528 (($ (-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|)))) 25 T ELT)) (-2530 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))) $) 14 T ELT)) (-2521 (($ |#1| $) 71 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2520 (((-114) $ $) 76 T ELT)) (-4462 (((-888) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 27 T ELT))) -(((-671 |#1| |#2| |#3|) (-13 (-1133) (-1070 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-1 (-888) (-888) (-888)) (-1 (-888) (-888) (-888)) (-560))) (-15 -2530 ((-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))) $)) (-15 -2529 ($ |#1| |#2|)) (-15 -2528 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))))) (-15 -2527 (|#2| $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -2525 ($ $)) (-15 -2524 ($ $)) (-15 -3624 ((-793) $)) (-15 -2523 ($)) (-15 -2522 ($ $ |#1|)) (-15 -2521 ($ |#1| $)) (-15 -2559 ($ |#1| |#2| $)) (-15 -2559 ($ $ $)) (-15 -2520 ((-114) $ $)) (-15 -2519 ($ (-1 |#2| |#2|) $)) (-15 -2518 ($ (-1 |#1| |#1|) $)))) (-1133) (-23) |#2|) (T -671)) -((-4039 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-888) (-888) (-888))) (-5 *4 (-560)) (-5 *2 (-888)) (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1133)) (-4 *6 (-23)) (-14 *7 *6))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) (-14 *5 *4))) (-2529 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))) (-4 *3 (-1133)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))) (-2527 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) (-4 *4 (-1133)) (-14 *5 *2))) (-2526 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-1133)) (-5 *1 (-671 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2525 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) (-14 *5 *4))) (-2523 (*1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2522 (*1 *1 *1 *2) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2521 (*1 *1 *2 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2559 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2559 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) (-2520 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) (-14 *5 *4))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)))) (-2518 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-671 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1133) (-1070 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-1 (-888) (-888) (-888)) (-1 (-888) (-888) (-888)) (-560))) (-15 -2530 ((-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))) $)) (-15 -2529 ($ |#1| |#2|)) (-15 -2528 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -4459 |#2|))))) (-15 -2527 (|#2| $ (-560))) (-15 -2526 (|#1| $ (-560))) (-15 -2525 ($ $)) (-15 -2524 ($ $)) (-15 -3624 ((-793) $)) (-15 -2523 ($)) (-15 -2522 ($ $ |#1|)) (-15 -2521 ($ |#1| $)) (-15 -2559 ($ |#1| |#2| $)) (-15 -2559 ($ $ $)) (-15 -2520 ((-114) $ $)) (-15 -2519 ($ (-1 |#2| |#2|) $)) (-15 -2518 ($ (-1 |#1| |#1|) $)))) -((-2430 (((-560) $) 30 T ELT)) (-2531 (($ |#2| $ (-560)) 26 T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) 12 T ELT)) (-2433 (((-114) (-560) $) 17 T ELT)) (-4318 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT))) -(((-672 |#1| |#2|) (-10 -8 (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -2430 ((-560) |#1|)) (-15 -2432 ((-663 (-560)) |#1|)) (-15 -2433 ((-114) (-560) |#1|))) (-673 |#2|) (-1249)) (T -672)) -NIL -(-10 -8 (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#2|)) (-15 -2430 ((-560) |#1|)) (-15 -2432 ((-663 (-560)) |#1|)) (-15 -2433 ((-114) (-560) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-673 |#1|) (-142) (-1249)) (T -673)) -((-4130 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-4318 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) (-4318 (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) (-4318 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) (-4318 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-4474 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1249)))) (-2531 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) (-4304 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1266 (-560))) (|has| *1 (-6 -4512)) (-4 *1 (-673 *2)) (-4 *2 (-1249))))) -(-13 (-618 (-560) |t#1|) (-153 |t#1|) (-298 (-1266 (-560)) $) (-10 -8 (-15 -4130 ($ (-793) |t#1|)) (-15 -4318 ($ $ |t#1|)) (-15 -4318 ($ |t#1| $)) (-15 -4318 ($ $ $)) (-15 -4318 ($ (-663 $))) (-15 -4474 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2532 ($ $ (-560))) (-15 -2532 ($ $ (-1266 (-560)))) (-15 -2531 ($ |t#1| $ (-560))) (-15 -2531 ($ $ $ (-560))) (IF (|has| $ (-6 -4512)) (-15 -4304 (|t#1| $ (-1266 (-560)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 15 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| |#1| (-814)) ELT)) (-4240 (($) NIL T CONST)) (-3690 (((-114) $) NIL (|has| |#1| (-814)) ELT)) (-3485 ((|#1| $) 23 T ELT)) (-3691 (((-114) $) NIL (|has| |#1| (-814)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-814)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-814)) ELT)) (-3746 (((-1191) $) 48 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3484 ((|#3| $) 24 T ELT)) (-4462 (((-888) $) 43 T ELT)) (-1389 (((-114) $ $) 22 T ELT)) (-3889 (($ $) NIL (|has| |#1| (-814)) ELT)) (-3145 (($) 10 T CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-814)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-814)) ELT)) (-3540 (((-114) $ $) 20 T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-814)) ELT)) (-3172 (((-114) $ $) 26 (|has| |#1| (-814)) ELT)) (-4465 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-4353 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 29 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-674 |#1| |#2| |#3|) (-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|) (-15 -4465 ($ $ |#3|)) (-15 -4465 ($ |#1| |#3|)) (-15 -3485 (|#1| $)) (-15 -3484 (|#3| $)))) (-739 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -674)) -((-4465 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-4465 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-739 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-3485 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-3484 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4))))) -(-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|) (-15 -4465 ($ $ |#3|)) (-15 -4465 ($ |#1| |#3|)) (-15 -3485 (|#1| $)) (-15 -3484 (|#3| $)))) -((-4087 (((-3 |#2| "failed") |#3| |#2| (-1209) |#2| (-663 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) "failed") |#3| |#2| (-1209)) 44 T ELT))) -(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) "failed") |#3| |#2| (-1209))) (-15 -4087 ((-3 |#2| "failed") |#3| |#2| (-1209) |#2| (-663 |#2|)))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1235) (-990)) (-680 |#2|)) (T -675)) -((-4087 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *1 (-675 *6 *2 *3)) (-4 *3 (-680 *2)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1209)) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1235) (-990))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2236 (-663 *4)))) (-5 *1 (-675 *6 *4 *3)) (-4 *3 (-680 *4))))) -(-10 -7 (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) "failed") |#3| |#2| (-1209))) (-15 -4087 ((-3 |#2| "failed") |#3| |#2| (-1209) |#2| (-663 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2533 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2535 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2536 (($ $ (-793)) 31 (|has| |#1| (-376)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) NIL T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) NIL T ELT)) (-3027 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-4316 ((|#1| $ |#1|) 24 T ELT)) (-2537 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3030 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3002 (($ $) NIL T ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 8 T CONST)) (-3156 (($) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-676 |#1| |#2|) (-680 |#1|) (-1081) (-1 |#1| |#1|)) (T -676)) -NIL -(-680 |#1|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2533 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2536 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) NIL T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) NIL T ELT)) (-3027 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-4316 ((|#1| $ |#1|) NIL T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3030 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-677 |#1|) (-680 |#1|) (-240)) (T -677)) -NIL -(-680 |#1|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2533 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2536 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) NIL T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) NIL T ELT)) (-3027 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-4316 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3030 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3002 (($ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-678 |#1| |#2|) (-13 (-680 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-670 |#1|) (-10 -8 (-15 -4274 ($ $))))) (T -678)) -NIL -(-13 (-680 |#1|) (-298 |#2| |#2|)) -((-2533 (($ $) 29 T ELT)) (-3002 (($ $) 27 T ELT)) (-3156 (($) 13 T ELT))) -(((-679 |#1| |#2|) (-10 -8 (-15 -2533 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3156 (|#1|))) (-680 |#2|) (-1081)) (T -679)) -NIL -(-10 -8 (-15 -2533 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -3156 (|#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2533 (($ $) 93 (|has| |#1| (-376)) ELT)) (-2535 (($ $ $) 95 (|has| |#1| (-376)) ELT)) (-2536 (($ $ (-793)) 94 (|has| |#1| (-376)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3021 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) 85 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) 82 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3660 (((-560) $) 84 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 81 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 80 T ELT)) (-4475 (($ $) 74 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) 65 (|has| |#1| (-466)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3380 (($ |#1| (-793)) 72 T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 67 (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 68 (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) 76 T ELT)) (-3027 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) 61 (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) 75 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-571)) ELT)) (-4316 ((|#1| $ |#1|) 98 T ELT)) (-2537 (($ $ $) 92 (|has| |#1| (-376)) ELT)) (-4464 (((-793) $) 77 T ELT)) (-3304 ((|#1| $) 66 (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 83 (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) 78 T ELT)) (-4333 (((-663 |#1|) $) 71 T ELT)) (-4193 ((|#1| $ (-793)) 73 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3030 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3002 (($ $) 96 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($) 97 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-680 |#1|) (-142) (-1081)) (T -680)) -((-3156 (*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1081)) (-4 *3 (-376)))) (-2533 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(-13 (-877 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3156 ($)) (-15 -3002 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2535 ($ $ $)) (-15 -2536 ($ $ (-793))) (-15 -2533 ($ $)) (-15 -2537 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #1=(-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-298 |#1| |#1|) . T) ((-426 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1070 #1#) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-877 |#1|) . T)) -((-2534 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-4248 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 19 T ELT))) -(((-681 |#1| |#2|) (-10 -7 (-15 -4248 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4248 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2534 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560)))) (-1275 |#1|)) (T -681)) -((-2534 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-677 (-421 *6)))) (-5 *1 (-681 *5 *6)) (-5 *3 (-677 (-421 *6)))))) -(-10 -7 (-15 -4248 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4248 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2534 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|)) -((-2535 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2536 ((|#2| |#2| (-793) (-1 |#1| |#1|)) 45 T ELT)) (-2537 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-682 |#1| |#2|) (-10 -7 (-15 -2535 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2536 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -2537 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -682)) -((-2537 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4)))) (-2536 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-682 *5 *2)) (-4 *2 (-680 *5)))) (-2535 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4))))) -(-10 -7 (-15 -2535 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2536 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -2537 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2538 (($ $ $) 9 T ELT))) -(((-683 |#1|) (-10 -8 (-15 -2538 (|#1| |#1| |#1|))) (-684)) (T -683)) -NIL -(-10 -8 (-15 -2538 (|#1| |#1| |#1|))) -((-2540 (($ $) 8 T ELT)) (-2538 (($ $ $) 6 T ELT)) (-2539 (($ $ $) 7 T ELT))) -(((-684) (-142)) (T -684)) -((-2540 (*1 *1 *1) (-4 *1 (-684))) (-2539 (*1 *1 *1 *1) (-4 *1 (-684))) (-2538 (*1 *1 *1 *1) (-4 *1 (-684)))) -(-13 (-1249) (-10 -8 (-15 -2540 ($ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)))) -(((-1249) . T)) -((-2541 (((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|)) 33 T ELT))) -(((-685 |#1|) (-10 -7 (-15 -2541 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|)))) (-940)) (T -685)) -((-2541 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 *4))) (-5 *3 (-1203 *4)) (-4 *4 (-940)) (-5 *1 (-685 *4))))) -(-10 -7 (-15 -2541 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4450 (((-663 |#1|) $) 84 T ELT)) (-4463 (($ $ (-793)) 94 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4455 (((-1324 |#1| |#2|) (-1324 |#1| |#2|) $) 50 T ELT)) (-3661 (((-3 (-694 |#1|) "failed") $) NIL T ELT)) (-3660 (((-694 |#1|) $) NIL T ELT)) (-4475 (($ $) 93 T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ (-694 |#1|) |#2|) 70 T ELT)) (-4452 (($ $) 89 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4456 (((-1324 |#1| |#2|) (-1324 |#1| |#2|) $) 49 T ELT)) (-1964 (((-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3381 (((-694 |#1|) $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4284 (($ $ |#1| $) 32 T ELT) (($ $ (-663 |#1|) (-663 $)) 34 T ELT)) (-4464 (((-793) $) 91 T ELT)) (-4036 (($ $ $) 20 T ELT) (($ (-694 |#1|) (-694 |#1|)) 79 T ELT) (($ (-694 |#1|) $) 77 T ELT) (($ $ (-694 |#1|)) 78 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1315 |#1| |#2|) $) 60 T ELT) (((-1324 |#1| |#2|) $) 43 T ELT) (($ (-694 |#1|)) 27 T ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-694 |#1|)) NIL T ELT)) (-4470 ((|#2| (-1324 |#1| |#2|) $) 45 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 23 T CONST)) (-3150 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4461 (((-3 $ "failed") (-1315 |#1| |#2|)) 62 T ELT)) (-1948 (($ (-694 |#1|)) 14 T ELT)) (-3540 (((-114) $ $) 46 T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-694 |#1|)) NIL T ELT))) -(((-686 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -4461 ((-3 $ "failed") (-1315 |#1| |#2|))) (-15 -4036 ($ (-694 |#1|) (-694 |#1|))) (-15 -4036 ($ (-694 |#1|) $)) (-15 -4036 ($ $ (-694 |#1|))))) (-872) (-175)) (T -686)) -((-4461 (*1 *1 *2) (|partial| -12 (-5 *2 (-1315 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *1 (-686 *3 *4)))) (-4036 (*1 *1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-4036 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175))))) -(-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -4461 ((-3 $ "failed") (-1315 |#1| |#2|))) (-15 -4036 ($ (-694 |#1|) (-694 |#1|))) (-15 -4036 ($ (-694 |#1|) $)) (-15 -4036 ($ $ (-694 |#1|))))) -((-1947 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1945 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1725 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2524 (($ $) 65 T ELT)) (-2608 (($ $) 74 T ELT)) (-3911 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4358 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3925 (((-560) |#2| $ (-560)) 71 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) (-1 (-114) |#2|) $) 54 T ELT)) (-4130 (($ (-793) |#2|) 63 T ELT)) (-3343 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-4024 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-4048 (($ |#2|) 15 T ELT)) (-4123 (($ $ $ (-560)) 42 T ELT) (($ |#2| $ (-560)) 40 T ELT)) (-1480 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-1726 (($ $ (-1266 (-560))) 51 T ELT) (($ $ (-560)) 44 T ELT)) (-1946 (($ $ $ (-560)) 70 T ELT)) (-3906 (($ $) 68 T ELT)) (-3172 (((-114) $ $) 76 T ELT))) -(((-687 |#1| |#2|) (-10 -8 (-15 -4048 (|#1| |#2|)) (-15 -1726 (|#1| |#1| (-560))) (-15 -1726 (|#1| |#1| (-1266 (-560)))) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4123 (|#1| |#2| |#1| (-560))) (-15 -4123 (|#1| |#1| |#1| (-560))) (-15 -3343 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1725 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -1946 (|#1| |#1| |#1| (-560))) (-15 -2524 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -3172 ((-114) |#1| |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4130 (|#1| (-793) |#2|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3906 (|#1| |#1|))) (-688 |#2|) (-1249)) (T -687)) -NIL -(-10 -8 (-15 -4048 (|#1| |#2|)) (-15 -1726 (|#1| |#1| (-560))) (-15 -1726 (|#1| |#1| (-1266 (-560)))) (-15 -3911 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4123 (|#1| |#2| |#1| (-560))) (-15 -4123 (|#1| |#1| |#1| (-560))) (-15 -3343 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1725 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3911 (|#1| |#2| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -4024 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1947 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3925 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -3925 ((-560) |#2| |#1|)) (-15 -3925 ((-560) |#2| |#1| (-560))) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -1946 (|#1| |#1| |#1| (-560))) (-15 -2524 (|#1| |#1|)) (-15 -1945 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -3172 ((-114) |#1| |#1|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4358 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1480 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4130 (|#1| (-793) |#2|)) (-15 -4474 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3906 (|#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-4311 ((|#1| $) 71 T ELT)) (-4313 (($ $) 73 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 107 (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 58 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) $) 153 (|has| |#1| (-872)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 147 T ELT)) (-1945 (($ $) 157 (-12 (|has| |#1| (-872)) (|has| $ (-6 -4512))) ELT) (($ (-1 (-114) |#1| |#1|) $) 156 (|has| $ (-6 -4512)) ELT)) (-3396 (($ $) 152 (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $) 146 T ELT)) (-3948 (((-114) $ (-793)) 90 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 62 (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) 60 (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 127 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) 96 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 140 T ELT)) (-4226 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4511)) ELT)) (-4312 ((|#1| $) 72 T ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 155 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 145 T ELT)) (-4315 (($ $) 79 T ELT) (($ $ (-793)) 77 T ELT)) (-2608 (($ $) 142 (|has| |#1| (-1133)) ELT)) (-1479 (($ $) 109 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 141 (|has| |#1| (-1133)) ELT) (($ (-1 (-114) |#1|) $) 136 T ELT)) (-3912 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4511)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1731 ((|#1| $ (-560) |#1|) 95 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 97 T ELT)) (-3949 (((-114) $) 93 T ELT)) (-3925 (((-560) |#1| $ (-560)) 150 (|has| |#1| (-1133)) ELT) (((-560) |#1| $) 149 (|has| |#1| (-1133)) ELT) (((-560) (-1 (-114) |#1|) $) 148 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) 119 T ELT)) (-4235 (((-114) $ (-793)) 91 T ELT)) (-2429 (((-560) $) 105 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 163 (|has| |#1| (-872)) ELT)) (-3343 (($ $ $) 143 (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 139 T ELT)) (-4024 (($ $ $) 151 (|has| |#1| (-872)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 144 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 104 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 162 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4048 (($ |#1|) 133 T ELT)) (-4232 (((-114) $ (-793)) 92 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) 76 T ELT) (($ $ (-793)) 74 T ELT)) (-4123 (($ $ $ (-560)) 138 T ELT) (($ |#1| $ (-560)) 137 T ELT)) (-2531 (($ $ $ (-560)) 126 T ELT) (($ |#1| $ (-560)) 125 T ELT)) (-2432 (((-663 (-560)) $) 102 T ELT)) (-2433 (((-114) (-560) $) 101 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 82 T ELT) (($ $ (-793)) 80 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2428 (($ $ |#1|) 106 (|has| $ (-6 -4512)) ELT)) (-3950 (((-114) $) 94 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 100 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1266 (-560))) 118 T ELT) ((|#1| $ (-560)) 99 T ELT) ((|#1| $ (-560) |#1|) 98 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-1726 (($ $ (-1266 (-560))) 135 T ELT) (($ $ (-560)) 134 T ELT)) (-2532 (($ $ (-1266 (-560))) 124 T ELT) (($ $ (-560)) 123 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-4308 (($ $) 68 T ELT)) (-4306 (($ $) 65 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) 69 T ELT)) (-4310 (($ $) 70 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 154 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 108 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 117 T ELT)) (-4307 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-4318 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-663 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 161 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 159 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) 160 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 158 (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-688 |#1|) (-142) (-1249)) (T -688)) -((-4048 (*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1249))))) -(-13 (-1182 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -4048 ($ |t#1|)))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1042 |#1|) . T) ((-1133) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872))) ((-1182 |#1|) . T) ((-1249) . T) ((-1288 |#1|) . T)) -((-4087 (((-663 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2236 (-663 |#3|)))) |#4| (-663 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2236 (-663 |#3|))) |#4| |#3|) 60 T ELT)) (-3597 (((-793) |#4| |#3|) 18 T ELT)) (-3846 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2542 (((-114) |#4| |#3|) 14 T ELT))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2236 (-663 |#3|))) |#4| |#3|)) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2236 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -3846 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2542 ((-114) |#4| |#3|)) (-15 -3597 ((-793) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4512))) (-13 (-385 |#1|) (-10 -7 (-6 -4512))) (-708 |#1| |#2| |#3|)) (T -689)) -((-3597 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-793)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-2542 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-114)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3846 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4512)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512)))) (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) (-4087 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-663 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2236 (-663 *7))))) (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-663 *7)) (-4 *3 (-708 *5 *6 *7)))) (-4087 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2236 (-663 *4)))) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) -(-10 -7 (-15 -4087 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2236 (-663 |#3|))) |#4| |#3|)) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2236 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -3846 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2542 ((-114) |#4| |#3|)) (-15 -3597 ((-793) |#4| |#3|))) -((-4087 (((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1="failed")) (|:| -2236 (-663 (-1299 |#1|))))) (-663 (-663 |#1|)) (-663 (-1299 |#1|))) 22 T ELT) (((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|))))) (-711 |#1|) (-663 (-1299 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|)))) (-663 (-663 |#1|)) (-1299 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|)) 14 T ELT)) (-3597 (((-793) (-711 |#1|) (-1299 |#1|)) 30 T ELT)) (-3846 (((-3 (-1299 |#1|) #1#) (-711 |#1|) (-1299 |#1|)) 24 T ELT)) (-2542 (((-114) (-711 |#1|) (-1299 |#1|)) 27 T ELT))) -(((-690 |#1|) (-10 -7 (-15 -4087 ((-2 (|:| |particular| (-3 (-1299 |#1|) #1="failed")) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|))) (-15 -4087 ((-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|)))) (-663 (-663 |#1|)) (-1299 |#1|))) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|))))) (-711 |#1|) (-663 (-1299 |#1|)))) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|))))) (-663 (-663 |#1|)) (-663 (-1299 |#1|)))) (-15 -3846 ((-3 (-1299 |#1|) #1#) (-711 |#1|) (-1299 |#1|))) (-15 -2542 ((-114) (-711 |#1|) (-1299 |#1|))) (-15 -3597 ((-793) (-711 |#1|) (-1299 |#1|)))) (-376)) (T -690)) -((-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-690 *5)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-690 *5)))) (-3846 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1299 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *1 (-690 *4)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1299 *5) #1="failed")) (|:| -2236 (-663 (-1299 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1299 *5))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1299 *5) #1#)) (|:| -2236 (-663 (-1299 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1299 *5))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1299 *5) #1#)) (|:| -2236 (-663 (-1299 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1299 *5)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1299 *5) #1#)) (|:| -2236 (-663 (-1299 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1299 *5))))) -(-10 -7 (-15 -4087 ((-2 (|:| |particular| (-3 (-1299 |#1|) #1="failed")) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|))) (-15 -4087 ((-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|)))) (-663 (-663 |#1|)) (-1299 |#1|))) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|))))) (-711 |#1|) (-663 (-1299 |#1|)))) (-15 -4087 ((-663 (-2 (|:| |particular| (-3 (-1299 |#1|) #1#)) (|:| -2236 (-663 (-1299 |#1|))))) (-663 (-663 |#1|)) (-663 (-1299 |#1|)))) (-15 -3846 ((-3 (-1299 |#1|) #1#) (-711 |#1|) (-1299 |#1|))) (-15 -2542 ((-114) (-711 |#1|) (-1299 |#1|))) (-15 -3597 ((-793) (-711 |#1|) (-1299 |#1|)))) -((-2543 (((-2 (|:| |particular| (-3 (-1299 (-421 |#4|)) "failed")) (|:| -2236 (-663 (-1299 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)) 51 T ELT))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2543 ((-2 (|:| |particular| (-3 (-1299 (-421 |#4|)) "failed")) (|:| -2236 (-663 (-1299 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)))) (-571) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -691)) -((-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-872)) (-4 *8 (-980 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-5 *2 (-2 (|:| |particular| (-3 (-1299 (-421 *8)) "failed")) (|:| -2236 (-663 (-1299 (-421 *8)))))) (-5 *1 (-691 *5 *6 *7 *8))))) -(-10 -7 (-15 -2543 ((-2 (|:| |particular| (-3 (-1299 (-421 |#4|)) "failed")) (|:| -2236 (-663 (-1299 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1994 (((-3 $ #1="failed")) NIL (|has| |#2| (-571)) ELT)) (-3836 ((|#2| $) NIL T ELT)) (-3609 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3727 (((-1299 (-711 |#2|))) NIL T ELT) (((-1299 (-711 |#2|)) (-1299 $)) NIL T ELT)) (-3611 (((-114) $) NIL T ELT)) (-1944 (((-1299 $)) 41 T ELT)) (-3839 (($ |#2|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3600 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-2131 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (|has| |#2| (-571)) ELT)) (-1918 (((-3 $ #1#)) NIL (|has| |#2| (-571)) ELT)) (-2010 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-1942 ((|#2| $) NIL T ELT)) (-2008 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1299 $)) NIL T ELT)) (-2649 (((-3 $ #1#) $) NIL (|has| |#2| (-571)) ELT)) (-2125 (((-1203 (-976 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2652 (($ $ (-949)) NIL T ELT)) (-1940 ((|#2| $) NIL T ELT)) (-1920 (((-1203 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-2012 ((|#2|) NIL T ELT) ((|#2| (-1299 $)) NIL T ELT)) (-1938 (((-1203 |#2|) $) NIL T ELT)) (-1932 (((-114)) NIL T ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-2014 (($ (-1299 |#2|)) NIL T ELT) (($ (-1299 |#2|) (-1299 $)) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3597 (((-793) $) NIL (|has| |#2| (-571)) ELT) (((-949)) 42 T ELT)) (-3601 ((|#2| $ (-560) (-560)) NIL T ELT)) (-1929 (((-114)) NIL T ELT)) (-2676 (($ $ (-949)) NIL T ELT)) (-3376 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3596 (((-793) $) NIL (|has| |#2| (-571)) ELT)) (-3595 (((-663 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-571)) ELT)) (-3603 (((-793) $) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3833 ((|#2| $) NIL (|has| |#2| (-6 (-4513 #3="*"))) ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-3612 (($ (-663 (-663 |#2|))) NIL T ELT)) (-2174 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4108 (((-663 (-663 |#2|)) $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1927 (((-114)) NIL T ELT)) (-2132 (((-3 (-2 (|:| |particular| $) (|:| -2236 (-663 $))) #1#)) NIL (|has| |#2| (-571)) ELT)) (-1919 (((-3 $ #1#)) NIL (|has| |#2| (-571)) ELT)) (-2011 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-1943 ((|#2| $) NIL T ELT)) (-2009 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1299 $)) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-2650 (((-3 $ #1#) $) NIL (|has| |#2| (-571)) ELT)) (-2129 (((-1203 (-976 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2651 (($ $ (-949)) NIL T ELT)) (-1941 ((|#2| $) NIL T ELT)) (-1921 (((-1203 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-2013 ((|#2|) NIL T ELT) ((|#2| (-1299 $)) NIL T ELT)) (-1939 (((-1203 |#2|) $) NIL T ELT)) (-1933 (((-114)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1926 (((-114)) NIL T ELT)) (-1928 (((-114)) NIL T ELT)) (-4104 (((-3 $ "failed") $) NIL (|has| |#2| (-376)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1931 (((-114)) NIL T ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) 27 T ELT) ((|#2| $ (-560)) NIL T ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3835 ((|#2| $) NIL T ELT)) (-3838 (($ (-663 |#2|)) NIL T ELT)) (-3610 (((-114) $) NIL T ELT)) (-3837 (((-246 |#1| |#2|) $) NIL T ELT)) (-3834 ((|#2| $) NIL (|has| |#2| (-6 (-4513 #3#))) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-3728 (((-711 |#2|) (-1299 $)) NIL T ELT) (((-1299 |#2|) $) NIL T ELT) (((-711 |#2|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#2|) $ (-1299 $)) 30 T ELT)) (-4488 (($ (-1299 |#2|)) NIL T ELT) (((-1299 |#2|) $) NIL T ELT)) (-2117 (((-663 (-976 |#2|))) NIL T ELT) (((-663 (-976 |#2|)) (-1299 $)) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-1937 (((-114)) NIL T ELT)) (-3599 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 40 T ELT)) (-1922 (((-663 (-1299 |#2|))) NIL (|has| |#2| (-571)) ELT)) (-2839 (($ $ $ $) NIL T ELT)) (-1935 (((-114)) NIL T ELT)) (-3030 (($ (-711 |#2|) $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-2837 (($ $ $) NIL T ELT)) (-1936 (((-114)) NIL T ELT)) (-1934 (((-114)) NIL T ELT)) (-1930 (((-114)) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-692 |#1| |#2|) (-13 (-1155 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-432 |#2|)) (-949) (-175)) (T -692)) -NIL -(-13 (-1155 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-432 |#2|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3752 (((-663 (-1167)) $) 10 T ELT)) (-4462 (((-888) $) 16 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-693) (-13 (-1115) (-10 -8 (-15 -3752 ((-663 (-1167)) $))))) (T -693)) -((-3752 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-693))))) -(-13 (-1115) (-10 -8 (-15 -3752 ((-663 (-1167)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4450 (((-663 |#1|) $) NIL T ELT)) (-3625 (($ $) 62 T ELT)) (-3149 (((-114) $) NIL T ELT)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-2546 (((-3 $ "failed") (-843 |#1|)) 28 T ELT)) (-2548 (((-114) (-843 |#1|)) 18 T ELT)) (-2547 (($ (-843 |#1|)) 29 T ELT)) (-2921 (((-114) $ $) 36 T ELT)) (-4349 (((-949) $) 43 T ELT)) (-3626 (($ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4248 (((-663 $) (-843 |#1|)) 20 T ELT)) (-4462 (((-888) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-843 |#1|) $) 47 T ELT) (((-699 |#1|) $) 52 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2545 (((-58 (-663 $)) (-663 |#1|) (-949)) 67 T ELT)) (-2544 (((-663 $) (-663 |#1|) (-949)) 70 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 63 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 46 T ELT))) -(((-694 |#1|) (-13 (-872) (-1070 |#1|) (-10 -8 (-15 -3149 ((-114) $)) (-15 -3626 ($ $)) (-15 -3625 ($ $)) (-15 -4349 ((-949) $)) (-15 -2921 ((-114) $ $)) (-15 -4462 ((-843 |#1|) $)) (-15 -4462 ((-699 |#1|) $)) (-15 -4248 ((-663 $) (-843 |#1|))) (-15 -2548 ((-114) (-843 |#1|))) (-15 -2547 ($ (-843 |#1|))) (-15 -2546 ((-3 $ "failed") (-843 |#1|))) (-15 -4450 ((-663 |#1|) $)) (-15 -2545 ((-58 (-663 $)) (-663 |#1|) (-949))) (-15 -2544 ((-663 $) (-663 |#1|) (-949))))) (-872)) (T -694)) -((-3149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-872)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-872)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-2921 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-843 *4)) (-4 *4 (-872)) (-5 *2 (-663 (-694 *4))) (-5 *1 (-694 *4)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-843 *4)) (-4 *4 (-872)) (-5 *2 (-114)) (-5 *1 (-694 *4)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-872)) (-5 *1 (-694 *3)))) (-2546 (*1 *1 *2) (|partial| -12 (-5 *2 (-843 *3)) (-4 *3 (-872)) (-5 *1 (-694 *3)))) (-4450 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-949)) (-4 *5 (-872)) (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-949)) (-4 *5 (-872)) (-5 *2 (-663 (-694 *5))) (-5 *1 (-694 *5))))) -(-13 (-872) (-1070 |#1|) (-10 -8 (-15 -3149 ((-114) $)) (-15 -3626 ($ $)) (-15 -3625 ($ $)) (-15 -4349 ((-949) $)) (-15 -2921 ((-114) $ $)) (-15 -4462 ((-843 |#1|) $)) (-15 -4462 ((-699 |#1|) $)) (-15 -4248 ((-663 $) (-843 |#1|))) (-15 -2548 ((-114) (-843 |#1|))) (-15 -2547 ($ (-843 |#1|))) (-15 -2546 ((-3 $ "failed") (-843 |#1|))) (-15 -4450 ((-663 |#1|) $)) (-15 -2545 ((-58 (-663 $)) (-663 |#1|) (-949))) (-15 -2544 ((-663 $) (-663 |#1|) (-949))))) -((-3908 ((|#2| $) 100 T ELT)) (-4313 (($ $) 121 T ELT)) (-3948 (((-114) $ (-793)) 35 T ELT)) (-4315 (($ $) 109 T ELT) (($ $ (-793)) 112 T ELT)) (-3949 (((-114) $) 122 T ELT)) (-3518 (((-663 $) $) 96 T ELT)) (-3514 (((-114) $ $) 92 T ELT)) (-4235 (((-114) $ (-793)) 33 T ELT)) (-2429 (((-560) $) 66 T ELT)) (-2430 (((-560) $) 65 T ELT)) (-4232 (((-114) $ (-793)) 31 T ELT)) (-4033 (((-114) $) 98 T ELT)) (-4314 ((|#2| $) 113 T ELT) (($ $ (-793)) 117 T ELT)) (-2531 (($ $ $ (-560)) 83 T ELT) (($ |#2| $ (-560)) 82 T ELT)) (-2432 (((-663 (-560)) $) 64 T ELT)) (-2433 (((-114) (-560) $) 59 T ELT)) (-4317 ((|#2| $) NIL T ELT) (($ $ (-793)) 108 T ELT)) (-4285 (($ $ (-560)) 125 T ELT)) (-3950 (((-114) $) 124 T ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-2434 (((-663 |#2|) $) 46 T ELT)) (-4316 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1266 (-560))) 79 T ELT) ((|#2| $ (-560)) 57 T ELT) ((|#2| $ (-560) |#2|) 58 T ELT)) (-3516 (((-560) $ $) 91 T ELT)) (-2532 (($ $ (-1266 (-560))) 78 T ELT) (($ $ (-560)) 72 T ELT)) (-4149 (((-114) $) 87 T ELT)) (-4308 (($ $) 105 T ELT)) (-4309 (((-793) $) 104 T ELT)) (-4310 (($ $) 103 T ELT)) (-4036 (($ (-663 |#2|)) 53 T ELT)) (-3378 (($ $) 126 T ELT)) (-4028 (((-663 $) $) 90 T ELT)) (-3515 (((-114) $ $) 89 T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-3540 (((-114) $ $) 20 T ELT)) (-4473 (((-793) $) 39 T ELT))) -(((-695 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -4285 (|#1| |#1| (-560))) (-15 -3948 ((-114) |#1| (-793))) (-15 -4235 ((-114) |#1| (-793))) (-15 -4232 ((-114) |#1| (-793))) (-15 -3949 ((-114) |#1|)) (-15 -3950 ((-114) |#1|)) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -2434 ((-663 |#2|) |#1|)) (-15 -2433 ((-114) (-560) |#1|)) (-15 -2432 ((-663 (-560)) |#1|)) (-15 -2430 ((-560) |#1|)) (-15 -2429 ((-560) |#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -4308 (|#1| |#1|)) (-15 -4309 ((-793) |#1|)) (-15 -4310 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4314 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "last")) (-15 -4314 (|#2| |#1|)) (-15 -4315 (|#1| |#1| (-793))) (-15 -4316 (|#1| |#1| "rest")) (-15 -4315 (|#1| |#1|)) (-15 -4317 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "first")) (-15 -4317 (|#2| |#1|)) (-15 -3514 ((-114) |#1| |#1|)) (-15 -3515 ((-114) |#1| |#1|)) (-15 -3516 ((-560) |#1| |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| "value")) (-15 -3908 (|#2| |#1|)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) (-696 |#2|) (-1249)) (T -695)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -4285 (|#1| |#1| (-560))) (-15 -3948 ((-114) |#1| (-793))) (-15 -4235 ((-114) |#1| (-793))) (-15 -4232 ((-114) |#1| (-793))) (-15 -3949 ((-114) |#1|)) (-15 -3950 ((-114) |#1|)) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -2434 ((-663 |#2|) |#1|)) (-15 -2433 ((-114) (-560) |#1|)) (-15 -2432 ((-663 (-560)) |#1|)) (-15 -2430 ((-560) |#1|)) (-15 -2429 ((-560) |#1|)) (-15 -4036 (|#1| (-663 |#2|))) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -2532 (|#1| |#1| (-560))) (-15 -2532 (|#1| |#1| (-1266 (-560)))) (-15 -2531 (|#1| |#2| |#1| (-560))) (-15 -2531 (|#1| |#1| |#1| (-560))) (-15 -4308 (|#1| |#1|)) (-15 -4309 ((-793) |#1|)) (-15 -4310 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4314 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "last")) (-15 -4314 (|#2| |#1|)) (-15 -4315 (|#1| |#1| (-793))) (-15 -4316 (|#1| |#1| "rest")) (-15 -4315 (|#1| |#1|)) (-15 -4317 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "first")) (-15 -4317 (|#2| |#1|)) (-15 -3514 ((-114) |#1| |#1|)) (-15 -3515 ((-114) |#1| |#1|)) (-15 -3516 ((-560) |#1| |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| "value")) (-15 -3908 (|#2| |#1|)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4473 ((-793) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-4311 ((|#1| $) 71 T ELT)) (-4313 (($ $) 73 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 107 (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 58 (|has| $ (-6 -4512)) ELT)) (-3948 (((-114) $ (-793)) 90 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 62 (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) 60 (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 127 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) 96 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 112 T ELT)) (-4312 ((|#1| $) 72 T ELT)) (-4240 (($) 7 T CONST)) (-2550 (($ $) 135 T ELT)) (-4315 (($ $) 79 T ELT) (($ $ (-793)) 77 T ELT)) (-1479 (($ $) 109 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 110 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 113 T ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1731 ((|#1| $ (-560) |#1|) 95 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 97 T ELT)) (-3949 (((-114) $) 93 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-2549 (((-793) $) 134 T ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) 119 T ELT)) (-4235 (((-114) $ (-793)) 91 T ELT)) (-2429 (((-560) $) 105 (|has| (-560) (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 104 (|has| (-560) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4232 (((-114) $ (-793)) 92 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-2552 (($ $) 137 T ELT)) (-2553 (((-114) $) 138 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) 76 T ELT) (($ $ (-793)) 74 T ELT)) (-2531 (($ $ $ (-560)) 126 T ELT) (($ |#1| $ (-560)) 125 T ELT)) (-2432 (((-663 (-560)) $) 102 T ELT)) (-2433 (((-114) (-560) $) 101 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2551 ((|#1| $) 136 T ELT)) (-4317 ((|#1| $) 82 T ELT) (($ $ (-793)) 80 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2428 (($ $ |#1|) 106 (|has| $ (-6 -4512)) ELT)) (-4285 (($ $ (-560)) 133 T ELT)) (-3950 (((-114) $) 94 T ELT)) (-2554 (((-114) $) 139 T ELT)) (-2555 (((-114) $) 140 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 100 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1266 (-560))) 118 T ELT) ((|#1| $ (-560)) 99 T ELT) ((|#1| $ (-560) |#1|) 98 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-2532 (($ $ (-1266 (-560))) 124 T ELT) (($ $ (-560)) 123 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-4308 (($ $) 68 T ELT)) (-4306 (($ $) 65 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) 69 T ELT)) (-4310 (($ $) 70 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 108 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 117 T ELT)) (-4307 (($ $ $) 67 (|has| $ (-6 -4512)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4512)) ELT)) (-4318 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-663 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3378 (($ $) 132 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-696 |#1|) (-142) (-1249)) (T -696)) -((-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) (-4226 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249))))) -(-13 (-1182 |t#1|) (-10 -8 (-15 -3912 ($ (-1 (-114) |t#1|) $)) (-15 -4226 ($ (-1 (-114) |t#1|) $)) (-15 -2555 ((-114) $)) (-15 -2554 ((-114) $)) (-15 -2553 ((-114) $)) (-15 -2552 ($ $)) (-15 -2551 (|t#1| $)) (-15 -2550 ($ $)) (-15 -2549 ((-793) $)) (-15 -4285 ($ $ (-560))) (-15 -3378 ($ $)))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1182 |#1|) . T) ((-1249) . T) ((-1288 |#1|) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2561 (($ (-793) (-793) (-793)) 53 (|has| |#1| (-1081)) ELT)) (-2558 ((|#1| $ (-793) (-793) (-793) |#1|) 47 T ELT)) (-4240 (($) NIL T CONST)) (-2559 (($ $ $) 57 (|has| |#1| (-1081)) ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2556 (((-1299 (-793)) $) 12 T ELT)) (-2557 (($ (-1209) $ $) 34 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2560 (($ (-793)) 55 (|has| |#1| (-1081)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-793) (-793) (-793)) 44 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4036 (($ (-663 (-663 (-663 |#1|)))) 67 T ELT)) (-4462 (($ (-988 (-988 (-988 |#1|)))) 23 T ELT) (((-988 (-988 (-988 |#1|))) $) 19 T ELT) (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-697 |#1|) (-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1081)) (PROGN (-15 -2561 ($ (-793) (-793) (-793))) (-15 -2560 ($ (-793))) (-15 -2559 ($ $ $))) |%noBranch|) (-15 -4036 ($ (-663 (-663 (-663 |#1|))))) (-15 -4316 (|#1| $ (-793) (-793) (-793))) (-15 -2558 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -4462 ($ (-988 (-988 (-988 |#1|))))) (-15 -4462 ((-988 (-988 (-988 |#1|))) $)) (-15 -2557 ($ (-1209) $ $)) (-15 -2556 ((-1299 (-793)) $)))) (-1133)) (T -697)) -((-2561 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1081)) (-4 *3 (-1133)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1081)) (-4 *3 (-1133)))) (-2559 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-1081)) (-4 *2 (-1133)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1133)) (-5 *1 (-697 *3)))) (-4316 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1133)))) (-2558 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1133)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-988 (-988 (-988 *3)))) (-4 *3 (-1133)) (-5 *1 (-697 *3)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-988 (-988 (-988 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-1133)))) (-2557 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-697 *3)) (-4 *3 (-1133)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-1299 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1133))))) -(-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1081)) (PROGN (-15 -2561 ($ (-793) (-793) (-793))) (-15 -2560 ($ (-793))) (-15 -2559 ($ $ $))) |%noBranch|) (-15 -4036 ($ (-663 (-663 (-663 |#1|))))) (-15 -4316 (|#1| $ (-793) (-793) (-793))) (-15 -2558 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -4462 ($ (-988 (-988 (-988 |#1|))))) (-15 -4462 ((-988 (-988 (-988 |#1|))) $)) (-15 -2557 ($ (-1209) $ $)) (-15 -2556 ((-1299 (-793)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3682 (((-497) $) 10 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 19 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-698) (-13 (-1115) (-10 -8 (-15 -3682 ((-497) $)) (-15 -3737 ((-1167) $))))) (T -698)) -((-3682 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-698))))) -(-13 (-1115) (-10 -8 (-15 -3682 ((-497) $)) (-15 -3737 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4450 (((-663 |#1|) $) 15 T ELT)) (-3625 (($ $) 19 T ELT)) (-3149 (((-114) $) 20 T ELT)) (-3661 (((-3 |#1| "failed") $) 23 T ELT)) (-3660 ((|#1| $) 21 T ELT)) (-4315 (($ $) 37 T ELT)) (-4452 (($ $) 25 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-2921 (((-114) $ $) 46 T ELT)) (-4349 (((-949) $) 40 T ELT)) (-3626 (($ $) 18 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 ((|#1| $) 36 T ELT)) (-4462 (((-888) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-843 |#1|) $) 28 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 13 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-699 |#1|) (-13 (-872) (-1070 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4462 ((-843 |#1|) $)) (-15 -4317 (|#1| $)) (-15 -3626 ($ $)) (-15 -4349 ((-949) $)) (-15 -2921 ((-114) $ $)) (-15 -4452 ($ $)) (-15 -4315 ($ $)) (-15 -3149 ((-114) $)) (-15 -3625 ($ $)) (-15 -4450 ((-663 |#1|) $)))) (-872)) (T -699)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) (-4317 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) (-2921 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) (-4452 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-4315 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) (-4450 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-872))))) -(-13 (-872) (-1070 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4462 ((-843 |#1|) $)) (-15 -4317 (|#1| $)) (-15 -3626 ($ $)) (-15 -4349 ((-949) $)) (-15 -2921 ((-114) $ $)) (-15 -4452 ($ $)) (-15 -4315 ($ $)) (-15 -3149 ((-114) $)) (-15 -3625 ($ $)) (-15 -4450 ((-663 |#1|) $)))) -((-2570 ((|#1| (-1 |#1| (-793) |#1|) (-793) |#1|) 11 T ELT)) (-2562 ((|#1| (-1 |#1| |#1|) (-793) |#1|) 9 T ELT))) -(((-700 |#1|) (-10 -7 (-15 -2562 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -2570 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) (-1133)) (T -700)) -((-2570 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1133)) (-5 *1 (-700 *2)))) (-2562 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1133)) (-5 *1 (-700 *2))))) -(-10 -7 (-15 -2562 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -2570 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) -((-2564 ((|#2| |#1| |#2|) 9 T ELT)) (-2563 ((|#1| |#1| |#2|) 8 T ELT))) -(((-701 |#1| |#2|) (-10 -7 (-15 -2563 (|#1| |#1| |#2|)) (-15 -2564 (|#2| |#1| |#2|))) (-1133) (-1133)) (T -701)) -((-2564 (*1 *2 *3 *2) (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-2563 (*1 *2 *2 *3) (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) -(-10 -7 (-15 -2563 (|#1| |#1| |#2|)) (-15 -2564 (|#2| |#1| |#2|))) -((-2565 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2565 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1133) (-1133) (-1133)) (T -702)) -((-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)) (-5 *1 (-702 *5 *6 *2))))) -(-10 -7 (-15 -2565 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3822 (((-1250) $) 21 T ELT)) (-3821 (((-663 (-1250)) $) 19 T ELT)) (-2566 (($ (-663 (-1250)) (-1250)) 14 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 29 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT) (((-1250) $) 22 T ELT) (($ (-1147)) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-703) (-13 (-1115) (-632 (-1250)) (-10 -8 (-15 -4462 ($ (-1147))) (-15 -2566 ($ (-663 (-1250)) (-1250))) (-15 -3821 ((-663 (-1250)) $)) (-15 -3822 ((-1250) $))))) (T -703)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-703)))) (-2566 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1250))) (-5 *3 (-1250)) (-5 *1 (-703)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-703)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-703))))) -(-13 (-1115) (-632 (-1250)) (-10 -8 (-15 -4462 ($ (-1147))) (-15 -2566 ($ (-663 (-1250)) (-1250))) (-15 -3821 ((-663 (-1250)) $)) (-15 -3822 ((-1250) $)))) -((-2570 (((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)) 26 T ELT)) (-2567 (((-1 |#1|) |#1|) 8 T ELT)) (-2569 ((|#1| |#1|) 19 T ELT)) (-2568 (((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4462 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-793)) 23 T ELT))) -(((-704 |#1|) (-10 -7 (-15 -2567 ((-1 |#1|) |#1|)) (-15 -4462 ((-1 |#1|) |#1|)) (-15 -2568 (|#1| (-1 |#1| |#1|))) (-15 -2568 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -2569 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -2570 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) (-1133)) (T -704)) -((-2570 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1133)) (-5 *1 (-704 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1133)) (-5 *1 (-704 *4)))) (-2569 (*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1133)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560)) (-5 *2 (-663 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1133)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1133)))) (-4462 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1133)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1133))))) -(-10 -7 (-15 -2567 ((-1 |#1|) |#1|)) (-15 -4462 ((-1 |#1|) |#1|)) (-15 -2568 (|#1| (-1 |#1| |#1|))) (-15 -2568 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -2569 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -2570 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) -((-2573 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2572 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4468 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2571 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-705 |#1| |#2|) (-10 -7 (-15 -2571 ((-1 |#2| |#1|) |#2|)) (-15 -2572 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4468 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2573 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1133) (-1133)) (T -705)) -((-2573 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))) (-4468 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1133)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)) (-4 *4 (-1133)))) (-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))) (-2571 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1133)) (-4 *3 (-1133))))) -(-10 -7 (-15 -2571 ((-1 |#2| |#1|) |#2|)) (-15 -2572 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4468 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2573 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2578 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2574 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2575 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2576 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2577 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -2574 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2575 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2576 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2577 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2578 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1133) (-1133) (-1133)) (T -706)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-1 *7 *5)) (-5 *1 (-706 *5 *6 *7)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1133)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1133)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1133)) (-4 *4 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6))))) -(-10 -7 (-15 -2574 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2575 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2576 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2577 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2578 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4354 (($ (-793) (-793)) 42 T ELT)) (-2583 (($ $ $) 73 T ELT)) (-3920 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3609 (((-114) $) 36 T ELT)) (-2582 (($ $ (-560) (-560)) 84 T ELT)) (-2581 (($ $ (-560) (-560)) 85 T ELT)) (-2580 (($ $ (-560) (-560) (-560) (-560)) 90 T ELT)) (-2585 (($ $) 71 T ELT)) (-3611 (((-114) $) 15 T ELT)) (-2579 (($ $ (-560) (-560) $) 91 T ELT)) (-4304 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 89 T ELT)) (-3839 (($ (-793) |#2|) 55 T ELT)) (-3612 (($ (-663 (-663 |#2|))) 51 T ELT) (($ (-793) (-793) (-1 |#2| (-560) (-560))) 53 T ELT)) (-4108 (((-663 (-663 |#2|)) $) 80 T ELT)) (-2584 (($ $ $) 72 T ELT)) (-3972 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-4316 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) 88 T ELT)) (-3838 (($ (-663 |#2|)) 56 T ELT) (($ (-663 $)) 58 T ELT)) (-3610 (((-114) $) 28 T ELT)) (-4462 (($ |#4|) 63 T ELT) (((-888) $) NIL T ELT)) (-3608 (((-114) $) 38 T ELT)) (-4465 (($ $ |#2|) 124 T ELT)) (-4353 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-4355 (($ $ $) 93 T ELT)) (** (($ $ (-793)) 111 T ELT) (($ $ (-560)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-560) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4462 ((-888) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4465 (|#1| |#1| |#2|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| (-560) (-560) |#1|)) (-15 -2580 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -2581 (|#1| |#1| (-560) (-560))) (-15 -2582 (|#1| |#1| (-560) (-560))) (-15 -4304 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -4316 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -4108 ((-663 (-663 |#2|)) |#1|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3920 (|#1| |#3|)) (-15 -4462 (|#1| |#4|)) (-15 -3838 (|#1| (-663 |#1|))) (-15 -3838 (|#1| (-663 |#2|))) (-15 -3839 (|#1| (-793) |#2|)) (-15 -3612 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -3612 (|#1| (-663 (-663 |#2|)))) (-15 -4354 (|#1| (-793) (-793))) (-15 -3608 ((-114) |#1|)) (-15 -3609 ((-114) |#1|)) (-15 -3610 ((-114) |#1|)) (-15 -3611 ((-114) |#1|)) (-15 -4304 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560)))) (-708 |#2| |#3| |#4|) (-1081) (-385 |#2|) (-385 |#2|)) (T -707)) -NIL -(-10 -8 (-15 -4462 ((-888) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4465 (|#1| |#1| |#2|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| (-560) (-560) |#1|)) (-15 -2580 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -2581 (|#1| |#1| (-560) (-560))) (-15 -2582 (|#1| |#1| (-560) (-560))) (-15 -4304 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -4316 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -4108 ((-663 (-663 |#2|)) |#1|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3920 (|#1| |#3|)) (-15 -4462 (|#1| |#4|)) (-15 -3838 (|#1| (-663 |#1|))) (-15 -3838 (|#1| (-663 |#2|))) (-15 -3839 (|#1| (-793) |#2|)) (-15 -3612 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -3612 (|#1| (-663 (-663 |#2|)))) (-15 -4354 (|#1| (-793) (-793))) (-15 -3608 ((-114) |#1|)) (-15 -3609 ((-114) |#1|)) (-15 -3610 ((-114) |#1|)) (-15 -3611 ((-114) |#1|)) (-15 -4304 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) (-560)))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4354 (($ (-793) (-793)) 103 T ELT)) (-2583 (($ $ $) 92 T ELT)) (-3920 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3609 (((-114) $) 105 T ELT)) (-2582 (($ $ (-560) (-560)) 88 T ELT)) (-2581 (($ $ (-560) (-560)) 87 T ELT)) (-2580 (($ $ (-560) (-560) (-560) (-560)) 86 T ELT)) (-2585 (($ $) 94 T ELT)) (-3611 (((-114) $) 107 T ELT)) (-2579 (($ $ (-560) (-560) $) 85 T ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) 48 T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 89 T ELT)) (-1375 (($ $ (-560) |#2|) 46 T ELT)) (-1374 (($ $ (-560) |#3|) 45 T ELT)) (-3839 (($ (-793) |#1|) 100 T ELT)) (-4240 (($) 7 T CONST)) (-3598 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3600 ((|#2| $ (-560)) 50 T ELT)) (-3597 (((-793) $) 71 (|has| |#1| (-571)) ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) 47 T ELT)) (-3601 ((|#1| $ (-560) (-560)) 52 T ELT)) (-3376 (((-663 |#1|) $) 30 T ELT)) (-3596 (((-793) $) 70 (|has| |#1| (-571)) ELT)) (-3595 (((-663 |#3|) $) 69 (|has| |#1| (-571)) ELT)) (-3603 (((-793) $) 55 T ELT)) (-4130 (($ (-793) (-793) |#1|) 61 T ELT)) (-3602 (((-793) $) 54 T ELT)) (-3833 ((|#1| $) 67 (|has| |#1| (-6 (-4513 #1="*"))) ELT)) (-3607 (((-560) $) 59 T ELT)) (-3605 (((-560) $) 57 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3606 (((-560) $) 58 T ELT)) (-3604 (((-560) $) 56 T ELT)) (-3612 (($ (-663 (-663 |#1|))) 102 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) 101 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-4108 (((-663 (-663 |#1|)) $) 91 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4104 (((-3 $ "failed") $) 66 (|has| |#1| (-376)) ELT)) (-2584 (($ $ $) 93 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) 60 T ELT)) (-3972 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) (-560)) 53 T ELT) ((|#1| $ (-560) (-560) |#1|) 51 T ELT) (($ $ (-663 (-560)) (-663 (-560))) 90 T ELT)) (-3838 (($ (-663 |#1|)) 99 T ELT) (($ (-663 $)) 98 T ELT)) (-3610 (((-114) $) 106 T ELT)) (-3834 ((|#1| $) 68 (|has| |#1| (-6 (-4513 #1#))) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-3599 ((|#3| $ (-560)) 49 T ELT)) (-4462 (($ |#3|) 97 T ELT) (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) 104 T ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4465 (($ $ |#1|) 73 (|has| |#1| (-376)) ELT)) (-4353 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-4355 (($ $ $) 84 T ELT)) (** (($ $ (-793)) 75 T ELT) (($ $ (-560)) 65 (|has| |#1| (-376)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-560) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-708 |#1| |#2| |#3|) (-142) (-1081) (-385 |t#1|) (-385 |t#1|)) (T -708)) -((-3611 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4354 (*1 *1 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3612 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1081)) (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4462 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3920 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2585 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2584 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2583 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3))))) (-4316 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4304 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2582 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2581 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2580 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2579 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4355 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4353 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1081)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3972 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-571)))) (-4465 (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4513 #1="*"))) (-4 *2 (-1081)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4513 #1#))) (-4 *2 (-1081)))) (-4104 (*1 *1 *1) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4512) (-6 -4511) (-15 -3611 ((-114) $)) (-15 -3610 ((-114) $)) (-15 -3609 ((-114) $)) (-15 -3608 ((-114) $)) (-15 -4354 ($ (-793) (-793))) (-15 -3612 ($ (-663 (-663 |t#1|)))) (-15 -3612 ($ (-793) (-793) (-1 |t#1| (-560) (-560)))) (-15 -3839 ($ (-793) |t#1|)) (-15 -3838 ($ (-663 |t#1|))) (-15 -3838 ($ (-663 $))) (-15 -4462 ($ |t#3|)) (-15 -3920 ($ |t#2|)) (-15 -3920 ($ $)) (-15 -2585 ($ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -4108 ((-663 (-663 |t#1|)) $)) (-15 -4316 ($ $ (-663 (-560)) (-663 (-560)))) (-15 -4304 ($ $ (-663 (-560)) (-663 (-560)) $)) (-15 -2582 ($ $ (-560) (-560))) (-15 -2581 ($ $ (-560) (-560))) (-15 -2580 ($ $ (-560) (-560) (-560) (-560))) (-15 -2579 ($ $ (-560) (-560) $)) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-560) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-793))) (IF (|has| |t#1| (-571)) (-15 -3972 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -4465 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -3598 ($ $)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -3597 ((-793) $)) (-15 -3596 ((-793) $)) (-15 -3595 ((-663 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4513 "*"))) (PROGN (-15 -3834 (|t#1| $)) (-15 -3833 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4104 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-57 |#1| |#2| |#3|) . T) ((-1249) . T)) -((-4358 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4474 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4474 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4474 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4358 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1081) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1081) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -709)) -((-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1081)) (-4 *2 (-1081)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) (-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1081)) (-4 *8 (-1081)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1081)) (-4 *8 (-1081)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) -(-10 -7 (-15 -4474 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4474 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4358 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3598 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-3597 (((-793) |#4|) 121 (|has| |#1| (-571)) ELT)) (-3596 (((-793) |#4|) 96 (|has| |#1| (-571)) ELT)) (-3595 (((-663 |#3|) |#4|) 103 (|has| |#1| (-571)) ELT)) (-2624 (((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|) 137 (|has| |#1| (-319)) ELT)) (-3833 ((|#1| |#4|) 52 T ELT)) (-2590 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-571)) ELT)) (-4104 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-376)) ELT)) (-2589 ((|#4| |#4|) 88 (|has| |#1| (-571)) ELT)) (-2587 ((|#4| |#4| |#1| (-560) (-560)) 60 T ELT)) (-2586 ((|#4| |#4| (-560) (-560)) 55 T ELT)) (-2588 ((|#4| |#4| |#1| (-560) (-560)) 65 T ELT)) (-3834 ((|#1| |#4|) 98 T ELT)) (-3002 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-571)) ELT))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3834 (|#1| |#4|)) (-15 -3833 (|#1| |#4|)) (-15 -2586 (|#4| |#4| (-560) (-560))) (-15 -2587 (|#4| |#4| |#1| (-560) (-560))) (-15 -2588 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -3597 ((-793) |#4|)) (-15 -3596 ((-793) |#4|)) (-15 -3595 ((-663 |#3|) |#4|)) (-15 -2589 (|#4| |#4|)) (-15 -2590 ((-3 |#4| "failed") |#4|)) (-15 -3002 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3598 (|#4| |#4|)) (-15 -2624 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4104 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -710)) -((-4104 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2624 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3002 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2590 (*1 *2 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2589 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3596 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2588 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2587 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2586 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-710 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))) -(-10 -7 (-15 -3834 (|#1| |#4|)) (-15 -3833 (|#1| |#4|)) (-15 -2586 (|#4| |#4| (-560) (-560))) (-15 -2587 (|#4| |#4| |#1| (-560) (-560))) (-15 -2588 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -3597 ((-793) |#4|)) (-15 -3596 ((-793) |#4|)) (-15 -3595 ((-663 |#3|) |#4|)) (-15 -2589 (|#4| |#4|)) (-15 -2590 ((-3 |#4| "failed") |#4|)) (-15 -3002 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3598 (|#4| |#4|)) (-15 -2624 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4104 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793) (-793)) 64 T ELT)) (-2583 (($ $ $) NIL T ELT)) (-3920 (($ (-1299 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3609 (((-114) $) NIL T ELT)) (-2582 (($ $ (-560) (-560)) 22 T ELT)) (-2581 (($ $ (-560) (-560)) NIL T ELT)) (-2580 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2585 (($ $) NIL T ELT)) (-3611 (((-114) $) NIL T ELT)) (-2579 (($ $ (-560) (-560) $) NIL T ELT)) (-4304 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-1375 (($ $ (-560) (-1299 |#1|)) NIL T ELT)) (-1374 (($ $ (-560) (-1299 |#1|)) NIL T ELT)) (-3839 (($ (-793) |#1|) 37 T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3600 (((-1299 |#1|) $ (-560)) NIL T ELT)) (-3597 (((-793) $) 48 (|has| |#1| (-571)) ELT)) (-1731 ((|#1| $ (-560) (-560) |#1|) 69 T ELT)) (-3601 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL T ELT)) (-3596 (((-793) $) 50 (|has| |#1| (-571)) ELT)) (-3595 (((-663 (-1299 |#1|)) $) 53 (|has| |#1| (-571)) ELT)) (-3603 (((-793) $) 32 T ELT)) (-4130 (($ (-793) (-793) |#1|) 28 T ELT)) (-3602 (((-793) $) 33 T ELT)) (-3833 ((|#1| $) 44 (|has| |#1| (-6 (-4513 #1="*"))) ELT)) (-3607 (((-560) $) 10 T ELT)) (-3605 (((-560) $) 11 T ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3606 (((-560) $) 14 T ELT)) (-3604 (((-560) $) 65 T ELT)) (-3612 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4108 (((-663 (-663 |#1|)) $) 76 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4104 (((-3 $ #2="failed") $) 60 (|has| |#1| (-376)) ELT)) (-2584 (($ $ $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2428 (($ $ |#1|) NIL T ELT)) (-3972 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3838 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-1299 |#1|)) 70 T ELT)) (-3610 (((-114) $) NIL T ELT)) (-3834 ((|#1| $) 42 (|has| |#1| (-6 (-4513 #1#))) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) 80 (|has| |#1| (-633 (-549))) ELT)) (-3599 (((-1299 |#1|) $ (-560)) NIL T ELT)) (-4462 (($ (-1299 |#1|)) NIL T ELT) (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) 38 T ELT) (($ $ (-560)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1299 |#1|) $ (-1299 |#1|)) NIL T ELT) (((-1299 |#1|) (-1299 |#1|) $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-711 |#1|) (-13 (-708 |#1| (-1299 |#1|) (-1299 |#1|)) (-10 -8 (-15 -3838 ($ (-1299 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4104 ((-3 $ "failed") $)) |%noBranch|))) (-1081)) (T -711)) -((-4104 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1081)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1081)) (-5 *1 (-711 *3))))) -(-13 (-708 |#1| (-1299 |#1|) (-1299 |#1|)) (-10 -8 (-15 -3838 ($ (-1299 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4104 ((-3 $ "failed") $)) |%noBranch|))) -((-2596 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 37 T ELT)) (-2595 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 32 T ELT)) (-2597 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793)) 43 T ELT)) (-2592 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 25 T ELT)) (-2593 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 29 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 27 T ELT)) (-2594 (((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|)) 31 T ELT)) (-2591 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 23 T ELT)) (** (((-711 |#1|) (-711 |#1|) (-793)) 46 T ELT))) -(((-712 |#1|) (-10 -7 (-15 -2591 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2592 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2593 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2593 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2594 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -2595 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2596 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2597 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) (-1081)) (T -712)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-712 *4)))) (-2597 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-712 *4)))) (-2596 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2595 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2594 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2593 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2593 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2592 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) (-2591 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -2591 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2592 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2593 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2593 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2594 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -2595 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2596 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2597 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) -((-3661 (((-3 |#1| "failed") $) 18 T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-2598 (($) 7 T CONST)) (-2599 (($ |#1|) 8 T ELT)) (-4462 (($ |#1|) 16 T ELT) (((-888) $) 23 T ELT)) (-4080 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2598)) 11 T ELT)) (-4086 ((|#1| $) 15 T ELT))) -(((-713 |#1|) (-13 (-1295) (-1070 |#1|) (-632 (-888)) (-10 -8 (-15 -2599 ($ |#1|)) (-15 -4080 ((-114) $ (|[\|\|]| |#1|))) (-15 -4080 ((-114) $ (|[\|\|]| -2598))) (-15 -4086 (|#1| $)) (-15 -2598 ($) -4468))) (-632 (-888))) (T -713)) -((-2599 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888))))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-888))) (-5 *2 (-114)) (-5 *1 (-713 *4)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-114)) (-5 *1 (-713 *4)) (-4 *4 (-632 (-888))))) (-4086 (*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888))))) (-2598 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888)))))) -(-13 (-1295) (-1070 |#1|) (-632 (-888)) (-10 -8 (-15 -2599 ($ |#1|)) (-15 -4080 ((-114) $ (|[\|\|]| |#1|))) (-15 -4080 ((-114) $ (|[\|\|]| -2598))) (-15 -4086 (|#1| $)) (-15 -2598 ($) -4468))) -((-2602 ((|#2| |#2| |#4|) 29 T ELT)) (-2605 (((-711 |#2|) |#3| |#4|) 35 T ELT)) (-2603 (((-711 |#2|) |#2| |#4|) 34 T ELT)) (-2600 (((-1299 |#2|) |#2| |#4|) 16 T ELT)) (-2601 ((|#2| |#3| |#4|) 28 T ELT)) (-2606 (((-711 |#2|) |#3| |#4| (-793) (-793)) 47 T ELT)) (-2604 (((-711 |#2|) |#2| |#4| (-793)) 46 T ELT))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2600 ((-1299 |#2|) |#2| |#4|)) (-15 -2601 (|#2| |#3| |#4|)) (-15 -2602 (|#2| |#2| |#4|)) (-15 -2603 ((-711 |#2|) |#2| |#4|)) (-15 -2604 ((-711 |#2|) |#2| |#4| (-793))) (-15 -2605 ((-711 |#2|) |#3| |#4|)) (-15 -2606 ((-711 |#2|) |#3| |#4| (-793) (-793)))) (-1133) (-928 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4511)))) (T -714)) -((-2606 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1133)) (-4 *7 (-928 *6)) (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4511)))))) (-2605 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-4 *6 (-928 *5)) (-5 *2 (-711 *6)) (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511)))))) (-2604 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1133)) (-4 *3 (-928 *6)) (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4511)))))) (-2603 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-4 *3 (-928 *5)) (-5 *2 (-711 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511)))))) (-2602 (*1 *2 *2 *3) (-12 (-4 *4 (-1133)) (-4 *2 (-928 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4511)))))) (-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-4 *2 (-928 *5)) (-5 *1 (-714 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511)))))) (-2600 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-4 *3 (-928 *5)) (-5 *2 (-1299 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511))))))) -(-10 -7 (-15 -2600 ((-1299 |#2|) |#2| |#4|)) (-15 -2601 (|#2| |#3| |#4|)) (-15 -2602 (|#2| |#2| |#4|)) (-15 -2603 ((-711 |#2|) |#2| |#4|)) (-15 -2604 ((-711 |#2|) |#2| |#4| (-793))) (-15 -2605 ((-711 |#2|) |#3| |#4|)) (-15 -2606 ((-711 |#2|) |#3| |#4| (-793) (-793)))) -((-4257 (((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)) 20 T ELT)) (-4255 ((|#1| (-711 |#2|)) 9 T ELT)) (-4256 (((-711 |#1|) (-711 |#2|)) 18 T ELT))) -(((-715 |#1| |#2|) (-10 -7 (-15 -4255 (|#1| (-711 |#2|))) (-15 -4256 ((-711 |#1|) (-711 |#2|))) (-15 -4257 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) (-571) (-1023 |#1|)) (T -715)) -((-4257 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) (-5 *1 (-715 *4 *5)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-571)) (-5 *2 (-711 *4)) (-5 *1 (-715 *4 *5)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-715 *2 *4))))) -(-10 -7 (-15 -4255 (|#1| (-711 |#2|))) (-15 -4256 ((-711 |#1|) (-711 |#2|))) (-15 -4257 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2004 (((-711 (-721))) NIL T ELT) (((-711 (-721)) (-1299 $)) NIL T ELT)) (-3836 (((-721) $) NIL T ELT)) (-3998 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4155 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-721) (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) ELT)) (-4291 (($ $) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) (|has| (-721) (-376))) ELT)) (-4487 (((-419 $) $) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) (|has| (-721) (-376))) ELT)) (-3524 (($ $) NIL (-12 (|has| (-721) (-1034)) (|has| (-721) (-1235))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) ELT)) (-1800 (((-114) $ $) NIL (|has| (-721) (-319)) ELT)) (-3624 (((-793)) NIL (|has| (-721) (-381)) ELT)) (-3996 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4154 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4000 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4153 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) NIL T ELT) (((-3 (-721) #2#) $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-721) (-1070 (-421 (-560)))) ELT)) (-3660 (((-560) $) NIL T ELT) (((-721) $) NIL T ELT) (((-421 (-560)) $) NIL (|has| (-721) (-1070 (-421 (-560)))) ELT)) (-2014 (($ (-1299 (-721))) NIL T ELT) (($ (-1299 (-721)) (-1299 $)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-721) (-363)) ELT)) (-3049 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2003 (((-711 (-721)) $) NIL T ELT) (((-711 (-721)) $ (-1299 $)) NIL T ELT)) (-2507 (((-711 (-721)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-721))) (|:| |vec| (-1299 (-721)))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-4358 (((-3 $ "failed") (-421 (-1203 (-721)))) NIL (|has| (-721) (-376)) ELT) (($ (-1203 (-721))) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4159 (((-721) $) 29 T ELT)) (-3511 (((-3 (-421 (-560)) #3="failed") $) NIL (|has| (-721) (-559)) ELT)) (-3510 (((-114) $) NIL (|has| (-721) (-559)) ELT)) (-3509 (((-421 (-560)) $) NIL (|has| (-721) (-559)) ELT)) (-3597 (((-949)) NIL T ELT)) (-3481 (($) NIL (|has| (-721) (-381)) ELT)) (-3048 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| (-721) (-319)) ELT)) (-3320 (($) NIL (|has| (-721) (-363)) ELT)) (-1895 (((-114) $) NIL (|has| (-721) (-363)) ELT)) (-1988 (($ $) NIL (|has| (-721) (-363)) ELT) (($ $ (-793)) NIL (|has| (-721) (-363)) ELT)) (-4239 (((-114) $) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) (|has| (-721) (-376))) ELT)) (-1501 (((-2 (|:| |r| (-721)) (|:| |phi| (-721))) $) NIL (-12 (|has| (-721) (-1092)) (|has| (-721) (-1235))) ELT)) (-4143 (($) NIL (|has| (-721) (-1235)) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-721) (-912 (-391))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-721) (-912 (-560))) ELT)) (-4288 (((-856 (-949)) $) NIL (|has| (-721) (-363)) ELT) (((-949) $) NIL (|has| (-721) (-363)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (-12 (|has| (-721) (-1034)) (|has| (-721) (-1235))) ELT)) (-3620 (((-721) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-721) (-363)) ELT)) (-1797 (((-3 (-663 $) #4="failed") (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-2238 (((-1203 (-721)) $) NIL (|has| (-721) (-376)) ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4474 (($ (-1 (-721) (-721)) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| (-721) (-381)) ELT)) (-4458 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3566 (((-1203 (-721)) $) NIL T ELT)) (-2508 (((-711 (-721)) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-721))) (|:| |vec| (-1299 (-721)))) (-1299 $) $) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-1299 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-2116 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| (-721) (-376)) ELT)) (-3952 (($) NIL (|has| (-721) (-363)) CONST)) (-2645 (($ (-949)) NIL (|has| (-721) (-381)) ELT)) (-1503 (($) NIL T ELT)) (-4160 (((-721) $) 31 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-721) (-319)) ELT)) (-3648 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-721) (-363)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) ELT)) (-4248 (((-419 $) $) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| (-721) (-940))) (|has| (-721) (-376))) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-721) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ #3#) $ (-721)) NIL (|has| (-721) (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-4459 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4284 (($ $ (-1209) (-721)) NIL (|has| (-721) (-528 (-1209) (-721))) ELT) (($ $ (-663 (-1209)) (-663 (-721))) NIL (|has| (-721) (-528 (-1209) (-721))) ELT) (($ $ (-663 (-305 (-721)))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-305 (-721))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-721) (-721)) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-663 (-721)) (-663 (-721))) NIL (|has| (-721) (-321 (-721))) ELT)) (-1799 (((-793) $) NIL (|has| (-721) (-319)) ELT)) (-4316 (($ $ (-721)) NIL (|has| (-721) (-298 (-721) (-721))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-4273 (((-721)) NIL T ELT) (((-721) (-1299 $)) NIL T ELT)) (-1989 (((-3 (-793) "failed") $ $) NIL (|has| (-721) (-363)) ELT) (((-793) $) NIL (|has| (-721) (-363)) ELT)) (-4274 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-4043 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-2653 (((-711 (-721)) (-1299 $) (-1 (-721) (-721))) NIL (|has| (-721) (-376)) ELT)) (-3689 (((-1203 (-721))) NIL T ELT)) (-4001 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4152 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-1889 (($) NIL (|has| (-721) (-363)) ELT)) (-3999 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4151 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3997 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4150 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3728 (((-711 (-721)) (-1299 $)) NIL T ELT) (((-1299 (-721)) $) NIL T ELT) (((-711 (-721)) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 (-721)) $ (-1299 $)) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-721) (-633 (-549))) ELT) (((-171 (-229)) $) NIL (|has| (-721) (-1052)) ELT) (((-171 (-391)) $) NIL (|has| (-721) (-1052)) ELT) (((-916 (-391)) $) NIL (|has| (-721) (-633 (-916 (-391)))) ELT) (((-916 (-560)) $) NIL (|has| (-721) (-633 (-916 (-560)))) ELT) (($ (-1203 (-721))) NIL T ELT) (((-1203 (-721)) $) NIL T ELT) (($ (-1299 (-721))) NIL T ELT) (((-1299 (-721)) $) NIL T ELT)) (-3496 (($ $) NIL T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-940))) (|has| (-721) (-363))) ELT)) (-1502 (($ (-721) (-721)) 12 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-721)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-560))) 19 T ELT) (($ (-171 (-721))) 28 T ELT) (($ (-171 (-723))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| (-721) (-376)) (|has| (-721) (-1070 (-421 (-560))))) ELT)) (-3189 (($ $) NIL (|has| (-721) (-363)) ELT) (((-713 $) $) NIL (-4043 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-940))) (|has| (-721) (-147))) ELT)) (-2852 (((-1203 (-721)) $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT)) (-4004 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3992 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4002 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3990 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4006 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3994 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-2464 (((-721) $) NIL (|has| (-721) (-1235)) ELT)) (-4007 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3995 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4005 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3993 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-4003 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3991 (($ $) NIL (|has| (-721) (-1235)) ELT)) (-3889 (($ $) NIL (|has| (-721) (-1092)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-721) (-376)) (|has| (-721) (-928 (-1209)))) (|has| (-721) (-930 (-1209)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-4043 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL (|has| (-721) (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| (-721) (-1235)) ELT) (($ $ (-421 (-560))) NIL (-12 (|has| (-721) (-1034)) (|has| (-721) (-1235))) ELT) (($ $ (-560)) NIL (|has| (-721) (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-721) $) NIL T ELT) (($ $ (-721)) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-721) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-721) (-376)) ELT))) -(((-716) (-13 (-401) (-168 (-721)) (-10 -8 (-15 -4462 ($ (-171 (-391)))) (-15 -4462 ($ (-171 (-560)))) (-15 -4462 ($ (-171 (-721)))) (-15 -4462 ($ (-171 (-723)))) (-15 -4462 ((-171 (-391)) $))))) (T -716)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716))))) -(-13 (-401) (-168 (-721)) (-10 -8 (-15 -4462 ($ (-171 (-391)))) (-15 -4462 ($ (-171 (-560)))) (-15 -4462 ($ (-171 (-721)))) (-15 -4462 ($ (-171 (-723)))) (-15 -4462 ((-171 (-391)) $)))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2608 (($ $) 66 T ELT)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT) (($ |#1| $ (-793)) 67 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2607 (((-663 (-2 (|:| -2300 |#1|) (|:| -2171 (-793)))) $) 65 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-717 |#1|) (-142) (-1133)) (T -717)) -((-4123 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1133)))) (-2608 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1133)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1133)) (-5 *2 (-663 (-2 (|:| -2300 *3) (|:| -2171 (-793)))))))) -(-13 (-242 |t#1|) (-10 -8 (-15 -4123 ($ |t#1| $ (-793))) (-15 -2608 ($ $)) (-15 -2607 ((-663 (-2 (|:| -2300 |t#1|) (|:| -2171 (-793)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-2611 (((-663 |#1|) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) (-560)) 66 T ELT)) (-2609 ((|#1| |#1| (-560)) 63 T ELT)) (-3648 ((|#1| |#1| |#1| (-560)) 46 T ELT)) (-4248 (((-663 |#1|) |#1| (-560)) 49 T ELT)) (-2612 ((|#1| |#1| (-560) |#1| (-560)) 40 T ELT)) (-2610 (((-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) |#1| (-560)) 62 T ELT))) -(((-718 |#1|) (-10 -7 (-15 -3648 (|#1| |#1| |#1| (-560))) (-15 -2609 (|#1| |#1| (-560))) (-15 -4248 ((-663 |#1|) |#1| (-560))) (-15 -2610 ((-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) |#1| (-560))) (-15 -2611 ((-663 |#1|) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) (-560))) (-15 -2612 (|#1| |#1| (-560) |#1| (-560)))) (-1275 (-560))) (T -718)) -((-2612 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| -4248 *5) (|:| -4464 (-560))))) (-5 *4 (-560)) (-4 *5 (-1275 *4)) (-5 *2 (-663 *5)) (-5 *1 (-718 *5)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4248 *3) (|:| -4464 *4)))) (-5 *1 (-718 *3)) (-4 *3 (-1275 *4)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1275 *4)))) (-2609 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3)))) (-3648 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3))))) -(-10 -7 (-15 -3648 (|#1| |#1| |#1| (-560))) (-15 -2609 (|#1| |#1| (-560))) (-15 -4248 ((-663 |#1|) |#1| (-560))) (-15 -2610 ((-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) |#1| (-560))) (-15 -2611 ((-663 |#1|) (-663 (-2 (|:| -4248 |#1|) (|:| -4464 (-560)))) (-560))) (-15 -2612 (|#1| |#1| (-560) |#1| (-560)))) -((-2616 (((-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2613 (((-1165 (-229)) (-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270))) 53 T ELT) (((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270))) 55 T ELT) (((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1121 (-229)) (-1121 (-229)) (-663 (-270))) 57 T ELT)) (-2615 (((-1165 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-663 (-270))) NIL T ELT)) (-2614 (((-1165 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1121 (-229)) (-1121 (-229)) (-663 (-270))) 58 T ELT))) -(((-719) (-10 -7 (-15 -2613 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2613 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2613 ((-1165 (-229)) (-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2614 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2615 ((-1165 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2616 ((-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -719)) -((-2616 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-973 (-229)) (-229) (-229))) (-5 *1 (-719)))) (-2615 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719)))) (-2614 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined")) (-5 *5 (-1121 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719)))) (-2613 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-229))) (-5 *5 (-663 (-270))) (-5 *1 (-719)))) (-2613 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-229))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719)))) (-2613 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1#)) (-5 *5 (-1121 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719))))) -(-10 -7 (-15 -2613 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2613 ((-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2613 ((-1165 (-229)) (-1165 (-229)) (-1 (-973 (-229)) (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2614 ((-1165 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1121 (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2615 ((-1165 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1121 (-229)) (-663 (-270)))) (-15 -2616 ((-1 (-973 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) -((-4248 (((-419 (-1203 |#4|)) (-1203 |#4|)) 86 T ELT) (((-419 |#4|) |#4|) 269 T ELT))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4|)) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|)))) (-872) (-817) (-363) (-980 |#3| |#2| |#1|)) (T -720)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-363)) (-4 *7 (-980 *6 *5 *4)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4|)) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 97 T ELT)) (-3617 (((-560) $) 34 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3615 (($ $) NIL T ELT)) (-3661 (((-3 (-560) #1="failed") $) 85 T ELT) (((-3 (-421 (-560)) #1#) $) 28 T ELT) (((-3 (-391) #1#) $) 82 T ELT)) (-3660 (((-560) $) 87 T ELT) (((-421 (-560)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-3049 (($ $ $) 109 T ELT)) (-3973 (((-3 $ "failed") $) 100 T ELT)) (-3048 (($ $ $) 108 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2619 (((-949)) 89 T ELT) (((-949) (-949)) 88 T ELT)) (-3690 (((-114) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL T ELT)) (-4288 (((-560) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3620 (($ $) NIL T ELT)) (-3691 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL T ELT)) (-2617 (((-560) (-560)) 94 T ELT) (((-560)) 95 T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-2618 (((-560) (-560)) 92 T ELT) (((-560)) 93 T ELT)) (-3344 (($ $ $) NIL T ELT) (($) NIL (-12 (-3045 (|has| $ (-6 -4494))) (-3045 (|has| $ (-6 -4502)))) ELT)) (-2620 (((-560) $) 17 T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 104 T ELT)) (-1991 (((-949) (-560)) NIL (|has| $ (-6 -4502)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL T ELT)) (-3618 (($ $) NIL T ELT)) (-3758 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-949)) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) 105 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-2646 (((-560) $) 24 T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 107 T ELT)) (-3100 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4502)) ELT)) (-1990 (((-949) (-560)) NIL (|has| $ (-6 -4502)) ELT)) (-4488 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-916 (-391)) $) NIL T ELT)) (-4462 (((-888) $) 63 T ELT) (($ (-560)) 75 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-560)) 75 T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-723)) 66 T ELT)) (-3614 (((-793)) 119 T CONST)) (-3434 (($ (-560) (-560) (-949)) 54 T ELT)) (-3619 (($ $) NIL T ELT)) (-1992 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4502)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (((-949)) 91 T ELT) (((-949) (-949)) 90 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL T ELT)) (-3145 (($) 37 T CONST)) (-3151 (($) 18 T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 96 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 118 T ELT)) (-4465 (($ $ $) 77 T ELT)) (-4353 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-4355 (($ $ $) 114 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 103 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-721) (-13 (-418) (-401) (-376) (-1070 (-391)) (-1070 (-421 (-560))) (-149) (-10 -8 (-15 -2619 ((-949) (-949))) (-15 -2619 ((-949))) (-15 -3181 ((-949) (-949))) (-15 -2618 ((-560) (-560))) (-15 -2618 ((-560))) (-15 -2617 ((-560) (-560))) (-15 -2617 ((-560))) (-15 -4462 ((-391) $)) (-15 -4462 ($ (-723))) (-15 -2620 ((-560) $)) (-15 -2646 ((-560) $)) (-15 -3434 ($ (-560) (-560) (-949)))))) (T -721)) -((-2646 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2619 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2618 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2617 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) (-3434 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-949)) (-5 *1 (-721))))) -(-13 (-418) (-401) (-376) (-1070 (-391)) (-1070 (-421 (-560))) (-149) (-10 -8 (-15 -2619 ((-949) (-949))) (-15 -2619 ((-949))) (-15 -3181 ((-949) (-949))) (-15 -2618 ((-560) (-560))) (-15 -2618 ((-560))) (-15 -2617 ((-560) (-560))) (-15 -2617 ((-560))) (-15 -4462 ((-391) $)) (-15 -4462 ($ (-723))) (-15 -2620 ((-560) $)) (-15 -2646 ((-560) $)) (-15 -3434 ($ (-560) (-560) (-949))))) -((-2623 (((-711 |#1|) (-711 |#1|) |#1| |#1|) 85 T ELT)) (-3598 (((-711 |#1|) (-711 |#1|) |#1|) 66 T ELT)) (-2622 (((-711 |#1|) (-711 |#1|) |#1|) 86 T ELT)) (-2621 (((-711 |#1|) (-711 |#1|)) 67 T ELT)) (-2624 (((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|) 84 T ELT))) -(((-722 |#1|) (-10 -7 (-15 -2621 ((-711 |#1|) (-711 |#1|))) (-15 -3598 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2622 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2623 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2624 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|))) (-319)) (T -722)) -((-2624 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-722 *3)) (-4 *3 (-319)))) (-2623 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2622 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-3598 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) -(-10 -7 (-15 -2621 ((-711 |#1|) (-711 |#1|))) (-15 -3598 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2622 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2623 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2624 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2271 (($ $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2266 (($ $ $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL T ELT)) (-2844 (($ $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) "failed") $) 31 T ELT)) (-3660 (((-560) $) 29 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3510 (((-114) $) NIL T ELT)) (-3509 (((-421 (-560)) $) NIL T ELT)) (-3481 (($ $) NIL T ELT) (($) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2264 (($ $ $ $) NIL T ELT)) (-2272 (($ $ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-1495 (($ $ $) NIL T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3160 (((-114) $) NIL T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-3691 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2265 (($ $ $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-2625 (((-949) (-949)) 10 T ELT) (((-949)) 9 T ELT)) (-3344 (($ $ $) NIL T ELT)) (-2268 (($ $) NIL T ELT)) (-4349 (($ $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT)) (-2116 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2263 (($ $ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2270 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1493 (($ $) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-916 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-560) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 28 T ELT) (($ $) NIL T ELT) (($ (-560)) 28 T ELT) (((-326 $) (-326 (-560))) 18 T ELT)) (-3614 (((-793)) NIL T CONST)) (-2273 (((-114) $ $) NIL T ELT)) (-3590 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (($) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-2267 (($ $ $ $) NIL T ELT)) (-3889 (($ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-723) (-13 (-401) (-559) (-10 -8 (-15 -2625 ((-949) (-949))) (-15 -2625 ((-949))) (-15 -4462 ((-326 $) (-326 (-560))))))) (T -723)) -((-2625 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-723)))) (-2625 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-723)))) (-4462 (*1 *2 *3) (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723))))) -(-13 (-401) (-559) (-10 -8 (-15 -2625 ((-949) (-949))) (-15 -2625 ((-949))) (-15 -4462 ((-326 $) (-326 (-560)))))) -((-2631 (((-1 |#4| |#2| |#3|) |#1| (-1209) (-1209)) 19 T ELT)) (-2626 (((-1 |#4| |#2| |#3|) (-1209)) 12 T ELT))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2626 ((-1 |#4| |#2| |#3|) (-1209))) (-15 -2631 ((-1 |#4| |#2| |#3|) |#1| (-1209) (-1209)))) (-633 (-549)) (-1249) (-1249) (-1249)) (T -724)) -((-2631 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1209)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) (-4 *3 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *7 (-1249)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *4 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *7 (-1249))))) -(-10 -7 (-15 -2626 ((-1 |#4| |#2| |#3|) (-1209))) (-15 -2631 ((-1 |#4| |#2| |#3|) |#1| (-1209) (-1209)))) -((-2627 (((-1 (-229) (-229) (-229)) |#1| (-1209) (-1209)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1209)) 48 T ELT))) -(((-725 |#1|) (-10 -7 (-15 -2627 ((-1 (-229) (-229)) |#1| (-1209))) (-15 -2627 ((-1 (-229) (-229) (-229)) |#1| (-1209) (-1209)))) (-633 (-549))) (T -725)) -((-2627 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1209)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549)))))) -(-10 -7 (-15 -2627 ((-1 (-229) (-229)) |#1| (-1209))) (-15 -2627 ((-1 (-229) (-229) (-229)) |#1| (-1209) (-1209)))) -((-2628 (((-1209) |#1| (-1209) (-663 (-1209))) 10 T ELT) (((-1209) |#1| (-1209) (-1209) (-1209)) 13 T ELT) (((-1209) |#1| (-1209) (-1209)) 12 T ELT) (((-1209) |#1| (-1209)) 11 T ELT))) -(((-726 |#1|) (-10 -7 (-15 -2628 ((-1209) |#1| (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-1209) (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-663 (-1209))))) (-633 (-549))) (T -726)) -((-2628 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-663 (-1209))) (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-2628 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-2628 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))) -(-10 -7 (-15 -2628 ((-1209) |#1| (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-1209) (-1209))) (-15 -2628 ((-1209) |#1| (-1209) (-663 (-1209))))) -((-2629 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -2629 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1249) (-1249)) (T -727)) -((-2629 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-727 *3 *4)) (-4 *3 (-1249)) (-4 *4 (-1249))))) -(-10 -7 (-15 -2629 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2630 (((-1 |#3| |#2|) (-1209)) 11 T ELT)) (-2631 (((-1 |#3| |#2|) |#1| (-1209)) 21 T ELT))) -(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -2630 ((-1 |#3| |#2|) (-1209))) (-15 -2631 ((-1 |#3| |#2|) |#1| (-1209)))) (-633 (-549)) (-1249) (-1249)) (T -728)) -((-2631 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) (-4 *3 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) (-4 *4 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249))))) -(-10 -7 (-15 -2630 ((-1 |#3| |#2|) (-1209))) (-15 -2631 ((-1 |#3| |#2|) |#1| (-1209)))) -((-2634 (((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1299 (-663 (-1203 |#3|))) |#3|) 92 T ELT)) (-2633 (((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|) 110 T ELT)) (-2632 (((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1203 |#4|)) (-1299 (-663 (-1203 |#3|))) |#3|) 48 T ELT))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2632 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1203 |#4|)) (-1299 (-663 (-1203 |#3|))) |#3|)) (-15 -2633 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -2634 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1299 (-663 (-1203 |#3|))) |#3|))) (-817) (-872) (-319) (-980 |#3| |#1| |#2|)) (T -729)) -((-2634 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-663 (-1203 *13))) (-5 *3 (-1203 *13)) (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13)) (-5 *7 (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| *13))))) (-5 *8 (-663 (-793))) (-5 *9 (-1299 (-663 (-1203 *10)))) (-4 *12 (-872)) (-4 *10 (-319)) (-4 *13 (-980 *10 *11 *12)) (-4 *11 (-817)) (-5 *1 (-729 *11 *12 *10 *13)))) (-2633 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1203 *9))) (-5 *6 (-663 *9)) (-5 *7 (-663 *12)) (-5 *8 (-663 (-793))) (-4 *11 (-872)) (-4 *9 (-319)) (-4 *12 (-980 *9 *10 *11)) (-4 *10 (-817)) (-5 *2 (-663 (-1203 *12))) (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1203 *12)))) (-2632 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-663 (-1203 *11))) (-5 *3 (-1203 *11)) (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793))) (-5 *7 (-1299 (-663 (-1203 *8)))) (-4 *10 (-872)) (-4 *8 (-319)) (-4 *11 (-980 *8 *9 *10)) (-4 *9 (-817)) (-5 *1 (-729 *9 *10 *8 *11))))) -(-10 -7 (-15 -2632 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1203 |#4|)) (-1299 (-663 (-1203 |#3|))) |#3|)) (-15 -2633 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -2634 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-663 |#2|) (-663 (-1203 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1299 (-663 (-1203 |#3|))) |#3|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 53 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3380 (($ |#1| (-793)) 51 T ELT)) (-3307 (((-793) $) 55 T ELT)) (-3678 ((|#1| $) 54 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4464 (((-793) $) 56 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-175)) ELT)) (-4193 ((|#1| $ (-793)) 52 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) -(((-730 |#1|) (-142) (-1081)) (T -730)) -((-4464 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1081)))) (-4475 (*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1081)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1081)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1081))))) -(-13 (-1081) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4464 ((-793) $)) (-15 -3307 ((-793) $)) (-15 -3678 (|t#1| $)) (-15 -4475 ($ $)) (-15 -4193 (|t#1| $ (-793))) (-15 -3380 ($ |t#1| (-793))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-4474 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-731 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4474 (|#6| (-1 |#4| |#1|) |#3|))) (-571) (-1275 |#1|) (-1275 (-421 |#2|)) (-571) (-1275 |#4|) (-1275 (-421 |#5|))) (T -731)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571)) (-4 *6 (-1275 *5)) (-4 *2 (-1275 (-421 *8))) (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1275 (-421 *6))) (-4 *8 (-1275 *7))))) -(-10 -7 (-15 -4474 (|#6| (-1 |#4| |#1|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2635 (((-1191) (-888)) 38 T ELT)) (-4133 (((-1305) (-1191)) 31 T ELT)) (-2637 (((-1191) (-888)) 28 T ELT)) (-2636 (((-1191) (-888)) 29 T ELT)) (-4462 (((-888) $) NIL T ELT) (((-1191) (-888)) 27 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-732) (-13 (-1133) (-10 -7 (-15 -4462 ((-1191) (-888))) (-15 -2637 ((-1191) (-888))) (-15 -2636 ((-1191) (-888))) (-15 -2635 ((-1191) (-888))) (-15 -4133 ((-1305) (-1191)))))) (T -732)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-732))))) -(-13 (-1133) (-10 -7 (-15 -4462 ((-1191) (-888))) (-15 -2637 ((-1191) (-888))) (-15 -2636 ((-1191) (-888))) (-15 -2635 ((-1191) (-888))) (-15 -4133 ((-1305) (-1191))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL T ELT)) (-4358 (($ |#1| |#2|) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-3099 ((|#2| $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-2647 (((-3 $ "failed") $ $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-733 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3099 (|#2| $)) (-15 -4462 (|#1| $)) (-15 -4358 ($ |#1| |#2|)) (-15 -2647 ((-3 $ "failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -733)) -((-3099 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4462 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4358 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2647 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-376) (-10 -8 (-15 -3099 (|#2| $)) (-15 -4462 (|#1| $)) (-15 -4358 ($ |#1| |#2|)) (-15 -2647 ((-3 $ "failed") $ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 36 T ELT)) (-4283 (((-1299 |#1|) $ (-793)) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4281 (($ (-1203 |#1|)) NIL T ELT)) (-3572 (((-1203 $) $ (-1114)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1114))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4271 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3624 (((-793)) 54 (|has| |#1| (-381)) ELT)) (-4277 (($ $ (-793)) NIL T ELT)) (-4276 (($ $ (-793)) NIL T ELT)) (-2644 ((|#2| |#2|) 50 T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1114) #2#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-1114) $) NIL T ELT)) (-4272 (($ $ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) 40 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-4358 (($ |#2|) 48 T ELT)) (-3973 (((-3 $ "failed") $) 97 T ELT)) (-3481 (($) 58 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4275 (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4268 (((-2 (|:| -4470 |#1|) (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-2640 (((-988 $)) 88 T ELT)) (-1816 (($ $ |#1| (-793) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1114) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1114) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-1184)) ELT)) (-3573 (($ (-1203 |#1|) (-1114)) NIL T ELT) (($ (-1203 $) (-1114)) NIL T ELT)) (-4293 (($ $ (-793)) NIL T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) 85 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1114)) NIL T ELT) (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3099 ((|#2|) 51 T ELT)) (-3307 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-1817 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4282 (((-1203 |#1|) $) NIL T ELT)) (-3571 (((-3 (-1114) #4="failed") $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-3566 ((|#2| $) 47 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) 34 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) NIL T ELT)) (-3310 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1114)) (|:| -2646 (-793))) #4#) $) NIL T ELT)) (-4328 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (|has| |#1| (-1184)) CONST)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2638 (($ $) 87 (|has| |#1| (-363)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1114) |#1|) NIL T ELT) (($ $ (-663 (-1114)) (-663 |#1|)) NIL T ELT) (($ $ (-1114) $) NIL T ELT) (($ $ (-663 (-1114)) (-663 $)) NIL T ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-4280 (((-3 $ #5="failed") $ (-793)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-4464 (((-793) $) 38 T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1114) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-2639 (((-988 $)) 42 T ELT)) (-4270 (((-3 $ #5#) $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) #5#) (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-4462 (((-888) $) 68 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1114)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) 70 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 25 T CONST)) (-2643 (((-1299 |#1|) $) 83 T ELT)) (-2642 (($ (-1299 |#1|)) 57 T ELT)) (-3151 (($) 8 T CONST)) (-3156 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-2641 (((-1299 |#1|) $) NIL T ELT)) (-3540 (((-114) $ $) 76 T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 39 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 92 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-734 |#1| |#2|) (-13 (-1275 |#1|) (-635 |#2|) (-10 -8 (-15 -2644 (|#2| |#2|)) (-15 -3099 (|#2|)) (-15 -4358 ($ |#2|)) (-15 -3566 (|#2| $)) (-15 -2643 ((-1299 |#1|) $)) (-15 -2642 ($ (-1299 |#1|))) (-15 -2641 ((-1299 |#1|) $)) (-15 -2640 ((-988 $))) (-15 -2639 ((-988 $))) (IF (|has| |#1| (-363)) (-15 -2638 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1081) (-1275 |#1|)) (T -734)) -((-2644 (*1 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1275 *3)))) (-3099 (*1 *2) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1081)))) (-4358 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1275 *3)))) (-3566 (*1 *2 *1) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1081)))) (-2643 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-1299 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1275 *3)))) (-2642 (*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1081)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1275 *3)))) (-2641 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-1299 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1275 *3)))) (-2640 (*1 *2) (-12 (-4 *3 (-1081)) (-5 *2 (-988 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1275 *3)))) (-2639 (*1 *2) (-12 (-4 *3 (-1081)) (-5 *2 (-988 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1275 *3)))) (-2638 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1081)) (-5 *1 (-734 *2 *3)) (-4 *3 (-1275 *2))))) -(-13 (-1275 |#1|) (-635 |#2|) (-10 -8 (-15 -2644 (|#2| |#2|)) (-15 -3099 (|#2|)) (-15 -4358 ($ |#2|)) (-15 -3566 (|#2| $)) (-15 -2643 ((-1299 |#1|) $)) (-15 -2642 ($ (-1299 |#1|))) (-15 -2641 ((-1299 |#1|) $)) (-15 -2640 ((-988 $))) (-15 -2639 ((-988 $))) (IF (|has| |#1| (-363)) (-15 -2638 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 ((|#1| $) 13 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2646 ((|#2| $) 12 T ELT)) (-4036 (($ |#1| |#2|) 16 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) 15 T ELT) (((-2 (|:| -2645 |#1|) (|:| -2646 |#2|)) $) 14 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 11 T ELT))) -(((-735 |#1| |#2| |#3|) (-13 (-872) (-504 (-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) (-10 -8 (-15 -2646 (|#2| $)) (-15 -2645 (|#1| $)) (-15 -4036 ($ |#1| |#2|)))) (-872) (-1133) (-1 (-114) (-2 (|:| -2645 |#1|) (|:| -2646 |#2|)) (-2 (|:| -2645 |#1|) (|:| -2646 |#2|)))) (T -735)) -((-2646 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-872)) (-14 *4 (-1 (-114) (-2 (|:| -2645 *3) (|:| -2646 *2)) (-2 (|:| -2645 *3) (|:| -2646 *2)))))) (-2645 (*1 *2 *1) (-12 (-4 *2 (-872)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1133)) (-14 *4 (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *3)) (-2 (|:| -2645 *2) (|:| -2646 *3)))))) (-4036 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-872)) (-4 *3 (-1133)) (-14 *4 (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *3)) (-2 (|:| -2645 *2) (|:| -2646 *3))))))) -(-13 (-872) (-504 (-2 (|:| -2645 |#1|) (|:| -2646 |#2|))) (-10 -8 (-15 -2646 (|#2| $)) (-15 -2645 (|#1| $)) (-15 -4036 ($ |#1| |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 66 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #1="failed") $) 101 T ELT) (((-3 (-115) #1#) $) 107 T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3973 (((-3 $ "failed") $) 102 T ELT)) (-2998 ((|#2| (-115) |#2|) 93 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2997 (($ |#1| (-374 (-115))) 14 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2999 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-3000 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-4316 ((|#2| $ |#2|) 33 T ELT)) (-3001 ((|#1| |#1|) 117 (|has| |#1| (-175)) ELT)) (-4462 (((-888) $) 73 T ELT) (($ (-560)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3002 (($ $) 111 (|has| |#1| (-175)) ELT) (($ $ $) 115 (|has| |#1| (-175)) ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 9 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 83 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) 64 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-175)) ELT) (($ $ |#1|) 109 (|has| |#1| (-175)) ELT))) -(((-736 |#1| |#2|) (-13 (-1081) (-1070 |#1|) (-1070 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3002 ($ $)) (-15 -3002 ($ $ $)) (-15 -3001 (|#1| |#1|))) |%noBranch|) (-15 -3000 ($ $ (-1 |#2| |#2|))) (-15 -2999 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2998 (|#2| (-115) |#2|)) (-15 -2997 ($ |#1| (-374 (-115)))))) (-1081) (-670 |#1|)) (T -736)) -((-3002 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-3002 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-3001 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-3000 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1081)) (-5 *1 (-736 *3 *4)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1081)) (-5 *1 (-736 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-736 *4 *5)) (-4 *5 (-670 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *3 (-1081)) (-5 *1 (-736 *3 *4)) (-4 *4 (-670 *3)))) (-2998 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1081)) (-5 *1 (-736 *4 *2)) (-4 *2 (-670 *4)))) (-2997 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1081)) (-5 *1 (-736 *2 *4)) (-4 *4 (-670 *2))))) -(-13 (-1081) (-1070 |#1|) (-1070 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3002 ($ $)) (-15 -3002 ($ $ $)) (-15 -3001 (|#1| |#1|))) |%noBranch|) (-15 -3000 ($ $ (-1 |#2| |#2|))) (-15 -2999 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2998 (|#2| (-115) |#2|)) (-15 -2997 ($ |#1| (-374 (-115)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 33 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4358 (($ |#1| |#2|) 25 T ELT)) (-3973 (((-3 $ "failed") $) 51 T ELT)) (-2655 (((-114) $) 35 T ELT)) (-3099 ((|#2| $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 52 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2647 (((-3 $ "failed") $ $) 50 T ELT)) (-4462 (((-888) $) 24 T ELT) (($ (-560)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3614 (((-793)) 28 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 16 T CONST)) (-3151 (($) 30 T CONST)) (-3540 (((-114) $ $) 41 T ELT)) (-4353 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-4355 (($ $ $) 43 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-737 |#1| |#2| |#3| |#4| |#5|) (-13 (-1081) (-10 -8 (-15 -3099 (|#2| $)) (-15 -4462 (|#1| $)) (-15 -4358 ($ |#1| |#2|)) (-15 -2647 ((-3 $ "failed") $ $)) (-15 -3973 ((-3 $ "failed") $)) (-15 -2888 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -737)) -((-3973 (*1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3099 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4462 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4358 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2647 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2888 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1081) (-10 -8 (-15 -3099 (|#2| $)) (-15 -4462 (|#1| $)) (-15 -4358 ($ |#1| |#2|)) (-15 -2647 ((-3 $ "failed") $ $)) (-15 -3973 ((-3 $ "failed") $)) (-15 -2888 ($ $)))) -((* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-738 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) (-739 |#2|) (-175)) (T -738)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-739 |#1|) (-142) (-175)) (T -739)) -NIL -(-13 (-111 |t#1| |t#1|) (-662 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-2844 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4363 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2648 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 16 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4284 ((|#1| $ |#1|) 24 T ELT) (((-856 |#1|) $ (-856 |#1|)) 32 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-4462 (((-888) $) 39 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 9 T CONST)) (-3540 (((-114) $ $) 48 T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-740 |#1|) (-13 (-487) (-10 -8 (-15 -2648 ($ |#1| |#1| |#1| |#1|)) (-15 -2844 ($ |#1|)) (-15 -4363 ($ |#1|)) (-15 -3973 ($)) (-15 -2844 ($ $ |#1|)) (-15 -4363 ($ $ |#1|)) (-15 -3973 ($ $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4284 ((-856 |#1|) $ (-856 |#1|))))) (-376)) (T -740)) -((-2648 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2844 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4363 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3973 (*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2844 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3973 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4284 (*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4284 (*1 *2 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3))))) -(-13 (-487) (-10 -8 (-15 -2648 ($ |#1| |#1| |#1| |#1|)) (-15 -2844 ($ |#1|)) (-15 -4363 ($ |#1|)) (-15 -3973 ($)) (-15 -2844 ($ $ |#1|)) (-15 -4363 ($ $ |#1|)) (-15 -3973 ($ $)) (-15 -4284 (|#1| $ |#1|)) (-15 -4284 ((-856 |#1|) $ (-856 |#1|))))) -((-2652 (($ $ (-949)) 19 T ELT)) (-2651 (($ $ (-949)) 20 T ELT)) (** (($ $ (-949)) 10 T ELT))) -(((-741 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -2651 (|#1| |#1| (-949))) (-15 -2652 (|#1| |#1| (-949)))) (-742)) (T -741)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -2651 (|#1| |#1| (-949))) (-15 -2652 (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-2652 (($ $ (-949)) 19 T ELT)) (-2651 (($ $ (-949)) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (** (($ $ (-949)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) NIL T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-563 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) (-1131) (-1131) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507)))) (T -563)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) +((-2270 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))) 50 T ELT))) +(((-564 |#1| |#2|) (-10 -7 (-15 -2270 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))))) (-569) (-13 (-27) (-433 |#1|))) (T -564)) +((-2270 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-569)) (-5 *2 (-595 *3)) (-5 *1 (-564 *6 *3))))) +(-10 -7 (-15 -2270 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))))) +((-2272 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2273 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2271 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2271 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2272 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2273 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1068 (-558))) (-13 (-27) (-433 |#1|)) (-1273 |#2|) (-1273 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -565)) +((-2273 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *7 (-1273 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1068 (-558)))) (-4 *8 (-1273 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1068 (-558)))) (-4 *8 (-1273 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) +(-10 -7 (-15 -2271 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2272 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2273 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2276 (((-114) (-558) (-558)) 12 T ELT)) (-2274 (((-558) (-558)) 7 T ELT)) (-2275 (((-558) (-558) (-558)) 10 T ELT))) +(((-566) (-10 -7 (-15 -2274 ((-558) (-558))) (-15 -2275 ((-558) (-558) (-558))) (-15 -2276 ((-114) (-558) (-558))))) (T -566)) +((-2276 (*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-566)))) (-2275 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) +(-10 -7 (-15 -2274 ((-558) (-558))) (-15 -2275 ((-558) (-558) (-558))) (-15 -2276 ((-114) (-558) (-558)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3085 ((|#1| $) 74 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-3994 (($ $) 104 T ELT)) (-4151 (($ $) 87 T ELT)) (-2883 ((|#1| $) 75 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3520 (($ $) 86 T ELT)) (-3992 (($ $) 103 T ELT)) (-4150 (($ $) 88 T ELT)) (-3996 (($ $) 102 T ELT)) (-4149 (($ $) 89 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) "failed") $) 82 T ELT)) (-3656 (((-558) $) 83 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2279 (($ |#1| |#1|) 79 T ELT)) (-3686 (((-114) $) 73 T ELT)) (-4139 (($) 114 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 85 T ELT)) (-3687 (((-114) $) 72 T ELT)) (-3012 (($ $ $) 115 T ELT)) (-3340 (($ $ $) 116 T ELT)) (-4454 (($ $) 111 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2280 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-419 (-558))) 77 T ELT)) (-2278 ((|#1| $) 76 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4455 (($ $) 112 T ELT)) (-3997 (($ $) 101 T ELT)) (-4148 (($ $) 90 T ELT)) (-3995 (($ $) 100 T ELT)) (-4147 (($ $) 91 T ELT)) (-3993 (($ $) 99 T ELT)) (-4146 (($ $) 92 T ELT)) (-2277 (((-114) $ |#1|) 71 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 81 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 110 T ELT)) (-3988 (($ $) 98 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3998 (($ $) 109 T ELT)) (-3986 (($ $) 97 T ELT)) (-4002 (($ $) 108 T ELT)) (-3990 (($ $) 96 T ELT)) (-4003 (($ $) 107 T ELT)) (-3991 (($ $) 95 T ELT)) (-4001 (($ $) 106 T ELT)) (-3989 (($ $) 94 T ELT)) (-3999 (($ $) 105 T ELT)) (-3987 (($ $) 93 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 117 T ELT)) (-3048 (((-114) $ $) 119 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 118 T ELT)) (-3168 (((-114) $ $) 120 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-419 (-558))) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-567 |#1|) (-142) (-13 (-416) (-1233))) (T -567)) +((-2280 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-2279 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-2280 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114)))) (-2277 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114))))) +(-13 (-464) (-870) (-1233) (-1032) (-1068 (-558)) (-10 -8 (-6 -4282) (-15 -2280 ($ |t#1| |t#1|)) (-15 -2279 ($ |t#1| |t#1|)) (-15 -2280 ($ |t#1|)) (-15 -2280 ($ (-419 (-558)))) (-15 -2278 (|t#1| $)) (-15 -2883 (|t#1| $)) (-15 -3085 (|t#1| $)) (-15 -3686 ((-114) $)) (-15 -3687 ((-114) $)) (-15 -2277 ((-114) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-464) . T) ((-505) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-870) . T) ((-873) . T) ((-1032) . T) ((-1068 (-558)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) . T) ((-1236) . T) ((-1247) . T)) +((-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 9 T ELT)) (-2283 (($ $) 11 T ELT)) (-2281 (((-114) $) 20 T ELT)) (-3969 (((-3 $ "failed") $) 16 T ELT)) (-2282 (((-114) $ $) 22 T ELT))) +(((-568 |#1|) (-10 -8 (-15 -2281 ((-114) |#1|)) (-15 -2282 ((-114) |#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) +NIL +(-10 -8 (-15 -2281 ((-114) |#1|)) (-15 -2282 ((-114) |#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2284 ((-2 (|:| -1990 |#1|) (|:| -4494 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-569) (-142)) (T -569)) +((-3968 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1990 *1) (|:| -4494 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-2283 (*1 *1 *1) (-4 *1 (-569))) (-2282 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) +(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3968 ((-3 $ "failed") $ $)) (-15 -2284 ((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $)) (-15 -2283 ($ $)) (-15 -2282 ((-114) $ $)) (-15 -2281 ((-114) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-2286 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-661 |#2|)) 38 T ELT)) (-2288 (((-595 |#2|) |#2| (-1207)) 63 T ELT)) (-2287 (((-3 |#2| "failed") |#2| (-1207)) 156 T ELT)) (-2289 (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1207) (-628 |#2|) (-661 (-628 |#2|))) 159 T ELT)) (-2285 (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1207) |#2|) 41 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2285 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1207) |#2|)) (-15 -2286 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-661 |#2|))) (-15 -2287 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2288 ((-595 |#2|) |#2| (-1207))) (-15 -2289 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1207) (-628 |#2|) (-661 (-628 |#2|))))) (-13 (-464) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -570)) +((-2289 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-661 (-628 *3))) (-5 *5 (-628 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *7))) (-4 *7 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-2287 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-2286 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-2285 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) +(-10 -7 (-15 -2285 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1207) |#2|)) (-15 -2286 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-661 |#2|))) (-15 -2287 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2288 ((-595 |#2|) |#2| (-1207))) (-15 -2289 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1207) (-628 |#2|) (-661 (-628 |#2|))))) +((-4483 (((-417 |#1|) |#1|) 17 T ELT)) (-4244 (((-417 |#1|) |#1|) 32 T ELT)) (-2291 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2290 (((-417 |#1|) |#1|) 59 T ELT))) +(((-571 |#1|) (-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -2290 ((-417 |#1|) |#1|)) (-15 -2291 ((-3 |#1| "failed") |#1|))) (-557)) (T -571)) +((-2291 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-557)))) (-2290 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4483 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -2290 ((-417 |#1|) |#1|)) (-15 -2291 ((-3 |#1| "failed") |#1|))) +((-2292 (($) 9 T ELT)) (-2295 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2894 (((-661 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4119 (($ (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28 T ELT)) (-2294 (($ (-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26 T ELT)) (-2296 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-2430 (((-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36 T ELT)) (-2293 (((-1303)) 11 T ELT))) +(((-572) (-10 -8 (-15 -2292 ($)) (-15 -2293 ((-1303))) (-15 -2894 ((-661 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2294 ($ (-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4119 ($ (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2295 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2430 ((-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2296 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -572)) +((-2296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-572)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2295 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-572)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-572)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-572)))) (-2293 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-572)))) (-2292 (*1 *1) (-5 *1 (-572)))) +(-10 -8 (-15 -2292 ($)) (-15 -2293 ((-1303))) (-15 -2894 ((-661 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2294 ($ (-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1648 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4119 ($ (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2295 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2430 ((-661 (-2 (|:| -4372 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2296 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| #6#))) (|:| -1648 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-3568 (((-1201 (-419 (-1201 |#2|))) |#2| (-628 |#2|) (-628 |#2|) (-1201 |#2|)) 35 T ELT)) (-2299 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) |#2| (-1201 |#2|)) 115 T ELT)) (-2297 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|))) 85 T ELT) (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|)) 55 T ELT)) (-2298 (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-628 |#2|) (-628 |#2|) |#2| (-628 |#2|) |#2| (-419 (-1201 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-628 |#2|) (-628 |#2|) |#2| |#2| (-1201 |#2|)) 114 T ELT)) (-2300 (((-3 |#2| #3="failed") |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) (-628 |#2|) |#2| (-419 (-1201 |#2|))) 110 T ELT) (((-3 |#2| #3#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) |#2| (-1201 |#2|)) 116 T ELT)) (-2301 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|))) 133 (|has| |#3| (-678 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|)) 132 (|has| |#3| (-678 |#2|)) ELT)) (-3569 ((|#2| (-1201 (-419 (-1201 |#2|))) (-628 |#2|) |#2|) 53 T ELT)) (-3562 (((-1201 (-419 (-1201 |#2|))) (-1201 |#2|) (-628 |#2|)) 34 T ELT))) +(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -2297 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|))) (-15 -2297 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2298 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-628 |#2|) (-628 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -2298 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2| (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) |#2| (-1201 |#2|))) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2300 ((-3 |#2| #3="failed") |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -2300 ((-3 |#2| #3#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -3568 ((-1201 (-419 (-1201 |#2|))) |#2| (-628 |#2|) (-628 |#2|) (-1201 |#2|))) (-15 -3569 (|#2| (-1201 (-419 (-1201 |#2|))) (-628 |#2|) |#2|)) (-15 -3562 ((-1201 (-419 (-1201 |#2|))) (-1201 |#2|) (-628 |#2|))) (IF (|has| |#3| (-678 |#2|)) (PROGN (-15 -2301 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|))) (-15 -2301 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|))))) |%noBranch|)) (-13 (-464) (-1068 (-558)) (-149) (-658 (-558))) (-13 (-433 |#1|) (-27) (-1233)) (-1131)) (T -573)) +((-2301 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-419 (-1201 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1233))) (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-2301 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-1201 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1233))) (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2232 (-661 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-628 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1233))) (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-1201 (-419 (-1201 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1201 *6)) (-4 *7 (-1131)))) (-3569 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1201 (-419 (-1201 *2)))) (-5 *4 (-628 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1233))) (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1131)))) (-3568 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-1201 (-419 (-1201 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1201 *3)) (-4 *7 (-1131)))) (-2300 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1207))) (-5 *5 (-419 (-1201 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1131)))) (-2300 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1207))) (-5 *5 (-1201 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1131)))) (-2299 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-419 (-1201 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1233))) (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1131)))) (-2299 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-1201 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1233))) (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1131)))) (-2298 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1201 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131)))) (-2298 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131)))) (-2297 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1201 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131)))) (-2297 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131))))) +(-10 -7 (-15 -2297 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|))) (-15 -2297 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2298 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-628 |#2|) (-628 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -2298 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2| (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) |#2| (-1201 |#2|))) (-15 -2299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -2300 ((-3 |#2| #3="failed") |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -2300 ((-3 |#2| #3#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1207)) (-628 |#2|) |#2| (-419 (-1201 |#2|)))) (-15 -3568 ((-1201 (-419 (-1201 |#2|))) |#2| (-628 |#2|) (-628 |#2|) (-1201 |#2|))) (-15 -3569 (|#2| (-1201 (-419 (-1201 |#2|))) (-628 |#2|) |#2|)) (-15 -3562 ((-1201 (-419 (-1201 |#2|))) (-1201 |#2|) (-628 |#2|))) (IF (|has| |#3| (-678 |#2|)) (PROGN (-15 -2301 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) |#2| (-1201 |#2|))) (-15 -2301 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1201 |#2|))))) |%noBranch|)) +((-2311 (((-558) (-558) (-791)) 87 T ELT)) (-2310 (((-558) (-558)) 85 T ELT)) (-2309 (((-558) (-558)) 83 T ELT)) (-2308 (((-558) (-558)) 89 T ELT)) (-3288 (((-558) (-558) (-558)) 67 T ELT)) (-2307 (((-558) (-558) (-558)) 64 T ELT)) (-2306 (((-419 (-558)) (-558)) 29 T ELT)) (-2305 (((-558) (-558)) 34 T ELT)) (-2304 (((-558) (-558)) 76 T ELT)) (-3285 (((-558) (-558)) 47 T ELT)) (-2303 (((-661 (-558)) (-558)) 82 T ELT)) (-2302 (((-558) (-558) (-558) (-558) (-558)) 60 T ELT)) (-3281 (((-419 (-558)) (-558)) 56 T ELT))) +(((-574) (-10 -7 (-15 -3281 ((-419 (-558)) (-558))) (-15 -2302 ((-558) (-558) (-558) (-558) (-558))) (-15 -2303 ((-661 (-558)) (-558))) (-15 -3285 ((-558) (-558))) (-15 -2304 ((-558) (-558))) (-15 -2305 ((-558) (-558))) (-15 -2306 ((-419 (-558)) (-558))) (-15 -2307 ((-558) (-558) (-558))) (-15 -3288 ((-558) (-558) (-558))) (-15 -2308 ((-558) (-558))) (-15 -2309 ((-558) (-558))) (-15 -2310 ((-558) (-558))) (-15 -2311 ((-558) (-558) (-791))))) (T -574)) +((-2311 (*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-791)) (-5 *1 (-574)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2307 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2306 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2303 (*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2302 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3281 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) +(-10 -7 (-15 -3281 ((-419 (-558)) (-558))) (-15 -2302 ((-558) (-558) (-558) (-558) (-558))) (-15 -2303 ((-661 (-558)) (-558))) (-15 -3285 ((-558) (-558))) (-15 -2304 ((-558) (-558))) (-15 -2305 ((-558) (-558))) (-15 -2306 ((-419 (-558)) (-558))) (-15 -2307 ((-558) (-558) (-558))) (-15 -3288 ((-558) (-558) (-558))) (-15 -2308 ((-558) (-558))) (-15 -2309 ((-558) (-558))) (-15 -2310 ((-558) (-558))) (-15 -2311 ((-558) (-558) (-791)))) +((-2312 (((-2 (|:| |answer| |#4|) (|:| -2360 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2312 ((-2 (|:| |answer| |#4|) (|:| -2360 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -575)) +((-2312 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-1273 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2360 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) +(-10 -7 (-15 -2312 ((-2 (|:| |answer| |#4|) (|:| -2360 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2312 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2360 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-576 |#1| |#2|) (-10 -7 (-15 -2312 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2360 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -576)) +((-2312 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2360 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2312 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2360 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) +((-3151 (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789) (-1093)) 116 T ELT) (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789)) 118 T ELT)) (-4324 (((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1207)) 195 T ELT) (((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1189)) 194 T ELT) (((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391) (-1093)) 199 T ELT) (((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391)) 200 T ELT) (((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391)) 201 T ELT) (((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391))))) 202 T ELT) (((-1065) (-326 (-391)) (-1119 (-864 (-391)))) 190 T ELT) (((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391)) 189 T ELT) (((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391)) 185 T ELT) (((-1065) (-789)) 177 T ELT) (((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391) (-1093)) 184 T ELT))) +(((-577) (-10 -7 (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391) (-1093))) (-15 -4324 ((-1065) (-789))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789) (-1093))) (-15 -4324 ((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1189))) (-15 -4324 ((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1207))))) (T -577)) +((-4324 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1207)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1189)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) (-5 *1 (-577)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1065)) (-5 *1 (-577)))) (-4324 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-577))))) +(-10 -7 (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391) (-1093))) (-15 -4324 ((-1065) (-789))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-1119 (-864 (-391))))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391))) (-15 -4324 ((-1065) (-326 (-391)) (-661 (-1119 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065))) (-789) (-1093))) (-15 -4324 ((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1189))) (-15 -4324 ((-3 (-1065) "failed") (-326 (-391)) (-1122 (-864 (-391))) (-1207)))) +((-2315 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|)) 195 T ELT)) (-2313 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|)) 97 T ELT)) (-2314 (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-628 |#2|) (-628 |#2|) |#2|) 191 T ELT)) (-2316 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1207))) 200 T ELT)) (-2317 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-1207)) 209 (|has| |#3| (-678 |#2|)) ELT))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|))) (-15 -2314 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-628 |#2|) (-628 |#2|) |#2|)) (-15 -2315 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|))) (-15 -2316 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1207)))) (IF (|has| |#3| (-678 |#2|)) (-15 -2317 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-1207))) |%noBranch|)) (-13 (-464) (-1068 (-558)) (-149) (-658 (-558))) (-13 (-433 |#1|) (-27) (-1233)) (-1131)) (T -578)) +((-2317 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-1207)) (-4 *4 (-13 (-433 *7) (-27) (-1233))) (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-2316 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1207))) (-4 *2 (-13 (-433 *5) (-27) (-1233))) (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1131)))) (-2315 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1233))) (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1131)))) (-2314 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1233))) (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1131)))) (-2313 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1233))) (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1131))))) +(-10 -7 (-15 -2313 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|))) (-15 -2314 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-628 |#2|) (-628 |#2|) |#2|)) (-15 -2315 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|))) (-15 -2316 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1207)))) (IF (|has| |#3| (-678 |#2|)) (-15 -2317 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2232 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-1207))) |%noBranch|)) +((-2318 (((-2 (|:| -2567 |#2|) (|:| |nconst| |#2|)) |#2| (-1207)) 64 T ELT)) (-2320 (((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|)) 175 (-12 (|has| |#2| (-1169)) (|has| |#1| (-631 (-914 (-558)))) (|has| |#1| (-910 (-558)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 155 (-12 (|has| |#2| (-647)) (|has| |#1| (-631 (-914 (-558)))) (|has| |#1| (-910 (-558)))) ELT)) (-2319 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 157 (-12 (|has| |#2| (-647)) (|has| |#1| (-631 (-914 (-558)))) (|has| |#1| (-910 (-558)))) ELT))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2318 ((-2 (|:| -2567 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-631 (-914 (-558)))) (IF (|has| |#1| (-910 (-558))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -2319 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -2320 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -2320 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1068 (-558)) (-464) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -579)) +((-2320 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) (-4 *2 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-631 (-914 (-558)))) (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) (-5 *1 (-579 *5 *2)))) (-2320 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-631 (-914 (-558)))) (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-631 (-914 (-558)))) (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-2318 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| -2567 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) +(-10 -7 (-15 -2318 ((-2 (|:| -2567 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-631 (-914 (-558)))) (IF (|has| |#1| (-910 (-558))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -2319 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -2320 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -2320 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2323 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-661 (-419 |#2|))) 41 T ELT)) (-4324 (((-595 (-419 |#2|)) (-419 |#2|)) 28 T ELT)) (-2321 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17 T ELT)) (-2322 (((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -4324 ((-595 (-419 |#2|)) (-419 |#2|))) (-15 -2321 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2322 ((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2323 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-661 (-419 |#2|))))) (-13 (-376) (-149) (-1068 (-558))) (-1273 |#1|)) (T -580)) +((-2323 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-661 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2322 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2361 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2321 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149) (-1068 (-558)))) (-5 *1 (-580 *3 *4)))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) (-5 *2 (-595 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -4324 ((-595 (-419 |#2|)) (-419 |#2|))) (-15 -2321 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2322 ((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2323 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-661 (-419 |#2|))))) +((-2324 (((-3 (-558) "failed") |#1|) 14 T ELT)) (-3759 (((-114) |#1|) 13 T ELT)) (-3755 (((-558) |#1|) 9 T ELT))) +(((-581 |#1|) (-10 -7 (-15 -3755 ((-558) |#1|)) (-15 -3759 ((-114) |#1|)) (-15 -2324 ((-3 (-558) "failed") |#1|))) (-1068 (-558))) (T -581)) +((-2324 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1068 *2)))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1068 (-558))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1068 *2))))) +(-10 -7 (-15 -3755 ((-558) |#1|)) (-15 -3759 ((-114) |#1|)) (-15 -2324 ((-3 (-558) "failed") |#1|))) +((-2327 (((-3 (-2 (|:| |mainpart| (-419 (-974 |#1|))) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 (-974 |#1|))) (|:| |logand| (-419 (-974 |#1|))))))) "failed") (-419 (-974 |#1|)) (-1207) (-661 (-419 (-974 |#1|)))) 48 T ELT)) (-2325 (((-595 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-1207)) 28 T ELT)) (-2326 (((-3 (-419 (-974 |#1|)) "failed") (-419 (-974 |#1|)) (-1207)) 23 T ELT)) (-2328 (((-3 (-2 (|:| -2361 (-419 (-974 |#1|))) (|:| |coeff| (-419 (-974 |#1|)))) "failed") (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|))) 35 T ELT))) +(((-582 |#1|) (-10 -7 (-15 -2325 ((-595 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -2326 ((-3 (-419 (-974 |#1|)) "failed") (-419 (-974 |#1|)) (-1207))) (-15 -2327 ((-3 (-2 (|:| |mainpart| (-419 (-974 |#1|))) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 (-974 |#1|))) (|:| |logand| (-419 (-974 |#1|))))))) "failed") (-419 (-974 |#1|)) (-1207) (-661 (-419 (-974 |#1|))))) (-15 -2328 ((-3 (-2 (|:| -2361 (-419 (-974 |#1|))) (|:| |coeff| (-419 (-974 |#1|)))) "failed") (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|))))) (-13 (-569) (-1068 (-558)) (-149))) (T -582)) +((-2328 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-149))) (-5 *2 (-2 (|:| -2361 (-419 (-974 *5))) (|:| |coeff| (-419 (-974 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-974 *5))))) (-2327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 (-419 (-974 *6)))) (-5 *3 (-419 (-974 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2326 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-974 *4))) (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-149))) (-5 *1 (-582 *4)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-149))) (-5 *2 (-595 (-419 (-974 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-974 *5)))))) +(-10 -7 (-15 -2325 ((-595 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -2326 ((-3 (-419 (-974 |#1|)) "failed") (-419 (-974 |#1|)) (-1207))) (-15 -2327 ((-3 (-2 (|:| |mainpart| (-419 (-974 |#1|))) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 (-974 |#1|))) (|:| |logand| (-419 (-974 |#1|))))))) "failed") (-419 (-974 |#1|)) (-1207) (-661 (-419 (-974 |#1|))))) (-15 -2328 ((-3 (-2 (|:| -2361 (-419 (-974 |#1|))) (|:| |coeff| (-419 (-974 |#1|)))) "failed") (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|))))) +((-3049 (((-114) $ $) 77 T ELT)) (-3688 (((-114) $) 49 T ELT)) (-3085 ((|#1| $) 39 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) 81 T ELT)) (-3994 (($ $) 142 T ELT)) (-4151 (($ $) 120 T ELT)) (-2883 ((|#1| $) 37 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $) NIL T ELT)) (-3992 (($ $) 144 T ELT)) (-4150 (($ $) 116 T ELT)) (-3996 (($ $) 146 T ELT)) (-4149 (($ $) 124 T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) "failed") $) 95 T ELT)) (-3656 (((-558) $) 97 T ELT)) (-3969 (((-3 $ "failed") $) 80 T ELT)) (-2279 (($ |#1| |#1|) 35 T ELT)) (-3686 (((-114) $) 44 T ELT)) (-4139 (($) 106 T ELT)) (-2651 (((-114) $) 56 T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3687 (((-114) $) 46 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4454 (($ $) 108 T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2280 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-419 (-558))) 94 T ELT)) (-2278 ((|#1| $) 36 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) 83 T ELT) (($ (-661 $)) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) 82 T ELT)) (-4455 (($ $) 110 T ELT)) (-3997 (($ $) 150 T ELT)) (-4148 (($ $) 122 T ELT)) (-3995 (($ $) 152 T ELT)) (-4147 (($ $) 126 T ELT)) (-3993 (($ $) 148 T ELT)) (-4146 (($ $) 118 T ELT)) (-2277 (((-114) $ |#1|) 42 T ELT)) (-4458 (((-886) $) 102 T ELT) (($ (-558)) 85 T ELT) (($ $) NIL T ELT) (($ (-558)) 85 T ELT)) (-3610 (((-791)) 104 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 164 T ELT)) (-3988 (($ $) 132 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3998 (($ $) 162 T ELT)) (-3986 (($ $) 128 T ELT)) (-4002 (($ $) 160 T ELT)) (-3990 (($ $) 140 T ELT)) (-4003 (($ $) 158 T ELT)) (-3991 (($ $) 138 T ELT)) (-4001 (($ $) 156 T ELT)) (-3989 (($ $) 134 T ELT)) (-3999 (($ $) 154 T ELT)) (-3987 (($ $) 130 T ELT)) (-3141 (($) 30 T CONST)) (-3147 (($) 10 T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 50 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 48 T ELT)) (-4349 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-4351 (($ $ $) 53 T ELT)) (** (($ $ (-947)) 73 T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-419 (-558))) 166 T ELT)) (* (($ (-947) $) 67 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-583 |#1|) (-567 |#1|) (-13 (-416) (-1233))) (T -583)) +NIL +(-567 |#1|) +((-3187 (((-3 (-661 (-1201 (-558))) "failed") (-661 (-1201 (-558))) (-1201 (-558))) 27 T ELT))) +(((-584) (-10 -7 (-15 -3187 ((-3 (-661 (-1201 (-558))) "failed") (-661 (-1201 (-558))) (-1201 (-558)))))) (T -584)) +((-3187 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 (-558)))) (-5 *3 (-1201 (-558))) (-5 *1 (-584))))) +(-10 -7 (-15 -3187 ((-3 (-661 (-1201 (-558))) "failed") (-661 (-1201 (-558))) (-1201 (-558))))) +((-2329 (((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-1207)) 19 T ELT)) (-2332 (((-661 (-628 |#2|)) (-661 |#2|) (-1207)) 23 T ELT)) (-3734 (((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-661 (-628 |#2|))) 11 T ELT)) (-2333 ((|#2| |#2| (-1207)) 59 (|has| |#1| (-569)) ELT)) (-2334 ((|#2| |#2| (-1207)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-464))) ELT)) (-2331 (((-628 |#2|) (-628 |#2|) (-661 (-628 |#2|)) (-1207)) 25 T ELT)) (-2330 (((-628 |#2|) (-661 (-628 |#2|))) 24 T ELT)) (-2335 (((-595 |#2|) |#2| (-1207) (-1 (-595 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-647)) (|has| |#2| (-1068 (-1207))) (|has| |#1| (-631 (-914 (-558)))) (|has| |#1| (-464)) (|has| |#1| (-910 (-558)))) ELT))) +(((-585 |#1| |#2|) (-10 -7 (-15 -2329 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-1207))) (-15 -2330 ((-628 |#2|) (-661 (-628 |#2|)))) (-15 -2331 ((-628 |#2|) (-628 |#2|) (-661 (-628 |#2|)) (-1207))) (-15 -3734 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-661 (-628 |#2|)))) (-15 -2332 ((-661 (-628 |#2|)) (-661 |#2|) (-1207))) (IF (|has| |#1| (-569)) (-15 -2333 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-296)) (PROGN (-15 -2334 (|#2| |#2| (-1207))) (IF (|has| |#1| (-631 (-914 (-558)))) (IF (|has| |#1| (-910 (-558))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1207))) (-15 -2335 ((-595 |#2|) |#2| (-1207) (-1 (-595 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1131) (-433 |#1|)) (T -585)) +((-2335 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-595 *3) *3 (-1207))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1207))) (-4 *3 (-296)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1207)) (-4 *7 (-631 (-914 (-558)))) (-4 *7 (-464)) (-4 *7 (-910 (-558))) (-4 *7 (-1131)) (-5 *2 (-595 *3)) (-5 *1 (-585 *7 *3)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-464)) (-4 *4 (-1131)) (-5 *1 (-585 *4 *2)) (-4 *2 (-296)) (-4 *2 (-433 *4)))) (-2333 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-4 *4 (-1131)) (-5 *1 (-585 *4 *2)) (-4 *2 (-433 *4)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-1207)) (-4 *6 (-433 *5)) (-4 *5 (-1131)) (-5 *2 (-661 (-628 *6))) (-5 *1 (-585 *5 *6)))) (-3734 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-628 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1131)) (-5 *1 (-585 *3 *4)))) (-2331 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-628 *6))) (-5 *4 (-1207)) (-5 *2 (-628 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1131)) (-5 *1 (-585 *5 *6)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-661 (-628 *5))) (-4 *4 (-1131)) (-5 *2 (-628 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-433 *4)))) (-2329 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-628 *5))) (-5 *3 (-1207)) (-4 *5 (-433 *4)) (-4 *4 (-1131)) (-5 *1 (-585 *4 *5))))) +(-10 -7 (-15 -2329 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-1207))) (-15 -2330 ((-628 |#2|) (-661 (-628 |#2|)))) (-15 -2331 ((-628 |#2|) (-628 |#2|) (-661 (-628 |#2|)) (-1207))) (-15 -3734 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-661 (-628 |#2|)))) (-15 -2332 ((-661 (-628 |#2|)) (-661 |#2|) (-1207))) (IF (|has| |#1| (-569)) (-15 -2333 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-296)) (PROGN (-15 -2334 (|#2| |#2| (-1207))) (IF (|has| |#1| (-631 (-914 (-558)))) (IF (|has| |#1| (-910 (-558))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1207))) (-15 -2335 ((-595 |#2|) |#2| (-1207) (-1 (-595 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2338 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-661 |#1|) "failed") (-558) |#1| |#1|)) 199 T ELT)) (-2341 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-661 (-419 |#2|))) 174 T ELT)) (-2344 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-661 (-419 |#2|))) 171 T ELT)) (-2345 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2336 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2343 (((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202 T ELT)) (-2339 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|)) 205 T ELT)) (-2347 (((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2348 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2342 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-661 (-419 |#2|))) 178 T ELT)) (-2346 (((-3 (-640 |#1| |#2|) "failed") (-640 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 166 T ELT)) (-2337 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 189 T ELT)) (-2340 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|)) 210 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2336 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2337 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2338 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-661 |#1|) "failed") (-558) |#1| |#1|))) (-15 -2339 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|))) (-15 -2340 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|))) (-15 -2341 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-661 (-419 |#2|)))) (-15 -2342 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-661 (-419 |#2|)))) (-15 -2343 ((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2344 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-661 (-419 |#2|)))) (-15 -2345 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2346 ((-3 (-640 |#1| |#2|) "failed") (-640 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2347 ((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2348 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -586)) +((-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-595 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2346 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3621 *4) (|:| |sol?| (-114))) (-558) *4)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-586 *4 *5)))) (-2345 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1273 *4)))) (-2344 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-661 (-419 *7))) (-4 *7 (-1273 *6)) (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2343 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2361 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2342 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3621 *7) (|:| |sol?| (-114))) (-558) *7)) (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2341 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2361 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2340 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3621 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2361 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2339 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2361 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2361 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2338 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-661 *6) "failed") (-558) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3621 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2361 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(-10 -7 (-15 -2336 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2337 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2338 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-661 |#1|) "failed") (-558) |#1| |#1|))) (-15 -2339 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|))) (-15 -2340 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|))) (-15 -2341 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-661 (-419 |#2|)))) (-15 -2342 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-661 (-419 |#2|)))) (-15 -2343 ((-3 (-2 (|:| -2361 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2344 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-661 (-419 |#2|)))) (-15 -2345 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2346 ((-3 (-640 |#1| |#2|) "failed") (-640 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3621 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2347 ((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2348 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2349 (((-3 |#2| "failed") |#2| (-1207) (-1207)) 10 T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2349 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-988) (-1169) (-29 |#1|))) (T -587)) +((-2349 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-1169) (-29 *4)))))) +(-10 -7 (-15 -2349 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) +((-3036 (((-711 (-1256)) $ (-1256)) 27 T ELT)) (-3037 (((-711 (-562)) $ (-562)) 26 T ELT)) (-3035 (((-791) $ (-131)) 28 T ELT)) (-3038 (((-711 (-130)) $ (-130)) 25 T ELT)) (-2220 (((-711 (-1256)) $) 12 T ELT)) (-2216 (((-711 (-1254)) $) 8 T ELT)) (-2218 (((-711 (-1253)) $) 10 T ELT)) (-2221 (((-711 (-562)) $) 13 T ELT)) (-2217 (((-711 (-560)) $) 9 T ELT)) (-2219 (((-711 (-559)) $) 11 T ELT)) (-2215 (((-791) $ (-131)) 7 T ELT)) (-2222 (((-711 (-130)) $) 14 T ELT)) (-1913 (($ $) 6 T ELT))) +(((-588) (-142)) (T -588)) +NIL +(-13 (-539) (-884)) +(((-176) . T) ((-539) . T) ((-884) . T)) +((-3036 (((-711 (-1256)) $ (-1256)) NIL T ELT)) (-3037 (((-711 (-562)) $ (-562)) NIL T ELT)) (-3035 (((-791) $ (-131)) NIL T ELT)) (-3038 (((-711 (-130)) $ (-130)) NIL T ELT)) (-2220 (((-711 (-1256)) $) NIL T ELT)) (-2216 (((-711 (-1254)) $) NIL T ELT)) (-2218 (((-711 (-1253)) $) NIL T ELT)) (-2221 (((-711 (-562)) $) NIL T ELT)) (-2217 (((-711 (-560)) $) NIL T ELT)) (-2219 (((-711 (-559)) $) NIL T ELT)) (-2215 (((-791) $ (-131)) NIL T ELT)) (-2222 (((-711 (-130)) $) NIL T ELT)) (-3039 (((-114) $) NIL T ELT)) (-2350 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1913 (($ $) NIL T ELT))) +(((-589) (-13 (-588) (-630 (-886)) (-10 -8 (-15 -2350 ($ (-402))) (-15 -2350 ($ (-1189))) (-15 -3039 ((-114) $))))) (T -589)) +((-2350 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-589)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-589)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-589))))) +(-13 (-588) (-630 (-886)) (-10 -8 (-15 -2350 ($ (-402))) (-15 -2350 ($ (-1189))) (-15 -3039 ((-114) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3962 (($) 7 T CONST)) (-3742 (((-1189) $) NIL T ELT)) (-2353 (($) 6 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT)) (-2351 (($) 9 T CONST)) (-2352 (($) 8 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 11 T ELT))) +(((-590) (-13 (-1131) (-10 -8 (-15 -2353 ($) -4464) (-15 -3962 ($) -4464) (-15 -2352 ($) -4464) (-15 -2351 ($) -4464)))) (T -590)) +((-2353 (*1 *1) (-5 *1 (-590))) (-3962 (*1 *1) (-5 *1 (-590))) (-2352 (*1 *1) (-5 *1 (-590))) (-2351 (*1 *1) (-5 *1 (-590)))) +(-13 (-1131) (-10 -8 (-15 -2353 ($) -4464) (-15 -3962 ($) -4464) (-15 -2352 ($) -4464) (-15 -2351 ($) -4464))) +((-3049 (((-114) $ $) NIL T ELT)) (-2354 (((-711 $) (-503)) 21 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2356 (($ (-1189)) 14 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 33 T ELT)) (-2355 (((-216 4 (-130)) $) 24 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 26 T ELT))) +(((-591) (-13 (-1131) (-10 -8 (-15 -2356 ($ (-1189))) (-15 -2355 ((-216 4 (-130)) $)) (-15 -2354 ((-711 $) (-503)))))) (T -591)) +((-2356 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-591)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-711 (-591))) (-5 *1 (-591))))) +(-13 (-1131) (-10 -8 (-15 -2356 ($ (-1189))) (-15 -2355 ((-216 4 (-130)) $)) (-15 -2354 ((-711 $) (-503))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $ (-558)) 76 T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3092 (($ (-1201 (-558)) (-558)) 82 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 66 T ELT)) (-3093 (($ $) 43 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4284 (((-791) $) 16 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-3095 (((-558)) 37 T ELT)) (-3094 (((-558) $) 41 T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4281 (($ $ (-558)) 24 T ELT)) (-3968 (((-3 $ "failed") $ $) 72 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) 17 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 73 T ELT)) (-3096 (((-1185 (-558)) $) 19 T ELT)) (-3374 (($ $) 26 T ELT)) (-4458 (((-886) $) 103 T ELT) (($ (-558)) 61 T ELT) (($ $) NIL T ELT)) (-3610 (((-791)) 15 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-558) $ (-558)) 46 T ELT)) (-3141 (($) 44 T CONST)) (-3147 (($) 21 T CONST)) (-3536 (((-114) $ $) 52 T ELT)) (-4349 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-4351 (($ $ $) 59 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-592 |#1| |#2|) (-893 |#1|) (-558) (-114)) (T -592)) +NIL +(-893 |#1|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 30 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (($ $ (-947)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 59 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 $ "failed") $) 95 T ELT)) (-3656 (($ $) 94 T ELT)) (-2010 (($ (-1297 $)) 93 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 47 T ELT)) (-3477 (($) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) 61 T ELT)) (-1893 (((-114) $) NIL T ELT)) (-1984 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) 49 (|has| $ (-381)) ELT)) (-2231 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3616 (($ $ (-947)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 $) $ (-947)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) 104 T ELT)) (-2230 (((-947) $) 67 T ELT)) (-1817 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1816 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1818 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2641 (($ (-947)) 60 T ELT)) (-4443 (((-114) $) 87 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) 28 (|has| $ (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 54 T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-947)) 86 T ELT) (((-854 (-947))) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-3 (-791) "failed") $ $) NIL T ELT) (((-791) $) NIL T ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4460 (((-947) $) 85 T ELT) (((-854 (-947)) $) NIL T ELT)) (-3685 (((-1201 $)) 102 T ELT)) (-1887 (($) 66 T ELT)) (-1819 (($) 50 (|has| $ (-381)) ELT)) (-3724 (((-709 $) (-1297 $)) NIL T ELT) (((-1297 $) $) 91 T ELT)) (-4484 (((-558) $) 42 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 45 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3185 (((-711 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3610 (((-791)) 51 T CONST)) (-1387 (((-114) $ $) 107 T ELT)) (-2232 (((-1297 $) (-947)) 97 T ELT) (((-1297 $)) 96 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) 31 T CONST)) (-3147 (($) 27 T CONST)) (-4440 (($ $ (-791)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 34 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-593 |#1|) (-13 (-363) (-341 $) (-631 (-558))) (-947)) (T -593)) +NIL +(-13 (-363) (-341 $) (-631 (-558))) +((-2357 (((-1303) (-1189)) 10 T ELT))) +(((-594) (-10 -7 (-15 -2357 ((-1303) (-1189))))) (T -594)) +((-2357 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-594))))) +(-10 -7 (-15 -2357 ((-1303) (-1189)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| "failed") $) 77 T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2361 ((|#1| $) 30 T ELT)) (-2359 (((-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2362 (($ |#1| (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2360 (((-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $) 31 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3315 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1207)) 49 (|has| |#1| (-1068 (-1207))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2358 (((-114) $) 35 T ELT)) (-4270 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1207)) 90 (|has| |#1| (-926 (-1207))) ELT)) (-4458 (((-886) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 18 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 86 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 16 T ELT) (($ (-419 (-558)) $) 41 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-595 |#1|) (-13 (-737 (-419 (-558))) (-1068 |#1|) (-10 -8 (-15 -2362 ($ |#1| (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2361 (|#1| $)) (-15 -2360 ((-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -2359 ((-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2358 ((-114) $)) (-15 -3315 ($ |#1| |#1|)) (-15 -4270 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1207))) (-15 -4270 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1068 (-1207))) (-15 -3315 ($ |#1| (-1207))) |%noBranch|))) (-376)) (T -595)) +((-2362 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 *2)) (|:| |logand| (-1201 *2))))) (-5 *4 (-661 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-595 *2)))) (-2361 (*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 *3)) (|:| |logand| (-1201 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-3315 (*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4270 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4270 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-926 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1207)))) (-3315 (*1 *1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *1 (-595 *2)) (-4 *2 (-1068 *3)) (-4 *2 (-376))))) +(-13 (-737 (-419 (-558))) (-1068 |#1|) (-10 -8 (-15 -2362 ($ |#1| (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2361 (|#1| $)) (-15 -2360 ((-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -2359 ((-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2358 ((-114) $)) (-15 -3315 ($ |#1| |#1|)) (-15 -4270 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1207))) (-15 -4270 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1068 (-1207))) (-15 -3315 ($ |#1| (-1207))) |%noBranch|))) +((-4470 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 30 T ELT))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4470 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -4470 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4470 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4470 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-376) (-376)) (T -596)) +((-4470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-596 *5 *2)))) (-4470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2361 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -2361 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-595 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -4470 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -4470 ((-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2361 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4470 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4470 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3920 (((-595 |#2|) (-595 |#2|)) 42 T ELT)) (-4475 (((-661 |#2|) (-595 |#2|)) 44 T ELT)) (-2373 ((|#2| (-595 |#2|)) 50 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3920 ((-595 |#2|) (-595 |#2|))) (-15 -4475 ((-661 |#2|) (-595 |#2|))) (-15 -2373 (|#2| (-595 |#2|)))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-29 |#1|) (-1233))) (T -597)) +((-2373 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1233))) (-5 *1 (-597 *4 *2)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))))) (-4475 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1233))) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-661 *5)) (-5 *1 (-597 *4 *5)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1233))) (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-597 *3 *4))))) +(-10 -7 (-15 -3920 ((-595 |#2|) (-595 |#2|))) (-15 -4475 ((-661 |#2|) (-595 |#2|))) (-15 -2373 (|#2| (-595 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2365 (($ (-518) (-609)) 14 T ELT)) (-2363 (($ (-518) (-609) $) 16 T ELT)) (-2364 (($ (-518) (-609)) 15 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-1212)) 7 T ELT) (((-1212) $) 6 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-598) (-13 (-1131) (-502 (-1212)) (-10 -8 (-15 -2365 ($ (-518) (-609))) (-15 -2364 ($ (-518) (-609))) (-15 -2363 ($ (-518) (-609) $))))) (T -598)) +((-2365 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598)))) (-2364 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598)))) (-2363 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) +(-13 (-1131) (-502 (-1212)) (-10 -8 (-15 -2365 ($ (-518) (-609))) (-15 -2364 ($ (-518) (-609))) (-15 -2363 ($ (-518) (-609) $)))) +((-2369 (((-114) |#1|) 16 T ELT)) (-2370 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2367 (((-2 (|:| -3177 |#1|) (|:| -2642 (-791))) |#1|) 37 T ELT) (((-3 |#1| "failed") |#1| (-791)) 18 T ELT)) (-2366 (((-114) |#1| (-791)) 19 T ELT)) (-2371 ((|#1| |#1|) 41 T ELT)) (-2368 ((|#1| |#1| (-791)) 44 T ELT))) +(((-599 |#1|) (-10 -7 (-15 -2366 ((-114) |#1| (-791))) (-15 -2367 ((-3 |#1| "failed") |#1| (-791))) (-15 -2367 ((-2 (|:| -3177 |#1|) (|:| -2642 (-791))) |#1|)) (-15 -2368 (|#1| |#1| (-791))) (-15 -2369 ((-114) |#1|)) (-15 -2370 ((-3 |#1| "failed") |#1|)) (-15 -2371 (|#1| |#1|))) (-557)) (T -599)) +((-2371 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2370 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3177 *3) (|:| -2642 (-791)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2367 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -2366 ((-114) |#1| (-791))) (-15 -2367 ((-3 |#1| "failed") |#1| (-791))) (-15 -2367 ((-2 (|:| -3177 |#1|) (|:| -2642 (-791))) |#1|)) (-15 -2368 (|#1| |#1| (-791))) (-15 -2369 ((-114) |#1|)) (-15 -2370 ((-3 |#1| "failed") |#1|)) (-15 -2371 (|#1| |#1|))) +((-2372 (((-1201 |#1|) (-947)) 44 T ELT))) +(((-600 |#1|) (-10 -7 (-15 -2372 ((-1201 |#1|) (-947)))) (-363)) (T -600)) +((-2372 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) +(-10 -7 (-15 -2372 ((-1201 |#1|) (-947)))) +((-3920 (((-595 (-419 (-974 |#1|))) (-595 (-419 (-974 |#1|)))) 27 T ELT)) (-4324 (((-3 (-326 |#1|) (-661 (-326 |#1|))) (-419 (-974 |#1|)) (-1207)) 34 (|has| |#1| (-149)) ELT)) (-4475 (((-661 (-326 |#1|)) (-595 (-419 (-974 |#1|)))) 19 T ELT)) (-2374 (((-326 |#1|) (-419 (-974 |#1|)) (-1207)) 32 (|has| |#1| (-149)) ELT)) (-2373 (((-326 |#1|) (-595 (-419 (-974 |#1|)))) 21 T ELT))) +(((-601 |#1|) (-10 -7 (-15 -3920 ((-595 (-419 (-974 |#1|))) (-595 (-419 (-974 |#1|))))) (-15 -4475 ((-661 (-326 |#1|)) (-595 (-419 (-974 |#1|))))) (-15 -2373 ((-326 |#1|) (-595 (-419 (-974 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4324 ((-3 (-326 |#1|) (-661 (-326 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -2374 ((-326 |#1|) (-419 (-974 |#1|)) (-1207)))) |%noBranch|)) (-13 (-464) (-1068 (-558)) (-658 (-558)))) (T -601)) +((-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (-326 *5) (-661 (-326 *5)))) (-5 *1 (-601 *5)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-974 *4)))) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-4475 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-974 *4)))) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-661 (-326 *4))) (-5 *1 (-601 *4)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-595 (-419 (-974 *3)))) (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-601 *3))))) +(-10 -7 (-15 -3920 ((-595 (-419 (-974 |#1|))) (-595 (-419 (-974 |#1|))))) (-15 -4475 ((-661 (-326 |#1|)) (-595 (-419 (-974 |#1|))))) (-15 -2373 ((-326 |#1|) (-595 (-419 (-974 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4324 ((-3 (-326 |#1|) (-661 (-326 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -2374 ((-326 |#1|) (-419 (-974 |#1|)) (-1207)))) |%noBranch|)) +((-2376 (((-661 (-709 (-558))) (-661 (-947)) (-661 (-930 (-558)))) 80 T ELT) (((-661 (-709 (-558))) (-661 (-947))) 81 T ELT) (((-709 (-558)) (-661 (-947)) (-930 (-558))) 74 T ELT)) (-2375 (((-791) (-661 (-947))) 71 T ELT))) +(((-602) (-10 -7 (-15 -2375 ((-791) (-661 (-947)))) (-15 -2376 ((-709 (-558)) (-661 (-947)) (-930 (-558)))) (-15 -2376 ((-661 (-709 (-558))) (-661 (-947)))) (-15 -2376 ((-661 (-709 (-558))) (-661 (-947)) (-661 (-930 (-558))))))) (T -602)) +((-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-947))) (-5 *4 (-661 (-930 (-558)))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-947))) (-5 *4 (-930 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-602)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-791)) (-5 *1 (-602))))) +(-10 -7 (-15 -2375 ((-791) (-661 (-947)))) (-15 -2376 ((-709 (-558)) (-661 (-947)) (-930 (-558)))) (-15 -2376 ((-661 (-709 (-558))) (-661 (-947)))) (-15 -2376 ((-661 (-709 (-558))) (-661 (-947)) (-661 (-930 (-558)))))) +((-3713 (((-661 |#5|) |#5| (-114)) 97 T ELT)) (-2377 (((-114) |#5| (-661 |#5|)) 34 T ELT))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3713 ((-661 |#5|) |#5| (-114))) (-15 -2377 ((-114) |#5| (-661 |#5|)))) (-13 (-319) (-149)) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -603)) +((-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-661 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1139 *5 *6 *7 *8))))) +(-10 -7 (-15 -3713 ((-661 |#5|) |#5| (-114))) (-15 -2377 ((-114) |#5| (-661 |#5|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 (((-1165) $) 11 T ELT)) (-4031 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-604) (-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $))))) (T -604)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-604)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-604))))) +(-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $)))) +((-3049 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3928 (($ $) 38 T ELT)) (-3929 (($ $) NIL T ELT)) (-3919 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3926 (((-114) $ $) 68 T ELT)) (-3925 (((-114) $ $ (-558)) 63 T ELT)) (-3920 (((-661 $) $ (-146)) 77 T ELT) (((-661 $) $ (-143)) 78 T ELT)) (-1945 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-870)) ELT)) (-1943 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-870))) ELT)) (-3392 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-870)) ELT)) (-4300 (((-146) $ (-558) (-146)) 60 (|has| $ (-6 -4508)) ELT) (((-146) $ (-1264 (-558)) (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-3917 (($ $ (-146)) 81 T ELT) (($ $ (-143)) 82 T ELT)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-3922 (($ $ (-1264 (-558)) $) 58 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-3908 (($ (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4507)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-146) $ (-558)) NIL T ELT)) (-3927 (((-114) $ $) 90 T ELT)) (-3921 (((-558) (-1 (-114) (-146)) $) NIL T ELT) (((-558) (-146) $) NIL (|has| (-146) (-1131)) ELT) (((-558) (-146) $ (-558)) 65 (|has| (-146) (-1131)) ELT) (((-558) $ $ (-558)) 64 T ELT) (((-558) (-143) $ (-558)) 67 T ELT)) (-3372 (((-661 (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) (-146)) 9 T ELT)) (-2425 (((-558) $) 32 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-4020 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-3089 (((-661 (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-2426 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-3923 (((-114) $ $ (-146)) 91 T ELT)) (-3924 (((-791) $ $ (-146)) 88 T ELT)) (-2170 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3930 (($ $) 41 T ELT)) (-3931 (($ $) NIL T ELT)) (-3918 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-3742 (((-1189) $) 43 (|has| (-146) (-1131)) ELT)) (-2527 (($ (-146) $ (-558)) NIL T ELT) (($ $ $ (-558)) 27 T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) 87 (|has| (-146) (-1131)) ELT)) (-4313 (((-146) $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2424 (($ $ (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-2430 (((-661 (-146)) $) NIL T ELT)) (-3905 (((-114) $) 15 T ELT)) (-4075 (($) 12 T ELT)) (-4312 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) 70 T ELT) (($ $ (-1264 (-558))) 25 T ELT) (($ $ $) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-1944 (($ $ $ (-558)) 83 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 20 T ELT)) (-4484 (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT)) (-4032 (($ (-661 (-146))) NIL T ELT)) (-4314 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-661 $)) 84 T ELT)) (-4458 (($ (-146)) NIL T ELT) (((-886) $) 31 (|has| (-146) (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2169 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3536 (((-114) $ $) 17 (|has| (-146) (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3168 (((-114) $ $) 18 (|has| (-146) (-870)) ELT)) (-4469 (((-791) $) 16 (|has| $ (-6 -4507)) ELT))) +(((-605 |#1|) (-1174) (-558)) (T -605)) +NIL +(-1174) +((-4034 (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1119 |#4|)) 32 T ELT))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4034 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1119 |#4|))) (-15 -4034 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) (-815) (-870) (-569) (-978 |#3| |#1| |#2|)) (T -606)) +((-4034 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1119 *3)) (-4 *3 (-978 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-870)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *6 *4 *7 *3))))) +(-10 -7 (-15 -4034 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1119 |#4|))) (-15 -4034 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 71 T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-558)) 58 T ELT) (($ $ (-558) (-558)) 59 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 65 T ELT)) (-2408 (($ $) 109 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2406 (((-886) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1056 (-864 (-558))) (-1207) |#1| (-419 (-558))) 241 T ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 36 T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3375 (((-114) $) NIL T ELT)) (-4284 (((-558) $) 63 T ELT) (((-558) $ (-558)) 64 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4289 (($ $ (-947)) 83 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 80 T ELT)) (-4449 (((-114) $) 26 T ELT)) (-3376 (($ |#1| (-558)) 22 T ELT) (($ $ (-1112) (-558)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-558))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2412 (($ (-1056 (-864 (-558))) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 13 T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4324 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2409 (((-3 $ "failed") $ $ (-114)) 108 T ELT)) (-2407 (($ $ $) 116 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2410 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 15 T ELT)) (-2411 (((-1056 (-864 (-558))) $) 14 T ELT)) (-4281 (($ $ (-558)) 47 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-4312 ((|#1| $ (-558)) 62 T ELT) (($ $ $) NIL (|has| (-558) (-1142)) ELT)) (-4270 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4460 (((-558) $) NIL T ELT)) (-3374 (($ $) 48 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 29 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-4189 ((|#1| $ (-558)) 61 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 39 T CONST)) (-4285 ((|#1| $) NIL T ELT)) (-2387 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2399 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2389 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2401 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2385 (($ $) 201 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2397 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2404 (($ $ (-419 (-558))) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2405 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2402 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2403 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2384 (($ $) 203 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2396 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2386 (($ $) 199 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2398 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2388 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2400 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2381 (($ $) 209 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2393 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2383 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2395 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2379 (($ $) 213 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2391 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2378 (($ $) 215 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2390 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2380 (($ $) 211 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2392 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2382 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2394 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-4282 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-3141 (($) 30 T CONST)) (-3147 (($) 40 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3536 (((-114) $ $) 73 T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-4351 (($ $ $) 88 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 111 T ELT)) (* (($ (-947) $) 98 T ELT) (($ (-791) $) 96 T ELT) (($ (-558) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-607 |#1|) (-13 (-1276 |#1| (-558)) (-10 -8 (-15 -2412 ($ (-1056 (-864 (-558))) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -2411 ((-1056 (-864 (-558))) $)) (-15 -2410 ((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -4330 ($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4449 ((-114) $)) (-15 -4327 ($ (-1 |#1| (-558)) $)) (-15 -2409 ((-3 $ "failed") $ $ (-114))) (-15 -2408 ($ $)) (-15 -2407 ($ $ $)) (-15 -2406 ((-886) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1056 (-864 (-558))) (-1207) |#1| (-419 (-558)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $)) (-15 -2405 ($ $ |#1|)) (-15 -2404 ($ $ (-419 (-558)))) (-15 -2403 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $)) (-15 -2400 ($ $)) (-15 -2399 ($ $)) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -2396 ($ $)) (-15 -2395 ($ $)) (-15 -2394 ($ $)) (-15 -2393 ($ $)) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $))) |%noBranch|))) (-1079)) (T -607)) +((-4449 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1079)))) (-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-864 (-558)))) (-5 *3 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1079)) (-5 *1 (-607 *4)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1056 (-864 (-558)))) (-5 *1 (-607 *3)) (-4 *3 (-1079)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1079)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1079)) (-5 *1 (-607 *3)))) (-4327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1079)) (-5 *1 (-607 *3)))) (-2409 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1079)))) (-2408 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1079)))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1079)))) (-2406 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *6)))) (-5 *4 (-1056 (-864 (-558)))) (-5 *5 (-1207)) (-5 *7 (-419 (-558))) (-4 *6 (-1079)) (-5 *2 (-886)) (-5 *1 (-607 *6)))) (-4324 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1079)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2401 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2400 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2394 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2393 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2389 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) +(-13 (-1276 |#1| (-558)) (-10 -8 (-15 -2412 ($ (-1056 (-864 (-558))) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -2411 ((-1056 (-864 (-558))) $)) (-15 -2410 ((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -4330 ($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4449 ((-114) $)) (-15 -4327 ($ (-1 |#1| (-558)) $)) (-15 -2409 ((-3 $ "failed") $ $ (-114))) (-15 -2408 ($ $)) (-15 -2407 ($ $ $)) (-15 -2406 ((-886) (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1056 (-864 (-558))) (-1207) |#1| (-419 (-558)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $)) (-15 -2405 ($ $ |#1|)) (-15 -2404 ($ $ (-419 (-558)))) (-15 -2403 ($ $)) (-15 -2402 ($ $)) (-15 -2401 ($ $)) (-15 -2400 ($ $)) (-15 -2399 ($ $)) (-15 -2398 ($ $)) (-15 -2397 ($ $)) (-15 -2396 ($ $)) (-15 -2395 ($ $)) (-15 -2394 ($ $)) (-15 -2393 ($ $)) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $))) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 63 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4330 (($ (-1185 |#1|)) 9 T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 44 T ELT)) (-3375 (((-114) $) 56 T ELT)) (-4284 (((-791) $) 61 T ELT) (((-791) $ (-791)) 60 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) 46 (|has| |#1| (-569)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-1185 |#1|) $) 25 T ELT)) (-3610 (((-791)) 55 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 10 T CONST)) (-3147 (($) 14 T CONST)) (-3536 (((-114) $ $) 24 T ELT)) (-4349 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-4351 (($ $ $) 27 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 53 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-558)) 38 T ELT))) +(((-608 |#1|) (-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -4329 ((-1185 |#1|) $)) (-15 -4330 ($ (-1185 |#1|))) (-15 -3375 ((-114) $)) (-15 -4284 ((-791) $)) (-15 -4284 ((-791) $ (-791))) (-15 * ($ $ (-558))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1079)) (T -608)) +((-4329 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-4284 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-608 *3)) (-4 *3 (-1079))))) +(-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -4329 ((-1185 |#1|) $)) (-15 -4330 ($ (-1185 |#1|))) (-15 -3375 ((-114) $)) (-15 -4284 ((-791) $)) (-15 -4284 ((-791) $ (-791))) (-15 * ($ $ (-558))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-2415 (($) 8 T CONST)) (-2416 (($) 7 T CONST)) (-2413 (($ $ (-661 $)) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2417 (($) 6 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-1212)) 15 T ELT) (((-1212) $) 10 T ELT)) (-2414 (($) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-609) (-13 (-1131) (-502 (-1212)) (-10 -8 (-15 -2417 ($) -4464) (-15 -2416 ($) -4464) (-15 -2415 ($) -4464) (-15 -2414 ($) -4464) (-15 -2413 ($ $ (-661 $)))))) (T -609)) +((-2417 (*1 *1) (-5 *1 (-609))) (-2416 (*1 *1) (-5 *1 (-609))) (-2415 (*1 *1) (-5 *1 (-609))) (-2414 (*1 *1) (-5 *1 (-609))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-609))) (-5 *1 (-609))))) +(-13 (-1131) (-502 (-1212)) (-10 -8 (-15 -2417 ($) -4464) (-15 -2416 ($) -4464) (-15 -2415 ($) -4464) (-15 -2414 ($) -4464) (-15 -2413 ($ $ (-661 $))))) +((-4470 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15 T ELT))) +(((-610 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -4470 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|))))) (-1247) (-1247)) (T -610)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) +(-13 (-1247) (-10 -7 (-15 -4470 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|))))) +((-4470 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1185 |#2|)) 20 T ELT) (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-613 |#2|)) 19 T ELT) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18 T ELT))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4470 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-613 |#2|))) (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -611)) +((-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) +(-10 -7 (-15 -4470 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-613 |#2|))) (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1185 |#2|)))) +((-2422 ((|#3| |#3| (-661 (-628 |#3|)) (-661 (-1207))) 57 T ELT)) (-2421 (((-171 |#2|) |#3|) 122 T ELT)) (-2418 ((|#3| (-171 |#2|)) 46 T ELT)) (-2419 ((|#2| |#3|) 21 T ELT)) (-2420 ((|#3| |#2|) 35 T ELT))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2418 (|#3| (-171 |#2|))) (-15 -2419 (|#2| |#3|)) (-15 -2420 (|#3| |#2|)) (-15 -2421 ((-171 |#2|) |#3|)) (-15 -2422 (|#3| |#3| (-661 (-628 |#3|)) (-661 (-1207))))) (-569) (-13 (-433 |#1|) (-1032) (-1233)) (-13 (-433 (-171 |#1|)) (-1032) (-1233))) (T -612)) +((-2422 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-661 (-1207))) (-4 *2 (-13 (-433 (-171 *5)) (-1032) (-1233))) (-4 *5 (-569)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1032) (-1233))))) (-2421 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1032) (-1233))) (-4 *3 (-13 (-433 (-171 *4)) (-1032) (-1233))))) (-2420 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1032) (-1233))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1032) (-1233))))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1032) (-1233))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1032) (-1233))))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1032) (-1233))) (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1032) (-1233))) (-5 *1 (-612 *4 *5 *2))))) +(-10 -7 (-15 -2418 (|#3| (-171 |#2|))) (-15 -2419 (|#2| |#3|)) (-15 -2420 (|#3| |#2|)) (-15 -2421 ((-171 |#2|) |#3|)) (-15 -2422 (|#3| |#3| (-661 (-628 |#3|)) (-661 (-1207))))) +((-4222 (($ (-1 (-114) |#1|) $) 19 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3959 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3958 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3957 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-4032 (((-1185 |#1|) $) 20 T ELT)) (-4458 (((-886) $) 25 T ELT))) +(((-613 |#1|) (-13 (-630 (-886)) (-10 -8 (-15 -4470 ($ (-1 |#1| |#1|) $)) (-15 -3958 ($ (-1 (-114) |#1|) $)) (-15 -3957 ($ (-1 (-114) |#1|) $)) (-15 -4222 ($ (-1 (-114) |#1|) $)) (-15 -3959 ($ (-1 |#1| |#1|) |#1|)) (-15 -4032 ((-1185 |#1|) $)))) (-1247)) (T -613)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1247))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4470 ($ (-1 |#1| |#1|) $)) (-15 -3958 ($ (-1 (-114) |#1|) $)) (-15 -3957 ($ (-1 (-114) |#1|) $)) (-15 -4222 ($ (-1 (-114) |#1|) $)) (-15 -3959 ($ (-1 |#1| |#1|) |#1|)) (-15 -4032 ((-1185 |#1|) $)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4347 (((-709 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4344 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-4345 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4348 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4346 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4349 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-614 |#1| |#2|) (-1296 |#1|) (-1247) (-558)) (T -614)) +NIL +(-1296 |#1|) +((-2423 (((-1303) $ |#2| |#2|) 35 T ELT)) (-2425 ((|#2| $) 23 T ELT)) (-2426 ((|#2| $) 21 T ELT)) (-2170 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4470 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4313 ((|#3| $) 26 T ELT)) (-2424 (($ $ |#3|) 33 T ELT)) (-2427 (((-114) |#3| $) 17 T ELT)) (-2430 (((-661 |#3|) $) 15 T ELT)) (-4312 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -2423 ((-1303) |#1| |#2| |#2|)) (-15 -2424 (|#1| |#1| |#3|)) (-15 -4313 (|#3| |#1|)) (-15 -2425 (|#2| |#1|)) (-15 -2426 (|#2| |#1|)) (-15 -2427 ((-114) |#3| |#1|)) (-15 -2430 ((-661 |#3|) |#1|)) (-15 -4312 (|#3| |#1| |#2|)) (-15 -4312 (|#3| |#1| |#2| |#3|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4470 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1131) (-1247)) (T -615)) +NIL +(-10 -8 (-15 -2423 ((-1303) |#1| |#2| |#2|)) (-15 -2424 (|#1| |#1| |#3|)) (-15 -4313 (|#3| |#1|)) (-15 -2425 (|#2| |#1|)) (-15 -2426 (|#2| |#1|)) (-15 -2427 ((-114) |#3| |#1|)) (-15 -2430 ((-661 |#3|) |#1|)) (-15 -4312 (|#3| |#1| |#2|)) (-15 -4312 (|#3| |#1| |#2| |#3|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4470 (|#1| (-1 |#3| |#3|) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2423 (((-1303) $ |#1| |#1|) 44 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-1729 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) 55 T ELT)) (-3372 (((-661 |#2|) $) 30 (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) 47 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#2|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 ((|#1| $) 48 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#2| (-1131)) ELT)) (-2428 (((-661 |#1|) $) 50 T ELT)) (-2429 (((-114) |#1| $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#2| (-1131)) ELT)) (-4313 ((|#2| $) 46 (|has| |#1| (-870)) ELT)) (-2424 (($ $ |#2|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) 28 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#2| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-616 |#1| |#2|) (-142) (-1131) (-1247)) (T -616)) +((-2430 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-661 *4)))) (-2429 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-661 *3)))) (-2427 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1131)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1131)) (-4 *2 (-870)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1131)) (-4 *2 (-870)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1131)) (-4 *3 (-870)) (-4 *2 (-1247)))) (-2424 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) (-2423 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-1303))))) +(-13 (-501 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -2430 ((-661 |t#2|) $)) (-15 -2429 ((-114) |t#1| $)) (-15 -2428 ((-661 |t#1|) $)) (IF (|has| |t#2| (-1131)) (IF (|has| $ (-6 -4507)) (-15 -2427 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -2426 (|t#1| $)) (-15 -2425 (|t#1| $)) (-15 -4313 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4508)) (PROGN (-15 -2424 ($ $ |t#2|)) (-15 -2423 ((-1303) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#2| (-1131)) (|has| |#2| (-102))) ((-630 (-886)) -4039 (|has| |#2| (-1131)) (|has| |#2| (-630 (-886)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-1131) |has| |#2| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 14 T ELT) (($ (-661 (-1248))) 13 T ELT)) (-2431 (((-661 (-1248)) $) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-617) (-13 (-1113) (-630 (-1248)) (-10 -8 (-15 -4458 ($ (-661 (-1248)))) (-15 -2431 ((-661 (-1248)) $))))) (T -617)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-617)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-617))))) +(-13 (-1113) (-630 (-1248)) (-10 -8 (-15 -4458 ($ (-661 (-1248)))) (-15 -2431 ((-661 (-1248)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1990 (((-3 $ #1="failed")) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (((-1297 (-709 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-709 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1942 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4236 (($) NIL T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1916 (((-3 $ #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2006 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1940 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2004 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2645 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2121 (((-1201 (-974 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2648 (($ $ (-947)) NIL T ELT)) (-1938 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-1201 |#1|) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2008 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1936 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2010 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3969 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3593 (((-947)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1917 (((-3 $ #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2007 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1941 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2005 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2646 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2125 (((-1201 (-974 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-1939 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-1201 |#1|) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2009 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1937 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1929 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4312 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3724 (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4484 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2113 (((-661 (-974 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-661 (-974 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2834 (($ $ $) NIL T ELT)) (-1935 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4458 (((-886) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1920 (((-661 (-1297 |#1|))) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-1933 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3026 (($ (-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2833 (($ $ $) NIL T ELT)) (-1934 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3141 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) 24 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-618 |#1| |#2|) (-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4458 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-764 |#1|)) (T -618)) +((-4458 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-618 *3 *2)) (-4 *2 (-764 *3))))) +(-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4458 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-619) (-13 (-1131) (-502 (-130)))) (T -619)) +NIL +(-13 (-1131) (-502 (-130))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2433 (($) 12 T CONST)) (-2455 (($) 10 T CONST)) (-2432 (($) 13 T CONST)) (-2451 (($) 11 T CONST)) (-2448 (($) 14 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-620) (-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2451 ($) -4464) (-15 -2433 ($) -4464) (-15 -2432 ($) -4464) (-15 -2448 ($) -4464)))) (T -620)) +((-2455 (*1 *1) (-5 *1 (-620))) (-2451 (*1 *1) (-5 *1 (-620))) (-2433 (*1 *1) (-5 *1 (-620))) (-2432 (*1 *1) (-5 *1 (-620))) (-2448 (*1 *1) (-5 *1 (-620)))) +(-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2451 ($) -4464) (-15 -2433 ($) -4464) (-15 -2432 ($) -4464) (-15 -2448 ($) -4464))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2444 (($) 11 T CONST)) (-2438 (($) 17 T CONST)) (-2434 (($) 21 T CONST)) (-2436 (($) 19 T CONST)) (-2441 (($) 14 T CONST)) (-2435 (($) 20 T CONST)) (-2443 (($) 12 T CONST)) (-2442 (($) 13 T CONST)) (-2437 (($) 18 T CONST)) (-2440 (($) 15 T CONST)) (-2439 (($) 16 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (((-130) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-621) (-13 (-1131) (-630 (-130)) (-10 -8 (-15 -2444 ($) -4464) (-15 -2443 ($) -4464) (-15 -2442 ($) -4464) (-15 -2441 ($) -4464) (-15 -2440 ($) -4464) (-15 -2439 ($) -4464) (-15 -2438 ($) -4464) (-15 -2437 ($) -4464) (-15 -2436 ($) -4464) (-15 -2435 ($) -4464) (-15 -2434 ($) -4464)))) (T -621)) +((-2444 (*1 *1) (-5 *1 (-621))) (-2443 (*1 *1) (-5 *1 (-621))) (-2442 (*1 *1) (-5 *1 (-621))) (-2441 (*1 *1) (-5 *1 (-621))) (-2440 (*1 *1) (-5 *1 (-621))) (-2439 (*1 *1) (-5 *1 (-621))) (-2438 (*1 *1) (-5 *1 (-621))) (-2437 (*1 *1) (-5 *1 (-621))) (-2436 (*1 *1) (-5 *1 (-621))) (-2435 (*1 *1) (-5 *1 (-621))) (-2434 (*1 *1) (-5 *1 (-621)))) +(-13 (-1131) (-630 (-130)) (-10 -8 (-15 -2444 ($) -4464) (-15 -2443 ($) -4464) (-15 -2442 ($) -4464) (-15 -2441 ($) -4464) (-15 -2440 ($) -4464) (-15 -2439 ($) -4464) (-15 -2438 ($) -4464) (-15 -2437 ($) -4464) (-15 -2436 ($) -4464) (-15 -2435 ($) -4464) (-15 -2434 ($) -4464))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2446 (($) 15 T CONST)) (-2445 (($) 16 T CONST)) (-2452 (($) 13 T CONST)) (-2455 (($) 10 T CONST)) (-2453 (($) 12 T CONST)) (-2454 (($) 11 T CONST)) (-2451 (($) 14 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-622) (-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2454 ($) -4464) (-15 -2453 ($) -4464) (-15 -2452 ($) -4464) (-15 -2451 ($) -4464) (-15 -2446 ($) -4464) (-15 -2445 ($) -4464)))) (T -622)) +((-2455 (*1 *1) (-5 *1 (-622))) (-2454 (*1 *1) (-5 *1 (-622))) (-2453 (*1 *1) (-5 *1 (-622))) (-2452 (*1 *1) (-5 *1 (-622))) (-2451 (*1 *1) (-5 *1 (-622))) (-2446 (*1 *1) (-5 *1 (-622))) (-2445 (*1 *1) (-5 *1 (-622)))) +(-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2454 ($) -4464) (-15 -2453 ($) -4464) (-15 -2452 ($) -4464) (-15 -2451 ($) -4464) (-15 -2446 ($) -4464) (-15 -2445 ($) -4464))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2450 (($) 15 T CONST)) (-2447 (($) 18 T CONST)) (-2452 (($) 13 T CONST)) (-2455 (($) 10 T CONST)) (-2453 (($) 12 T CONST)) (-2454 (($) 11 T CONST)) (-2449 (($) 16 T CONST)) (-2451 (($) 14 T CONST)) (-2448 (($) 17 T CONST)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-623) (-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2454 ($) -4464) (-15 -2453 ($) -4464) (-15 -2452 ($) -4464) (-15 -2451 ($) -4464) (-15 -2450 ($) -4464) (-15 -2449 ($) -4464) (-15 -2448 ($) -4464) (-15 -2447 ($) -4464)))) (T -623)) +((-2455 (*1 *1) (-5 *1 (-623))) (-2454 (*1 *1) (-5 *1 (-623))) (-2453 (*1 *1) (-5 *1 (-623))) (-2452 (*1 *1) (-5 *1 (-623))) (-2451 (*1 *1) (-5 *1 (-623))) (-2450 (*1 *1) (-5 *1 (-623))) (-2449 (*1 *1) (-5 *1 (-623))) (-2448 (*1 *1) (-5 *1 (-623))) (-2447 (*1 *1) (-5 *1 (-623)))) +(-13 (-1131) (-682) (-10 -8 (-15 -2455 ($) -4464) (-15 -2454 ($) -4464) (-15 -2453 ($) -4464) (-15 -2452 ($) -4464) (-15 -2451 ($) -4464) (-15 -2450 ($) -4464) (-15 -2449 ($) -4464) (-15 -2448 ($) -4464) (-15 -2447 ($) -4464))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-619)) 12 T ELT) (((-619) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-624) (-13 (-1131) (-502 (-619)) (-502 (-130)))) (T -624)) +NIL +(-13 (-1131) (-502 (-619)) (-502 (-130))) +((-3049 (((-114) $ $) NIL T ELT)) (-1910 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) 40 T ELT)) (-4109 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2423 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ (-1189) |#1|) 50 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#1| #1="failed") (-1189) $) 53 T ELT)) (-4236 (($) NIL T CONST)) (-1914 (($ $ (-1189)) 25 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-3907 (((-3 |#1| #1#) (-1189) $) 54 T ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3908 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-4354 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-1911 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) 39 T ELT)) (-1729 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-1189)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2495 (($ $) 55 T ELT)) (-1915 (($ (-402)) 23 T ELT) (($ (-402) (-1189)) 22 T ELT)) (-4052 (((-402) $) 41 T ELT)) (-2425 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (((-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-2426 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2894 (((-661 (-1189)) $) 46 T ELT)) (-2457 (((-114) (-1189) $) NIL T ELT)) (-1912 (((-1189) $) 42 T ELT)) (-1398 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-2428 (((-661 (-1189)) $) NIL T ELT)) (-2429 (((-114) (-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 ((|#1| $) NIL (|has| (-1189) (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) "failed") (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-661 (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 44 T ELT)) (-4312 ((|#1| $ (-1189) |#1|) NIL T ELT) ((|#1| $ (-1189)) 49 T ELT)) (-1608 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (((-791) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (((-791) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-4458 (((-886) $) 21 T ELT)) (-1913 (($ $) 26 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1400 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 20 T ELT)) (-4469 (((-791) $) 48 (|has| $ (-6 -4507)) ELT))) +(((-625 |#1|) (-13 (-378 (-402) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4507) (-15 -2495 ($ $)))) (-1131)) (T -625)) +((-2495 (*1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1131))))) +(-13 (-378 (-402) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4507) (-15 -2495 ($ $)))) +((-3745 (((-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) 16 T ELT)) (-2894 (((-661 |#2|) $) 20 T ELT)) (-2457 (((-114) |#2| $) 12 T ELT))) +(((-626 |#1| |#2| |#3|) (-10 -8 (-15 -2894 ((-661 |#2|) |#1|)) (-15 -2457 ((-114) |#2| |#1|)) (-15 -3745 ((-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|))) (-627 |#2| |#3|) (-1131) (-1131)) (T -626)) +NIL +(-10 -8 (-15 -2894 ((-661 |#2|) |#1|)) (-15 -2457 ((-114) |#2| |#1|)) (-15 -3745 ((-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|))) +((-3049 (((-114) $ $) 19 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 59 (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 62 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 50 (|has| $ (-6 -4507)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 60 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 57 (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-2894 (((-661 |#1|) $) 67 T ELT)) (-2457 (((-114) |#1| $) 68 T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 43 T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 55 T ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 45 T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) 26 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 25 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 24 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 23 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 52 T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 54 T ELT)) (-4458 (((-886) $) 17 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 46 T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-627 |#1| |#2|) (-142) (-1131) (-1131)) (T -627)) +((-2457 (*1 *2 *3 *1) (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-114)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-661 *3)))) (-3907 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2456 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-233 (-2 (|:| -4372 |t#1|) (|:| -2296 |t#2|))) (-10 -8 (-15 -2457 ((-114) |t#1| $)) (-15 -2894 ((-661 |t#1|) $)) (-15 -3907 ((-3 |t#2| "failed") |t#1| $)) (-15 -2456 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((-102) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ((-630 (-886)) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886)))) ((-153 #1#) . T) ((-631 (-547)) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ((-233 #1#) . T) ((-242 #1#) . T) ((-321 #1#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-501 #1#) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-1131) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-2458 (((-3 (-1207) "failed") $) 46 T ELT)) (-1437 (((-1303) $ (-791)) 22 T ELT)) (-3921 (((-791) $) 20 T ELT)) (-4105 (((-115) $) 9 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2459 (($ (-115) (-661 |#1|) (-791)) 32 T ELT) (($ (-1207)) 33 T ELT)) (-3114 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1207)) 13 T ELT)) (-3084 (((-791) $) 17 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4484 (((-914 (-558)) $) 99 (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) 106 (|has| |#1| (-631 (-914 (-391)))) ELT) (((-547) $) 92 (|has| |#1| (-631 (-547))) ELT)) (-4458 (((-886) $) 74 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2460 (((-661 |#1|) $) 19 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 51 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 53 T ELT))) +(((-628 |#1|) (-13 (-134) (-870) (-908 |#1|) (-10 -8 (-15 -4105 ((-115) $)) (-15 -2460 ((-661 |#1|) $)) (-15 -3084 ((-791) $)) (-15 -2459 ($ (-115) (-661 |#1|) (-791))) (-15 -2459 ($ (-1207))) (-15 -2458 ((-3 (-1207) "failed") $)) (-15 -3114 ((-114) $ (-115))) (-15 -3114 ((-114) $ (-1207))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) (-1131)) (T -628)) +((-4105 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) (-2459 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-1131)) (-5 *1 (-628 *5)))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) (-2458 (*1 *2 *1) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1131)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1131))))) +(-13 (-134) (-870) (-908 |#1|) (-10 -8 (-15 -4105 ((-115) $)) (-15 -2460 ((-661 |#1|) $)) (-15 -3084 ((-791) $)) (-15 -2459 ($ (-115) (-661 |#1|) (-791))) (-15 -2459 ($ (-1207))) (-15 -2458 ((-3 (-1207) "failed") $)) (-15 -3114 ((-114) $ (-115))) (-15 -3114 ((-114) $ (-1207))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) +((-2461 (((-628 |#2|) |#1|) 17 T ELT)) (-2462 (((-3 |#1| "failed") (-628 |#2|)) 21 T ELT))) +(((-629 |#1| |#2|) (-10 -7 (-15 -2461 ((-628 |#2|) |#1|)) (-15 -2462 ((-3 |#1| "failed") (-628 |#2|)))) (-1131) (-1131)) (T -629)) +((-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) (-5 *1 (-629 *2 *4)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-10 -7 (-15 -2461 ((-628 |#2|) |#1|)) (-15 -2462 ((-3 |#1| "failed") (-628 |#2|)))) +((-4458 ((|#1| $) 6 T ELT))) +(((-630 |#1|) (-142) (-1247)) (T -630)) +((-4458 (*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4458 (|t#1| $)))) +((-4484 ((|#1| $) 6 T ELT))) +(((-631 |#1|) (-142) (-1247)) (T -631)) +((-4484 (*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4484 (|t#1| $)))) +((-2463 (((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)) 15 T ELT) (((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16 T ELT))) +(((-632 |#1| |#2|) (-10 -7 (-15 -2463 ((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2463 ((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-149) (-27) (-1068 (-558)) (-1068 (-419 (-558)))) (-1273 |#1|)) (T -632)) +((-2463 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-149) (-27) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-1201 (-419 *6))) (-5 *1 (-632 *5 *6)) (-5 *3 (-419 *6)))) (-2463 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-419 *5))) (-5 *1 (-632 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -2463 ((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2463 ((-3 (-1201 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)))) +((-4458 (($ |#1|) 6 T ELT))) +(((-633 |#1|) (-142) (-1247)) (T -633)) +((-4458 (*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4458 ($ |t#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-2464 (($) 14 T CONST)) (-3338 (($) 15 T CONST)) (-3042 (($ $ $) 29 T ELT)) (-3041 (($ $) 27 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3336 (($ $ $) 30 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3337 (($) 11 T CONST)) (-3335 (($ $ $) 31 T ELT)) (-4458 (((-886) $) 35 T ELT)) (-4076 (((-114) $ (|[\|\|]| -3337)) 24 T ELT) (((-114) $ (|[\|\|]| -2464)) 26 T ELT) (((-114) $ (|[\|\|]| -3338)) 21 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3043 (($ $ $) 28 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3536 (((-114) $ $) 18 T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-634) (-13 (-997) (-10 -8 (-15 -2464 ($) -4464) (-15 -4076 ((-114) $ (|[\|\|]| -3337))) (-15 -4076 ((-114) $ (|[\|\|]| -2464))) (-15 -4076 ((-114) $ (|[\|\|]| -3338)))))) (T -634)) +((-2464 (*1 *1) (-5 *1 (-634))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3337)) (-5 *2 (-114)) (-5 *1 (-634)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2464)) (-5 *2 (-114)) (-5 *1 (-634)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3338)) (-5 *2 (-114)) (-5 *1 (-634))))) +(-13 (-997) (-10 -8 (-15 -2464 ($) -4464) (-15 -4076 ((-114) $ (|[\|\|]| -3337))) (-15 -4076 ((-114) $ (|[\|\|]| -2464))) (-15 -4076 ((-114) $ (|[\|\|]| -3338))))) +((-4484 (($ |#1|) 6 T ELT))) +(((-635 |#1|) (-142) (-1247)) (T -635)) +((-4484 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4484 ($ |t#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| |#1| (-869)) ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3481 ((|#1| $) 13 T ELT)) (-3687 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3480 ((|#3| $) 15 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3610 (((-791)) 20 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| |#1| (-869)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) 12 T CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-4461 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-636 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -4461 ($ $ |#3|)) (-15 -4461 ($ |#1| |#3|)) (-15 -3481 (|#1| $)) (-15 -3480 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-746) |#2|)) (T -636)) +((-4461 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-746) *4)))) (-4461 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-746) *4)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-746) *3)))) (-3480 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -4461 ($ $ |#3|)) (-15 -4461 ($ |#1| |#3|)) (-15 -3481 (|#1| $)) (-15 -3480 (|#3| $)))) +((-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-637 |#1| |#2|) (-10 -8 (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-638 |#2|) (-1079)) (T -637)) +NIL +(-10 -8 (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) +(((-638 |#1|) (-142) (-1079)) (T -638)) +((-4458 (*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-668 |t#1|) (-10 -8 (-15 -4458 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-746) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-2465 ((|#2| |#2| (-1207) (-1207)) 16 T ELT))) +(((-639 |#1| |#2|) (-10 -7 (-15 -2465 (|#2| |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-988) (-29 |#1|))) (T -639)) +((-2465 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-29 *4)))))) +(-10 -7 (-15 -2465 (|#2| |#2| (-1207) (-1207)))) +((-3049 (((-114) $ $) 64 T ELT)) (-3688 (((-114) $) 58 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2466 ((|#1| $) 55 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4263 (((-2 (|:| -1982 $) (|:| -1981 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) 27 T ELT)) (-3969 (((-3 $ "failed") $) 88 T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4284 (((-558) $) 22 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) 40 T ELT)) (-3376 (($ |#1| (-558)) 24 T ELT)) (-3674 ((|#1| $) 57 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) 93 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1797 (((-791) $) 115 (|has| |#1| (-376)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-4460 (((-558) $) 38 T ELT)) (-4484 (((-419 |#2|) $) 47 T ELT)) (-4458 (((-886) $) 69 T ELT) (($ (-558)) 35 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4189 ((|#1| $ (-558)) 72 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 32 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 9 T CONST)) (-3147 (($) 14 T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 21 T ELT)) (-4349 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 90 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-640 |#1| |#2|) (-13 (-234 |#2|) (-569) (-631 (-419 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -4449 ((-114) $)) (-15 -4460 ((-558) $)) (-15 -4284 ((-558) $)) (-15 -4471 ($ $)) (-15 -3674 (|#1| $)) (-15 -2466 (|#1| $)) (-15 -4189 (|#1| $ (-558))) (-15 -3376 ($ |#1| (-558))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4263 ((-2 (|:| -1982 $) (|:| -1981 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-569) (-1273 |#1|)) (T -640)) +((-4449 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) (-4460 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) (-4284 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) (-4471 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2)))) (-3674 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2)))) (-2466 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1273 *2)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1273 *2)))) (-4263 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -1982 (-640 *4 *5)) (|:| -1981 (-419 *5)))) (-5 *1 (-640 *4 *5)) (-5 *3 (-419 *5))))) +(-13 (-234 |#2|) (-569) (-631 (-419 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -4449 ((-114) $)) (-15 -4460 ((-558) $)) (-15 -4284 ((-558) $)) (-15 -4471 ($ $)) (-15 -3674 (|#1| $)) (-15 -2466 (|#1| $)) (-15 -4189 (|#1| $ (-558))) (-15 -3376 ($ |#1| (-558))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4263 ((-2 (|:| -1982 $) (|:| -1981 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) +((-4194 (((-661 |#6|) (-661 |#4|) (-114)) 54 T ELT)) (-2467 ((|#6| |#6|) 48 T ELT))) +(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2467 (|#6| |#6|)) (-15 -4194 ((-661 |#6|) (-661 |#4|) (-114)))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|) (-1139 |#1| |#2| |#3| |#4|)) (T -641)) +((-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 *10)) (-5 *1 (-641 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *10 (-1139 *5 *6 *7 *8)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-641 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *2 (-1139 *3 *4 *5 *6))))) +(-10 -7 (-15 -2467 (|#6| |#6|)) (-15 -4194 ((-661 |#6|) (-661 |#4|) (-114)))) +((-2468 (((-114) |#3| (-791) (-661 |#3|)) 30 T ELT)) (-2469 (((-3 (-2 (|:| |polfac| (-661 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-661 (-1201 |#3|)))) "failed") |#3| (-661 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1997 (-661 (-2 (|:| |irr| |#4|) (|:| -2636 (-558)))))) (-661 |#3|) (-661 |#1|) (-661 |#3|)) 68 T ELT))) +(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 ((-114) |#3| (-791) (-661 |#3|))) (-15 -2469 ((-3 (-2 (|:| |polfac| (-661 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-661 (-1201 |#3|)))) "failed") |#3| (-661 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1997 (-661 (-2 (|:| |irr| |#4|) (|:| -2636 (-558)))))) (-661 |#3|) (-661 |#1|) (-661 |#3|)))) (-870) (-815) (-319) (-978 |#3| |#2| |#1|)) (T -642)) +((-2469 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1997 (-661 (-2 (|:| |irr| *10) (|:| -2636 (-558))))))) (-5 *6 (-661 *3)) (-5 *7 (-661 *8)) (-4 *8 (-870)) (-4 *3 (-319)) (-4 *10 (-978 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 (-2 (|:| |polfac| (-661 *10)) (|:| |correct| *3) (|:| |corrfact| (-661 (-1201 *3))))) (-5 *1 (-642 *8 *9 *3 *10)) (-5 *4 (-661 (-1201 *3))))) (-2468 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-791)) (-5 *5 (-661 *3)) (-4 *3 (-319)) (-4 *6 (-870)) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-642 *6 *7 *3 *8)) (-4 *8 (-978 *3 *7 *6))))) +(-10 -7 (-15 -2468 ((-114) |#3| (-791) (-661 |#3|))) (-15 -2469 ((-3 (-2 (|:| |polfac| (-661 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-661 (-1201 |#3|)))) "failed") |#3| (-661 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1997 (-661 (-2 (|:| |irr| |#4|) (|:| -2636 (-558)))))) (-661 |#3|) (-661 |#1|) (-661 |#3|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 (((-1165) $) 11 T ELT)) (-4031 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-643) (-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $))))) (T -643)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-643)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-643))))) +(-13 (-1113) (-10 -8 (-15 -4031 ((-1165) $)) (-15 -4030 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4446 (((-661 |#1|) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4448 (($ $) 77 T ELT)) (-4454 (((-684 |#1| |#2|) $) 60 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 81 T ELT)) (-2470 (((-661 (-305 |#2|)) $ $) 42 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4455 (($ (-684 |#1| |#2|)) 56 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) 66 T ELT) (((-1313 |#1| |#2|) $) NIL T ELT) (((-1318 |#1| |#2|) $) 74 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 61 T CONST)) (-2471 (((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2472 (((-661 (-684 |#1| |#2|)) (-661 |#1|)) 73 T ELT)) (-3146 (((-661 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3536 (((-114) $ $) 62 T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-644 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4455 ($ (-684 |#1| |#2|))) (-15 -4454 ((-684 |#1| |#2|) $)) (-15 -3146 ((-661 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -4458 ((-1313 |#1| |#2|) $)) (-15 -4458 ((-1318 |#1| |#2|) $)) (-15 -4448 ($ $)) (-15 -4446 ((-661 |#1|) $)) (-15 -2472 ((-661 (-684 |#1| |#2|)) (-661 |#1|))) (-15 -2471 ((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $)) (-15 -2470 ((-661 (-305 |#2|)) $ $)))) (-870) (-13 (-175) (-737 (-419 (-558)))) (-947)) (T -644)) +((-4455 (*1 *1 *2) (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-947)))) (-4454 (*1 *2 *1) (-12 (-5 *2 (-684 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-4448 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-13 (-175) (-737 (-419 (-558))))) (-14 *4 (-947)))) (-4446 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-870)) (-5 *2 (-661 (-684 *4 *5))) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-13 (-175) (-737 (-419 (-558))))) (-14 *6 (-947)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-692 *3)) (|:| |c| *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) (-2470 (*1 *2 *1 *1) (-12 (-5 *2 (-661 (-305 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947))))) +(-13 (-485) (-10 -8 (-15 -4455 ($ (-684 |#1| |#2|))) (-15 -4454 ((-684 |#1| |#2|) $)) (-15 -3146 ((-661 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -4458 ((-1313 |#1| |#2|) $)) (-15 -4458 ((-1318 |#1| |#2|) $)) (-15 -4448 ($ $)) (-15 -4446 ((-661 |#1|) $)) (-15 -2472 ((-661 (-684 |#1| |#2|)) (-661 |#1|))) (-15 -2471 ((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $)) (-15 -2470 ((-661 (-305 |#2|)) $ $)))) +((-4194 (((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114)) 103 T ELT) (((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114)) 77 T ELT)) (-2473 (((-114) (-661 (-800 |#1| (-887 |#2|)))) 26 T ELT)) (-2477 (((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114)) 102 T ELT)) (-2476 (((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114)) 76 T ELT)) (-2475 (((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|)))) 30 T ELT)) (-2474 (((-3 (-661 (-800 |#1| (-887 |#2|))) "failed") (-661 (-800 |#1| (-887 |#2|)))) 29 T ELT))) +(((-645 |#1| |#2|) (-10 -7 (-15 -2473 ((-114) (-661 (-800 |#1| (-887 |#2|))))) (-15 -2474 ((-3 (-661 (-800 |#1| (-887 |#2|))) "failed") (-661 (-800 |#1| (-887 |#2|))))) (-15 -2475 ((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|))))) (-15 -2476 ((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -2477 ((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -4194 ((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -4194 ((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114)))) (-464) (-661 (-1207))) (T -645)) +((-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1176 *5 (-543 (-887 *6)) (-887 *6) (-800 *5 (-887 *6))))) (-5 *1 (-645 *5 *6)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-645 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1176 *5 (-543 (-887 *6)) (-887 *6) (-800 *5 (-887 *6))))) (-5 *1 (-645 *5 *6)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-645 *5 *6)))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-661 (-800 *3 (-887 *4)))) (-4 *3 (-464)) (-14 *4 (-661 (-1207))) (-5 *1 (-645 *3 *4)))) (-2474 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-800 *3 (-887 *4)))) (-4 *3 (-464)) (-14 *4 (-661 (-1207))) (-5 *1 (-645 *3 *4)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-661 (-800 *4 (-887 *5)))) (-4 *4 (-464)) (-14 *5 (-661 (-1207))) (-5 *2 (-114)) (-5 *1 (-645 *4 *5))))) +(-10 -7 (-15 -2473 ((-114) (-661 (-800 |#1| (-887 |#2|))))) (-15 -2474 ((-3 (-661 (-800 |#1| (-887 |#2|))) "failed") (-661 (-800 |#1| (-887 |#2|))))) (-15 -2475 ((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|))))) (-15 -2476 ((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -2477 ((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -4194 ((-661 (-1076 |#1| |#2|)) (-661 (-800 |#1| (-887 |#2|))) (-114))) (-15 -4194 ((-661 (-1176 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|)))) (-661 (-800 |#1| (-887 |#2|))) (-114)))) +((-4105 (((-115) (-115)) 88 T ELT)) (-2481 ((|#2| |#2|) 28 T ELT)) (-3315 ((|#2| |#2| (-1122 |#2|)) 84 T ELT) ((|#2| |#2| (-1207)) 50 T ELT)) (-2479 ((|#2| |#2|) 27 T ELT)) (-2480 ((|#2| |#2|) 29 T ELT)) (-2478 (((-114) (-115)) 33 T ELT)) (-2483 ((|#2| |#2|) 24 T ELT)) (-2484 ((|#2| |#2|) 26 T ELT)) (-2482 ((|#2| |#2|) 25 T ELT))) +(((-646 |#1| |#2|) (-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -2484 (|#2| |#2|)) (-15 -2483 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -3315 (|#2| |#2| (-1207))) (-15 -3315 (|#2| |#2| (-1122 |#2|)))) (-569) (-13 (-433 |#1|) (-1032) (-1233))) (T -646)) +((-3315 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-433 *4) (-1032) (-1233))) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)))) (-3315 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)) (-4 *2 (-13 (-433 *4) (-1032) (-1233))))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-2483 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) (-4105 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-646 *3 *4)) (-4 *4 (-13 (-433 *3) (-1032) (-1233))))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-646 *4 *5)) (-4 *5 (-13 (-433 *4) (-1032) (-1233)))))) +(-10 -7 (-15 -2478 ((-114) (-115))) (-15 -4105 ((-115) (-115))) (-15 -2484 (|#2| |#2|)) (-15 -2483 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -3315 (|#2| |#2| (-1207))) (-15 -3315 (|#2| |#2| (-1122 |#2|)))) +((-3994 (($ $) 38 T ELT)) (-4151 (($ $) 21 T ELT)) (-3992 (($ $) 37 T ELT)) (-4150 (($ $) 22 T ELT)) (-3996 (($ $) 36 T ELT)) (-4149 (($ $) 23 T ELT)) (-4139 (($) 48 T ELT)) (-4454 (($ $) 45 T ELT)) (-2481 (($ $) 17 T ELT)) (-3315 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)) (-4455 (($ $) 46 T ELT)) (-2479 (($ $) 15 T ELT)) (-2480 (($ $) 16 T ELT)) (-3997 (($ $) 35 T ELT)) (-4148 (($ $) 24 T ELT)) (-3995 (($ $) 34 T ELT)) (-4147 (($ $) 25 T ELT)) (-3993 (($ $) 33 T ELT)) (-4146 (($ $) 26 T ELT)) (-4000 (($ $) 44 T ELT)) (-3988 (($ $) 32 T ELT)) (-3998 (($ $) 43 T ELT)) (-3986 (($ $) 31 T ELT)) (-4002 (($ $) 42 T ELT)) (-3990 (($ $) 30 T ELT)) (-4003 (($ $) 41 T ELT)) (-3991 (($ $) 29 T ELT)) (-4001 (($ $) 40 T ELT)) (-3989 (($ $) 28 T ELT)) (-3999 (($ $) 39 T ELT)) (-3987 (($ $) 27 T ELT)) (-2483 (($ $) 19 T ELT)) (-2484 (($ $) 20 T ELT)) (-2482 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-647) (-142)) (T -647)) +((-2484 (*1 *1 *1) (-4 *1 (-647))) (-2483 (*1 *1 *1) (-4 *1 (-647))) (-2482 (*1 *1 *1) (-4 *1 (-647))) (-2481 (*1 *1 *1) (-4 *1 (-647))) (-2480 (*1 *1 *1) (-4 *1 (-647))) (-2479 (*1 *1 *1) (-4 *1 (-647)))) +(-13 (-988) (-1233) (-10 -8 (-15 -2484 ($ $)) (-15 -2483 ($ $)) (-15 -2482 ($ $)) (-15 -2481 ($ $)) (-15 -2480 ($ $)) (-15 -2479 ($ $)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-988) . T) ((-1233) . T) ((-1236) . T)) +((-2494 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 65 T ELT)) (-2487 (((-661 (-255 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 90 T ELT)) (-2488 (((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-887 |#1|)) 92 T ELT) (((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)) (-887 |#1|)) 91 T ELT)) (-2485 (((-2 (|:| |gblist| (-661 (-255 |#1| |#2|))) (|:| |gvlist| (-661 (-558)))) (-661 (-493 |#1| |#2|))) 136 T ELT)) (-2492 (((-661 (-493 |#1| |#2|)) (-887 |#1|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 105 T ELT)) (-2486 (((-2 (|:| |glbase| (-661 (-255 |#1| |#2|))) (|:| |glval| (-661 (-558)))) (-661 (-255 |#1| |#2|))) 147 T ELT)) (-2490 (((-1297 |#2|) (-493 |#1| |#2|) (-661 (-493 |#1| |#2|))) 70 T ELT)) (-2489 (((-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 47 T ELT)) (-2493 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|))) 61 T ELT)) (-2491 (((-255 |#1| |#2|) (-661 |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|))) 113 T ELT))) +(((-648 |#1| |#2|) (-10 -7 (-15 -2485 ((-2 (|:| |gblist| (-661 (-255 |#1| |#2|))) (|:| |gvlist| (-661 (-558)))) (-661 (-493 |#1| |#2|)))) (-15 -2486 ((-2 (|:| |glbase| (-661 (-255 |#1| |#2|))) (|:| |glval| (-661 (-558)))) (-661 (-255 |#1| |#2|)))) (-15 -2487 ((-661 (-255 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2488 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)) (-887 |#1|))) (-15 -2488 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-887 |#1|))) (-15 -2489 ((-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2490 ((-1297 |#2|) (-493 |#1| |#2|) (-661 (-493 |#1| |#2|)))) (-15 -2491 ((-255 |#1| |#2|) (-661 |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2492 ((-661 (-493 |#1| |#2|)) (-887 |#1|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2493 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2494 ((-493 |#1| |#2|) (-255 |#1| |#2|)))) (-661 (-1207)) (-464)) (T -648)) +((-2494 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-648 *4 *5)))) (-2493 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *1 (-648 *4 *5)))) (-2492 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-887 *4)) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *1 (-648 *4 *5)))) (-2491 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-255 *5 *6))) (-4 *6 (-464)) (-5 *2 (-255 *5 *6)) (-14 *5 (-661 (-1207))) (-5 *1 (-648 *5 *6)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-661 (-1207))) (-4 *6 (-464)) (-5 *2 (-1297 *6)) (-5 *1 (-648 *5 *6)))) (-2489 (*1 *2 *2) (-12 (-5 *2 (-661 (-493 *3 *4))) (-14 *3 (-661 (-1207))) (-4 *4 (-464)) (-5 *1 (-648 *3 *4)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-661 (-1207))) (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) (-2488 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-661 (-1207))) (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *2 (-661 (-255 *4 *5))) (-5 *1 (-648 *4 *5)))) (-2486 (*1 *2 *3) (-12 (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-661 (-255 *4 *5))) (|:| |glval| (-661 (-558))))) (-5 *1 (-648 *4 *5)) (-5 *3 (-661 (-255 *4 *5))))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-661 (-255 *4 *5))) (|:| |gvlist| (-661 (-558))))) (-5 *1 (-648 *4 *5))))) +(-10 -7 (-15 -2485 ((-2 (|:| |gblist| (-661 (-255 |#1| |#2|))) (|:| |gvlist| (-661 (-558)))) (-661 (-493 |#1| |#2|)))) (-15 -2486 ((-2 (|:| |glbase| (-661 (-255 |#1| |#2|))) (|:| |glval| (-661 (-558)))) (-661 (-255 |#1| |#2|)))) (-15 -2487 ((-661 (-255 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2488 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)) (-887 |#1|))) (-15 -2488 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-887 |#1|))) (-15 -2489 ((-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2490 ((-1297 |#2|) (-493 |#1| |#2|) (-661 (-493 |#1| |#2|)))) (-15 -2491 ((-255 |#1| |#2|) (-661 |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2492 ((-661 (-493 |#1| |#2|)) (-887 |#1|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2493 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2494 ((-493 |#1| |#2|) (-255 |#1| |#2|)))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL T ELT)) (-2423 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4508)) ELT)) (-4300 (((-51) $ (-1189) (-51)) NIL T ELT) (((-51) $ (-1207) (-51)) 16 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 (-51) #1="failed") (-1189) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 (-51) #1#) (-1189) $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 (((-51) $ (-1189) (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-51) $ (-1189)) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-2495 (($ $) NIL T ELT)) (-2425 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2426 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2496 (($ (-402)) 8 T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT)) (-2894 (((-661 (-1189)) $) NIL T ELT)) (-2457 (((-114) (-1189) $) NIL T ELT)) (-1398 (((-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL T ELT)) (-2428 (((-661 (-1189)) $) NIL T ELT)) (-2429 (((-114) (-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT)) (-4313 (((-51) $) NIL (|has| (-1189) (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) "failed") (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL T ELT)) (-2424 (($ $ (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2430 (((-661 (-51)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 (((-51) $ (-1189)) NIL T ELT) (((-51) $ (-1189) (-51)) NIL T ELT) (((-51) $ (-1207)) 14 T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-1131))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-630 (-886))) (|has| (-51) (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 (-51))) (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-649) (-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -2496 ($ (-402))) (-15 -2495 ($ $)) (-15 -4300 ((-51) $ (-1207) (-51)))))) (T -649)) +((-2496 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-649)))) (-2495 (*1 *1 *1) (-5 *1 (-649))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-649))))) +(-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -2496 ($ (-402))) (-15 -2495 ($ $)) (-15 -4300 ((-51) $ (-1207) (-51))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1990 (((-3 $ #1="failed")) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (((-1297 (-709 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-709 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1942 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4236 (($) NIL T CONST)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1916 (((-3 $ #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2006 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1940 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2004 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2645 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2121 (((-1201 (-974 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2648 (($ $ (-947)) NIL T ELT)) (-1938 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-1201 |#1|) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2008 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1936 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2010 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3969 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3593 (((-947)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1917 (((-3 $ #1#)) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2007 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1941 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2005 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2646 (((-3 $ #1#) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2125 (((-1201 (-974 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-1939 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-1201 |#1|) $) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2009 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1937 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1929 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4312 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3724 (((-709 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4484 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2113 (((-661 (-974 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-661 (-974 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2834 (($ $ $) NIL T ELT)) (-1935 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4458 (((-886) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1920 (((-661 (-1297 |#1|))) NIL (-4039 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-1933 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3026 (($ (-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2833 (($ $ $) NIL T ELT)) (-1934 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1928 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3141 (($) 18 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) 19 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-650 |#1| |#2|) (-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4458 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-764 |#1|)) (T -650)) +((-4458 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-650 *3 *2)) (-4 *2 (-764 *3))))) +(-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4458 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) +((-4461 (($ $ |#2|) 10 T ELT))) +(((-651 |#1| |#2|) (-10 -8 (-15 -4461 (|#1| |#1| |#2|))) (-652 |#2|) (-175)) (T -651)) +NIL +(-10 -8 (-15 -4461 (|#1| |#1| |#2|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4032 (($ $ $) 39 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 38 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-652 |#1|) (-142) (-175)) (T -652)) +((-4032 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)))) (-4461 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-737 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4032 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -4461 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-2498 (((-3 (-864 |#2|) #1="failed") |#2| (-305 |#2|) (-1189)) 105 T ELT) (((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-864 |#2|) #1#))) "failed") |#2| (-305 (-864 |#2|))) 130 T ELT)) (-2497 (((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|))) 135 T ELT))) +(((-653 |#1| |#2|) (-10 -7 (-15 -2498 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) #1#))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -2497 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2498 ((-3 (-864 |#2|) #1#) |#2| (-305 |#2|) (-1189)))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -653)) +((-2498 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-864 *3)) (-5 *1 (-653 *6 *3)))) (-2497 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-854 *3))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-854 *3)) (-5 *1 (-653 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-864 *3) #1#))) "failed")) (-5 *1 (-653 *5 *3))))) +(-10 -7 (-15 -2498 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) #1#))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -2497 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2498 ((-3 (-864 |#2|) #1#) |#2| (-305 |#2|) (-1189)))) +((-2498 (((-3 (-864 (-419 (-974 |#1|))) #1="failed") (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))) (-1189)) 86 T ELT) (((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2="failed") (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|)))) 20 T ELT) (((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2#) (-419 (-974 |#1|)) (-305 (-864 (-974 |#1|)))) 35 T ELT)) (-2497 (((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|)))) 23 T ELT) (((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-854 (-974 |#1|)))) 43 T ELT))) +(((-654 |#1|) (-10 -7 (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2="failed") (-419 (-974 |#1|)) (-305 (-864 (-974 |#1|))))) (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2#) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -2497 ((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-854 (-974 |#1|))))) (-15 -2497 ((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) #1#) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))) (-1189)))) (-464)) (T -654)) +((-2498 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-419 (-974 *6)))) (-5 *5 (-1189)) (-5 *3 (-419 (-974 *6))) (-4 *6 (-464)) (-5 *2 (-864 *3)) (-5 *1 (-654 *6)))) (-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-464)) (-5 *2 (-854 *3)) (-5 *1 (-654 *5)))) (-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-974 *5)))) (-4 *5 (-464)) (-5 *2 (-854 (-419 (-974 *5)))) (-5 *1 (-654 *5)) (-5 *3 (-419 (-974 *5))))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-864 *3) #1#))) #2="failed")) (-5 *1 (-654 *5)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 (-974 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-864 (-419 (-974 *5))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 *5))) #1#)) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 *5))) #1#))) #2#)) (-5 *1 (-654 *5)) (-5 *3 (-419 (-974 *5)))))) +(-10 -7 (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2="failed") (-419 (-974 |#1|)) (-305 (-864 (-974 |#1|))))) (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-864 (-419 (-974 |#1|))) #1#))) #2#) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -2497 ((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-854 (-974 |#1|))))) (-15 -2497 ((-854 (-419 (-974 |#1|))) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -2498 ((-3 (-864 (-419 (-974 |#1|))) #1#) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))) (-1189)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 11 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3334 (($ (-218 |#1|)) 12 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-887 |#1|)) 7 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-655 |#1|) (-13 (-866) (-633 (-887 |#1|)) (-10 -8 (-15 -3334 ($ (-218 |#1|))))) (-661 (-1207))) (T -655)) +((-3334 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-661 (-1207))) (-5 *1 (-655 *3))))) +(-13 (-866) (-633 (-887 |#1|)) (-10 -8 (-15 -3334 ($ (-218 |#1|))))) +((-2501 (((-3 (-1297 (-419 |#1|)) "failed") (-1297 |#2|) |#2|) 64 (-3041 (|has| |#1| (-376))) ELT) (((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2499 (((-114) (-1297 |#2|)) 33 T ELT)) (-2500 (((-3 (-1297 |#1|) "failed") (-1297 |#2|)) 40 T ELT))) +(((-656 |#1| |#2|) (-10 -7 (-15 -2499 ((-114) (-1297 |#2|))) (-15 -2500 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2501 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2501 ((-3 (-1297 (-419 |#1|)) "failed") (-1297 |#2|) |#2|)))) (-569) (-13 (-1079) (-658 |#1|))) (T -656)) +((-2501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 *5))) (-3041 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1297 (-419 *5))) (-5 *1 (-656 *5 *4)))) (-2501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 *5))) (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) (-5 *1 (-656 *5 *4)))) (-2500 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-658 *4))) (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-656 *4 *5)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-658 *4))) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-656 *4 *5))))) +(-10 -7 (-15 -2499 ((-114) (-1297 |#2|))) (-15 -2500 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2501 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2501 ((-3 (-1297 (-419 |#1|)) "failed") (-1297 |#2|) |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4286 (((-661 (-896 (-655 |#2|) |#1|)) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3376 (($ |#1| (-655 |#2|)) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2502 (($ (-661 |#1|)) 25 T ELT)) (-2205 (((-655 |#2|) $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4423 (((-136)) 16 T ELT)) (-3724 (((-1297 |#1|) $) 44 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-655 |#2|)) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 20 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 17 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-657 |#1| |#2|) (-13 (-1305 |#1|) (-633 (-655 |#2|)) (-521 |#1| (-655 |#2|)) (-10 -8 (-15 -2502 ($ (-661 |#1|))) (-15 -3724 ((-1297 |#1|) $)))) (-376) (-661 (-1207))) (T -657)) +((-2502 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) (-14 *4 (-661 (-1207))))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) (-14 *4 (-661 (-1207)))))) +(-13 (-1305 |#1|) (-633 (-655 |#2|)) (-521 |#1| (-655 |#2|)) (-10 -8 (-15 -2502 ($ (-661 |#1|))) (-15 -3724 ((-1297 |#1|) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2503 (((-709 |#1|) (-709 $)) 35 T ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 34 T ELT)) (-2504 (((-709 |#1|) (-1297 $)) 37 T ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 36 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-658 |#1|) (-142) (-1079)) (T -658)) +((-2504 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) (-5 *2 (-709 *4)))) (-2504 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -1793 (-709 *4)) (|:| |vec| (-1297 *4)))))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-709 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) (-5 *2 (-709 *4)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-658 *5)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1793 (-709 *5)) (|:| |vec| (-1297 *5))))))) +(-13 (-668 |t#1|) (-10 -8 (-15 -2504 ((-709 |t#1|) (-1297 $))) (-15 -2504 ((-2 (|:| -1793 (-709 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-1297 $) $)) (-15 -2503 ((-709 |t#1|) (-709 $))) (-15 -2503 ((-2 (|:| -1793 (-709 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-709 $) (-1297 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2505 (($ (-661 |#1|)) 23 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#1| $ (-657 |#1| |#2|)) 46 T ELT)) (-4423 (((-136)) 13 T ELT)) (-3724 (((-1297 |#1|) $) 42 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 18 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 14 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-659 |#1| |#2|) (-13 (-1305 |#1|) (-298 (-657 |#1| |#2|) |#1|) (-10 -8 (-15 -2505 ($ (-661 |#1|))) (-15 -3724 ((-1297 |#1|) $)))) (-376) (-661 (-1207))) (T -659)) +((-2505 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-661 (-1207))))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-661 (-1207)))))) +(-13 (-1305 |#1|) (-298 (-657 |#1| |#2|) |#1|) (-10 -8 (-15 -2505 ($ (-661 |#1|))) (-15 -3724 ((-1297 |#1|) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-660 |#1|) (-142) (-1142)) (T -660)) +NIL +(-13 (-666 |t#1|) (-1081 |t#1|)) +(((-102) . T) ((-630 (-886)) . T) ((-666 |#1|) . T) ((-1081 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) NIL T ELT)) (-4307 ((|#1| $) NIL T ELT)) (-4309 (($ $) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) NIL (|has| |#1| (-870)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3944 (((-114) $ (-791)) NIL T ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-2508 (($ $ $) 37 (|has| |#1| (-1131)) ELT)) (-2507 (($ $ $) 41 (|has| |#1| (-1131)) ELT)) (-2506 (($ $ $) 44 (|has| |#1| (-1131)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4308 ((|#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-4311 (($ $) 23 T ELT) (($ $ (-791)) NIL T ELT)) (-2604 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-1477 (($ $) 36 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3908 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3921 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2510 (((-114) $) 11 T ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2511 (($) 9 T CONST)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-4231 (((-114) $ (-791)) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4020 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 40 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4044 (($ |#1|) NIL T ELT)) (-4228 (((-114) $ (-791)) NIL T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4119 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 20 T ELT) (($ $ (-791)) NIL T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3946 (((-114) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) 39 T ELT)) (-4075 (($) 38 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) ((|#1| $ (-558)) 42 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-1724 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-4302 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) NIL T ELT)) (-4306 (($ $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) 53 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-3963 (($ |#1| $) 12 T ELT)) (-4303 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4314 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2509 (($ $ $) 13 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2978 (((-1189) $) 31 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 32 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 33 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 34 (|has| |#1| (-843)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-661 |#1|) (-13 (-686 |#1|) (-10 -8 (-15 -2511 ($) -4464) (-15 -2510 ((-114) $)) (-15 -3963 ($ |#1| $)) (-15 -2509 ($ $ $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2508 ($ $ $)) (-15 -2507 ($ $ $)) (-15 -2506 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) (-1247)) (T -661)) +((-2511 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-661 *3)) (-4 *3 (-1247)))) (-3963 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247)))) (-2509 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247)))) (-2508 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247)))) (-2507 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247)))) (-2506 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247))))) +(-13 (-686 |#1|) (-10 -8 (-15 -2511 ($) -4464) (-15 -2510 ((-114) $)) (-15 -3963 ($ |#1| $)) (-15 -2509 ($ $ $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2508 ($ $ $)) (-15 -2507 ($ $ $)) (-15 -2506 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) +((-4353 (((-661 |#2|) (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|) 16 T ELT)) (-4354 ((|#2| (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|) 18 T ELT)) (-4470 (((-661 |#2|) (-1 |#2| |#1|) (-661 |#1|)) 13 T ELT))) +(((-662 |#1| |#2|) (-10 -7 (-15 -4353 ((-661 |#2|) (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4470 ((-661 |#2|) (-1 |#2| |#1|) (-661 |#1|)))) (-1247) (-1247)) (T -662)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-661 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-661 *6)) (-5 *1 (-662 *5 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-661 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-661 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-661 *5)) (-5 *1 (-662 *6 *5))))) +(-10 -7 (-15 -4353 ((-661 |#2|) (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4470 ((-661 |#2|) (-1 |#2| |#1|) (-661 |#1|)))) +((-3924 ((|#2| (-661 |#1|) (-661 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-661 |#1|) (-661 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) |#2|) 17 T ELT) ((|#2| (-661 |#1|) (-661 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|)) 12 T ELT))) +(((-663 |#1| |#2|) (-10 -7 (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|))) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1|)) (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) |#2|)) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1| |#2|)) (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) (-1 |#2| |#1|))) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1| (-1 |#2| |#1|)))) (-1131) (-1247)) (T -663)) +((-3924 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1131)) (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) (-3924 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1131)) (-4 *6 (-1247)) (-5 *1 (-663 *5 *6)))) (-3924 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1131)) (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 *5)) (-4 *6 (-1131)) (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1131)) (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1131)) (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6))))) +(-10 -7 (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|))) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1|)) (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) |#2|)) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1| |#2|)) (-15 -3924 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) (-1 |#2| |#1|))) (-15 -3924 (|#2| (-661 |#1|) (-661 |#2|) |#1| (-1 |#2| |#1|)))) +((-4470 (((-661 |#3|) (-1 |#3| |#1| |#2|) (-661 |#1|) (-661 |#2|)) 21 T ELT))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4470 ((-661 |#3|) (-1 |#3| |#1| |#2|) (-661 |#1|) (-661 |#2|)))) (-1247) (-1247) (-1247)) (T -664)) +((-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-661 *6)) (-5 *5 (-661 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-661 *8)) (-5 *1 (-664 *6 *7 *8))))) +(-10 -7 (-15 -4470 ((-661 |#3|) (-1 |#3| |#1| |#2|) (-661 |#1|) (-661 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 11 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-665 |#1|) (-13 (-1113) (-630 |#1|)) (-1131)) (T -665)) +NIL +(-13 (-1113) (-630 |#1|)) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-666 |#1|) (-142) (-1142)) (T -666)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1142))))) +(-13 (-1131) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2512 (($ |#1| |#1| $) 44 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) 60 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2604 (($ $) 46 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) 57 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 9 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 48 T ELT)) (-4119 (($ |#1| $) 29 T ELT) (($ |#1| $ (-791)) 43 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1399 ((|#1| $) 51 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 23 T ELT)) (-4075 (($) 28 T ELT)) (-2513 (((-114) $) 55 T ELT)) (-2603 (((-661 (-2 (|:| -2296 |#1|) (|:| -2167 (-791)))) $) 68 T ELT)) (-1608 (($) 26 T ELT) (($ (-661 |#1|)) 19 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 64 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 20 T ELT)) (-4484 (((-547) $) 35 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4458 (((-886) $) 14 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 24 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 70 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 17 (|has| $ (-6 -4507)) ELT))) +(((-667 |#1|) (-13 (-715 |#1|) (-10 -8 (-6 -4507) (-15 -2513 ((-114) $)) (-15 -2512 ($ |#1| |#1| $)))) (-1131)) (T -667)) +((-2513 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-667 *3)) (-4 *3 (-1131)))) (-2512 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1131))))) +(-13 (-715 |#1|) (-10 -8 (-6 -4507) (-15 -2513 ((-114) $)) (-15 -2512 ($ |#1| |#1| $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-668 |#1|) (-142) (-1087)) (T -668)) +NIL +(-13 (-21) (-666 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791) $) 17 T ELT)) (-2518 (($ $ |#1|) 69 T ELT)) (-2520 (($ $) 39 T ELT)) (-2521 (($ $) 37 T ELT)) (-3657 (((-3 |#1| "failed") $) 61 T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2555 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-4035 (((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-558)) 56 T ELT)) (-2522 ((|#1| $ (-558)) 35 T ELT)) (-2523 ((|#2| $ (-558)) 34 T ELT)) (-2514 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2515 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2519 (($) 11 T ELT)) (-2525 (($ |#1| |#2|) 24 T ELT)) (-2524 (($ (-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|)))) 25 T ELT)) (-2526 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))) $) 14 T ELT)) (-2517 (($ |#1| $) 71 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2516 (((-114) $ $) 76 T ELT)) (-4458 (((-886) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 27 T ELT))) +(((-669 |#1| |#2| |#3|) (-13 (-1131) (-1068 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-558))) (-15 -2526 ((-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))) $)) (-15 -2525 ($ |#1| |#2|)) (-15 -2524 ($ (-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))))) (-15 -2523 (|#2| $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -2521 ($ $)) (-15 -2520 ($ $)) (-15 -3620 ((-791) $)) (-15 -2519 ($)) (-15 -2518 ($ $ |#1|)) (-15 -2517 ($ |#1| $)) (-15 -2555 ($ |#1| |#2| $)) (-15 -2555 ($ $ $)) (-15 -2516 ((-114) $ $)) (-15 -2515 ($ (-1 |#2| |#2|) $)) (-15 -2514 ($ (-1 |#1| |#1|) $)))) (-1131) (-23) |#2|) (T -669)) +((-4035 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-886) (-886) (-886))) (-5 *4 (-558)) (-5 *2 (-886)) (-5 *1 (-669 *5 *6 *7)) (-4 *5 (-1131)) (-4 *6 (-23)) (-14 *7 *6))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-2525 (*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2524 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-669 *4 *2 *5)) (-4 *4 (-1131)) (-14 *5 *2))) (-2522 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-1131)) (-5 *1 (-669 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2521 (*1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2520 (*1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-2519 (*1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2518 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2517 (*1 *1 *2 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2555 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2555 (*1 *1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2516 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-2515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-669 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1131) (-1068 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-558))) (-15 -2526 ((-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))) $)) (-15 -2525 ($ |#1| |#2|)) (-15 -2524 ($ (-661 (-2 (|:| |gen| |#1|) (|:| -4455 |#2|))))) (-15 -2523 (|#2| $ (-558))) (-15 -2522 (|#1| $ (-558))) (-15 -2521 ($ $)) (-15 -2520 ($ $)) (-15 -3620 ((-791) $)) (-15 -2519 ($)) (-15 -2518 ($ $ |#1|)) (-15 -2517 ($ |#1| $)) (-15 -2555 ($ |#1| |#2| $)) (-15 -2555 ($ $ $)) (-15 -2516 ((-114) $ $)) (-15 -2515 ($ (-1 |#2| |#2|) $)) (-15 -2514 ($ (-1 |#1| |#1|) $)))) +((-2426 (((-558) $) 30 T ELT)) (-2527 (($ |#2| $ (-558)) 26 T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) 12 T ELT)) (-2429 (((-114) (-558) $) 17 T ELT)) (-4314 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT))) +(((-670 |#1| |#2|) (-10 -8 (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -2426 ((-558) |#1|)) (-15 -2428 ((-661 (-558)) |#1|)) (-15 -2429 ((-114) (-558) |#1|))) (-671 |#2|) (-1247)) (T -670)) +NIL +(-10 -8 (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#2|)) (-15 -2426 ((-558) |#1|)) (-15 -2428 ((-661 (-558)) |#1|)) (-15 -2429 ((-114) (-558) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-671 |#1|) (-142) (-1247)) (T -671)) +((-4126 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-4314 (*1 *1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) (-4314 (*1 *1 *2 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) (-4314 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) (-4314 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-4470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-558))) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-2527 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-671 *2)) (-4 *2 (-1247)))) (-2527 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1264 (-558))) (|has| *1 (-6 -4508)) (-4 *1 (-671 *2)) (-4 *2 (-1247))))) +(-13 (-616 (-558) |t#1|) (-153 |t#1|) (-298 (-1264 (-558)) $) (-10 -8 (-15 -4126 ($ (-791) |t#1|)) (-15 -4314 ($ $ |t#1|)) (-15 -4314 ($ |t#1| $)) (-15 -4314 ($ $ $)) (-15 -4314 ($ (-661 $))) (-15 -4470 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2528 ($ $ (-558))) (-15 -2528 ($ $ (-1264 (-558)))) (-15 -2527 ($ |t#1| $ (-558))) (-15 -2527 ($ $ $ (-558))) (IF (|has| $ (-6 -4508)) (-15 -4300 (|t#1| $ (-1264 (-558)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 15 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| |#1| (-812)) ELT)) (-4236 (($) NIL T CONST)) (-3686 (((-114) $) NIL (|has| |#1| (-812)) ELT)) (-3481 ((|#1| $) 23 T ELT)) (-3687 (((-114) $) NIL (|has| |#1| (-812)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3742 (((-1189) $) 48 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3480 ((|#3| $) 24 T ELT)) (-4458 (((-886) $) 43 T ELT)) (-1387 (((-114) $ $) 22 T ELT)) (-3885 (($ $) NIL (|has| |#1| (-812)) ELT)) (-3141 (($) 10 T CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-3536 (((-114) $ $) 20 T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-3168 (((-114) $ $) 26 (|has| |#1| (-812)) ELT)) (-4461 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-4349 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 29 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-672 |#1| |#2| |#3|) (-13 (-737 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -4461 ($ $ |#3|)) (-15 -4461 ($ |#1| |#3|)) (-15 -3481 (|#1| $)) (-15 -3480 (|#3| $)))) (-737 |#2|) (-175) (|SubsetCategory| (-746) |#2|)) (T -672)) +((-4461 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)) (-4 *2 (|SubsetCategory| (-746) *4)))) (-4461 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-737 *4)) (-4 *3 (|SubsetCategory| (-746) *4)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-737 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-746) *3)))) (-3480 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4))))) +(-13 (-737 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -4461 ($ $ |#3|)) (-15 -4461 ($ |#1| |#3|)) (-15 -3481 (|#1| $)) (-15 -3480 (|#3| $)))) +((-4083 (((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-661 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) "failed") |#3| |#2| (-1207)) 44 T ELT))) +(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -4083 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-661 |#2|)))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1233) (-988)) (-678 |#2|)) (T -673)) +((-4083 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-678 *2)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-988))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2232 (-661 *4)))) (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -4083 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-661 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2529 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2531 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2532 (($ $ (-791)) 31 (|has| |#1| (-376)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) NIL T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) NIL T ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4312 ((|#1| $ |#1|) 24 T ELT)) (-2533 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3026 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2998 (($ $) NIL T ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 8 T CONST)) (-3152 (($) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-674 |#1| |#2|) (-678 |#1|) (-1079) (-1 |#1| |#1|)) (T -674)) +NIL +(-678 |#1|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2529 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2532 (($ $ (-791)) NIL (|has| |#1| (-376)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) NIL T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) NIL T ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4312 ((|#1| $ |#1|) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3026 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-675 |#1|) (-678 |#1|) (-240)) (T -675)) +NIL +(-678 |#1|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2529 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2532 (($ $ (-791)) NIL (|has| |#1| (-376)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) NIL T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) NIL T ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4312 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3026 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-676 |#1| |#2|) (-13 (-678 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-668 |#1|) (-10 -8 (-15 -4270 ($ $))))) (T -676)) +NIL +(-13 (-678 |#1|) (-298 |#2| |#2|)) +((-2529 (($ $) 29 T ELT)) (-2998 (($ $) 27 T ELT)) (-3152 (($) 13 T ELT))) +(((-677 |#1| |#2|) (-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -3152 (|#1|))) (-678 |#2|) (-1079)) (T -677)) +NIL +(-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -3152 (|#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2529 (($ $) 93 (|has| |#1| (-376)) ELT)) (-2531 (($ $ $) 95 (|has| |#1| (-376)) ELT)) (-2532 (($ $ (-791)) 94 (|has| |#1| (-376)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3017 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) 85 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) 82 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3656 (((-558) $) 84 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4471 (($ $) 74 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3376 (($ |#1| (-791)) 72 T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) 76 T ELT)) (-3023 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) 61 (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) 75 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4312 ((|#1| $ |#1|) 98 T ELT)) (-2533 (($ $ $) 92 (|has| |#1| (-376)) ELT)) (-4460 (((-791) $) 77 T ELT)) (-3300 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4329 (((-661 |#1|) $) 71 T ELT)) (-4189 ((|#1| $ (-791)) 73 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3026 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2998 (($ $) 96 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($) 97 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-678 |#1|) (-142) (-1079)) (T -678)) +((-3152 (*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-678 *3)) (-4 *3 (-1079)) (-4 *3 (-376)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(-13 (-875 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3152 ($)) (-15 -2998 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2531 ($ $ $)) (-15 -2532 ($ $ (-791))) (-15 -2529 ($ $)) (-15 -2533 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 #1=(-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-298 |#1| |#1|) . T) ((-424 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1068 #1#) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-875 |#1|) . T)) +((-2530 (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-4244 (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 19 T ELT))) +(((-679 |#1| |#2|) (-10 -7 (-15 -4244 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4244 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)))) (-15 -2530 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558)))) (-1273 |#1|)) (T -679)) +((-2530 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-419 *5))))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-419 *5))))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-675 (-419 *6)))) (-5 *1 (-679 *5 *6)) (-5 *3 (-675 (-419 *6)))))) +(-10 -7 (-15 -4244 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4244 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)))) (-15 -2530 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))))) |%noBranch|)) +((-2531 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2532 ((|#2| |#2| (-791) (-1 |#1| |#1|)) 45 T ELT)) (-2533 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-680 |#1| |#2|) (-10 -7 (-15 -2531 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2532 (|#2| |#2| (-791) (-1 |#1| |#1|))) (-15 -2533 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -680)) +((-2533 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) (-4 *2 (-678 *4)))) (-2532 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-680 *5 *2)) (-4 *2 (-678 *5)))) (-2531 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) (-4 *2 (-678 *4))))) +(-10 -7 (-15 -2531 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2532 (|#2| |#2| (-791) (-1 |#1| |#1|))) (-15 -2533 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2534 (($ $ $) 9 T ELT))) +(((-681 |#1|) (-10 -8 (-15 -2534 (|#1| |#1| |#1|))) (-682)) (T -681)) +NIL +(-10 -8 (-15 -2534 (|#1| |#1| |#1|))) +((-2536 (($ $) 8 T ELT)) (-2534 (($ $ $) 6 T ELT)) (-2535 (($ $ $) 7 T ELT))) +(((-682) (-142)) (T -682)) +((-2536 (*1 *1 *1) (-4 *1 (-682))) (-2535 (*1 *1 *1 *1) (-4 *1 (-682))) (-2534 (*1 *1 *1 *1) (-4 *1 (-682)))) +(-13 (-1247) (-10 -8 (-15 -2536 ($ $)) (-15 -2535 ($ $ $)) (-15 -2534 ($ $ $)))) +(((-1247) . T)) +((-2537 (((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|)) 33 T ELT))) +(((-683 |#1|) (-10 -7 (-15 -2537 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|)))) (-938)) (T -683)) +((-2537 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 *4))) (-5 *3 (-1201 *4)) (-4 *4 (-938)) (-5 *1 (-683 *4))))) +(-10 -7 (-15 -2537 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4446 (((-661 |#1|) $) 84 T ELT)) (-4459 (($ $ (-791)) 94 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4451 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 50 T ELT)) (-3657 (((-3 (-692 |#1|) "failed") $) NIL T ELT)) (-3656 (((-692 |#1|) $) NIL T ELT)) (-4471 (($ $) 93 T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ (-692 |#1|) |#2|) 70 T ELT)) (-4448 (($ $) 89 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4452 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 49 T ELT)) (-1962 (((-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3377 (((-692 |#1|) $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4280 (($ $ |#1| $) 32 T ELT) (($ $ (-661 |#1|) (-661 $)) 34 T ELT)) (-4460 (((-791) $) 91 T ELT)) (-4032 (($ $ $) 20 T ELT) (($ (-692 |#1|) (-692 |#1|)) 79 T ELT) (($ (-692 |#1|) $) 77 T ELT) (($ $ (-692 |#1|)) 78 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1313 |#1| |#2|) $) 60 T ELT) (((-1322 |#1| |#2|) $) 43 T ELT) (($ (-692 |#1|)) 27 T ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-692 |#1|)) NIL T ELT)) (-4466 ((|#2| (-1322 |#1| |#2|) $) 45 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 23 T CONST)) (-3146 (((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4457 (((-3 $ "failed") (-1313 |#1| |#2|)) 62 T ELT)) (-1946 (($ (-692 |#1|)) 14 T ELT)) (-3536 (((-114) $ $) 46 T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 31 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-692 |#1|)) NIL T ELT))) +(((-684 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-692 |#1|)) (-10 -8 (-15 -4457 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -4032 ($ (-692 |#1|) (-692 |#1|))) (-15 -4032 ($ (-692 |#1|) $)) (-15 -4032 ($ $ (-692 |#1|))))) (-870) (-175)) (T -684)) +((-4457 (*1 *1 *2) (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *1 (-684 *3 *4)))) (-4032 (*1 *1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175))))) +(-13 (-387 |#1| |#2|) (-397 |#2| (-692 |#1|)) (-10 -8 (-15 -4457 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -4032 ($ (-692 |#1|) (-692 |#1|))) (-15 -4032 ($ (-692 |#1|) $)) (-15 -4032 ($ $ (-692 |#1|))))) +((-1945 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1943 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1723 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2520 (($ $) 65 T ELT)) (-2604 (($ $) 74 T ELT)) (-3907 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4354 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3921 (((-558) |#2| $ (-558)) 71 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) (-1 (-114) |#2|) $) 54 T ELT)) (-4126 (($ (-791) |#2|) 63 T ELT)) (-3339 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-4020 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-4044 (($ |#2|) 15 T ELT)) (-4119 (($ $ $ (-558)) 42 T ELT) (($ |#2| $ (-558)) 40 T ELT)) (-1478 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-1724 (($ $ (-1264 (-558))) 51 T ELT) (($ $ (-558)) 44 T ELT)) (-1944 (($ $ $ (-558)) 70 T ELT)) (-3902 (($ $) 68 T ELT)) (-3168 (((-114) $ $) 76 T ELT))) +(((-685 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -1724 (|#1| |#1| (-558))) (-15 -1724 (|#1| |#1| (-1264 (-558)))) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4119 (|#1| |#2| |#1| (-558))) (-15 -4119 (|#1| |#1| |#1| (-558))) (-15 -3339 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1723 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1945 ((-114) |#1|)) (-15 -1944 (|#1| |#1| |#1| (-558))) (-15 -2520 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -3168 ((-114) |#1| |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4126 (|#1| (-791) |#2|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1|))) (-686 |#2|) (-1247)) (T -685)) +NIL +(-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -1724 (|#1| |#1| (-558))) (-15 -1724 (|#1| |#1| (-1264 (-558)))) (-15 -3907 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4119 (|#1| |#2| |#1| (-558))) (-15 -4119 (|#1| |#1| |#1| (-558))) (-15 -3339 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1723 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3907 (|#1| |#2| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -4020 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1945 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3921 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -3921 ((-558) |#2| |#1|)) (-15 -3921 ((-558) |#2| |#1| (-558))) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1945 ((-114) |#1|)) (-15 -1944 (|#1| |#1| |#1| (-558))) (-15 -2520 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -3168 ((-114) |#1| |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1478 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4126 (|#1| (-791) |#2|)) (-15 -4470 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3902 (|#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-4307 ((|#1| $) 71 T ELT)) (-4309 (($ $) 73 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 107 (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 58 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) $) 153 (|has| |#1| (-870)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 147 T ELT)) (-1943 (($ $) 157 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1| |#1|) $) 156 (|has| $ (-6 -4508)) ELT)) (-3392 (($ $) 152 (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $) 146 T ELT)) (-3944 (((-114) $ (-791)) 90 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 62 (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) 60 (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 127 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 140 T ELT)) (-4222 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4507)) ELT)) (-4308 ((|#1| $) 72 T ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 155 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 145 T ELT)) (-4311 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-2604 (($ $) 142 (|has| |#1| (-1131)) ELT)) (-1477 (($ $) 109 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 141 (|has| |#1| (-1131)) ELT) (($ (-1 (-114) |#1|) $) 136 T ELT)) (-3908 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4507)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1729 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 97 T ELT)) (-3945 (((-114) $) 93 T ELT)) (-3921 (((-558) |#1| $ (-558)) 150 (|has| |#1| (-1131)) ELT) (((-558) |#1| $) 149 (|has| |#1| (-1131)) ELT) (((-558) (-1 (-114) |#1|) $) 148 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) 119 T ELT)) (-4231 (((-114) $ (-791)) 91 T ELT)) (-2425 (((-558) $) 105 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 163 (|has| |#1| (-870)) ELT)) (-3339 (($ $ $) 143 (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 139 T ELT)) (-4020 (($ $ $) 151 (|has| |#1| (-870)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 144 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 104 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 162 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4044 (($ |#1|) 133 T ELT)) (-4228 (((-114) $ (-791)) 92 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-4119 (($ $ $ (-558)) 138 T ELT) (($ |#1| $ (-558)) 137 T ELT)) (-2527 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2428 (((-661 (-558)) $) 102 T ELT)) (-2429 (((-114) (-558) $) 101 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2424 (($ $ |#1|) 106 (|has| $ (-6 -4508)) ELT)) (-3946 (((-114) $) 94 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 100 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1264 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-1724 (($ $ (-1264 (-558))) 135 T ELT) (($ $ (-558)) 134 T ELT)) (-2528 (($ $ (-1264 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-4304 (($ $) 68 T ELT)) (-4302 (($ $) 65 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) 69 T ELT)) (-4306 (($ $) 70 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 154 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 117 T ELT)) (-4303 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-4314 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 161 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 159 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) 160 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 158 (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-686 |#1|) (-142) (-1247)) (T -686)) +((-4044 (*1 *1 *2) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1247))))) +(-13 (-1180 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -4044 ($ |t#1|)))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1040 |#1|) . T) ((-1131) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870))) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T)) +((-4083 (((-661 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2232 (-661 |#3|)))) |#4| (-661 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2232 (-661 |#3|))) |#4| |#3|) 60 T ELT)) (-3593 (((-791) |#4| |#3|) 18 T ELT)) (-3842 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2538 (((-114) |#4| |#3|) 14 T ELT))) +(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2232 (-661 |#3|))) |#4| |#3|)) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2232 (-661 |#3|)))) |#4| (-661 |#3|))) (-15 -3842 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2538 ((-114) |#4| |#3|)) (-15 -3593 ((-791) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4508))) (-13 (-385 |#1|) (-10 -7 (-6 -4508))) (-706 |#1| |#2| |#3|)) (T -687)) +((-3593 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-791)) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-2538 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-114)) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-3842 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4508)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508)))) (-5 *1 (-687 *4 *5 *2 *3)) (-4 *3 (-706 *4 *5 *2)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-661 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2232 (-661 *7))))) (-5 *1 (-687 *5 *6 *7 *3)) (-5 *4 (-661 *7)) (-4 *3 (-706 *5 *6 *7)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2232 (-661 *4)))) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4))))) +(-10 -7 (-15 -4083 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2232 (-661 |#3|))) |#4| |#3|)) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2232 (-661 |#3|)))) |#4| (-661 |#3|))) (-15 -3842 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2538 ((-114) |#4| |#3|)) (-15 -3593 ((-791) |#4| |#3|))) +((-4083 (((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1="failed")) (|:| -2232 (-661 (-1297 |#1|))))) (-661 (-661 |#1|)) (-661 (-1297 |#1|))) 22 T ELT) (((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|))))) (-709 |#1|) (-661 (-1297 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|)))) (-661 (-661 |#1|)) (-1297 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|)) 14 T ELT)) (-3593 (((-791) (-709 |#1|) (-1297 |#1|)) 30 T ELT)) (-3842 (((-3 (-1297 |#1|) #1#) (-709 |#1|) (-1297 |#1|)) 24 T ELT)) (-2538 (((-114) (-709 |#1|) (-1297 |#1|)) 27 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -4083 ((-2 (|:| |particular| (-3 (-1297 |#1|) #1="failed")) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|))) (-15 -4083 ((-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|)))) (-661 (-661 |#1|)) (-1297 |#1|))) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|))))) (-709 |#1|) (-661 (-1297 |#1|)))) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|))))) (-661 (-661 |#1|)) (-661 (-1297 |#1|)))) (-15 -3842 ((-3 (-1297 |#1|) #1#) (-709 |#1|) (-1297 |#1|))) (-15 -2538 ((-114) (-709 |#1|) (-1297 |#1|))) (-15 -3593 ((-791) (-709 |#1|) (-1297 |#1|)))) (-376)) (T -688)) +((-3593 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-791)) (-5 *1 (-688 *5)))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-688 *5)))) (-3842 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *1 (-688 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| |particular| (-3 (-1297 *5) #1="failed")) (|:| -2232 (-661 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-661 (-1297 *5))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| |particular| (-3 (-1297 *5) #1#)) (|:| -2232 (-661 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-661 (-1297 *5))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) #1#)) (|:| -2232 (-661 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) #1#)) (|:| -2232 (-661 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5))))) +(-10 -7 (-15 -4083 ((-2 (|:| |particular| (-3 (-1297 |#1|) #1="failed")) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|))) (-15 -4083 ((-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|)))) (-661 (-661 |#1|)) (-1297 |#1|))) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|))))) (-709 |#1|) (-661 (-1297 |#1|)))) (-15 -4083 ((-661 (-2 (|:| |particular| (-3 (-1297 |#1|) #1#)) (|:| -2232 (-661 (-1297 |#1|))))) (-661 (-661 |#1|)) (-661 (-1297 |#1|)))) (-15 -3842 ((-3 (-1297 |#1|) #1#) (-709 |#1|) (-1297 |#1|))) (-15 -2538 ((-114) (-709 |#1|) (-1297 |#1|))) (-15 -3593 ((-791) (-709 |#1|) (-1297 |#1|)))) +((-2539 (((-2 (|:| |particular| (-3 (-1297 (-419 |#4|)) "failed")) (|:| -2232 (-661 (-1297 (-419 |#4|))))) (-661 |#4|) (-661 |#3|)) 51 T ELT))) +(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2539 ((-2 (|:| |particular| (-3 (-1297 (-419 |#4|)) "failed")) (|:| -2232 (-661 (-1297 (-419 |#4|))))) (-661 |#4|) (-661 |#3|)))) (-569) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -689)) +((-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *7)) (-4 *7 (-870)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 (-419 *8)) "failed")) (|:| -2232 (-661 (-1297 (-419 *8)))))) (-5 *1 (-689 *5 *6 *7 *8))))) +(-10 -7 (-15 -2539 ((-2 (|:| |particular| (-3 (-1297 (-419 |#4|)) "failed")) (|:| -2232 (-661 (-1297 (-419 |#4|))))) (-661 |#4|) (-661 |#3|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1990 (((-3 $ #1="failed")) NIL (|has| |#2| (-569)) ELT)) (-3832 ((|#2| $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (((-1297 (-709 |#2|))) NIL T ELT) (((-1297 (-709 |#2|)) (-1297 $)) NIL T ELT)) (-3607 (((-114) $) NIL T ELT)) (-1942 (((-1297 $)) 41 T ELT)) (-3835 (($ |#2|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3596 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-2127 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1916 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-2006 (((-709 |#2|)) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-1940 ((|#2| $) NIL T ELT)) (-2004 (((-709 |#2|) $) NIL T ELT) (((-709 |#2|) $ (-1297 $)) NIL T ELT)) (-2645 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2121 (((-1201 (-974 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2648 (($ $ (-947)) NIL T ELT)) (-1938 ((|#2| $) NIL T ELT)) (-1918 (((-1201 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-2008 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-1936 (((-1201 |#2|) $) NIL T ELT)) (-1930 (((-114)) NIL T ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-2010 (($ (-1297 |#2|)) NIL T ELT) (($ (-1297 |#2|) (-1297 $)) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3593 (((-791) $) NIL (|has| |#2| (-569)) ELT) (((-947)) 42 T ELT)) (-3597 ((|#2| $ (-558) (-558)) NIL T ELT)) (-1927 (((-114)) NIL T ELT)) (-2672 (($ $ (-947)) NIL T ELT)) (-3372 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3592 (((-791) $) NIL (|has| |#2| (-569)) ELT)) (-3591 (((-661 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-3599 (((-791) $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3829 ((|#2| $) NIL (|has| |#2| (-6 (-4509 #3="*"))) ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-3608 (($ (-661 (-661 |#2|))) NIL T ELT)) (-2170 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4104 (((-661 (-661 |#2|)) $) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-2128 (((-3 (-2 (|:| |particular| $) (|:| -2232 (-661 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1917 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-2007 (((-709 |#2|)) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-1941 ((|#2| $) NIL T ELT)) (-2005 (((-709 |#2|) $) NIL T ELT) (((-709 |#2|) $ (-1297 $)) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-2646 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2125 (((-1201 (-974 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2647 (($ $ (-947)) NIL T ELT)) (-1939 ((|#2| $) NIL T ELT)) (-1919 (((-1201 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-2009 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-1937 (((-1201 |#2|) $) NIL T ELT)) (-1931 (((-114)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1926 (((-114)) NIL T ELT)) (-4100 (((-3 $ "failed") $) NIL (|has| |#2| (-376)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1929 (((-114)) NIL T ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) 27 T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3831 ((|#2| $) NIL T ELT)) (-3834 (($ (-661 |#2|)) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3833 (((-246 |#1| |#2|) $) NIL T ELT)) (-3830 ((|#2| $) NIL (|has| |#2| (-6 (-4509 #3#))) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-3724 (((-709 |#2|) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT) (((-709 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $ (-1297 $)) 30 T ELT)) (-4484 (($ (-1297 |#2|)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT)) (-2113 (((-661 (-974 |#2|))) NIL T ELT) (((-661 (-974 |#2|)) (-1297 $)) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-1935 (((-114)) NIL T ELT)) (-3595 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-709 |#2|) $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 40 T ELT)) (-1920 (((-661 (-1297 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-2835 (($ $ $ $) NIL T ELT)) (-1933 (((-114)) NIL T ELT)) (-3026 (($ (-709 |#2|) $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-2833 (($ $ $) NIL T ELT)) (-1934 (((-114)) NIL T ELT)) (-1932 (((-114)) NIL T ELT)) (-1928 (((-114)) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-690 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-430 |#2|)) (-947) (-175)) (T -690)) +NIL +(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-430 |#2|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3748 (((-661 (-1165)) $) 10 T ELT)) (-4458 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-691) (-13 (-1113) (-10 -8 (-15 -3748 ((-661 (-1165)) $))))) (T -691)) +((-3748 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-691))))) +(-13 (-1113) (-10 -8 (-15 -3748 ((-661 (-1165)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4446 (((-661 |#1|) $) NIL T ELT)) (-3621 (($ $) 62 T ELT)) (-3145 (((-114) $) NIL T ELT)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-2542 (((-3 $ "failed") (-841 |#1|)) 28 T ELT)) (-2544 (((-114) (-841 |#1|)) 18 T ELT)) (-2543 (($ (-841 |#1|)) 29 T ELT)) (-2917 (((-114) $ $) 36 T ELT)) (-4345 (((-947) $) 43 T ELT)) (-3622 (($ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4244 (((-661 $) (-841 |#1|)) 20 T ELT)) (-4458 (((-886) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-841 |#1|) $) 47 T ELT) (((-697 |#1|) $) 52 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2541 (((-58 (-661 $)) (-661 |#1|) (-947)) 67 T ELT)) (-2540 (((-661 $) (-661 |#1|) (-947)) 70 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 63 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 46 T ELT))) +(((-692 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 -3145 ((-114) $)) (-15 -3622 ($ $)) (-15 -3621 ($ $)) (-15 -4345 ((-947) $)) (-15 -2917 ((-114) $ $)) (-15 -4458 ((-841 |#1|) $)) (-15 -4458 ((-697 |#1|) $)) (-15 -4244 ((-661 $) (-841 |#1|))) (-15 -2544 ((-114) (-841 |#1|))) (-15 -2543 ($ (-841 |#1|))) (-15 -2542 ((-3 $ "failed") (-841 |#1|))) (-15 -4446 ((-661 |#1|) $)) (-15 -2541 ((-58 (-661 $)) (-661 |#1|) (-947))) (-15 -2540 ((-661 $) (-661 |#1|) (-947))))) (-870)) (T -692)) +((-3145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-3622 (*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-870)))) (-3621 (*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-870)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-2917 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-870)) (-5 *2 (-661 (-692 *4))) (-5 *1 (-692 *4)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-870)) (-5 *2 (-114)) (-5 *1 (-692 *4)))) (-2543 (*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-870)) (-5 *1 (-692 *3)))) (-2542 (*1 *1 *2) (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-870)) (-5 *1 (-692 *3)))) (-4446 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-947)) (-4 *5 (-870)) (-5 *2 (-58 (-661 (-692 *5)))) (-5 *1 (-692 *5)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-947)) (-4 *5 (-870)) (-5 *2 (-661 (-692 *5))) (-5 *1 (-692 *5))))) +(-13 (-870) (-1068 |#1|) (-10 -8 (-15 -3145 ((-114) $)) (-15 -3622 ($ $)) (-15 -3621 ($ $)) (-15 -4345 ((-947) $)) (-15 -2917 ((-114) $ $)) (-15 -4458 ((-841 |#1|) $)) (-15 -4458 ((-697 |#1|) $)) (-15 -4244 ((-661 $) (-841 |#1|))) (-15 -2544 ((-114) (-841 |#1|))) (-15 -2543 ($ (-841 |#1|))) (-15 -2542 ((-3 $ "failed") (-841 |#1|))) (-15 -4446 ((-661 |#1|) $)) (-15 -2541 ((-58 (-661 $)) (-661 |#1|) (-947))) (-15 -2540 ((-661 $) (-661 |#1|) (-947))))) +((-3904 ((|#2| $) 100 T ELT)) (-4309 (($ $) 121 T ELT)) (-3944 (((-114) $ (-791)) 35 T ELT)) (-4311 (($ $) 109 T ELT) (($ $ (-791)) 112 T ELT)) (-3945 (((-114) $) 122 T ELT)) (-3514 (((-661 $) $) 96 T ELT)) (-3510 (((-114) $ $) 92 T ELT)) (-4231 (((-114) $ (-791)) 33 T ELT)) (-2425 (((-558) $) 66 T ELT)) (-2426 (((-558) $) 65 T ELT)) (-4228 (((-114) $ (-791)) 31 T ELT)) (-4029 (((-114) $) 98 T ELT)) (-4310 ((|#2| $) 113 T ELT) (($ $ (-791)) 117 T ELT)) (-2527 (($ $ $ (-558)) 83 T ELT) (($ |#2| $ (-558)) 82 T ELT)) (-2428 (((-661 (-558)) $) 64 T ELT)) (-2429 (((-114) (-558) $) 59 T ELT)) (-4313 ((|#2| $) NIL T ELT) (($ $ (-791)) 108 T ELT)) (-4281 (($ $ (-558)) 125 T ELT)) (-3946 (((-114) $) 124 T ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-2430 (((-661 |#2|) $) 46 T ELT)) (-4312 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1264 (-558))) 79 T ELT) ((|#2| $ (-558)) 57 T ELT) ((|#2| $ (-558) |#2|) 58 T ELT)) (-3512 (((-558) $ $) 91 T ELT)) (-2528 (($ $ (-1264 (-558))) 78 T ELT) (($ $ (-558)) 72 T ELT)) (-4145 (((-114) $) 87 T ELT)) (-4304 (($ $) 105 T ELT)) (-4305 (((-791) $) 104 T ELT)) (-4306 (($ $) 103 T ELT)) (-4032 (($ (-661 |#2|)) 53 T ELT)) (-3374 (($ $) 126 T ELT)) (-4024 (((-661 $) $) 90 T ELT)) (-3511 (((-114) $ $) 89 T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-3536 (((-114) $ $) 20 T ELT)) (-4469 (((-791) $) 39 T ELT))) +(((-693 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -3374 (|#1| |#1|)) (-15 -4281 (|#1| |#1| (-558))) (-15 -3944 ((-114) |#1| (-791))) (-15 -4231 ((-114) |#1| (-791))) (-15 -4228 ((-114) |#1| (-791))) (-15 -3945 ((-114) |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -2430 ((-661 |#2|) |#1|)) (-15 -2429 ((-114) (-558) |#1|)) (-15 -2428 ((-661 (-558)) |#1|)) (-15 -2426 ((-558) |#1|)) (-15 -2425 ((-558) |#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -4304 (|#1| |#1|)) (-15 -4305 ((-791) |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4310 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "last")) (-15 -4310 (|#2| |#1|)) (-15 -4311 (|#1| |#1| (-791))) (-15 -4312 (|#1| |#1| "rest")) (-15 -4311 (|#1| |#1|)) (-15 -4313 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "first")) (-15 -4313 (|#2| |#1|)) (-15 -3510 ((-114) |#1| |#1|)) (-15 -3511 ((-114) |#1| |#1|)) (-15 -3512 ((-558) |#1| |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| "value")) (-15 -3904 (|#2| |#1|)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) (-694 |#2|) (-1247)) (T -693)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -3374 (|#1| |#1|)) (-15 -4281 (|#1| |#1| (-558))) (-15 -3944 ((-114) |#1| (-791))) (-15 -4231 ((-114) |#1| (-791))) (-15 -4228 ((-114) |#1| (-791))) (-15 -3945 ((-114) |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -2430 ((-661 |#2|) |#1|)) (-15 -2429 ((-114) (-558) |#1|)) (-15 -2428 ((-661 (-558)) |#1|)) (-15 -2426 ((-558) |#1|)) (-15 -2425 ((-558) |#1|)) (-15 -4032 (|#1| (-661 |#2|))) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -2528 (|#1| |#1| (-558))) (-15 -2528 (|#1| |#1| (-1264 (-558)))) (-15 -2527 (|#1| |#2| |#1| (-558))) (-15 -2527 (|#1| |#1| |#1| (-558))) (-15 -4304 (|#1| |#1|)) (-15 -4305 ((-791) |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4310 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "last")) (-15 -4310 (|#2| |#1|)) (-15 -4311 (|#1| |#1| (-791))) (-15 -4312 (|#1| |#1| "rest")) (-15 -4311 (|#1| |#1|)) (-15 -4313 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "first")) (-15 -4313 (|#2| |#1|)) (-15 -3510 ((-114) |#1| |#1|)) (-15 -3511 ((-114) |#1| |#1|)) (-15 -3512 ((-558) |#1| |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| "value")) (-15 -3904 (|#2| |#1|)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4469 ((-791) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-4307 ((|#1| $) 71 T ELT)) (-4309 (($ $) 73 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 107 (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 58 (|has| $ (-6 -4508)) ELT)) (-3944 (((-114) $ (-791)) 90 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 62 (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) 60 (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 127 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 112 T ELT)) (-4308 ((|#1| $) 72 T ELT)) (-4236 (($) 7 T CONST)) (-2546 (($ $) 135 T ELT)) (-4311 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-1477 (($ $) 109 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 110 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 113 T ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1729 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 97 T ELT)) (-3945 (((-114) $) 93 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-2545 (((-791) $) 134 T ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) 119 T ELT)) (-4231 (((-114) $ (-791)) 91 T ELT)) (-2425 (((-558) $) 105 (|has| (-558) (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 104 (|has| (-558) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4228 (((-114) $ (-791)) 92 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-2548 (($ $) 137 T ELT)) (-2549 (((-114) $) 138 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-2527 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2428 (((-661 (-558)) $) 102 T ELT)) (-2429 (((-114) (-558) $) 101 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2547 ((|#1| $) 136 T ELT)) (-4313 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2424 (($ $ |#1|) 106 (|has| $ (-6 -4508)) ELT)) (-4281 (($ $ (-558)) 133 T ELT)) (-3946 (((-114) $) 94 T ELT)) (-2550 (((-114) $) 139 T ELT)) (-2551 (((-114) $) 140 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 100 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1264 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-2528 (($ $ (-1264 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-4304 (($ $) 68 T ELT)) (-4302 (($ $) 65 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) 69 T ELT)) (-4306 (($ $) 70 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 117 T ELT)) (-4303 (($ $ $) 67 (|has| $ (-6 -4508)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4508)) ELT)) (-4314 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3374 (($ $) 132 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-694 |#1|) (-142) (-1247)) (T -694)) +((-3908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2548 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247)))) (-2547 (*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247)))) (-2546 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) (-3374 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247))))) +(-13 (-1180 |t#1|) (-10 -8 (-15 -3908 ($ (-1 (-114) |t#1|) $)) (-15 -4222 ($ (-1 (-114) |t#1|) $)) (-15 -2551 ((-114) $)) (-15 -2550 ((-114) $)) (-15 -2549 ((-114) $)) (-15 -2548 ($ $)) (-15 -2547 (|t#1| $)) (-15 -2546 ($ $)) (-15 -2545 ((-791) $)) (-15 -4281 ($ $ (-558))) (-15 -3374 ($ $)))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2557 (($ (-791) (-791) (-791)) 53 (|has| |#1| (-1079)) ELT)) (-2554 ((|#1| $ (-791) (-791) (-791) |#1|) 47 T ELT)) (-4236 (($) NIL T CONST)) (-2555 (($ $ $) 57 (|has| |#1| (-1079)) ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2552 (((-1297 (-791)) $) 12 T ELT)) (-2553 (($ (-1207) $ $) 34 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2556 (($ (-791)) 55 (|has| |#1| (-1079)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-791) (-791) (-791)) 44 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4032 (($ (-661 (-661 (-661 |#1|)))) 67 T ELT)) (-4458 (($ (-986 (-986 (-986 |#1|)))) 23 T ELT) (((-986 (-986 (-986 |#1|))) $) 19 T ELT) (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-695 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -2557 ($ (-791) (-791) (-791))) (-15 -2556 ($ (-791))) (-15 -2555 ($ $ $))) |%noBranch|) (-15 -4032 ($ (-661 (-661 (-661 |#1|))))) (-15 -4312 (|#1| $ (-791) (-791) (-791))) (-15 -2554 (|#1| $ (-791) (-791) (-791) |#1|)) (-15 -4458 ($ (-986 (-986 (-986 |#1|))))) (-15 -4458 ((-986 (-986 (-986 |#1|))) $)) (-15 -2553 ($ (-1207) $ $)) (-15 -2552 ((-1297 (-791)) $)))) (-1131)) (T -695)) +((-2557 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1079)) (-4 *3 (-1131)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1079)) (-4 *3 (-1131)))) (-2555 (*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1079)) (-4 *2 (-1131)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-661 *3)))) (-4 *3 (-1131)) (-5 *1 (-695 *3)))) (-4312 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1131)))) (-2554 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1131)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1131)) (-5 *1 (-695 *3)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-695 *3)) (-4 *3 (-1131)))) (-2553 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-695 *3)) (-4 *3 (-1131)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-1297 (-791))) (-5 *1 (-695 *3)) (-4 *3 (-1131))))) +(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -2557 ($ (-791) (-791) (-791))) (-15 -2556 ($ (-791))) (-15 -2555 ($ $ $))) |%noBranch|) (-15 -4032 ($ (-661 (-661 (-661 |#1|))))) (-15 -4312 (|#1| $ (-791) (-791) (-791))) (-15 -2554 (|#1| $ (-791) (-791) (-791) |#1|)) (-15 -4458 ($ (-986 (-986 (-986 |#1|))))) (-15 -4458 ((-986 (-986 (-986 |#1|))) $)) (-15 -2553 ($ (-1207) $ $)) (-15 -2552 ((-1297 (-791)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3678 (((-495) $) 10 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-696) (-13 (-1113) (-10 -8 (-15 -3678 ((-495) $)) (-15 -3733 ((-1165) $))))) (T -696)) +((-3678 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-696)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-696))))) +(-13 (-1113) (-10 -8 (-15 -3678 ((-495) $)) (-15 -3733 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4446 (((-661 |#1|) $) 15 T ELT)) (-3621 (($ $) 19 T ELT)) (-3145 (((-114) $) 20 T ELT)) (-3657 (((-3 |#1| "failed") $) 23 T ELT)) (-3656 ((|#1| $) 21 T ELT)) (-4311 (($ $) 37 T ELT)) (-4448 (($ $) 25 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-2917 (((-114) $ $) 46 T ELT)) (-4345 (((-947) $) 40 T ELT)) (-3622 (($ $) 18 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 ((|#1| $) 36 T ELT)) (-4458 (((-886) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-841 |#1|) $) 28 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 13 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-697 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4458 ((-841 |#1|) $)) (-15 -4313 (|#1| $)) (-15 -3622 ($ $)) (-15 -4345 ((-947) $)) (-15 -2917 ((-114) $ $)) (-15 -4448 ($ $)) (-15 -4311 ($ $)) (-15 -3145 ((-114) $)) (-15 -3621 ($ $)) (-15 -4446 ((-661 |#1|) $)))) (-870)) (T -697)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) (-4313 (*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-3622 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) (-2917 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) (-4448 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-4311 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) (-3621 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) (-4446 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-697 *3)) (-4 *3 (-870))))) +(-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4458 ((-841 |#1|) $)) (-15 -4313 (|#1| $)) (-15 -3622 ($ $)) (-15 -4345 ((-947) $)) (-15 -2917 ((-114) $ $)) (-15 -4448 ($ $)) (-15 -4311 ($ $)) (-15 -3145 ((-114) $)) (-15 -3621 ($ $)) (-15 -4446 ((-661 |#1|) $)))) +((-2566 ((|#1| (-1 |#1| (-791) |#1|) (-791) |#1|) 11 T ELT)) (-2558 ((|#1| (-1 |#1| |#1|) (-791) |#1|) 9 T ELT))) +(((-698 |#1|) (-10 -7 (-15 -2558 (|#1| (-1 |#1| |#1|) (-791) |#1|)) (-15 -2566 (|#1| (-1 |#1| (-791) |#1|) (-791) |#1|))) (-1131)) (T -698)) +((-2566 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-791) *2)) (-5 *4 (-791)) (-4 *2 (-1131)) (-5 *1 (-698 *2)))) (-2558 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-791)) (-4 *2 (-1131)) (-5 *1 (-698 *2))))) +(-10 -7 (-15 -2558 (|#1| (-1 |#1| |#1|) (-791) |#1|)) (-15 -2566 (|#1| (-1 |#1| (-791) |#1|) (-791) |#1|))) +((-2560 ((|#2| |#1| |#2|) 9 T ELT)) (-2559 ((|#1| |#1| |#2|) 8 T ELT))) +(((-699 |#1| |#2|) (-10 -7 (-15 -2559 (|#1| |#1| |#2|)) (-15 -2560 (|#2| |#1| |#2|))) (-1131) (-1131)) (T -699)) +((-2560 (*1 *2 *3 *2) (-12 (-5 *1 (-699 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2559 (*1 *2 *2 *3) (-12 (-5 *1 (-699 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2559 (|#1| |#1| |#2|)) (-15 -2560 (|#2| |#1| |#2|))) +((-2561 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2561 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1131) (-1131) (-1131)) (T -700)) +((-2561 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-700 *5 *6 *2))))) +(-10 -7 (-15 -2561 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3818 (((-1248) $) 21 T ELT)) (-3817 (((-661 (-1248)) $) 19 T ELT)) (-2562 (($ (-661 (-1248)) (-1248)) 14 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 29 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 22 T ELT) (($ (-1145)) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-701) (-13 (-1113) (-630 (-1248)) (-10 -8 (-15 -4458 ($ (-1145))) (-15 -2562 ($ (-661 (-1248)) (-1248))) (-15 -3817 ((-661 (-1248)) $)) (-15 -3818 ((-1248) $))))) (T -701)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-701)))) (-2562 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1248))) (-5 *3 (-1248)) (-5 *1 (-701)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-701)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-701))))) +(-13 (-1113) (-630 (-1248)) (-10 -8 (-15 -4458 ($ (-1145))) (-15 -2562 ($ (-661 (-1248)) (-1248))) (-15 -3817 ((-661 (-1248)) $)) (-15 -3818 ((-1248) $)))) +((-2566 (((-1 |#1| (-791) |#1|) (-1 |#1| (-791) |#1|)) 26 T ELT)) (-2563 (((-1 |#1|) |#1|) 8 T ELT)) (-2565 ((|#1| |#1|) 19 T ELT)) (-2564 (((-661 |#1|) (-1 (-661 |#1|) (-661 |#1|)) (-558)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4458 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-791)) 23 T ELT))) +(((-702 |#1|) (-10 -7 (-15 -2563 ((-1 |#1|) |#1|)) (-15 -4458 ((-1 |#1|) |#1|)) (-15 -2564 (|#1| (-1 |#1| |#1|))) (-15 -2564 ((-661 |#1|) (-1 (-661 |#1|) (-661 |#1|)) (-558))) (-15 -2565 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-791))) (-15 -2566 ((-1 |#1| (-791) |#1|) (-1 |#1| (-791) |#1|)))) (-1131)) (T -702)) +((-2566 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-791) *3)) (-4 *3 (-1131)) (-5 *1 (-702 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *4 (-1131)) (-5 *1 (-702 *4)))) (-2565 (*1 *2 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-1131)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-661 *5) (-661 *5))) (-5 *4 (-558)) (-5 *2 (-661 *5)) (-5 *1 (-702 *5)) (-4 *5 (-1131)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-702 *2)) (-4 *2 (-1131)))) (-4458 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1131)))) (-2563 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2563 ((-1 |#1|) |#1|)) (-15 -4458 ((-1 |#1|) |#1|)) (-15 -2564 (|#1| (-1 |#1| |#1|))) (-15 -2564 ((-661 |#1|) (-1 (-661 |#1|) (-661 |#1|)) (-558))) (-15 -2565 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-791))) (-15 -2566 ((-1 |#1| (-791) |#1|) (-1 |#1| (-791) |#1|)))) +((-2569 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2568 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4464 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2567 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-703 |#1| |#2|) (-10 -7 (-15 -2567 ((-1 |#2| |#1|) |#2|)) (-15 -2568 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4464 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2569 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1131) (-1131)) (T -703)) +((-2569 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)))) (-4464 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)) (-4 *4 (-1131)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5)) (-5 *1 (-703 *4 *5)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-703 *4 *3)) (-4 *4 (-1131)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2567 ((-1 |#2| |#1|) |#2|)) (-15 -2568 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4464 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2569 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2574 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2570 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2571 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2572 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2573 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-704 |#1| |#2| |#3|) (-10 -7 (-15 -2570 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2571 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2572 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2573 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2574 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1131) (-1131) (-1131)) (T -704)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-1 *7 *5)) (-5 *1 (-704 *5 *6 *7)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-704 *4 *5 *6)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-1131)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *5 (-1131)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1131)) (-4 *4 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *5 *4 *6))))) +(-10 -7 (-15 -2570 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2571 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2572 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2573 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2574 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4350 (($ (-791) (-791)) 42 T ELT)) (-2579 (($ $ $) 73 T ELT)) (-3916 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3605 (((-114) $) 36 T ELT)) (-2578 (($ $ (-558) (-558)) 84 T ELT)) (-2577 (($ $ (-558) (-558)) 85 T ELT)) (-2576 (($ $ (-558) (-558) (-558) (-558)) 90 T ELT)) (-2581 (($ $) 71 T ELT)) (-3607 (((-114) $) 15 T ELT)) (-2575 (($ $ (-558) (-558) $) 91 T ELT)) (-4300 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) 89 T ELT)) (-3835 (($ (-791) |#2|) 55 T ELT)) (-3608 (($ (-661 (-661 |#2|))) 51 T ELT) (($ (-791) (-791) (-1 |#2| (-558) (-558))) 53 T ELT)) (-4104 (((-661 (-661 |#2|)) $) 80 T ELT)) (-2580 (($ $ $) 72 T ELT)) (-3968 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-4312 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) 88 T ELT)) (-3834 (($ (-661 |#2|)) 56 T ELT) (($ (-661 $)) 58 T ELT)) (-3606 (((-114) $) 28 T ELT)) (-4458 (($ |#4|) 63 T ELT) (((-886) $) NIL T ELT)) (-3604 (((-114) $) 38 T ELT)) (-4461 (($ $ |#2|) 124 T ELT)) (-4349 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-4351 (($ $ $) 93 T ELT)) (** (($ $ (-791)) 111 T ELT) (($ $ (-558)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-558) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-705 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4458 ((-886) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4461 (|#1| |#1| |#2|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -2575 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2576 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2577 (|#1| |#1| (-558) (-558))) (-15 -2578 (|#1| |#1| (-558) (-558))) (-15 -4300 (|#1| |#1| (-661 (-558)) (-661 (-558)) |#1|)) (-15 -4312 (|#1| |#1| (-661 (-558)) (-661 (-558)))) (-15 -4104 ((-661 (-661 |#2|)) |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3916 (|#1| |#3|)) (-15 -4458 (|#1| |#4|)) (-15 -3834 (|#1| (-661 |#1|))) (-15 -3834 (|#1| (-661 |#2|))) (-15 -3835 (|#1| (-791) |#2|)) (-15 -3608 (|#1| (-791) (-791) (-1 |#2| (-558) (-558)))) (-15 -3608 (|#1| (-661 (-661 |#2|)))) (-15 -4350 (|#1| (-791) (-791))) (-15 -3604 ((-114) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 -3607 ((-114) |#1|)) (-15 -4300 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558)))) (-706 |#2| |#3| |#4|) (-1079) (-385 |#2|) (-385 |#2|)) (T -705)) +NIL +(-10 -8 (-15 -4458 ((-886) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4461 (|#1| |#1| |#2|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -2575 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2576 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2577 (|#1| |#1| (-558) (-558))) (-15 -2578 (|#1| |#1| (-558) (-558))) (-15 -4300 (|#1| |#1| (-661 (-558)) (-661 (-558)) |#1|)) (-15 -4312 (|#1| |#1| (-661 (-558)) (-661 (-558)))) (-15 -4104 ((-661 (-661 |#2|)) |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3916 (|#1| |#3|)) (-15 -4458 (|#1| |#4|)) (-15 -3834 (|#1| (-661 |#1|))) (-15 -3834 (|#1| (-661 |#2|))) (-15 -3835 (|#1| (-791) |#2|)) (-15 -3608 (|#1| (-791) (-791) (-1 |#2| (-558) (-558)))) (-15 -3608 (|#1| (-661 (-661 |#2|)))) (-15 -4350 (|#1| (-791) (-791))) (-15 -3604 ((-114) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 -3607 ((-114) |#1|)) (-15 -4300 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) (-558)))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4350 (($ (-791) (-791)) 103 T ELT)) (-2579 (($ $ $) 92 T ELT)) (-3916 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3605 (((-114) $) 105 T ELT)) (-2578 (($ $ (-558) (-558)) 88 T ELT)) (-2577 (($ $ (-558) (-558)) 87 T ELT)) (-2576 (($ $ (-558) (-558) (-558) (-558)) 86 T ELT)) (-2581 (($ $) 94 T ELT)) (-3607 (((-114) $) 107 T ELT)) (-2575 (($ $ (-558) (-558) $) 85 T ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) 48 T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) 89 T ELT)) (-1373 (($ $ (-558) |#2|) 46 T ELT)) (-1372 (($ $ (-558) |#3|) 45 T ELT)) (-3835 (($ (-791) |#1|) 100 T ELT)) (-4236 (($) 7 T CONST)) (-3594 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3596 ((|#2| $ (-558)) 50 T ELT)) (-3593 (((-791) $) 71 (|has| |#1| (-569)) ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3597 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3372 (((-661 |#1|) $) 30 T ELT)) (-3592 (((-791) $) 70 (|has| |#1| (-569)) ELT)) (-3591 (((-661 |#3|) $) 69 (|has| |#1| (-569)) ELT)) (-3599 (((-791) $) 55 T ELT)) (-4126 (($ (-791) (-791) |#1|) 61 T ELT)) (-3598 (((-791) $) 54 T ELT)) (-3829 ((|#1| $) 67 (|has| |#1| (-6 (-4509 #1="*"))) ELT)) (-3603 (((-558) $) 59 T ELT)) (-3601 (((-558) $) 57 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3602 (((-558) $) 58 T ELT)) (-3600 (((-558) $) 56 T ELT)) (-3608 (($ (-661 (-661 |#1|))) 102 T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) 101 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-4104 (((-661 (-661 |#1|)) $) 91 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4100 (((-3 $ "failed") $) 66 (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) 93 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) 60 T ELT)) (-3968 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT) (($ $ (-661 (-558)) (-661 (-558))) 90 T ELT)) (-3834 (($ (-661 |#1|)) 99 T ELT) (($ (-661 $)) 98 T ELT)) (-3606 (((-114) $) 106 T ELT)) (-3830 ((|#1| $) 68 (|has| |#1| (-6 (-4509 #1#))) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-3595 ((|#3| $ (-558)) 49 T ELT)) (-4458 (($ |#3|) 97 T ELT) (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) 104 T ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4461 (($ $ |#1|) 73 (|has| |#1| (-376)) ELT)) (-4349 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-4351 (($ $ $) 84 T ELT)) (** (($ $ (-791)) 75 T ELT) (($ $ (-558)) 65 (|has| |#1| (-376)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-558) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-706 |#1| |#2| |#3|) (-142) (-1079) (-385 |t#1|) (-385 |t#1|)) (T -706)) +((-3607 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4350 (*1 *1 *2 *2) (-12 (-5 *2 (-791)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3608 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1079)) (-4 *1 (-706 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3835 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4458 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3916 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-706 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3916 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2580 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-661 (-661 *3))))) (-4312 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4300 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2578 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2577 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2576 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2575 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4349 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-706 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-706 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3968 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-4461 (*1 *1 *1 *2) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-661 *5)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4509 #1="*"))) (-4 *2 (-1079)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4509 #1#))) (-4 *2 (-1079)))) (-4100 (*1 *1 *1) (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4508) (-6 -4507) (-15 -3607 ((-114) $)) (-15 -3606 ((-114) $)) (-15 -3605 ((-114) $)) (-15 -3604 ((-114) $)) (-15 -4350 ($ (-791) (-791))) (-15 -3608 ($ (-661 (-661 |t#1|)))) (-15 -3608 ($ (-791) (-791) (-1 |t#1| (-558) (-558)))) (-15 -3835 ($ (-791) |t#1|)) (-15 -3834 ($ (-661 |t#1|))) (-15 -3834 ($ (-661 $))) (-15 -4458 ($ |t#3|)) (-15 -3916 ($ |t#2|)) (-15 -3916 ($ $)) (-15 -2581 ($ $)) (-15 -2580 ($ $ $)) (-15 -2579 ($ $ $)) (-15 -4104 ((-661 (-661 |t#1|)) $)) (-15 -4312 ($ $ (-661 (-558)) (-661 (-558)))) (-15 -4300 ($ $ (-661 (-558)) (-661 (-558)) $)) (-15 -2578 ($ $ (-558) (-558))) (-15 -2577 ($ $ (-558) (-558))) (-15 -2576 ($ $ (-558) (-558) (-558) (-558))) (-15 -2575 ($ $ (-558) (-558) $)) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)) (-15 -4349 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-558) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-791))) (IF (|has| |t#1| (-569)) (-15 -3968 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -4461 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -3594 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3593 ((-791) $)) (-15 -3592 ((-791) $)) (-15 -3591 ((-661 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4509 "*"))) (PROGN (-15 -3830 (|t#1| $)) (-15 -3829 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4100 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-57 |#1| |#2| |#3|) . T) ((-1247) . T)) +((-4354 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4470 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4470 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4470 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4354 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1079) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|) (-1079) (-385 |#5|) (-385 |#5|) (-706 |#5| |#6| |#7|)) (T -707)) +((-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-706 *5 *6 *7)) (-4 *10 (-706 *2 *8 *9)))) (-4470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) +(-10 -7 (-15 -4470 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4470 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4354 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3594 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-3593 (((-791) |#4|) 121 (|has| |#1| (-569)) ELT)) (-3592 (((-791) |#4|) 96 (|has| |#1| (-569)) ELT)) (-3591 (((-661 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-2620 (((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|) 137 (|has| |#1| (-319)) ELT)) (-3829 ((|#1| |#4|) 52 T ELT)) (-2586 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-4100 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-376)) ELT)) (-2585 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-2583 ((|#4| |#4| |#1| (-558) (-558)) 60 T ELT)) (-2582 ((|#4| |#4| (-558) (-558)) 55 T ELT)) (-2584 ((|#4| |#4| |#1| (-558) (-558)) 65 T ELT)) (-3830 ((|#1| |#4|) 98 T ELT)) (-2998 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3830 (|#1| |#4|)) (-15 -3829 (|#1| |#4|)) (-15 -2582 (|#4| |#4| (-558) (-558))) (-15 -2583 (|#4| |#4| |#1| (-558) (-558))) (-15 -2584 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-569)) (PROGN (-15 -3593 ((-791) |#4|)) (-15 -3592 ((-791) |#4|)) (-15 -3591 ((-661 |#3|) |#4|)) (-15 -2585 (|#4| |#4|)) (-15 -2586 ((-3 |#4| "failed") |#4|)) (-15 -2998 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3594 (|#4| |#4|)) (-15 -2620 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4100 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -708)) +((-4100 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2620 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-708 *3 *4 *5 *6)) (-4 *6 (-706 *3 *4 *5)))) (-3594 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-2586 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-661 *6)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3592 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-2584 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6)))) (-2583 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6)))) (-2582 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-708 *4 *5 *6 *2)) (-4 *2 (-706 *4 *5 *6)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5))))) +(-10 -7 (-15 -3830 (|#1| |#4|)) (-15 -3829 (|#1| |#4|)) (-15 -2582 (|#4| |#4| (-558) (-558))) (-15 -2583 (|#4| |#4| |#1| (-558) (-558))) (-15 -2584 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-569)) (PROGN (-15 -3593 ((-791) |#4|)) (-15 -3592 ((-791) |#4|)) (-15 -3591 ((-661 |#3|) |#4|)) (-15 -2585 (|#4| |#4|)) (-15 -2586 ((-3 |#4| "failed") |#4|)) (-15 -2998 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3594 (|#4| |#4|)) (-15 -2620 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4100 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791) (-791)) 64 T ELT)) (-2579 (($ $ $) NIL T ELT)) (-3916 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2578 (($ $ (-558) (-558)) 22 T ELT)) (-2577 (($ $ (-558) (-558)) NIL T ELT)) (-2576 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2581 (($ $) NIL T ELT)) (-3607 (((-114) $) NIL T ELT)) (-2575 (($ $ (-558) (-558) $) NIL T ELT)) (-4300 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1373 (($ $ (-558) (-1297 |#1|)) NIL T ELT)) (-1372 (($ $ (-558) (-1297 |#1|)) NIL T ELT)) (-3835 (($ (-791) |#1|) 37 T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3596 (((-1297 |#1|) $ (-558)) NIL T ELT)) (-3593 (((-791) $) 48 (|has| |#1| (-569)) ELT)) (-1729 ((|#1| $ (-558) (-558) |#1|) 69 T ELT)) (-3597 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL T ELT)) (-3592 (((-791) $) 50 (|has| |#1| (-569)) ELT)) (-3591 (((-661 (-1297 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-3599 (((-791) $) 32 T ELT)) (-4126 (($ (-791) (-791) |#1|) 28 T ELT)) (-3598 (((-791) $) 33 T ELT)) (-3829 ((|#1| $) 44 (|has| |#1| (-6 (-4509 #1="*"))) ELT)) (-3603 (((-558) $) 10 T ELT)) (-3601 (((-558) $) 11 T ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3602 (((-558) $) 14 T ELT)) (-3600 (((-558) $) 65 T ELT)) (-3608 (($ (-661 (-661 |#1|))) NIL T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4104 (((-661 (-661 |#1|)) $) 76 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4100 (((-3 $ #2="failed") $) 60 (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2424 (($ $ |#1|) NIL T ELT)) (-3968 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3834 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ (-1297 |#1|)) 70 T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3830 ((|#1| $) 42 (|has| |#1| (-6 (-4509 #1#))) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) 80 (|has| |#1| (-631 (-547))) ELT)) (-3595 (((-1297 |#1|) $ (-558)) NIL T ELT)) (-4458 (($ (-1297 |#1|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) 38 T ELT) (($ $ (-558)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) NIL T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-709 |#1|) (-13 (-706 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3834 ($ (-1297 |#1|))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4100 ((-3 $ "failed") $)) |%noBranch|))) (-1079)) (T -709)) +((-4100 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2)) (-4 *2 (-376)) (-4 *2 (-1079)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-709 *3))))) +(-13 (-706 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3834 ($ (-1297 |#1|))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4100 ((-3 $ "failed") $)) |%noBranch|))) +((-2592 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 37 T ELT)) (-2591 (((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|) 32 T ELT)) (-2593 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-791)) 43 T ELT)) (-2588 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 25 T ELT)) (-2589 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 29 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 27 T ELT)) (-2590 (((-709 |#1|) (-709 |#1|) |#1| (-709 |#1|)) 31 T ELT)) (-2587 (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 23 T ELT)) (** (((-709 |#1|) (-709 |#1|) (-791)) 46 T ELT))) +(((-710 |#1|) (-10 -7 (-15 -2587 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2588 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2589 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2589 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2590 ((-709 |#1|) (-709 |#1|) |#1| (-709 |#1|))) (-15 -2591 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2592 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2593 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-791))) (-15 ** ((-709 |#1|) (-709 |#1|) (-791)))) (-1079)) (T -710)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-710 *4)))) (-2593 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-710 *4)))) (-2592 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2591 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2590 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2589 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2589 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2588 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) (-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(-10 -7 (-15 -2587 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2588 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2589 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2589 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2590 ((-709 |#1|) (-709 |#1|) |#1| (-709 |#1|))) (-15 -2591 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2592 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2593 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-791))) (-15 ** ((-709 |#1|) (-709 |#1|) (-791)))) +((-3657 (((-3 |#1| "failed") $) 18 T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-2594 (($) 7 T CONST)) (-2595 (($ |#1|) 8 T ELT)) (-4458 (($ |#1|) 16 T ELT) (((-886) $) 23 T ELT)) (-4076 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2594)) 11 T ELT)) (-4082 ((|#1| $) 15 T ELT))) +(((-711 |#1|) (-13 (-1293) (-1068 |#1|) (-630 (-886)) (-10 -8 (-15 -2595 ($ |#1|)) (-15 -4076 ((-114) $ (|[\|\|]| |#1|))) (-15 -4076 ((-114) $ (|[\|\|]| -2594))) (-15 -4082 (|#1| $)) (-15 -2594 ($) -4464))) (-630 (-886))) (T -711)) +((-2595 (*1 *1 *2) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886))))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-630 (-886))) (-5 *2 (-114)) (-5 *1 (-711 *4)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2594)) (-5 *2 (-114)) (-5 *1 (-711 *4)) (-4 *4 (-630 (-886))))) (-4082 (*1 *2 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886))))) (-2594 (*1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886)))))) +(-13 (-1293) (-1068 |#1|) (-630 (-886)) (-10 -8 (-15 -2595 ($ |#1|)) (-15 -4076 ((-114) $ (|[\|\|]| |#1|))) (-15 -4076 ((-114) $ (|[\|\|]| -2594))) (-15 -4082 (|#1| $)) (-15 -2594 ($) -4464))) +((-2598 ((|#2| |#2| |#4|) 29 T ELT)) (-2601 (((-709 |#2|) |#3| |#4|) 35 T ELT)) (-2599 (((-709 |#2|) |#2| |#4|) 34 T ELT)) (-2596 (((-1297 |#2|) |#2| |#4|) 16 T ELT)) (-2597 ((|#2| |#3| |#4|) 28 T ELT)) (-2602 (((-709 |#2|) |#3| |#4| (-791) (-791)) 47 T ELT)) (-2600 (((-709 |#2|) |#2| |#4| (-791)) 46 T ELT))) +(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2596 ((-1297 |#2|) |#2| |#4|)) (-15 -2597 (|#2| |#3| |#4|)) (-15 -2598 (|#2| |#2| |#4|)) (-15 -2599 ((-709 |#2|) |#2| |#4|)) (-15 -2600 ((-709 |#2|) |#2| |#4| (-791))) (-15 -2601 ((-709 |#2|) |#3| |#4|)) (-15 -2602 ((-709 |#2|) |#3| |#4| (-791) (-791)))) (-1131) (-926 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4507)))) (T -712)) +((-2602 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-791)) (-4 *6 (-1131)) (-4 *7 (-926 *6)) (-5 *2 (-709 *7)) (-5 *1 (-712 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4507)))))) (-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *6 (-926 *5)) (-5 *2 (-709 *6)) (-5 *1 (-712 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507)))))) (-2600 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-1131)) (-4 *3 (-926 *6)) (-5 *2 (-709 *3)) (-5 *1 (-712 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4507)))))) (-2599 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *3 (-926 *5)) (-5 *2 (-709 *3)) (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507)))))) (-2598 (*1 *2 *2 *3) (-12 (-4 *4 (-1131)) (-4 *2 (-926 *4)) (-5 *1 (-712 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4507)))))) (-2597 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *2 (-926 *5)) (-5 *1 (-712 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507)))))) (-2596 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507))))))) +(-10 -7 (-15 -2596 ((-1297 |#2|) |#2| |#4|)) (-15 -2597 (|#2| |#3| |#4|)) (-15 -2598 (|#2| |#2| |#4|)) (-15 -2599 ((-709 |#2|) |#2| |#4|)) (-15 -2600 ((-709 |#2|) |#2| |#4| (-791))) (-15 -2601 ((-709 |#2|) |#3| |#4|)) (-15 -2602 ((-709 |#2|) |#3| |#4| (-791) (-791)))) +((-4253 (((-2 (|:| |num| (-709 |#1|)) (|:| |den| |#1|)) (-709 |#2|)) 20 T ELT)) (-4251 ((|#1| (-709 |#2|)) 9 T ELT)) (-4252 (((-709 |#1|) (-709 |#2|)) 18 T ELT))) +(((-713 |#1| |#2|) (-10 -7 (-15 -4251 (|#1| (-709 |#2|))) (-15 -4252 ((-709 |#1|) (-709 |#2|))) (-15 -4253 ((-2 (|:| |num| (-709 |#1|)) (|:| |den| |#1|)) (-709 |#2|)))) (-569) (-1021 |#1|)) (T -713)) +((-4253 (*1 *2 *3) (-12 (-5 *3 (-709 *5)) (-4 *5 (-1021 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-709 *4)) (|:| |den| *4))) (-5 *1 (-713 *4 *5)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-709 *5)) (-4 *5 (-1021 *4)) (-4 *4 (-569)) (-5 *2 (-709 *4)) (-5 *1 (-713 *4 *5)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-709 *4)) (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-713 *2 *4))))) +(-10 -7 (-15 -4251 (|#1| (-709 |#2|))) (-15 -4252 ((-709 |#1|) (-709 |#2|))) (-15 -4253 ((-2 (|:| |num| (-709 |#1|)) (|:| |den| |#1|)) (-709 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2000 (((-709 (-719))) NIL T ELT) (((-709 (-719)) (-1297 $)) NIL T ELT)) (-3832 (((-719) $) NIL T ELT)) (-3994 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4151 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-719) (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) ELT)) (-4287 (($ $) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) (|has| (-719) (-376))) ELT)) (-4483 (((-417 $) $) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) (|has| (-719) (-376))) ELT)) (-3520 (($ $) NIL (-12 (|has| (-719) (-1032)) (|has| (-719) (-1233))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) ELT)) (-1798 (((-114) $ $) NIL (|has| (-719) (-319)) ELT)) (-3620 (((-791)) NIL (|has| (-719) (-381)) ELT)) (-3992 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4150 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3996 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4149 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) NIL T ELT) (((-3 (-719) #2#) $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-719) (-1068 (-419 (-558)))) ELT)) (-3656 (((-558) $) NIL T ELT) (((-719) $) NIL T ELT) (((-419 (-558)) $) NIL (|has| (-719) (-1068 (-419 (-558)))) ELT)) (-2010 (($ (-1297 (-719))) NIL T ELT) (($ (-1297 (-719)) (-1297 $)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-719) (-363)) ELT)) (-3045 (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-1999 (((-709 (-719)) $) NIL T ELT) (((-709 (-719)) $ (-1297 $)) NIL T ELT)) (-2503 (((-709 (-719)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-719))) (|:| |vec| (-1297 (-719)))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-719) (-658 (-558))) ELT) (((-709 (-558)) (-709 $)) NIL (|has| (-719) (-658 (-558))) ELT)) (-4354 (((-3 $ "failed") (-419 (-1201 (-719)))) NIL (|has| (-719) (-376)) ELT) (($ (-1201 (-719))) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4155 (((-719) $) 29 T ELT)) (-3507 (((-3 (-419 (-558)) #3="failed") $) NIL (|has| (-719) (-557)) ELT)) (-3506 (((-114) $) NIL (|has| (-719) (-557)) ELT)) (-3505 (((-419 (-558)) $) NIL (|has| (-719) (-557)) ELT)) (-3593 (((-947)) NIL T ELT)) (-3477 (($) NIL (|has| (-719) (-381)) ELT)) (-3044 (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| (-719) (-319)) ELT)) (-3316 (($) NIL (|has| (-719) (-363)) ELT)) (-1893 (((-114) $) NIL (|has| (-719) (-363)) ELT)) (-1984 (($ $) NIL (|has| (-719) (-363)) ELT) (($ $ (-791)) NIL (|has| (-719) (-363)) ELT)) (-4235 (((-114) $) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) (|has| (-719) (-376))) ELT)) (-1499 (((-2 (|:| |r| (-719)) (|:| |phi| (-719))) $) NIL (-12 (|has| (-719) (-1090)) (|has| (-719) (-1233))) ELT)) (-4139 (($) NIL (|has| (-719) (-1233)) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-719) (-910 (-391))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-719) (-910 (-558))) ELT)) (-4284 (((-854 (-947)) $) NIL (|has| (-719) (-363)) ELT) (((-947) $) NIL (|has| (-719) (-363)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (-12 (|has| (-719) (-1032)) (|has| (-719) (-1233))) ELT)) (-3616 (((-719) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-719) (-363)) ELT)) (-1795 (((-3 (-661 $) #4="failed") (-661 $) $) NIL (|has| (-719) (-319)) ELT)) (-2234 (((-1201 (-719)) $) NIL (|has| (-719) (-376)) ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4470 (($ (-1 (-719) (-719)) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| (-719) (-381)) ELT)) (-4454 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3562 (((-1201 (-719)) $) NIL T ELT)) (-2504 (((-709 (-719)) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-719))) (|:| |vec| (-1297 (-719)))) (-1297 $) $) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-719) (-658 (-558))) ELT) (((-709 (-558)) (-1297 $)) NIL (|has| (-719) (-658 (-558))) ELT)) (-2112 (($ (-661 $)) NIL (|has| (-719) (-319)) ELT) (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| (-719) (-376)) ELT)) (-3948 (($) NIL (|has| (-719) (-363)) CONST)) (-2641 (($ (-947)) NIL (|has| (-719) (-381)) ELT)) (-1501 (($) NIL T ELT)) (-4156 (((-719) $) 31 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-719) (-319)) ELT)) (-3644 (($ (-661 $)) NIL (|has| (-719) (-319)) ELT) (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-719) (-363)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) ELT)) (-4244 (((-417 $) $) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| (-719) (-938))) (|has| (-719) (-376))) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-719) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| (-719) (-319)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ #3#) $ (-719)) NIL (|has| (-719) (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-719) (-319)) ELT)) (-4455 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4280 (($ $ (-1207) (-719)) NIL (|has| (-719) (-526 (-1207) (-719))) ELT) (($ $ (-661 (-1207)) (-661 (-719))) NIL (|has| (-719) (-526 (-1207) (-719))) ELT) (($ $ (-661 (-305 (-719)))) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-305 (-719))) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-719) (-719)) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-661 (-719)) (-661 (-719))) NIL (|has| (-719) (-321 (-719))) ELT)) (-1797 (((-791) $) NIL (|has| (-719) (-319)) ELT)) (-4312 (($ $ (-719)) NIL (|has| (-719) (-298 (-719) (-719))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| (-719) (-319)) ELT)) (-4269 (((-719)) NIL T ELT) (((-719) (-1297 $)) NIL T ELT)) (-1985 (((-3 (-791) "failed") $ $) NIL (|has| (-719) (-363)) ELT) (((-791) $) NIL (|has| (-719) (-363)) ELT)) (-4270 (($ $ (-1 (-719) (-719)) (-791)) NIL T ELT) (($ $ (-1 (-719) (-719))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT) (($ $) NIL (-4039 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT)) (-2649 (((-709 (-719)) (-1297 $) (-1 (-719) (-719))) NIL (|has| (-719) (-376)) ELT)) (-3685 (((-1201 (-719))) NIL T ELT)) (-3997 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4148 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-1887 (($) NIL (|has| (-719) (-363)) ELT)) (-3995 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4147 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3993 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4146 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3724 (((-709 (-719)) (-1297 $)) NIL T ELT) (((-1297 (-719)) $) NIL T ELT) (((-709 (-719)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-719)) $ (-1297 $)) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-719) (-631 (-547))) ELT) (((-171 (-229)) $) NIL (|has| (-719) (-1050)) ELT) (((-171 (-391)) $) NIL (|has| (-719) (-1050)) ELT) (((-914 (-391)) $) NIL (|has| (-719) (-631 (-914 (-391)))) ELT) (((-914 (-558)) $) NIL (|has| (-719) (-631 (-914 (-558)))) ELT) (($ (-1201 (-719))) NIL T ELT) (((-1201 (-719)) $) NIL T ELT) (($ (-1297 (-719))) NIL T ELT) (((-1297 (-719)) $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| $ (-147)) (|has| (-719) (-938))) (|has| (-719) (-363))) ELT)) (-1500 (($ (-719) (-719)) 12 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-719)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-558))) 19 T ELT) (($ (-171 (-719))) 28 T ELT) (($ (-171 (-721))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| (-719) (-376)) (|has| (-719) (-1068 (-419 (-558))))) ELT)) (-3185 (($ $) NIL (|has| (-719) (-363)) ELT) (((-711 $) $) NIL (-4039 (-12 (|has| (-719) (-319)) (|has| $ (-147)) (|has| (-719) (-938))) (|has| (-719) (-147))) ELT)) (-2848 (((-1201 (-719)) $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT)) (-4000 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3988 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3998 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3986 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4002 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3990 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-2460 (((-719) $) NIL (|has| (-719) (-1233)) ELT)) (-4003 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3991 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-4001 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3989 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3999 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3987 (($ $) NIL (|has| (-719) (-1233)) ELT)) (-3885 (($ $) NIL (|has| (-719) (-1090)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-719) (-719)) (-791)) NIL T ELT) (($ $ (-1 (-719) (-719))) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-719) (-376)) (|has| (-719) (-926 (-1207)))) (|has| (-719) (-928 (-1207)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT) (($ $) NIL (-4039 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL (|has| (-719) (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) NIL (|has| (-719) (-1233)) ELT) (($ $ (-419 (-558))) NIL (-12 (|has| (-719) (-1032)) (|has| (-719) (-1233))) ELT) (($ $ (-558)) NIL (|has| (-719) (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-719) $) NIL T ELT) (($ $ (-719)) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-719) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-719) (-376)) ELT))) +(((-714) (-13 (-401) (-168 (-719)) (-10 -8 (-15 -4458 ($ (-171 (-391)))) (-15 -4458 ($ (-171 (-558)))) (-15 -4458 ($ (-171 (-719)))) (-15 -4458 ($ (-171 (-721)))) (-15 -4458 ((-171 (-391)) $))))) (T -714)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-714)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-714)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-714)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714))))) +(-13 (-401) (-168 (-719)) (-10 -8 (-15 -4458 ($ (-171 (-391)))) (-15 -4458 ($ (-171 (-558)))) (-15 -4458 ($ (-171 (-719)))) (-15 -4458 ($ (-171 (-721)))) (-15 -4458 ((-171 (-391)) $)))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2604 (($ $) 66 T ELT)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2603 (((-661 (-2 (|:| -2296 |#1|) (|:| -2167 (-791)))) $) 65 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-715 |#1|) (-142) (-1131)) (T -715)) +((-4119 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-715 *2)) (-4 *2 (-1131)))) (-2604 (*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-1131)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-715 *3)) (-4 *3 (-1131)) (-5 *2 (-661 (-2 (|:| -2296 *3) (|:| -2167 (-791)))))))) +(-13 (-242 |t#1|) (-10 -8 (-15 -4119 ($ |t#1| $ (-791))) (-15 -2604 ($ $)) (-15 -2603 ((-661 (-2 (|:| -2296 |t#1|) (|:| -2167 (-791)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-2607 (((-661 |#1|) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) (-558)) 66 T ELT)) (-2605 ((|#1| |#1| (-558)) 63 T ELT)) (-3644 ((|#1| |#1| |#1| (-558)) 46 T ELT)) (-4244 (((-661 |#1|) |#1| (-558)) 49 T ELT)) (-2608 ((|#1| |#1| (-558) |#1| (-558)) 40 T ELT)) (-2606 (((-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) |#1| (-558)) 62 T ELT))) +(((-716 |#1|) (-10 -7 (-15 -3644 (|#1| |#1| |#1| (-558))) (-15 -2605 (|#1| |#1| (-558))) (-15 -4244 ((-661 |#1|) |#1| (-558))) (-15 -2606 ((-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) |#1| (-558))) (-15 -2607 ((-661 |#1|) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) (-558))) (-15 -2608 (|#1| |#1| (-558) |#1| (-558)))) (-1273 (-558))) (T -716)) +((-2608 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| -4244 *5) (|:| -4460 (-558))))) (-5 *4 (-558)) (-4 *5 (-1273 *4)) (-5 *2 (-661 *5)) (-5 *1 (-716 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-661 (-2 (|:| -4244 *3) (|:| -4460 *4)))) (-5 *1 (-716 *3)) (-4 *3 (-1273 *4)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-661 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1273 *4)))) (-2605 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3)))) (-3644 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -3644 (|#1| |#1| |#1| (-558))) (-15 -2605 (|#1| |#1| (-558))) (-15 -4244 ((-661 |#1|) |#1| (-558))) (-15 -2606 ((-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) |#1| (-558))) (-15 -2607 ((-661 |#1|) (-661 (-2 (|:| -4244 |#1|) (|:| -4460 (-558)))) (-558))) (-15 -2608 (|#1| |#1| (-558) |#1| (-558)))) +((-2612 (((-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2609 (((-1163 (-229)) (-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270))) 53 T ELT) (((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270))) 55 T ELT) (((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1119 (-229)) (-1119 (-229)) (-661 (-270))) 57 T ELT)) (-2611 (((-1163 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-661 (-270))) NIL T ELT)) (-2610 (((-1163 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1119 (-229)) (-1119 (-229)) (-661 (-270))) 58 T ELT))) +(((-717) (-10 -7 (-15 -2609 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2609 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2609 ((-1163 (-229)) (-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2610 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2611 ((-1163 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2612 ((-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -717)) +((-2612 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-971 (-229)) (-229) (-229))) (-5 *1 (-717)))) (-2611 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717)))) (-2610 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined")) (-5 *5 (-1119 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717)))) (-2609 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-229))) (-5 *5 (-661 (-270))) (-5 *1 (-717)))) (-2609 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-229))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717)))) (-2609 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1#)) (-5 *5 (-1119 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717))))) +(-10 -7 (-15 -2609 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2609 ((-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2609 ((-1163 (-229)) (-1163 (-229)) (-1 (-971 (-229)) (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2610 ((-1163 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1119 (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2611 ((-1163 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1119 (-229)) (-661 (-270)))) (-15 -2612 ((-1 (-971 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) +((-4244 (((-417 (-1201 |#4|)) (-1201 |#4|)) 86 T ELT) (((-417 |#4|) |#4|) 269 T ELT))) +(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4|)) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|)))) (-870) (-815) (-363) (-978 |#3| |#2| |#1|)) (T -718)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4|)) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 97 T ELT)) (-3613 (((-558) $) 34 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4283 (($ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3611 (($ $) NIL T ELT)) (-3657 (((-3 (-558) #1="failed") $) 85 T ELT) (((-3 (-419 (-558)) #1#) $) 28 T ELT) (((-3 (-391) #1#) $) 82 T ELT)) (-3656 (((-558) $) 87 T ELT) (((-419 (-558)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-3045 (($ $ $) 109 T ELT)) (-3969 (((-3 $ "failed") $) 100 T ELT)) (-3044 (($ $ $) 108 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2615 (((-947)) 89 T ELT) (((-947) (-947)) 88 T ELT)) (-3686 (((-114) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL T ELT)) (-4284 (((-558) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3616 (($ $) NIL T ELT)) (-3687 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL T ELT)) (-2613 (((-558) (-558)) 94 T ELT) (((-558)) 95 T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-2614 (((-558) (-558)) 92 T ELT) (((-558)) 93 T ELT)) (-3340 (($ $ $) NIL T ELT) (($) NIL (-12 (-3041 (|has| $ (-6 -4490))) (-3041 (|has| $ (-6 -4498)))) ELT)) (-2616 (((-558) $) 17 T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 104 T ELT)) (-1987 (((-947) (-558)) NIL (|has| $ (-6 -4498)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL T ELT)) (-3614 (($ $) NIL T ELT)) (-3754 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-947)) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) 105 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2642 (((-558) $) 24 T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 107 T ELT)) (-3096 (((-947)) NIL T ELT) (((-947) (-947)) NIL (|has| $ (-6 -4498)) ELT)) (-1986 (((-947) (-558)) NIL (|has| $ (-6 -4498)) ELT)) (-4484 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-914 (-391)) $) NIL T ELT)) (-4458 (((-886) $) 63 T ELT) (($ (-558)) 75 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-558)) 75 T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-721)) 66 T ELT)) (-3610 (((-791)) 119 T CONST)) (-3430 (($ (-558) (-558) (-947)) 54 T ELT)) (-3615 (($ $) NIL T ELT)) (-1988 (((-947)) NIL T ELT) (((-947) (-947)) NIL (|has| $ (-6 -4498)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (((-947)) 91 T ELT) (((-947) (-947)) 90 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL T ELT)) (-3141 (($) 37 T CONST)) (-3147 (($) 18 T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 96 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 118 T ELT)) (-4461 (($ $ $) 77 T ELT)) (-4349 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-4351 (($ $ $) 114 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 103 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-719) (-13 (-416) (-401) (-376) (-1068 (-391)) (-1068 (-419 (-558))) (-149) (-10 -8 (-15 -2615 ((-947) (-947))) (-15 -2615 ((-947))) (-15 -3177 ((-947) (-947))) (-15 -2614 ((-558) (-558))) (-15 -2614 ((-558))) (-15 -2613 ((-558) (-558))) (-15 -2613 ((-558))) (-15 -4458 ((-391) $)) (-15 -4458 ($ (-721))) (-15 -2616 ((-558) $)) (-15 -2642 ((-558) $)) (-15 -3430 ($ (-558) (-558) (-947)))))) (T -719)) +((-2642 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2615 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2614 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2613 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2613 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-719)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-719)))) (-3430 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-947)) (-5 *1 (-719))))) +(-13 (-416) (-401) (-376) (-1068 (-391)) (-1068 (-419 (-558))) (-149) (-10 -8 (-15 -2615 ((-947) (-947))) (-15 -2615 ((-947))) (-15 -3177 ((-947) (-947))) (-15 -2614 ((-558) (-558))) (-15 -2614 ((-558))) (-15 -2613 ((-558) (-558))) (-15 -2613 ((-558))) (-15 -4458 ((-391) $)) (-15 -4458 ($ (-721))) (-15 -2616 ((-558) $)) (-15 -2642 ((-558) $)) (-15 -3430 ($ (-558) (-558) (-947))))) +((-2619 (((-709 |#1|) (-709 |#1|) |#1| |#1|) 85 T ELT)) (-3594 (((-709 |#1|) (-709 |#1|) |#1|) 66 T ELT)) (-2618 (((-709 |#1|) (-709 |#1|) |#1|) 86 T ELT)) (-2617 (((-709 |#1|) (-709 |#1|)) 67 T ELT)) (-2620 (((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|) 84 T ELT))) +(((-720 |#1|) (-10 -7 (-15 -2617 ((-709 |#1|) (-709 |#1|))) (-15 -3594 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2618 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2619 ((-709 |#1|) (-709 |#1|) |#1| |#1|)) (-15 -2620 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|))) (-319)) (T -720)) +((-2620 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-720 *3)) (-4 *3 (-319)))) (-2619 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-2618 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) +(-10 -7 (-15 -2617 ((-709 |#1|) (-709 |#1|))) (-15 -3594 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2618 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2619 ((-709 |#1|) (-709 |#1|) |#1| |#1|)) (-15 -2620 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2267 (($ $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2262 (($ $ $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL T ELT)) (-2840 (($ $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) "failed") $) 31 T ELT)) (-3656 (((-558) $) 29 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL T ELT)) (-3506 (((-114) $) NIL T ELT)) (-3505 (((-419 (-558)) $) NIL T ELT)) (-3477 (($ $) NIL T ELT) (($) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2260 (($ $ $ $) NIL T ELT)) (-2268 (($ $ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-1493 (($ $ $) NIL T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3156 (((-114) $) NIL T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-3687 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2261 (($ $ $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-2621 (((-947) (-947)) 10 T ELT) (((-947)) 9 T ELT)) (-3340 (($ $ $) NIL T ELT)) (-2264 (($ $) NIL T ELT)) (-4345 (($ $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT)) (-2112 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2259 (($ $ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2266 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1491 (($ $) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2265 (($ $) NIL T ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-914 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (((-558) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 28 T ELT) (($ $) NIL T ELT) (($ (-558)) 28 T ELT) (((-326 $) (-326 (-558))) 18 T ELT)) (-3610 (((-791)) NIL T CONST)) (-2269 (((-114) $ $) NIL T ELT)) (-3586 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (($) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-2263 (($ $ $ $) NIL T ELT)) (-3885 (($ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-721) (-13 (-401) (-557) (-10 -8 (-15 -2621 ((-947) (-947))) (-15 -2621 ((-947))) (-15 -4458 ((-326 $) (-326 (-558))))))) (T -721)) +((-2621 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-721)))) (-2621 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-721)))) (-4458 (*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-721))) (-5 *1 (-721))))) +(-13 (-401) (-557) (-10 -8 (-15 -2621 ((-947) (-947))) (-15 -2621 ((-947))) (-15 -4458 ((-326 $) (-326 (-558)))))) +((-2627 (((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)) 19 T ELT)) (-2622 (((-1 |#4| |#2| |#3|) (-1207)) 12 T ELT))) +(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2622 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -2627 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) (-631 (-547)) (-1247) (-1247) (-1247)) (T -722)) +((-2627 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *3 *5 *6 *7)) (-4 *3 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *4 *5 *6 *7)) (-4 *4 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247))))) +(-10 -7 (-15 -2622 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -2627 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) +((-2623 (((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1207)) 48 T ELT))) +(((-723 |#1|) (-10 -7 (-15 -2623 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -2623 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) (-631 (-547))) (T -723)) +((-2623 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-723 *3)) (-4 *3 (-631 (-547))))) (-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-723 *3)) (-4 *3 (-631 (-547)))))) +(-10 -7 (-15 -2623 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -2623 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) +((-2624 (((-1207) |#1| (-1207) (-661 (-1207))) 10 T ELT) (((-1207) |#1| (-1207) (-1207) (-1207)) 13 T ELT) (((-1207) |#1| (-1207) (-1207)) 12 T ELT) (((-1207) |#1| (-1207)) 11 T ELT))) +(((-724 |#1|) (-10 -7 (-15 -2624 ((-1207) |#1| (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-661 (-1207))))) (-631 (-547))) (T -724)) +((-2624 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-661 (-1207))) (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2624 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2624 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2624 (*1 *2 *3 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547)))))) +(-10 -7 (-15 -2624 ((-1207) |#1| (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -2624 ((-1207) |#1| (-1207) (-661 (-1207))))) +((-2625 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-725 |#1| |#2|) (-10 -7 (-15 -2625 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1247) (-1247)) (T -725)) +((-2625 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247))))) +(-10 -7 (-15 -2625 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2626 (((-1 |#3| |#2|) (-1207)) 11 T ELT)) (-2627 (((-1 |#3| |#2|) |#1| (-1207)) 21 T ELT))) +(((-726 |#1| |#2| |#3|) (-10 -7 (-15 -2626 ((-1 |#3| |#2|) (-1207))) (-15 -2627 ((-1 |#3| |#2|) |#1| (-1207)))) (-631 (-547)) (-1247) (-1247)) (T -726)) +((-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *3 *5 *6)) (-4 *3 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *4 *5 *6)) (-4 *4 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247))))) +(-10 -7 (-15 -2626 ((-1 |#3| |#2|) (-1207))) (-15 -2627 ((-1 |#3| |#2|) |#1| (-1207)))) +((-2630 (((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#4|)) (-661 |#3|) (-661 |#4|) (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#4|)))) (-661 (-791)) (-1297 (-661 (-1201 |#3|))) |#3|) 92 T ELT)) (-2629 (((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#3|)) (-661 |#3|) (-661 |#4|) (-661 (-791)) |#3|) 110 T ELT)) (-2628 (((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 |#3|) (-661 (-791)) (-661 (-1201 |#4|)) (-1297 (-661 (-1201 |#3|))) |#3|) 48 T ELT))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2628 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 |#3|) (-661 (-791)) (-661 (-1201 |#4|)) (-1297 (-661 (-1201 |#3|))) |#3|)) (-15 -2629 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#3|)) (-661 |#3|) (-661 |#4|) (-661 (-791)) |#3|)) (-15 -2630 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#4|)) (-661 |#3|) (-661 |#4|) (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#4|)))) (-661 (-791)) (-1297 (-661 (-1201 |#3|))) |#3|))) (-815) (-870) (-319) (-978 |#3| |#1| |#2|)) (T -727)) +((-2630 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-661 (-1201 *13))) (-5 *3 (-1201 *13)) (-5 *4 (-661 *12)) (-5 *5 (-661 *10)) (-5 *6 (-661 *13)) (-5 *7 (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| *13))))) (-5 *8 (-661 (-791))) (-5 *9 (-1297 (-661 (-1201 *10)))) (-4 *12 (-870)) (-4 *10 (-319)) (-4 *13 (-978 *10 *11 *12)) (-4 *11 (-815)) (-5 *1 (-727 *11 *12 *10 *13)))) (-2629 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-661 *11)) (-5 *5 (-661 (-1201 *9))) (-5 *6 (-661 *9)) (-5 *7 (-661 *12)) (-5 *8 (-661 (-791))) (-4 *11 (-870)) (-4 *9 (-319)) (-4 *12 (-978 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-661 (-1201 *12))) (-5 *1 (-727 *10 *11 *9 *12)) (-5 *3 (-1201 *12)))) (-2628 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-661 (-1201 *11))) (-5 *3 (-1201 *11)) (-5 *4 (-661 *10)) (-5 *5 (-661 *8)) (-5 *6 (-661 (-791))) (-5 *7 (-1297 (-661 (-1201 *8)))) (-4 *10 (-870)) (-4 *8 (-319)) (-4 *11 (-978 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-727 *9 *10 *8 *11))))) +(-10 -7 (-15 -2628 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 |#3|) (-661 (-791)) (-661 (-1201 |#4|)) (-1297 (-661 (-1201 |#3|))) |#3|)) (-15 -2629 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#3|)) (-661 |#3|) (-661 |#4|) (-661 (-791)) |#3|)) (-15 -2630 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-661 |#2|) (-661 (-1201 |#4|)) (-661 |#3|) (-661 |#4|) (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#4|)))) (-661 (-791)) (-1297 (-661 (-1201 |#3|))) |#3|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 53 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3376 (($ |#1| (-791)) 51 T ELT)) (-3303 (((-791) $) 55 T ELT)) (-3674 ((|#1| $) 54 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4460 (((-791) $) 56 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-175)) ELT)) (-4189 ((|#1| $ (-791)) 52 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) +(((-728 |#1|) (-142) (-1079)) (T -728)) +((-4460 (*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1079)))) (-4471 (*1 *1 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1079)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1079)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4460 ((-791) $)) (-15 -3303 ((-791) $)) (-15 -3674 (|t#1| $)) (-15 -4471 ($ $)) (-15 -4189 (|t#1| $ (-791))) (-15 -3376 ($ |t#1| (-791))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-4470 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-729 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4470 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1273 |#1|) (-1273 (-419 |#2|)) (-569) (-1273 |#4|) (-1273 (-419 |#5|))) (T -729)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-419 *8))) (-5 *1 (-729 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-419 *6))) (-4 *8 (-1273 *7))))) +(-10 -7 (-15 -4470 (|#6| (-1 |#4| |#1|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2631 (((-1189) (-886)) 38 T ELT)) (-4129 (((-1303) (-1189)) 31 T ELT)) (-2633 (((-1189) (-886)) 28 T ELT)) (-2632 (((-1189) (-886)) 29 T ELT)) (-4458 (((-886) $) NIL T ELT) (((-1189) (-886)) 27 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-730) (-13 (-1131) (-10 -7 (-15 -4458 ((-1189) (-886))) (-15 -2633 ((-1189) (-886))) (-15 -2632 ((-1189) (-886))) (-15 -2631 ((-1189) (-886))) (-15 -4129 ((-1303) (-1189)))))) (T -730)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-730))))) +(-13 (-1131) (-10 -7 (-15 -4458 ((-1189) (-886))) (-15 -2633 ((-1189) (-886))) (-15 -2632 ((-1189) (-886))) (-15 -2631 ((-1189) (-886))) (-15 -4129 ((-1303) (-1189))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL T ELT)) (-4354 (($ |#1| |#2|) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-3095 ((|#2| $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2643 (((-3 $ "failed") $ $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-731 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3095 (|#2| $)) (-15 -4458 (|#1| $)) (-15 -4354 ($ |#1| |#2|)) (-15 -2643 ((-3 $ "failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -731)) +((-3095 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4458 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4354 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2643 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-376) (-10 -8 (-15 -3095 (|#2| $)) (-15 -4458 (|#1| $)) (-15 -4354 ($ |#1| |#2|)) (-15 -2643 ((-3 $ "failed") $ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 36 T ELT)) (-4279 (((-1297 |#1|) $ (-791)) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4277 (($ (-1201 |#1|)) NIL T ELT)) (-3568 (((-1201 $) $ (-1112)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1112))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3620 (((-791)) 54 (|has| |#1| (-381)) ELT)) (-4273 (($ $ (-791)) NIL T ELT)) (-4272 (($ $ (-791)) NIL T ELT)) (-2640 ((|#2| |#2|) 50 T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1112) #2#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-1112) $) NIL T ELT)) (-4268 (($ $ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) 40 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4354 (($ |#2|) 48 T ELT)) (-3969 (((-3 $ "failed") $) 97 T ELT)) (-3477 (($) 58 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4271 (($ $ $) NIL T ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4264 (((-2 (|:| -4466 |#1|) (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-2636 (((-986 $)) 88 T ELT)) (-1814 (($ $ |#1| (-791) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1112) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-1182)) ELT)) (-3569 (($ (-1201 |#1|) (-1112)) NIL T ELT) (($ (-1201 $) (-1112)) NIL T ELT)) (-4289 (($ $ (-791)) NIL T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) 85 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3095 ((|#2|) 51 T ELT)) (-3303 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-1815 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4278 (((-1201 |#1|) $) NIL T ELT)) (-3567 (((-3 (-1112) #4="failed") $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-3562 ((|#2| $) 47 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) 34 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) NIL T ELT)) (-3306 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1112)) (|:| -2642 (-791))) #4#) $) NIL T ELT)) (-4324 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (|has| |#1| (-1182)) CONST)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-2634 (($ $) 87 (|has| |#1| (-363)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-661 (-1112)) (-661 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-661 (-1112)) (-661 $)) NIL T ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4276 (((-3 $ #5="failed") $ (-791)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-4269 (($ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-4460 (((-791) $) 38 T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1112) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2635 (((-986 $)) 42 T ELT)) (-4266 (((-3 $ #5#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #5#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4458 (((-886) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1112)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) 70 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 25 T CONST)) (-2639 (((-1297 |#1|) $) 83 T ELT)) (-2638 (($ (-1297 |#1|)) 57 T ELT)) (-3147 (($) 8 T CONST)) (-3152 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-2637 (((-1297 |#1|) $) NIL T ELT)) (-3536 (((-114) $ $) 76 T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 39 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 92 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-732 |#1| |#2|) (-13 (-1273 |#1|) (-633 |#2|) (-10 -8 (-15 -2640 (|#2| |#2|)) (-15 -3095 (|#2|)) (-15 -4354 ($ |#2|)) (-15 -3562 (|#2| $)) (-15 -2639 ((-1297 |#1|) $)) (-15 -2638 ($ (-1297 |#1|))) (-15 -2637 ((-1297 |#1|) $)) (-15 -2636 ((-986 $))) (-15 -2635 ((-986 $))) (IF (|has| |#1| (-363)) (-15 -2634 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1079) (-1273 |#1|)) (T -732)) +((-2640 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1273 *3)))) (-3095 (*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1079)))) (-4354 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1273 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1079)))) (-2639 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1273 *3)))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1273 *3)))) (-2637 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1273 *3)))) (-2636 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *4 (-1273 *3)))) (-2635 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *4 (-1273 *3)))) (-2634 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1079)) (-5 *1 (-732 *2 *3)) (-4 *3 (-1273 *2))))) +(-13 (-1273 |#1|) (-633 |#2|) (-10 -8 (-15 -2640 (|#2| |#2|)) (-15 -3095 (|#2|)) (-15 -4354 ($ |#2|)) (-15 -3562 (|#2| $)) (-15 -2639 ((-1297 |#1|) $)) (-15 -2638 ($ (-1297 |#1|))) (-15 -2637 ((-1297 |#1|) $)) (-15 -2636 ((-986 $))) (-15 -2635 ((-986 $))) (IF (|has| |#1| (-363)) (-15 -2634 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 ((|#1| $) 13 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2642 ((|#2| $) 12 T ELT)) (-4032 (($ |#1| |#2|) 16 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) 15 T ELT) (((-2 (|:| -2641 |#1|) (|:| -2642 |#2|)) $) 14 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 11 T ELT))) +(((-733 |#1| |#2| |#3|) (-13 (-870) (-502 (-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) (-10 -8 (-15 -2642 (|#2| $)) (-15 -2641 (|#1| $)) (-15 -4032 ($ |#1| |#2|)))) (-870) (-1131) (-1 (-114) (-2 (|:| -2641 |#1|) (|:| -2642 |#2|)) (-2 (|:| -2641 |#1|) (|:| -2642 |#2|)))) (T -733)) +((-2642 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-733 *3 *2 *4)) (-4 *3 (-870)) (-14 *4 (-1 (-114) (-2 (|:| -2641 *3) (|:| -2642 *2)) (-2 (|:| -2641 *3) (|:| -2642 *2)))))) (-2641 (*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-733 *2 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *3)) (-2 (|:| -2641 *2) (|:| -2642 *3)))))) (-4032 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1131)) (-14 *4 (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *3)) (-2 (|:| -2641 *2) (|:| -2642 *3))))))) +(-13 (-870) (-502 (-2 (|:| -2641 |#1|) (|:| -2642 |#2|))) (-10 -8 (-15 -2642 (|#2| $)) (-15 -2641 (|#1| $)) (-15 -4032 ($ |#1| |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 66 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #1="failed") $) 101 T ELT) (((-3 (-115) #1#) $) 107 T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3969 (((-3 $ "failed") $) 102 T ELT)) (-2994 ((|#2| (-115) |#2|) 93 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2993 (($ |#1| (-374 (-115))) 14 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2995 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2996 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-4312 ((|#2| $ |#2|) 33 T ELT)) (-2997 ((|#1| |#1|) 117 (|has| |#1| (-175)) ELT)) (-4458 (((-886) $) 73 T ELT) (($ (-558)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2998 (($ $) 111 (|has| |#1| (-175)) ELT) (($ $ $) 115 (|has| |#1| (-175)) ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 9 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 83 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) 64 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-175)) ELT) (($ $ |#1|) 109 (|has| |#1| (-175)) ELT))) +(((-734 |#1| |#2|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2998 ($ $)) (-15 -2998 ($ $ $)) (-15 -2997 (|#1| |#1|))) |%noBranch|) (-15 -2996 ($ $ (-1 |#2| |#2|))) (-15 -2995 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2994 (|#2| (-115) |#2|)) (-15 -2993 ($ |#1| (-374 (-115)))))) (-1079) (-668 |#1|)) (T -734)) +((-2998 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2998 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2997 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2996 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1079)) (-5 *1 (-734 *3 *4)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1079)) (-5 *1 (-734 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-734 *4 *5)) (-4 *5 (-668 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *3 (-1079)) (-5 *1 (-734 *3 *4)) (-4 *4 (-668 *3)))) (-2994 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-734 *4 *2)) (-4 *2 (-668 *4)))) (-2993 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1079)) (-5 *1 (-734 *2 *4)) (-4 *4 (-668 *2))))) +(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2998 ($ $)) (-15 -2998 ($ $ $)) (-15 -2997 (|#1| |#1|))) |%noBranch|) (-15 -2996 ($ $ (-1 |#2| |#2|))) (-15 -2995 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2994 (|#2| (-115) |#2|)) (-15 -2993 ($ |#1| (-374 (-115)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 33 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4354 (($ |#1| |#2|) 25 T ELT)) (-3969 (((-3 $ "failed") $) 51 T ELT)) (-2651 (((-114) $) 35 T ELT)) (-3095 ((|#2| $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 52 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2643 (((-3 $ "failed") $ $) 50 T ELT)) (-4458 (((-886) $) 24 T ELT) (($ (-558)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3610 (((-791)) 28 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 16 T CONST)) (-3147 (($) 30 T CONST)) (-3536 (((-114) $ $) 41 T ELT)) (-4349 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-4351 (($ $ $) 43 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-735 |#1| |#2| |#3| |#4| |#5|) (-13 (-1079) (-10 -8 (-15 -3095 (|#2| $)) (-15 -4458 (|#1| $)) (-15 -4354 ($ |#1| |#2|)) (-15 -2643 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2884 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -735)) +((-3969 (*1 *1 *1) (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3095 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-735 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4458 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4354 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2643 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1079) (-10 -8 (-15 -3095 (|#2| $)) (-15 -4458 (|#1| $)) (-15 -4354 ($ |#1| |#2|)) (-15 -2643 ((-3 $ "failed") $ $)) (-15 -3969 ((-3 $ "failed") $)) (-15 -2884 ($ $)))) +((* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-736 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) (-737 |#2|) (-175)) (T -736)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-737 |#1|) (-142) (-175)) (T -737)) +NIL +(-13 (-111 |t#1| |t#1|) (-660 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-2840 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4359 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2644 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 16 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4280 ((|#1| $ |#1|) 24 T ELT) (((-854 |#1|) $ (-854 |#1|)) 32 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-4458 (((-886) $) 39 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 9 T CONST)) (-3536 (((-114) $ $) 48 T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-738 |#1|) (-13 (-485) (-10 -8 (-15 -2644 ($ |#1| |#1| |#1| |#1|)) (-15 -2840 ($ |#1|)) (-15 -4359 ($ |#1|)) (-15 -3969 ($)) (-15 -2840 ($ $ |#1|)) (-15 -4359 ($ $ |#1|)) (-15 -3969 ($ $)) (-15 -4280 (|#1| $ |#1|)) (-15 -4280 ((-854 |#1|) $ (-854 |#1|))))) (-376)) (T -738)) +((-2644 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-2840 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4359 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-3969 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4359 (*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-3969 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4280 (*1 *2 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4280 (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-738 *3))))) +(-13 (-485) (-10 -8 (-15 -2644 ($ |#1| |#1| |#1| |#1|)) (-15 -2840 ($ |#1|)) (-15 -4359 ($ |#1|)) (-15 -3969 ($)) (-15 -2840 ($ $ |#1|)) (-15 -4359 ($ $ |#1|)) (-15 -3969 ($ $)) (-15 -4280 (|#1| $ |#1|)) (-15 -4280 ((-854 |#1|) $ (-854 |#1|))))) +((-2648 (($ $ (-947)) 19 T ELT)) (-2647 (($ $ (-947)) 20 T ELT)) (** (($ $ (-947)) 10 T ELT))) +(((-739 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-947))) (-15 -2647 (|#1| |#1| (-947))) (-15 -2648 (|#1| |#1| (-947)))) (-740)) (T -739)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-947))) (-15 -2647 (|#1| |#1| (-947))) (-15 -2648 (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-2648 (($ $ (-947)) 19 T ELT)) (-2647 (($ $ (-947)) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (** (($ $ (-947)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-740) (-142)) (T -740)) +((* (*1 *1 *1 *1) (-4 *1 (-740))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ $)) (-15 -2648 ($ $ (-947))) (-15 -2647 ($ $ (-947))) (-15 ** ($ $ (-947))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-2648 (($ $ (-947)) NIL T ELT) (($ $ (-791)) 18 T ELT)) (-2651 (((-114) $) 10 T ELT)) (-2647 (($ $ (-947)) NIL T ELT) (($ $ (-791)) 19 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 16 T ELT))) +(((-741 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-791))) (-15 -2647 (|#1| |#1| (-791))) (-15 -2648 (|#1| |#1| (-791))) (-15 -2651 ((-114) |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 -2647 (|#1| |#1| (-947))) (-15 -2648 (|#1| |#1| (-947)))) (-742)) (T -741)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-791))) (-15 -2647 (|#1| |#1| (-791))) (-15 -2648 (|#1| |#1| (-791))) (-15 -2651 ((-114) |#1|)) (-15 ** (|#1| |#1| (-947))) (-15 -2647 (|#1| |#1| (-947))) (-15 -2648 (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-2645 (((-3 $ "failed") $) 22 T ELT)) (-2648 (($ $ (-947)) 19 T ELT) (($ $ (-791)) 27 T ELT)) (-3969 (((-3 $ "failed") $) 24 T ELT)) (-2651 (((-114) $) 28 T ELT)) (-2646 (((-3 $ "failed") $) 23 T ELT)) (-2647 (($ $ (-947)) 18 T ELT) (($ $ (-791)) 26 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 29 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (** (($ $ (-947)) 17 T ELT) (($ $ (-791)) 25 T ELT)) (* (($ $ $) 20 T ELT))) (((-742) (-142)) (T -742)) -((* (*1 *1 *1 *1) (-4 *1 (-742))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949))))) -(-13 (-1133) (-10 -8 (-15 * ($ $ $)) (-15 -2652 ($ $ (-949))) (-15 -2651 ($ $ (-949))) (-15 ** ($ $ (-949))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-2652 (($ $ (-949)) NIL T ELT) (($ $ (-793)) 18 T ELT)) (-2655 (((-114) $) 10 T ELT)) (-2651 (($ $ (-949)) NIL T ELT) (($ $ (-793)) 19 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 16 T ELT))) -(((-743 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -2651 (|#1| |#1| (-793))) (-15 -2652 (|#1| |#1| (-793))) (-15 -2655 ((-114) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -2651 (|#1| |#1| (-949))) (-15 -2652 (|#1| |#1| (-949)))) (-744)) (T -743)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -2651 (|#1| |#1| (-793))) (-15 -2652 (|#1| |#1| (-793))) (-15 -2655 ((-114) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -2651 (|#1| |#1| (-949))) (-15 -2652 (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-2649 (((-3 $ "failed") $) 22 T ELT)) (-2652 (($ $ (-949)) 19 T ELT) (($ $ (-793)) 27 T ELT)) (-3973 (((-3 $ "failed") $) 24 T ELT)) (-2655 (((-114) $) 28 T ELT)) (-2650 (((-3 $ "failed") $) 23 T ELT)) (-2651 (($ $ (-949)) 18 T ELT) (($ $ (-793)) 26 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 29 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (** (($ $ (-949)) 17 T ELT) (($ $ (-793)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-744) (-142)) (T -744)) -((-3151 (*1 *1) (-4 *1 (-744))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114)))) (-2652 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-3973 (*1 *1 *1) (|partial| -4 *1 (-744))) (-2650 (*1 *1 *1) (|partial| -4 *1 (-744))) (-2649 (*1 *1 *1) (|partial| -4 *1 (-744)))) -(-13 (-742) (-10 -8 (-15 (-3151) ($) -4468) (-15 -2655 ((-114) $)) (-15 -2652 ($ $ (-793))) (-15 -2651 ($ $ (-793))) (-15 ** ($ $ (-793))) (-15 -3973 ((-3 $ "failed") $)) (-15 -2650 ((-3 $ "failed") $)) (-15 -2649 ((-3 $ "failed") $)))) -(((-102) . T) ((-632 (-888)) . T) ((-742) . T) ((-1133) . T) ((-1249) . T)) -((-3624 (((-793)) 39 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4358 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) 49 T ELT)) (-3973 (((-3 $ "failed") $) 69 T ELT)) (-3481 (($) 43 T ELT)) (-3620 ((|#2| $) 21 T ELT)) (-2654 (($) 18 T ELT)) (-4274 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2653 (((-711 |#2|) (-1299 $) (-1 |#2| |#2|)) 64 T ELT)) (-4488 (((-1299 |#2|) $) NIL T ELT) (($ (-1299 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2852 ((|#3| $) 36 T ELT)) (-2236 (((-1299 $)) 33 T ELT))) -(((-745 |#1| |#2| |#3|) (-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3481 (|#1|)) (-15 -3624 ((-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2653 ((-711 |#2|) (-1299 |#1|) (-1 |#2| |#2|))) (-15 -4358 ((-3 |#1| "failed") (-421 |#3|))) (-15 -4488 (|#1| |#3|)) (-15 -4358 (|#1| |#3|)) (-15 -2654 (|#1|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 (|#3| |#1|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2236 ((-1299 |#1|))) (-15 -2852 (|#3| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|))) (-746 |#2| |#3|) (-175) (-1275 |#2|)) (T -745)) -((-3624 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-793)) (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5))))) -(-10 -8 (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -3481 (|#1|)) (-15 -3624 ((-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2653 ((-711 |#2|) (-1299 |#1|) (-1 |#2| |#2|))) (-15 -4358 ((-3 |#1| "failed") (-421 |#3|))) (-15 -4488 (|#1| |#3|)) (-15 -4358 (|#1| |#3|)) (-15 -2654 (|#1|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4488 (|#3| |#1|)) (-15 -4488 (|#1| (-1299 |#2|))) (-15 -4488 ((-1299 |#2|) |#1|)) (-15 -2236 ((-1299 |#1|))) (-15 -2852 (|#3| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3973 ((-3 |#1| "failed") |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 111 (|has| |#1| (-376)) ELT)) (-2287 (($ $) 112 (|has| |#1| (-376)) ELT)) (-2285 (((-114) $) 114 (|has| |#1| (-376)) ELT)) (-2004 (((-711 |#1|) (-1299 $)) 58 T ELT) (((-711 |#1|)) 74 T ELT)) (-3836 ((|#1| $) 64 T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) 164 (|has| |#1| (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 131 (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) 132 (|has| |#1| (-376)) ELT)) (-1800 (((-114) $ $) 122 (|has| |#1| (-376)) ELT)) (-3624 (((-793)) 105 (|has| |#1| (-381)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 191 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 189 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3660 (((-560) $) 190 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 188 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 187 T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) 60 T ELT) (($ (-1299 |#1|)) 77 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-3049 (($ $ $) 126 (|has| |#1| (-376)) ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) 65 T ELT) (((-711 |#1|) $) 72 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 183 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 182 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 181 T ELT) (((-711 |#1|) (-711 $)) 180 T ELT)) (-4358 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-421 |#2|)) 172 (|has| |#1| (-376)) ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3597 (((-949)) 66 T ELT)) (-3481 (($) 108 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) 125 (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 120 (|has| |#1| (-376)) ELT)) (-3320 (($) 166 (|has| |#1| (-363)) ELT)) (-1895 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1988 (($ $ (-793)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4239 (((-114) $) 133 (|has| |#1| (-376)) ELT)) (-4288 (((-949) $) 169 (|has| |#1| (-363)) ELT) (((-856 (-949)) $) 155 (|has| |#1| (-363)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3620 ((|#1| $) 63 T ELT)) (-3951 (((-713 $) $) 159 (|has| |#1| (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 129 (|has| |#1| (-376)) ELT)) (-2238 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-2234 (((-949) $) 107 (|has| |#1| (-381)) ELT)) (-3566 ((|#2| $) 173 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 185 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 184 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 179 T ELT) (((-711 |#1|) (-1299 $)) 178 T ELT)) (-2116 (($ (-663 $)) 118 (|has| |#1| (-376)) ELT) (($ $ $) 117 (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3952 (($) 160 (|has| |#1| (-363)) CONST)) (-2645 (($ (-949)) 106 (|has| |#1| (-381)) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2654 (($) 177 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 119 (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) 116 (|has| |#1| (-376)) ELT) (($ $ $) 115 (|has| |#1| (-376)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) 163 (|has| |#1| (-363)) ELT)) (-4248 (((-419 $) $) 130 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 127 (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) 110 (|has| |#1| (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 121 (|has| |#1| (-376)) ELT)) (-1799 (((-793) $) 123 (|has| |#1| (-376)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 124 (|has| |#1| (-376)) ELT)) (-4273 ((|#1| (-1299 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1989 (((-793) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4274 (($ $ (-793)) 153 (-4043 (-3047 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 151 (-4043 (-3047 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 147 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1209) (-793)) 146 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1209))) 145 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1209)) 143 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 141 (|has| |#1| (-376)) ELT)) (-2653 (((-711 |#1|) (-1299 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3689 ((|#2|) 176 T ELT)) (-1889 (($) 165 (|has| |#1| (-363)) ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 62 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) 61 T ELT) (((-1299 |#1|) $) 79 T ELT) (((-711 |#1|) (-1299 $)) 78 T ELT)) (-4488 (((-1299 |#1|) $) 76 T ELT) (($ (-1299 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 162 (|has| |#1| (-363)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-376)) ELT) (($ (-421 (-560))) 104 (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (($ $) 161 (|has| |#1| (-363)) ELT) (((-713 $) $) 55 (|has| |#1| (-147)) ELT)) (-2852 ((|#2| $) 57 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2236 (((-1299 $)) 80 T ELT)) (-2286 (((-114) $ $) 113 (|has| |#1| (-376)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-793)) 154 (-4043 (-3047 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 152 (-4043 (-3047 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 150 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1209) (-793)) 149 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1209))) 148 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1209)) 144 (-3047 (|has| |#1| (-930 (-1209))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 139 (|has| |#1| (-376)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-421 (-560)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 136 (|has| |#1| (-376)) ELT))) -(((-746 |#1| |#2|) (-142) (-175) (-1275 |t#1|)) (T -746)) -((-2654 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1275 *2)))) (-3689 (*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) (-4358 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1275 *3)))) (-4488 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1275 *3)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) (-4358 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-1299 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1275 *5)) (-5 *2 (-711 *5))))) -(-13 (-424 |t#1| |t#2|) (-175) (-633 |t#2|) (-426 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2654 ($)) (-15 -3689 (|t#2|)) (-15 -4358 ($ |t#2|)) (-15 -4488 ($ |t#2|)) (-15 -3566 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4358 ((-3 $ "failed") (-421 |t#2|))) (-15 -2653 ((-711 |t#1|) (-1299 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 #1# #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4043 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) . T) ((-633 |#2|) . T) ((-236 $) -4043 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -4043 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -4043 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -4043 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-424 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-571) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-748) . T) ((-922 $ #3=(-1209)) -4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))))) ((-928 (-1209)) -12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209)))) ((-930 #3#) -4043 (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1209))))) ((-951) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1083 |#1|) . T) ((-1083 $) . T) ((-1088 #1#) -4043 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1088 |#1|) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| |#1| (-363)) ((-1249) . T) ((-1254) -4043 (|has| |#1| (-363)) (|has| |#1| (-376)))) -((-4240 (($) 11 T ELT)) (-3973 (((-3 $ "failed") $) 14 T ELT)) (-2655 (((-114) $) 10 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 20 T ELT))) -(((-747 |#1|) (-10 -8 (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -2655 ((-114) |#1|)) (-15 -4240 (|#1|)) (-15 ** (|#1| |#1| (-949)))) (-748)) (T -747)) -NIL -(-10 -8 (-15 -3973 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -2655 ((-114) |#1|)) (-15 -4240 (|#1|)) (-15 ** (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-4240 (($) 23 T CONST)) (-3973 (((-3 $ "failed") $) 20 T ELT)) (-2655 (((-114) $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 24 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (** (($ $ (-949)) 17 T ELT) (($ $ (-793)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-748) (-142)) (T -748)) -((-3151 (*1 *1) (-4 *1 (-748))) (-4240 (*1 *1) (-4 *1 (-748))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) (-3973 (*1 *1 *1) (|partial| -4 *1 (-748)))) -(-13 (-1144) (-10 -8 (-15 (-3151) ($) -4468) (-15 -4240 ($) -4468) (-15 -2655 ((-114) $)) (-15 ** ($ $ (-793))) (-15 -3973 ((-3 $ "failed") $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-2656 (((-2 (|:| -3578 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3924 (((-2 (|:| -3578 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2657 ((|#2| (-421 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3941 (((-2 (|:| |poly| |#2|) (|:| -3578 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-749 |#1| |#2|) (-10 -7 (-15 -3924 ((-2 (|:| -3578 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2656 ((-2 (|:| -3578 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2657 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -3941 ((-2 (|:| |poly| |#2|) (|:| -3578 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1275 |#1|)) (T -749)) -((-3941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3578 (-421 *6)) (|:| |special| (-421 *6)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1275 *5)) (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3578 (-419 *3)) (|:| |special| (-419 *3)))) (-5 *1 (-749 *5 *3)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3578 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3))))) -(-10 -7 (-15 -3924 ((-2 (|:| -3578 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2656 ((-2 (|:| -3578 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2657 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -3941 ((-2 (|:| |poly| |#2|) (|:| -3578 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) -((-2658 ((|#7| (-663 |#5|) |#6|) NIL T ELT)) (-4474 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4474 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2658 (|#7| (-663 |#5|) |#6|))) (-872) (-817) (-817) (-1081) (-1081) (-980 |#4| |#2| |#1|) (-980 |#5| |#3| |#1|)) (T -750)) -((-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *9)) (-4 *9 (-1081)) (-4 *5 (-872)) (-4 *6 (-817)) (-4 *8 (-1081)) (-4 *2 (-980 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-817)) (-4 *4 (-980 *8 *6 *5)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1081)) (-4 *9 (-1081)) (-4 *5 (-872)) (-4 *6 (-817)) (-4 *2 (-980 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-817)) (-4 *4 (-980 *8 *6 *5))))) -(-10 -7 (-15 -4474 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2658 (|#7| (-663 |#5|) |#6|))) -((-4474 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-751 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4474 (|#7| (-1 |#2| |#1|) |#6|))) (-872) (-872) (-817) (-817) (-1081) (-980 |#5| |#3| |#1|) (-980 |#5| |#4| |#2|)) (T -751)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-872)) (-4 *6 (-872)) (-4 *7 (-817)) (-4 *9 (-1081)) (-4 *2 (-980 *9 *8 *6)) (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-817)) (-4 *4 (-980 *9 *7 *5))))) -(-10 -7 (-15 -4474 (|#7| (-1 |#2| |#1|) |#6|))) -((-4248 (((-419 |#4|) |#4|) 42 T ELT))) -(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4|))) (-817) (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209))))) (-319) (-980 (-976 |#3|) |#1| |#2|)) (T -752)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209)))))) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-980 (-976 *6) *4 *5))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-889 |#1|)) $) NIL T ELT)) (-3572 (((-1203 $) $ (-889 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-889 |#1|))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-889 |#1|) #2#) $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-889 |#1|) $) NIL T ELT)) (-4272 (($ $ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-940)) ELT)) (-1816 (($ $ |#2| (-545 (-889 |#1|)) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-889 |#1|) (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#2|) (-889 |#1|)) NIL T ELT) (($ (-1203 $) (-889 |#1|)) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-545 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-889 |#1|)) NIL T ELT)) (-3307 (((-545 (-889 |#1|)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-1817 (($ (-1 (-545 (-889 |#1|)) (-545 (-889 |#1|))) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3571 (((-3 (-889 |#1|) #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-889 |#1|)) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#2| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-889 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-889 |#1|) $) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 $)) NIL T ELT)) (-4273 (($ $ (-889 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4274 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-4464 (((-545 (-889 |#1|)) $) NIL T ELT) (((-793) $ (-889 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-889 |#1|))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-889 |#1|) (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-889 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-889 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-889 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-571)) ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-545 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-889 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-889 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-889 |#1|))) NIL T ELT) (($ $ (-889 |#1|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-753 |#1| |#2|) (-980 |#2| (-545 (-889 |#1|)) (-889 |#1|)) (-663 (-1209)) (-1081)) (T -753)) -NIL -(-980 |#2| (-545 (-889 |#1|)) (-889 |#1|)) -((-2659 (((-2 (|:| -2887 (-976 |#3|)) (|:| -2282 (-976 |#3|))) |#4|) 14 T ELT)) (-3473 ((|#4| |#4| |#2|) 33 T ELT)) (-2662 ((|#4| (-421 (-976 |#3|)) |#2|) 62 T ELT)) (-2661 ((|#4| (-1203 (-976 |#3|)) |#2|) 74 T ELT)) (-2660 ((|#4| (-1203 |#4|) |#2|) 49 T ELT)) (-3472 ((|#4| |#4| |#2|) 52 T ELT)) (-4248 (((-419 |#4|) |#4|) 40 T ELT))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2659 ((-2 (|:| -2887 (-976 |#3|)) (|:| -2282 (-976 |#3|))) |#4|)) (-15 -3472 (|#4| |#4| |#2|)) (-15 -2660 (|#4| (-1203 |#4|) |#2|)) (-15 -3473 (|#4| |#4| |#2|)) (-15 -2661 (|#4| (-1203 (-976 |#3|)) |#2|)) (-15 -2662 (|#4| (-421 (-976 |#3|)) |#2|)) (-15 -4248 ((-419 |#4|) |#4|))) (-817) (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)))) (-571) (-980 (-421 (-976 |#3|)) |#1| |#2|)) (T -754)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *6 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-980 (-421 (-976 *6)) *4 *5)))) (-2662 (*1 *2 *3 *4) (-12 (-4 *6 (-571)) (-4 *2 (-980 *3 *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-976 *6))) (-4 *5 (-817)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 (-976 *6))) (-4 *6 (-571)) (-4 *2 (-980 (-421 (-976 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-817)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))))) (-3473 (*1 *2 *2 *3) (-12 (-4 *4 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-980 (-421 (-976 *5)) *4 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *2)) (-4 *2 (-980 (-421 (-976 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-817)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *6 (-571)))) (-3472 (*1 *2 *2 *3) (-12 (-4 *4 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-980 (-421 (-976 *5)) *4 *3)))) (-2659 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *6 (-571)) (-5 *2 (-2 (|:| -2887 (-976 *6)) (|:| -2282 (-976 *6)))) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-980 (-421 (-976 *6)) *4 *5))))) -(-10 -7 (-15 -2659 ((-2 (|:| -2887 (-976 |#3|)) (|:| -2282 (-976 |#3|))) |#4|)) (-15 -3472 (|#4| |#4| |#2|)) (-15 -2660 (|#4| (-1203 |#4|) |#2|)) (-15 -3473 (|#4| |#4| |#2|)) (-15 -2661 (|#4| (-1203 (-976 |#3|)) |#2|)) (-15 -2662 (|#4| (-421 (-976 |#3|)) |#2|)) (-15 -4248 ((-419 |#4|) |#4|))) -((-4248 (((-419 |#4|) |#4|) 54 T ELT))) -(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4|))) (-817) (-872) (-13 (-319) (-149)) (-980 (-421 |#3|) |#1| |#2|)) (T -755)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-980 (-421 *6) *4 *5))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4|))) -((-4474 (((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)) 18 T ELT))) -(((-756 |#1| |#2| |#3|) (-10 -7 (-15 -4474 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) (-1081) (-1081) (-748)) (T -756)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) (-5 *1 (-756 *5 *6 *7))))) -(-10 -7 (-15 -4474 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 36 T ELT)) (-4290 (((-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|))) $) 37 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #1="failed") $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3660 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) 99 (|has| |#2| (-872)) ELT)) (-3973 (((-3 $ "failed") $) 83 T ELT)) (-3481 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) 70 T ELT)) (-3308 (((-663 $) $) 52 T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| |#2|) 17 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2234 (((-949) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3381 ((|#2| $) 98 (|has| |#2| (-872)) ELT)) (-3678 ((|#1| $) 97 (|has| |#2| (-872)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 96 T ELT) (($ (-560)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|)))) 11 T ELT)) (-4333 (((-663 |#1|) $) 54 T ELT)) (-4193 ((|#1| $ |#2|) 114 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 12 T CONST)) (-3151 (($) 44 T CONST)) (-3540 (((-114) $ $) 104 T ELT)) (-4353 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 33 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-757 |#1| |#2|) (-13 (-1081) (-1070 |#2|) (-1070 |#1|) (-10 -8 (-15 -3380 ($ |#1| |#2|)) (-15 -4193 (|#1| $ |#2|)) (-15 -4462 ($ (-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|))))) (-15 -4290 ((-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|))) $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (-15 -4453 ((-114) $)) (-15 -4333 ((-663 |#1|) $)) (-15 -3308 ((-663 $) $)) (-15 -2663 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-872)) (PROGN (-15 -3381 (|#2| $)) (-15 -3678 (|#1| $)) (-15 -4475 ($ $))) |%noBranch|))) (-1081) (-748)) (T -757)) -((-3380 (*1 *1 *2 *3) (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-748)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *2 (-1081)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4470 *3) (|:| -4454 *4)))) (-4 *3 (-1081)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4470 *3) (|:| -4454 *4)))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-757 *3 *4)) (-4 *4 (-748)))) (-4453 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) (-3381 (*1 *2 *1) (-12 (-4 *2 (-748)) (-4 *2 (-872)) (-5 *1 (-757 *3 *2)) (-4 *3 (-1081)))) (-3678 (*1 *2 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-757 *2 *3)) (-4 *3 (-872)) (-4 *3 (-748)))) (-4475 (*1 *1 *1) (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-872)) (-4 *2 (-1081)) (-4 *3 (-748))))) -(-13 (-1081) (-1070 |#2|) (-1070 |#1|) (-10 -8 (-15 -3380 ($ |#1| |#2|)) (-15 -4193 (|#1| $ |#2|)) (-15 -4462 ($ (-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|))))) (-15 -4290 ((-663 (-2 (|:| -4470 |#1|) (|:| -4454 |#2|))) $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (-15 -4453 ((-114) $)) (-15 -4333 ((-663 |#1|) $)) (-15 -3308 ((-663 $) $)) (-15 -2663 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-872)) (PROGN (-15 -3381 (|#2| $)) (-15 -3678 (|#1| $)) (-15 -4475 ($ $))) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3738 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3740 (($ $ $) 99 T ELT)) (-3739 (((-114) $ $) 107 T ELT)) (-3743 (($ (-663 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) 86 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2608 (($ $) 88 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) 71 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT) (($ |#1| $ (-560)) 78 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 81 T ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (($ |#1| $ (-560)) 83 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 84 T ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) 106 T ELT)) (-2664 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-663 |#1|)) 23 T ELT)) (-3093 (((-663 |#1|) $) 38 T ELT)) (-3749 (((-114) |#1| $) 66 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3742 (($ $ $) 97 T ELT)) (-1400 ((|#1| $) 63 T ELT)) (-4123 (($ |#1| $) 64 T ELT) (($ |#1| $ (-793)) 89 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1401 ((|#1| $) 62 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 57 T ELT)) (-4079 (($) 14 T ELT)) (-2607 (((-663 (-2 (|:| -2300 |#1|) (|:| -2171 (-793)))) $) 56 T ELT)) (-3741 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1610 (($) 16 T ELT) (($ (-663 |#1|)) 25 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 69 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 82 T ELT)) (-4488 (((-549) $) 36 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 22 T ELT)) (-4462 (((-888) $) 50 T ELT)) (-3744 (($ (-663 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1402 (($ (-663 |#1|)) 24 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 103 T ELT)) (-4473 (((-793) $) 68 (|has| $ (-6 -4511)) ELT))) -(((-758 |#1|) (-13 (-759 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -2664 ($)) (-15 -2664 ($ |#1|)) (-15 -2664 ($ (-663 |#1|))) (-15 -3093 ((-663 |#1|) $)) (-15 -3912 ($ |#1| $ (-560))) (-15 -3912 ($ (-1 (-114) |#1|) $ (-560))) (-15 -3911 ($ |#1| $ (-560))) (-15 -3911 ($ (-1 (-114) |#1|) $ (-560))))) (-1133)) (T -758)) -((-2664 (*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1133)))) (-2664 (*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1133)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-758 *3)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1133)))) (-3912 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1133)))) (-3912 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1133)) (-5 *1 (-758 *4)))) (-3911 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1133)))) (-3911 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1133)) (-5 *1 (-758 *4))))) -(-13 (-759 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -2664 ($)) (-15 -2664 ($ |#1|)) (-15 -2664 ($ (-663 |#1|))) (-15 -3093 ((-663 |#1|) $)) (-15 -3912 ($ |#1| $ (-560))) (-15 -3912 ($ (-1 (-114) |#1|) $ (-560))) (-15 -3911 ($ |#1| $ (-560))) (-15 -3911 ($ (-1 (-114) |#1|) $ (-560))))) -((-3053 (((-114) $ $) 19 T ELT)) (-3738 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3740 (($ $ $) 77 T ELT)) (-3739 (((-114) $ $) 78 T ELT)) (-3743 (($ (-663 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2608 (($ $) 66 T ELT)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) 69 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 T ELT)) (-3742 (($ $ $) 74 T ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT) (($ |#1| $ (-793)) 67 T ELT)) (-3747 (((-1152) $) 21 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2607 (((-663 (-2 (|:| -2300 |#1|) (|:| -2171 (-793)))) $) 65 T ELT)) (-3741 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-4462 (((-888) $) 17 T ELT)) (-3744 (($ (-663 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1389 (((-114) $ $) 20 T ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 T ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-759 |#1|) (-142) (-1133)) (T -759)) -NIL -(-13 (-717 |t#1|) (-1131 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-888)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-717 |#1|) . T) ((-1131 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-2665 (((-1305) (-1191)) 8 T ELT))) -(((-760) (-10 -7 (-15 -2665 ((-1305) (-1191))))) (T -760)) -((-2665 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-760))))) -(-10 -7 (-15 -2665 ((-1305) (-1191)))) -((-2666 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 15 T ELT))) -(((-761 |#1|) (-10 -7 (-15 -2666 ((-663 |#1|) (-663 |#1|) (-663 |#1|)))) (-872)) (T -761)) -((-2666 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-761 *3))))) -(-10 -7 (-15 -2666 ((-663 |#1|) (-663 |#1|) (-663 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 |#2|) $) 156 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 149 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 148 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 146 (|has| |#1| (-571)) ELT)) (-3998 (($ $) 105 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (($ $) 87 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 89 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4000 (($ $) 103 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 140 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4330 (((-976 |#1|) $ (-793)) 118 T ELT) (((-976 |#1|) $ (-793) (-793)) 117 T ELT)) (-3379 (((-114) $) 157 T ELT)) (-4143 (($) 115 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $ |#2|) 120 T ELT) (((-793) $ |#2| (-793)) 119 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 86 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4453 (((-114) $) 138 T ELT)) (-3380 (($ $ (-663 |#2|) (-663 (-545 |#2|))) 155 T ELT) (($ $ |#2| (-545 |#2|)) 154 T ELT) (($ |#1| (-545 |#2|)) 139 T ELT) (($ $ |#2| (-793)) 122 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 121 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4458 (($ $) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) 135 T ELT)) (-3678 ((|#1| $) 134 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-4328 (($ $ |#2|) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4285 (($ $ (-793)) 123 T ELT)) (-3972 (((-3 $ "failed") $ $) 150 (|has| |#1| (-571)) ELT)) (-4459 (($ $) 113 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (($ $ |#2| $) 131 T ELT) (($ $ (-663 |#2|) (-663 $)) 130 T ELT) (($ $ (-663 (-305 $))) 129 T ELT) (($ $ (-305 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-663 $) (-663 $)) 126 T ELT)) (-4274 (($ $ (-663 |#2|) (-663 (-793))) 49 T ELT) (($ $ |#2| (-793)) 48 T ELT) (($ $ (-663 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4464 (((-545 |#2|) $) 136 T ELT)) (-4001 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 91 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 101 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 93 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 158 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-175)) ELT) (($ $) 151 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4193 ((|#1| $ (-545 |#2|)) 141 T ELT) (($ $ |#2| (-793)) 125 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 124 T ELT)) (-3189 (((-713 $) $) 152 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 111 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 99 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 147 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 110 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 109 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 97 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4007 (($ $) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 107 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 95 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 |#2|) (-663 (-793))) 52 T ELT) (($ $ |#2| (-793)) 51 T ELT) (($ $ (-663 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 142 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 85 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 145 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) -(((-762 |#1| |#2|) (-142) (-1081) (-872)) (T -762)) -((-4193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1081)) (-4 *2 (-872)))) (-4193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-872)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1081)) (-4 *2 (-872)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)))) (-4288 (*1 *2 *1 *3) (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1081)) (-4 *3 (-872)) (-5 *2 (-793)))) (-4288 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1081)) (-4 *3 (-872)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)) (-5 *2 (-976 *4)))) (-4330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)) (-5 *2 (-976 *4)))) (-4328 (*1 *1 *1 *2) (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-872)) (-4 *3 (-38 (-421 (-560))))))) -(-13 (-928 |t#2|) (-1005 |t#1| (-545 |t#2|) |t#2|) (-528 |t#2| $) (-321 $) (-10 -8 (-15 -4193 ($ $ |t#2| (-793))) (-15 -4193 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -4285 ($ $ (-793))) (-15 -3380 ($ $ |t#2| (-793))) (-15 -3380 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -4288 ((-793) $ |t#2|)) (-15 -4288 ((-793) $ |t#2| (-793))) (-15 -4330 ((-976 |t#1|) $ (-793))) (-15 -4330 ((-976 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $ |t#2|)) (-6 (-1034)) (-6 (-1235))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-545 |#2|)) . T) ((-25) . T) ((-38 #2=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-302) |has| |#1| (-571)) ((-321 $) . T) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 |#2| $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #2#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #2#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-922 $ |#2|) . T) ((-928 |#2|) . T) ((-930 |#2|) . T) ((-1005 |#1| #1# |#2|) . T) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1083 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T)) -((-4248 (((-419 (-1203 |#4|)) (-1203 |#4|)) 30 T ELT) (((-419 |#4|) |#4|) 26 T ELT))) -(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 |#4|) |#4|)) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|)))) (-872) (-817) (-13 (-319) (-149)) (-980 |#3| |#2| |#1|)) (T -763)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-980 *6 *5 *4)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4))))) -(-10 -7 (-15 -4248 ((-419 |#4|) |#4|)) (-15 -4248 ((-419 (-1203 |#4|)) (-1203 |#4|)))) -((-2669 (((-419 |#4|) |#4| |#2|) 141 T ELT)) (-2667 (((-419 |#4|) |#4|) NIL T ELT)) (-4487 (((-419 (-1203 |#4|)) (-1203 |#4|)) 128 T ELT) (((-419 |#4|) |#4|) 52 T ELT)) (-2671 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4248 (-1203 |#4|)) (|:| -2646 (-560)))))) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 81 T ELT)) (-2675 (((-1203 |#3|) (-1203 |#3|) (-560)) 168 T ELT)) (-2674 (((-663 (-793)) (-1203 |#4|) (-663 |#2|) (-793)) 75 T ELT)) (-3566 (((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|)) 79 T ELT)) (-2672 (((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 27 T ELT)) (-2670 (((-2 (|:| -2228 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-560)) 72 T ELT)) (-2668 (((-560) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560))))) 164 T ELT)) (-2673 ((|#4| (-560) (-419 |#4|)) 73 T ELT)) (-3863 (((-114) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560))))) NIL T ELT))) -(((-764 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4487 ((-419 |#4|) |#4|)) (-15 -4487 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -2667 ((-419 |#4|) |#4|)) (-15 -2668 ((-560) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))))) (-15 -2669 ((-419 |#4|) |#4| |#2|)) (-15 -2670 ((-2 (|:| -2228 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-560))) (-15 -2671 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4248 (-1203 |#4|)) (|:| -2646 (-560)))))) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -2672 ((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -2673 (|#4| (-560) (-419 |#4|))) (-15 -3863 ((-114) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))))) (-15 -3566 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -2674 ((-663 (-793)) (-1203 |#4|) (-663 |#2|) (-793))) (-15 -2675 ((-1203 |#3|) (-1203 |#3|) (-560)))) (-817) (-872) (-319) (-980 |#3| |#1| |#2|)) (T -764)) -((-2675 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) (-2674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-4 *7 (-872)) (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) (-4 *8 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))) (-3566 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1203 *11)) (-5 *6 (-663 *10)) (-5 *7 (-663 (-793))) (-5 *8 (-663 *11)) (-4 *10 (-872)) (-4 *11 (-319)) (-4 *9 (-817)) (-4 *5 (-980 *11 *9 *10)) (-5 *2 (-663 (-1203 *5))) (-5 *1 (-764 *9 *10 *11 *5)) (-5 *3 (-1203 *5)))) (-3863 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-2 (|:| -4248 (-1203 *6)) (|:| -2646 (-560))))) (-4 *6 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-980 *7 *5 *6)) (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-319)))) (-2672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-872)) (-4 *8 (-319)) (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) (-5 *2 (-2 (|:| |upol| (-1203 *8)) (|:| |Lval| (-663 *8)) (|:| |Lfact| (-663 (-2 (|:| -4248 (-1203 *8)) (|:| -2646 (-560))))) (|:| |ctpol| *8))) (-5 *1 (-764 *6 *7 *8 *9)))) (-2671 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-872)) (-4 *8 (-319)) (-4 *6 (-817)) (-4 *9 (-980 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-663 (-2 (|:| -4248 (-1203 *9)) (|:| -2646 (-560))))))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-319)) (-4 *9 (-980 *8 *6 *7)) (-5 *2 (-2 (|:| -2228 (-1203 *9)) (|:| |polval| (-1203 *8)))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)) (-5 *4 (-1203 *8)))) (-2669 (*1 *2 *3 *4) (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-980 *6 *5 *4)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4248 (-1203 *6)) (|:| -2646 (-560))))) (-4 *6 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-560)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) (-2667 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-980 *6 *4 *5)))) (-4487 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-4487 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-980 *6 *4 *5))))) -(-10 -7 (-15 -4487 ((-419 |#4|) |#4|)) (-15 -4487 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -2667 ((-419 |#4|) |#4|)) (-15 -2668 ((-560) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))))) (-15 -2669 ((-419 |#4|) |#4| |#2|)) (-15 -2670 ((-2 (|:| -2228 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-560))) (-15 -2671 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4248 (-1203 |#4|)) (|:| -2646 (-560)))))) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -2672 ((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -2673 (|#4| (-560) (-419 |#4|))) (-15 -3863 ((-114) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))) (-663 (-2 (|:| -4248 (-1203 |#3|)) (|:| -2646 (-560)))))) (-15 -3566 ((-3 (-663 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -2674 ((-663 (-793)) (-1203 |#4|) (-663 |#2|) (-793))) (-15 -2675 ((-1203 |#3|) (-1203 |#3|) (-560)))) -((-2676 (($ $ (-949)) 17 T ELT))) -(((-765 |#1| |#2|) (-10 -8 (-15 -2676 (|#1| |#1| (-949)))) (-766 |#2|) (-175)) (T -765)) -NIL -(-10 -8 (-15 -2676 (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2652 (($ $ (-949)) 36 T ELT)) (-2676 (($ $ (-949)) 43 T ELT)) (-2651 (($ $ (-949)) 37 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2838 (($ $ $) 33 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2839 (($ $ $ $) 34 T ELT)) (-2837 (($ $ $) 32 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 38 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-766 |#1|) (-142) (-175)) (T -766)) -((-2676 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-766 *3)) (-4 *3 (-175))))) -(-13 (-783) (-739 |t#1|) (-10 -8 (-15 -2676 ($ $ (-949))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-783) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-2678 (((-1067) (-711 (-229)) (-560) (-114) (-560)) 26 T ELT)) (-2677 (((-1067) (-711 (-229)) (-560) (-114) (-560)) 25 T ELT))) -(((-767) (-10 -7 (-15 -2677 ((-1067) (-711 (-229)) (-560) (-114) (-560))) (-15 -2678 ((-1067) (-711 (-229)) (-560) (-114) (-560))))) (T -767)) -((-2678 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1067)) (-5 *1 (-767)))) (-2677 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1067)) (-5 *1 (-767))))) -(-10 -7 (-15 -2677 ((-1067) (-711 (-229)) (-560) (-114) (-560))) (-15 -2678 ((-1067) (-711 (-229)) (-560) (-114) (-560)))) -((-2681 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2680 (((-1067) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2679 (((-1067) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) 32 T ELT))) -(((-768) (-10 -7 (-15 -2679 ((-1067) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2680 ((-1067) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2681 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -768)) -((-2681 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1067)) (-5 *1 (-768)))) (-2680 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1067)) (-5 *1 (-768)))) (-2679 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) (-5 *1 (-768))))) -(-10 -7 (-15 -2679 ((-1067) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2680 ((-1067) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2681 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))))) -((-2693 (((-1067) (-560) (-560) (-711 (-229)) (-560)) 34 T ELT)) (-2692 (((-1067) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-2691 (((-1067) (-560) (-711 (-229)) (-560)) 32 T ELT)) (-2690 (((-1067) (-560) (-711 (-229)) (-560)) 31 T ELT)) (-2689 (((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 30 T ELT)) (-2688 (((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-2687 (((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-2686 (((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-2685 (((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-2684 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-2683 (((-1067) (-560) (-711 (-229)) (-560)) 22 T ELT)) (-2682 (((-1067) (-560) (-711 (-229)) (-560)) 21 T ELT))) -(((-769) (-10 -7 (-15 -2682 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2683 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2684 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2685 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2686 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2687 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2688 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2689 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2690 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2691 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2692 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2693 ((-1067) (-560) (-560) (-711 (-229)) (-560))))) (T -769)) -((-2693 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2692 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2691 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2690 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2689 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2688 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2687 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2686 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2685 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2684 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2683 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769)))) (-2682 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) -(-10 -7 (-15 -2682 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2683 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2684 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2685 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2686 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2687 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2688 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2689 ((-1067) (-560) (-560) (-1191) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2690 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2691 ((-1067) (-560) (-711 (-229)) (-560))) (-15 -2692 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2693 ((-1067) (-560) (-560) (-711 (-229)) (-560)))) -((-2705 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2704 (((-1067) (-711 (-229)) (-711 (-229)) (-560) (-560)) 51 T ELT)) (-2703 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-2702 (((-1067) (-229) (-229) (-560) (-560) (-560) (-560)) 46 T ELT)) (-2701 (((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2700 (((-1067) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-2699 (((-1067) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-2698 (((-1067) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2697 (((-1067) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) 38 T ELT)) (-2696 (((-1067) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) 37 T ELT)) (-2695 (((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) 33 T ELT)) (-2694 (((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) 32 T ELT))) -(((-770) (-10 -7 (-15 -2694 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2695 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2696 ((-1067) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2697 ((-1067) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2698 ((-1067) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2699 ((-1067) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2700 ((-1067) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2701 ((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2702 ((-1067) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -2703 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2704 ((-1067) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -2705 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -770)) -((-2705 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2704 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2703 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2702 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2701 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2700 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2699 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2698 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2697 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2696 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2695 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) (-5 *1 (-770)))) (-2694 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) (-5 *1 (-770))))) -(-10 -7 (-15 -2694 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2695 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2696 ((-1067) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2697 ((-1067) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581))))) (-15 -2698 ((-1067) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2699 ((-1067) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2700 ((-1067) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2701 ((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2702 ((-1067) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -2703 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2704 ((-1067) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -2705 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))))) -((-2713 (((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2712 (((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-2711 (((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-2710 (((-1067) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2709 (((-1067) (-229) (-560) (-560) (-1191) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-2708 (((-1067) (-229) (-560) (-560) (-229) (-1191) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-2707 (((-1067) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2706 (((-1067) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT))) -(((-771) (-10 -7 (-15 -2706 ((-1067) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2707 ((-1067) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2708 ((-1067) (-229) (-560) (-560) (-229) (-1191) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2709 ((-1067) (-229) (-560) (-560) (-1191) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2710 ((-1067) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2711 ((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2712 ((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2712 ((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2713 ((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -771)) -((-2713 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2712 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2712 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2711 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2710 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2709 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-560)) (-5 *5 (-1191)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2708 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-560)) (-5 *5 (-1191)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2707 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-771)))) (-2706 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-771))))) -(-10 -7 (-15 -2706 ((-1067) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2707 ((-1067) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2708 ((-1067) (-229) (-560) (-560) (-229) (-1191) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2709 ((-1067) (-229) (-560) (-560) (-1191) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2710 ((-1067) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2711 ((-1067) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2712 ((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2712 ((-1067) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2713 ((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))))) -((-2716 (((-1067) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560)) 46 T ELT)) (-2715 (((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1191) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-2714 (((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT))) -(((-772) (-10 -7 (-15 -2714 ((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2715 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1191) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2716 ((-1067) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560))))) (T -772)) -((-2716 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-772)))) (-2715 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1191)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1067)) (-5 *1 (-772)))) (-2714 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-772))))) -(-10 -7 (-15 -2714 ((-1067) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2715 ((-1067) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1191) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2716 ((-1067) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560)))) -((-2726 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560)) 35 T ELT)) (-2725 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560)) 34 T ELT)) (-2724 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560)) 33 T ELT)) (-2723 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-2722 (((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-2721 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560)) 27 T ELT)) (-2720 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 24 T ELT)) (-2719 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 23 T ELT)) (-2718 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560)) 22 T ELT)) (-2717 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 21 T ELT))) -(((-773) (-10 -7 (-15 -2717 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2718 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2719 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2720 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2721 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2722 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2723 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2724 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2725 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -2726 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560))))) (T -773)) -((-2726 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2725 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2724 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2723 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2722 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2721 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2720 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2719 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2718 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773)))) (-2717 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) -(-10 -7 (-15 -2717 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2718 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2719 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2720 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2721 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2722 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2723 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2724 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2725 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -2726 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560)))) -((-2744 (((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 45 T ELT)) (-2743 (((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560)) 44 T ELT)) (-2742 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 43 T ELT)) (-2741 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 42 T ELT)) (-2740 (((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560)) 41 T ELT)) (-2739 (((-1067) (-1191) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 40 T ELT)) (-2738 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560)) 39 T ELT)) (-2737 (((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560))) 38 T ELT)) (-2736 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560)) 35 T ELT)) (-2735 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560)) 34 T ELT)) (-2734 (((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560)) 33 T ELT)) (-2733 (((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 32 T ELT)) (-2732 (((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560)) 31 T ELT)) (-2731 (((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560)) 30 T ELT)) (-2730 (((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-2729 (((-1067) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560)) 28 T ELT)) (-2728 (((-1067) (-560) (-711 (-229)) (-229) (-560)) 24 T ELT)) (-2727 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 21 T ELT))) -(((-774) (-10 -7 (-15 -2727 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2728 ((-1067) (-560) (-711 (-229)) (-229) (-560))) (-15 -2729 ((-1067) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -2730 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2731 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2732 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -2733 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2734 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -2735 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -2736 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2737 ((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -2738 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2739 ((-1067) (-1191) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2740 ((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2741 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2742 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2743 ((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2744 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))))) (T -774)) -((-2744 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2743 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2742 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2741 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2740 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2739 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2738 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2737 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2736 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2735 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2734 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2733 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2732 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2731 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2730 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2729 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2728 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) (-5 *1 (-774)))) (-2727 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) -(-10 -7 (-15 -2727 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2728 ((-1067) (-560) (-711 (-229)) (-229) (-560))) (-15 -2729 ((-1067) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -2730 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2731 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2732 ((-1067) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -2733 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2734 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -2735 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -2736 ((-1067) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2737 ((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -2738 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2739 ((-1067) (-1191) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2740 ((-1067) (-1191) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2741 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2742 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2743 ((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2744 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)))) -((-2752 (((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560)) 64 T ELT)) (-2751 (((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-2750 (((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2749 (((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560)) 52 T ELT)) (-2748 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2747 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2746 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2745 (((-1067) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT))) -(((-775) (-10 -7 (-15 -2745 ((-1067) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2746 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2747 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2748 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2749 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -2750 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2751 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2752 ((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560))))) (T -775)) -((-2752 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2751 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2750 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2749 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2748 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2747 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2746 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1067)) (-5 *1 (-775)))) (-2745 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-775))))) -(-10 -7 (-15 -2745 ((-1067) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2746 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2747 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2748 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2749 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -2750 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2751 ((-1067) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2752 ((-1067) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560)))) -((-2762 (((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 47 T ELT)) (-2761 (((-1067) (-1191) (-1191) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560)) 46 T ELT)) (-2760 (((-1067) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 45 T ELT)) (-2759 (((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 40 T ELT)) (-2758 (((-1067) (-1191) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560)) 39 T ELT)) (-2757 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-560)) 36 T ELT)) (-2756 (((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560)) 35 T ELT)) (-2755 (((-1067) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560)) 34 T ELT)) (-2754 (((-1067) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560)) 33 T ELT)) (-2753 (((-1067) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560)) 32 T ELT))) -(((-776) (-10 -7 (-15 -2753 ((-1067) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -2754 ((-1067) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -2755 ((-1067) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -2756 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -2757 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2758 ((-1067) (-1191) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -2759 ((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2760 ((-1067) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2761 ((-1067) (-1191) (-1191) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2762 ((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -776)) -((-2762 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2761 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2760 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2759 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2758 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2757 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2756 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2755 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2754 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229))) (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1067)) (-5 *1 (-776)))) (-2753 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229))) (-5 *8 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1067)) (-5 *1 (-776))))) -(-10 -7 (-15 -2753 ((-1067) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -2754 ((-1067) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -2755 ((-1067) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -2756 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -2757 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2758 ((-1067) (-1191) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -2759 ((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2760 ((-1067) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2761 ((-1067) (-1191) (-1191) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2762 ((-1067) (-1191) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)))) -((-2777 (((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 76 T ELT)) (-2776 (((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 68 T ELT)) (-2775 (((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2774 (((-1067) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 37 T ELT)) (-2773 (((-1067) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-2772 (((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 30 T ELT)) (-2771 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-2770 (((-1067) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-2769 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-2768 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-2767 (((-1067) (-560) (-560) (-711 (-229)) (-560)) 25 T ELT)) (-2766 (((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-2765 (((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-2764 (((-1067) (-711 (-229)) (-560) (-560) (-560) (-560)) 22 T ELT)) (-2763 (((-1067) (-560) (-560) (-711 (-229)) (-560)) 21 T ELT))) -(((-777) (-10 -7 (-15 -2763 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2764 ((-1067) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2765 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2766 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2767 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2768 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2769 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2770 ((-1067) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2771 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2772 ((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2773 ((-1067) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -2774 ((-1067) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2775 ((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2775 ((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2776 ((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2777 ((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -777)) -((-2777 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2776 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2775 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2775 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2774 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2773 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2772 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2771 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2770 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2769 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2768 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2767 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2766 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2765 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2764 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-777)))) (-2763 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) -(-10 -7 (-15 -2763 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2764 ((-1067) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2765 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2766 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2767 ((-1067) (-560) (-560) (-711 (-229)) (-560))) (-15 -2768 ((-1067) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2769 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2770 ((-1067) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2771 ((-1067) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2772 ((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2773 ((-1067) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -2774 ((-1067) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2775 ((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2775 ((-1067) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2776 ((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2777 ((-1067) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)))) -((-2788 (((-1067) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2787 (((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560)) 60 T ELT)) (-2786 (((-1067) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2785 (((-1067) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 37 T ELT)) (-2784 (((-1067) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560)) 36 T ELT)) (-2783 (((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 33 T ELT)) (-2782 (((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229))) 32 T ELT)) (-2781 (((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560)) 28 T ELT)) (-2780 (((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 27 T ELT)) (-2779 (((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-2778 (((-1067) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 22 T ELT))) -(((-778) (-10 -7 (-15 -2778 ((-1067) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2779 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2780 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2781 ((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -2782 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -2783 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2784 ((-1067) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2785 ((-1067) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2786 ((-1067) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2787 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2788 ((-1067) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -778)) -((-2788 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2787 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2786 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2785 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2784 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2783 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2782 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2781 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2780 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2779 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778)))) (-2778 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1067)) (-5 *1 (-778))))) -(-10 -7 (-15 -2778 ((-1067) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2779 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2780 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2781 ((-1067) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -2782 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -2783 ((-1067) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2784 ((-1067) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2785 ((-1067) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2786 ((-1067) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2787 ((-1067) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2788 ((-1067) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))))) -((-2792 (((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229))) 29 T ELT)) (-2791 (((-1067) (-1191) (-560) (-560) (-711 (-229))) 28 T ELT)) (-2790 (((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229))) 27 T ELT)) (-2789 (((-1067) (-560) (-560) (-560) (-711 (-229))) 21 T ELT))) -(((-779) (-10 -7 (-15 -2789 ((-1067) (-560) (-560) (-560) (-711 (-229)))) (-15 -2790 ((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -2791 ((-1067) (-1191) (-560) (-560) (-711 (-229)))) (-15 -2792 ((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)))))) (T -779)) -((-2792 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-779)))) (-2791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-779)))) (-2790 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-779)))) (-2789 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-779))))) -(-10 -7 (-15 -2789 ((-1067) (-560) (-560) (-560) (-711 (-229)))) (-15 -2790 ((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -2791 ((-1067) (-1191) (-560) (-560) (-711 (-229)))) (-15 -2792 ((-1067) (-1191) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229))))) -((-2830 (((-1067) (-229) (-229) (-229) (-229) (-560)) 62 T ELT)) (-2829 (((-1067) (-229) (-229) (-229) (-560)) 61 T ELT)) (-2828 (((-1067) (-229) (-229) (-229) (-560)) 60 T ELT)) (-2827 (((-1067) (-229) (-229) (-560)) 59 T ELT)) (-2826 (((-1067) (-229) (-560)) 58 T ELT)) (-2825 (((-1067) (-229) (-560)) 57 T ELT)) (-2824 (((-1067) (-229) (-560)) 56 T ELT)) (-2823 (((-1067) (-229) (-560)) 55 T ELT)) (-2822 (((-1067) (-229) (-560)) 54 T ELT)) (-2821 (((-1067) (-229) (-560)) 53 T ELT)) (-2820 (((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560)) 52 T ELT)) (-2819 (((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560)) 51 T ELT)) (-2818 (((-1067) (-229) (-560)) 50 T ELT)) (-2817 (((-1067) (-229) (-560)) 49 T ELT)) (-2816 (((-1067) (-229) (-560)) 48 T ELT)) (-2815 (((-1067) (-229) (-560)) 47 T ELT)) (-2814 (((-1067) (-560) (-229) (-171 (-229)) (-560) (-1191) (-560)) 46 T ELT)) (-2813 (((-1067) (-1191) (-171 (-229)) (-1191) (-560)) 45 T ELT)) (-2812 (((-1067) (-1191) (-171 (-229)) (-1191) (-560)) 44 T ELT)) (-2811 (((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560)) 43 T ELT)) (-2810 (((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560)) 42 T ELT)) (-2809 (((-1067) (-229) (-560)) 39 T ELT)) (-2808 (((-1067) (-229) (-560)) 38 T ELT)) (-2807 (((-1067) (-229) (-560)) 37 T ELT)) (-2806 (((-1067) (-229) (-560)) 36 T ELT)) (-2805 (((-1067) (-229) (-560)) 35 T ELT)) (-2804 (((-1067) (-229) (-560)) 34 T ELT)) (-2803 (((-1067) (-229) (-560)) 33 T ELT)) (-2802 (((-1067) (-229) (-560)) 32 T ELT)) (-2801 (((-1067) (-229) (-560)) 31 T ELT)) (-2800 (((-1067) (-229) (-560)) 30 T ELT)) (-2799 (((-1067) (-229) (-229) (-229) (-560)) 29 T ELT)) (-2798 (((-1067) (-229) (-560)) 28 T ELT)) (-2797 (((-1067) (-229) (-560)) 27 T ELT)) (-2796 (((-1067) (-229) (-560)) 26 T ELT)) (-2795 (((-1067) (-229) (-560)) 25 T ELT)) (-2794 (((-1067) (-229) (-560)) 24 T ELT)) (-2793 (((-1067) (-171 (-229)) (-560)) 21 T ELT))) -(((-780) (-10 -7 (-15 -2793 ((-1067) (-171 (-229)) (-560))) (-15 -2794 ((-1067) (-229) (-560))) (-15 -2795 ((-1067) (-229) (-560))) (-15 -2796 ((-1067) (-229) (-560))) (-15 -2797 ((-1067) (-229) (-560))) (-15 -2798 ((-1067) (-229) (-560))) (-15 -2799 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2800 ((-1067) (-229) (-560))) (-15 -2801 ((-1067) (-229) (-560))) (-15 -2802 ((-1067) (-229) (-560))) (-15 -2803 ((-1067) (-229) (-560))) (-15 -2804 ((-1067) (-229) (-560))) (-15 -2805 ((-1067) (-229) (-560))) (-15 -2806 ((-1067) (-229) (-560))) (-15 -2807 ((-1067) (-229) (-560))) (-15 -2808 ((-1067) (-229) (-560))) (-15 -2809 ((-1067) (-229) (-560))) (-15 -2810 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2811 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2812 ((-1067) (-1191) (-171 (-229)) (-1191) (-560))) (-15 -2813 ((-1067) (-1191) (-171 (-229)) (-1191) (-560))) (-15 -2814 ((-1067) (-560) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2815 ((-1067) (-229) (-560))) (-15 -2816 ((-1067) (-229) (-560))) (-15 -2817 ((-1067) (-229) (-560))) (-15 -2818 ((-1067) (-229) (-560))) (-15 -2819 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2820 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2821 ((-1067) (-229) (-560))) (-15 -2822 ((-1067) (-229) (-560))) (-15 -2823 ((-1067) (-229) (-560))) (-15 -2824 ((-1067) (-229) (-560))) (-15 -2825 ((-1067) (-229) (-560))) (-15 -2826 ((-1067) (-229) (-560))) (-15 -2827 ((-1067) (-229) (-229) (-560))) (-15 -2828 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2829 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2830 ((-1067) (-229) (-229) (-229) (-229) (-560))))) (T -780)) -((-2830 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2829 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2828 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2827 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2820 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2819 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2816 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2814 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1191)) (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2813 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1191)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2812 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1191)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2811 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2810 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2799 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) -(-10 -7 (-15 -2793 ((-1067) (-171 (-229)) (-560))) (-15 -2794 ((-1067) (-229) (-560))) (-15 -2795 ((-1067) (-229) (-560))) (-15 -2796 ((-1067) (-229) (-560))) (-15 -2797 ((-1067) (-229) (-560))) (-15 -2798 ((-1067) (-229) (-560))) (-15 -2799 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2800 ((-1067) (-229) (-560))) (-15 -2801 ((-1067) (-229) (-560))) (-15 -2802 ((-1067) (-229) (-560))) (-15 -2803 ((-1067) (-229) (-560))) (-15 -2804 ((-1067) (-229) (-560))) (-15 -2805 ((-1067) (-229) (-560))) (-15 -2806 ((-1067) (-229) (-560))) (-15 -2807 ((-1067) (-229) (-560))) (-15 -2808 ((-1067) (-229) (-560))) (-15 -2809 ((-1067) (-229) (-560))) (-15 -2810 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2811 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2812 ((-1067) (-1191) (-171 (-229)) (-1191) (-560))) (-15 -2813 ((-1067) (-1191) (-171 (-229)) (-1191) (-560))) (-15 -2814 ((-1067) (-560) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2815 ((-1067) (-229) (-560))) (-15 -2816 ((-1067) (-229) (-560))) (-15 -2817 ((-1067) (-229) (-560))) (-15 -2818 ((-1067) (-229) (-560))) (-15 -2819 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2820 ((-1067) (-229) (-171 (-229)) (-560) (-1191) (-560))) (-15 -2821 ((-1067) (-229) (-560))) (-15 -2822 ((-1067) (-229) (-560))) (-15 -2823 ((-1067) (-229) (-560))) (-15 -2824 ((-1067) (-229) (-560))) (-15 -2825 ((-1067) (-229) (-560))) (-15 -2826 ((-1067) (-229) (-560))) (-15 -2827 ((-1067) (-229) (-229) (-560))) (-15 -2828 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2829 ((-1067) (-229) (-229) (-229) (-560))) (-15 -2830 ((-1067) (-229) (-229) (-229) (-229) (-560)))) -((-2836 (((-1305)) 20 T ELT)) (-2832 (((-1191)) 34 T ELT)) (-2831 (((-1191)) 33 T ELT)) (-2834 (((-1135) (-1209) (-711 (-560))) 47 T ELT) (((-1135) (-1209) (-711 (-229))) 43 T ELT)) (-2835 (((-114)) 19 T ELT)) (-2833 (((-1191) (-1191)) 37 T ELT))) -(((-781) (-10 -7 (-15 -2831 ((-1191))) (-15 -2832 ((-1191))) (-15 -2833 ((-1191) (-1191))) (-15 -2834 ((-1135) (-1209) (-711 (-229)))) (-15 -2834 ((-1135) (-1209) (-711 (-560)))) (-15 -2835 ((-114))) (-15 -2836 ((-1305))))) (T -781)) -((-2836 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-781)))) (-2835 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-711 (-560))) (-5 *2 (-1135)) (-5 *1 (-781)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-711 (-229))) (-5 *2 (-1135)) (-5 *1 (-781)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781)))) (-2832 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781)))) (-2831 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781))))) -(-10 -7 (-15 -2831 ((-1191))) (-15 -2832 ((-1191))) (-15 -2833 ((-1191) (-1191))) (-15 -2834 ((-1135) (-1209) (-711 (-229)))) (-15 -2834 ((-1135) (-1209) (-711 (-560)))) (-15 -2835 ((-114))) (-15 -2836 ((-1305)))) -((-2838 (($ $ $) 10 T ELT)) (-2839 (($ $ $ $) 9 T ELT)) (-2837 (($ $ $) 12 T ELT))) -(((-782 |#1|) (-10 -8 (-15 -2837 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1| |#1|))) (-783)) (T -782)) -NIL -(-10 -8 (-15 -2837 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2652 (($ $ (-949)) 36 T ELT)) (-2651 (($ $ (-949)) 37 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2838 (($ $ $) 33 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2839 (($ $ $ $) 34 T ELT)) (-2837 (($ $ $) 32 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 38 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 35 T ELT))) +((-3147 (*1 *1) (-4 *1 (-742))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-114)))) (-2648 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (-3969 (*1 *1 *1) (|partial| -4 *1 (-742))) (-2646 (*1 *1 *1) (|partial| -4 *1 (-742))) (-2645 (*1 *1 *1) (|partial| -4 *1 (-742)))) +(-13 (-740) (-10 -8 (-15 (-3147) ($) -4464) (-15 -2651 ((-114) $)) (-15 -2648 ($ $ (-791))) (-15 -2647 ($ $ (-791))) (-15 ** ($ $ (-791))) (-15 -3969 ((-3 $ "failed") $)) (-15 -2646 ((-3 $ "failed") $)) (-15 -2645 ((-3 $ "failed") $)))) +(((-102) . T) ((-630 (-886)) . T) ((-740) . T) ((-1131) . T) ((-1247) . T)) +((-3620 (((-791)) 39 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4354 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-419 |#3|)) 49 T ELT)) (-3969 (((-3 $ "failed") $) 69 T ELT)) (-3477 (($) 43 T ELT)) (-3616 ((|#2| $) 21 T ELT)) (-2650 (($) 18 T ELT)) (-4270 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2649 (((-709 |#2|) (-1297 $) (-1 |#2| |#2|)) 64 T ELT)) (-4484 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2848 ((|#3| $) 36 T ELT)) (-2232 (((-1297 $)) 33 T ELT))) +(((-743 |#1| |#2| |#3|) (-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3477 (|#1|)) (-15 -3620 ((-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2649 ((-709 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -4354 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4484 (|#1| |#3|)) (-15 -4354 (|#1| |#3|)) (-15 -2650 (|#1|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 (|#3| |#1|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2232 ((-1297 |#1|))) (-15 -2848 (|#3| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) (-744 |#2| |#3|) (-175) (-1273 |#2|)) (T -743)) +((-3620 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-791)) (-5 *1 (-743 *3 *4 *5)) (-4 *3 (-744 *4 *5))))) +(-10 -8 (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -3477 (|#1|)) (-15 -3620 ((-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2649 ((-709 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -4354 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4484 (|#1| |#3|)) (-15 -4354 (|#1| |#3|)) (-15 -2650 (|#1|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4484 (|#3| |#1|)) (-15 -4484 (|#1| (-1297 |#2|))) (-15 -4484 ((-1297 |#2|) |#1|)) (-15 -2232 ((-1297 |#1|))) (-15 -2848 (|#3| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3969 ((-3 |#1| "failed") |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 111 (|has| |#1| (-376)) ELT)) (-2283 (($ $) 112 (|has| |#1| (-376)) ELT)) (-2281 (((-114) $) 114 (|has| |#1| (-376)) ELT)) (-2000 (((-709 |#1|) (-1297 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3832 ((|#1| $) 64 T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 131 (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) 132 (|has| |#1| (-376)) ELT)) (-1798 (((-114) $ $) 122 (|has| |#1| (-376)) ELT)) (-3620 (((-791)) 105 (|has| |#1| (-381)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3656 (((-558) $) 190 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) 60 T ELT) (($ (-1297 |#1|)) 77 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-3045 (($ $ $) 126 (|has| |#1| (-376)) ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 183 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 182 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 181 T ELT) (((-709 |#1|) (-709 $)) 180 T ELT)) (-4354 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-419 |#2|)) 172 (|has| |#1| (-376)) ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3593 (((-947)) 66 T ELT)) (-3477 (($) 108 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) 125 (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 120 (|has| |#1| (-376)) ELT)) (-3316 (($) 166 (|has| |#1| (-363)) ELT)) (-1893 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1984 (($ $ (-791)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4235 (((-114) $) 133 (|has| |#1| (-376)) ELT)) (-4284 (((-947) $) 169 (|has| |#1| (-363)) ELT) (((-854 (-947)) $) 155 (|has| |#1| (-363)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3616 ((|#1| $) 63 T ELT)) (-3947 (((-711 $) $) 159 (|has| |#1| (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| |#1| (-376)) ELT)) (-2234 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-2230 (((-947) $) 107 (|has| |#1| (-381)) ELT)) (-3562 ((|#2| $) 173 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 179 T ELT) (((-709 |#1|) (-1297 $)) 178 T ELT)) (-2112 (($ (-661 $)) 118 (|has| |#1| (-376)) ELT) (($ $ $) 117 (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3948 (($) 160 (|has| |#1| (-363)) CONST)) (-2641 (($ (-947)) 106 (|has| |#1| (-381)) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2650 (($) 177 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 119 (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) 116 (|has| |#1| (-376)) ELT) (($ $ $) 115 (|has| |#1| (-376)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-4244 (((-417 $) $) 130 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 127 (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) 110 (|has| |#1| (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 121 (|has| |#1| (-376)) ELT)) (-1797 (((-791) $) 123 (|has| |#1| (-376)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 124 (|has| |#1| (-376)) ELT)) (-4269 ((|#1| (-1297 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1985 (((-791) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4270 (($ $ (-791)) 153 (-4039 (-3043 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 151 (-4039 (-3043 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 147 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-791)) 146 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1207))) 145 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 143 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) 141 (|has| |#1| (-376)) ELT)) (-2649 (((-709 |#1|) (-1297 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3685 ((|#2|) 176 T ELT)) (-1887 (($) 165 (|has| |#1| (-363)) ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 62 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) 61 T ELT) (((-1297 |#1|) $) 79 T ELT) (((-709 |#1|) (-1297 $)) 78 T ELT)) (-4484 (((-1297 |#1|) $) 76 T ELT) (($ (-1297 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 162 (|has| |#1| (-363)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-376)) ELT) (($ (-419 (-558))) 104 (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (($ $) 161 (|has| |#1| (-363)) ELT) (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2848 ((|#2| $) 57 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2232 (((-1297 $)) 80 T ELT)) (-2282 (((-114) $ $) 113 (|has| |#1| (-376)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-791)) 154 (-4039 (-3043 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 152 (-4039 (-3043 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 150 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-791)) 149 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1207))) 148 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 144 (-3043 (|has| |#1| (-928 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) 139 (|has| |#1| (-376)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) +(((-744 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -744)) +((-2650 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-744 *2 *3)) (-4 *3 (-1273 *2)))) (-3685 (*1 *2) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-4354 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1273 *3)))) (-4484 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1273 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-4354 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-744 *3 *4)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-744 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1273 *5)) (-5 *2 (-709 *5))))) +(-13 (-422 |t#1| |t#2|) (-175) (-631 |t#2|) (-424 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2650 ($)) (-15 -3685 (|t#2|)) (-15 -4354 ($ |t#2|)) (-15 -4484 ($ |t#2|)) (-15 -3562 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4354 ((-3 $ "failed") (-419 |t#2|))) (-15 -2649 ((-709 |t#1|) (-1297 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 #1# #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4039 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) . T) ((-631 |#2|) . T) ((-236 $) -4039 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -4039 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -4039 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -4039 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-569) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 #2=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 |#1|) . T) ((-660 $) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-658 #2#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-737 |#1|) . T) ((-737 $) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-746) . T) ((-920 $ #3=(-1207)) -4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))))) ((-926 (-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207)))) ((-928 #3#) -4039 (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-926 (-1207))))) ((-949) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #1#) -4039 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| |#1| (-363)) ((-1247) . T) ((-1252) -4039 (|has| |#1| (-363)) (|has| |#1| (-376)))) +((-4236 (($) 11 T ELT)) (-3969 (((-3 $ "failed") $) 14 T ELT)) (-2651 (((-114) $) 10 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 20 T ELT))) +(((-745 |#1|) (-10 -8 (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 -2651 ((-114) |#1|)) (-15 -4236 (|#1|)) (-15 ** (|#1| |#1| (-947)))) (-746)) (T -745)) +NIL +(-10 -8 (-15 -3969 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 -2651 ((-114) |#1|)) (-15 -4236 (|#1|)) (-15 ** (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-4236 (($) 23 T CONST)) (-3969 (((-3 $ "failed") $) 20 T ELT)) (-2651 (((-114) $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 24 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (** (($ $ (-947)) 17 T ELT) (($ $ (-791)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-746) (-142)) (T -746)) +((-3147 (*1 *1) (-4 *1 (-746))) (-4236 (*1 *1) (-4 *1 (-746))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-746)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-791)))) (-3969 (*1 *1 *1) (|partial| -4 *1 (-746)))) +(-13 (-1142) (-10 -8 (-15 (-3147) ($) -4464) (-15 -4236 ($) -4464) (-15 -2651 ((-114) $)) (-15 ** ($ $ (-791))) (-15 -3969 ((-3 $ "failed") $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-2652 (((-2 (|:| -3574 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3920 (((-2 (|:| -3574 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2653 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3937 (((-2 (|:| |poly| |#2|) (|:| -3574 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-747 |#1| |#2|) (-10 -7 (-15 -3920 ((-2 (|:| -3574 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2652 ((-2 (|:| -3574 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2653 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3937 ((-2 (|:| |poly| |#2|) (|:| -3574 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -747)) +((-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3574 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-747 *5 *6)) (-5 *3 (-419 *6)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-747 *5 *2)) (-4 *5 (-376)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3574 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-747 *5 *3)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3574 *3) (|:| |special| *3))) (-5 *1 (-747 *5 *3))))) +(-10 -7 (-15 -3920 ((-2 (|:| -3574 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2652 ((-2 (|:| -3574 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2653 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3937 ((-2 (|:| |poly| |#2|) (|:| -3574 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) +((-2654 ((|#7| (-661 |#5|) |#6|) NIL T ELT)) (-4470 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-748 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4470 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2654 (|#7| (-661 |#5|) |#6|))) (-870) (-815) (-815) (-1079) (-1079) (-978 |#4| |#2| |#1|) (-978 |#5| |#3| |#1|)) (T -748)) +((-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-815)) (-4 *8 (-1079)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-815)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5))))) +(-10 -7 (-15 -4470 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2654 (|#7| (-661 |#5|) |#6|))) +((-4470 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-749 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4470 (|#7| (-1 |#2| |#1|) |#6|))) (-870) (-870) (-815) (-815) (-1079) (-978 |#5| |#3| |#1|) (-978 |#5| |#4| |#2|)) (T -749)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-815)) (-4 *9 (-1079)) (-4 *2 (-978 *9 *8 *6)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) (-4 *4 (-978 *9 *7 *5))))) +(-10 -7 (-15 -4470 (|#7| (-1 |#2| |#1|) |#6|))) +((-4244 (((-417 |#4|) |#4|) 42 T ELT))) +(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4|))) (-815) (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207))))) (-319) (-978 (-974 |#3|) |#1| |#2|)) (T -750)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207)))))) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-978 (-974 *6) *4 *5))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-887 |#1|)) $) NIL T ELT)) (-3568 (((-1201 $) $ (-887 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-887 |#1|))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-887 |#1|) #2#) $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-887 |#1|) $) NIL T ELT)) (-4268 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-938)) ELT)) (-1814 (($ $ |#2| (-543 (-887 |#1|)) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1201 $) (-887 |#1|)) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-543 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3303 (((-543 (-887 |#1|)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-1815 (($ (-1 (-543 (-887 |#1|)) (-543 (-887 |#1|))) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3567 (((-3 (-887 |#1|) #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#2| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 $)) NIL T ELT)) (-4269 (($ $ (-887 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4270 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-4460 (((-543 (-887 |#1|)) $) NIL T ELT) (((-791) $ (-887 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-887 |#1|))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-887 |#1|) (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-887 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-543 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-887 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-887 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-751 |#1| |#2|) (-978 |#2| (-543 (-887 |#1|)) (-887 |#1|)) (-661 (-1207)) (-1079)) (T -751)) +NIL +(-978 |#2| (-543 (-887 |#1|)) (-887 |#1|)) +((-2655 (((-2 (|:| -2883 (-974 |#3|)) (|:| -2278 (-974 |#3|))) |#4|) 14 T ELT)) (-3469 ((|#4| |#4| |#2|) 33 T ELT)) (-2658 ((|#4| (-419 (-974 |#3|)) |#2|) 62 T ELT)) (-2657 ((|#4| (-1201 (-974 |#3|)) |#2|) 74 T ELT)) (-2656 ((|#4| (-1201 |#4|) |#2|) 49 T ELT)) (-3468 ((|#4| |#4| |#2|) 52 T ELT)) (-4244 (((-417 |#4|) |#4|) 40 T ELT))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2655 ((-2 (|:| -2883 (-974 |#3|)) (|:| -2278 (-974 |#3|))) |#4|)) (-15 -3468 (|#4| |#4| |#2|)) (-15 -2656 (|#4| (-1201 |#4|) |#2|)) (-15 -3469 (|#4| |#4| |#2|)) (-15 -2657 (|#4| (-1201 (-974 |#3|)) |#2|)) (-15 -2658 (|#4| (-419 (-974 |#3|)) |#2|)) (-15 -4244 ((-417 |#4|) |#4|))) (-815) (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)))) (-569) (-978 (-419 (-974 |#3|)) |#1| |#2|)) (T -752)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-978 (-419 (-974 *6)) *4 *5)))) (-2658 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-5 *3 (-419 (-974 *6))) (-4 *5 (-815)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 (-974 *6))) (-4 *6 (-569)) (-4 *2 (-978 (-419 (-974 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))))) (-3469 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) (-4 *2 (-978 (-419 (-974 *5)) *4 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-978 (-419 (-974 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *6 (-569)))) (-3468 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) (-4 *2 (-978 (-419 (-974 *5)) *4 *3)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -2883 (-974 *6)) (|:| -2278 (-974 *6)))) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-978 (-419 (-974 *6)) *4 *5))))) +(-10 -7 (-15 -2655 ((-2 (|:| -2883 (-974 |#3|)) (|:| -2278 (-974 |#3|))) |#4|)) (-15 -3468 (|#4| |#4| |#2|)) (-15 -2656 (|#4| (-1201 |#4|) |#2|)) (-15 -3469 (|#4| |#4| |#2|)) (-15 -2657 (|#4| (-1201 (-974 |#3|)) |#2|)) (-15 -2658 (|#4| (-419 (-974 |#3|)) |#2|)) (-15 -4244 ((-417 |#4|) |#4|))) +((-4244 (((-417 |#4|) |#4|) 54 T ELT))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4|))) (-815) (-870) (-13 (-319) (-149)) (-978 (-419 |#3|) |#1| |#2|)) (T -753)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-978 (-419 *6) *4 *5))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4|))) +((-4470 (((-755 |#2| |#3|) (-1 |#2| |#1|) (-755 |#1| |#3|)) 18 T ELT))) +(((-754 |#1| |#2| |#3|) (-10 -7 (-15 -4470 ((-755 |#2| |#3|) (-1 |#2| |#1|) (-755 |#1| |#3|)))) (-1079) (-1079) (-746)) (T -754)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-755 *5 *7)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-746)) (-5 *2 (-755 *6 *7)) (-5 *1 (-754 *5 *6 *7))))) +(-10 -7 (-15 -4470 ((-755 |#2| |#3|) (-1 |#2| |#1|) (-755 |#1| |#3|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 36 T ELT)) (-4286 (((-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|))) $) 37 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #1="failed") $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3656 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) 99 (|has| |#2| (-870)) ELT)) (-3969 (((-3 $ "failed") $) 83 T ELT)) (-3477 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) 70 T ELT)) (-3304 (((-661 $) $) 52 T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| |#2|) 17 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2230 (((-947) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3377 ((|#2| $) 98 (|has| |#2| (-870)) ELT)) (-3674 ((|#1| $) 97 (|has| |#2| (-870)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 96 T ELT) (($ (-558)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|)))) 11 T ELT)) (-4329 (((-661 |#1|) $) 54 T ELT)) (-4189 ((|#1| $ |#2|) 114 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 12 T CONST)) (-3147 (($) 44 T CONST)) (-3536 (((-114) $ $) 104 T ELT)) (-4349 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 33 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-755 |#1| |#2|) (-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -3376 ($ |#1| |#2|)) (-15 -4189 (|#1| $ |#2|)) (-15 -4458 ($ (-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|))))) (-15 -4286 ((-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|))) $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (-15 -4449 ((-114) $)) (-15 -4329 ((-661 |#1|) $)) (-15 -3304 ((-661 $) $)) (-15 -2659 ((-791) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -3377 (|#2| $)) (-15 -3674 (|#1| $)) (-15 -4471 ($ $))) |%noBranch|))) (-1079) (-746)) (T -755)) +((-3376 (*1 *1 *2 *3) (-12 (-5 *1 (-755 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-746)))) (-4189 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-755 *2 *3)) (-4 *3 (-746)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4466 *3) (|:| -4450 *4)))) (-4 *3 (-1079)) (-4 *4 (-746)) (-5 *1 (-755 *3 *4)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4466 *3) (|:| -4450 *4)))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-755 *3 *4)) (-4 *4 (-746)))) (-4449 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-661 (-755 *3 *4))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) (-3377 (*1 *2 *1) (-12 (-4 *2 (-746)) (-4 *2 (-870)) (-5 *1 (-755 *3 *2)) (-4 *3 (-1079)))) (-3674 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-755 *2 *3)) (-4 *3 (-870)) (-4 *3 (-746)))) (-4471 (*1 *1 *1) (-12 (-5 *1 (-755 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) (-4 *3 (-746))))) +(-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -3376 ($ |#1| |#2|)) (-15 -4189 (|#1| $ |#2|)) (-15 -4458 ($ (-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|))))) (-15 -4286 ((-661 (-2 (|:| -4466 |#1|) (|:| -4450 |#2|))) $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (-15 -4449 ((-114) $)) (-15 -4329 ((-661 |#1|) $)) (-15 -3304 ((-661 $) $)) (-15 -2659 ((-791) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -3377 (|#2| $)) (-15 -3674 (|#1| $)) (-15 -4471 ($ $))) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3734 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3736 (($ $ $) 99 T ELT)) (-3735 (((-114) $ $) 107 T ELT)) (-3739 (($ (-661 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) 86 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2604 (($ $) 88 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) 71 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT) (($ |#1| $ (-558)) 78 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 81 T ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (($ |#1| $ (-558)) 83 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 84 T ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) 106 T ELT)) (-2660 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-661 |#1|)) 23 T ELT)) (-3089 (((-661 |#1|) $) 38 T ELT)) (-3745 (((-114) |#1| $) 66 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3738 (($ $ $) 97 T ELT)) (-1398 ((|#1| $) 63 T ELT)) (-4119 (($ |#1| $) 64 T ELT) (($ |#1| $ (-791)) 89 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1399 ((|#1| $) 62 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 57 T ELT)) (-4075 (($) 14 T ELT)) (-2603 (((-661 (-2 (|:| -2296 |#1|) (|:| -2167 (-791)))) $) 56 T ELT)) (-3737 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1608 (($) 16 T ELT) (($ (-661 |#1|)) 25 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 69 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 82 T ELT)) (-4484 (((-547) $) 36 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 22 T ELT)) (-4458 (((-886) $) 50 T ELT)) (-3740 (($ (-661 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1400 (($ (-661 |#1|)) 24 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 103 T ELT)) (-4469 (((-791) $) 68 (|has| $ (-6 -4507)) ELT))) +(((-756 |#1|) (-13 (-757 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -2660 ($)) (-15 -2660 ($ |#1|)) (-15 -2660 ($ (-661 |#1|))) (-15 -3089 ((-661 |#1|) $)) (-15 -3908 ($ |#1| $ (-558))) (-15 -3908 ($ (-1 (-114) |#1|) $ (-558))) (-15 -3907 ($ |#1| $ (-558))) (-15 -3907 ($ (-1 (-114) |#1|) $ (-558))))) (-1131)) (T -756)) +((-2660 (*1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1131)))) (-2660 (*1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1131)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-756 *3)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-756 *3)) (-4 *3 (-1131)))) (-3908 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1131)))) (-3908 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1131)) (-5 *1 (-756 *4)))) (-3907 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1131)))) (-3907 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1131)) (-5 *1 (-756 *4))))) +(-13 (-757 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -2660 ($)) (-15 -2660 ($ |#1|)) (-15 -2660 ($ (-661 |#1|))) (-15 -3089 ((-661 |#1|) $)) (-15 -3908 ($ |#1| $ (-558))) (-15 -3908 ($ (-1 (-114) |#1|) $ (-558))) (-15 -3907 ($ |#1| $ (-558))) (-15 -3907 ($ (-1 (-114) |#1|) $ (-558))))) +((-3049 (((-114) $ $) 19 T ELT)) (-3734 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3736 (($ $ $) 77 T ELT)) (-3735 (((-114) $ $) 78 T ELT)) (-3739 (($ (-661 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2604 (($ $) 66 T ELT)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) 69 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 T ELT)) (-3738 (($ $ $) 74 T ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3743 (((-1150) $) 21 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2603 (((-661 (-2 (|:| -2296 |#1|) (|:| -2167 (-791)))) $) 65 T ELT)) (-3737 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-4458 (((-886) $) 17 T ELT)) (-3740 (($ (-661 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1387 (((-114) $ $) 20 T ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 T ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-757 |#1|) (-142) (-1131)) (T -757)) +NIL +(-13 (-715 |t#1|) (-1129 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-886)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-715 |#1|) . T) ((-1129 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-2661 (((-1303) (-1189)) 8 T ELT))) +(((-758) (-10 -7 (-15 -2661 ((-1303) (-1189))))) (T -758)) +((-2661 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-758))))) +(-10 -7 (-15 -2661 ((-1303) (-1189)))) +((-2662 (((-661 |#1|) (-661 |#1|) (-661 |#1|)) 15 T ELT))) +(((-759 |#1|) (-10 -7 (-15 -2662 ((-661 |#1|) (-661 |#1|) (-661 |#1|)))) (-870)) (T -759)) +((-2662 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-759 *3))))) +(-10 -7 (-15 -2662 ((-661 |#1|) (-661 |#1|) (-661 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 |#2|) $) 156 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 149 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 148 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 146 (|has| |#1| (-569)) ELT)) (-3994 (($ $) 105 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3520 (($ $) 87 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 89 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3996 (($ $) 103 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 140 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4326 (((-974 |#1|) $ (-791)) 118 T ELT) (((-974 |#1|) $ (-791) (-791)) 117 T ELT)) (-3375 (((-114) $) 157 T ELT)) (-4139 (($) 115 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $ |#2|) 120 T ELT) (((-791) $ |#2| (-791)) 119 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 86 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4449 (((-114) $) 138 T ELT)) (-3376 (($ $ (-661 |#2|) (-661 (-543 |#2|))) 155 T ELT) (($ $ |#2| (-543 |#2|)) 154 T ELT) (($ |#1| (-543 |#2|)) 139 T ELT) (($ $ |#2| (-791)) 122 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 121 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4454 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) 135 T ELT)) (-3674 ((|#1| $) 134 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-4324 (($ $ |#2|) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4281 (($ $ (-791)) 123 T ELT)) (-3968 (((-3 $ "failed") $ $) 150 (|has| |#1| (-569)) ELT)) (-4455 (($ $) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (($ $ |#2| $) 131 T ELT) (($ $ (-661 |#2|) (-661 $)) 130 T ELT) (($ $ (-661 (-305 $))) 129 T ELT) (($ $ (-305 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-661 $) (-661 $)) 126 T ELT)) (-4270 (($ $ (-661 |#2|) (-661 (-791))) 49 T ELT) (($ $ |#2| (-791)) 48 T ELT) (($ $ (-661 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4460 (((-543 |#2|) $) 136 T ELT)) (-3997 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 91 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 101 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 93 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 158 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-175)) ELT) (($ $) 151 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4189 ((|#1| $ (-543 |#2|)) 141 T ELT) (($ $ |#2| (-791)) 125 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 124 T ELT)) (-3185 (((-711 $) $) 152 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 111 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 99 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 147 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 109 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 97 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4003 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 107 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 95 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 |#2|) (-661 (-791))) 52 T ELT) (($ $ |#2| (-791)) 51 T ELT) (($ $ (-661 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 142 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 85 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 145 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) +(((-760 |#1| |#2|) (-142) (-1079) (-870)) (T -760)) +((-4189 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-760 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-870)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-4284 (*1 *2 *1 *3) (-12 (-4 *1 (-760 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *2 (-791)))) (-4284 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-791)) (-4 *1 (-760 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)))) (-4326 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-974 *4)))) (-4326 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-974 *4)))) (-4324 (*1 *1 *1 *2) (-12 (-4 *1 (-760 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) (-4 *3 (-38 (-419 (-558))))))) +(-13 (-926 |t#2|) (-1003 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-321 $) (-10 -8 (-15 -4189 ($ $ |t#2| (-791))) (-15 -4189 ($ $ (-661 |t#2|) (-661 (-791)))) (-15 -4281 ($ $ (-791))) (-15 -3376 ($ $ |t#2| (-791))) (-15 -3376 ($ $ (-661 |t#2|) (-661 (-791)))) (-15 -4284 ((-791) $ |t#2|)) (-15 -4284 ((-791) $ |t#2| (-791))) (-15 -4326 ((-974 |t#1|) $ (-791))) (-15 -4326 ((-974 |t#1|) $ (-791) (-791))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $ |t#2|)) (-6 (-1032)) (-6 (-1233))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-543 |#2|)) . T) ((-25) . T) ((-38 #2=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-302) |has| |#1| (-569)) ((-321 $) . T) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-666 #2#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #2#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-920 $ |#2|) . T) ((-926 |#2|) . T) ((-928 |#2|) . T) ((-1003 |#1| #1# |#2|) . T) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1081 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T)) +((-4244 (((-417 (-1201 |#4|)) (-1201 |#4|)) 30 T ELT) (((-417 |#4|) |#4|) 26 T ELT))) +(((-761 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 |#4|) |#4|)) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|)))) (-870) (-815) (-13 (-319) (-149)) (-978 |#3| |#2| |#1|)) (T -761)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-761 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -4244 ((-417 |#4|) |#4|)) (-15 -4244 ((-417 (-1201 |#4|)) (-1201 |#4|)))) +((-2665 (((-417 |#4|) |#4| |#2|) 141 T ELT)) (-2663 (((-417 |#4|) |#4|) NIL T ELT)) (-4483 (((-417 (-1201 |#4|)) (-1201 |#4|)) 128 T ELT) (((-417 |#4|) |#4|) 52 T ELT)) (-2667 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-661 (-2 (|:| -4244 (-1201 |#4|)) (|:| -2642 (-558)))))) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|))) 81 T ELT)) (-2671 (((-1201 |#3|) (-1201 |#3|) (-558)) 168 T ELT)) (-2670 (((-661 (-791)) (-1201 |#4|) (-661 |#2|) (-791)) 75 T ELT)) (-3562 (((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-661 |#2|) (-661 (-791)) (-661 |#3|)) 79 T ELT)) (-2668 (((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-661 |#3|)) (|:| |Lfact| (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|))) 27 T ELT)) (-2666 (((-2 (|:| -2224 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-558)) 72 T ELT)) (-2664 (((-558) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558))))) 164 T ELT)) (-2669 ((|#4| (-558) (-417 |#4|)) 73 T ELT)) (-3859 (((-114) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558))))) NIL T ELT))) +(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4483 ((-417 |#4|) |#4|)) (-15 -4483 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -2663 ((-417 |#4|) |#4|)) (-15 -2664 ((-558) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))))) (-15 -2665 ((-417 |#4|) |#4| |#2|)) (-15 -2666 ((-2 (|:| -2224 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-558))) (-15 -2667 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-661 (-2 (|:| -4244 (-1201 |#4|)) (|:| -2642 (-558)))))) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2668 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-661 |#3|)) (|:| |Lfact| (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2669 (|#4| (-558) (-417 |#4|))) (-15 -3859 ((-114) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))))) (-15 -3562 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-661 |#2|) (-661 (-791)) (-661 |#3|))) (-15 -2670 ((-661 (-791)) (-1201 |#4|) (-661 |#2|) (-791))) (-15 -2671 ((-1201 |#3|) (-1201 |#3|) (-558)))) (-815) (-870) (-319) (-978 |#3| |#1| |#2|)) (T -762)) +((-2671 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-4 *7 (-870)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-661 (-791))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *5 (-791)))) (-3562 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-661 *10)) (-5 *7 (-661 (-791))) (-5 *8 (-661 *11)) (-4 *10 (-870)) (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-978 *11 *9 *10)) (-5 *2 (-661 (-1201 *5))) (-5 *1 (-762 *9 *10 *11 *5)) (-5 *3 (-1201 *5)))) (-3859 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-2 (|:| -4244 (-1201 *6)) (|:| -2642 (-558))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-978 *7 *5 *6)) (-5 *1 (-762 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-319)))) (-2668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-870)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-661 *8)) (|:| |Lfact| (-661 (-2 (|:| -4244 (-1201 *8)) (|:| -2642 (-558))))) (|:| |ctpol| *8))) (-5 *1 (-762 *6 *7 *8 *9)))) (-2667 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-870)) (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-978 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-661 (-2 (|:| -4244 (-1201 *9)) (|:| -2642 (-558))))))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1201 *9)))) (-2666 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-558)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-5 *2 (-2 (|:| -2224 (-1201 *9)) (|:| |polval| (-1201 *8)))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8)))) (-2665 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4244 (-1201 *6)) (|:| -2642 (-558))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-558)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-2663 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5)))) (-4483 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4483 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5))))) +(-10 -7 (-15 -4483 ((-417 |#4|) |#4|)) (-15 -4483 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -2663 ((-417 |#4|) |#4|)) (-15 -2664 ((-558) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))))) (-15 -2665 ((-417 |#4|) |#4| |#2|)) (-15 -2666 ((-2 (|:| -2224 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-558))) (-15 -2667 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-661 (-2 (|:| -4244 (-1201 |#4|)) (|:| -2642 (-558)))))) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2668 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-661 |#3|)) (|:| |Lfact| (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2669 (|#4| (-558) (-417 |#4|))) (-15 -3859 ((-114) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))) (-661 (-2 (|:| -4244 (-1201 |#3|)) (|:| -2642 (-558)))))) (-15 -3562 ((-3 (-661 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-661 |#2|) (-661 (-791)) (-661 |#3|))) (-15 -2670 ((-661 (-791)) (-1201 |#4|) (-661 |#2|) (-791))) (-15 -2671 ((-1201 |#3|) (-1201 |#3|) (-558)))) +((-2672 (($ $ (-947)) 17 T ELT))) +(((-763 |#1| |#2|) (-10 -8 (-15 -2672 (|#1| |#1| (-947)))) (-764 |#2|) (-175)) (T -763)) +NIL +(-10 -8 (-15 -2672 (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2648 (($ $ (-947)) 36 T ELT)) (-2672 (($ $ (-947)) 43 T ELT)) (-2647 (($ $ (-947)) 37 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2834 (($ $ $) 33 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2835 (($ $ $ $) 34 T ELT)) (-2833 (($ $ $) 32 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 38 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-764 |#1|) (-142) (-175)) (T -764)) +((-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-764 *3)) (-4 *3 (-175))))) +(-13 (-781) (-737 |t#1|) (-10 -8 (-15 -2672 ($ $ (-947))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-781) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-2674 (((-1065) (-709 (-229)) (-558) (-114) (-558)) 26 T ELT)) (-2673 (((-1065) (-709 (-229)) (-558) (-114) (-558)) 25 T ELT))) +(((-765) (-10 -7 (-15 -2673 ((-1065) (-709 (-229)) (-558) (-114) (-558))) (-15 -2674 ((-1065) (-709 (-229)) (-558) (-114) (-558))))) (T -765)) +((-2674 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1065)) (-5 *1 (-765)))) (-2673 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1065)) (-5 *1 (-765))))) +(-10 -7 (-15 -2673 ((-1065) (-709 (-229)) (-558) (-114) (-558))) (-15 -2674 ((-1065) (-709 (-229)) (-558) (-114) (-558)))) +((-2677 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2676 (((-1065) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2675 (((-1065) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) 32 T ELT))) +(((-766) (-10 -7 (-15 -2675 ((-1065) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2676 ((-1065) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2677 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -766)) +((-2677 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) (-5 *1 (-766)))) (-2676 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) (-5 *1 (-766)))) (-2675 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) (-5 *1 (-766))))) +(-10 -7 (-15 -2675 ((-1065) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2676 ((-1065) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2677 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))))) +((-2689 (((-1065) (-558) (-558) (-709 (-229)) (-558)) 34 T ELT)) (-2688 (((-1065) (-558) (-558) (-709 (-229)) (-558)) 33 T ELT)) (-2687 (((-1065) (-558) (-709 (-229)) (-558)) 32 T ELT)) (-2686 (((-1065) (-558) (-709 (-229)) (-558)) 31 T ELT)) (-2685 (((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 30 T ELT)) (-2684 (((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2683 (((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2682 (((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558)) 27 T ELT)) (-2681 (((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 24 T ELT)) (-2680 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT)) (-2679 (((-1065) (-558) (-709 (-229)) (-558)) 22 T ELT)) (-2678 (((-1065) (-558) (-709 (-229)) (-558)) 21 T ELT))) +(((-767) (-10 -7 (-15 -2678 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2679 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2680 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2681 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2682 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2683 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2684 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2685 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2686 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2687 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2688 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2689 ((-1065) (-558) (-558) (-709 (-229)) (-558))))) (T -767)) +((-2689 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2688 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2687 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2686 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2685 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2684 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2683 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2682 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2681 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2680 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2679 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2678 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) +(-10 -7 (-15 -2678 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2679 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2680 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2681 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2682 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2683 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2684 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2685 ((-1065) (-558) (-558) (-1189) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2686 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2687 ((-1065) (-558) (-709 (-229)) (-558))) (-15 -2688 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2689 ((-1065) (-558) (-558) (-709 (-229)) (-558)))) +((-2701 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2700 (((-1065) (-709 (-229)) (-709 (-229)) (-558) (-558)) 51 T ELT)) (-2699 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-2698 (((-1065) (-229) (-229) (-558) (-558) (-558) (-558)) 46 T ELT)) (-2697 (((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2696 (((-1065) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-2695 (((-1065) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-2694 (((-1065) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2693 (((-1065) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) 38 T ELT)) (-2692 (((-1065) (-229) (-229) (-558) (-709 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) 37 T ELT)) (-2691 (((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) 33 T ELT)) (-2690 (((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) 32 T ELT))) +(((-768) (-10 -7 (-15 -2690 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2691 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2692 ((-1065) (-229) (-229) (-558) (-709 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2693 ((-1065) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2694 ((-1065) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2695 ((-1065) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2696 ((-1065) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2697 ((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2698 ((-1065) (-229) (-229) (-558) (-558) (-558) (-558))) (-15 -2699 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2700 ((-1065) (-709 (-229)) (-709 (-229)) (-558) (-558))) (-15 -2701 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -768)) +((-2701 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2700 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2699 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2698 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2697 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2696 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2695 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2694 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2693 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2692 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2691 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2690 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) (-5 *1 (-768))))) +(-10 -7 (-15 -2690 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2691 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2692 ((-1065) (-229) (-229) (-558) (-709 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2693 ((-1065) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577))))) (-15 -2694 ((-1065) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2695 ((-1065) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2696 ((-1065) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2697 ((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2698 ((-1065) (-229) (-229) (-558) (-558) (-558) (-558))) (-15 -2699 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2700 ((-1065) (-709 (-229)) (-709 (-229)) (-558) (-558))) (-15 -2701 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))))) +((-2709 (((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2708 (((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-2707 (((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-2706 (((-1065) (-709 (-229)) (-709 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2705 (((-1065) (-229) (-558) (-558) (-1189) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-2704 (((-1065) (-229) (-558) (-558) (-229) (-1189) (-229) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-2703 (((-1065) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2702 (((-1065) (-229) (-558) (-558) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT))) +(((-769) (-10 -7 (-15 -2702 ((-1065) (-229) (-558) (-558) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2703 ((-1065) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2704 ((-1065) (-229) (-558) (-558) (-229) (-1189) (-229) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2705 ((-1065) (-229) (-558) (-558) (-1189) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2706 ((-1065) (-709 (-229)) (-709 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2707 ((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2708 ((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2708 ((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2709 ((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -769)) +((-2709 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2708 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2708 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2707 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2706 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2705 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2704 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2703 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2702 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-769))))) +(-10 -7 (-15 -2702 ((-1065) (-229) (-558) (-558) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2703 ((-1065) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2704 ((-1065) (-229) (-558) (-558) (-229) (-1189) (-229) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2705 ((-1065) (-229) (-558) (-558) (-1189) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2706 ((-1065) (-709 (-229)) (-709 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2707 ((-1065) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2708 ((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2708 ((-1065) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2709 ((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))))) +((-2712 (((-1065) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-695 (-229)) (-558)) 46 T ELT)) (-2711 (((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1189) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-2710 (((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT))) +(((-770) (-10 -7 (-15 -2710 ((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2711 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1189) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2712 ((-1065) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-695 (-229)) (-558))))) (T -770)) +((-2712 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-695 (-229))) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2711 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2710 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-770))))) +(-10 -7 (-15 -2710 ((-1065) (-558) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2711 ((-1065) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1189) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2712 ((-1065) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-695 (-229)) (-558)))) +((-2722 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-709 (-229)) (-229) (-229) (-558)) 35 T ELT)) (-2721 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-229) (-229) (-558)) 34 T ELT)) (-2720 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-709 (-229)) (-229) (-229) (-558)) 33 T ELT)) (-2719 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2718 (((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2717 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558)) 27 T ELT)) (-2716 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558)) 24 T ELT)) (-2715 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558)) 23 T ELT)) (-2714 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558)) 22 T ELT)) (-2713 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 21 T ELT))) +(((-771) (-10 -7 (-15 -2713 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2714 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2715 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2716 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2717 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2718 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2719 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2720 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2721 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-229) (-229) (-558))) (-15 -2722 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-709 (-229)) (-229) (-229) (-558))))) (T -771)) +((-2722 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2721 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2720 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2719 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2718 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2717 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2716 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2715 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2714 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2713 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) +(-10 -7 (-15 -2713 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2714 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2715 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2716 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2717 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2718 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2719 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2720 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2721 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-229) (-229) (-558))) (-15 -2722 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-709 (-229)) (-229) (-229) (-558)))) +((-2740 (((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 45 T ELT)) (-2739 (((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-558)) 44 T ELT)) (-2738 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 43 T ELT)) (-2737 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 42 T ELT)) (-2736 (((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558)) 41 T ELT)) (-2735 (((-1065) (-1189) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558)) 40 T ELT)) (-2734 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558) (-558) (-558) (-229) (-709 (-229)) (-558)) 39 T ELT)) (-2733 (((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558))) 38 T ELT)) (-2732 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558)) 35 T ELT)) (-2731 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558)) 34 T ELT)) (-2730 (((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558)) 33 T ELT)) (-2729 (((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 32 T ELT)) (-2728 (((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558)) 31 T ELT)) (-2727 (((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-558)) 30 T ELT)) (-2726 (((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-2725 (((-1065) (-558) (-558) (-558) (-229) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-558)) (-558) (-558) (-558)) 28 T ELT)) (-2724 (((-1065) (-558) (-709 (-229)) (-229) (-558)) 24 T ELT)) (-2723 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 21 T ELT))) +(((-772) (-10 -7 (-15 -2723 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2724 ((-1065) (-558) (-709 (-229)) (-229) (-558))) (-15 -2725 ((-1065) (-558) (-558) (-558) (-229) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-558)) (-558) (-558) (-558))) (-15 -2726 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2727 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-558))) (-15 -2728 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558))) (-15 -2729 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2730 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558))) (-15 -2731 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558))) (-15 -2732 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2733 ((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)))) (-15 -2734 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558) (-558) (-558) (-229) (-709 (-229)) (-558))) (-15 -2735 ((-1065) (-1189) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2736 ((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2737 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2738 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2739 ((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2740 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))))) (T -772)) +((-2740 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2739 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2738 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2737 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2736 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2735 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2734 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2733 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2732 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2731 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2730 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2729 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2728 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2727 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2726 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2725 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2724 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2723 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) +(-10 -7 (-15 -2723 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2724 ((-1065) (-558) (-709 (-229)) (-229) (-558))) (-15 -2725 ((-1065) (-558) (-558) (-558) (-229) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-558)) (-558) (-558) (-558))) (-15 -2726 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2727 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-558))) (-15 -2728 ((-1065) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558))) (-15 -2729 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2730 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558))) (-15 -2731 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558))) (-15 -2732 ((-1065) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2733 ((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)))) (-15 -2734 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558) (-558) (-558) (-229) (-709 (-229)) (-558))) (-15 -2735 ((-1065) (-1189) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2736 ((-1065) (-1189) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2737 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2738 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2739 ((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2740 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)))) +((-2748 (((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-558) (-709 (-229)) (-558)) 64 T ELT)) (-2747 (((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-2746 (((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-114) (-114) (-558) (-558) (-709 (-229)) (-709 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2745 (((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-558) (-558) (-709 (-229)) (-558)) 52 T ELT)) (-2744 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2743 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2742 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2741 (((-1065) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT))) +(((-773) (-10 -7 (-15 -2741 ((-1065) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2742 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2743 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2744 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2745 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-558) (-558) (-709 (-229)) (-558))) (-15 -2746 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-114) (-114) (-558) (-558) (-709 (-229)) (-709 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2747 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2748 ((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-558) (-709 (-229)) (-558))))) (T -773)) +((-2748 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2747 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2746 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-709 (-229))) (-5 *6 (-114)) (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2745 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2744 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2743 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2742 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2741 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-773))))) +(-10 -7 (-15 -2741 ((-1065) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2742 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2743 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2744 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2745 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-558) (-558) (-709 (-229)) (-558))) (-15 -2746 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-114) (-114) (-558) (-558) (-709 (-229)) (-709 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2747 ((-1065) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2748 ((-1065) (-558) (-558) (-558) (-229) (-709 (-229)) (-558) (-709 (-229)) (-558)))) +((-2758 (((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)) 47 T ELT)) (-2757 (((-1065) (-1189) (-1189) (-558) (-558) (-709 (-171 (-229))) (-558) (-709 (-171 (-229))) (-558) (-558) (-709 (-171 (-229))) (-558)) 46 T ELT)) (-2756 (((-1065) (-558) (-558) (-558) (-709 (-171 (-229))) (-558)) 45 T ELT)) (-2755 (((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 40 T ELT)) (-2754 (((-1065) (-1189) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)) (-558)) 39 T ELT)) (-2753 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-558)) 36 T ELT)) (-2752 (((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558)) 35 T ELT)) (-2751 (((-1065) (-558) (-558) (-558) (-558) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-229) (-229) (-558)) 34 T ELT)) (-2750 (((-1065) (-558) (-558) (-558) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-114) (-229) (-114) (-709 (-558)) (-709 (-229)) (-558)) 33 T ELT)) (-2749 (((-1065) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-558)) 32 T ELT))) +(((-774) (-10 -7 (-15 -2749 ((-1065) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-558))) (-15 -2750 ((-1065) (-558) (-558) (-558) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-114) (-229) (-114) (-709 (-558)) (-709 (-229)) (-558))) (-15 -2751 ((-1065) (-558) (-558) (-558) (-558) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-229) (-229) (-558))) (-15 -2752 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558))) (-15 -2753 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2754 ((-1065) (-1189) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)) (-558))) (-15 -2755 ((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2756 ((-1065) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2757 ((-1065) (-1189) (-1189) (-558) (-558) (-709 (-171 (-229))) (-558) (-709 (-171 (-229))) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2758 ((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558))))) (T -774)) +((-2758 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2757 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2756 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2755 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2754 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2753 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2752 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2751 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-661 (-114))) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2750 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-709 (-558))) (-5 *5 (-114)) (-5 *7 (-709 (-229))) (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2749 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-661 (-114))) (-5 *7 (-709 (-229))) (-5 *8 (-709 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1065)) (-5 *1 (-774))))) +(-10 -7 (-15 -2749 ((-1065) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-558))) (-15 -2750 ((-1065) (-558) (-558) (-558) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-114) (-229) (-114) (-709 (-558)) (-709 (-229)) (-558))) (-15 -2751 ((-1065) (-558) (-558) (-558) (-558) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-229) (-229) (-558))) (-15 -2752 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558))) (-15 -2753 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2754 ((-1065) (-1189) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)) (-558))) (-15 -2755 ((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2756 ((-1065) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2757 ((-1065) (-1189) (-1189) (-558) (-558) (-709 (-171 (-229))) (-558) (-709 (-171 (-229))) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2758 ((-1065) (-1189) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)))) +((-2773 (((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)) 76 T ELT)) (-2772 (((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558)) 68 T ELT)) (-2771 (((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2770 (((-1065) (-558) (-558) (-558) (-229) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558)) 37 T ELT)) (-2769 (((-1065) (-558) (-558) (-229) (-229) (-558) (-558) (-709 (-229)) (-558)) 33 T ELT)) (-2768 (((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558) (-558)) 30 T ELT)) (-2767 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2766 (((-1065) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2765 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 27 T ELT)) (-2764 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558)) 26 T ELT)) (-2763 (((-1065) (-558) (-558) (-709 (-229)) (-558)) 25 T ELT)) (-2762 (((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 24 T ELT)) (-2761 (((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT)) (-2760 (((-1065) (-709 (-229)) (-558) (-558) (-558) (-558)) 22 T ELT)) (-2759 (((-1065) (-558) (-558) (-709 (-229)) (-558)) 21 T ELT))) +(((-775) (-10 -7 (-15 -2759 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2760 ((-1065) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2761 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2762 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2763 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2764 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2765 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2766 ((-1065) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2767 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2768 ((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2769 ((-1065) (-558) (-558) (-229) (-229) (-558) (-558) (-709 (-229)) (-558))) (-15 -2770 ((-1065) (-558) (-558) (-558) (-229) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2771 ((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2771 ((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2772 ((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2773 ((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558))))) (T -775)) +((-2773 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2772 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2771 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2771 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2770 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2769 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2768 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2767 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2766 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2765 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2764 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2763 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2762 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2761 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2760 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2759 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) +(-10 -7 (-15 -2759 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2760 ((-1065) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2761 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2762 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2763 ((-1065) (-558) (-558) (-709 (-229)) (-558))) (-15 -2764 ((-1065) (-558) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2765 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2766 ((-1065) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2767 ((-1065) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2768 ((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2769 ((-1065) (-558) (-558) (-229) (-229) (-558) (-558) (-709 (-229)) (-558))) (-15 -2770 ((-1065) (-558) (-558) (-558) (-229) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2771 ((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2771 ((-1065) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2772 ((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2773 ((-1065) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)))) +((-2784 (((-1065) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2783 (((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558)) 60 T ELT)) (-2782 (((-1065) (-558) (-709 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2781 (((-1065) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558)) 37 T ELT)) (-2780 (((-1065) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-558)) 36 T ELT)) (-2779 (((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 33 T ELT)) (-2778 (((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229))) 32 T ELT)) (-2777 (((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558)) 28 T ELT)) (-2776 (((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558)) 27 T ELT)) (-2775 (((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558)) 26 T ELT)) (-2774 (((-1065) (-558) (-709 (-171 (-229))) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-558)) 22 T ELT))) +(((-776) (-10 -7 (-15 -2774 ((-1065) (-558) (-709 (-171 (-229))) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2775 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2776 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2777 ((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558))) (-15 -2778 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)))) (-15 -2779 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2780 ((-1065) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2781 ((-1065) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2782 ((-1065) (-558) (-709 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2783 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2784 ((-1065) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -776)) +((-2784 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2783 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2782 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2781 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2780 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2779 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2778 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2777 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2776 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2775 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2774 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1065)) (-5 *1 (-776))))) +(-10 -7 (-15 -2774 ((-1065) (-558) (-709 (-171 (-229))) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2775 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2776 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2777 ((-1065) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558))) (-15 -2778 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-558)) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)))) (-15 -2779 ((-1065) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2780 ((-1065) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2781 ((-1065) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2782 ((-1065) (-558) (-709 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2783 ((-1065) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2784 ((-1065) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))))) +((-2788 (((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-558) (-709 (-229))) 29 T ELT)) (-2787 (((-1065) (-1189) (-558) (-558) (-709 (-229))) 28 T ELT)) (-2786 (((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-229))) 27 T ELT)) (-2785 (((-1065) (-558) (-558) (-558) (-709 (-229))) 21 T ELT))) +(((-777) (-10 -7 (-15 -2785 ((-1065) (-558) (-558) (-558) (-709 (-229)))) (-15 -2786 ((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-229)))) (-15 -2787 ((-1065) (-1189) (-558) (-558) (-709 (-229)))) (-15 -2788 ((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)))))) (T -777)) +((-2788 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2787 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2786 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2785 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-777))))) +(-10 -7 (-15 -2785 ((-1065) (-558) (-558) (-558) (-709 (-229)))) (-15 -2786 ((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-229)))) (-15 -2787 ((-1065) (-1189) (-558) (-558) (-709 (-229)))) (-15 -2788 ((-1065) (-1189) (-558) (-558) (-709 (-229)) (-558) (-558) (-709 (-229))))) +((-2826 (((-1065) (-229) (-229) (-229) (-229) (-558)) 62 T ELT)) (-2825 (((-1065) (-229) (-229) (-229) (-558)) 61 T ELT)) (-2824 (((-1065) (-229) (-229) (-229) (-558)) 60 T ELT)) (-2823 (((-1065) (-229) (-229) (-558)) 59 T ELT)) (-2822 (((-1065) (-229) (-558)) 58 T ELT)) (-2821 (((-1065) (-229) (-558)) 57 T ELT)) (-2820 (((-1065) (-229) (-558)) 56 T ELT)) (-2819 (((-1065) (-229) (-558)) 55 T ELT)) (-2818 (((-1065) (-229) (-558)) 54 T ELT)) (-2817 (((-1065) (-229) (-558)) 53 T ELT)) (-2816 (((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558)) 52 T ELT)) (-2815 (((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558)) 51 T ELT)) (-2814 (((-1065) (-229) (-558)) 50 T ELT)) (-2813 (((-1065) (-229) (-558)) 49 T ELT)) (-2812 (((-1065) (-229) (-558)) 48 T ELT)) (-2811 (((-1065) (-229) (-558)) 47 T ELT)) (-2810 (((-1065) (-558) (-229) (-171 (-229)) (-558) (-1189) (-558)) 46 T ELT)) (-2809 (((-1065) (-1189) (-171 (-229)) (-1189) (-558)) 45 T ELT)) (-2808 (((-1065) (-1189) (-171 (-229)) (-1189) (-558)) 44 T ELT)) (-2807 (((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558)) 43 T ELT)) (-2806 (((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558)) 42 T ELT)) (-2805 (((-1065) (-229) (-558)) 39 T ELT)) (-2804 (((-1065) (-229) (-558)) 38 T ELT)) (-2803 (((-1065) (-229) (-558)) 37 T ELT)) (-2802 (((-1065) (-229) (-558)) 36 T ELT)) (-2801 (((-1065) (-229) (-558)) 35 T ELT)) (-2800 (((-1065) (-229) (-558)) 34 T ELT)) (-2799 (((-1065) (-229) (-558)) 33 T ELT)) (-2798 (((-1065) (-229) (-558)) 32 T ELT)) (-2797 (((-1065) (-229) (-558)) 31 T ELT)) (-2796 (((-1065) (-229) (-558)) 30 T ELT)) (-2795 (((-1065) (-229) (-229) (-229) (-558)) 29 T ELT)) (-2794 (((-1065) (-229) (-558)) 28 T ELT)) (-2793 (((-1065) (-229) (-558)) 27 T ELT)) (-2792 (((-1065) (-229) (-558)) 26 T ELT)) (-2791 (((-1065) (-229) (-558)) 25 T ELT)) (-2790 (((-1065) (-229) (-558)) 24 T ELT)) (-2789 (((-1065) (-171 (-229)) (-558)) 21 T ELT))) +(((-778) (-10 -7 (-15 -2789 ((-1065) (-171 (-229)) (-558))) (-15 -2790 ((-1065) (-229) (-558))) (-15 -2791 ((-1065) (-229) (-558))) (-15 -2792 ((-1065) (-229) (-558))) (-15 -2793 ((-1065) (-229) (-558))) (-15 -2794 ((-1065) (-229) (-558))) (-15 -2795 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2796 ((-1065) (-229) (-558))) (-15 -2797 ((-1065) (-229) (-558))) (-15 -2798 ((-1065) (-229) (-558))) (-15 -2799 ((-1065) (-229) (-558))) (-15 -2800 ((-1065) (-229) (-558))) (-15 -2801 ((-1065) (-229) (-558))) (-15 -2802 ((-1065) (-229) (-558))) (-15 -2803 ((-1065) (-229) (-558))) (-15 -2804 ((-1065) (-229) (-558))) (-15 -2805 ((-1065) (-229) (-558))) (-15 -2806 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2807 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2808 ((-1065) (-1189) (-171 (-229)) (-1189) (-558))) (-15 -2809 ((-1065) (-1189) (-171 (-229)) (-1189) (-558))) (-15 -2810 ((-1065) (-558) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2811 ((-1065) (-229) (-558))) (-15 -2812 ((-1065) (-229) (-558))) (-15 -2813 ((-1065) (-229) (-558))) (-15 -2814 ((-1065) (-229) (-558))) (-15 -2815 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2816 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2817 ((-1065) (-229) (-558))) (-15 -2818 ((-1065) (-229) (-558))) (-15 -2819 ((-1065) (-229) (-558))) (-15 -2820 ((-1065) (-229) (-558))) (-15 -2821 ((-1065) (-229) (-558))) (-15 -2822 ((-1065) (-229) (-558))) (-15 -2823 ((-1065) (-229) (-229) (-558))) (-15 -2824 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2825 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2826 ((-1065) (-229) (-229) (-229) (-229) (-558))))) (T -778)) +((-2826 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2825 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2824 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2823 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2816 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2815 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2810 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1189)) (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2809 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2808 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2807 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2806 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2795 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) +(-10 -7 (-15 -2789 ((-1065) (-171 (-229)) (-558))) (-15 -2790 ((-1065) (-229) (-558))) (-15 -2791 ((-1065) (-229) (-558))) (-15 -2792 ((-1065) (-229) (-558))) (-15 -2793 ((-1065) (-229) (-558))) (-15 -2794 ((-1065) (-229) (-558))) (-15 -2795 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2796 ((-1065) (-229) (-558))) (-15 -2797 ((-1065) (-229) (-558))) (-15 -2798 ((-1065) (-229) (-558))) (-15 -2799 ((-1065) (-229) (-558))) (-15 -2800 ((-1065) (-229) (-558))) (-15 -2801 ((-1065) (-229) (-558))) (-15 -2802 ((-1065) (-229) (-558))) (-15 -2803 ((-1065) (-229) (-558))) (-15 -2804 ((-1065) (-229) (-558))) (-15 -2805 ((-1065) (-229) (-558))) (-15 -2806 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2807 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2808 ((-1065) (-1189) (-171 (-229)) (-1189) (-558))) (-15 -2809 ((-1065) (-1189) (-171 (-229)) (-1189) (-558))) (-15 -2810 ((-1065) (-558) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2811 ((-1065) (-229) (-558))) (-15 -2812 ((-1065) (-229) (-558))) (-15 -2813 ((-1065) (-229) (-558))) (-15 -2814 ((-1065) (-229) (-558))) (-15 -2815 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2816 ((-1065) (-229) (-171 (-229)) (-558) (-1189) (-558))) (-15 -2817 ((-1065) (-229) (-558))) (-15 -2818 ((-1065) (-229) (-558))) (-15 -2819 ((-1065) (-229) (-558))) (-15 -2820 ((-1065) (-229) (-558))) (-15 -2821 ((-1065) (-229) (-558))) (-15 -2822 ((-1065) (-229) (-558))) (-15 -2823 ((-1065) (-229) (-229) (-558))) (-15 -2824 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2825 ((-1065) (-229) (-229) (-229) (-558))) (-15 -2826 ((-1065) (-229) (-229) (-229) (-229) (-558)))) +((-2832 (((-1303)) 20 T ELT)) (-2828 (((-1189)) 34 T ELT)) (-2827 (((-1189)) 33 T ELT)) (-2830 (((-1133) (-1207) (-709 (-558))) 47 T ELT) (((-1133) (-1207) (-709 (-229))) 43 T ELT)) (-2831 (((-114)) 19 T ELT)) (-2829 (((-1189) (-1189)) 37 T ELT))) +(((-779) (-10 -7 (-15 -2827 ((-1189))) (-15 -2828 ((-1189))) (-15 -2829 ((-1189) (-1189))) (-15 -2830 ((-1133) (-1207) (-709 (-229)))) (-15 -2830 ((-1133) (-1207) (-709 (-558)))) (-15 -2831 ((-114))) (-15 -2832 ((-1303))))) (T -779)) +((-2832 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-779)))) (-2831 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-779)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-709 (-558))) (-5 *2 (-1133)) (-5 *1 (-779)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-709 (-229))) (-5 *2 (-1133)) (-5 *1 (-779)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779)))) (-2828 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779)))) (-2827 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779))))) +(-10 -7 (-15 -2827 ((-1189))) (-15 -2828 ((-1189))) (-15 -2829 ((-1189) (-1189))) (-15 -2830 ((-1133) (-1207) (-709 (-229)))) (-15 -2830 ((-1133) (-1207) (-709 (-558)))) (-15 -2831 ((-114))) (-15 -2832 ((-1303)))) +((-2834 (($ $ $) 10 T ELT)) (-2835 (($ $ $ $) 9 T ELT)) (-2833 (($ $ $) 12 T ELT))) +(((-780 |#1|) (-10 -8 (-15 -2833 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1| |#1|))) (-781)) (T -780)) +NIL +(-10 -8 (-15 -2833 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1|)) (-15 -2835 (|#1| |#1| |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2648 (($ $ (-947)) 36 T ELT)) (-2647 (($ $ (-947)) 37 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2834 (($ $ $) 33 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2835 (($ $ $ $) 34 T ELT)) (-2833 (($ $ $) 32 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 38 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-781) (-142)) (T -781)) +((-2835 (*1 *1 *1 *1 *1) (-4 *1 (-781))) (-2834 (*1 *1 *1 *1) (-4 *1 (-781))) (-2833 (*1 *1 *1 *1) (-4 *1 (-781)))) +(-13 (-21) (-740) (-10 -8 (-15 -2835 ($ $ $ $)) (-15 -2834 ($ $ $)) (-15 -2833 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-740) . T) ((-1131) . T) ((-1247) . T)) +((-4458 (((-886) $) NIL T ELT) (($ (-558)) 10 T ELT))) +(((-782 |#1|) (-10 -8 (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-783)) (T -782)) +NIL +(-10 -8 (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-2645 (((-3 $ #1="failed") $) 48 T ELT)) (-2648 (($ $ (-947)) 36 T ELT) (($ $ (-791)) 43 T ELT)) (-3969 (((-3 $ #1#) $) 46 T ELT)) (-2651 (((-114) $) 42 T ELT)) (-2646 (((-3 $ #1#) $) 47 T ELT)) (-2647 (($ $ (-947)) 37 T ELT) (($ $ (-791)) 44 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2834 (($ $ $) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 39 T ELT)) (-3610 (((-791)) 40 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2835 (($ $ $ $) 34 T ELT)) (-2833 (($ $ $) 32 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 41 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 38 T ELT) (($ $ (-791)) 45 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) (((-783) (-142)) (T -783)) -((-2839 (*1 *1 *1 *1 *1) (-4 *1 (-783))) (-2838 (*1 *1 *1 *1) (-4 *1 (-783))) (-2837 (*1 *1 *1 *1) (-4 *1 (-783)))) -(-13 (-21) (-742) (-10 -8 (-15 -2839 ($ $ $ $)) (-15 -2838 ($ $ $)) (-15 -2837 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-742) . T) ((-1133) . T) ((-1249) . T)) -((-4462 (((-888) $) NIL T ELT) (($ (-560)) 10 T ELT))) -(((-784 |#1|) (-10 -8 (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-785)) (T -784)) -NIL -(-10 -8 (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-2649 (((-3 $ #1="failed") $) 48 T ELT)) (-2652 (($ $ (-949)) 36 T ELT) (($ $ (-793)) 43 T ELT)) (-3973 (((-3 $ #1#) $) 46 T ELT)) (-2655 (((-114) $) 42 T ELT)) (-2650 (((-3 $ #1#) $) 47 T ELT)) (-2651 (($ $ (-949)) 37 T ELT) (($ $ (-793)) 44 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2838 (($ $ $) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 39 T ELT)) (-3614 (((-793)) 40 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2839 (($ $ $ $) 34 T ELT)) (-2837 (($ $ $) 32 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 41 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 38 T ELT) (($ $ (-793)) 45 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-785) (-142)) (T -785)) -((-3614 (*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785))))) -(-13 (-783) (-744) (-10 -8 (-15 -3614 ((-793)) -4468) (-15 -4462 ($ (-560))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-742) . T) ((-744) . T) ((-783) . T) ((-1133) . T) ((-1249) . T)) -((-2841 (((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|) 33 T ELT)) (-2840 (((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|) 23 T ELT)) (-2852 (((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1209)) 20 T ELT) (((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560))))) 19 T ELT))) -(((-786 |#1|) (-10 -7 (-15 -2852 ((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2852 ((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1209))) (-15 -2840 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2841 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|))) (-13 (-376) (-871))) (T -786)) -((-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 *4))))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871))))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871))))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1209)) (-5 *2 (-976 (-171 (-421 (-560))))) (-5 *1 (-786 *5)) (-4 *5 (-13 (-376) (-871))))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-976 (-171 (-421 (-560))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871)))))) -(-10 -7 (-15 -2852 ((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2852 ((-976 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1209))) (-15 -2840 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2841 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|))) -((-3101 (((-177 (-560)) |#1|) 27 T ELT))) -(((-787 |#1|) (-10 -7 (-15 -3101 ((-177 (-560)) |#1|))) (-418)) (T -787)) -((-3101 (*1 *2 *3) (-12 (-5 *2 (-177 (-560))) (-5 *1 (-787 *3)) (-4 *3 (-418))))) -(-10 -7 (-15 -3101 ((-177 (-560)) |#1|))) -((-3027 ((|#1| |#1| |#1|) 28 T ELT)) (-3028 ((|#1| |#1| |#1|) 27 T ELT)) (-3017 ((|#1| |#1| |#1|) 38 T ELT)) (-3025 ((|#1| |#1| |#1|) 33 T ELT)) (-3026 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-3033 (((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|) 26 T ELT))) -(((-788 |#1| |#2|) (-10 -7 (-15 -3033 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3026 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|))) (-730 |#2|) (-376)) (T -788)) -((-3017 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3025 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3026 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3027 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3028 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3033 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4))))) -(-10 -7 (-15 -3033 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3026 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|))) -((-3040 (((-713 (-1258)) $ (-1258)) 27 T ELT)) (-3041 (((-713 (-564)) $ (-564)) 26 T ELT)) (-3039 (((-793) $ (-131)) 28 T ELT)) (-3042 (((-713 (-130)) $ (-130)) 25 T ELT)) (-2224 (((-713 (-1258)) $) 12 T ELT)) (-2220 (((-713 (-1256)) $) 8 T ELT)) (-2222 (((-713 (-1255)) $) 10 T ELT)) (-2225 (((-713 (-564)) $) 13 T ELT)) (-2221 (((-713 (-562)) $) 9 T ELT)) (-2223 (((-713 (-561)) $) 11 T ELT)) (-2219 (((-793) $ (-131)) 7 T ELT)) (-2226 (((-713 (-130)) $) 14 T ELT)) (-2842 (((-114) $) 32 T ELT)) (-2843 (((-713 $) |#1| (-984)) 33 T ELT)) (-1915 (($ $) 6 T ELT))) -(((-789 |#1|) (-142) (-1133)) (T -789)) -((-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-984)) (-4 *3 (-1133)) (-5 *2 (-713 *1)) (-4 *1 (-789 *3)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(-13 (-590) (-10 -8 (-15 -2843 ((-713 $) |t#1| (-984))) (-15 -2842 ((-114) $)))) -(((-176) . T) ((-541) . T) ((-590) . T) ((-886) . T)) -((-4435 (((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)) 72 T ELT)) (-4434 (((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) 70 T ELT)) (-4273 (((-560)) 86 T ELT))) -(((-790 |#1| |#2|) (-10 -7 (-15 -4273 ((-560))) (-15 -4434 ((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -4435 ((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)))) (-1275 (-560)) (-424 (-560) |#1|)) (T -790)) -((-4435 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1275 *3)) (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4)))) (-4434 (*1 *2) (-12 (-4 *3 (-1275 (-560))) (-5 *2 (-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3)))) (-4273 (*1 *2) (-12 (-4 *3 (-1275 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 *2 *3))))) -(-10 -7 (-15 -4273 ((-560))) (-15 -4434 ((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -4435 ((-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3660 (((-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-791) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4462 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4462 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3660 ((-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -791)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791))))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4462 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4462 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3660 ((-3 (|:| |nia| (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $)))) -((-2918 (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|))) 18 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209))) 17 T ELT)) (-4087 (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|))) 20 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209))) 19 T ELT))) -(((-792 |#1|) (-10 -7 (-15 -2918 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -2918 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|))))) (-571)) (T -792)) -((-4087 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-792 *4)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-792 *5)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-792 *4)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-792 *5))))) -(-10 -7 (-15 -2918 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -2918 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-976 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2887 (($ $ $) 10 T ELT)) (-1438 (((-3 $ "failed") $ $) 15 T ELT)) (-2844 (($ $ (-560)) 11 T ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($ $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3648 (($ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 6 T CONST)) (-3151 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-793) (-13 (-817) (-748) (-10 -8 (-15 -3048 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3648 ($ $ $)) (-15 -3366 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3972 ((-3 $ "failed") $ $)) (-15 -2844 ($ $ (-560))) (-15 -3481 ($ $)) (-6 (-4513 "*"))))) (T -793)) -((-3048 (*1 *1 *1 *1) (-5 *1 (-793))) (-3049 (*1 *1 *1 *1) (-5 *1 (-793))) (-3648 (*1 *1 *1 *1) (-5 *1 (-793))) (-3366 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2198 (-793)) (|:| -3389 (-793)))) (-5 *1 (-793)))) (-3972 (*1 *1 *1 *1) (|partial| -5 *1 (-793))) (-2844 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793)))) (-3481 (*1 *1 *1) (-5 *1 (-793)))) -(-13 (-817) (-748) (-10 -8 (-15 -3048 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3648 ($ $ $)) (-15 -3366 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3972 ((-3 $ "failed") $ $)) (-15 -2844 ($ $ (-560))) (-15 -3481 ($ $)) (-6 (-4513 "*")))) +((-3610 (*1 *2) (-12 (-4 *1 (-783)) (-5 *2 (-791)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-783))))) +(-13 (-781) (-742) (-10 -8 (-15 -3610 ((-791)) -4464) (-15 -4458 ($ (-558))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-740) . T) ((-742) . T) ((-781) . T) ((-1131) . T) ((-1247) . T)) +((-2837 (((-661 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 |#1|)))))) (-709 (-171 (-419 (-558)))) |#1|) 33 T ELT)) (-2836 (((-661 (-171 |#1|)) (-709 (-171 (-419 (-558)))) |#1|) 23 T ELT)) (-2848 (((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))) (-1207)) 20 T ELT) (((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558))))) 19 T ELT))) +(((-784 |#1|) (-10 -7 (-15 -2848 ((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))))) (-15 -2848 ((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))) (-1207))) (-15 -2836 ((-661 (-171 |#1|)) (-709 (-171 (-419 (-558)))) |#1|)) (-15 -2837 ((-661 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 |#1|)))))) (-709 (-171 (-419 (-558)))) |#1|))) (-13 (-376) (-869))) (T -784)) +((-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 *4))))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869))))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869))))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *4 (-1207)) (-5 *2 (-974 (-171 (-419 (-558))))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-376) (-869))))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-974 (-171 (-419 (-558))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869)))))) +(-10 -7 (-15 -2848 ((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))))) (-15 -2848 ((-974 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))) (-1207))) (-15 -2836 ((-661 (-171 |#1|)) (-709 (-171 (-419 (-558)))) |#1|)) (-15 -2837 ((-661 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 |#1|)))))) (-709 (-171 (-419 (-558)))) |#1|))) +((-3097 (((-177 (-558)) |#1|) 27 T ELT))) +(((-785 |#1|) (-10 -7 (-15 -3097 ((-177 (-558)) |#1|))) (-416)) (T -785)) +((-3097 (*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-785 *3)) (-4 *3 (-416))))) +(-10 -7 (-15 -3097 ((-177 (-558)) |#1|))) +((-3023 ((|#1| |#1| |#1|) 28 T ELT)) (-3024 ((|#1| |#1| |#1|) 27 T ELT)) (-3013 ((|#1| |#1| |#1|) 38 T ELT)) (-3021 ((|#1| |#1| |#1|) 33 T ELT)) (-3022 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-3029 (((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|) 26 T ELT))) +(((-786 |#1| |#2|) (-10 -7 (-15 -3029 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|))) (-728 |#2|) (-376)) (T -786)) +((-3013 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-3021 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-3022 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-3023 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-3024 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-3029 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-786 *3 *4)) (-4 *3 (-728 *4))))) +(-10 -7 (-15 -3029 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|))) +((-3036 (((-711 (-1256)) $ (-1256)) 27 T ELT)) (-3037 (((-711 (-562)) $ (-562)) 26 T ELT)) (-3035 (((-791) $ (-131)) 28 T ELT)) (-3038 (((-711 (-130)) $ (-130)) 25 T ELT)) (-2220 (((-711 (-1256)) $) 12 T ELT)) (-2216 (((-711 (-1254)) $) 8 T ELT)) (-2218 (((-711 (-1253)) $) 10 T ELT)) (-2221 (((-711 (-562)) $) 13 T ELT)) (-2217 (((-711 (-560)) $) 9 T ELT)) (-2219 (((-711 (-559)) $) 11 T ELT)) (-2215 (((-791) $ (-131)) 7 T ELT)) (-2222 (((-711 (-130)) $) 14 T ELT)) (-2838 (((-114) $) 32 T ELT)) (-2839 (((-711 $) |#1| (-982)) 33 T ELT)) (-1913 (($ $) 6 T ELT))) +(((-787 |#1|) (-142) (-1131)) (T -787)) +((-2839 (*1 *2 *3 *4) (-12 (-5 *4 (-982)) (-4 *3 (-1131)) (-5 *2 (-711 *1)) (-4 *1 (-787 *3)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-787 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(-13 (-588) (-10 -8 (-15 -2839 ((-711 $) |t#1| (-982))) (-15 -2838 ((-114) $)))) +(((-176) . T) ((-539) . T) ((-588) . T) ((-884) . T)) +((-4431 (((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))) (-558)) 72 T ELT)) (-4430 (((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558))))) 70 T ELT)) (-4269 (((-558)) 86 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -4269 ((-558))) (-15 -4430 ((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))))) (-15 -4431 ((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))) (-558)))) (-1273 (-558)) (-422 (-558) |#1|)) (T -788)) +((-4431 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-788 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4430 (*1 *2) (-12 (-4 *3 (-1273 (-558))) (-5 *2 (-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558))))) (-5 *1 (-788 *3 *4)) (-4 *4 (-422 (-558) *3)))) (-4269 (*1 *2) (-12 (-4 *3 (-1273 *2)) (-5 *2 (-558)) (-5 *1 (-788 *3 *4)) (-4 *4 (-422 *2 *3))))) +(-10 -7 (-15 -4269 ((-558))) (-15 -4430 ((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))))) (-15 -4431 ((-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))) (-558)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3656 (((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-789) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4458 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3656 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -789)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-789)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-789)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-789)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-789))))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4458 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4458 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3656 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $)))) +((-2914 (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|))) 18 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207))) 17 T ELT)) (-4083 (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|))) 20 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207))) 19 T ELT))) +(((-790 |#1|) (-10 -7 (-15 -2914 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -2914 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|))))) (-569)) (T -790)) +((-4083 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-790 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-790 *5)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-790 *4)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-790 *5))))) +(-10 -7 (-15 -2914 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -2914 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-974 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2883 (($ $ $) 10 T ELT)) (-1436 (((-3 $ "failed") $ $) 15 T ELT)) (-2840 (($ $ (-558)) 11 T ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($ $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3644 (($ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 6 T CONST)) (-3147 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-791) (-13 (-815) (-746) (-10 -8 (-15 -3044 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3644 ($ $ $)) (-15 -3362 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3968 ((-3 $ "failed") $ $)) (-15 -2840 ($ $ (-558))) (-15 -3477 ($ $)) (-6 (-4509 "*"))))) (T -791)) +((-3044 (*1 *1 *1 *1) (-5 *1 (-791))) (-3045 (*1 *1 *1 *1) (-5 *1 (-791))) (-3644 (*1 *1 *1 *1) (-5 *1 (-791))) (-3362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2194 (-791)) (|:| -3385 (-791)))) (-5 *1 (-791)))) (-3968 (*1 *1 *1 *1) (|partial| -5 *1 (-791))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-791)))) (-3477 (*1 *1 *1) (-5 *1 (-791)))) +(-13 (-815) (-746) (-10 -8 (-15 -3044 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3644 ($ $ $)) (-15 -3362 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3968 ((-3 $ "failed") $ $)) (-15 -2840 ($ $ (-558))) (-15 -3477 ($ $)) (-6 (-4509 "*")))) ((|Integer|) (|%not| (|%ilt| |#1| 0))) -((-4087 (((-3 |#2| "failed") |#2| |#2| (-115) (-1209)) 37 T ELT))) -(((-794 |#1| |#2|) (-10 -7 (-15 -4087 ((-3 |#2| "failed") |#2| |#2| (-115) (-1209)))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1235) (-990))) (T -794)) -((-4087 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1235) (-990)))))) -(-10 -7 (-15 -4087 ((-3 |#2| "failed") |#2| |#2| (-115) (-1209)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 7 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 9 T ELT))) -(((-795) (-1133)) (T -795)) -NIL -(-1133) -((-4462 (((-795) |#1|) 8 T ELT))) -(((-796 |#1|) (-10 -7 (-15 -4462 ((-795) |#1|))) (-1249)) (T -796)) -((-4462 (*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1249))))) -(-10 -7 (-15 -4462 ((-795) |#1|))) -((-3620 ((|#2| |#4|) 35 T ELT))) -(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3620 (|#2| |#4|))) (-466) (-1275 |#1|) (-746 |#1| |#2|) (-1275 |#3|)) (T -797)) -((-3620 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1275 *5))))) -(-10 -7 (-15 -3620 (|#2| |#4|))) -((-3973 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2847 (((-1305) (-1191) (-1191) |#4| |#5|) 33 T ELT)) (-2845 ((|#4| |#4| |#5|) 74 T ELT)) (-2846 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|) 79 T ELT)) (-2848 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|) 16 T ELT))) -(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2845 (|#4| |#4| |#5|)) (-15 -2846 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -2847 ((-1305) (-1191) (-1191) |#4| |#5|)) (-15 -2848 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -798)) -((-2848 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2847 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1191)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *4 (-1097 *6 *7 *8)) (-5 *2 (-1305)) (-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1103 *6 *7 *8 *4)))) (-2846 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2845 (*1 *2 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *2 (-1097 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3)) (-4 *3 (-1103 *4 *5 *6 *2)))) (-3973 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) -(-10 -7 (-15 -3973 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2845 (|#4| |#4| |#5|)) (-15 -2846 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -2847 ((-1305) (-1191) (-1191) |#4| |#5|)) (-15 -2848 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|))) -((-3661 (((-3 (-1203 (-1203 |#1|)) "failed") |#4|) 53 T ELT)) (-2849 (((-663 |#4|) |#4|) 22 T ELT)) (-4444 ((|#4| |#4|) 17 T ELT))) -(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-663 |#4|) |#4|)) (-15 -3661 ((-3 (-1203 (-1203 |#1|)) "failed") |#4|)) (-15 -4444 (|#4| |#4|))) (-363) (-341 |#1|) (-1275 |#2|) (-1275 |#3|) (-949)) (T -799)) -((-4444 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1275 *4)) (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1275 *5)) (-14 *6 (-949)))) (-3661 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1275 *5)) (-5 *2 (-1203 (-1203 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1275 *6)) (-14 *7 (-949)))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1275 *5)) (-5 *2 (-663 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1275 *6)) (-14 *7 (-949))))) -(-10 -7 (-15 -2849 ((-663 |#4|) |#4|)) (-15 -3661 ((-3 (-1203 (-1203 |#1|)) "failed") |#4|)) (-15 -4444 (|#4| |#4|))) -((-2850 (((-2 (|:| |deter| (-663 (-1203 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1203 |#5|) (-663 |#1|) (-663 |#5|)) 72 T ELT)) (-2851 (((-663 (-793)) |#1|) 20 T ELT))) -(((-800 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2850 ((-2 (|:| |deter| (-663 (-1203 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1203 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -2851 ((-663 (-793)) |#1|))) (-1275 |#4|) (-817) (-872) (-319) (-980 |#4| |#2| |#3|)) (T -800)) -((-2851 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *6)) (-4 *7 (-980 *6 *4 *5)))) (-2850 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1275 *9)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-319)) (-4 *10 (-980 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-663 (-1203 *10))) (|:| |dterm| (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| *10))))) (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10)))) (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1203 *10)) (-5 *4 (-663 *6)) (-5 *5 (-663 *10))))) -(-10 -7 (-15 -2850 ((-2 (|:| |deter| (-663 (-1203 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1203 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -2851 ((-663 (-793)) |#1|))) -((-2854 (((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|) 31 T ELT)) (-2853 (((-663 |#1|) (-711 (-421 (-560))) |#1|) 21 T ELT)) (-2852 (((-976 (-421 (-560))) (-711 (-421 (-560))) (-1209)) 18 T ELT) (((-976 (-421 (-560))) (-711 (-421 (-560)))) 17 T ELT))) -(((-801 |#1|) (-10 -7 (-15 -2852 ((-976 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2852 ((-976 (-421 (-560))) (-711 (-421 (-560))) (-1209))) (-15 -2853 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -2854 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|))) (-13 (-376) (-871))) (T -801)) -((-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 (-2 (|:| |outval| *4) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *4)))))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-871))))) (-2853 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-871))))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1209)) (-5 *2 (-976 (-421 (-560)))) (-5 *1 (-801 *5)) (-4 *5 (-13 (-376) (-871))))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-976 (-421 (-560)))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-871)))))) -(-10 -7 (-15 -2852 ((-976 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2852 ((-976 (-421 (-560))) (-711 (-421 (-560))) (-1209))) (-15 -2853 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -2854 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 36 T ELT)) (-3570 (((-663 |#2|) $) NIL T ELT)) (-3572 (((-1203 $) $ |#2|) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) NIL T ELT)) (-4313 (($ $) 30 T ELT)) (-3670 (((-114) $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4271 (($ $ $) 110 (|has| |#1| (-571)) ELT)) (-3652 (((-663 $) $ $) 123 (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 |#2| #2#) $) NIL T ELT) (((-3 $ #3="failed") (-976 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209)))) ELT) (((-3 $ #3#) (-976 (-560))) NIL (-4043 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209))))) ELT) (((-3 $ #3#) (-976 |#1|)) NIL (-4043 (-12 (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-1023 (-560)))))) ELT) (((-3 (-1157 |#1| |#2|) #2#) $) 21 T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) ((|#2| $) NIL T ELT) (($ (-976 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209)))) ELT) (($ (-976 (-560))) NIL (-4043 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209))))) ELT) (($ (-976 |#1|)) NIL (-4043 (-12 (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-1023 (-560)))))) ELT) (((-1157 |#1| |#2|) $) NIL T ELT)) (-4272 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-571)) ELT)) (-4475 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-4210 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3676 (((-114) $) NIL T ELT)) (-4268 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 81 T ELT)) (-3647 (($ $) 136 (|has| |#1| (-466)) ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-3658 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3659 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3669 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3668 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1816 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| |#1| (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| |#1| (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) 57 T ELT)) (-2663 (((-793) $) NIL T ELT)) (-4211 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-3649 (($ $ $ $ $) 107 (|has| |#1| (-571)) ELT)) (-3684 ((|#2| $) 22 T ELT)) (-3573 (($ (-1203 |#1|) |#2|) NIL T ELT) (($ (-1203 $) |#2|) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3663 (($ $ $) 63 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#2|) NIL T ELT)) (-3677 (((-114) $) NIL T ELT)) (-3307 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-3683 (((-793) $) 23 T ELT)) (-1817 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3571 (((-3 |#2| #4="failed") $) NIL T ELT)) (-3644 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3645 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3672 (((-663 $) $) NIL T ELT)) (-3675 (($ $) 39 T ELT)) (-3646 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3673 (((-663 $) $) 43 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3674 (($ $) 41 T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3662 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-793))) $ $) 96 T ELT)) (-3664 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $) 78 T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $ |#2|) NIL T ELT)) (-3665 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $) NIL T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $ |#2|) NIL T ELT)) (-3667 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3666 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3694 (($ $ $) 125 (|has| |#1| (-571)) ELT)) (-3680 (((-663 $) $) 32 T ELT)) (-3310 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| |#2|) (|:| -2646 (-793))) #4#) $) NIL T ELT)) (-4207 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-4202 (($ $ $) NIL T ELT)) (-3952 (($ $) 24 T ELT)) (-4215 (((-114) $ $) NIL T ELT)) (-4208 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-4203 (($ $ $) NIL T ELT)) (-3682 (($ $) 26 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3653 (((-2 (|:| -3648 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-571)) ELT)) (-3654 (((-2 (|:| -3648 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-571)) ELT)) (-2019 (((-114) $) 56 T ELT)) (-2018 ((|#1| $) 58 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 ((|#1| |#1| $) 133 (|has| |#1| (-466)) ELT) (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3655 (((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-571)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-571)) ELT)) (-3656 (($ $ |#1|) 129 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3657 (($ $ |#1|) 128 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-663 |#2|) (-663 $)) NIL T ELT)) (-4273 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4464 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) 45 T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-3681 (($ $) NIL T ELT)) (-3679 (($ $) 35 T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT) (($ (-976 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209)))) ELT) (($ (-976 (-560))) NIL (-4043 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1209))) (-3045 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1209))))) ELT) (($ (-976 |#1|)) NIL (|has| |#2| (-633 (-1209))) ELT) (((-1191) $) NIL (-12 (|has| |#1| (-1070 (-560))) (|has| |#2| (-633 (-1209)))) ELT) (((-976 |#1|) $) NIL (|has| |#2| (-633 (-1209))) ELT)) (-3304 ((|#1| $) 132 (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-976 |#1|) $) NIL (|has| |#2| (-633 (-1209))) ELT) (((-1157 |#1| |#2|) $) 18 T ELT) (($ (-1157 |#1| |#2|)) 19 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 47 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 13 T CONST)) (-3671 (((-3 (-114) #3#) $ $) NIL T ELT)) (-3151 (($) 37 T CONST)) (-3650 (($ $ $ $ (-793)) 105 (|has| |#1| (-571)) ELT)) (-3651 (($ $ $ (-793)) 104 (|has| |#1| (-571)) ELT)) (-3156 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-4355 (($ $ $) 85 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 70 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-802 |#1| |#2|) (-13 (-1097 |#1| (-545 |#2|) |#2|) (-632 (-1157 |#1| |#2|)) (-1070 (-1157 |#1| |#2|))) (-1081) (-872)) (T -802)) -NIL -(-13 (-1097 |#1| (-545 |#2|) |#2|) (-632 (-1157 |#1| |#2|)) (-1070 (-1157 |#1| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 12 T ELT)) (-4283 (((-1299 |#1|) $ (-793)) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4281 (($ (-1203 |#1|)) NIL T ELT)) (-3572 (((-1203 $) $ (-1114)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1114))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2858 (((-663 $) $ $) 54 (|has| |#1| (-571)) ELT)) (-4271 (($ $ $) 50 (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4277 (($ $ (-793)) NIL T ELT)) (-4276 (($ $ (-793)) NIL T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1114) #2#) $) NIL T ELT) (((-3 (-1203 |#1|) #2#) $) 10 T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-1114) $) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-4272 (($ $ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4275 (($ $ $) NIL T ELT)) (-4269 (($ $ $) 87 (|has| |#1| (-571)) ELT)) (-4268 (((-2 (|:| -4470 |#1|) (|:| -2198 $) (|:| -3389 $)) $ $) 86 (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-793) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1114) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1114) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-1184)) ELT)) (-3573 (($ (-1203 |#1|) (-1114)) NIL T ELT) (($ (-1203 $) (-1114)) NIL T ELT)) (-4293 (($ $ (-793)) NIL T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3663 (($ $ $) 27 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1114)) NIL T ELT) (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3307 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-1817 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4282 (((-1203 |#1|) $) NIL T ELT)) (-3571 (((-3 (-1114) #4="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3662 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-793))) $ $) 37 T ELT)) (-2860 (($ $ $) 41 T ELT)) (-2859 (($ $ $) 47 T ELT)) (-3664 (((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $) 46 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3694 (($ $ $) 56 (|has| |#1| (-571)) ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) NIL T ELT)) (-3310 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1114)) (|:| -2646 (-793))) #4#) $) NIL T ELT)) (-4328 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (|has| |#1| (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3653 (((-2 (|:| -3648 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-571)) ELT)) (-3654 (((-2 (|:| -3648 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-571)) ELT)) (-2855 (((-2 (|:| -4272 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-571)) ELT)) (-2856 (((-2 (|:| -4272 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-571)) ELT)) (-2019 (((-114) $) 13 T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4254 (($ $ (-793) |#1| $) 26 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3655 (((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-571)) ELT)) (-2857 (((-2 (|:| -4272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1114) |#1|) NIL T ELT) (($ $ (-663 (-1114)) (-663 |#1|)) NIL T ELT) (($ $ (-1114) $) NIL T ELT) (($ $ (-663 (-1114)) (-663 $)) NIL T ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-4280 (((-3 $ #5="failed") $ (-793)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-4464 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1114) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4270 (((-3 $ #5#) $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) #5#) (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1114)) NIL T ELT) (((-1203 |#1|) $) 7 T ELT) (($ (-1203 |#1|)) 8 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 28 T CONST)) (-3151 (($) 32 T CONST)) (-3156 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-803 |#1|) (-13 (-1275 |#1|) (-632 (-1203 |#1|)) (-1070 (-1203 |#1|)) (-10 -8 (-15 -4254 ($ $ (-793) |#1| $)) (-15 -3663 ($ $ $)) (-15 -3662 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-793))) $ $)) (-15 -2860 ($ $ $)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -2859 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -2858 ((-663 $) $ $)) (-15 -3694 ($ $ $)) (-15 -3655 ((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3654 ((-2 (|:| -3648 $) (|:| |coef1| $)) $ $)) (-15 -3653 ((-2 (|:| -3648 $) (|:| |coef2| $)) $ $)) (-15 -2857 ((-2 (|:| -4272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2856 ((-2 (|:| -4272 |#1|) (|:| |coef1| $)) $ $)) (-15 -2855 ((-2 (|:| -4272 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1081)) (T -803)) -((-4254 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1081)))) (-3663 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081)))) (-3662 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -3987 (-793)))) (-5 *1 (-803 *3)) (-4 *3 (-1081)))) (-2860 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081)))) (-3664 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4470 *3) (|:| |gap| (-793)) (|:| -2198 (-803 *3)) (|:| -3389 (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-1081)))) (-2859 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081)))) (-2858 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-3694 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1081)))) (-3655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3648 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-3654 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3648 (-803 *3)) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-3653 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3648 (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4272 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-2856 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4272 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) (-2855 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4272 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081))))) -(-13 (-1275 |#1|) (-632 (-1203 |#1|)) (-1070 (-1203 |#1|)) (-10 -8 (-15 -4254 ($ $ (-793) |#1| $)) (-15 -3663 ($ $ $)) (-15 -3662 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-793))) $ $)) (-15 -2860 ($ $ $)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -2859 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -2858 ((-663 $) $ $)) (-15 -3694 ($ $ $)) (-15 -3655 ((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3654 ((-2 (|:| -3648 $) (|:| |coef1| $)) $ $)) (-15 -3653 ((-2 (|:| -3648 $) (|:| |coef2| $)) $ $)) (-15 -2857 ((-2 (|:| -4272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2856 ((-2 (|:| -4272 |#1|) (|:| |coef1| $)) $ $)) (-15 -2855 ((-2 (|:| -4272 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4474 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 13 T ELT))) -(((-804 |#1| |#2|) (-10 -7 (-15 -4474 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1081) (-1081)) (T -804)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6))))) -(-10 -7 (-15 -4474 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) -((-2862 ((|#1| (-793) |#1|) 33 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3288 ((|#1| (-793) |#1|) 23 T ELT)) (-2861 ((|#1| (-793) |#1|) 35 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-805 |#1|) (-10 -7 (-15 -3288 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2861 (|#1| (-793) |#1|)) (-15 -2862 (|#1| (-793) |#1|))) |%noBranch|)) (-175)) (T -805)) -((-2862 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-2861 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-3288 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175))))) -(-10 -7 (-15 -3288 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2861 (|#1| (-793) |#1|)) (-15 -2862 (|#1| (-793) |#1|))) |%noBranch|)) -((-3053 (((-114) $ $) 7 T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) 90 T ELT)) (-4198 (((-663 $) (-663 |#4|)) 91 T ELT) (((-663 $) (-663 |#4|) (-114)) 118 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4204 ((|#4| |#4| $) 97 T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 133 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-4315 (((-3 $ #1#) $) 87 T ELT)) (-4201 ((|#4| |#4| $) 94 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4199 ((|#4| |#4| $) 92 T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) 110 T ELT)) (-3701 (((-114) |#4| $) 143 T ELT)) (-3699 (((-114) |#4| $) 140 T ELT)) (-3702 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) 135 T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 134 T ELT)) (-4314 (((-3 |#4| #1#) $) 88 T ELT)) (-3696 (((-663 $) |#4| $) 136 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) 139 T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3742 (((-663 $) |#4| $) 132 T ELT) (((-663 $) (-663 |#4|) $) 131 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 130 T ELT) (((-663 $) |#4| (-663 $)) 129 T ELT)) (-3946 (($ |#4| $) 124 T ELT) (($ (-663 |#4|) $) 123 T ELT)) (-4213 (((-663 |#4|) $) 112 T ELT)) (-4207 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4202 ((|#4| |#4| $) 95 T ELT)) (-4215 (((-114) $ $) 115 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4203 ((|#4| |#4| $) 96 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-3 |#4| #1#) $) 89 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4285 (($ $ |#4|) 82 T ELT) (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-4464 (((-793) $) 111 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-4200 (($ $) 93 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-4194 (((-793) $) 81 (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 103 T ELT)) (-3693 (((-663 $) |#4| $) 128 T ELT) (((-663 $) |#4| (-663 $)) 127 T ELT) (((-663 $) (-663 |#4|) $) 126 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 125 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) 86 T ELT)) (-3700 (((-114) |#4| $) 142 T ELT)) (-4449 (((-114) |#3| $) 85 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-806 |#1| |#2| |#3| |#4|) (-142) (-466) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -806)) -NIL -(-13 (-1103 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-1008 |#1| |#2| |#3| |#4|) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1133) . T) ((-1244 |#1| |#2| |#3| |#4|) . T) ((-1249) . T)) -((-2865 (((-3 (-391) "failed") (-326 |#1|) (-949)) 62 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-391) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-391) "failed") (-421 (-976 |#1|)) (-949)) 41 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-421 (-976 |#1|))) 40 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-976 |#1|) (-949)) 31 (|has| |#1| (-1081)) ELT) (((-3 (-391) "failed") (-976 |#1|)) 30 (|has| |#1| (-1081)) ELT)) (-2863 (((-391) (-326 |#1|) (-949)) 99 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-391) (-421 (-976 |#1|)) (-949)) 91 (|has| |#1| (-571)) ELT) (((-391) (-421 (-976 |#1|))) 90 (|has| |#1| (-571)) ELT) (((-391) (-976 |#1|) (-949)) 86 (|has| |#1| (-1081)) ELT) (((-391) (-976 |#1|)) 85 (|has| |#1| (-1081)) ELT) (((-391) |#1| (-949)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2866 (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-949)) 71 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|) (-949)) 63 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|))) (-949)) 46 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|)))) 45 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-976 |#1|)) (-949)) 39 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-976 |#1|))) 38 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-976 |#1|) (-949)) 28 (|has| |#1| (-1081)) ELT) (((-3 (-171 (-391)) "failed") (-976 |#1|)) 26 (|has| |#1| (-1081)) ELT) (((-3 (-171 (-391)) "failed") (-976 (-171 |#1|)) (-949)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) "failed") (-976 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-2864 (((-171 (-391)) (-326 (-171 |#1|)) (-949)) 102 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-171 (-391)) (-326 |#1|) (-949)) 100 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-571)) (|has| |#1| (-872))) ELT) (((-171 (-391)) (-421 (-976 (-171 |#1|))) (-949)) 93 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-976 (-171 |#1|)))) 92 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-976 |#1|)) (-949)) 89 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-976 |#1|))) 88 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-976 |#1|) (-949)) 84 (|has| |#1| (-1081)) ELT) (((-171 (-391)) (-976 |#1|)) 83 (|has| |#1| (-1081)) ELT) (((-171 (-391)) (-976 (-171 |#1|)) (-949)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-976 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-949)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-949)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) -(((-807 |#1|) (-10 -7 (-15 -2863 ((-391) |#1|)) (-15 -2863 ((-391) |#1| (-949))) (-15 -2864 ((-171 (-391)) |#1|)) (-15 -2864 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-175)) (PROGN (-15 -2864 ((-171 (-391)) (-171 |#1|))) (-15 -2864 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-976 (-171 |#1|)))) (-15 -2864 ((-171 (-391)) (-976 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-15 -2863 ((-391) (-976 |#1|))) (-15 -2863 ((-391) (-976 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-976 |#1|))) (-15 -2864 ((-171 (-391)) (-976 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2863 ((-391) (-421 (-976 |#1|)))) (-15 -2863 ((-391) (-421 (-976 |#1|)) (-949))) (-15 -2864 ((-171 (-391)) (-421 (-976 |#1|)))) (-15 -2864 ((-171 (-391)) (-421 (-976 |#1|)) (-949))) (-15 -2864 ((-171 (-391)) (-421 (-976 (-171 |#1|))))) (-15 -2864 ((-171 (-391)) (-421 (-976 (-171 |#1|))) (-949))) (IF (|has| |#1| (-872)) (PROGN (-15 -2863 ((-391) (-326 |#1|))) (-15 -2863 ((-391) (-326 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-326 |#1|))) (-15 -2864 ((-171 (-391)) (-326 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2864 ((-171 (-391)) (-326 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 (-171 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-976 |#1|))) (-15 -2865 ((-3 (-391) "failed") (-976 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 |#1|))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-421 (-976 |#1|)))) (-15 -2865 ((-3 (-391) "failed") (-421 (-976 |#1|)) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 |#1|)) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|))))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|))) (-949))) (IF (|has| |#1| (-872)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2865 ((-3 (-391) "failed") (-326 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) (-633 (-391))) (T -807)) -((-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2865 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2865 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-976 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-976 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2865 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2865 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2865 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2865 (*1 *2 *3) (|partial| -12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-976 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2866 (*1 *2 *3) (|partial| -12 (-5 *3 (-976 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-976 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-976 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-2864 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) (-2863 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2))))) -(-10 -7 (-15 -2863 ((-391) |#1|)) (-15 -2863 ((-391) |#1| (-949))) (-15 -2864 ((-171 (-391)) |#1|)) (-15 -2864 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-175)) (PROGN (-15 -2864 ((-171 (-391)) (-171 |#1|))) (-15 -2864 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-976 (-171 |#1|)))) (-15 -2864 ((-171 (-391)) (-976 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-15 -2863 ((-391) (-976 |#1|))) (-15 -2863 ((-391) (-976 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-976 |#1|))) (-15 -2864 ((-171 (-391)) (-976 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2863 ((-391) (-421 (-976 |#1|)))) (-15 -2863 ((-391) (-421 (-976 |#1|)) (-949))) (-15 -2864 ((-171 (-391)) (-421 (-976 |#1|)))) (-15 -2864 ((-171 (-391)) (-421 (-976 |#1|)) (-949))) (-15 -2864 ((-171 (-391)) (-421 (-976 (-171 |#1|))))) (-15 -2864 ((-171 (-391)) (-421 (-976 (-171 |#1|))) (-949))) (IF (|has| |#1| (-872)) (PROGN (-15 -2863 ((-391) (-326 |#1|))) (-15 -2863 ((-391) (-326 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-326 |#1|))) (-15 -2864 ((-171 (-391)) (-326 |#1|) (-949))) (-15 -2864 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2864 ((-171 (-391)) (-326 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 (-171 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1081)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-976 |#1|))) (-15 -2865 ((-3 (-391) "failed") (-976 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 |#1|))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-976 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-421 (-976 |#1|)))) (-15 -2865 ((-3 (-391) "failed") (-421 (-976 |#1|)) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 |#1|)) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|))))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-421 (-976 (-171 |#1|))) (-949))) (IF (|has| |#1| (-872)) (PROGN (-15 -2865 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2865 ((-3 (-391) "failed") (-326 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-949))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2866 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) -((-2870 (((-949) (-1191)) 90 T ELT)) (-2872 (((-3 (-391) "failed") (-1191)) 36 T ELT)) (-2871 (((-391) (-1191)) 34 T ELT)) (-2868 (((-949) (-1191)) 64 T ELT)) (-2869 (((-1191) (-949)) 74 T ELT)) (-2867 (((-1191) (-949)) 63 T ELT))) -(((-808) (-10 -7 (-15 -2867 ((-1191) (-949))) (-15 -2868 ((-949) (-1191))) (-15 -2869 ((-1191) (-949))) (-15 -2870 ((-949) (-1191))) (-15 -2871 ((-391) (-1191))) (-15 -2872 ((-3 (-391) "failed") (-1191))))) (T -808)) -((-2872 (*1 *2 *3) (|partial| -12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-808)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-808)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-949)) (-5 *1 (-808)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1191)) (-5 *1 (-808)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-949)) (-5 *1 (-808)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1191)) (-5 *1 (-808))))) -(-10 -7 (-15 -2867 ((-1191) (-949))) (-15 -2868 ((-949) (-1191))) (-15 -2869 ((-1191) (-949))) (-15 -2870 ((-949) (-1191))) (-15 -2871 ((-391) (-1191))) (-15 -2872 ((-3 (-391) "failed") (-1191)))) -((-3053 (((-114) $ $) 7 T ELT)) (-2873 (((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 19 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067)) 17 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 20 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-809) (-142)) (T -809)) -((-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067)))))) (-2873 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1067)) (-5 *3 (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067)))))) (-2873 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1067)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(-13 (-1133) (-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2873 ((-1067) (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) (|:| |extra| (-1067))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2873 ((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1067))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-2876 (((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391))) 54 T ELT) (((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391))) 51 T ELT)) (-2877 (((-1305) (-1299 (-391)) (-560) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391))) 61 T ELT)) (-2875 (((-1305) (-1299 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391))) 49 T ELT)) (-2874 (((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391))) 63 T ELT) (((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391))) 62 T ELT))) -(((-810) (-10 -7 (-15 -2874 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2874 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)))) (-15 -2875 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2876 ((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2876 ((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)))) (-15 -2877 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))))) (T -810)) -((-2877 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) (-2876 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391)))) (-5 *7 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) (-2876 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391)))) (-5 *7 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) (-2875 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) (-2874 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) (-2874 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810))))) -(-10 -7 (-15 -2874 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2874 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)))) (-15 -2875 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2876 ((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)))) (-15 -2876 ((-1305) (-1299 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391))) (-391) (-1299 (-391)) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)) (-1299 (-391)))) (-15 -2877 ((-1305) (-1299 (-391)) (-560) (-391) (-391) (-560) (-1 (-1305) (-1299 (-391)) (-1299 (-391)) (-391))))) -((-2886 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 65 T ELT)) (-2883 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 40 T ELT)) (-2885 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 64 T ELT)) (-2882 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 38 T ELT)) (-2884 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 63 T ELT)) (-2881 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 24 T ELT)) (-2880 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 41 T ELT)) (-2879 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 39 T ELT)) (-2878 (((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 37 T ELT))) -(((-811) (-10 -7 (-15 -2878 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2879 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2880 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2881 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2882 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2883 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2884 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2885 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2886 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))))) (T -811)) -((-2886 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2885 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2884 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2883 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2882 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2881 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2880 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2879 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2878 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560))))) -(-10 -7 (-15 -2878 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2879 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2880 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2881 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2882 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2883 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2884 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2885 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2886 ((-2 (|:| -3908 (-391)) (|:| -1751 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)))) -((-4221 (((-1245 |#1|) |#1| (-229) (-560)) 69 T ELT))) -(((-812 |#1|) (-10 -7 (-15 -4221 ((-1245 |#1|) |#1| (-229) (-560)))) (-1006)) (T -812)) -((-4221 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1245 *3)) (-5 *1 (-812 *3)) (-4 *3 (-1006))))) -(-10 -7 (-15 -4221 ((-1245 |#1|) |#1| (-229) (-560)))) -((-4139 (((-560) $) 17 T ELT)) (-3691 (((-114) $) 10 T ELT)) (-3889 (($ $) 19 T ELT))) -(((-813 |#1|) (-10 -8 (-15 -3889 (|#1| |#1|)) (-15 -4139 ((-560) |#1|)) (-15 -3691 ((-114) |#1|))) (-814)) (T -813)) -NIL -(-10 -8 (-15 -3889 (|#1| |#1|)) (-15 -4139 ((-560) |#1|)) (-15 -3691 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 31 T ELT)) (-1438 (((-3 $ "failed") $ $) 34 T ELT)) (-4139 (((-560) $) 37 T ELT)) (-4240 (($) 30 T CONST)) (-3690 (((-114) $) 28 T ELT)) (-3691 (((-114) $) 38 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3889 (($ $) 36 T ELT)) (-3145 (($) 29 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4353 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) 26 T ELT) (($ (-793) $) 32 T ELT) (($ (-560) $) 39 T ELT))) +((-4083 (((-3 |#2| "failed") |#2| |#2| (-115) (-1207)) 37 T ELT))) +(((-792 |#1| |#2|) (-10 -7 (-15 -4083 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207)))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -792)) +((-4083 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *1 (-792 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-988)))))) +(-10 -7 (-15 -4083 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 7 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 9 T ELT))) +(((-793) (-1131)) (T -793)) +NIL +(-1131) +((-4458 (((-793) |#1|) 8 T ELT))) +(((-794 |#1|) (-10 -7 (-15 -4458 ((-793) |#1|))) (-1247)) (T -794)) +((-4458 (*1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-794 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -4458 ((-793) |#1|))) +((-3616 ((|#2| |#4|) 35 T ELT))) +(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3616 (|#2| |#4|))) (-464) (-1273 |#1|) (-744 |#1| |#2|) (-1273 |#3|)) (T -795)) +((-3616 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-744 *4 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-795 *4 *2 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -3616 (|#2| |#4|))) +((-3969 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2843 (((-1303) (-1189) (-1189) |#4| |#5|) 33 T ELT)) (-2841 ((|#4| |#4| |#5|) 74 T ELT)) (-2842 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|) 79 T ELT)) (-2844 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|) 16 T ELT))) +(((-796 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3969 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2841 (|#4| |#4| |#5|)) (-15 -2842 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -2843 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -2844 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -796)) +((-2844 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2843 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1189)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1303)) (-5 *1 (-796 *6 *7 *8 *4 *5)) (-4 *5 (-1101 *6 *7 *8 *4)))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2841 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *2 (-1095 *4 *5 *6)) (-5 *1 (-796 *4 *5 *6 *2 *3)) (-4 *3 (-1101 *4 *5 *6 *2)))) (-3969 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(-10 -7 (-15 -3969 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2841 (|#4| |#4| |#5|)) (-15 -2842 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -2843 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -2844 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|))) +((-3657 (((-3 (-1201 (-1201 |#1|)) "failed") |#4|) 53 T ELT)) (-2845 (((-661 |#4|) |#4|) 22 T ELT)) (-4440 ((|#4| |#4|) 17 T ELT))) +(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2845 ((-661 |#4|) |#4|)) (-15 -3657 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -4440 (|#4| |#4|))) (-363) (-341 |#1|) (-1273 |#2|) (-1273 |#3|) (-947)) (T -797)) +((-4440 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1273 *4)) (-5 *1 (-797 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-947)))) (-3657 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-947)))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-661 *3)) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-947))))) +(-10 -7 (-15 -2845 ((-661 |#4|) |#4|)) (-15 -3657 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -4440 (|#4| |#4|))) +((-2846 (((-2 (|:| |deter| (-661 (-1201 |#5|))) (|:| |dterm| (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-661 |#1|)) (|:| |nlead| (-661 |#5|))) (-1201 |#5|) (-661 |#1|) (-661 |#5|)) 72 T ELT)) (-2847 (((-661 (-791)) |#1|) 20 T ELT))) +(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2846 ((-2 (|:| |deter| (-661 (-1201 |#5|))) (|:| |dterm| (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-661 |#1|)) (|:| |nlead| (-661 |#5|))) (-1201 |#5|) (-661 |#1|) (-661 |#5|))) (-15 -2847 ((-661 (-791)) |#1|))) (-1273 |#4|) (-815) (-870) (-319) (-978 |#4| |#2| |#3|)) (T -798)) +((-2847 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-661 (-791))) (-5 *1 (-798 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-978 *6 *4 *5)))) (-2846 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-319)) (-4 *10 (-978 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-661 (-1201 *10))) (|:| |dterm| (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| *10))))) (|:| |nfacts| (-661 *6)) (|:| |nlead| (-661 *10)))) (-5 *1 (-798 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-661 *6)) (-5 *5 (-661 *10))))) +(-10 -7 (-15 -2846 ((-2 (|:| |deter| (-661 (-1201 |#5|))) (|:| |dterm| (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-661 |#1|)) (|:| |nlead| (-661 |#5|))) (-1201 |#5|) (-661 |#1|) (-661 |#5|))) (-15 -2847 ((-661 (-791)) |#1|))) +((-2850 (((-661 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#1|))))) (-709 (-419 (-558))) |#1|) 31 T ELT)) (-2849 (((-661 |#1|) (-709 (-419 (-558))) |#1|) 21 T ELT)) (-2848 (((-974 (-419 (-558))) (-709 (-419 (-558))) (-1207)) 18 T ELT) (((-974 (-419 (-558))) (-709 (-419 (-558)))) 17 T ELT))) +(((-799 |#1|) (-10 -7 (-15 -2848 ((-974 (-419 (-558))) (-709 (-419 (-558))))) (-15 -2848 ((-974 (-419 (-558))) (-709 (-419 (-558))) (-1207))) (-15 -2849 ((-661 |#1|) (-709 (-419 (-558))) |#1|)) (-15 -2850 ((-661 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#1|))))) (-709 (-419 (-558))) |#1|))) (-13 (-376) (-869))) (T -799)) +((-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 *4)))))) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-869))))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-869))))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *4 (-1207)) (-5 *2 (-974 (-419 (-558)))) (-5 *1 (-799 *5)) (-4 *5 (-13 (-376) (-869))))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-974 (-419 (-558)))) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-869)))))) +(-10 -7 (-15 -2848 ((-974 (-419 (-558))) (-709 (-419 (-558))))) (-15 -2848 ((-974 (-419 (-558))) (-709 (-419 (-558))) (-1207))) (-15 -2849 ((-661 |#1|) (-709 (-419 (-558))) |#1|)) (-15 -2850 ((-661 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#1|))))) (-709 (-419 (-558))) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 36 T ELT)) (-3566 (((-661 |#2|) $) NIL T ELT)) (-3568 (((-1201 $) $ |#2|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 |#2|)) NIL T ELT)) (-4309 (($ $) 30 T ELT)) (-3666 (((-114) $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4267 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-3648 (((-661 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 |#2| #2#) $) NIL T ELT) (((-3 $ #3="failed") (-974 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207)))) ELT) (((-3 $ #3#) (-974 (-558))) NIL (-4039 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207))))) ELT) (((-3 $ #3#) (-974 |#1|)) NIL (-4039 (-12 (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-1021 (-558)))))) ELT) (((-3 (-1155 |#1| |#2|) #2#) $) 21 T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) ((|#2| $) NIL T ELT) (($ (-974 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207)))) ELT) (($ (-974 (-558))) NIL (-4039 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207))))) ELT) (($ (-974 |#1|)) NIL (-4039 (-12 (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-1021 (-558)))))) ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-4268 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-4471 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4206 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3672 (((-114) $) NIL T ELT)) (-4264 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 81 T ELT)) (-3643 (($ $) 136 (|has| |#1| (-464)) ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-3654 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3655 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3665 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3664 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1814 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| |#1| (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) 57 T ELT)) (-2659 (((-791) $) NIL T ELT)) (-4207 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-3645 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-3680 ((|#2| $) 22 T ELT)) (-3569 (($ (-1201 |#1|) |#2|) NIL T ELT) (($ (-1201 $) |#2|) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 38 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3659 (($ $ $) 63 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#2|) NIL T ELT)) (-3673 (((-114) $) NIL T ELT)) (-3303 (((-543 |#2|) $) NIL T ELT) (((-791) $ |#2|) NIL T ELT) (((-661 (-791)) $ (-661 |#2|)) NIL T ELT)) (-3679 (((-791) $) 23 T ELT)) (-1815 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3567 (((-3 |#2| #4="failed") $) NIL T ELT)) (-3640 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3668 (((-661 $) $) NIL T ELT)) (-3671 (($ $) 39 T ELT)) (-3642 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3669 (((-661 $) $) 43 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3670 (($ $) 41 T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3983 (-791))) $ $) 96 T ELT)) (-3660 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $) 78 T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $ |#2|) NIL T ELT)) (-3661 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $) NIL T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $ |#2|) NIL T ELT)) (-3663 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3662 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3690 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-3676 (((-661 $) $) 32 T ELT)) (-3306 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| |#2|) (|:| -2642 (-791))) #4#) $) NIL T ELT)) (-4203 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-4198 (($ $ $) NIL T ELT)) (-3948 (($ $) 24 T ELT)) (-4211 (((-114) $ $) NIL T ELT)) (-4204 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-4199 (($ $ $) NIL T ELT)) (-3678 (($ $) 26 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3649 (((-2 (|:| -3644 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-3650 (((-2 (|:| -3644 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-2015 (((-114) $) 56 T ELT)) (-2014 ((|#1| $) 58 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 ((|#1| |#1| $) 133 (|has| |#1| (-464)) ELT) (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3651 (((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-569)) ELT)) (-3652 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3653 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-661 |#2|) (-661 $)) NIL T ELT)) (-4269 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4460 (((-543 |#2|) $) NIL T ELT) (((-791) $ |#2|) 45 T ELT) (((-661 (-791)) $ (-661 |#2|)) NIL T ELT)) (-3677 (($ $) NIL T ELT)) (-3675 (($ $) 35 T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT) (($ (-974 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207)))) ELT) (($ (-974 (-558))) NIL (-4039 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1207))) (-3041 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1207))))) ELT) (($ (-974 |#1|)) NIL (|has| |#2| (-631 (-1207))) ELT) (((-1189) $) NIL (-12 (|has| |#1| (-1068 (-558))) (|has| |#2| (-631 (-1207)))) ELT) (((-974 |#1|) $) NIL (|has| |#2| (-631 (-1207))) ELT)) (-3300 ((|#1| $) 132 (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-974 |#1|) $) NIL (|has| |#2| (-631 (-1207))) ELT) (((-1155 |#1| |#2|) $) 18 T ELT) (($ (-1155 |#1| |#2|)) 19 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 47 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 13 T CONST)) (-3667 (((-3 (-114) #3#) $ $) NIL T ELT)) (-3147 (($) 37 T CONST)) (-3646 (($ $ $ $ (-791)) 105 (|has| |#1| (-569)) ELT)) (-3647 (($ $ $ (-791)) 104 (|has| |#1| (-569)) ELT)) (-3152 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-4351 (($ $ $) 85 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 70 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-800 |#1| |#2|) (-13 (-1095 |#1| (-543 |#2|) |#2|) (-630 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870)) (T -800)) +NIL +(-13 (-1095 |#1| (-543 |#2|) |#2|) (-630 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 12 T ELT)) (-4279 (((-1297 |#1|) $ (-791)) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4277 (($ (-1201 |#1|)) NIL T ELT)) (-3568 (((-1201 $) $ (-1112)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1112))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2854 (((-661 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-4267 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-791)) NIL T ELT)) (-4272 (($ $ (-791)) NIL T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1112) #2#) $) NIL T ELT) (((-3 (-1201 |#1|) #2#) $) 10 T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-1112) $) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4268 (($ $ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4271 (($ $ $) NIL T ELT)) (-4265 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-4264 (((-2 (|:| -4466 |#1|) (|:| -2194 $) (|:| -3385 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-791) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1112) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-1182)) ELT)) (-3569 (($ (-1201 |#1|) (-1112)) NIL T ELT) (($ (-1201 $) (-1112)) NIL T ELT)) (-4289 (($ $ (-791)) NIL T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3659 (($ $ $) 27 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3303 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-1815 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4278 (((-1201 |#1|) $) NIL T ELT)) (-3567 (((-3 (-1112) #4="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3658 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3983 (-791))) $ $) 37 T ELT)) (-2856 (($ $ $) 41 T ELT)) (-2855 (($ $ $) 47 T ELT)) (-3660 (((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $) 46 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3690 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) NIL T ELT)) (-3306 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1112)) (|:| -2642 (-791))) #4#) $) NIL T ELT)) (-4324 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (|has| |#1| (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3649 (((-2 (|:| -3644 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-3650 (((-2 (|:| -3644 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-2851 (((-2 (|:| -4268 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2852 (((-2 (|:| -4268 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-2015 (((-114) $) 13 T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-4250 (($ $ (-791) |#1| $) 26 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3651 (((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-2853 (((-2 (|:| -4268 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-661 (-1112)) (-661 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-661 (-1112)) (-661 $)) NIL T ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4276 (((-3 $ #5="failed") $ (-791)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4269 (($ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-4460 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1112) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4266 (((-3 $ #5#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #5#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1112)) NIL T ELT) (((-1201 |#1|) $) 7 T ELT) (($ (-1201 |#1|)) 8 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 28 T CONST)) (-3147 (($) 32 T CONST)) (-3152 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-801 |#1|) (-13 (-1273 |#1|) (-630 (-1201 |#1|)) (-1068 (-1201 |#1|)) (-10 -8 (-15 -4250 ($ $ (-791) |#1| $)) (-15 -3659 ($ $ $)) (-15 -3658 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3983 (-791))) $ $)) (-15 -2856 ($ $ $)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -2855 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2854 ((-661 $) $ $)) (-15 -3690 ($ $ $)) (-15 -3651 ((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3650 ((-2 (|:| -3644 $) (|:| |coef1| $)) $ $)) (-15 -3649 ((-2 (|:| -3644 $) (|:| |coef2| $)) $ $)) (-15 -2853 ((-2 (|:| -4268 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2852 ((-2 (|:| -4268 |#1|) (|:| |coef1| $)) $ $)) (-15 -2851 ((-2 (|:| -4268 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1079)) (T -801)) +((-4250 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-801 *3)) (-4 *3 (-1079)))) (-3659 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079)))) (-3658 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-801 *3)) (|:| |polden| *3) (|:| -3983 (-791)))) (-5 *1 (-801 *3)) (-4 *3 (-1079)))) (-2856 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079)))) (-3660 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4466 *3) (|:| |gap| (-791)) (|:| -2194 (-801 *3)) (|:| -3385 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1079)))) (-2855 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079)))) (-2854 (*1 *2 *1 *1) (-12 (-5 *2 (-661 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3690 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) (-3651 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3644 (-801 *3)) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3650 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3644 (-801 *3)) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3649 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3644 (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2853 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4268 *3) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2852 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4268 *3) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2851 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4268 *3) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(-13 (-1273 |#1|) (-630 (-1201 |#1|)) (-1068 (-1201 |#1|)) (-10 -8 (-15 -4250 ($ $ (-791) |#1| $)) (-15 -3659 ($ $ $)) (-15 -3658 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3983 (-791))) $ $)) (-15 -2856 ($ $ $)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -2855 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2854 ((-661 $) $ $)) (-15 -3690 ($ $ $)) (-15 -3651 ((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3650 ((-2 (|:| -3644 $) (|:| |coef1| $)) $ $)) (-15 -3649 ((-2 (|:| -3644 $) (|:| |coef2| $)) $ $)) (-15 -2853 ((-2 (|:| -4268 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2852 ((-2 (|:| -4268 |#1|) (|:| |coef1| $)) $ $)) (-15 -2851 ((-2 (|:| -4268 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4470 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 13 T ELT))) +(((-802 |#1| |#2|) (-10 -7 (-15 -4470 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1079) (-1079)) (T -802)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-801 *6)) (-5 *1 (-802 *5 *6))))) +(-10 -7 (-15 -4470 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) +((-2858 ((|#1| (-791) |#1|) 33 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3284 ((|#1| (-791) |#1|) 23 T ELT)) (-2857 ((|#1| (-791) |#1|) 35 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-803 |#1|) (-10 -7 (-15 -3284 (|#1| (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -2857 (|#1| (-791) |#1|)) (-15 -2858 (|#1| (-791) |#1|))) |%noBranch|)) (-175)) (T -803)) +((-2858 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-2857 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-3284 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-175))))) +(-10 -7 (-15 -3284 (|#1| (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -2857 (|#1| (-791) |#1|)) (-15 -2858 (|#1| (-791) |#1|))) |%noBranch|)) +((-3049 (((-114) $ $) 7 T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4194 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4200 ((|#4| |#4| $) 97 T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 133 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-4311 (((-3 $ #1#) $) 87 T ELT)) (-4197 ((|#4| |#4| $) 94 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4195 ((|#4| |#4| $) 92 T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) 110 T ELT)) (-3697 (((-114) |#4| $) 143 T ELT)) (-3695 (((-114) |#4| $) 140 T ELT)) (-3698 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 134 T ELT)) (-4310 (((-3 |#4| #1#) $) 88 T ELT)) (-3692 (((-661 $) |#4| $) 136 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3738 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3942 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4209 (((-661 |#4|) $) 112 T ELT)) (-4203 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4198 ((|#4| |#4| $) 95 T ELT)) (-4211 (((-114) $ $) 115 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4199 ((|#4| |#4| $) 96 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-3 |#4| #1#) $) 89 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4281 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-4460 (((-791) $) 111 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-4196 (($ $) 93 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4190 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3689 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) 86 T ELT)) (-3696 (((-114) |#4| $) 142 T ELT)) (-4445 (((-114) |#3| $) 85 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-804 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -804)) +NIL +(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-2861 (((-3 (-391) "failed") (-326 |#1|) (-947)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-419 (-974 |#1|)) (-947)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-419 (-974 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-974 |#1|) (-947)) 31 (|has| |#1| (-1079)) ELT) (((-3 (-391) "failed") (-974 |#1|)) 30 (|has| |#1| (-1079)) ELT)) (-2859 (((-391) (-326 |#1|) (-947)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-419 (-974 |#1|)) (-947)) 91 (|has| |#1| (-569)) ELT) (((-391) (-419 (-974 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-974 |#1|) (-947)) 86 (|has| |#1| (-1079)) ELT) (((-391) (-974 |#1|)) 85 (|has| |#1| (-1079)) ELT) (((-391) |#1| (-947)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2862 (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-947)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|) (-947)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|))) (-947)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-419 (-974 |#1|)) (-947)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-419 (-974 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-974 |#1|) (-947)) 28 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-974 |#1|)) 26 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-974 (-171 |#1|)) (-947)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) "failed") (-974 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-2860 (((-171 (-391)) (-326 (-171 |#1|)) (-947)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-326 |#1|) (-947)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-419 (-974 (-171 |#1|))) (-947)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-974 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-974 |#1|)) (-947)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-974 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-974 |#1|) (-947)) 84 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-974 |#1|)) 83 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-974 (-171 |#1|)) (-947)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-974 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-947)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-947)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) +(((-805 |#1|) (-10 -7 (-15 -2859 ((-391) |#1|)) (-15 -2859 ((-391) |#1| (-947))) (-15 -2860 ((-171 (-391)) |#1|)) (-15 -2860 ((-171 (-391)) |#1| (-947))) (IF (|has| |#1| (-175)) (PROGN (-15 -2860 ((-171 (-391)) (-171 |#1|))) (-15 -2860 ((-171 (-391)) (-171 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-974 (-171 |#1|)))) (-15 -2860 ((-171 (-391)) (-974 (-171 |#1|)) (-947)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2859 ((-391) (-974 |#1|))) (-15 -2859 ((-391) (-974 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-974 |#1|))) (-15 -2860 ((-171 (-391)) (-974 |#1|) (-947)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2859 ((-391) (-419 (-974 |#1|)))) (-15 -2859 ((-391) (-419 (-974 |#1|)) (-947))) (-15 -2860 ((-171 (-391)) (-419 (-974 |#1|)))) (-15 -2860 ((-171 (-391)) (-419 (-974 |#1|)) (-947))) (-15 -2860 ((-171 (-391)) (-419 (-974 (-171 |#1|))))) (-15 -2860 ((-171 (-391)) (-419 (-974 (-171 |#1|))) (-947))) (IF (|has| |#1| (-870)) (PROGN (-15 -2859 ((-391) (-326 |#1|))) (-15 -2859 ((-391) (-326 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-326 |#1|))) (-15 -2860 ((-171 (-391)) (-326 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2860 ((-171 (-391)) (-326 (-171 |#1|)) (-947)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 (-171 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 (-171 |#1|)) (-947)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-974 |#1|))) (-15 -2861 ((-3 (-391) "failed") (-974 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 |#1|))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 |#1|) (-947)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-419 (-974 |#1|)))) (-15 -2861 ((-3 (-391) "failed") (-419 (-974 |#1|)) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 |#1|)) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|))))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|))) (-947))) (IF (|has| |#1| (-870)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2861 ((-3 (-391) "failed") (-326 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-947)))) |%noBranch|)) |%noBranch|)) (-631 (-391))) (T -805)) +((-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-974 (-171 *5)))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-974 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2862 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-974 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2862 (*1 *2 *3) (|partial| -12 (-5 *3 (-974 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 (-171 *5)))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2859 (*1 *2 *3 *4) (-12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-974 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-974 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-947)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) (-2860 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) (-2859 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2))))) +(-10 -7 (-15 -2859 ((-391) |#1|)) (-15 -2859 ((-391) |#1| (-947))) (-15 -2860 ((-171 (-391)) |#1|)) (-15 -2860 ((-171 (-391)) |#1| (-947))) (IF (|has| |#1| (-175)) (PROGN (-15 -2860 ((-171 (-391)) (-171 |#1|))) (-15 -2860 ((-171 (-391)) (-171 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-974 (-171 |#1|)))) (-15 -2860 ((-171 (-391)) (-974 (-171 |#1|)) (-947)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2859 ((-391) (-974 |#1|))) (-15 -2859 ((-391) (-974 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-974 |#1|))) (-15 -2860 ((-171 (-391)) (-974 |#1|) (-947)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2859 ((-391) (-419 (-974 |#1|)))) (-15 -2859 ((-391) (-419 (-974 |#1|)) (-947))) (-15 -2860 ((-171 (-391)) (-419 (-974 |#1|)))) (-15 -2860 ((-171 (-391)) (-419 (-974 |#1|)) (-947))) (-15 -2860 ((-171 (-391)) (-419 (-974 (-171 |#1|))))) (-15 -2860 ((-171 (-391)) (-419 (-974 (-171 |#1|))) (-947))) (IF (|has| |#1| (-870)) (PROGN (-15 -2859 ((-391) (-326 |#1|))) (-15 -2859 ((-391) (-326 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-326 |#1|))) (-15 -2860 ((-171 (-391)) (-326 |#1|) (-947))) (-15 -2860 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2860 ((-171 (-391)) (-326 (-171 |#1|)) (-947)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 (-171 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 (-171 |#1|)) (-947)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-974 |#1|))) (-15 -2861 ((-3 (-391) "failed") (-974 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 |#1|))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-974 |#1|) (-947)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-419 (-974 |#1|)))) (-15 -2861 ((-3 (-391) "failed") (-419 (-974 |#1|)) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 |#1|)) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|))))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-419 (-974 (-171 |#1|))) (-947))) (IF (|has| |#1| (-870)) (PROGN (-15 -2861 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2861 ((-3 (-391) "failed") (-326 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-947))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2862 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-947)))) |%noBranch|)) |%noBranch|)) +((-2866 (((-947) (-1189)) 90 T ELT)) (-2868 (((-3 (-391) "failed") (-1189)) 36 T ELT)) (-2867 (((-391) (-1189)) 34 T ELT)) (-2864 (((-947) (-1189)) 64 T ELT)) (-2865 (((-1189) (-947)) 74 T ELT)) (-2863 (((-1189) (-947)) 63 T ELT))) +(((-806) (-10 -7 (-15 -2863 ((-1189) (-947))) (-15 -2864 ((-947) (-1189))) (-15 -2865 ((-1189) (-947))) (-15 -2866 ((-947) (-1189))) (-15 -2867 ((-391) (-1189))) (-15 -2868 ((-3 (-391) "failed") (-1189))))) (T -806)) +((-2868 (*1 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-806)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-806)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-947)) (-5 *1 (-806)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1189)) (-5 *1 (-806)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-947)) (-5 *1 (-806)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1189)) (-5 *1 (-806))))) +(-10 -7 (-15 -2863 ((-1189) (-947))) (-15 -2864 ((-947) (-1189))) (-15 -2865 ((-1189) (-947))) (-15 -2866 ((-947) (-1189))) (-15 -2867 ((-391) (-1189))) (-15 -2868 ((-3 (-391) "failed") (-1189)))) +((-3049 (((-114) $ $) 7 T ELT)) (-2869 (((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 19 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065)) 17 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 20 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-807) (-142)) (T -807)) +((-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-807)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065)))))) (-2869 (*1 *2 *3 *2) (-12 (-4 *1 (-807)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-807)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065)))))) (-2869 (*1 *2 *3 *2) (-12 (-4 *1 (-807)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(-13 (-1131) (-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2869 ((-1065) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2869 ((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1065))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-2872 (((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 54 T ELT) (((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 51 T ELT)) (-2873 (((-1303) (-1297 (-391)) (-558) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 61 T ELT)) (-2871 (((-1303) (-1297 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 49 T ELT)) (-2870 (((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 63 T ELT) (((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 62 T ELT))) +(((-808) (-10 -7 (-15 -2870 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2870 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2871 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2872 ((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2872 ((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2873 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))))) (T -808)) +((-2873 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) (-2872 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) (-2872 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) (-2871 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) (-2870 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) (-2870 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808))))) +(-10 -7 (-15 -2870 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2870 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2871 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2872 ((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2872 ((-1303) (-1297 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2873 ((-1303) (-1297 (-391)) (-558) (-391) (-391) (-558) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))))) +((-2882 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 65 T ELT)) (-2879 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 40 T ELT)) (-2881 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 64 T ELT)) (-2878 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 38 T ELT)) (-2880 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 63 T ELT)) (-2877 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 24 T ELT)) (-2876 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 41 T ELT)) (-2875 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 39 T ELT)) (-2874 (((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 37 T ELT))) +(((-809) (-10 -7 (-15 -2874 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2875 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2876 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2877 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2878 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2879 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2880 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2881 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2882 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))))) (T -809)) +((-2882 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2881 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2880 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2879 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2878 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2877 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2876 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2875 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2874 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558))))) +(-10 -7 (-15 -2874 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2875 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2876 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2877 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2878 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2879 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2880 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2881 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2882 ((-2 (|:| -3904 (-391)) (|:| -1749 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)))) +((-4217 (((-1243 |#1|) |#1| (-229) (-558)) 69 T ELT))) +(((-810 |#1|) (-10 -7 (-15 -4217 ((-1243 |#1|) |#1| (-229) (-558)))) (-1004)) (T -810)) +((-4217 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1243 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1004))))) +(-10 -7 (-15 -4217 ((-1243 |#1|) |#1| (-229) (-558)))) +((-4135 (((-558) $) 17 T ELT)) (-3687 (((-114) $) 10 T ELT)) (-3885 (($ $) 19 T ELT))) +(((-811 |#1|) (-10 -8 (-15 -3885 (|#1| |#1|)) (-15 -4135 ((-558) |#1|)) (-15 -3687 ((-114) |#1|))) (-812)) (T -811)) +NIL +(-10 -8 (-15 -3885 (|#1| |#1|)) (-15 -4135 ((-558) |#1|)) (-15 -3687 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 31 T ELT)) (-1436 (((-3 $ "failed") $ $) 34 T ELT)) (-4135 (((-558) $) 37 T ELT)) (-4236 (($) 30 T CONST)) (-3686 (((-114) $) 28 T ELT)) (-3687 (((-114) $) 38 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3885 (($ $) 36 T ELT)) (-3141 (($) 29 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4349 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) 26 T ELT) (($ (-791) $) 32 T ELT) (($ (-558) $) 39 T ELT))) +(((-812) (-142)) (T -812)) +((-3687 (*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-558)))) (-3885 (*1 *1 *1) (-4 *1 (-812)))) +(-13 (-819) (-21) (-10 -8 (-15 -3687 ((-114) $)) (-15 -4135 ((-558) $)) (-15 -3885 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3686 (((-114) $) 10 T ELT))) +(((-813 |#1|) (-10 -8 (-15 -3686 ((-114) |#1|))) (-814)) (T -813)) +NIL +(-10 -8 (-15 -3686 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 31 T ELT)) (-4236 (($) 30 T CONST)) (-3686 (((-114) $) 28 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 29 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) 26 T ELT) (($ (-791) $) 32 T ELT))) (((-814) (-142)) (T -814)) -((-3691 (*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-560)))) (-3889 (*1 *1 *1) (-4 *1 (-814)))) -(-13 (-821) (-21) (-10 -8 (-15 -3691 ((-114) $)) (-15 -4139 ((-560) $)) (-15 -3889 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3690 (((-114) $) 10 T ELT))) -(((-815 |#1|) (-10 -8 (-15 -3690 ((-114) |#1|))) (-816)) (T -815)) -NIL -(-10 -8 (-15 -3690 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 31 T ELT)) (-4240 (($) 30 T CONST)) (-3690 (((-114) $) 28 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 29 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) 26 T ELT) (($ (-793) $) 32 T ELT))) +((-3686 (*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114))))) +(-13 (-816) (-23) (-10 -8 (-15 -3686 ((-114) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 31 T ELT)) (-2883 (($ $ $) 35 T ELT)) (-1436 (((-3 $ "failed") $ $) 34 T ELT)) (-4236 (($) 30 T CONST)) (-3686 (((-114) $) 28 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 29 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) 26 T ELT) (($ (-791) $) 32 T ELT))) +(((-815) (-142)) (T -815)) +((-2883 (*1 *1 *1 *1) (-4 *1 (-815)))) +(-13 (-819) (-10 -8 (-15 -2883 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) 26 T ELT))) (((-816) (-142)) (T -816)) -((-3690 (*1 *2 *1) (-12 (-4 *1 (-816)) (-5 *2 (-114))))) -(-13 (-818) (-23) (-10 -8 (-15 -3690 ((-114) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-818) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 31 T ELT)) (-2887 (($ $ $) 35 T ELT)) (-1438 (((-3 $ "failed") $ $) 34 T ELT)) (-4240 (($) 30 T CONST)) (-3690 (((-114) $) 28 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 29 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) 26 T ELT) (($ (-793) $) 32 T ELT))) -(((-817) (-142)) (T -817)) -((-2887 (*1 *1 *1 *1) (-4 *1 (-817)))) -(-13 (-821) (-10 -8 (-15 -2887 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) 26 T ELT))) -(((-818) (-142)) (T -818)) -NIL -(-13 (-872) (-25)) -(((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3692 (((-114) $) 42 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-3510 (((-114) $) 72 T ELT)) (-3509 (((-421 (-560)) $) 76 T ELT)) (-3620 ((|#2| $) 26 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2888 (($ $) 58 T ELT)) (-4488 (((-549) $) 67 T ELT)) (-3496 (($ $) 21 T ELT)) (-4462 (((-888) $) 53 T ELT) (($ (-560)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-421 (-560))) NIL T ELT)) (-3614 (((-793)) 10 T ELT)) (-3889 ((|#2| $) 71 T ELT)) (-3540 (((-114) $ $) 30 T ELT)) (-3172 (((-114) $ $) 69 T ELT)) (-4353 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-819 |#1| |#2|) (-10 -8 (-15 -3172 ((-114) |#1| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-820 |#2|) (-175)) (T -819)) -((-3614 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-819 *3 *4)) (-4 *3 (-820 *4))))) -(-10 -8 (-15 -3172 ((-114) |#1| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3624 (((-793)) 64 (|has| |#1| (-381)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 106 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 103 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3660 (((-560) $) 105 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 102 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 101 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4159 ((|#1| $) 90 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 77 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 79 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 78 (|has| |#1| (-559)) ELT)) (-3481 (($) 67 (|has| |#1| (-381)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-2893 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3620 ((|#1| $) 82 T ELT)) (-3016 (($ $ $) 68 (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) 69 (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2234 (((-949) $) 66 (|has| |#1| (-381)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 76 (|has| |#1| (-376)) ELT)) (-2645 (($ (-949)) 65 (|has| |#1| (-381)) ELT)) (-2890 ((|#1| $) 87 T ELT)) (-2891 ((|#1| $) 88 T ELT)) (-2892 ((|#1| $) 89 T ELT)) (-3493 ((|#1| $) 83 T ELT)) (-3494 ((|#1| $) 84 T ELT)) (-3495 ((|#1| $) 85 T ELT)) (-2889 ((|#1| $) 86 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) 98 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 96 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 95 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 94 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) 93 (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-4316 (($ $ |#1|) 99 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4488 (((-549) $) 74 (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) 91 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-421 (-560))) 104 (|has| |#1| (-1070 (-421 (-560)))) ELT)) (-3189 (((-713 $) $) 75 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3889 ((|#1| $) 80 (|has| |#1| (-1092)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 70 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 72 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 71 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 73 (|has| |#1| (-872)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-820 |#1|) (-142) (-175)) (T -820)) -((-3496 (*1 *1 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-2893 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-2888 (*1 *1 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-38 |t#1|) (-426 |t#1|) (-351 |t#1|) (-10 -8 (-15 -3496 ($ $)) (-15 -4159 (|t#1| $)) (-15 -2892 (|t#1| $)) (-15 -2891 (|t#1| $)) (-15 -2890 (|t#1| $)) (-15 -2889 (|t#1| $)) (-15 -3495 (|t#1| $)) (-15 -3494 (|t#1| $)) (-15 -3493 (|t#1| $)) (-15 -3620 (|t#1| $)) (-15 -2893 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-872)) (-6 (-872)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1092)) (-15 -3889 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2888 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1=(-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-426 |#1|) . T) ((-528 (-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1070 #1#) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 31 T ELT)) (-1438 (((-3 $ "failed") $ $) 34 T ELT)) (-4240 (($) 30 T CONST)) (-3690 (((-114) $) 28 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 29 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4355 (($ $ $) 25 T ELT)) (* (($ (-949) $) 26 T ELT) (($ (-793) $) 32 T ELT))) -(((-821) (-142)) (T -821)) -NIL -(-13 (-816) (-133)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-816) . T) ((-818) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #1="failed") $) NIL T ELT) (((-3 (-1028 |#1|) #1#) $) 35 T ELT) (((-3 (-560) #1#) $) NIL (-4043 (|has| (-1028 |#1|) (-1070 (-560))) (|has| |#1| (-1070 (-560)))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-4043 (|has| (-1028 |#1|) (-1070 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3660 ((|#1| $) NIL T ELT) (((-1028 |#1|) $) 33 T ELT) (((-560) $) NIL (-4043 (|has| (-1028 |#1|) (-1070 (-560))) (|has| |#1| (-1070 (-560)))) ELT) (((-421 (-560)) $) NIL (-4043 (|has| (-1028 |#1|) (-1070 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4159 ((|#1| $) 16 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2893 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1028 |#1|) (-1028 |#1|)) 29 T ELT)) (-3620 ((|#1| $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-2890 ((|#1| $) 22 T ELT)) (-2891 ((|#1| $) 20 T ELT)) (-2892 ((|#1| $) 18 T ELT)) (-3493 ((|#1| $) 26 T ELT)) (-3494 ((|#1| $) 25 T ELT)) (-3495 ((|#1| $) 24 T ELT)) (-2889 ((|#1| $) 23 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-4316 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1028 |#1|)) 30 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| (-1028 |#1|) (-1070 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3889 ((|#1| $) NIL (|has| |#1| (-1092)) ELT)) (-3145 (($) 8 T CONST)) (-3151 (($) 12 T CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-822 |#1|) (-13 (-820 |#1|) (-426 (-1028 |#1|)) (-10 -8 (-15 -2893 ($ (-1028 |#1|) (-1028 |#1|))))) (-175)) (T -822)) -((-2893 (*1 *1 *2 *2) (-12 (-5 *2 (-1028 *3)) (-4 *3 (-175)) (-5 *1 (-822 *3))))) -(-13 (-820 |#1|) (-426 (-1028 |#1|)) (-10 -8 (-15 -2893 ($ (-1028 |#1|) (-1028 |#1|))))) -((-4474 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-823 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) (-820 |#2|) (-175) (-820 |#4|) (-175)) (T -823)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-820 *6)) (-5 *1 (-823 *4 *5 *2 *6)) (-4 *4 (-820 *5))))) -(-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2894 (((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-824) (-142)) (T -824)) -((-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-824)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-824)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1067))))) -(-13 (-1133) (-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2894 ((-1067) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-2895 (((-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#3| |#2| (-1209)) 19 T ELT))) -(((-825 |#1| |#2| |#3|) (-10 -7 (-15 -2895 ((-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#3| |#2| (-1209)))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1235) (-990)) (-680 |#2|)) (T -825)) -((-2895 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1209)) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1235) (-990))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2236 (-663 *4)))) (-5 *1 (-825 *6 *4 *3)) (-4 *3 (-680 *4))))) -(-10 -7 (-15 -2895 ((-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#3| |#2| (-1209)))) -((-4087 (((-3 |#2| #1="failed") |#2| (-115) (-305 |#2|) (-663 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #2="failed") |#2| (-115) (-1209)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #2#) (-305 |#2|) (-115) (-1209)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1209)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1209)) 26 T ELT) (((-3 (-663 (-1299 |#2|)) "failed") (-711 |#2|) (-1209)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-711 |#2|) (-1299 |#2|) (-1209)) 35 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-711 |#2|) (-1299 |#2|) (-1209))) (-15 -4087 ((-3 (-663 (-1299 |#2|)) "failed") (-711 |#2|) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #1="failed") (-305 |#2|) (-115) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #1#) |#2| (-115) (-1209))) (-15 -4087 ((-3 |#2| #2="failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -4087 ((-3 |#2| #2#) |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1235) (-990))) (T -826)) -((-4087 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *1 (-826 *6 *2)))) (-4087 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1235) (-990))) (-5 *1 (-826 *6 *2)) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1209)) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2236 (-663 *3))) *3 #1="failed")) (-5 *1 (-826 *6 *3)) (-4 *3 (-13 (-29 *6) (-1235) (-990))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1209)) (-4 *7 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2236 (-663 *7))) *7 #1#)) (-5 *1 (-826 *6 *7)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-1209)) (-4 *7 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) (-5 *1 (-826 *6 *7)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-1209)) (-4 *7 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) (-5 *1 (-826 *6 *7)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1209)) (-4 *6 (-13 (-29 *5) (-1235) (-990))) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-1299 *6))) (-5 *1 (-826 *5 *6)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1209)) (-4 *7 (-13 (-29 *6) (-1235) (-990))) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) (-5 *1 (-826 *6 *7)) (-5 *4 (-1299 *7))))) -(-10 -7 (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-711 |#2|) (-1299 |#2|) (-1209))) (-15 -4087 ((-3 (-663 (-1299 |#2|)) "failed") (-711 |#2|) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#2|)) (|:| -2236 (-663 (-1299 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #1="failed") (-305 |#2|) (-115) (-1209))) (-15 -4087 ((-3 (-2 (|:| |particular| |#2|) (|:| -2236 (-663 |#2|))) |#2| #1#) |#2| (-115) (-1209))) (-15 -4087 ((-3 |#2| #2="failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -4087 ((-3 |#2| #2#) |#2| (-115) (-305 |#2|) (-663 |#2|)))) -((-2896 (($) 9 T ELT)) (-2900 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2898 (((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4123 (($ (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-2899 (($ (-663 (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2897 (((-1305)) 11 T ELT))) -(((-827) (-10 -8 (-15 -2896 ($)) (-15 -2897 ((-1305))) (-15 -2898 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2899 ($ (-663 (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4123 ($ (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2900 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -827)) -((-2900 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-827)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-827)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-827)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-827)))) (-2897 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-827)))) (-2896 (*1 *1) (-5 *1 (-827)))) -(-10 -8 (-15 -2896 ($)) (-15 -2897 ((-1305))) (-15 -2898 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2899 ($ (-663 (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4123 ($ (-2 (|:| -4376 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2300 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2900 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) -((-3976 ((|#2| |#2| (-1209)) 17 T ELT)) (-2901 ((|#2| |#2| (-1209)) 56 T ELT)) (-2902 (((-1 |#2| |#2|) (-1209)) 11 T ELT))) -(((-828 |#1| |#2|) (-10 -7 (-15 -3976 (|#2| |#2| (-1209))) (-15 -2901 (|#2| |#2| (-1209))) (-15 -2902 ((-1 |#2| |#2|) (-1209)))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1235) (-990))) (T -828)) -((-2902 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-828 *4 *5)) (-4 *5 (-13 (-29 *4) (-1235) (-990))))) (-2901 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *1 (-828 *4 *2)) (-4 *2 (-13 (-29 *4) (-1235) (-990))))) (-3976 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *1 (-828 *4 *2)) (-4 *2 (-13 (-29 *4) (-1235) (-990)))))) -(-10 -7 (-15 -3976 (|#2| |#2| (-1209))) (-15 -2901 (|#2| |#2| (-1209))) (-15 -2902 ((-1 |#2| |#2|) (-1209)))) -((-4087 (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391)) 129 T ELT) (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391)) 130 T ELT) (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391)) 132 T ELT) (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391)) 134 T ELT) (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391)) 135 T ELT) (((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391))) 137 T ELT) (((-1067) (-832) (-1095)) 121 T ELT) (((-1067) (-832)) 122 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832) (-1095)) 80 T ELT) (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832)) 82 T ELT))) -(((-829) (-10 -7 (-15 -4087 ((-1067) (-832))) (-15 -4087 ((-1067) (-832) (-1095))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832) (-1095))))) (T -829)) -((-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1095)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-829)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-829)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1067)) (-5 *1 (-829))))) -(-10 -7 (-15 -4087 ((-1067) (-832))) (-15 -4087 ((-1067) (-832) (-1095))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -4087 ((-1067) (-1299 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-832) (-1095)))) -((-2903 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2236 (-663 |#4|))) (-677 |#4|) |#4|) 33 T ELT))) -(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2236 (-663 |#4|))) (-677 |#4|) |#4|))) (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560)))) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -830)) -((-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2236 (-663 *4)))) (-5 *1 (-830 *5 *6 *7 *4))))) -(-10 -7 (-15 -2903 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2236 (-663 |#4|))) (-677 |#4|) |#4|))) -((-4257 (((-2 (|:| -3770 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))) 53 T ELT)) (-2905 (((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4| |#2|) 62 T ELT) (((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4|) 61 T ELT) (((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3| |#2|) 20 T ELT) (((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3|) 21 T ELT)) (-2906 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2904 ((|#2| |#3| (-663 (-421 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-421 |#2|)) 105 T ELT))) -(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2904 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -2904 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3| |#2|)) (-15 -2906 (|#2| |#3| |#1|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4| |#2|)) (-15 -2906 (|#2| |#4| |#1|)) (-15 -4257 ((-2 (|:| -3770 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1070 (-421 (-560)))) (-1275 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -831)) -((-4257 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-2 (|:| -3770 *7) (|:| |rh| (-663 (-421 *6))))) (-5 *1 (-831 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6))) (-4 *7 (-680 *6)) (-4 *3 (-680 (-421 *6))))) (-2906 (*1 *2 *3 *4) (-12 (-4 *2 (-1275 *4)) (-5 *1 (-831 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-680 *2)) (-4 *3 (-680 (-421 *2))))) (-2905 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *4 (-1275 *5)) (-5 *2 (-663 (-2 (|:| -4289 *4) (|:| -3730 *4)))) (-5 *1 (-831 *5 *4 *6 *3)) (-4 *6 (-680 *4)) (-4 *3 (-680 (-421 *4))))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-2 (|:| -4289 *5) (|:| -3730 *5)))) (-5 *1 (-831 *4 *5 *6 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 (-421 *5))))) (-2906 (*1 *2 *3 *4) (-12 (-4 *2 (-1275 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2))))) (-2905 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *4 (-1275 *5)) (-5 *2 (-663 (-2 (|:| -4289 *4) (|:| -3730 *4)))) (-5 *1 (-831 *5 *4 *3 *6)) (-4 *3 (-680 *4)) (-4 *6 (-680 (-421 *4))))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-2 (|:| -4289 *5) (|:| -3730 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-2904 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1275 *5)) (-5 *1 (-831 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 (-421 *2))))) (-2904 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1275 *5)) (-5 *1 (-831 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 *4))))) -(-10 -7 (-15 -2904 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -2904 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#3| |#2|)) (-15 -2906 (|#2| |#3| |#1|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4|)) (-15 -2905 ((-663 (-2 (|:| -4289 |#2|) (|:| -3730 |#2|))) |#4| |#2|)) (-15 -2906 (|#2| |#4| |#1|)) (-15 -4257 ((-2 (|:| -3770 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3660 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-832) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3660 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -832)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-832)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-832))))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3660 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $)))) -((-2914 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1203 |#2|)) (-1 (-419 |#2|) |#2|)) 156 T ELT)) (-2915 (((-663 (-2 (|:| |poly| |#2|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 52 T ELT)) (-2908 (((-663 (-2 (|:| |deg| (-793)) (|:| -3770 |#2|))) |#3|) 123 T ELT)) (-2907 ((|#2| |#3|) 42 T ELT)) (-2909 (((-663 (-2 (|:| -4468 |#1|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 100 T ELT)) (-2910 ((|#3| |#3| (-421 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-833 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2907 (|#2| |#3|)) (-15 -2908 ((-663 (-2 (|:| |deg| (-793)) (|:| -3770 |#2|))) |#3|)) (-15 -2909 ((-663 (-2 (|:| -4468 |#1|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -2915 ((-663 (-2 (|:| |poly| |#2|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -2914 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1203 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2910 (|#3| |#3| |#2|)) (-15 -2910 (|#3| |#3| (-421 |#2|)))) (-13 (-376) (-149) (-1070 (-421 (-560)))) (-1275 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -833)) -((-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *1 (-833 *4 *5 *2 *6)) (-4 *2 (-680 *5)) (-4 *6 (-680 *3)))) (-2910 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-1275 *4)) (-5 *1 (-833 *4 *3 *2 *5)) (-4 *2 (-680 *3)) (-4 *5 (-680 (-421 *3))))) (-2914 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-663 *7) *7 (-1203 *7))) (-5 *5 (-1 (-419 *7) *7)) (-4 *7 (-1275 *6)) (-4 *6 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -3770 *3)))) (-5 *1 (-833 *6 *7 *3 *8)) (-4 *3 (-680 *7)) (-4 *8 (-680 (-421 *7))))) (-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3770 *3)))) (-5 *1 (-833 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-2909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-2 (|:| -4468 *5) (|:| -3770 *3)))) (-5 *1 (-833 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3770 *5)))) (-5 *1 (-833 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-2907 (*1 *2 *3) (-12 (-4 *2 (-1275 *4)) (-5 *1 (-833 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2)))))) -(-10 -7 (-15 -2907 (|#2| |#3|)) (-15 -2908 ((-663 (-2 (|:| |deg| (-793)) (|:| -3770 |#2|))) |#3|)) (-15 -2909 ((-663 (-2 (|:| -4468 |#1|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -2915 ((-663 (-2 (|:| |poly| |#2|) (|:| -3770 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -2914 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1203 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2910 (|#3| |#3| |#2|)) (-15 -2910 (|#3| |#3| (-421 |#2|)))) -((-2911 (((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) #1="failed")) (|:| -2236 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|)) 145 T ELT) (((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) #1#)) (|:| -2236 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|)) 138 T ELT)) (-2912 ((|#2| (-678 |#2| (-421 |#2|))) 86 T ELT) ((|#2| (-677 (-421 |#2|))) 89 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -2911 ((-2 (|:| |particular| (-3 (-421 |#2|) #1="failed")) (|:| -2236 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -2911 ((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2911 ((-2 (|:| |particular| (-3 (-421 |#2|) #1#)) (|:| -2236 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -2911 ((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2912 (|#2| (-677 (-421 |#2|)))) (-15 -2912 (|#2| (-678 |#2| (-421 |#2|))))) (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560)))) (-1275 |#1|)) (T -834)) -((-2912 (*1 *2 *3) (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-834 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-834 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-2 (|:| -2236 (-663 (-421 *6))) (|:| -1795 (-711 *5)))) (-5 *1 (-834 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) (-5 *1 (-834 *5 *6)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-2 (|:| -2236 (-663 (-421 *6))) (|:| -1795 (-711 *5)))) (-5 *1 (-834 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2236 (-663 *4)))) (-5 *1 (-834 *5 *6))))) -(-10 -7 (-15 -2911 ((-2 (|:| |particular| (-3 (-421 |#2|) #1="failed")) (|:| -2236 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -2911 ((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2911 ((-2 (|:| |particular| (-3 (-421 |#2|) #1#)) (|:| -2236 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -2911 ((-2 (|:| -2236 (-663 (-421 |#2|))) (|:| -1795 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2912 (|#2| (-677 (-421 |#2|)))) (-15 -2912 (|#2| (-678 |#2| (-421 |#2|))))) -((-2913 (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) |#5| |#4|) 49 T ELT))) -(((-835 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2913 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) |#5| |#4|))) (-376) (-680 |#1|) (-1275 |#1|) (-746 |#1| |#3|) (-680 |#4|)) (T -835)) -((-2913 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1275 *5)) (-4 *4 (-746 *5 *7)) (-5 *2 (-2 (|:| -1795 (-711 *6)) (|:| |vec| (-1299 *5)))) (-5 *1 (-835 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4))))) -(-10 -7 (-15 -2913 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) |#5| |#4|))) -((-2914 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 47 T ELT)) (-2916 (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 38 T ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 39 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 36 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 37 T ELT)) (-2915 (((-663 (-2 (|:| |poly| |#2|) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 96 T ELT))) -(((-836 |#1| |#2|) (-10 -7 (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -2914 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2915 ((-663 (-2 (|:| |poly| |#2|) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560)))) (-1275 |#1|)) (T -836)) -((-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-678 *5 (-421 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-836 *4 *5)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-836 *4 *5)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3770 (-678 *6 (-421 *6)))))) (-5 *1 (-836 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-2914 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *6)) (|:| -3770 (-678 *6 (-421 *6)))))) (-5 *1 (-836 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-678 *7 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *7 (-1275 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-836 *6 *7)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-677 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *7 (-1275 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-836 *6 *7)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6))))) -(-10 -7 (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -2914 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2915 ((-663 (-2 (|:| |poly| |#2|) (|:| -3770 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -2916 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -2916 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|)) -((-2917 (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) (-711 |#2|) (-1299 |#1|)) 110 T ELT) (((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)) (|:| -3770 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1299 |#1|)) 15 T ELT)) (-2918 (((-2 (|:| |particular| (-3 (-1299 |#1|) "failed")) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#2|) (-1299 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2236 (-663 |#1|))) |#2| |#1|)) 116 T ELT)) (-4087 (((-3 (-2 (|:| |particular| (-1299 |#1|)) (|:| -2236 (-711 |#1|))) "failed") (-711 |#1|) (-1299 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) -(((-837 |#1| |#2|) (-10 -7 (-15 -2917 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)) (|:| -3770 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1299 |#1|))) (-15 -2917 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) (-711 |#2|) (-1299 |#1|))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#1|)) (|:| -2236 (-711 |#1|))) "failed") (-711 |#1|) (-1299 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -2918 ((-2 (|:| |particular| (-3 (-1299 |#1|) "failed")) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#2|) (-1299 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2236 (-663 |#1|))) |#2| |#1|)))) (-376) (-680 |#1|)) (T -837)) -((-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2236 (-663 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1299 *6) "failed")) (|:| -2236 (-663 (-1299 *6))))) (-5 *1 (-837 *6 *7)) (-5 *4 (-1299 *6)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2236 (-663 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-1299 *6)) (|:| -2236 (-711 *6)))) (-5 *1 (-837 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1299 *6)))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-680 *5)) (-5 *2 (-2 (|:| -1795 (-711 *6)) (|:| |vec| (-1299 *5)))) (-5 *1 (-837 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1299 *5)))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-711 *5)) (|:| |eqs| (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1299 *5)) (|:| -3770 *6) (|:| |rh| *5)))))) (-5 *1 (-837 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) (-4 *6 (-680 *5))))) -(-10 -7 (-15 -2917 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)) (|:| -3770 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1299 |#1|))) (-15 -2917 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#1|))) (-711 |#2|) (-1299 |#1|))) (-15 -4087 ((-3 (-2 (|:| |particular| (-1299 |#1|)) (|:| -2236 (-711 |#1|))) "failed") (-711 |#1|) (-1299 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2236 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -2918 ((-2 (|:| |particular| (-3 (-1299 |#1|) "failed")) (|:| -2236 (-663 (-1299 |#1|)))) (-711 |#2|) (-1299 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2236 (-663 |#1|))) |#2| |#1|)))) -((-2919 (((-711 |#1|) (-663 |#1|) (-793)) 14 T ELT) (((-711 |#1|) (-663 |#1|)) 15 T ELT)) (-2920 (((-3 (-1299 |#1|) "failed") |#2| |#1| (-663 |#1|)) 39 T ELT)) (-3846 (((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-838 |#1| |#2|) (-10 -7 (-15 -2919 ((-711 |#1|) (-663 |#1|))) (-15 -2919 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -2920 ((-3 (-1299 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -3846 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -838)) -((-3846 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-838 *2 *3)) (-4 *3 (-680 *2)))) (-2920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1299 *4)) (-5 *1 (-838 *4 *3)) (-4 *3 (-680 *4)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-711 *5)) (-5 *1 (-838 *5 *6)) (-4 *6 (-680 *5)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) (-5 *1 (-838 *4 *5)) (-4 *5 (-680 *4))))) -(-10 -7 (-15 -2919 ((-711 |#1|) (-663 |#1|))) (-15 -2919 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -2920 ((-3 (-1299 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -3846 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)))) -((-3053 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3692 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4223 (($ (-949)) NIL (|has| |#2| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) NIL (|has| |#2| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3624 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4304 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1133)) ELT)) (-3660 (((-560) $) NIL (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) ((|#2| $) NIL (|has| |#2| (-1133)) ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#2| (-1081)) ELT)) (-3481 (($) NIL (|has| |#2| (-381)) ELT)) (-1731 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ (-560)) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#2| (-817)) ELT)) (-3376 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#2| (-1081)) ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-3093 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-2174 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#2| (-381)) ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL (|has| |#2| (-1081)) ELT) (((-711 |#2|) (-1299 $)) NIL (|has| |#2| (-1081)) ELT)) (-3746 (((-1191) $) NIL (|has| |#2| (-1133)) ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#2| (-381)) ELT)) (-3747 (((-1152) $) NIL (|has| |#2| (-1133)) ELT)) (-4317 ((|#2| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-4352 ((|#2| $ $) NIL (|has| |#2| (-1081)) ELT)) (-1612 (($ (-1299 |#2|)) NIL T ELT)) (-4427 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4274 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#2|) $) NIL T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#2| (-1070 (-560))) (|has| |#2| (-1133))) (|has| |#2| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1070 (-421 (-560)))) (|has| |#2| (-1133))) ELT) (($ |#2|) NIL (|has| |#2| (-1133)) ELT) (((-888) $) NIL (|has| |#2| (-632 (-888))) ELT)) (-3614 (((-793)) NIL (|has| |#2| (-1081)) CONST)) (-1389 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) NIL (|has| |#2| (-23)) CONST)) (-3151 (($) NIL (|has| |#2| (-1081)) CONST)) (-3156 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#2| (-930 (-1209))) (|has| |#2| (-1081))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1081)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3172 (((-114) $ $) 11 (|has| |#2| (-872)) ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1081)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1081)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-839 |#1| |#2| |#3|) (-245 |#1| |#2|) (-793) (-817) (-1 (-114) (-1299 |#2|) (-1299 |#2|))) (T -839)) +NIL +(-13 (-870) (-25)) +(((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3688 (((-114) $) 42 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 78 T ELT)) (-3506 (((-114) $) 72 T ELT)) (-3505 (((-419 (-558)) $) 76 T ELT)) (-3616 ((|#2| $) 26 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2884 (($ $) 58 T ELT)) (-4484 (((-547) $) 67 T ELT)) (-3492 (($ $) 21 T ELT)) (-4458 (((-886) $) 53 T ELT) (($ (-558)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3610 (((-791)) 10 T ELT)) (-3885 ((|#2| $) 71 T ELT)) (-3536 (((-114) $ $) 30 T ELT)) (-3168 (((-114) $ $) 69 T ELT)) (-4349 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 31 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-817 |#1| |#2|) (-10 -8 (-15 -3168 ((-114) |#1| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-818 |#2|) (-175)) (T -817)) +((-3610 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4))))) +(-10 -8 (-15 -3168 ((-114) |#1| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3620 (((-791)) 64 (|has| |#1| (-381)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3656 (((-558) $) 105 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 101 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4155 ((|#1| $) 90 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 77 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 79 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 78 (|has| |#1| (-557)) ELT)) (-3477 (($) 67 (|has| |#1| (-381)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-2889 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3616 ((|#1| $) 82 T ELT)) (-3012 (($ $ $) 68 (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) 69 (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2230 (((-947) $) 66 (|has| |#1| (-381)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 76 (|has| |#1| (-376)) ELT)) (-2641 (($ (-947)) 65 (|has| |#1| (-381)) ELT)) (-2886 ((|#1| $) 87 T ELT)) (-2887 ((|#1| $) 88 T ELT)) (-2888 ((|#1| $) 89 T ELT)) (-3489 ((|#1| $) 83 T ELT)) (-3490 ((|#1| $) 84 T ELT)) (-3491 ((|#1| $) 85 T ELT)) (-2885 ((|#1| $) 86 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) 98 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 96 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 95 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 94 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 93 (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-4312 (($ $ |#1|) 99 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4484 (((-547) $) 74 (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) 91 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (|has| |#1| (-1068 (-419 (-558)))) ELT)) (-3185 (((-711 $) $) 75 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3885 ((|#1| $) 80 (|has| |#1| (-1090)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 70 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 72 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 71 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 73 (|has| |#1| (-870)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-818 |#1|) (-142) (-175)) (T -818)) +((-3492 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2889 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3507 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-2884 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-351 |t#1|) (-10 -8 (-15 -3492 ($ $)) (-15 -4155 (|t#1| $)) (-15 -2888 (|t#1| $)) (-15 -2887 (|t#1| $)) (-15 -2886 (|t#1| $)) (-15 -2885 (|t#1| $)) (-15 -3491 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -3489 (|t#1| $)) (-15 -3616 (|t#1| $)) (-15 -2889 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3885 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2884 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1=(-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 #1#) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 31 T ELT)) (-1436 (((-3 $ "failed") $ $) 34 T ELT)) (-4236 (($) 30 T CONST)) (-3686 (((-114) $) 28 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 29 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4351 (($ $ $) 25 T ELT)) (* (($ (-947) $) 26 T ELT) (($ (-791) $) 32 T ELT))) +(((-819) (-142)) (T -819)) +NIL +(-13 (-814) (-133)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-814) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #1="failed") $) NIL T ELT) (((-3 (-1026 |#1|) #1#) $) 35 T ELT) (((-3 (-558) #1#) $) NIL (-4039 (|has| (-1026 |#1|) (-1068 (-558))) (|has| |#1| (-1068 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-4039 (|has| (-1026 |#1|) (-1068 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3656 ((|#1| $) NIL T ELT) (((-1026 |#1|) $) 33 T ELT) (((-558) $) NIL (-4039 (|has| (-1026 |#1|) (-1068 (-558))) (|has| |#1| (-1068 (-558)))) ELT) (((-419 (-558)) $) NIL (-4039 (|has| (-1026 |#1|) (-1068 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4155 ((|#1| $) 16 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2889 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1026 |#1|) (-1026 |#1|)) 29 T ELT)) (-3616 ((|#1| $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-2886 ((|#1| $) 22 T ELT)) (-2887 ((|#1| $) 20 T ELT)) (-2888 ((|#1| $) 18 T ELT)) (-3489 ((|#1| $) 26 T ELT)) (-3490 ((|#1| $) 25 T ELT)) (-3491 ((|#1| $) 24 T ELT)) (-2885 ((|#1| $) 23 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-4312 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1026 |#1|)) 30 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| (-1026 |#1|) (-1068 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3885 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-3141 (($) 8 T CONST)) (-3147 (($) 12 T CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-820 |#1|) (-13 (-818 |#1|) (-424 (-1026 |#1|)) (-10 -8 (-15 -2889 ($ (-1026 |#1|) (-1026 |#1|))))) (-175)) (T -820)) +((-2889 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3))))) +(-13 (-818 |#1|) (-424 (-1026 |#1|)) (-10 -8 (-15 -2889 ($ (-1026 |#1|) (-1026 |#1|))))) +((-4470 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-175) (-818 |#4|) (-175)) (T -821)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5))))) +(-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2890 (((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-822) (-142)) (T -822)) +((-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) (-2890 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1065))))) +(-13 (-1131) (-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2890 ((-1065) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-2891 (((-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#3| |#2| (-1207)) 19 T ELT))) +(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -2891 ((-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#3| |#2| (-1207)))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1233) (-988)) (-678 |#2|)) (T -823)) +((-2891 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-988))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2232 (-661 *4)))) (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -2891 ((-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#3| |#2| (-1207)))) +((-4083 (((-3 |#2| #1="failed") |#2| (-115) (-305 |#2|) (-661 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #2="failed") |#2| (-115) (-1207)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #2#) (-305 |#2|) (-115) (-1207)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 |#2|) (-661 (-115)) (-1207)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 (-305 |#2|)) (-661 (-115)) (-1207)) 26 T ELT) (((-3 (-661 (-1297 |#2|)) "failed") (-709 |#2|) (-1207)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-709 |#2|) (-1297 |#2|) (-1207)) 35 T ELT))) +(((-824 |#1| |#2|) (-10 -7 (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-709 |#2|) (-1297 |#2|) (-1207))) (-15 -4083 ((-3 (-661 (-1297 |#2|)) "failed") (-709 |#2|) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 (-305 |#2|)) (-661 (-115)) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 |#2|) (-661 (-115)) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #1="failed") (-305 |#2|) (-115) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #1#) |#2| (-115) (-1207))) (-15 -4083 ((-3 |#2| #2="failed") (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -4083 ((-3 |#2| #2#) |#2| (-115) (-305 |#2|) (-661 |#2|)))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -824)) +((-4083 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *1 (-824 *6 *2)))) (-4083 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-5 *1 (-824 *6 *2)) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2232 (-661 *3))) *3 #1="failed")) (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-988))))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2232 (-661 *7))) *7 #1#)) (-5 *1 (-824 *6 *7)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-709 *6)) (-5 *4 (-1207)) (-4 *6 (-13 (-29 *5) (-1233) (-988))) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-1297 *6))) (-5 *1 (-824 *5 *6)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-709 *7)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1297 *7))))) +(-10 -7 (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-709 |#2|) (-1297 |#2|) (-1207))) (-15 -4083 ((-3 (-661 (-1297 |#2|)) "failed") (-709 |#2|) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 (-305 |#2|)) (-661 (-115)) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2232 (-661 (-1297 |#2|)))) "failed") (-661 |#2|) (-661 (-115)) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #1="failed") (-305 |#2|) (-115) (-1207))) (-15 -4083 ((-3 (-2 (|:| |particular| |#2|) (|:| -2232 (-661 |#2|))) |#2| #1#) |#2| (-115) (-1207))) (-15 -4083 ((-3 |#2| #2="failed") (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -4083 ((-3 |#2| #2#) |#2| (-115) (-305 |#2|) (-661 |#2|)))) +((-2892 (($) 9 T ELT)) (-2896 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2894 (((-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4119 (($ (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-2895 (($ (-661 (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2893 (((-1303)) 11 T ELT))) +(((-825) (-10 -8 (-15 -2892 ($)) (-15 -2893 ((-1303))) (-15 -2894 ((-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2895 ($ (-661 (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4119 ($ (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2896 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -825)) +((-2896 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-825)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-825)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-825)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-825)))) (-2893 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))) (-2892 (*1 *1) (-5 *1 (-825)))) +(-10 -8 (-15 -2892 ($)) (-15 -2893 ((-1303))) (-15 -2894 ((-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2895 ($ (-661 (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4119 ($ (-2 (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2896 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-3972 ((|#2| |#2| (-1207)) 17 T ELT)) (-2897 ((|#2| |#2| (-1207)) 56 T ELT)) (-2898 (((-1 |#2| |#2|) (-1207)) 11 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -3972 (|#2| |#2| (-1207))) (-15 -2897 (|#2| |#2| (-1207))) (-15 -2898 ((-1 |#2| |#2|) (-1207)))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -826)) +((-2898 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-13 (-29 *4) (-1233) (-988))))) (-2897 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988))))) (-3972 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988)))))) +(-10 -7 (-15 -3972 (|#2| |#2| (-1207))) (-15 -2897 (|#2| |#2| (-1207))) (-15 -2898 ((-1 |#2| |#2|) (-1207)))) +((-4083 (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391) (-391)) 129 T ELT) (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391)) 130 T ELT) (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-661 (-391)) (-391)) 132 T ELT) (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-391)) 134 T ELT) (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-391)) 135 T ELT) (((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391))) 137 T ELT) (((-1065) (-830) (-1093)) 121 T ELT) (((-1065) (-830)) 122 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830) (-1093)) 80 T ELT) (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830)) 82 T ELT))) +(((-827) (-10 -7 (-15 -4083 ((-1065) (-830))) (-15 -4083 ((-1065) (-830) (-1093))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391) (-391))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830) (-1093))))) (T -827)) +((-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-827)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-827)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1065)) (-5 *1 (-827))))) +(-10 -7 (-15 -4083 ((-1065) (-830))) (-15 -4083 ((-1065) (-830) (-1093))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391))) (-15 -4083 ((-1065) (-1297 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391) (-391))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-830) (-1093)))) +((-2899 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2232 (-661 |#4|))) (-675 |#4|) |#4|) 33 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2899 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2232 (-661 |#4|))) (-675 |#4|) |#4|))) (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558)))) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -828)) +((-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2232 (-661 *4)))) (-5 *1 (-828 *5 *6 *7 *4))))) +(-10 -7 (-15 -2899 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2232 (-661 |#4|))) (-675 |#4|) |#4|))) +((-4253 (((-2 (|:| -3766 |#3|) (|:| |rh| (-661 (-419 |#2|)))) |#4| (-661 (-419 |#2|))) 53 T ELT)) (-2901 (((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4| |#2|) 62 T ELT) (((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4|) 61 T ELT) (((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3| |#2|) 20 T ELT) (((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3|) 21 T ELT)) (-2902 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2900 ((|#2| |#3| (-661 (-419 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105 T ELT))) +(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2900 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2900 (|#2| |#3| (-661 (-419 |#2|)))) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3| |#2|)) (-15 -2902 (|#2| |#3| |#1|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4| |#2|)) (-15 -2902 (|#2| |#4| |#1|)) (-15 -4253 ((-2 (|:| -3766 |#3|) (|:| |rh| (-661 (-419 |#2|)))) |#4| (-661 (-419 |#2|))))) (-13 (-376) (-149) (-1068 (-419 (-558)))) (-1273 |#1|) (-678 |#2|) (-678 (-419 |#2|))) (T -829)) +((-4253 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -3766 *7) (|:| |rh| (-661 (-419 *6))))) (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-661 (-419 *6))) (-4 *7 (-678 *6)) (-4 *3 (-678 (-419 *6))))) (-2902 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-678 *2)) (-4 *3 (-678 (-419 *2))))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *4 (-1273 *5)) (-5 *2 (-661 (-2 (|:| -4285 *4) (|:| -3726 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-678 *4)) (-4 *3 (-678 (-419 *4))))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-2 (|:| -4285 *5) (|:| -3726 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 (-419 *5))))) (-2902 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-419 *2))))) (-2901 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *4 (-1273 *5)) (-5 *2 (-661 (-2 (|:| -4285 *4) (|:| -3726 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-678 *4)) (-4 *6 (-678 (-419 *4))))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-2 (|:| -4285 *5) (|:| -3726 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-419 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *6 (-678 (-419 *2))))) (-2900 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *6 (-678 *4))))) +(-10 -7 (-15 -2900 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2900 (|#2| |#3| (-661 (-419 |#2|)))) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#3| |#2|)) (-15 -2902 (|#2| |#3| |#1|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4|)) (-15 -2901 ((-661 (-2 (|:| -4285 |#2|) (|:| -3726 |#2|))) |#4| |#2|)) (-15 -2902 (|#2| |#4| |#1|)) (-15 -4253 ((-2 (|:| -3766 |#3|) (|:| |rh| (-661 (-419 |#2|)))) |#4| (-661 (-419 |#2|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3656 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-830) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3656 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -830)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830))))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3656 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $)))) +((-2910 (((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 |#3|))) |#3| (-1 (-661 |#2|) |#2| (-1201 |#2|)) (-1 (-417 |#2|) |#2|)) 156 T ELT)) (-2911 (((-661 (-2 (|:| |poly| |#2|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|)) 52 T ELT)) (-2904 (((-661 (-2 (|:| |deg| (-791)) (|:| -3766 |#2|))) |#3|) 123 T ELT)) (-2903 ((|#2| |#3|) 42 T ELT)) (-2905 (((-661 (-2 (|:| -4464 |#1|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|)) 100 T ELT)) (-2906 ((|#3| |#3| (-419 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 (|#2| |#3|)) (-15 -2904 ((-661 (-2 (|:| |deg| (-791)) (|:| -3766 |#2|))) |#3|)) (-15 -2905 ((-661 (-2 (|:| -4464 |#1|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2911 ((-661 (-2 (|:| |poly| |#2|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2910 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 |#3|))) |#3| (-1 (-661 |#2|) |#2| (-1201 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2906 (|#3| |#3| |#2|)) (-15 -2906 (|#3| |#3| (-419 |#2|)))) (-13 (-376) (-149) (-1068 (-419 (-558)))) (-1273 |#1|) (-678 |#2|) (-678 (-419 |#2|))) (T -831)) +((-2906 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) (-4 *6 (-678 *3)))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-1273 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) (-4 *5 (-678 (-419 *3))))) (-2910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-661 *7) *7 (-1201 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |frac| (-419 *7)) (|:| -3766 *3)))) (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) (-4 *8 (-678 (-419 *7))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3766 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-2 (|:| -4464 *5) (|:| -3766 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) (-2904 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3766 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) (-2903 (*1 *2 *3) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-419 *2)))))) +(-10 -7 (-15 -2903 (|#2| |#3|)) (-15 -2904 ((-661 (-2 (|:| |deg| (-791)) (|:| -3766 |#2|))) |#3|)) (-15 -2905 ((-661 (-2 (|:| -4464 |#1|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2911 ((-661 (-2 (|:| |poly| |#2|) (|:| -3766 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2910 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 |#3|))) |#3| (-1 (-661 |#2|) |#2| (-1201 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2906 (|#3| |#3| |#2|)) (-15 -2906 (|#3| |#3| (-419 |#2|)))) +((-2907 (((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-676 |#2| (-419 |#2|)) (-661 (-419 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2232 (-661 (-419 |#2|)))) (-676 |#2| (-419 |#2|)) (-419 |#2|)) 145 T ELT) (((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-675 (-419 |#2|)) (-661 (-419 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2232 (-661 (-419 |#2|)))) (-675 (-419 |#2|)) (-419 |#2|)) 138 T ELT)) (-2908 ((|#2| (-676 |#2| (-419 |#2|))) 86 T ELT) ((|#2| (-675 (-419 |#2|))) 89 T ELT))) +(((-832 |#1| |#2|) (-10 -7 (-15 -2907 ((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2232 (-661 (-419 |#2|)))) (-675 (-419 |#2|)) (-419 |#2|))) (-15 -2907 ((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-675 (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2907 ((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2232 (-661 (-419 |#2|)))) (-676 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2907 ((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-676 |#2| (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2908 (|#2| (-675 (-419 |#2|)))) (-15 -2908 (|#2| (-676 |#2| (-419 |#2|))))) (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558)))) (-1273 |#1|)) (T -832)) +((-2908 (*1 *2 *3) (-12 (-5 *3 (-676 *2 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-675 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-2 (|:| -2232 (-661 (-419 *6))) (|:| -1793 (-709 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) (-5 *1 (-832 *5 *6)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-2 (|:| -2232 (-661 (-419 *6))) (|:| -1793 (-709 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2232 (-661 *4)))) (-5 *1 (-832 *5 *6))))) +(-10 -7 (-15 -2907 ((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2232 (-661 (-419 |#2|)))) (-675 (-419 |#2|)) (-419 |#2|))) (-15 -2907 ((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-675 (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2907 ((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2232 (-661 (-419 |#2|)))) (-676 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2907 ((-2 (|:| -2232 (-661 (-419 |#2|))) (|:| -1793 (-709 |#1|))) (-676 |#2| (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2908 (|#2| (-675 (-419 |#2|)))) (-15 -2908 (|#2| (-676 |#2| (-419 |#2|))))) +((-2909 (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|) 49 T ELT))) +(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2909 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) (-376) (-678 |#1|) (-1273 |#1|) (-744 |#1| |#3|) (-678 |#4|)) (T -833)) +((-2909 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-744 *5 *7)) (-5 *2 (-2 (|:| -1793 (-709 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -2909 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) +((-2910 (((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 47 T ELT)) (-2912 (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38 T ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 39 T ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36 T ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 37 T ELT)) (-2911 (((-661 (-2 (|:| |poly| |#2|) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 96 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2910 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2911 ((-661 (-2 (|:| |poly| |#2|) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)))) (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558)))) (-1273 |#1|)) (T -834)) +((-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-676 *5 (-419 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-675 (-419 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3766 (-676 *6 (-419 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6))))) (-2910 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |frac| (-419 *6)) (|:| -3766 (-676 *6 (-419 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6))))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-676 *7 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *7 (-1273 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *7 (-1273 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6))))) +(-10 -7 (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2910 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2911 ((-661 (-2 (|:| |poly| |#2|) (|:| -3766 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)))) (-15 -2912 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)))) (-15 -2912 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) +((-2913 (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) (-709 |#2|) (-1297 |#1|)) 110 T ELT) (((-2 (|:| A (-709 |#1|)) (|:| |eqs| (-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3766 |#2|) (|:| |rh| |#1|))))) (-709 |#1|) (-1297 |#1|)) 15 T ELT)) (-2914 (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2232 (-661 |#1|))) |#2| |#1|)) 116 T ELT)) (-4083 (((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2232 (-709 |#1|))) "failed") (-709 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -2913 ((-2 (|:| A (-709 |#1|)) (|:| |eqs| (-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3766 |#2|) (|:| |rh| |#1|))))) (-709 |#1|) (-1297 |#1|))) (-15 -2913 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) (-709 |#2|) (-1297 |#1|))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2232 (-709 |#1|))) "failed") (-709 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) "failed") |#2| |#1|))) (-15 -2914 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2232 (-661 |#1|))) |#2| |#1|)))) (-376) (-678 |#1|)) (T -835)) +((-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2232 (-661 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *6) "failed")) (|:| -2232 (-661 (-1297 *6))))) (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6)))) (-4083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2232 (-661 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2232 (-709 *6)))) (-5 *1 (-835 *6 *7)) (-5 *3 (-709 *6)) (-5 *4 (-1297 *6)))) (-2913 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) (-5 *2 (-2 (|:| -1793 (-709 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *6)) (-5 *4 (-1297 *5)))) (-2913 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-709 *5)) (|:| |eqs| (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1297 *5)) (|:| -3766 *6) (|:| |rh| *5)))))) (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) (-4 *6 (-678 *5))))) +(-10 -7 (-15 -2913 ((-2 (|:| A (-709 |#1|)) (|:| |eqs| (-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3766 |#2|) (|:| |rh| |#1|))))) (-709 |#1|) (-1297 |#1|))) (-15 -2913 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#1|))) (-709 |#2|) (-1297 |#1|))) (-15 -4083 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2232 (-709 |#1|))) "failed") (-709 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2232 (-661 |#1|))) "failed") |#2| |#1|))) (-15 -2914 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2232 (-661 (-1297 |#1|)))) (-709 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2232 (-661 |#1|))) |#2| |#1|)))) +((-2915 (((-709 |#1|) (-661 |#1|) (-791)) 14 T ELT) (((-709 |#1|) (-661 |#1|)) 15 T ELT)) (-2916 (((-3 (-1297 |#1|) "failed") |#2| |#1| (-661 |#1|)) 39 T ELT)) (-3842 (((-3 |#1| "failed") |#2| |#1| (-661 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-836 |#1| |#2|) (-10 -7 (-15 -2915 ((-709 |#1|) (-661 |#1|))) (-15 -2915 ((-709 |#1|) (-661 |#1|) (-791))) (-15 -2916 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-661 |#1|))) (-15 -3842 ((-3 |#1| "failed") |#2| |#1| (-661 |#1|) (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -836)) +((-3842 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-661 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) (-2916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4)) (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-709 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)) (-5 *1 (-836 *4 *5)) (-4 *5 (-678 *4))))) +(-10 -7 (-15 -2915 ((-709 |#1|) (-661 |#1|))) (-15 -2915 ((-709 |#1|) (-661 |#1|) (-791))) (-15 -2916 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-661 |#1|))) (-15 -3842 ((-3 |#1| "failed") |#2| |#1| (-661 |#1|) (-1 |#1| |#1|)))) +((-3049 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3688 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4219 (($ (-947)) NIL (|has| |#2| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3620 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4300 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1131)) ELT)) (-3656 (((-558) $) NIL (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) ((|#2| $) NIL (|has| |#2| (-1131)) ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-3477 (($) NIL (|has| |#2| (-381)) ELT)) (-1729 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ (-558)) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3372 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#2| (-1079)) ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3089 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2170 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#2| (-381)) ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-709 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3742 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#2| (-381)) ELT)) (-3743 (((-1150) $) NIL (|has| |#2| (-1131)) ELT)) (-4313 ((|#2| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4348 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-1610 (($ (-1297 |#2|)) NIL T ELT)) (-4423 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4270 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#2|) $) NIL T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#2| (-1068 (-558))) (|has| |#2| (-1131))) (|has| |#2| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1068 (-419 (-558)))) (|has| |#2| (-1131))) ELT) (($ |#2|) NIL (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-630 (-886))) ELT)) (-3610 (((-791)) NIL (|has| |#2| (-1079)) CONST)) (-1387 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) NIL (|has| |#2| (-23)) CONST)) (-3147 (($) NIL (|has| |#2| (-1079)) CONST)) (-3152 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-928 (-1207))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1079)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3168 (((-114) $ $) 11 (|has| |#2| (-870)) ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-746)) ELT) (($ |#2| $) NIL (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-947) $) NIL (|has| |#2| (-25)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-837 |#1| |#2| |#3|) (-245 |#1| |#2|) (-791) (-815) (-1 (-114) (-1297 |#2|) (-1297 |#2|))) (T -837)) NIL (-245 |#1| |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1632 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1209)) NIL T ELT)) (-1666 (((-793) $) NIL T ELT) (((-793) $ (-1209)) NIL T ELT)) (-3570 (((-663 (-842 (-1209))) $) NIL T ELT)) (-3572 (((-1203 $) $ (-842 (-1209))) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-842 (-1209)))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1628 (($ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-842 (-1209)) #2#) $) NIL T ELT) (((-3 (-1209) #2#) $) NIL T ELT) (((-3 (-1157 |#1| (-1209)) #2#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-842 (-1209)) $) NIL T ELT) (((-1209) $) NIL T ELT) (((-1157 |#1| (-1209)) $) NIL T ELT)) (-4272 (($ $ $ (-842 (-1209))) NIL (|has| |#1| (-175)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-842 (-1209))) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-545 (-842 (-1209))) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-842 (-1209)) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-842 (-1209)) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ (-1209)) NIL T ELT) (((-793) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#1|) (-842 (-1209))) NIL T ELT) (($ (-1203 $) (-842 (-1209))) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-545 (-842 (-1209)))) NIL T ELT) (($ $ (-842 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-842 (-1209))) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-842 (-1209))) NIL T ELT)) (-3307 (((-545 (-842 (-1209))) $) NIL T ELT) (((-793) $ (-842 (-1209))) NIL T ELT) (((-663 (-793)) $ (-663 (-842 (-1209)))) NIL T ELT)) (-1817 (($ (-1 (-545 (-842 (-1209))) (-545 (-842 (-1209)))) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1667 (((-1 $ (-793)) (-1209)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3571 (((-3 (-842 (-1209)) #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-1630 (((-842 (-1209)) $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1631 (((-114) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-842 (-1209))) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-1629 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-842 (-1209)) |#1|) NIL T ELT) (($ $ (-663 (-842 (-1209))) (-663 |#1|)) NIL T ELT) (($ $ (-842 (-1209)) $) NIL T ELT) (($ $ (-663 (-842 (-1209))) (-663 $)) NIL T ELT) (($ $ (-1209) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1209)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4273 (($ $ (-842 (-1209))) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-842 (-1209))) (-663 (-793))) NIL T ELT) (($ $ (-842 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-842 (-1209)))) NIL T ELT) (($ $ (-842 (-1209))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-1633 (((-663 (-1209)) $) NIL T ELT)) (-4464 (((-545 (-842 (-1209))) $) NIL T ELT) (((-793) $ (-842 (-1209))) NIL T ELT) (((-663 (-793)) $ (-663 (-842 (-1209)))) NIL T ELT) (((-793) $ (-1209)) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-842 (-1209)) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-842 (-1209)) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-842 (-1209)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-842 (-1209))) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-842 (-1209))) NIL T ELT) (($ (-1209)) NIL T ELT) (($ (-1157 |#1| (-1209))) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-545 (-842 (-1209)))) NIL T ELT) (($ $ (-842 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-842 (-1209))) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-842 (-1209))) (-663 (-793))) NIL T ELT) (($ $ (-842 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-842 (-1209)))) NIL T ELT) (($ $ (-842 (-1209))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-840 |#1|) (-13 (-262 |#1| (-1209) (-842 (-1209)) (-545 (-842 (-1209)))) (-1070 (-1157 |#1| (-1209)))) (-1081)) (T -840)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1630 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ (-1207)) NIL T ELT)) (-1664 (((-791) $) NIL T ELT) (((-791) $ (-1207)) NIL T ELT)) (-3566 (((-661 (-840 (-1207))) $) NIL T ELT)) (-3568 (((-1201 $) $ (-840 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-840 (-1207)))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1626 (($ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-840 (-1207)) #2#) $) NIL T ELT) (((-3 (-1207) #2#) $) NIL T ELT) (((-3 (-1155 |#1| (-1207)) #2#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-840 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1155 |#1| (-1207)) $) NIL T ELT)) (-4268 (($ $ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-543 (-840 (-1207))) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-840 (-1207)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-840 (-1207)) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ (-1207)) NIL T ELT) (((-791) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#1|) (-840 (-1207))) NIL T ELT) (($ (-1201 $) (-840 (-1207))) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-543 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1207))) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-840 (-1207))) NIL T ELT)) (-3303 (((-543 (-840 (-1207))) $) NIL T ELT) (((-791) $ (-840 (-1207))) NIL T ELT) (((-661 (-791)) $ (-661 (-840 (-1207)))) NIL T ELT)) (-1815 (($ (-1 (-543 (-840 (-1207))) (-543 (-840 (-1207)))) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1665 (((-1 $ (-791)) (-1207)) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3567 (((-3 (-840 (-1207)) #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-1628 (((-840 (-1207)) $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1629 (((-114) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-840 (-1207))) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-1627 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-840 (-1207)) |#1|) NIL T ELT) (($ $ (-661 (-840 (-1207))) (-661 |#1|)) NIL T ELT) (($ $ (-840 (-1207)) $) NIL T ELT) (($ $ (-661 (-840 (-1207))) (-661 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1207)) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4269 (($ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-840 (-1207))) (-661 (-791))) NIL T ELT) (($ $ (-840 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1631 (((-661 (-1207)) $) NIL T ELT)) (-4460 (((-543 (-840 (-1207))) $) NIL T ELT) (((-791) $ (-840 (-1207))) NIL T ELT) (((-661 (-791)) $ (-661 (-840 (-1207)))) NIL T ELT) (((-791) $ (-1207)) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-840 (-1207)) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-840 (-1207)) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-840 (-1207)) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1155 |#1| (-1207))) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-543 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1207))) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-840 (-1207))) (-661 (-791))) NIL T ELT) (($ $ (-840 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-838 |#1|) (-13 (-262 |#1| (-1207) (-840 (-1207)) (-543 (-840 (-1207)))) (-1068 (-1155 |#1| (-1207)))) (-1079)) (T -838)) NIL -(-13 (-262 |#1| (-1209) (-842 (-1209)) (-545 (-842 (-1209)))) (-1070 (-1157 |#1| (-1209)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-1799 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4274 (($ $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ (-560)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-376)) ELT))) -(((-841 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1133) (-928 |#1|) |#1|) (T -841)) +(-13 (-262 |#1| (-1207) (-840 (-1207)) (-543 (-840 (-1207)))) (-1068 (-1155 |#1| (-1207)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#2| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-1797 (((-791) $) NIL (|has| |#2| (-376)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4270 (($ $) 13 T ELT) (($ $ (-791)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT) (($ $ (-558)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-376)) ELT))) +(((-839 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1131) (-926 |#1|) |#1|) (T -839)) NIL -(-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-1666 (((-793) $) NIL T ELT)) (-4347 ((|#1| $) 10 T ELT)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-4288 (((-793) $) 11 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-1667 (($ |#1| (-793)) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4274 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3156 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-842 |#1|) (-277 |#1|) (-872)) (T -842)) +(-13 (-111 $ $) (-240) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-1664 (((-791) $) NIL T ELT)) (-4343 ((|#1| $) 10 T ELT)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-4284 (((-791) $) 11 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-1665 (($ |#1| (-791)) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4270 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3152 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-840 |#1|) (-277 |#1|) (-870)) (T -840)) NIL (-277 |#1|) -((-3053 (((-114) $ $) NIL T ELT)) (-4450 (((-663 |#1|) $) 38 T ELT)) (-3624 (((-793) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4455 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-4315 (($ $) 42 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-1965 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2526 ((|#1| $ (-560)) NIL T ELT)) (-2527 (((-793) $ (-560)) NIL T ELT)) (-4452 (($ $) 54 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-2518 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2519 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4456 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-2921 (((-114) $ $) 51 T ELT)) (-4349 (((-793) $) 34 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1966 (($ $ $) NIL T ELT)) (-1967 (($ $ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 ((|#1| $) 41 T ELT)) (-2001 (((-663 (-2 (|:| |gen| |#1|) (|:| -4459 (-793)))) $) NIL T ELT)) (-3366 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3050 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 7 T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 53 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-843 |#1|) (-13 (-399 |#1|) (-870) (-10 -8 (-15 -4317 (|#1| $)) (-15 -4315 ($ $)) (-15 -4452 ($ $)) (-15 -2921 ((-114) $ $)) (-15 -4456 ((-3 $ "failed") $ |#1|)) (-15 -4455 ((-3 $ "failed") $ |#1|)) (-15 -3050 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4349 ((-793) $)) (-15 -4450 ((-663 |#1|) $)))) (-872)) (T -843)) -((-4317 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) (-4315 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) (-4452 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) (-2921 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-872)))) (-4456 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) (-4455 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) (-3050 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-843 *3)) (|:| |rm| (-843 *3)))) (-5 *1 (-843 *3)) (-4 *3 (-872)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-843 *3)) (-4 *3 (-872)))) (-4450 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-843 *3)) (-4 *3 (-872))))) -(-13 (-399 |#1|) (-870) (-10 -8 (-15 -4317 (|#1| $)) (-15 -4315 ($ $)) (-15 -4452 ($ $)) (-15 -2921 ((-114) $ $)) (-15 -4456 ((-3 $ "failed") $ |#1|)) (-15 -4455 ((-3 $ "failed") $ |#1|)) (-15 -3050 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4349 ((-793) $)) (-15 -4450 ((-663 |#1|) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4139 (((-560) $) 65 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3690 (((-114) $) 63 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3691 (((-114) $) 64 T ELT)) (-3016 (($ $ $) 57 T ELT)) (-3344 (($ $ $) 58 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3889 (($ $) 66 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 59 T ELT)) (-3052 (((-114) $ $) 61 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 60 T ELT)) (-3172 (((-114) $ $) 62 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-844) (-142)) (T -844)) -NIL -(-13 (-571) (-871)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-871) . T) ((-872) . T) ((-875) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-2982 (((-1305) (-847) $ (-114)) 9 T ELT) (((-1305) (-847) $) 8 T ELT) (((-1191) $ (-114)) 7 T ELT) (((-1191) $) 6 T ELT))) -(((-845) (-142)) (T -845)) -((-2982 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-845)) (-5 *3 (-847)) (-5 *4 (-114)) (-5 *2 (-1305)))) (-2982 (*1 *2 *3 *1) (-12 (-4 *1 (-845)) (-5 *3 (-847)) (-5 *2 (-1305)))) (-2982 (*1 *2 *1 *3) (-12 (-4 *1 (-845)) (-5 *3 (-114)) (-5 *2 (-1191)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-1191))))) -(-13 (-10 -8 (-15 -2982 ((-1191) $)) (-15 -2982 ((-1191) $ (-114))) (-15 -2982 ((-1305) (-847) $)) (-15 -2982 ((-1305) (-847) $ (-114))))) -((-2922 (($ (-1152)) 7 T ELT)) (-2926 (((-114) $ (-1191) (-1152)) 15 T ELT)) (-2925 (((-847) $) 12 T ELT)) (-2924 (((-847) $) 11 T ELT)) (-2923 (((-1305) $) 9 T ELT)) (-2927 (((-114) $ (-1152)) 16 T ELT))) -(((-846) (-10 -8 (-15 -2922 ($ (-1152))) (-15 -2923 ((-1305) $)) (-15 -2924 ((-847) $)) (-15 -2925 ((-847) $)) (-15 -2926 ((-114) $ (-1191) (-1152))) (-15 -2927 ((-114) $ (-1152))))) (T -846)) -((-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-114)) (-5 *1 (-846)))) (-2926 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-1152)) (-5 *2 (-114)) (-5 *1 (-846)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-847)) (-5 *1 (-846)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-847)) (-5 *1 (-846)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-846)))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-846))))) -(-10 -8 (-15 -2922 ($ (-1152))) (-15 -2923 ((-1305) $)) (-15 -2924 ((-847) $)) (-15 -2925 ((-847) $)) (-15 -2926 ((-114) $ (-1191) (-1152))) (-15 -2927 ((-114) $ (-1152)))) -((-2931 (((-1305) $ (-848)) 12 T ELT)) (-2948 (((-1305) $ (-1209)) 32 T ELT)) (-2950 (((-1305) $ (-1191) (-1191)) 34 T ELT)) (-2949 (((-1305) $ (-1191)) 33 T ELT)) (-2938 (((-1305) $) 19 T ELT)) (-2946 (((-1305) $ (-560)) 28 T ELT)) (-2947 (((-1305) $ (-229)) 30 T ELT)) (-2937 (((-1305) $) 18 T ELT)) (-2945 (((-1305) $) 26 T ELT)) (-2944 (((-1305) $) 25 T ELT)) (-2942 (((-1305) $) 23 T ELT)) (-2943 (((-1305) $) 24 T ELT)) (-2941 (((-1305) $) 22 T ELT)) (-2940 (((-1305) $) 21 T ELT)) (-2939 (((-1305) $) 20 T ELT)) (-2935 (((-1305) $) 16 T ELT)) (-2936 (((-1305) $) 17 T ELT)) (-2934 (((-1305) $) 15 T ELT)) (-2933 (((-1305) $) 14 T ELT)) (-2932 (((-1305) $) 13 T ELT)) (-2929 (($ (-1191) (-848)) 9 T ELT)) (-2928 (($ (-1191) (-1191) (-848)) 8 T ELT)) (-2967 (((-1209) $) 51 T ELT)) (-2970 (((-1209) $) 55 T ELT)) (-2969 (((-2 (|:| |cd| (-1191)) (|:| -4056 (-1191))) $) 54 T ELT)) (-2968 (((-1191) $) 52 T ELT)) (-2957 (((-1305) $) 41 T ELT)) (-2965 (((-560) $) 49 T ELT)) (-2966 (((-229) $) 50 T ELT)) (-2956 (((-1305) $) 40 T ELT)) (-2964 (((-1305) $) 48 T ELT)) (-2963 (((-1305) $) 47 T ELT)) (-2961 (((-1305) $) 45 T ELT)) (-2962 (((-1305) $) 46 T ELT)) (-2960 (((-1305) $) 44 T ELT)) (-2959 (((-1305) $) 43 T ELT)) (-2958 (((-1305) $) 42 T ELT)) (-2954 (((-1305) $) 38 T ELT)) (-2955 (((-1305) $) 39 T ELT)) (-2953 (((-1305) $) 37 T ELT)) (-2952 (((-1305) $) 36 T ELT)) (-2951 (((-1305) $) 35 T ELT)) (-2930 (((-1305) $) 11 T ELT))) -(((-847) (-10 -8 (-15 -2928 ($ (-1191) (-1191) (-848))) (-15 -2929 ($ (-1191) (-848))) (-15 -2930 ((-1305) $)) (-15 -2931 ((-1305) $ (-848))) (-15 -2932 ((-1305) $)) (-15 -2933 ((-1305) $)) (-15 -2934 ((-1305) $)) (-15 -2935 ((-1305) $)) (-15 -2936 ((-1305) $)) (-15 -2937 ((-1305) $)) (-15 -2938 ((-1305) $)) (-15 -2939 ((-1305) $)) (-15 -2940 ((-1305) $)) (-15 -2941 ((-1305) $)) (-15 -2942 ((-1305) $)) (-15 -2943 ((-1305) $)) (-15 -2944 ((-1305) $)) (-15 -2945 ((-1305) $)) (-15 -2946 ((-1305) $ (-560))) (-15 -2947 ((-1305) $ (-229))) (-15 -2948 ((-1305) $ (-1209))) (-15 -2949 ((-1305) $ (-1191))) (-15 -2950 ((-1305) $ (-1191) (-1191))) (-15 -2951 ((-1305) $)) (-15 -2952 ((-1305) $)) (-15 -2953 ((-1305) $)) (-15 -2954 ((-1305) $)) (-15 -2955 ((-1305) $)) (-15 -2956 ((-1305) $)) (-15 -2957 ((-1305) $)) (-15 -2958 ((-1305) $)) (-15 -2959 ((-1305) $)) (-15 -2960 ((-1305) $)) (-15 -2961 ((-1305) $)) (-15 -2962 ((-1305) $)) (-15 -2963 ((-1305) $)) (-15 -2964 ((-1305) $)) (-15 -2965 ((-560) $)) (-15 -2966 ((-229) $)) (-15 -2967 ((-1209) $)) (-15 -2968 ((-1191) $)) (-15 -2969 ((-2 (|:| |cd| (-1191)) (|:| -4056 (-1191))) $)) (-15 -2970 ((-1209) $)))) (T -847)) -((-2970 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-847)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1191)) (|:| -4056 (-1191)))) (-5 *1 (-847)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-847)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-847)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-847)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-847)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2950 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2948 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2947 (*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2946 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2931 (*1 *2 *1 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1305)) (-5 *1 (-847)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847)))) (-2929 (*1 *1 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-848)) (-5 *1 (-847)))) (-2928 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-848)) (-5 *1 (-847))))) -(-10 -8 (-15 -2928 ($ (-1191) (-1191) (-848))) (-15 -2929 ($ (-1191) (-848))) (-15 -2930 ((-1305) $)) (-15 -2931 ((-1305) $ (-848))) (-15 -2932 ((-1305) $)) (-15 -2933 ((-1305) $)) (-15 -2934 ((-1305) $)) (-15 -2935 ((-1305) $)) (-15 -2936 ((-1305) $)) (-15 -2937 ((-1305) $)) (-15 -2938 ((-1305) $)) (-15 -2939 ((-1305) $)) (-15 -2940 ((-1305) $)) (-15 -2941 ((-1305) $)) (-15 -2942 ((-1305) $)) (-15 -2943 ((-1305) $)) (-15 -2944 ((-1305) $)) (-15 -2945 ((-1305) $)) (-15 -2946 ((-1305) $ (-560))) (-15 -2947 ((-1305) $ (-229))) (-15 -2948 ((-1305) $ (-1209))) (-15 -2949 ((-1305) $ (-1191))) (-15 -2950 ((-1305) $ (-1191) (-1191))) (-15 -2951 ((-1305) $)) (-15 -2952 ((-1305) $)) (-15 -2953 ((-1305) $)) (-15 -2954 ((-1305) $)) (-15 -2955 ((-1305) $)) (-15 -2956 ((-1305) $)) (-15 -2957 ((-1305) $)) (-15 -2958 ((-1305) $)) (-15 -2959 ((-1305) $)) (-15 -2960 ((-1305) $)) (-15 -2961 ((-1305) $)) (-15 -2962 ((-1305) $)) (-15 -2963 ((-1305) $)) (-15 -2964 ((-1305) $)) (-15 -2965 ((-560) $)) (-15 -2966 ((-229) $)) (-15 -2967 ((-1209) $)) (-15 -2968 ((-1191) $)) (-15 -2969 ((-2 (|:| |cd| (-1191)) (|:| -4056 (-1191))) $)) (-15 -2970 ((-1209) $))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2973 (($) 16 T ELT)) (-2974 (($) 14 T ELT)) (-2972 (($) 17 T ELT)) (-2971 (($) 15 T ELT)) (-3540 (((-114) $ $) 9 T ELT))) -(((-848) (-13 (-1133) (-10 -8 (-15 -2974 ($)) (-15 -2973 ($)) (-15 -2972 ($)) (-15 -2971 ($))))) (T -848)) -((-2974 (*1 *1) (-5 *1 (-848))) (-2973 (*1 *1) (-5 *1 (-848))) (-2972 (*1 *1) (-5 *1 (-848))) (-2971 (*1 *1) (-5 *1 (-848)))) -(-13 (-1133) (-10 -8 (-15 -2974 ($)) (-15 -2973 ($)) (-15 -2972 ($)) (-15 -2971 ($)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2975 (($ (-850) (-663 (-1209))) 32 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2977 (((-850) $) 33 T ELT)) (-2976 (((-663 (-1209)) $) 34 T ELT)) (-4462 (((-888) $) 31 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-849) (-13 (-1133) (-10 -8 (-15 -2977 ((-850) $)) (-15 -2976 ((-663 (-1209)) $)) (-15 -2975 ($ (-850) (-663 (-1209))))))) (T -849)) -((-2977 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-849)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-849)))) (-2975 (*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-663 (-1209))) (-5 *1 (-849))))) -(-13 (-1133) (-10 -8 (-15 -2977 ((-850) $)) (-15 -2976 ((-663 (-1209)) $)) (-15 -2975 ($ (-850) (-663 (-1209)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 23 T ELT) (($ (-1209)) 19 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2979 (((-114) $) 10 T ELT)) (-2980 (((-114) $) 9 T ELT)) (-2978 (((-114) $) 11 T ELT)) (-2981 (((-114) $) 8 T ELT)) (-3540 (((-114) $ $) 21 T ELT))) -(((-850) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-1209))) (-15 -2981 ((-114) $)) (-15 -2980 ((-114) $)) (-15 -2979 ((-114) $)) (-15 -2978 ((-114) $))))) (T -850)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-850)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850))))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-1209))) (-15 -2981 ((-114) $)) (-15 -2980 ((-114) $)) (-15 -2979 ((-114) $)) (-15 -2978 ((-114) $)))) -((-2982 (((-1305) (-847) (-326 |#1|) (-114)) 23 T ELT) (((-1305) (-847) (-326 |#1|)) 88 T ELT) (((-1191) (-326 |#1|) (-114)) 87 T ELT) (((-1191) (-326 |#1|)) 86 T ELT))) -(((-851 |#1|) (-10 -7 (-15 -2982 ((-1191) (-326 |#1|))) (-15 -2982 ((-1191) (-326 |#1|) (-114))) (-15 -2982 ((-1305) (-847) (-326 |#1|))) (-15 -2982 ((-1305) (-847) (-326 |#1|) (-114)))) (-13 (-845) (-1081))) (T -851)) -((-2982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-847)) (-5 *4 (-326 *6)) (-5 *5 (-114)) (-4 *6 (-13 (-845) (-1081))) (-5 *2 (-1305)) (-5 *1 (-851 *6)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-847)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-845) (-1081))) (-5 *2 (-1305)) (-5 *1 (-851 *5)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-845) (-1081))) (-5 *2 (-1191)) (-5 *1 (-851 *5)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-845) (-1081))) (-5 *2 (-1191)) (-5 *1 (-851 *4))))) -(-10 -7 (-15 -2982 ((-1191) (-326 |#1|))) (-15 -2982 ((-1191) (-326 |#1|) (-114))) (-15 -2982 ((-1305) (-847) (-326 |#1|))) (-15 -2982 ((-1305) (-847) (-326 |#1|) (-114)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2983 ((|#1| $) 10 T ELT)) (-2984 (($ |#1|) 9 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-793)) NIL T ELT)) (-3307 (((-793) $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4274 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-4193 ((|#2| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-852 |#1| |#2|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2984 ($ |#1|)) (-15 -2983 (|#1| $)))) (-730 |#2|) (-1081)) (T -852)) -((-2984 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-852 *2 *3)) (-4 *2 (-730 *3)))) (-2983 (*1 *2 *1) (-12 (-4 *2 (-730 *3)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1081))))) -(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2984 ($ |#1|)) (-15 -2983 (|#1| $)))) -((-2992 (((-323) (-1191) (-1191)) 12 T ELT)) (-2991 (((-114) (-1191) (-1191)) 34 T ELT)) (-2990 (((-114) (-1191)) 33 T ELT)) (-2987 (((-51) (-1191)) 25 T ELT)) (-2986 (((-51) (-1191)) 23 T ELT)) (-2985 (((-51) (-847)) 17 T ELT)) (-2989 (((-663 (-1191)) (-1191)) 28 T ELT)) (-2988 (((-663 (-1191))) 27 T ELT))) -(((-853) (-10 -7 (-15 -2985 ((-51) (-847))) (-15 -2986 ((-51) (-1191))) (-15 -2987 ((-51) (-1191))) (-15 -2988 ((-663 (-1191)))) (-15 -2989 ((-663 (-1191)) (-1191))) (-15 -2990 ((-114) (-1191))) (-15 -2991 ((-114) (-1191) (-1191))) (-15 -2992 ((-323) (-1191) (-1191))))) (T -853)) -((-2992 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-853)))) (-2991 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-114)) (-5 *1 (-853)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-114)) (-5 *1 (-853)))) (-2989 (*1 *2 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-853)) (-5 *3 (-1191)))) (-2988 (*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-853)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-853)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-853)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-51)) (-5 *1 (-853))))) -(-10 -7 (-15 -2985 ((-51) (-847))) (-15 -2986 ((-51) (-1191))) (-15 -2987 ((-51) (-1191))) (-15 -2988 ((-663 (-1191)))) (-15 -2989 ((-663 (-1191)) (-1191))) (-15 -2990 ((-114) (-1191))) (-15 -2991 ((-114) (-1191) (-1191))) (-15 -2992 ((-323) (-1191) (-1191)))) -((-3053 (((-114) $ $) 19 T ELT)) (-3738 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3740 (($ $ $) 77 T ELT)) (-3739 (((-114) $ $) 78 T ELT)) (-3743 (($ (-663 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2608 (($ $) 66 T ELT)) (-1479 (($ $) 62 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ |#1| $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) 61 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) 69 T ELT)) (-3016 ((|#1| $) 83 T ELT)) (-3343 (($ $ $) 86 T ELT)) (-4024 (($ $ $) 85 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3344 ((|#1| $) 84 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 T ELT)) (-3742 (($ $ $) 74 T ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT) (($ |#1| $ (-793)) 67 T ELT)) (-3747 (((-1152) $) 21 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2607 (((-663 (-2 (|:| -2300 |#1|) (|:| -2171 (-793)))) $) 65 T ELT)) (-3741 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 |#1|)) 52 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 54 T ELT)) (-4462 (((-888) $) 17 T ELT)) (-3744 (($ (-663 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1389 (((-114) $ $) 20 T ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 T ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-854 |#1|) (-142) (-872)) (T -854)) -((-3016 (*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-872))))) -(-13 (-759 |t#1|) (-1000 |t#1|) (-10 -8 (-15 -3016 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-888)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-717 |#1|) . T) ((-759 |#1|) . T) ((-1000 |#1|) . T) ((-1131 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-2995 (((-1305) (-1152) (-1152)) 48 T ELT)) (-2994 (((-1305) (-846) (-51)) 45 T ELT)) (-2993 (((-51) (-846)) 16 T ELT))) -(((-855) (-10 -7 (-15 -2993 ((-51) (-846))) (-15 -2994 ((-1305) (-846) (-51))) (-15 -2995 ((-1305) (-1152) (-1152))))) (T -855)) -((-2995 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1305)) (-5 *1 (-855)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-51)) (-5 *2 (-1305)) (-5 *1 (-855)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-51)) (-5 *1 (-855))))) -(-10 -7 (-15 -2993 ((-51) (-846))) (-15 -2994 ((-1305) (-846) (-51))) (-15 -2995 ((-1305) (-1152) (-1152)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4139 (((-560) $) NIL (|has| |#1| (-871)) ELT)) (-4240 (($) NIL (|has| |#1| (-21)) CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-3973 (((-3 $ "failed") $) 42 (|has| |#1| (-871)) ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 52 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 46 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 49 (|has| |#1| (-559)) ELT)) (-3690 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-2655 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3691 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2996 (($) 13 T ELT)) (-3009 (((-114) $) 12 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3010 (((-114) $) 11 T ELT)) (-4462 (((-888) $) 18 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-4043 (|has| |#1| (-871)) (|has| |#1| (-1070 (-560)))) ELT)) (-3614 (((-793)) 36 (|has| |#1| (-871)) CONST)) (-1389 (((-114) $ $) 54 T ELT)) (-3889 (($ $) NIL (|has| |#1| (-871)) ELT)) (-3145 (($) 23 (|has| |#1| (-21)) CONST)) (-3151 (($) 33 (|has| |#1| (-871)) CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3540 (((-114) $ $) 21 T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3172 (((-114) $ $) 45 (|has| |#1| (-871)) ELT)) (-4353 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-871)) ELT) (($ $ (-793)) NIL (|has| |#1| (-871)) ELT)) (* (($ $ $) 39 (|has| |#1| (-871)) ELT) (($ (-560) $) 27 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) -(((-856 |#1|) (-13 (-1133) (-426 |#1|) (-10 -8 (-15 -2996 ($)) (-15 -3010 ((-114) $)) (-15 -3009 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1133)) (T -856)) -((-2996 (*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1133)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-1133)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-1133)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-856 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) (-3511 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-856 *3)) (-4 *3 (-559)) (-4 *3 (-1133))))) -(-13 (-1133) (-426 |#1|) (-10 -8 (-15 -2996 ($)) (-15 -3010 ((-114) $)) (-15 -3009 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) -((-4474 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|)) 12 T ELT) (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 13 T ELT))) -(((-857 |#1| |#2|) (-10 -7 (-15 -4474 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4474 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|)))) (-1133) (-1133)) (T -857)) -((-4474 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *1 (-857 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-856 *6)) (-5 *1 (-857 *5 *6))))) -(-10 -7 (-15 -4474 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4474 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #1="failed") $) NIL T ELT) (((-3 (-115) #1#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2998 ((|#1| (-115) |#1|) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2997 (($ |#1| (-374 (-115))) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2999 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3000 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4316 ((|#1| $ |#1|) NIL T ELT)) (-3001 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3002 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-858 |#1|) (-13 (-1081) (-1070 |#1|) (-1070 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3002 ($ $)) (-15 -3002 ($ $ $)) (-15 -3001 (|#1| |#1|))) |%noBranch|) (-15 -3000 ($ $ (-1 |#1| |#1|))) (-15 -2999 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2998 (|#1| (-115) |#1|)) (-15 -2997 ($ |#1| (-374 (-115)))))) (-1081)) (T -858)) -((-3002 (*1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-3002 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-3001 (*1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-3000 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-858 *3)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-858 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-5 *1 (-858 *4)) (-4 *4 (-1081)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-858 *3)) (-4 *3 (-1081)))) (-2998 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-858 *2)) (-4 *2 (-1081)))) (-2997 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-858 *2)) (-4 *2 (-1081))))) -(-13 (-1081) (-1070 |#1|) (-1070 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3002 ($ $)) (-15 -3002 ($ $ $)) (-15 -3001 (|#1| |#1|))) |%noBranch|) (-15 -3000 ($ $ (-1 |#1| |#1|))) (-15 -2999 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2998 (|#1| (-115) |#1|)) (-15 -2997 ($ |#1| (-374 (-115)))))) -((-3118 (((-114) $ |#2|) 14 T ELT)) (-4462 (((-888) $) 11 T ELT))) -(((-859 |#1| |#2|) (-10 -8 (-15 -3118 ((-114) |#1| |#2|)) (-15 -4462 ((-888) |#1|))) (-860 |#2|) (-1133)) (T -859)) -NIL -(-10 -8 (-15 -3118 ((-114) |#1| |#2|)) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-4056 ((|#1| $) 19 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3118 (((-114) $ |#1|) 17 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3003 (((-55) $) 18 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-860 |#1|) (-142) (-1133)) (T -860)) -((-4056 (*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1133)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1133)) (-5 *2 (-55)))) (-3118 (*1 *2 *1 *3) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(-13 (-1133) (-10 -8 (-15 -4056 (|t#1| $)) (-15 -3003 ((-55) $)) (-15 -3118 ((-114) $ |t#1|)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3004 (((-217 (-516)) (-1191)) 9 T ELT))) -(((-861) (-10 -7 (-15 -3004 ((-217 (-516)) (-1191))))) (T -861)) -((-3004 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-217 (-516))) (-5 *1 (-861))))) -(-10 -7 (-15 -3004 ((-217 (-516)) (-1191)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3823 (((-1147) $) 10 T ELT)) (-4056 (((-520) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3118 (((-114) $ (-520)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4036 (($ (-520) (-1147)) 8 T ELT)) (-4462 (((-888) $) 25 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3003 (((-55) $) 20 T ELT)) (-3540 (((-114) $ $) 12 T ELT))) -(((-862) (-13 (-860 (-520)) (-10 -8 (-15 -3823 ((-1147) $)) (-15 -4036 ($ (-520) (-1147)))))) (T -862)) -((-3823 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-862)))) (-4036 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1147)) (-5 *1 (-862))))) -(-13 (-860 (-520)) (-10 -8 (-15 -3823 ((-1147) $)) (-15 -4036 ($ (-520) (-1147))))) -((-3053 (((-114) $ $) 7 T ELT)) (-3005 (((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 18 T ELT) (((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 17 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 20 T ELT) (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 19 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-863) (-142)) (T -863)) -((-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-863)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) (-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-863)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-863)) (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) (-5 *2 (-1067)))) (-3005 (*1 *2 *3) (-12 (-4 *1 (-863)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (-5 *2 (-1067))))) -(-13 (-1133) (-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -3005 ((-1067) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -3005 ((-1067) (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3006 (((-1067) (-663 (-326 (-391))) (-663 (-391))) 164 T ELT) (((-1067) (-326 (-391)) (-663 (-391))) 162 T ELT) (((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-866 (-391)))) 160 T ELT) (((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-326 (-391))) (-663 (-866 (-391)))) 158 T ELT) (((-1067) (-865)) 125 T ELT) (((-1067) (-865) (-1095)) 124 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865) (-1095)) 85 T ELT) (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865)) 87 T ELT)) (-3007 (((-1067) (-663 (-326 (-391))) (-663 (-391))) 165 T ELT) (((-1067) (-865)) 148 T ELT))) -(((-864) (-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865) (-1095))) (-15 -3006 ((-1067) (-865) (-1095))) (-15 -3006 ((-1067) (-865))) (-15 -3007 ((-1067) (-865))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-326 (-391))) (-663 (-866 (-391))))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-866 (-391))))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)))) (-15 -3006 ((-1067) (-663 (-326 (-391))) (-663 (-391)))) (-15 -3007 ((-1067) (-663 (-326 (-391))) (-663 (-391)))))) (T -864)) -((-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *5 (-663 (-866 (-391)))) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-866 (-391)))) (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-865)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-864)))) (-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-865)) (-5 *4 (-1095)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-864)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-864))))) -(-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-865) (-1095))) (-15 -3006 ((-1067) (-865) (-1095))) (-15 -3006 ((-1067) (-865))) (-15 -3007 ((-1067) (-865))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-326 (-391))) (-663 (-866 (-391))))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)) (-663 (-866 (-391))) (-663 (-866 (-391))))) (-15 -3006 ((-1067) (-326 (-391)) (-663 (-391)))) (-15 -3006 ((-1067) (-663 (-326 (-391))) (-663 (-391)))) (-15 -3007 ((-1067) (-663 (-326 (-391))) (-663 (-391))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3660 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) $) 21 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-865) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))) (-15 -4462 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -4462 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))))) (-15 -3660 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) $))))) (T -865)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (-5 *1 (-865)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) (-5 *1 (-865)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) (-5 *1 (-865)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) (-5 *1 (-865))))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229))))))) (-15 -4462 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) (-15 -4462 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))))) (-15 -3660 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-866 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229)))))) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-3008 (((-1152) $) 31 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4139 (((-560) $) NIL (|has| |#1| (-871)) ELT)) (-4240 (($) NIL (|has| |#1| (-21)) CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-3973 (((-3 $ "failed") $) 57 (|has| |#1| (-871)) ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 65 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 60 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 63 (|has| |#1| (-559)) ELT)) (-3690 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3012 (($) 14 T ELT)) (-2655 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3691 (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3011 (($) 16 T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3009 (((-114) $) 12 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3010 (((-114) $) 11 T ELT)) (-4462 (((-888) $) 24 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-4043 (|has| |#1| (-871)) (|has| |#1| (-1070 (-560)))) ELT)) (-3614 (((-793)) 50 (|has| |#1| (-871)) CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| |#1| (-871)) ELT)) (-3145 (($) 37 (|has| |#1| (-21)) CONST)) (-3151 (($) 47 (|has| |#1| (-871)) CONST)) (-3051 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3540 (((-114) $ $) 35 T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-3172 (((-114) $ $) 59 (|has| |#1| (-871)) ELT)) (-4353 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-871)) ELT) (($ $ (-793)) NIL (|has| |#1| (-871)) ELT)) (* (($ $ $) 54 (|has| |#1| (-871)) ELT) (($ (-560) $) 41 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) -(((-866 |#1|) (-13 (-1133) (-426 |#1|) (-10 -8 (-15 -3012 ($)) (-15 -3011 ($)) (-15 -3010 ((-114) $)) (-15 -3009 ((-114) $)) (-15 -3008 ((-1152) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1133)) (T -866)) -((-3012 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1133)))) (-3011 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1133)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-1133)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-1133)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-866 *3)) (-4 *3 (-1133)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-866 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) (-3511 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-866 *3)) (-4 *3 (-559)) (-4 *3 (-1133))))) -(-13 (-1133) (-426 |#1|) (-10 -8 (-15 -3012 ($)) (-15 -3011 ($)) (-15 -3010 ((-114) $)) (-15 -3009 ((-114) $)) (-15 -3008 ((-1152) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) -((-4474 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|) (-866 |#2|) (-866 |#2|)) 13 T ELT) (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 14 T ELT))) -(((-867 |#1| |#2|) (-10 -7 (-15 -4474 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))) (-15 -4474 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|) (-866 |#2|) (-866 |#2|)))) (-1133) (-1133)) (T -867)) -((-4474 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-866 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *1 (-867 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6))))) -(-10 -7 (-15 -4474 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))) (-15 -4474 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|) (-866 |#2|) (-866 |#2|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3624 (((-793)) 27 T ELT)) (-3481 (($) 30 T ELT)) (-3016 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-3344 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2234 (((-949) $) 29 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2645 (($ (-949)) 28 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT))) +((-3049 (((-114) $ $) NIL T ELT)) (-4446 (((-661 |#1|) $) 38 T ELT)) (-3620 (((-791) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4451 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-4311 (($ $) 42 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-1963 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2522 ((|#1| $ (-558)) NIL T ELT)) (-2523 (((-791) $ (-558)) NIL T ELT)) (-4448 (($ $) 54 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-2514 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2515 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4452 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-2917 (((-114) $ $) 51 T ELT)) (-4345 (((-791) $) 34 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1964 (($ $ $) NIL T ELT)) (-1965 (($ $ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 ((|#1| $) 41 T ELT)) (-1997 (((-661 (-2 (|:| |gen| |#1|) (|:| -4455 (-791)))) $) NIL T ELT)) (-3362 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3046 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 7 T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 53 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ |#1| (-791)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-841 |#1|) (-13 (-399 |#1|) (-868) (-10 -8 (-15 -4313 (|#1| $)) (-15 -4311 ($ $)) (-15 -4448 ($ $)) (-15 -2917 ((-114) $ $)) (-15 -4452 ((-3 $ "failed") $ |#1|)) (-15 -4451 ((-3 $ "failed") $ |#1|)) (-15 -3046 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4345 ((-791) $)) (-15 -4446 ((-661 |#1|) $)))) (-870)) (T -841)) +((-4313 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) (-4311 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) (-4448 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) (-2917 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-870)))) (-4452 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) (-4451 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) (-3046 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) (-5 *1 (-841 *3)) (-4 *3 (-870)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-841 *3)) (-4 *3 (-870)))) (-4446 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-841 *3)) (-4 *3 (-870))))) +(-13 (-399 |#1|) (-868) (-10 -8 (-15 -4313 (|#1| $)) (-15 -4311 ($ $)) (-15 -4448 ($ $)) (-15 -2917 ((-114) $ $)) (-15 -4452 ((-3 $ "failed") $ |#1|)) (-15 -4451 ((-3 $ "failed") $ |#1|)) (-15 -3046 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4345 ((-791) $)) (-15 -4446 ((-661 |#1|) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4135 (((-558) $) 65 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3686 (((-114) $) 63 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3687 (((-114) $) 64 T ELT)) (-3012 (($ $ $) 57 T ELT)) (-3340 (($ $ $) 58 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3885 (($ $) 66 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 59 T ELT)) (-3048 (((-114) $ $) 61 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 60 T ELT)) (-3168 (((-114) $ $) 62 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-842) (-142)) (T -842)) +NIL +(-13 (-569) (-869)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-2978 (((-1303) (-845) $ (-114)) 9 T ELT) (((-1303) (-845) $) 8 T ELT) (((-1189) $ (-114)) 7 T ELT) (((-1189) $) 6 T ELT))) +(((-843) (-142)) (T -843)) +((-2978 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303)))) (-2978 (*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303)))) (-2978 (*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189))))) +(-13 (-10 -8 (-15 -2978 ((-1189) $)) (-15 -2978 ((-1189) $ (-114))) (-15 -2978 ((-1303) (-845) $)) (-15 -2978 ((-1303) (-845) $ (-114))))) +((-2918 (($ (-1150)) 7 T ELT)) (-2922 (((-114) $ (-1189) (-1150)) 15 T ELT)) (-2921 (((-845) $) 12 T ELT)) (-2920 (((-845) $) 11 T ELT)) (-2919 (((-1303) $) 9 T ELT)) (-2923 (((-114) $ (-1150)) 16 T ELT))) +(((-844) (-10 -8 (-15 -2918 ($ (-1150))) (-15 -2919 ((-1303) $)) (-15 -2920 ((-845) $)) (-15 -2921 ((-845) $)) (-15 -2922 ((-114) $ (-1189) (-1150))) (-15 -2923 ((-114) $ (-1150))))) (T -844)) +((-2923 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-114)) (-5 *1 (-844)))) (-2922 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1150)) (-5 *2 (-114)) (-5 *1 (-844)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-844))))) +(-10 -8 (-15 -2918 ($ (-1150))) (-15 -2919 ((-1303) $)) (-15 -2920 ((-845) $)) (-15 -2921 ((-845) $)) (-15 -2922 ((-114) $ (-1189) (-1150))) (-15 -2923 ((-114) $ (-1150)))) +((-2927 (((-1303) $ (-846)) 12 T ELT)) (-2944 (((-1303) $ (-1207)) 32 T ELT)) (-2946 (((-1303) $ (-1189) (-1189)) 34 T ELT)) (-2945 (((-1303) $ (-1189)) 33 T ELT)) (-2934 (((-1303) $) 19 T ELT)) (-2942 (((-1303) $ (-558)) 28 T ELT)) (-2943 (((-1303) $ (-229)) 30 T ELT)) (-2933 (((-1303) $) 18 T ELT)) (-2941 (((-1303) $) 26 T ELT)) (-2940 (((-1303) $) 25 T ELT)) (-2938 (((-1303) $) 23 T ELT)) (-2939 (((-1303) $) 24 T ELT)) (-2937 (((-1303) $) 22 T ELT)) (-2936 (((-1303) $) 21 T ELT)) (-2935 (((-1303) $) 20 T ELT)) (-2931 (((-1303) $) 16 T ELT)) (-2932 (((-1303) $) 17 T ELT)) (-2930 (((-1303) $) 15 T ELT)) (-2929 (((-1303) $) 14 T ELT)) (-2928 (((-1303) $) 13 T ELT)) (-2925 (($ (-1189) (-846)) 9 T ELT)) (-2924 (($ (-1189) (-1189) (-846)) 8 T ELT)) (-2963 (((-1207) $) 51 T ELT)) (-2966 (((-1207) $) 55 T ELT)) (-2965 (((-2 (|:| |cd| (-1189)) (|:| -4052 (-1189))) $) 54 T ELT)) (-2964 (((-1189) $) 52 T ELT)) (-2953 (((-1303) $) 41 T ELT)) (-2961 (((-558) $) 49 T ELT)) (-2962 (((-229) $) 50 T ELT)) (-2952 (((-1303) $) 40 T ELT)) (-2960 (((-1303) $) 48 T ELT)) (-2959 (((-1303) $) 47 T ELT)) (-2957 (((-1303) $) 45 T ELT)) (-2958 (((-1303) $) 46 T ELT)) (-2956 (((-1303) $) 44 T ELT)) (-2955 (((-1303) $) 43 T ELT)) (-2954 (((-1303) $) 42 T ELT)) (-2950 (((-1303) $) 38 T ELT)) (-2951 (((-1303) $) 39 T ELT)) (-2949 (((-1303) $) 37 T ELT)) (-2948 (((-1303) $) 36 T ELT)) (-2947 (((-1303) $) 35 T ELT)) (-2926 (((-1303) $) 11 T ELT))) +(((-845) (-10 -8 (-15 -2924 ($ (-1189) (-1189) (-846))) (-15 -2925 ($ (-1189) (-846))) (-15 -2926 ((-1303) $)) (-15 -2927 ((-1303) $ (-846))) (-15 -2928 ((-1303) $)) (-15 -2929 ((-1303) $)) (-15 -2930 ((-1303) $)) (-15 -2931 ((-1303) $)) (-15 -2932 ((-1303) $)) (-15 -2933 ((-1303) $)) (-15 -2934 ((-1303) $)) (-15 -2935 ((-1303) $)) (-15 -2936 ((-1303) $)) (-15 -2937 ((-1303) $)) (-15 -2938 ((-1303) $)) (-15 -2939 ((-1303) $)) (-15 -2940 ((-1303) $)) (-15 -2941 ((-1303) $)) (-15 -2942 ((-1303) $ (-558))) (-15 -2943 ((-1303) $ (-229))) (-15 -2944 ((-1303) $ (-1207))) (-15 -2945 ((-1303) $ (-1189))) (-15 -2946 ((-1303) $ (-1189) (-1189))) (-15 -2947 ((-1303) $)) (-15 -2948 ((-1303) $)) (-15 -2949 ((-1303) $)) (-15 -2950 ((-1303) $)) (-15 -2951 ((-1303) $)) (-15 -2952 ((-1303) $)) (-15 -2953 ((-1303) $)) (-15 -2954 ((-1303) $)) (-15 -2955 ((-1303) $)) (-15 -2956 ((-1303) $)) (-15 -2957 ((-1303) $)) (-15 -2958 ((-1303) $)) (-15 -2959 ((-1303) $)) (-15 -2960 ((-1303) $)) (-15 -2961 ((-558) $)) (-15 -2962 ((-229) $)) (-15 -2963 ((-1207) $)) (-15 -2964 ((-1189) $)) (-15 -2965 ((-2 (|:| |cd| (-1189)) (|:| -4052 (-1189))) $)) (-15 -2966 ((-1207) $)))) (T -845)) +((-2966 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4052 (-1189)))) (-5 *1 (-845)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-845)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2945 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2943 (*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))) (-2924 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845))))) +(-10 -8 (-15 -2924 ($ (-1189) (-1189) (-846))) (-15 -2925 ($ (-1189) (-846))) (-15 -2926 ((-1303) $)) (-15 -2927 ((-1303) $ (-846))) (-15 -2928 ((-1303) $)) (-15 -2929 ((-1303) $)) (-15 -2930 ((-1303) $)) (-15 -2931 ((-1303) $)) (-15 -2932 ((-1303) $)) (-15 -2933 ((-1303) $)) (-15 -2934 ((-1303) $)) (-15 -2935 ((-1303) $)) (-15 -2936 ((-1303) $)) (-15 -2937 ((-1303) $)) (-15 -2938 ((-1303) $)) (-15 -2939 ((-1303) $)) (-15 -2940 ((-1303) $)) (-15 -2941 ((-1303) $)) (-15 -2942 ((-1303) $ (-558))) (-15 -2943 ((-1303) $ (-229))) (-15 -2944 ((-1303) $ (-1207))) (-15 -2945 ((-1303) $ (-1189))) (-15 -2946 ((-1303) $ (-1189) (-1189))) (-15 -2947 ((-1303) $)) (-15 -2948 ((-1303) $)) (-15 -2949 ((-1303) $)) (-15 -2950 ((-1303) $)) (-15 -2951 ((-1303) $)) (-15 -2952 ((-1303) $)) (-15 -2953 ((-1303) $)) (-15 -2954 ((-1303) $)) (-15 -2955 ((-1303) $)) (-15 -2956 ((-1303) $)) (-15 -2957 ((-1303) $)) (-15 -2958 ((-1303) $)) (-15 -2959 ((-1303) $)) (-15 -2960 ((-1303) $)) (-15 -2961 ((-558) $)) (-15 -2962 ((-229) $)) (-15 -2963 ((-1207) $)) (-15 -2964 ((-1189) $)) (-15 -2965 ((-2 (|:| |cd| (-1189)) (|:| -4052 (-1189))) $)) (-15 -2966 ((-1207) $))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2969 (($) 16 T ELT)) (-2970 (($) 14 T ELT)) (-2968 (($) 17 T ELT)) (-2967 (($) 15 T ELT)) (-3536 (((-114) $ $) 9 T ELT))) +(((-846) (-13 (-1131) (-10 -8 (-15 -2970 ($)) (-15 -2969 ($)) (-15 -2968 ($)) (-15 -2967 ($))))) (T -846)) +((-2970 (*1 *1) (-5 *1 (-846))) (-2969 (*1 *1) (-5 *1 (-846))) (-2968 (*1 *1) (-5 *1 (-846))) (-2967 (*1 *1) (-5 *1 (-846)))) +(-13 (-1131) (-10 -8 (-15 -2970 ($)) (-15 -2969 ($)) (-15 -2968 ($)) (-15 -2967 ($)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2971 (($ (-848) (-661 (-1207))) 32 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2973 (((-848) $) 33 T ELT)) (-2972 (((-661 (-1207)) $) 34 T ELT)) (-4458 (((-886) $) 31 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-847) (-13 (-1131) (-10 -8 (-15 -2973 ((-848) $)) (-15 -2972 ((-661 (-1207)) $)) (-15 -2971 ($ (-848) (-661 (-1207))))))) (T -847)) +((-2973 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-847)))) (-2971 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-661 (-1207))) (-5 *1 (-847))))) +(-13 (-1131) (-10 -8 (-15 -2973 ((-848) $)) (-15 -2972 ((-661 (-1207)) $)) (-15 -2971 ($ (-848) (-661 (-1207)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 23 T ELT) (($ (-1207)) 19 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2975 (((-114) $) 10 T ELT)) (-2976 (((-114) $) 9 T ELT)) (-2974 (((-114) $) 11 T ELT)) (-2977 (((-114) $) 8 T ELT)) (-3536 (((-114) $ $) 21 T ELT))) +(((-848) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-1207))) (-15 -2977 ((-114) $)) (-15 -2976 ((-114) $)) (-15 -2975 ((-114) $)) (-15 -2974 ((-114) $))))) (T -848)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848))))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-1207))) (-15 -2977 ((-114) $)) (-15 -2976 ((-114) $)) (-15 -2975 ((-114) $)) (-15 -2974 ((-114) $)))) +((-2978 (((-1303) (-845) (-326 |#1|) (-114)) 23 T ELT) (((-1303) (-845) (-326 |#1|)) 88 T ELT) (((-1189) (-326 |#1|) (-114)) 87 T ELT) (((-1189) (-326 |#1|)) 86 T ELT))) +(((-849 |#1|) (-10 -7 (-15 -2978 ((-1189) (-326 |#1|))) (-15 -2978 ((-1189) (-326 |#1|) (-114))) (-15 -2978 ((-1303) (-845) (-326 |#1|))) (-15 -2978 ((-1303) (-845) (-326 |#1|) (-114)))) (-13 (-843) (-1079))) (T -849)) +((-2978 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114)) (-4 *6 (-13 (-843) (-1079))) (-5 *2 (-1303)) (-5 *1 (-849 *6)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1079))) (-5 *2 (-1303)) (-5 *1 (-849 *5)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1079))) (-5 *2 (-1189)) (-5 *1 (-849 *5)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1079))) (-5 *2 (-1189)) (-5 *1 (-849 *4))))) +(-10 -7 (-15 -2978 ((-1189) (-326 |#1|))) (-15 -2978 ((-1189) (-326 |#1|) (-114))) (-15 -2978 ((-1303) (-845) (-326 |#1|))) (-15 -2978 ((-1303) (-845) (-326 |#1|) (-114)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2979 ((|#1| $) 10 T ELT)) (-2980 (($ |#1|) 9 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-791)) NIL T ELT)) (-3303 (((-791) $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4270 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-791)) NIL (|has| |#1| (-240)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-4189 ((|#2| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-791)) NIL (|has| |#1| (-240)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-850 |#1| |#2|) (-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2980 ($ |#1|)) (-15 -2979 (|#1| $)))) (-728 |#2|) (-1079)) (T -850)) +((-2980 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-850 *2 *3)) (-4 *2 (-728 *3)))) (-2979 (*1 *2 *1) (-12 (-4 *2 (-728 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1079))))) +(-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2980 ($ |#1|)) (-15 -2979 (|#1| $)))) +((-2988 (((-323) (-1189) (-1189)) 12 T ELT)) (-2987 (((-114) (-1189) (-1189)) 34 T ELT)) (-2986 (((-114) (-1189)) 33 T ELT)) (-2983 (((-51) (-1189)) 25 T ELT)) (-2982 (((-51) (-1189)) 23 T ELT)) (-2981 (((-51) (-845)) 17 T ELT)) (-2985 (((-661 (-1189)) (-1189)) 28 T ELT)) (-2984 (((-661 (-1189))) 27 T ELT))) +(((-851) (-10 -7 (-15 -2981 ((-51) (-845))) (-15 -2982 ((-51) (-1189))) (-15 -2983 ((-51) (-1189))) (-15 -2984 ((-661 (-1189)))) (-15 -2985 ((-661 (-1189)) (-1189))) (-15 -2986 ((-114) (-1189))) (-15 -2987 ((-114) (-1189) (-1189))) (-15 -2988 ((-323) (-1189) (-1189))))) (T -851)) +((-2988 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851)))) (-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-2985 (*1 *2 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))) (-2984 (*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-851)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851))))) +(-10 -7 (-15 -2981 ((-51) (-845))) (-15 -2982 ((-51) (-1189))) (-15 -2983 ((-51) (-1189))) (-15 -2984 ((-661 (-1189)))) (-15 -2985 ((-661 (-1189)) (-1189))) (-15 -2986 ((-114) (-1189))) (-15 -2987 ((-114) (-1189) (-1189))) (-15 -2988 ((-323) (-1189) (-1189)))) +((-3049 (((-114) $ $) 19 T ELT)) (-3734 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3736 (($ $ $) 77 T ELT)) (-3735 (((-114) $ $) 78 T ELT)) (-3739 (($ (-661 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2604 (($ $) 66 T ELT)) (-1477 (($ $) 62 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ |#1| $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) 61 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) 69 T ELT)) (-3012 ((|#1| $) 83 T ELT)) (-3339 (($ $ $) 86 T ELT)) (-4020 (($ $ $) 85 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3340 ((|#1| $) 84 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 T ELT)) (-3738 (($ $ $) 74 T ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3743 (((-1150) $) 21 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2603 (((-661 (-2 (|:| -2296 |#1|) (|:| -2167 (-791)))) $) 65 T ELT)) (-3737 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 54 T ELT)) (-4458 (((-886) $) 17 T ELT)) (-3740 (($ (-661 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1387 (((-114) $ $) 20 T ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 T ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-852 |#1|) (-142) (-870)) (T -852)) +((-3012 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-870))))) +(-13 (-757 |t#1|) (-998 |t#1|) (-10 -8 (-15 -3012 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-886)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-715 |#1|) . T) ((-757 |#1|) . T) ((-998 |#1|) . T) ((-1129 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-2991 (((-1303) (-1150) (-1150)) 48 T ELT)) (-2990 (((-1303) (-844) (-51)) 45 T ELT)) (-2989 (((-51) (-844)) 16 T ELT))) +(((-853) (-10 -7 (-15 -2989 ((-51) (-844))) (-15 -2990 ((-1303) (-844) (-51))) (-15 -2991 ((-1303) (-1150) (-1150))))) (T -853)) +((-2991 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853))))) +(-10 -7 (-15 -2989 ((-51) (-844))) (-15 -2990 ((-1303) (-844) (-51))) (-15 -2991 ((-1303) (-1150) (-1150)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4135 (((-558) $) NIL (|has| |#1| (-869)) ELT)) (-4236 (($) NIL (|has| |#1| (-21)) CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3969 (((-3 $ "failed") $) 42 (|has| |#1| (-869)) ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 52 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 46 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 49 (|has| |#1| (-557)) ELT)) (-3686 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-2651 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3687 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2992 (($) 13 T ELT)) (-3005 (((-114) $) 12 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3006 (((-114) $) 11 T ELT)) (-4458 (((-886) $) 18 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-4039 (|has| |#1| (-869)) (|has| |#1| (-1068 (-558)))) ELT)) (-3610 (((-791)) 36 (|has| |#1| (-869)) CONST)) (-1387 (((-114) $ $) 54 T ELT)) (-3885 (($ $) NIL (|has| |#1| (-869)) ELT)) (-3141 (($) 23 (|has| |#1| (-21)) CONST)) (-3147 (($) 33 (|has| |#1| (-869)) CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3536 (((-114) $ $) 21 T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3168 (((-114) $ $) 45 (|has| |#1| (-869)) ELT)) (-4349 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-947)) NIL (|has| |#1| (-869)) ELT) (($ $ (-791)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 39 (|has| |#1| (-869)) ELT) (($ (-558) $) 27 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-947) $) NIL (|has| |#1| (-21)) ELT))) +(((-854 |#1|) (-13 (-1131) (-424 |#1|) (-10 -8 (-15 -2992 ($)) (-15 -3006 ((-114) $)) (-15 -3005 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1131)) (T -854)) +((-2992 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1131)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1131)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1131)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) (-3507 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1131))))) +(-13 (-1131) (-424 |#1|) (-10 -8 (-15 -2992 ($)) (-15 -3006 ((-114) $)) (-15 -3005 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) +((-4470 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)) 12 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 13 T ELT))) +(((-855 |#1| |#2|) (-10 -7 (-15 -4470 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -4470 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) (-1131) (-1131)) (T -855)) +((-4470 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-855 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6))))) +(-10 -7 (-15 -4470 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -4470 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #1="failed") $) NIL T ELT) (((-3 (-115) #1#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2994 ((|#1| (-115) |#1|) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2993 (($ |#1| (-374 (-115))) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2995 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2996 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4312 ((|#1| $ |#1|) NIL T ELT)) (-2997 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-856 |#1|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2998 ($ $)) (-15 -2998 ($ $ $)) (-15 -2997 (|#1| |#1|))) |%noBranch|) (-15 -2996 ($ $ (-1 |#1| |#1|))) (-15 -2995 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2994 (|#1| (-115) |#1|)) (-15 -2993 ($ |#1| (-374 (-115)))))) (-1079)) (T -856)) +((-2998 (*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-2997 (*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) (-2996 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-856 *3)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-856 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-856 *4)) (-4 *4 (-1079)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-856 *3)) (-4 *3 (-1079)))) (-2994 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1079)))) (-2993 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2998 ($ $)) (-15 -2998 ($ $ $)) (-15 -2997 (|#1| |#1|))) |%noBranch|) (-15 -2996 ($ $ (-1 |#1| |#1|))) (-15 -2995 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2994 (|#1| (-115) |#1|)) (-15 -2993 ($ |#1| (-374 (-115)))))) +((-3114 (((-114) $ |#2|) 14 T ELT)) (-4458 (((-886) $) 11 T ELT))) +(((-857 |#1| |#2|) (-10 -8 (-15 -3114 ((-114) |#1| |#2|)) (-15 -4458 ((-886) |#1|))) (-858 |#2|) (-1131)) (T -857)) +NIL +(-10 -8 (-15 -3114 ((-114) |#1| |#2|)) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-4052 ((|#1| $) 19 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3114 (((-114) $ |#1|) 17 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2999 (((-55) $) 18 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-858 |#1|) (-142) (-1131)) (T -858)) +((-4052 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1131)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1131)) (-5 *2 (-55)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(-13 (-1131) (-10 -8 (-15 -4052 (|t#1| $)) (-15 -2999 ((-55) $)) (-15 -3114 ((-114) $ |t#1|)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3000 (((-217 (-514)) (-1189)) 9 T ELT))) +(((-859) (-10 -7 (-15 -3000 ((-217 (-514)) (-1189))))) (T -859)) +((-3000 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-514))) (-5 *1 (-859))))) +(-10 -7 (-15 -3000 ((-217 (-514)) (-1189)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3819 (((-1145) $) 10 T ELT)) (-4052 (((-518) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3114 (((-114) $ (-518)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4032 (($ (-518) (-1145)) 8 T ELT)) (-4458 (((-886) $) 25 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2999 (((-55) $) 20 T ELT)) (-3536 (((-114) $ $) 12 T ELT))) +(((-860) (-13 (-858 (-518)) (-10 -8 (-15 -3819 ((-1145) $)) (-15 -4032 ($ (-518) (-1145)))))) (T -860)) +((-3819 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-860)))) (-4032 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1145)) (-5 *1 (-860))))) +(-13 (-858 (-518)) (-10 -8 (-15 -3819 ((-1145) $)) (-15 -4032 ($ (-518) (-1145))))) +((-3049 (((-114) $ $) 7 T ELT)) (-3001 (((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 18 T ELT) (((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 17 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 20 T ELT) (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 19 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-861) (-142)) (T -861)) +((-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) (-3001 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *2 (-1065)))) (-3001 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (-5 *2 (-1065))))) +(-13 (-1131) (-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -3001 ((-1065) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -3001 ((-1065) (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3002 (((-1065) (-661 (-326 (-391))) (-661 (-391))) 164 T ELT) (((-1065) (-326 (-391)) (-661 (-391))) 162 T ELT) (((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-864 (-391)))) 160 T ELT) (((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-326 (-391))) (-661 (-864 (-391)))) 158 T ELT) (((-1065) (-863)) 125 T ELT) (((-1065) (-863) (-1093)) 124 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863) (-1093)) 85 T ELT) (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863)) 87 T ELT)) (-3003 (((-1065) (-661 (-326 (-391))) (-661 (-391))) 165 T ELT) (((-1065) (-863)) 148 T ELT))) +(((-862) (-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863) (-1093))) (-15 -3002 ((-1065) (-863) (-1093))) (-15 -3002 ((-1065) (-863))) (-15 -3003 ((-1065) (-863))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-326 (-391))) (-661 (-864 (-391))))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-864 (-391))))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)))) (-15 -3002 ((-1065) (-661 (-326 (-391))) (-661 (-391)))) (-15 -3003 ((-1065) (-661 (-326 (-391))) (-661 (-391)))))) (T -862)) +((-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *5 (-661 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-661 (-391))) (-5 *5 (-661 (-864 (-391)))) (-5 *6 (-661 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-862)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-862)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-862))))) +(-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-863) (-1093))) (-15 -3002 ((-1065) (-863) (-1093))) (-15 -3002 ((-1065) (-863))) (-15 -3003 ((-1065) (-863))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-326 (-391))) (-661 (-864 (-391))))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)) (-661 (-864 (-391))) (-661 (-864 (-391))))) (-15 -3002 ((-1065) (-326 (-391)) (-661 (-391)))) (-15 -3002 ((-1065) (-661 (-326 (-391))) (-661 (-391)))) (-15 -3003 ((-1065) (-661 (-326 (-391))) (-661 (-391))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3656 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) $) 21 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-863) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))) (-15 -4458 ($ (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -4458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))))) (-15 -3656 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) $))))) (T -863)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (-5 *1 (-863)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *1 (-863)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) (-5 *1 (-863)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) (-5 *1 (-863))))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229))))))) (-15 -4458 ($ (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) (-15 -4458 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))))) (-15 -3656 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229)))))) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-3004 (((-1150) $) 31 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4135 (((-558) $) NIL (|has| |#1| (-869)) ELT)) (-4236 (($) NIL (|has| |#1| (-21)) CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3969 (((-3 $ "failed") $) 57 (|has| |#1| (-869)) ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 65 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 60 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 63 (|has| |#1| (-557)) ELT)) (-3686 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3008 (($) 14 T ELT)) (-2651 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3687 (((-114) $) NIL (|has| |#1| (-869)) ELT)) (-3007 (($) 16 T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3005 (((-114) $) 12 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3006 (((-114) $) 11 T ELT)) (-4458 (((-886) $) 24 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-4039 (|has| |#1| (-869)) (|has| |#1| (-1068 (-558)))) ELT)) (-3610 (((-791)) 50 (|has| |#1| (-869)) CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| |#1| (-869)) ELT)) (-3141 (($) 37 (|has| |#1| (-21)) CONST)) (-3147 (($) 47 (|has| |#1| (-869)) CONST)) (-3047 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3536 (((-114) $ $) 35 T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-869)) ELT)) (-3168 (((-114) $ $) 59 (|has| |#1| (-869)) ELT)) (-4349 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-947)) NIL (|has| |#1| (-869)) ELT) (($ $ (-791)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 54 (|has| |#1| (-869)) ELT) (($ (-558) $) 41 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-947) $) NIL (|has| |#1| (-21)) ELT))) +(((-864 |#1|) (-13 (-1131) (-424 |#1|) (-10 -8 (-15 -3008 ($)) (-15 -3007 ($)) (-15 -3006 ((-114) $)) (-15 -3005 ((-114) $)) (-15 -3004 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1131)) (T -864)) +((-3008 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1131)))) (-3007 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1131)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1131)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1131)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1131)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-864 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) (-3507 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-864 *3)) (-4 *3 (-557)) (-4 *3 (-1131))))) +(-13 (-1131) (-424 |#1|) (-10 -8 (-15 -3008 ($)) (-15 -3007 ($)) (-15 -3006 ((-114) $)) (-15 -3005 ((-114) $)) (-15 -3004 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) +((-4470 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)) 13 T ELT) (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14 T ELT))) +(((-865 |#1| |#2|) (-10 -7 (-15 -4470 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -4470 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) (-1131) (-1131)) (T -865)) +((-4470 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-865 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6))))) +(-10 -7 (-15 -4470 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -4470 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3620 (((-791)) 27 T ELT)) (-3477 (($) 30 T ELT)) (-3012 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-3340 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2230 (((-947) $) 29 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2641 (($ (-947)) 28 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT))) +(((-866) (-142)) (T -866)) +((-3012 (*1 *1) (-4 *1 (-866))) (-3340 (*1 *1) (-4 *1 (-866)))) +(-13 (-870) (-381) (-10 -8 (-15 -3012 ($) -4464) (-15 -3340 ($) -4464))) +(((-102) . T) ((-630 (-886)) . T) ((-381) . T) ((-870) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3010 (((-114) (-1297 |#2|) (-1297 |#2|)) 19 T ELT)) (-3011 (((-114) (-1297 |#2|) (-1297 |#2|)) 20 T ELT)) (-3009 (((-114) (-1297 |#2|) (-1297 |#2|)) 16 T ELT))) +(((-867 |#1| |#2|) (-10 -7 (-15 -3009 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3010 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3011 ((-114) (-1297 |#2|) (-1297 |#2|)))) (-791) (-814)) (T -867)) +((-3011 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-791)))) (-3010 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-791)))) (-3009 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-791))))) +(-10 -7 (-15 -3009 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3010 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3011 ((-114) (-1297 |#2|) (-1297 |#2|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-4236 (($) 29 T CONST)) (-3969 (((-3 $ "failed") $) 32 T ELT)) (-2651 (((-114) $) 30 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 28 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (** (($ $ (-947)) 26 T ELT) (($ $ (-791)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-868) (-142)) (T -868)) -((-3016 (*1 *1) (-4 *1 (-868))) (-3344 (*1 *1) (-4 *1 (-868)))) -(-13 (-872) (-381) (-10 -8 (-15 -3016 ($) -4468) (-15 -3344 ($) -4468))) -(((-102) . T) ((-632 (-888)) . T) ((-381) . T) ((-872) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3014 (((-114) (-1299 |#2|) (-1299 |#2|)) 19 T ELT)) (-3015 (((-114) (-1299 |#2|) (-1299 |#2|)) 20 T ELT)) (-3013 (((-114) (-1299 |#2|) (-1299 |#2|)) 16 T ELT))) -(((-869 |#1| |#2|) (-10 -7 (-15 -3013 ((-114) (-1299 |#2|) (-1299 |#2|))) (-15 -3014 ((-114) (-1299 |#2|) (-1299 |#2|))) (-15 -3015 ((-114) (-1299 |#2|) (-1299 |#2|)))) (-793) (-816)) (T -869)) -((-3015 (*1 *2 *3 *3) (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) (-14 *4 (-793)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) (-14 *4 (-793)))) (-3013 (*1 *2 *3 *3) (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) (-14 *4 (-793))))) -(-10 -7 (-15 -3013 ((-114) (-1299 |#2|) (-1299 |#2|))) (-15 -3014 ((-114) (-1299 |#2|) (-1299 |#2|))) (-15 -3015 ((-114) (-1299 |#2|) (-1299 |#2|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-4240 (($) 29 T CONST)) (-3973 (((-3 $ "failed") $) 32 T ELT)) (-2655 (((-114) $) 30 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 28 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (** (($ $ (-949)) 26 T ELT) (($ $ (-793)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +NIL +(-13 (-880) (-746)) +(((-102) . T) ((-630 (-886)) . T) ((-746) . T) ((-880) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 31 T ELT)) (-1436 (((-3 $ "failed") $ $) 34 T ELT)) (-4135 (((-558) $) 37 T ELT)) (-4236 (($) 30 T CONST)) (-3969 (((-3 $ "failed") $) 49 T ELT)) (-3686 (((-114) $) 28 T ELT)) (-2651 (((-114) $) 51 T ELT)) (-3687 (((-114) $) 38 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 53 T ELT)) (-3610 (((-791)) 54 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3885 (($ $) 36 T ELT)) (-3141 (($) 29 T CONST)) (-3147 (($) 52 T CONST)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (-4349 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4351 (($ $ $) 25 T ELT)) (** (($ $ (-791)) 50 T ELT) (($ $ (-947)) 47 T ELT)) (* (($ (-947) $) 26 T ELT) (($ (-791) $) 32 T ELT) (($ (-558) $) 39 T ELT) (($ $ $) 48 T ELT))) +(((-869) (-142)) (T -869)) +NIL +(-13 (-812) (-1079) (-746)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-873) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT))) (((-870) (-142)) (T -870)) NIL -(-13 (-882) (-748)) -(((-102) . T) ((-632 (-888)) . T) ((-748) . T) ((-882) . T) ((-872) . T) ((-875) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 31 T ELT)) (-1438 (((-3 $ "failed") $ $) 34 T ELT)) (-4139 (((-560) $) 37 T ELT)) (-4240 (($) 30 T CONST)) (-3973 (((-3 $ "failed") $) 49 T ELT)) (-3690 (((-114) $) 28 T ELT)) (-2655 (((-114) $) 51 T ELT)) (-3691 (((-114) $) 38 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 53 T ELT)) (-3614 (((-793)) 54 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3889 (($ $) 36 T ELT)) (-3145 (($) 29 T CONST)) (-3151 (($) 52 T CONST)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (-4353 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4355 (($ $ $) 25 T ELT)) (** (($ $ (-793)) 50 T ELT) (($ $ (-949)) 47 T ELT)) (* (($ (-949) $) 26 T ELT) (($ (-793) $) 32 T ELT) (($ (-560) $) 39 T ELT) (($ $ $) 48 T ELT))) -(((-871) (-142)) (T -871)) -NIL -(-13 (-814) (-1081) (-748)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-872) . T) ((-875) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT))) -(((-872) (-142)) (T -872)) -NIL -(-13 (-1133) (-875)) -(((-102) . T) ((-632 (-888)) . T) ((-875) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4462 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-888) $) 15 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 12 T ELT))) -(((-873 |#1| |#2|) (-13 (-875) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|))) (-1249) (-1 (-114) |#1| |#1|)) (T -873)) -NIL -(-13 (-875) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|))) -((-3016 (($ $ $) 16 T ELT)) (-3344 (($ $ $) 15 T ELT)) (-1389 (((-114) $ $) 17 T ELT)) (-3051 (((-114) $ $) 12 T ELT)) (-3052 (((-114) $ $) 9 T ELT)) (-3540 (((-114) $ $) 14 T ELT)) (-3171 (((-114) $ $) 11 T ELT))) -(((-874 |#1|) (-10 -8 (-15 -3016 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3051 ((-114) |#1| |#1|)) (-15 -3171 ((-114) |#1| |#1|)) (-15 -3052 ((-114) |#1| |#1|)) (-15 -1389 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-875)) (T -874)) -NIL -(-10 -8 (-15 -3016 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3051 ((-114) |#1| |#1|)) (-15 -3171 ((-114) |#1| |#1|)) (-15 -3052 ((-114) |#1| |#1|)) (-15 -1389 ((-114) |#1| |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3016 (($ $ $) 10 T ELT)) (-3344 (($ $ $) 11 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3051 (((-114) $ $) 12 T ELT)) (-3052 (((-114) $ $) 14 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 13 T ELT)) (-3172 (((-114) $ $) 15 T ELT))) -(((-875) (-142)) (T -875)) -((-3172 (*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) (-3052 (*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) (-3171 (*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) (-3051 (*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) (-3344 (*1 *1 *1 *1) (-4 *1 (-875))) (-3016 (*1 *1 *1 *1) (-4 *1 (-875)))) -(-13 (-102) (-10 -8 (-15 -3172 ((-114) $ $)) (-15 -3052 ((-114) $ $)) (-15 -3171 ((-114) $ $)) (-15 -3051 ((-114) $ $)) (-15 -3344 ($ $ $)) (-15 -3016 ($ $ $)))) -(((-102) . T) ((-1249) . T)) -((-3021 (($ $ $) 49 T ELT)) (-3022 (($ $ $) 48 T ELT)) (-3023 (($ $ $) 46 T ELT)) (-3019 (($ $ $) 55 T ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 50 T ELT)) (-3020 (((-3 $ "failed") $ $) 53 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-4009 (($ $) 39 T ELT)) (-3027 (($ $ $) 43 T ELT)) (-3028 (($ $ $) 42 T ELT)) (-3017 (($ $ $) 51 T ELT)) (-3025 (($ $ $) 57 T ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 45 T ELT)) (-3026 (((-3 $ "failed") $ $) 52 T ELT)) (-3972 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-3304 ((|#2| $) 36 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4333 (((-663 |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-876 |#1| |#2|) (-10 -8 (-15 -3017 (|#1| |#1| |#1|)) (-15 -3018 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -3020 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3024 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3026 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4333 ((-663 |#2|) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4462 ((-888) |#1|))) (-877 |#2|) (-1081)) (T -876)) -NIL -(-10 -8 (-15 -3017 (|#1| |#1| |#1|)) (-15 -3018 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -3020 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3024 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2654 |#1|)) |#1| |#1|)) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3026 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3972 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4333 ((-663 |#2|) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3021 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ "failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #1="failed") $) 85 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 82 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3660 (((-560) $) 84 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 81 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 80 T ELT)) (-4475 (($ $) 74 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) 65 (|has| |#1| (-466)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3380 (($ |#1| (-793)) 72 T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 67 (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 68 (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) 76 T ELT)) (-3027 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ "failed") $ $) 61 (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) 75 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-571)) ELT)) (-4464 (((-793) $) 77 T ELT)) (-3304 ((|#1| $) 66 (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 83 (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) 78 T ELT)) (-4333 (((-663 |#1|) $) 71 T ELT)) (-4193 ((|#1| $ (-793)) 73 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3030 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-877 |#1|) (-142) (-1081)) (T -877)) -((-4464 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) (-4475 (*1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-877 *2)) (-4 *2 (-1081)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-877 *2)) (-4 *2 (-1081)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-663 *3)))) (-3030 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) (-3972 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-571)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) (-3032 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-466)))) (-4009 (*1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-466)))) (-3033 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) (-3028 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3027 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3026 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3025 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) (-4 *1 (-877 *3)))) (-3023 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3034 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3020 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3019 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) (-4 *1 (-877 *3)))) (-3017 (*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(-13 (-1081) (-111 |t#1| |t#1|) (-426 |t#1|) (-10 -8 (-15 -4464 ((-793) $)) (-15 -3307 ((-793) $)) (-15 -3678 (|t#1| $)) (-15 -4475 ($ $)) (-15 -4193 (|t#1| $ (-793))) (-15 -3380 ($ |t#1| (-793))) (-15 -4333 ((-663 |t#1|) $)) (-15 -3030 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -3972 ((-3 $ "failed") $ |t#1|)) (-15 -3031 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3032 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -3304 (|t#1| $)) (-15 -4009 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -3033 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3028 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3026 ((-3 $ "failed") $ $)) (-15 -3025 ($ $ $)) (-15 -3024 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3022 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3020 ((-3 $ "failed") $ $)) (-15 -3019 ($ $ $)) (-15 -3018 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $)) (-15 -3017 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #1=(-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-426 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1070 #1#) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3029 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-3034 (((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-3032 (((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-571)) ELT)) (-3033 (((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-3030 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-878 |#1| |#2|) (-10 -7 (-15 -3029 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3030 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -3031 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3032 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3033 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3034 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1081) (-877 |#1|)) (T -878)) -((-3034 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) (-4 *3 (-877 *5)))) (-3033 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) (-4 *3 (-877 *5)))) (-3032 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1081)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) (-4 *3 (-877 *5)))) (-3031 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1081)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) (-4 *3 (-877 *5)))) (-3030 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1081)) (-5 *1 (-878 *2 *3)) (-4 *3 (-877 *2)))) (-3029 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1081)) (-5 *1 (-878 *5 *2)) (-4 *2 (-877 *5))))) -(-10 -7 (-15 -3029 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3030 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -3031 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3032 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3033 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3034 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4039 (((-888) $ (-888)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) NIL T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 30 (|has| |#1| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 28 (|has| |#1| (-571)) ELT)) (-3307 (((-793) $) NIL T ELT)) (-3027 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3028 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3025 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3030 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) 23 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 19 T ELT) (($ $ (-793)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-879 |#1| |#2| |#3|) (-13 (-877 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-888))))) (-1081) (-99 |#1|) (-1 |#1| |#1|)) (T -879)) -((-4039 (*1 *2 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-879 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-877 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-888))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3021 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3022 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3023 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3018 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3020 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3034 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3661 (((-3 (-560) #2="failed") $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-793)) 17 T ELT)) (-3032 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-3031 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-3307 (((-793) $) NIL T ELT)) (-3027 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3028 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3017 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3025 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3024 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3026 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-3033 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3678 ((|#2| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-4464 (((-793) $) NIL T ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-466)) ELT)) (-4462 (((-888) $) 24 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (($ (-1296 |#1|)) 19 T ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-793)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3030 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) 13 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-880 |#1| |#2| |#3| |#4|) (-13 (-877 |#2|) (-635 (-1296 |#1|))) (-1209) (-1081) (-99 |#2|) (-1 |#2| |#2|)) (T -880)) -NIL -(-13 (-877 |#2|) (-635 (-1296 |#1|))) -((-3037 ((|#1| (-793) |#1|) 45 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3036 ((|#1| (-793) (-793) |#1|) 36 T ELT) ((|#1| (-793) |#1|) 24 T ELT)) (-3035 ((|#1| (-793) |#1|) 40 T ELT)) (-3287 ((|#1| (-793) |#1|) 38 T ELT)) (-3286 ((|#1| (-793) |#1|) 37 T ELT))) -(((-881 |#1|) (-10 -7 (-15 -3286 (|#1| (-793) |#1|)) (-15 -3287 (|#1| (-793) |#1|)) (-15 -3035 (|#1| (-793) |#1|)) (-15 -3036 (|#1| (-793) |#1|)) (-15 -3036 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -3037 (|#1| (-793) |#1|)) |%noBranch|)) (-175)) (T -881)) -((-3037 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-3036 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) (-3036 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) (-3035 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) (-3287 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) (-3286 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175))))) -(-10 -7 (-15 -3286 (|#1| (-793) |#1|)) (-15 -3287 (|#1| (-793) |#1|)) (-15 -3035 (|#1| (-793) |#1|)) (-15 -3036 (|#1| (-793) |#1|)) (-15 -3036 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -3037 (|#1| (-793) |#1|)) |%noBranch|)) -((-3053 (((-114) $ $) 7 T ELT)) (-3016 (($ $ $) 23 T ELT)) (-3344 (($ $ $) 22 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3051 (((-114) $ $) 21 T ELT)) (-3052 (((-114) $ $) 19 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 20 T ELT)) (-3172 (((-114) $ $) 18 T ELT)) (** (($ $ (-949)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-882) (-142)) (T -882)) -NIL -(-13 (-872) (-1144)) -(((-102) . T) ((-632 (-888)) . T) ((-872) . T) ((-875) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3908 (((-560) $) 14 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-560)) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 9 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 11 T ELT))) -(((-883) (-13 (-872) (-10 -8 (-15 -4462 ($ (-560))) (-15 -3908 ((-560) $))))) (T -883)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-883)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-883))))) -(-13 (-872) (-10 -8 (-15 -4462 ($ (-560))) (-15 -3908 ((-560) $)))) -((-3038 (((-1305) (-663 (-51))) 23 T ELT)) (-3966 (((-1305) (-1191) (-888)) 13 T ELT) (((-1305) (-888)) 8 T ELT) (((-1305) (-1191)) 10 T ELT))) -(((-884) (-10 -7 (-15 -3966 ((-1305) (-1191))) (-15 -3966 ((-1305) (-888))) (-15 -3966 ((-1305) (-1191) (-888))) (-15 -3038 ((-1305) (-663 (-51)))))) (T -884)) -((-3038 (*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1305)) (-5 *1 (-884)))) (-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-888)) (-5 *2 (-1305)) (-5 *1 (-884)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-884)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-884))))) -(-10 -7 (-15 -3966 ((-1305) (-1191))) (-15 -3966 ((-1305) (-888))) (-15 -3966 ((-1305) (-1191) (-888))) (-15 -3038 ((-1305) (-663 (-51))))) -((-3040 (((-713 (-1258)) $ (-1258)) 15 T ELT)) (-3041 (((-713 (-564)) $ (-564)) 12 T ELT)) (-3039 (((-793) $ (-131)) 30 T ELT))) -(((-885 |#1|) (-10 -8 (-15 -3039 ((-793) |#1| (-131))) (-15 -3040 ((-713 (-1258)) |#1| (-1258))) (-15 -3041 ((-713 (-564)) |#1| (-564)))) (-886)) (T -885)) -NIL -(-10 -8 (-15 -3039 ((-793) |#1| (-131))) (-15 -3040 ((-713 (-1258)) |#1| (-1258))) (-15 -3041 ((-713 (-564)) |#1| (-564)))) -((-3040 (((-713 (-1258)) $ (-1258)) 8 T ELT)) (-3041 (((-713 (-564)) $ (-564)) 9 T ELT)) (-3039 (((-793) $ (-131)) 7 T ELT)) (-3042 (((-713 (-130)) $ (-130)) 10 T ELT)) (-1915 (($ $) 6 T ELT))) -(((-886) (-142)) (T -886)) -((-3042 (*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-130))) (-5 *3 (-130)))) (-3041 (*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-564))) (-5 *3 (-564)))) (-3040 (*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-1258))) (-5 *3 (-1258)))) (-3039 (*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *3 (-131)) (-5 *2 (-793))))) -(-13 (-176) (-10 -8 (-15 -3042 ((-713 (-130)) $ (-130))) (-15 -3041 ((-713 (-564)) $ (-564))) (-15 -3040 ((-713 (-1258)) $ (-1258))) (-15 -3039 ((-793) $ (-131))))) +(-13 (-1131) (-873)) +(((-102) . T) ((-630 (-886)) . T) ((-873) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4458 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-886) $) 15 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 12 T ELT))) +(((-871 |#1| |#2|) (-13 (-873) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|))) (-1247) (-1 (-114) |#1| |#1|)) (T -871)) +NIL +(-13 (-873) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|))) +((-3012 (($ $ $) 16 T ELT)) (-3340 (($ $ $) 15 T ELT)) (-1387 (((-114) $ $) 17 T ELT)) (-3047 (((-114) $ $) 12 T ELT)) (-3048 (((-114) $ $) 9 T ELT)) (-3536 (((-114) $ $) 14 T ELT)) (-3167 (((-114) $ $) 11 T ELT))) +(((-872 |#1|) (-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3047 ((-114) |#1| |#1|)) (-15 -3167 ((-114) |#1| |#1|)) (-15 -3048 ((-114) |#1| |#1|)) (-15 -1387 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-873)) (T -872)) +NIL +(-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3340 (|#1| |#1| |#1|)) (-15 -3047 ((-114) |#1| |#1|)) (-15 -3167 ((-114) |#1| |#1|)) (-15 -3048 ((-114) |#1| |#1|)) (-15 -1387 ((-114) |#1| |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3012 (($ $ $) 10 T ELT)) (-3340 (($ $ $) 11 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3047 (((-114) $ $) 12 T ELT)) (-3048 (((-114) $ $) 14 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 13 T ELT)) (-3168 (((-114) $ $) 15 T ELT))) +(((-873) (-142)) (T -873)) +((-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) (-3048 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) (-3047 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) (-3340 (*1 *1 *1 *1) (-4 *1 (-873))) (-3012 (*1 *1 *1 *1) (-4 *1 (-873)))) +(-13 (-102) (-10 -8 (-15 -3168 ((-114) $ $)) (-15 -3048 ((-114) $ $)) (-15 -3167 ((-114) $ $)) (-15 -3047 ((-114) $ $)) (-15 -3340 ($ $ $)) (-15 -3012 ($ $ $)))) +(((-102) . T) ((-1247) . T)) +((-3017 (($ $ $) 49 T ELT)) (-3018 (($ $ $) 48 T ELT)) (-3019 (($ $ $) 46 T ELT)) (-3015 (($ $ $) 55 T ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 50 T ELT)) (-3016 (((-3 $ "failed") $ $) 53 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-4005 (($ $) 39 T ELT)) (-3023 (($ $ $) 43 T ELT)) (-3024 (($ $ $) 42 T ELT)) (-3013 (($ $ $) 51 T ELT)) (-3021 (($ $ $) 57 T ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 45 T ELT)) (-3022 (((-3 $ "failed") $ $) 52 T ELT)) (-3968 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-3300 ((|#2| $) 36 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4329 (((-661 |#2|) $) 21 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-874 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| |#1| |#1|)) (-15 -3014 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -3016 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -3020 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4329 ((-661 |#2|) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4458 ((-886) |#1|))) (-875 |#2|) (-1079)) (T -874)) +NIL +(-10 -8 (-15 -3013 (|#1| |#1| |#1|)) (-15 -3014 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -3016 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3017 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -3020 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2650 |#1|)) |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -3968 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4329 ((-661 |#2|) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3017 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ "failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #1="failed") $) 85 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 82 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3656 (((-558) $) 84 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4471 (($ $) 74 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3376 (($ |#1| (-791)) 72 T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) 76 T ELT)) (-3023 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ "failed") $ $) 61 (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) 75 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4460 (((-791) $) 77 T ELT)) (-3300 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4329 (((-661 |#1|) $) 71 T ELT)) (-4189 ((|#1| $ (-791)) 73 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3026 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-875 |#1|) (-142) (-1079)) (T -875)) +((-4460 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4471 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-661 *3)))) (-3026 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3968 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-464)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-464)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3023 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3022 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3020 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) (-4 *1 (-875 *3)))) (-3019 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) (-3018 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3017 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3016 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) (-4 *1 (-875 *3)))) (-3013 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -4460 ((-791) $)) (-15 -3303 ((-791) $)) (-15 -3674 (|t#1| $)) (-15 -4471 ($ $)) (-15 -4189 (|t#1| $ (-791))) (-15 -3376 ($ |t#1| (-791))) (-15 -4329 ((-661 |t#1|) $)) (-15 -3026 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3968 ((-3 $ "failed") $ |t#1|)) (-15 -3027 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3028 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3300 (|t#1| $)) (-15 -4005 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -3029 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3024 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3022 ((-3 $ "failed") $ $)) (-15 -3021 ($ $ $)) (-15 -3020 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $)) (-15 -3019 ($ $ $)) (-15 -3030 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3018 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -3016 ((-3 $ "failed") $ $)) (-15 -3015 ($ $ $)) (-15 -3014 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $)) (-15 -3013 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 #1=(-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-424 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1068 #1#) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3025 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-3030 (((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-3028 (((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-3029 (((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-3026 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3025 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3026 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3027 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3028 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3029 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3030 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1079) (-875 |#1|)) (T -876)) +((-3030 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3029 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3027 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3026 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-876 *2 *3)) (-4 *3 (-875 *2)))) (-3025 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) (-5 *1 (-876 *5 *2)) (-4 *2 (-875 *5))))) +(-10 -7 (-15 -3025 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3026 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3027 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3028 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3029 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3030 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3017 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3015 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4035 (((-886) $ (-886)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) NIL T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-3303 (((-791) $) NIL T ELT)) (-3023 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3024 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3013 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3021 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3026 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) 23 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) 19 T ELT) (($ $ (-791)) 24 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-877 |#1| |#2| |#3|) (-13 (-875 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-886))))) (-1079) (-99 |#1|) (-1 |#1| |#1|)) (T -877)) +((-4035 (*1 *2 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-875 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-886))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3017 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3018 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3019 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3015 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3014 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3016 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3030 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3657 (((-3 (-558) #2="failed") $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-791)) 17 T ELT)) (-3028 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3027 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3303 (((-791) $) NIL T ELT)) (-3023 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3024 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3013 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3021 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3020 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3022 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-3029 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3674 ((|#2| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-4460 (((-791) $) NIL T ELT)) (-3300 ((|#2| $) NIL (|has| |#2| (-464)) ELT)) (-4458 (((-886) $) 24 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (($ (-1294 |#1|)) 19 T ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-791)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3026 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) 13 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-878 |#1| |#2| |#3| |#4|) (-13 (-875 |#2|) (-633 (-1294 |#1|))) (-1207) (-1079) (-99 |#2|) (-1 |#2| |#2|)) (T -878)) +NIL +(-13 (-875 |#2|) (-633 (-1294 |#1|))) +((-3033 ((|#1| (-791) |#1|) 45 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3032 ((|#1| (-791) (-791) |#1|) 36 T ELT) ((|#1| (-791) |#1|) 24 T ELT)) (-3031 ((|#1| (-791) |#1|) 40 T ELT)) (-3283 ((|#1| (-791) |#1|) 38 T ELT)) (-3282 ((|#1| (-791) |#1|) 37 T ELT))) +(((-879 |#1|) (-10 -7 (-15 -3282 (|#1| (-791) |#1|)) (-15 -3283 (|#1| (-791) |#1|)) (-15 -3031 (|#1| (-791) |#1|)) (-15 -3032 (|#1| (-791) |#1|)) (-15 -3032 (|#1| (-791) (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -3033 (|#1| (-791) |#1|)) |%noBranch|)) (-175)) (T -879)) +((-3033 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-3032 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) (-3032 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) (-3031 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) (-3283 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) (-3282 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175))))) +(-10 -7 (-15 -3282 (|#1| (-791) |#1|)) (-15 -3283 (|#1| (-791) |#1|)) (-15 -3031 (|#1| (-791) |#1|)) (-15 -3032 (|#1| (-791) |#1|)) (-15 -3032 (|#1| (-791) (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -3033 (|#1| (-791) |#1|)) |%noBranch|)) +((-3049 (((-114) $ $) 7 T ELT)) (-3012 (($ $ $) 23 T ELT)) (-3340 (($ $ $) 22 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3047 (((-114) $ $) 21 T ELT)) (-3048 (((-114) $ $) 19 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 20 T ELT)) (-3168 (((-114) $ $) 18 T ELT)) (** (($ $ (-947)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-880) (-142)) (T -880)) +NIL +(-13 (-870) (-1142)) +(((-102) . T) ((-630 (-886)) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3904 (((-558) $) 14 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-558)) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 9 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 11 T ELT))) +(((-881) (-13 (-870) (-10 -8 (-15 -4458 ($ (-558))) (-15 -3904 ((-558) $))))) (T -881)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-881)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-881))))) +(-13 (-870) (-10 -8 (-15 -4458 ($ (-558))) (-15 -3904 ((-558) $)))) +((-3034 (((-1303) (-661 (-51))) 23 T ELT)) (-3962 (((-1303) (-1189) (-886)) 13 T ELT) (((-1303) (-886)) 8 T ELT) (((-1303) (-1189)) 10 T ELT))) +(((-882) (-10 -7 (-15 -3962 ((-1303) (-1189))) (-15 -3962 ((-1303) (-886))) (-15 -3962 ((-1303) (-1189) (-886))) (-15 -3034 ((-1303) (-661 (-51)))))) (T -882)) +((-3034 (*1 *2 *3) (-12 (-5 *3 (-661 (-51))) (-5 *2 (-1303)) (-5 *1 (-882)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-882)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-882)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-882))))) +(-10 -7 (-15 -3962 ((-1303) (-1189))) (-15 -3962 ((-1303) (-886))) (-15 -3962 ((-1303) (-1189) (-886))) (-15 -3034 ((-1303) (-661 (-51))))) +((-3036 (((-711 (-1256)) $ (-1256)) 15 T ELT)) (-3037 (((-711 (-562)) $ (-562)) 12 T ELT)) (-3035 (((-791) $ (-131)) 30 T ELT))) +(((-883 |#1|) (-10 -8 (-15 -3035 ((-791) |#1| (-131))) (-15 -3036 ((-711 (-1256)) |#1| (-1256))) (-15 -3037 ((-711 (-562)) |#1| (-562)))) (-884)) (T -883)) +NIL +(-10 -8 (-15 -3035 ((-791) |#1| (-131))) (-15 -3036 ((-711 (-1256)) |#1| (-1256))) (-15 -3037 ((-711 (-562)) |#1| (-562)))) +((-3036 (((-711 (-1256)) $ (-1256)) 8 T ELT)) (-3037 (((-711 (-562)) $ (-562)) 9 T ELT)) (-3035 (((-791) $ (-131)) 7 T ELT)) (-3038 (((-711 (-130)) $ (-130)) 10 T ELT)) (-1913 (($ $) 6 T ELT))) +(((-884) (-142)) (T -884)) +((-3038 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-130))) (-5 *3 (-130)))) (-3037 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-562))) (-5 *3 (-562)))) (-3036 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-1256))) (-5 *3 (-1256)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *3 (-131)) (-5 *2 (-791))))) +(-13 (-176) (-10 -8 (-15 -3038 ((-711 (-130)) $ (-130))) (-15 -3037 ((-711 (-562)) $ (-562))) (-15 -3036 ((-711 (-1256)) $ (-1256))) (-15 -3035 ((-791) $ (-131))))) (((-176) . T)) -((-3040 (((-713 (-1258)) $ (-1258)) NIL T ELT)) (-3041 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3039 (((-793) $ (-131)) NIL T ELT)) (-3042 (((-713 (-130)) $ (-130)) 22 T ELT)) (-3044 (($ (-402)) 12 T ELT) (($ (-1191)) 14 T ELT)) (-3043 (((-114) $) 19 T ELT)) (-4462 (((-888) $) 26 T ELT)) (-1915 (($ $) 23 T ELT))) -(((-887) (-13 (-886) (-632 (-888)) (-10 -8 (-15 -3044 ($ (-402))) (-15 -3044 ($ (-1191))) (-15 -3043 ((-114) $))))) (T -887)) -((-3044 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-887)))) (-3044 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-887)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887))))) -(-13 (-886) (-632 (-888)) (-10 -8 (-15 -3044 ($ (-402))) (-15 -3044 ($ (-1191))) (-15 -3043 ((-114) $)))) -((-3053 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-3074 (($ $ $) 125 T ELT)) (-3089 (((-560) $) 31 T ELT) (((-560)) 36 T ELT)) (-3084 (($ (-560)) 53 T ELT)) (-3081 (($ $ $) 54 T ELT) (($ (-663 $)) 84 T ELT)) (-3065 (($ $ (-663 $)) 82 T ELT)) (-3086 (((-560) $) 34 T ELT)) (-3068 (($ $ $) 73 T ELT)) (-4038 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3087 (((-560) $) 33 T ELT)) (-3069 (($ $ $) 72 T ELT)) (-4049 (($ $) 114 T ELT)) (-3072 (($ $ $) 129 T ELT)) (-3055 (($ (-663 $)) 61 T ELT)) (-4054 (($ $ (-663 $)) 79 T ELT)) (-3083 (($ (-560) (-560)) 55 T ELT)) (-3096 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3625 (($ $ (-560)) 43 T ELT) (($ $) 46 T ELT)) (-3049 (($ $ $) 97 T ELT)) (-3070 (($ $ $) 132 T ELT)) (-3064 (($ $) 115 T ELT)) (-3048 (($ $ $) 98 T ELT)) (-3060 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-3324 (((-1305) $) 10 T ELT)) (-3063 (($ $) 118 T ELT) (($ $ (-793)) 122 T ELT)) (-3066 (($ $ $) 75 T ELT)) (-3067 (($ $ $) 74 T ELT)) (-3080 (($ $ (-663 $)) 110 T ELT)) (-3078 (($ $ $) 113 T ELT)) (-3057 (($ (-663 $)) 59 T ELT)) (-3058 (($ $) 70 T ELT) (($ (-663 $)) 71 T ELT)) (-3061 (($ $ $) 123 T ELT)) (-3062 (($ $) 116 T ELT)) (-3073 (($ $ $) 128 T ELT)) (-4039 (($ (-560)) 21 T ELT) (($ (-1209)) 23 T ELT) (($ (-1191)) 30 T ELT) (($ (-229)) 25 T ELT)) (-3046 (($ $ $) 101 T ELT)) (-3045 (($ $) 102 T ELT)) (-3091 (((-1305) (-1191)) 15 T ELT)) (-3092 (($ (-1191)) 14 T ELT)) (-3612 (($ (-663 (-663 $))) 58 T ELT)) (-3626 (($ $ (-560)) 42 T ELT) (($ $) 45 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3076 (($ $ $) 131 T ELT)) (-3976 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3077 (((-114) $) 108 T ELT)) (-3079 (($ $ (-663 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-3085 (($ (-560)) 39 T ELT)) (-3088 (((-560) $) 32 T ELT) (((-560)) 35 T ELT)) (-3082 (($ $ $) 40 T ELT) (($ (-663 $)) 83 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (($ $ $) 99 T ELT)) (-4079 (($) 13 T ELT)) (-4316 (($ $ (-663 $)) 109 T ELT)) (-3090 (((-1191) (-1191)) 8 T ELT)) (-4352 (($ $) 117 T ELT) (($ $ (-793)) 121 T ELT)) (-3050 (($ $ $) 96 T ELT)) (-4274 (($ $ (-793)) 139 T ELT)) (-3056 (($ (-663 $)) 60 T ELT)) (-4462 (((-888) $) 19 T ELT)) (-4289 (($ $ (-560)) 41 T ELT) (($ $) 44 T ELT)) (-3059 (($ $) 68 T ELT) (($ (-663 $)) 69 T ELT)) (-3744 (($ $) 66 T ELT) (($ (-663 $)) 67 T ELT)) (-3075 (($ $) 124 T ELT)) (-3054 (($ (-663 $)) 65 T ELT)) (-3590 (($ $ $) 105 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3071 (($ $ $) 130 T ELT)) (-3047 (($ $ $) 100 T ELT)) (-4253 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-3051 (($ $ $) 89 T ELT)) (-3052 (($ $ $) 87 T ELT)) (-3540 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3171 (($ $ $) 88 T ELT)) (-3172 (($ $ $) 86 T ELT)) (-4465 (($ $ $) 94 T ELT)) (-4353 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-4355 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-888) (-13 (-1133) (-10 -8 (-15 -3324 ((-1305) $)) (-15 -3092 ($ (-1191))) (-15 -3091 ((-1305) (-1191))) (-15 -4039 ($ (-560))) (-15 -4039 ($ (-1209))) (-15 -4039 ($ (-1191))) (-15 -4039 ($ (-229))) (-15 -4079 ($)) (-15 -3090 ((-1191) (-1191))) (-15 -3089 ((-560) $)) (-15 -3088 ((-560) $)) (-15 -3089 ((-560))) (-15 -3088 ((-560))) (-15 -3087 ((-560) $)) (-15 -3086 ((-560) $)) (-15 -3085 ($ (-560))) (-15 -3084 ($ (-560))) (-15 -3083 ($ (-560) (-560))) (-15 -3626 ($ $ (-560))) (-15 -3625 ($ $ (-560))) (-15 -4289 ($ $ (-560))) (-15 -3626 ($ $)) (-15 -3625 ($ $)) (-15 -4289 ($ $)) (-15 -3082 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -3082 ($ (-663 $))) (-15 -3081 ($ (-663 $))) (-15 -3080 ($ $ (-663 $))) (-15 -3079 ($ $ (-663 $))) (-15 -3079 ($ $ $ $)) (-15 -3078 ($ $ $)) (-15 -3077 ((-114) $)) (-15 -4316 ($ $ (-663 $))) (-15 -4049 ($ $)) (-15 -3076 ($ $ $)) (-15 -3075 ($ $)) (-15 -3612 ($ (-663 (-663 $)))) (-15 -3074 ($ $ $)) (-15 -3096 ($ $)) (-15 -3096 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3072 ($ $ $)) (-15 -3071 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -4274 ($ $ (-793))) (-15 -3590 ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3068 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -4054 ($ $ (-663 $))) (-15 -3065 ($ $ (-663 $))) (-15 -3064 ($ $)) (-15 -4352 ($ $)) (-15 -4352 ($ $ (-793))) (-15 -3063 ($ $)) (-15 -3063 ($ $ (-793))) (-15 -3062 ($ $)) (-15 -3061 ($ $ $)) (-15 -4038 ($ $)) (-15 -4038 ($ $ $)) (-15 -4038 ($ $ $ $)) (-15 -3060 ($ $)) (-15 -3060 ($ $ $)) (-15 -3060 ($ $ $ $)) (-15 -3976 ($ $)) (-15 -3976 ($ $ $)) (-15 -3976 ($ $ $ $)) (-15 -3744 ($ $)) (-15 -3744 ($ (-663 $))) (-15 -3059 ($ $)) (-15 -3059 ($ (-663 $))) (-15 -3058 ($ $)) (-15 -3058 ($ (-663 $))) (-15 -3057 ($ (-663 $))) (-15 -3056 ($ (-663 $))) (-15 -3055 ($ (-663 $))) (-15 -3054 ($ (-663 $))) (-15 -3540 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3172 ($ $ $)) (-15 -3052 ($ $ $)) (-15 -3171 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $)) (-15 * ($ $ $)) (-15 -4465 ($ $ $)) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3048 ($ $ $)) (-15 -3972 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -3046 ($ $ $)) (-15 -3045 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $))))) (T -888)) -((-3324 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-888)))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-888)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-888)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-888)))) (-4079 (*1 *1) (-5 *1 (-888))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3089 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3088 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3085 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3084 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3083 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3625 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) (-3626 (*1 *1 *1) (-5 *1 (-888))) (-3625 (*1 *1 *1) (-5 *1 (-888))) (-4289 (*1 *1 *1) (-5 *1 (-888))) (-3082 (*1 *1 *1 *1) (-5 *1 (-888))) (-3081 (*1 *1 *1 *1) (-5 *1 (-888))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3080 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3079 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3079 (*1 *1 *1 *1 *1) (-5 *1 (-888))) (-3078 (*1 *1 *1 *1) (-5 *1 (-888))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-888)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-4049 (*1 *1 *1) (-5 *1 (-888))) (-3076 (*1 *1 *1 *1) (-5 *1 (-888))) (-3075 (*1 *1 *1) (-5 *1 (-888))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-888)))) (-5 *1 (-888)))) (-3074 (*1 *1 *1 *1) (-5 *1 (-888))) (-3096 (*1 *1 *1) (-5 *1 (-888))) (-3096 (*1 *1 *1 *1) (-5 *1 (-888))) (-3073 (*1 *1 *1 *1) (-5 *1 (-888))) (-3072 (*1 *1 *1 *1) (-5 *1 (-888))) (-3071 (*1 *1 *1 *1) (-5 *1 (-888))) (-3070 (*1 *1 *1 *1) (-5 *1 (-888))) (-4274 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) (-3590 (*1 *1 *1 *1) (-5 *1 (-888))) (-3069 (*1 *1 *1 *1) (-5 *1 (-888))) (-3068 (*1 *1 *1 *1) (-5 *1 (-888))) (-3067 (*1 *1 *1 *1) (-5 *1 (-888))) (-3066 (*1 *1 *1 *1) (-5 *1 (-888))) (-4054 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3064 (*1 *1 *1) (-5 *1 (-888))) (-4352 (*1 *1 *1) (-5 *1 (-888))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) (-3063 (*1 *1 *1) (-5 *1 (-888))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) (-3062 (*1 *1 *1) (-5 *1 (-888))) (-3061 (*1 *1 *1 *1) (-5 *1 (-888))) (-4038 (*1 *1 *1) (-5 *1 (-888))) (-4038 (*1 *1 *1 *1) (-5 *1 (-888))) (-4038 (*1 *1 *1 *1 *1) (-5 *1 (-888))) (-3060 (*1 *1 *1) (-5 *1 (-888))) (-3060 (*1 *1 *1 *1) (-5 *1 (-888))) (-3060 (*1 *1 *1 *1 *1) (-5 *1 (-888))) (-3976 (*1 *1 *1) (-5 *1 (-888))) (-3976 (*1 *1 *1 *1) (-5 *1 (-888))) (-3976 (*1 *1 *1 *1 *1) (-5 *1 (-888))) (-3744 (*1 *1 *1) (-5 *1 (-888))) (-3744 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3059 (*1 *1 *1) (-5 *1 (-888))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3058 (*1 *1 *1) (-5 *1 (-888))) (-3058 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3057 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3056 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3055 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) (-3540 (*1 *1 *1 *1) (-5 *1 (-888))) (-3053 (*1 *1 *1 *1) (-5 *1 (-888))) (-3172 (*1 *1 *1 *1) (-5 *1 (-888))) (-3052 (*1 *1 *1 *1) (-5 *1 (-888))) (-3171 (*1 *1 *1 *1) (-5 *1 (-888))) (-3051 (*1 *1 *1 *1) (-5 *1 (-888))) (-4355 (*1 *1 *1 *1) (-5 *1 (-888))) (-4353 (*1 *1 *1 *1) (-5 *1 (-888))) (-4353 (*1 *1 *1) (-5 *1 (-888))) (* (*1 *1 *1 *1) (-5 *1 (-888))) (-4465 (*1 *1 *1 *1) (-5 *1 (-888))) (** (*1 *1 *1 *1) (-5 *1 (-888))) (-3050 (*1 *1 *1 *1) (-5 *1 (-888))) (-3049 (*1 *1 *1 *1) (-5 *1 (-888))) (-3048 (*1 *1 *1 *1) (-5 *1 (-888))) (-3972 (*1 *1 *1 *1) (-5 *1 (-888))) (-3047 (*1 *1 *1 *1) (-5 *1 (-888))) (-3046 (*1 *1 *1 *1) (-5 *1 (-888))) (-3045 (*1 *1 *1) (-5 *1 (-888))) (-4253 (*1 *1 *1 *1) (-5 *1 (-888))) (-4253 (*1 *1 *1) (-5 *1 (-888)))) -(-13 (-1133) (-10 -8 (-15 -3324 ((-1305) $)) (-15 -3092 ($ (-1191))) (-15 -3091 ((-1305) (-1191))) (-15 -4039 ($ (-560))) (-15 -4039 ($ (-1209))) (-15 -4039 ($ (-1191))) (-15 -4039 ($ (-229))) (-15 -4079 ($)) (-15 -3090 ((-1191) (-1191))) (-15 -3089 ((-560) $)) (-15 -3088 ((-560) $)) (-15 -3089 ((-560))) (-15 -3088 ((-560))) (-15 -3087 ((-560) $)) (-15 -3086 ((-560) $)) (-15 -3085 ($ (-560))) (-15 -3084 ($ (-560))) (-15 -3083 ($ (-560) (-560))) (-15 -3626 ($ $ (-560))) (-15 -3625 ($ $ (-560))) (-15 -4289 ($ $ (-560))) (-15 -3626 ($ $)) (-15 -3625 ($ $)) (-15 -4289 ($ $)) (-15 -3082 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -3082 ($ (-663 $))) (-15 -3081 ($ (-663 $))) (-15 -3080 ($ $ (-663 $))) (-15 -3079 ($ $ (-663 $))) (-15 -3079 ($ $ $ $)) (-15 -3078 ($ $ $)) (-15 -3077 ((-114) $)) (-15 -4316 ($ $ (-663 $))) (-15 -4049 ($ $)) (-15 -3076 ($ $ $)) (-15 -3075 ($ $)) (-15 -3612 ($ (-663 (-663 $)))) (-15 -3074 ($ $ $)) (-15 -3096 ($ $)) (-15 -3096 ($ $ $)) (-15 -3073 ($ $ $)) (-15 -3072 ($ $ $)) (-15 -3071 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -4274 ($ $ (-793))) (-15 -3590 ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3068 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -4054 ($ $ (-663 $))) (-15 -3065 ($ $ (-663 $))) (-15 -3064 ($ $)) (-15 -4352 ($ $)) (-15 -4352 ($ $ (-793))) (-15 -3063 ($ $)) (-15 -3063 ($ $ (-793))) (-15 -3062 ($ $)) (-15 -3061 ($ $ $)) (-15 -4038 ($ $)) (-15 -4038 ($ $ $)) (-15 -4038 ($ $ $ $)) (-15 -3060 ($ $)) (-15 -3060 ($ $ $)) (-15 -3060 ($ $ $ $)) (-15 -3976 ($ $)) (-15 -3976 ($ $ $)) (-15 -3976 ($ $ $ $)) (-15 -3744 ($ $)) (-15 -3744 ($ (-663 $))) (-15 -3059 ($ $)) (-15 -3059 ($ (-663 $))) (-15 -3058 ($ $)) (-15 -3058 ($ (-663 $))) (-15 -3057 ($ (-663 $))) (-15 -3056 ($ (-663 $))) (-15 -3055 ($ (-663 $))) (-15 -3054 ($ (-663 $))) (-15 -3540 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3172 ($ $ $)) (-15 -3052 ($ $ $)) (-15 -3171 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -4355 ($ $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $)) (-15 * ($ $ $)) (-15 -4465 ($ $ $)) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3048 ($ $ $)) (-15 -3972 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -3046 ($ $ $)) (-15 -3045 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4347 (((-3 $ "failed") (-1209)) 36 T ELT)) (-3624 (((-793)) 32 T ELT)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) 29 T ELT)) (-3746 (((-1191) $) 43 T ELT)) (-2645 (($ (-949)) 28 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4488 (((-1209) $) 13 T ELT) (((-549) $) 19 T ELT) (((-916 (-391)) $) 26 T ELT) (((-916 (-560)) $) 22 T ELT)) (-4462 (((-888) $) 16 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 40 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 38 T ELT))) -(((-889 |#1|) (-13 (-868) (-633 (-1209)) (-633 (-549)) (-633 (-916 (-391))) (-633 (-916 (-560))) (-10 -8 (-15 -4347 ((-3 $ "failed") (-1209))))) (-663 (-1209))) (T -889)) -((-4347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-889 *3)) (-14 *3 (-663 *2))))) -(-13 (-868) (-633 (-1209)) (-633 (-549)) (-633 (-916 (-391))) (-633 (-916 (-560))) (-10 -8 (-15 -4347 ((-3 $ "failed") (-1209))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4056 (((-520) $) 9 T ELT)) (-3093 (((-663 (-453)) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 21 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 16 T ELT))) -(((-890) (-13 (-1133) (-10 -8 (-15 -4056 ((-520) $)) (-15 -3093 ((-663 (-453)) $))))) (T -890)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-890)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-890))))) -(-13 (-1133) (-10 -8 (-15 -4056 ((-520) $)) (-15 -3093 ((-663 (-453)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-976 |#1|)) NIL T ELT) (((-976 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4439 (((-1305) (-793)) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-13 (-1081) (-504 (-976 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4465 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4439 ((-1305) (-793))))) (-1081) (-663 (-1209)) (-663 (-793)) (-793)) (T -891)) -((-4465 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-891 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1081)) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-793))) (-14 *5 (-793)))) (-4439 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-891 *4 *5 *6 *7)) (-4 *4 (-1081)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 *3)) (-14 *7 *3)))) -(-13 (-1081) (-504 (-976 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4465 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4439 ((-1305) (-793))))) -((-3094 (((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|) 38 T ELT)) (-3095 (((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|) 29 T ELT))) -(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -3095 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3094 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) (-376) (-1292 |#1|) (-1275 |#1|)) (T -892)) -((-3094 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-892 *5 *4 *6)) (-4 *4 (-1292 *5)) (-4 *6 (-1275 *5)))) (-3095 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) (-5 *1 (-892 *5 *4 *6)) (-4 *4 (-1292 *5)) (-4 *6 (-1275 *5))))) -(-10 -7 (-15 -3095 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3094 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) -((-3095 (((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) 28 T ELT))) -(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -3095 ((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -3095 ((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|)))) (-376) (-1209) |#1|) (T -893)) -((-3095 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1209)) (-14 *7 *5) (-5 *2 (-421 (-1268 *6 *5))) (-5 *1 (-893 *5 *6 *7)))) (-3095 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1209)) (-14 *7 *5) (-5 *2 (-421 (-1268 *6 *5))) (-5 *1 (-893 *5 *6 *7))))) -(-10 -7 (-15 -3095 ((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -3095 ((-3 (-421 (-1268 |#2| |#1|)) "failed") (-793) (-793) (-1289 |#1| |#2| |#3|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $ (-560)) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3096 (($ (-1203 (-560)) (-560)) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4288 (((-793) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-3099 (((-560)) NIL T ELT)) (-3098 (((-560) $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4285 (($ $ (-560)) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3100 (((-1187 (-560)) $) NIL T ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-560) $ (-560)) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-894 |#1|) (-895 |#1|) (-560)) (T -894)) -NIL -(-895 |#1|) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (($ $ (-560)) 75 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-3096 (($ (-1203 (-560)) (-560)) 74 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3097 (($ $) 77 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4288 (((-793) $) 82 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-3099 (((-560)) 79 T ELT)) (-3098 (((-560) $) 78 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-4285 (($ $ (-560)) 81 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-3100 (((-1187 (-560)) $) 83 T ELT)) (-3378 (($ $) 80 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-4286 (((-560) $ (-560)) 76 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-895 |#1|) (-142) (-560)) (T -895)) -((-3100 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-1187 (-560))))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-793)))) (-4285 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) (-3378 (*1 *1 *1) (-4 *1 (-895 *2))) (-3099 (*1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) (-3097 (*1 *1 *1) (-4 *1 (-895 *2))) (-4286 (*1 *2 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) (-3524 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *3 (-560)) (-4 *1 (-895 *4))))) -(-13 (-319) (-149) (-10 -8 (-15 -3100 ((-1187 (-560)) $)) (-15 -4288 ((-793) $)) (-15 -4285 ($ $ (-560))) (-15 -3378 ($ $)) (-15 -3099 ((-560))) (-15 -3098 ((-560) $)) (-15 -3097 ($ $)) (-15 -4286 ((-560) $ (-560))) (-15 -3524 ($ $ (-560))) (-15 -3096 ($ (-1203 (-560)) (-560))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-894 |#1|) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-894 |#1|) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-894 |#1|) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| (-894 |#1|) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| (-894 |#1|) (-1070 (-560))) ELT)) (-3660 (((-894 |#1|) $) NIL T ELT) (((-1209) $) NIL (|has| (-894 |#1|) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-894 |#1|) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-894 |#1|) (-1070 (-560))) ELT)) (-4246 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-894 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-894 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-894 |#1|))) (|:| |vec| (-1299 (-894 |#1|)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-894 |#1|)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-894 |#1|) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| (-894 |#1|) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-894 |#1|) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-894 |#1|) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-894 |#1|) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| (-894 |#1|) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-894 |#1|) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-4474 (($ (-1 (-894 |#1|) (-894 |#1|)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-894 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-894 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-894 |#1|))) (|:| |vec| (-1299 (-894 |#1|)))) (-1299 $) $) NIL T ELT) (((-711 (-894 |#1|)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-894 |#1|) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-894 |#1|) (-319)) ELT)) (-3618 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-894 |#1|)) (-663 (-894 |#1|))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-894 |#1|) (-894 |#1|)) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-305 (-894 |#1|))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-663 (-305 (-894 |#1|)))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-663 (-1209)) (-663 (-894 |#1|))) NIL (|has| (-894 |#1|) (-528 (-1209) (-894 |#1|))) ELT) (($ $ (-1209) (-894 |#1|)) NIL (|has| (-894 |#1|) (-528 (-1209) (-894 |#1|))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-894 |#1|)) NIL (|has| (-894 |#1|) (-298 (-894 |#1|) (-894 |#1|))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-894 |#1|) (-894 |#1|))) NIL T ELT) (($ $ (-1 (-894 |#1|) (-894 |#1|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-894 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-894 |#1|) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-894 |#1|) $) NIL T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-894 |#1|) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-894 |#1|) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-894 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-894 |#1|) (-1052)) ELT) (((-229) $) NIL (|has| (-894 |#1|) (-1052)) ELT)) (-3101 (((-177 (-421 (-560))) $) NIL T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-894 |#1|) (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-894 |#1|)) NIL T ELT) (($ (-1209)) NIL (|has| (-894 |#1|) (-1070 (-1209))) ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-894 |#1|) (-940))) (|has| (-894 |#1|) (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-421 (-560)) $ (-560)) NIL T ELT)) (-3889 (($ $) NIL (|has| (-894 |#1|) (-844)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-894 |#1|) (-894 |#1|))) NIL T ELT) (($ $ (-1 (-894 |#1|) (-894 |#1|)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-894 |#1|) (-930 (-1209))) ELT) (($ $) NIL (|has| (-894 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-894 |#1|) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-894 |#1|) (-872)) ELT)) (-4465 (($ $ $) NIL T ELT) (($ (-894 |#1|) (-894 |#1|)) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-894 |#1|) $) NIL T ELT) (($ $ (-894 |#1|)) NIL T ELT))) -(((-896 |#1|) (-13 (-1023 (-894 |#1|)) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) (-560)) (T -896)) -((-4286 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-896 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-896 *3)) (-14 *3 (-560)))) (-4246 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-14 *2 (-560)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-896 *3)) (-14 *3 *2)))) -(-13 (-1023 (-894 |#1|)) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| |#2| (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (|has| |#2| (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT)) (-3660 ((|#2| $) NIL T ELT) (((-1209) $) NIL (|has| |#2| (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT)) (-4246 (($ $) 35 T ELT) (($ (-560) $) 38 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) 64 T ELT)) (-3481 (($) NIL (|has| |#2| (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) NIL (|has| |#2| (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| |#2| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| |#2| (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 ((|#2| $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#2| (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| |#2| (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#2| (-872)) ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 60 T ELT)) (-3952 (($) NIL (|has| |#2| (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3618 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 |#2|) (-663 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-1209)) (-663 |#2|)) NIL (|has| |#2| (-528 (-1209) |#2|)) ELT) (($ $ (-1209) |#2|) NIL (|has| |#2| (-528 (-1209) |#2|)) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 ((|#2| $) NIL T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| |#2| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| |#2| (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1052)) ELT) (((-229) $) NIL (|has| |#2| (-1052)) ELT)) (-3101 (((-177 (-421 (-560))) $) 78 T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4462 (((-888) $) 106 T ELT) (($ (-560)) 20 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1209)) NIL (|has| |#2| (-1070 (-1209))) ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-3619 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-421 (-560)) $ (-560)) 71 T ELT)) (-3889 (($ $) NIL (|has| |#2| (-844)) ELT)) (-3145 (($) 15 T CONST)) (-3151 (($) 17 T CONST)) (-3156 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3540 (((-114) $ $) 46 T ELT)) (-3171 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#2| (-872)) ELT)) (-4465 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-4353 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-4355 (($ $ $) 48 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 61 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-897 |#1| |#2|) (-13 (-1023 |#2|) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) (-560) (-895 |#1|)) (T -897)) -((-4286 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-897 *4 *5)) (-5 *3 (-560)) (-4 *5 (-895 *4)))) (-3101 (*1 *2 *1) (-12 (-14 *3 (-560)) (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-897 *3 *4)) (-4 *4 (-895 *3)))) (-4246 (*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-897 *2 *3)) (-4 *3 (-895 *2)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-897 *3 *4)) (-4 *4 (-895 *3))))) -(-13 (-1023 |#2|) (-10 -8 (-15 -4286 ((-421 (-560)) $ (-560))) (-15 -3101 ((-177 (-421 (-560))) $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)))) -((-3053 (((-114) $ $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-4312 ((|#2| $) 12 T ELT)) (-3102 (($ |#1| |#2|) 9 T ELT)) (-3746 (((-1191) $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-3747 (((-1152) $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#1| $) 11 T ELT)) (-4036 (($ |#1| |#2|) 10 T ELT)) (-4462 (((-888) $) 18 (-4043 (-12 (|has| |#1| (-632 (-888))) (|has| |#2| (-632 (-888)))) (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133)))) ELT)) (-1389 (((-114) $ $) NIL (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT)) (-3540 (((-114) $ $) 23 (-12 (|has| |#1| (-1133)) (|has| |#2| (-1133))) ELT))) -(((-898 |#1| |#2|) (-13 (-1249) (-10 -8 (IF (|has| |#1| (-632 (-888))) (IF (|has| |#2| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1133)) (IF (|has| |#2| (-1133)) (-6 (-1133)) |%noBranch|) |%noBranch|) (-15 -3102 ($ |#1| |#2|)) (-15 -4036 ($ |#1| |#2|)) (-15 -4317 (|#1| $)) (-15 -4312 (|#2| $)))) (-1249) (-1249)) (T -898)) -((-3102 (*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1249)) (-4 *3 (-1249)))) (-4036 (*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1249)) (-4 *3 (-1249)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-1249)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1249)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-1249)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1249))))) -(-13 (-1249) (-10 -8 (IF (|has| |#1| (-632 (-888))) (IF (|has| |#2| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1133)) (IF (|has| |#2| (-1133)) (-6 (-1133)) |%noBranch|) |%noBranch|) (-15 -3102 ($ |#1| |#2|)) (-15 -4036 ($ |#1| |#2|)) (-15 -4317 (|#1| $)) (-15 -4312 (|#2| $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3444 (((-560) $) 16 T ELT)) (-3104 (($ (-159)) 13 T ELT)) (-3103 (($ (-159)) 14 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3443 (((-159) $) 15 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3106 (($ (-159)) 11 T ELT)) (-3107 (($ (-159)) 10 T ELT)) (-4462 (((-888) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3105 (($ (-159)) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-899) (-13 (-1133) (-10 -8 (-15 -3107 ($ (-159))) (-15 -3106 ($ (-159))) (-15 -3105 ($ (-159))) (-15 -3104 ($ (-159))) (-15 -3103 ($ (-159))) (-15 -3443 ((-159) $)) (-15 -3444 ((-560) $)) (-15 -4462 ($ (-159)))))) (T -899)) -((-3107 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-899)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(-13 (-1133) (-10 -8 (-15 -3107 ($ (-159))) (-15 -3106 ($ (-159))) (-15 -3105 ($ (-159))) (-15 -3104 ($ (-159))) (-15 -3103 ($ (-159))) (-15 -3443 ((-159) $)) (-15 -3444 ((-560) $)) (-15 -4462 ($ (-159))))) -((-4462 (((-326 (-560)) (-421 (-976 (-48)))) 23 T ELT) (((-326 (-560)) (-976 (-48))) 18 T ELT))) -(((-900) (-10 -7 (-15 -4462 ((-326 (-560)) (-976 (-48)))) (-15 -4462 ((-326 (-560)) (-421 (-976 (-48))))))) (T -900)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 (-48)))) (-5 *2 (-326 (-560))) (-5 *1 (-900)))) (-4462 (*1 *2 *3) (-12 (-5 *3 (-976 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-900))))) -(-10 -7 (-15 -4462 ((-326 (-560)) (-976 (-48)))) (-15 -4462 ((-326 (-560)) (-421 (-976 (-48)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 18 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-4080 (((-114) $ (|[\|\|]| (-520))) 9 T ELT) (((-114) $ (|[\|\|]| (-1191))) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4086 (((-520) $) 10 T ELT) (((-1191) $) 14 T ELT)) (-3540 (((-114) $ $) 15 T ELT))) -(((-901) (-13 (-1115) (-1295) (-10 -8 (-15 -4080 ((-114) $ (|[\|\|]| (-520)))) (-15 -4086 ((-520) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1191)))) (-15 -4086 ((-1191) $))))) (T -901)) -((-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-901)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-901)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)) (-5 *1 (-901)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-901))))) -(-13 (-1115) (-1295) (-10 -8 (-15 -4080 ((-114) $ (|[\|\|]| (-520)))) (-15 -4086 ((-520) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1191)))) (-15 -4086 ((-1191) $)))) -((-4474 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 15 T ELT))) -(((-902 |#1| |#2|) (-10 -7 (-15 -4474 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1249) (-1249)) (T -902)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) -(-10 -7 (-15 -4474 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) -((-3877 (($ |#1| |#1|) 8 T ELT)) (-3110 ((|#1| $ (-793)) 15 T ELT))) -(((-903 |#1|) (-10 -8 (-15 -3877 ($ |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) (-1249)) (T -903)) -((-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-903 *2)) (-4 *2 (-1249)))) (-3877 (*1 *1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1249))))) -(-10 -8 (-15 -3877 ($ |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) -((-4474 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 15 T ELT))) -(((-904 |#1| |#2|) (-10 -7 (-15 -4474 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1249) (-1249)) (T -904)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))) -(-10 -7 (-15 -4474 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) -((-3877 (($ |#1| |#1| |#1|) 8 T ELT)) (-3110 ((|#1| $ (-793)) 15 T ELT))) -(((-905 |#1|) (-10 -8 (-15 -3877 ($ |#1| |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) (-1249)) (T -905)) -((-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-905 *2)) (-4 *2 (-1249)))) (-3877 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1249))))) -(-10 -8 (-15 -3877 ($ |#1| |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) -((-3108 (((-663 (-1214)) (-1191)) 9 T ELT))) -(((-906) (-10 -7 (-15 -3108 ((-663 (-1214)) (-1191))))) (T -906)) -((-3108 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-1214))) (-5 *1 (-906))))) -(-10 -7 (-15 -3108 ((-663 (-1214)) (-1191)))) -((-4474 (((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)) 15 T ELT))) -(((-907 |#1| |#2|) (-10 -7 (-15 -4474 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) (-1249) (-1249)) (T -907)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6))))) -(-10 -7 (-15 -4474 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) -((-3109 (($ |#1| |#1| |#1|) 8 T ELT)) (-3110 ((|#1| $ (-793)) 15 T ELT))) -(((-908 |#1|) (-10 -8 (-15 -3109 ($ |#1| |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) (-1249)) (T -908)) -((-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-908 *2)) (-4 *2 (-1249)))) (-3109 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1249))))) -(-10 -8 (-15 -3109 ($ |#1| |#1| |#1|)) (-15 -3110 (|#1| $ (-793)))) -((-3113 (((-1187 (-663 (-560))) (-663 (-560)) (-1187 (-663 (-560)))) 41 T ELT)) (-3112 (((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560))) 31 T ELT)) (-3114 (((-1187 (-663 (-560))) (-663 (-560))) 53 T ELT) (((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560))) 50 T ELT)) (-3115 (((-1187 (-663 (-560))) (-560)) 55 T ELT)) (-3111 (((-1187 (-663 (-949))) (-1187 (-663 (-949)))) 22 T ELT)) (-3496 (((-663 (-949)) (-663 (-949))) 18 T ELT))) -(((-909) (-10 -7 (-15 -3496 ((-663 (-949)) (-663 (-949)))) (-15 -3111 ((-1187 (-663 (-949))) (-1187 (-663 (-949))))) (-15 -3112 ((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3113 ((-1187 (-663 (-560))) (-663 (-560)) (-1187 (-663 (-560))))) (-15 -3114 ((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3114 ((-1187 (-663 (-560))) (-663 (-560)))) (-15 -3115 ((-1187 (-663 (-560))) (-560))))) (T -909)) -((-3115 (*1 *2 *3) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-560)))) (-3114 (*1 *2 *3) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560))))) (-3114 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560))))) (-3113 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *3 (-663 (-560))) (-5 *1 (-909)))) (-3112 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560))))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-1187 (-663 (-949)))) (-5 *1 (-909)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-909))))) -(-10 -7 (-15 -3496 ((-663 (-949)) (-663 (-949)))) (-15 -3111 ((-1187 (-663 (-949))) (-1187 (-663 (-949))))) (-15 -3112 ((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3113 ((-1187 (-663 (-560))) (-663 (-560)) (-1187 (-663 (-560))))) (-15 -3114 ((-1187 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3114 ((-1187 (-663 (-560))) (-663 (-560)))) (-15 -3115 ((-1187 (-663 (-560))) (-560)))) -((-4488 (((-916 (-391)) $) 9 (|has| |#1| (-633 (-916 (-391)))) ELT) (((-916 (-560)) $) 8 (|has| |#1| (-633 (-916 (-560)))) ELT))) -(((-910 |#1|) (-142) (-1249)) (T -910)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-633 (-916 (-560)))) (-6 (-633 (-916 (-560)))) |%noBranch|) (IF (|has| |t#1| (-633 (-916 (-391)))) (-6 (-633 (-916 (-391)))) |%noBranch|))) -(((-633 (-916 (-391))) |has| |#1| (-633 (-916 (-391)))) ((-633 (-916 (-560))) |has| |#1| (-633 (-916 (-560))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4130 (($) 14 T ELT)) (-3117 (($ (-914 |#1| |#2|) (-914 |#1| |#3|)) 28 T ELT)) (-3116 (((-914 |#1| |#3|) $) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3125 (((-114) $) 22 T ELT)) (-3124 (($) 19 T ELT)) (-4462 (((-888) $) 31 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3337 (((-914 |#1| |#2|) $) 15 T ELT)) (-3540 (((-114) $ $) 26 T ELT))) -(((-911 |#1| |#2| |#3|) (-13 (-1133) (-10 -8 (-15 -3125 ((-114) $)) (-15 -3124 ($)) (-15 -4130 ($)) (-15 -3117 ($ (-914 |#1| |#2|) (-914 |#1| |#3|))) (-15 -3337 ((-914 |#1| |#2|) $)) (-15 -3116 ((-914 |#1| |#3|) $)))) (-1133) (-1133) (-688 |#2|)) (T -911)) -((-3125 (*1 *2 *1) (-12 (-4 *4 (-1133)) (-5 *2 (-114)) (-5 *1 (-911 *3 *4 *5)) (-4 *3 (-1133)) (-4 *5 (-688 *4)))) (-3124 (*1 *1) (-12 (-4 *3 (-1133)) (-5 *1 (-911 *2 *3 *4)) (-4 *2 (-1133)) (-4 *4 (-688 *3)))) (-4130 (*1 *1) (-12 (-4 *3 (-1133)) (-5 *1 (-911 *2 *3 *4)) (-4 *2 (-1133)) (-4 *4 (-688 *3)))) (-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-914 *4 *5)) (-5 *3 (-914 *4 *6)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-688 *5)) (-5 *1 (-911 *4 *5 *6)))) (-3337 (*1 *2 *1) (-12 (-4 *4 (-1133)) (-5 *2 (-914 *3 *4)) (-5 *1 (-911 *3 *4 *5)) (-4 *3 (-1133)) (-4 *5 (-688 *4)))) (-3116 (*1 *2 *1) (-12 (-4 *4 (-1133)) (-5 *2 (-914 *3 *5)) (-5 *1 (-911 *3 *4 *5)) (-4 *3 (-1133)) (-4 *5 (-688 *4))))) -(-13 (-1133) (-10 -8 (-15 -3125 ((-114) $)) (-15 -3124 ($)) (-15 -4130 ($)) (-15 -3117 ($ (-914 |#1| |#2|) (-914 |#1| |#3|))) (-15 -3337 ((-914 |#1| |#2|) $)) (-15 -3116 ((-914 |#1| |#3|) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3283 (((-914 |#1| $) $ (-916 |#1|) (-914 |#1| $)) 17 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-912 |#1|) (-142) (-1133)) (T -912)) -((-3283 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-914 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-912 *4)) (-4 *4 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -3283 ((-914 |t#1| $) $ (-916 |t#1|) (-914 |t#1| $))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3118 (((-114) (-663 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3119 (((-914 |#1| |#2|) |#2| |#3|) 45 (-12 (-3045 (|has| |#2| (-1070 (-1209)))) (-3045 (|has| |#2| (-1081)))) ELT) (((-663 (-305 (-976 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1081)) (-3045 (|has| |#2| (-1070 (-1209))))) ELT) (((-663 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1070 (-1209))) ELT) (((-911 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|) 21 T ELT))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3118 ((-114) |#2| |#3|)) (-15 -3118 ((-114) (-663 |#2|) |#3|)) (-15 -3119 ((-911 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1070 (-1209))) (-15 -3119 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1081)) (-15 -3119 ((-663 (-305 (-976 |#2|))) |#2| |#3|)) (-15 -3119 ((-914 |#1| |#2|) |#2| |#3|))))) (-1133) (-912 |#1|) (-633 (-916 |#1|))) (T -913)) -((-3119 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-5 *2 (-914 *5 *3)) (-5 *1 (-913 *5 *3 *4)) (-3045 (-4 *3 (-1070 (-1209)))) (-3045 (-4 *3 (-1081))) (-4 *3 (-912 *5)) (-4 *4 (-633 (-916 *5))))) (-3119 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-5 *2 (-663 (-305 (-976 *3)))) (-5 *1 (-913 *5 *3 *4)) (-4 *3 (-1081)) (-3045 (-4 *3 (-1070 (-1209)))) (-4 *3 (-912 *5)) (-4 *4 (-633 (-916 *5))))) (-3119 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-913 *5 *3 *4)) (-4 *3 (-1070 (-1209))) (-4 *3 (-912 *5)) (-4 *4 (-633 (-916 *5))))) (-3119 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-4 *6 (-912 *5)) (-5 *2 (-911 *5 *6 (-663 *6))) (-5 *1 (-913 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-916 *5))))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-4 *6 (-912 *5)) (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-913 *5 *6 *4)) (-4 *4 (-633 (-916 *5))))) (-3118 (*1 *2 *3 *4) (-12 (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-913 *5 *3 *4)) (-4 *3 (-912 *5)) (-4 *4 (-633 (-916 *5)))))) -(-10 -7 (-15 -3118 ((-114) |#2| |#3|)) (-15 -3118 ((-114) (-663 |#2|) |#3|)) (-15 -3119 ((-911 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1070 (-1209))) (-15 -3119 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1081)) (-15 -3119 ((-663 (-305 (-976 |#2|))) |#2| |#3|)) (-15 -3119 ((-914 |#1| |#2|) |#2| |#3|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3738 (($ $ $) 40 T ELT)) (-3146 (((-3 (-114) "failed") $ (-916 |#1|)) 37 T ELT)) (-4130 (($) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3121 (($ (-916 |#1|) |#2| $) 20 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3123 (((-3 |#2| "failed") (-916 |#1|) $) 51 T ELT)) (-3125 (((-114) $) 15 T ELT)) (-3124 (($) 13 T ELT)) (-3761 (((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|))) $) 25 T ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|)))) 23 T ELT)) (-4462 (((-888) $) 45 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3120 (($ (-916 |#1|) |#2| $ |#2|) 49 T ELT)) (-3122 (($ (-916 |#1|) |#2| $) 48 T ELT)) (-3540 (((-114) $ $) 42 T ELT))) -(((-914 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -3125 ((-114) $)) (-15 -3124 ($)) (-15 -4130 ($)) (-15 -3738 ($ $ $)) (-15 -3123 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -3122 ($ (-916 |#1|) |#2| $)) (-15 -3121 ($ (-916 |#1|) |#2| $)) (-15 -3120 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -3761 ((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|))) $)) (-15 -4036 ($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|))))) (-15 -3146 ((-3 (-114) "failed") $ (-916 |#1|))))) (-1133) (-1133)) (T -914)) -((-3125 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-3124 (*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-4130 (*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-3738 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-3123 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-4 *2 (-1133)) (-5 *1 (-914 *4 *2)))) (-3122 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133)))) (-3121 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133)))) (-3120 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 *4)))) (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 *4)))) (-4 *4 (-1133)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)))) (-3146 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-114)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -3125 ((-114) $)) (-15 -3124 ($)) (-15 -4130 ($)) (-15 -3738 ($ $ $)) (-15 -3123 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -3122 ($ (-916 |#1|) |#2| $)) (-15 -3121 ($ (-916 |#1|) |#2| $)) (-15 -3120 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -3761 ((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|))) $)) (-15 -4036 ($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 |#2|))))) (-15 -3146 ((-3 (-114) "failed") $ (-916 |#1|))))) -((-4474 (((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)) 22 T ELT))) -(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -4474 ((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)))) (-1133) (-1133) (-1133)) (T -915)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-914 *5 *6)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-914 *5 *7)) (-5 *1 (-915 *5 *6 *7))))) -(-10 -7 (-15 -4474 ((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3133 (($ $ (-663 (-51))) 74 T ELT)) (-3570 (((-663 $) $) 139 T ELT)) (-3130 (((-2 (|:| |var| (-663 (-1209))) (|:| |pred| (-51))) $) 30 T ELT)) (-3764 (((-114) $) 35 T ELT)) (-3131 (($ $ (-663 (-1209)) (-51)) 31 T ELT)) (-3134 (($ $ (-663 (-51))) 73 T ELT)) (-3661 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1209) #1#) $) 167 T ELT)) (-3660 ((|#1| $) 68 T ELT) (((-1209) $) NIL T ELT)) (-3128 (($ $) 126 T ELT)) (-3140 (((-114) $) 55 T ELT)) (-3135 (((-663 (-51)) $) 50 T ELT)) (-3132 (($ (-1209) (-114) (-114) (-114)) 75 T ELT)) (-3126 (((-3 (-663 $) "failed") (-663 $)) 82 T ELT)) (-3137 (((-114) $) 58 T ELT)) (-3138 (((-114) $) 57 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) "failed") $) 41 T ELT)) (-3143 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-3312 (((-3 (-2 (|:| |val| $) (|:| -2646 $)) "failed") $) 97 T ELT)) (-3309 (((-3 (-663 $) "failed") $) 40 T ELT)) (-3144 (((-3 (-663 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -2984 (-115)) (|:| |arg| (-663 $))) "failed") $) 107 T ELT)) (-3142 (((-3 (-663 $) "failed") $) 42 T ELT)) (-3311 (((-3 (-2 (|:| |val| $) (|:| -2646 (-793))) "failed") $) 45 T ELT)) (-3141 (((-114) $) 34 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3129 (((-114) $) 28 T ELT)) (-3136 (((-114) $) 52 T ELT)) (-3127 (((-663 (-51)) $) 130 T ELT)) (-3139 (((-114) $) 56 T ELT)) (-4316 (($ (-115) (-663 $)) 104 T ELT)) (-3829 (((-793) $) 33 T ELT)) (-3906 (($ $) 72 T ELT)) (-4488 (($ (-663 $)) 69 T ELT)) (-4469 (((-114) $) 32 T ELT)) (-4462 (((-888) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1209)) 76 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3147 (($ $ (-51)) 129 T ELT)) (-3145 (($) 103 T CONST)) (-3151 (($) 83 T CONST)) (-3540 (((-114) $ $) 93 T ELT)) (-4465 (($ $ $) 117 T ELT)) (-4355 (($ $ $) 121 T ELT)) (** (($ $ (-793)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-916 |#1|) (-13 (-1133) (-1070 |#1|) (-1070 (-1209)) (-10 -8 (-15 0 ($) -4468) (-15 1 ($) -4468) (-15 -3309 ((-3 (-663 $) "failed") $)) (-15 -3310 ((-3 (-663 $) "failed") $)) (-15 -3144 ((-3 (-663 $) "failed") $ (-115))) (-15 -3144 ((-3 (-2 (|:| -2984 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3311 ((-3 (-2 (|:| |val| $) (|:| -2646 (-793))) "failed") $)) (-15 -3143 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3142 ((-3 (-663 $) "failed") $)) (-15 -3312 ((-3 (-2 (|:| |val| $) (|:| -2646 $)) "failed") $)) (-15 -4316 ($ (-115) (-663 $))) (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -4465 ($ $ $)) (-15 -3829 ((-793) $)) (-15 -4488 ($ (-663 $))) (-15 -3906 ($ $)) (-15 -3141 ((-114) $)) (-15 -3140 ((-114) $)) (-15 -3764 ((-114) $)) (-15 -4469 ((-114) $)) (-15 -3139 ((-114) $)) (-15 -3138 ((-114) $)) (-15 -3137 ((-114) $)) (-15 -3136 ((-114) $)) (-15 -3135 ((-663 (-51)) $)) (-15 -3134 ($ $ (-663 (-51)))) (-15 -3133 ($ $ (-663 (-51)))) (-15 -3132 ($ (-1209) (-114) (-114) (-114))) (-15 -3131 ($ $ (-663 (-1209)) (-51))) (-15 -3130 ((-2 (|:| |var| (-663 (-1209))) (|:| |pred| (-51))) $)) (-15 -3129 ((-114) $)) (-15 -3128 ($ $)) (-15 -3147 ($ $ (-51))) (-15 -3127 ((-663 (-51)) $)) (-15 -3570 ((-663 $) $)) (-15 -3126 ((-3 (-663 $) "failed") (-663 $))))) (-1133)) (T -916)) -((-3145 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-3151 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-3309 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3310 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3144 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1133)))) (-3144 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2984 (-115)) (|:| |arg| (-663 (-916 *3))))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3311 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2646 (-793)))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3143 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3142 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3312 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2646 (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-4316 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1133)))) (-4355 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-4465 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3906 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3132 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-114)) (-5 *1 (-916 *4)) (-4 *4 (-1133)))) (-3131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-51)) (-5 *1 (-916 *4)) (-4 *4 (-1133)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-663 (-1209))) (|:| |pred| (-51)))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) (-3126 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(-13 (-1133) (-1070 |#1|) (-1070 (-1209)) (-10 -8 (-15 (-3145) ($) -4468) (-15 (-3151) ($) -4468) (-15 -3309 ((-3 (-663 $) "failed") $)) (-15 -3310 ((-3 (-663 $) "failed") $)) (-15 -3144 ((-3 (-663 $) "failed") $ (-115))) (-15 -3144 ((-3 (-2 (|:| -2984 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3311 ((-3 (-2 (|:| |val| $) (|:| -2646 (-793))) "failed") $)) (-15 -3143 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3142 ((-3 (-663 $) "failed") $)) (-15 -3312 ((-3 (-2 (|:| |val| $) (|:| -2646 $)) "failed") $)) (-15 -4316 ($ (-115) (-663 $))) (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -4465 ($ $ $)) (-15 -3829 ((-793) $)) (-15 -4488 ($ (-663 $))) (-15 -3906 ($ $)) (-15 -3141 ((-114) $)) (-15 -3140 ((-114) $)) (-15 -3764 ((-114) $)) (-15 -4469 ((-114) $)) (-15 -3139 ((-114) $)) (-15 -3138 ((-114) $)) (-15 -3137 ((-114) $)) (-15 -3136 ((-114) $)) (-15 -3135 ((-663 (-51)) $)) (-15 -3134 ($ $ (-663 (-51)))) (-15 -3133 ($ $ (-663 (-51)))) (-15 -3132 ($ (-1209) (-114) (-114) (-114))) (-15 -3131 ($ $ (-663 (-1209)) (-51))) (-15 -3130 ((-2 (|:| |var| (-663 (-1209))) (|:| |pred| (-51))) $)) (-15 -3129 ((-114) $)) (-15 -3128 ($ $)) (-15 -3147 ($ $ (-51))) (-15 -3127 ((-663 (-51)) $)) (-15 -3570 ((-663 $) $)) (-15 -3126 ((-3 (-663 $) "failed") (-663 $))))) -((-3713 (((-916 |#1|) (-916 |#1|) (-663 (-1209)) (-1 (-114) (-663 |#2|))) 32 T ELT) (((-916 |#1|) (-916 |#1|) (-663 (-1 (-114) |#2|))) 46 T ELT) (((-916 |#1|) (-916 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3146 (((-114) (-663 |#2|) (-916 |#1|)) 42 T ELT) (((-114) |#2| (-916 |#1|)) 36 T ELT)) (-4037 (((-1 (-114) |#2|) (-916 |#1|)) 16 T ELT)) (-3148 (((-663 |#2|) (-916 |#1|)) 24 T ELT)) (-3147 (((-916 |#1|) (-916 |#1|) |#2|) 20 T ELT))) -(((-917 |#1| |#2|) (-10 -7 (-15 -3713 ((-916 |#1|) (-916 |#1|) (-1 (-114) |#2|))) (-15 -3713 ((-916 |#1|) (-916 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -3713 ((-916 |#1|) (-916 |#1|) (-663 (-1209)) (-1 (-114) (-663 |#2|)))) (-15 -4037 ((-1 (-114) |#2|) (-916 |#1|))) (-15 -3146 ((-114) |#2| (-916 |#1|))) (-15 -3146 ((-114) (-663 |#2|) (-916 |#1|))) (-15 -3147 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -3148 ((-663 |#2|) (-916 |#1|)))) (-1133) (-1249)) (T -917)) -((-3148 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-663 *5)) (-5 *1 (-917 *4 *5)) (-4 *5 (-1249)))) (-3147 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-917 *4 *3)) (-4 *3 (-1249)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-1249)) (-5 *2 (-114)) (-5 *1 (-917 *5 *6)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-917 *5 *3)) (-4 *3 (-1249)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-917 *4 *5)) (-4 *5 (-1249)))) (-3713 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-916 *5)) (-5 *3 (-663 (-1209))) (-5 *4 (-1 (-114) (-663 *6))) (-4 *5 (-1133)) (-4 *6 (-1249)) (-5 *1 (-917 *5 *6)))) (-3713 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1133)) (-4 *5 (-1249)) (-5 *1 (-917 *4 *5)))) (-3713 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1133)) (-4 *5 (-1249)) (-5 *1 (-917 *4 *5))))) -(-10 -7 (-15 -3713 ((-916 |#1|) (-916 |#1|) (-1 (-114) |#2|))) (-15 -3713 ((-916 |#1|) (-916 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -3713 ((-916 |#1|) (-916 |#1|) (-663 (-1209)) (-1 (-114) (-663 |#2|)))) (-15 -4037 ((-1 (-114) |#2|) (-916 |#1|))) (-15 -3146 ((-114) |#2| (-916 |#1|))) (-15 -3146 ((-114) (-663 |#2|) (-916 |#1|))) (-15 -3147 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -3148 ((-663 |#2|) (-916 |#1|)))) -((-4474 (((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)) 19 T ELT))) -(((-918 |#1| |#2|) (-10 -7 (-15 -4474 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) (-1133) (-1133)) (T -918)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-916 *6)) (-5 *1 (-918 *5 *6))))) -(-10 -7 (-15 -4474 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4450 (((-663 |#1|) $) 19 T ELT)) (-3149 (((-114) $) 49 T ELT)) (-3661 (((-3 (-694 |#1|) "failed") $) 55 T ELT)) (-3660 (((-694 |#1|) $) 53 T ELT)) (-4315 (($ $) 23 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4349 (((-793) $) 60 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-694 |#1|) $) 21 T ELT)) (-4462 (((-888) $) 47 T ELT) (($ (-694 |#1|)) 26 T ELT) (((-843 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 9 T CONST)) (-3150 (((-663 (-694 |#1|)) $) 28 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 12 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 66 T ELT))) -(((-919 |#1|) (-13 (-872) (-1070 (-694 |#1|)) (-10 -8 (-15 1 ($) -4468) (-15 -4462 ((-843 |#1|) $)) (-15 -4462 ($ |#1|)) (-15 -4317 ((-694 |#1|) $)) (-15 -4349 ((-793) $)) (-15 -3150 ((-663 (-694 |#1|)) $)) (-15 -4315 ($ $)) (-15 -3149 ((-114) $)) (-15 -4450 ((-663 |#1|) $)))) (-872)) (T -919)) -((-3151 (*1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) (-4462 (*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-663 (-694 *3))) (-5 *1 (-919 *3)) (-4 *3 (-872)))) (-4315 (*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) (-4450 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872))))) -(-13 (-872) (-1070 (-694 |#1|)) (-10 -8 (-15 (-3151) ($) -4468) (-15 -4462 ((-843 |#1|) $)) (-15 -4462 ($ |#1|)) (-15 -4317 ((-694 |#1|) $)) (-15 -4349 ((-793) $)) (-15 -3150 ((-663 (-694 |#1|)) $)) (-15 -4315 ($ $)) (-15 -3149 ((-114) $)) (-15 -4450 ((-663 |#1|) $)))) -((-3980 ((|#1| |#1| |#1|) 19 T ELT))) -(((-920 |#1| |#2|) (-10 -7 (-15 -3980 (|#1| |#1| |#1|))) (-1275 |#2|) (-1081)) (T -920)) -((-3980 (*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-920 *2 *3)) (-4 *2 (-1275 *3))))) -(-10 -7 (-15 -3980 (|#1| |#1| |#1|))) -((-3156 ((|#2| $ |#3|) 10 T ELT))) -(((-921 |#1| |#2| |#3|) (-10 -8 (-15 -3156 (|#2| |#1| |#3|))) (-922 |#2| |#3|) (-1249) (-1249)) (T -921)) -NIL -(-10 -8 (-15 -3156 (|#2| |#1| |#3|))) -((-4274 ((|#1| $ |#2|) 7 T ELT)) (-3156 ((|#1| $ |#2|) 6 T ELT))) -(((-922 |#1| |#2|) (-142) (-1249) (-1249)) (T -922)) -((-4274 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1249)))) (-3156 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -4274 (|t#1| $ |t#2|)) (-15 -3156 (|t#1| $ |t#2|)))) -(((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 18 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3152 (((-1067) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 17 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-923) (-142)) (T -923)) -((-3155 (*1 *2 *3 *4) (-12 (-4 *1 (-923)) (-5 *3 (-1095)) (-5 *4 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) (-3152 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) (-5 *2 (-1067))))) -(-13 (-1133) (-10 -7 (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| |explanations| (-1191))) (-1095) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))))) (-15 -3152 ((-1067) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3154 ((|#1| |#1| (-793)) 26 T ELT)) (-3153 (((-3 |#1| "failed") |#1| |#1|) 23 T ELT)) (-3941 (((-3 (-2 (|:| -3626 |#1|) (|:| -3625 |#1|)) "failed") |#1| (-793) (-793)) 29 T ELT) (((-663 |#1|) |#1|) 38 T ELT))) -(((-924 |#1| |#2|) (-10 -7 (-15 -3941 ((-663 |#1|) |#1|)) (-15 -3941 ((-3 (-2 (|:| -3626 |#1|) (|:| -3625 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3153 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3154 (|#1| |#1| (-793)))) (-1275 |#2|) (-376)) (T -924)) -((-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-924 *2 *4)) (-4 *2 (-1275 *4)))) (-3153 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-924 *2 *3)) (-4 *2 (-1275 *3)))) (-3941 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3626 *3) (|:| -3625 *3))) (-5 *1 (-924 *3 *5)) (-4 *3 (-1275 *5)))) (-3941 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-924 *3 *4)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -3941 ((-663 |#1|) |#1|)) (-15 -3941 ((-3 (-2 (|:| -3626 |#1|) (|:| -3625 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3153 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3154 (|#1| |#1| (-793)))) -((-4087 (((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191)) 103 T ELT) (((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191) (-229)) 100 T ELT) (((-1067) (-926) (-1095)) 92 T ELT) (((-1067) (-926)) 93 T ELT)) (-3155 (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926) (-1095)) 62 T ELT) (((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926)) 64 T ELT))) -(((-925) (-10 -7 (-15 -4087 ((-1067) (-926))) (-15 -4087 ((-1067) (-926) (-1095))) (-15 -4087 ((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191) (-229))) (-15 -4087 ((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926) (-1095))))) (T -925)) -((-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-926)) (-5 *4 (-1095)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-925)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-926)) (-5 *2 (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191))))) (-5 *1 (-925)))) (-4087 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1191)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1067)) (-5 *1 (-925)))) (-4087 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1191)) (-5 *8 (-229)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1067)) (-5 *1 (-925)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-926)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-925)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-926)) (-5 *2 (-1067)) (-5 *1 (-925))))) -(-10 -7 (-15 -4087 ((-1067) (-926))) (-15 -4087 ((-1067) (-926) (-1095))) (-15 -4087 ((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191) (-229))) (-15 -4087 ((-1067) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1191))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926))) (-15 -3155 ((-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) (|:| |explanations| (-663 (-1191)))) (-926) (-1095)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3660 (((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))) $) 19 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 21 T ELT) (($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) 18 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-926) (-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))))) (-15 -3660 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))) $))))) (T -926)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) (-5 *1 (-926)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229)))) (-5 *1 (-926))))) -(-13 (-1133) (-10 -8 (-15 -4462 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))))) (-15 -3660 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) (|:| |tol| (-229))) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-663 |#2|) (-663 (-793))) 44 T ELT) (($ $ |#2| (-793)) 43 T ELT) (($ $ (-663 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3156 (($ $ (-663 |#2|) (-663 (-793))) 47 T ELT) (($ $ |#2| (-793)) 46 T ELT) (($ $ (-663 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-927 |#1| |#2|) (-142) (-1081) (-1133)) (T -927)) -NIL -(-13 (-111 |t#1| |t#1|) (-930 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-922 $ |#2|) . T) ((-930 |#2|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4274 (($ $ (-663 |#1|) (-663 (-793))) 49 T ELT) (($ $ |#1| (-793)) 48 T ELT) (($ $ (-663 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 |#1|) (-663 (-793))) 52 T ELT) (($ $ |#1| (-793)) 51 T ELT) (($ $ (-663 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-928 |#1|) (-142) (-1133)) (T -928)) -NIL -(-13 (-1081) (-930 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-922 $ |#1|) . T) ((-930 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-4274 (($ $ |#2|) NIL T ELT) (($ $ (-663 |#2|)) 10 T ELT) (($ $ |#2| (-793)) 12 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 15 T ELT)) (-3156 (($ $ |#2|) 16 T ELT) (($ $ (-663 |#2|)) 18 T ELT) (($ $ |#2| (-793)) 19 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 21 T ELT))) -(((-929 |#1| |#2|) (-10 -8 (-15 -3156 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3156 (|#1| |#1| |#2| (-793))) (-15 -3156 (|#1| |#1| (-663 |#2|))) (-15 -4274 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -4274 (|#1| |#1| |#2| (-793))) (-15 -4274 (|#1| |#1| (-663 |#2|))) (-15 -3156 (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#1| |#2|))) (-930 |#2|) (-1133)) (T -929)) -NIL -(-10 -8 (-15 -3156 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3156 (|#1| |#1| |#2| (-793))) (-15 -3156 (|#1| |#1| (-663 |#2|))) (-15 -4274 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -4274 (|#1| |#1| |#2| (-793))) (-15 -4274 (|#1| |#1| (-663 |#2|))) (-15 -3156 (|#1| |#1| |#2|)) (-15 -4274 (|#1| |#1| |#2|))) -((-4274 (($ $ |#1|) 7 T ELT) (($ $ (-663 |#1|)) 15 T ELT) (($ $ |#1| (-793)) 14 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 13 T ELT)) (-3156 (($ $ |#1|) 6 T ELT) (($ $ (-663 |#1|)) 12 T ELT) (($ $ |#1| (-793)) 11 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 10 T ELT))) -(((-930 |#1|) (-142) (-1133)) (T -930)) -((-4274 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-930 *3)) (-4 *3 (-1133)))) (-4274 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-930 *2)) (-4 *2 (-1133)))) (-4274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-930 *4)) (-4 *4 (-1133)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-930 *3)) (-4 *3 (-1133)))) (-3156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-930 *2)) (-4 *2 (-1133)))) (-3156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-930 *4)) (-4 *4 (-1133))))) -(-13 (-922 $ |t#1|) (-10 -8 (-15 -4274 ($ $ (-663 |t#1|))) (-15 -4274 ($ $ |t#1| (-793))) (-15 -4274 ($ $ (-663 |t#1|) (-663 (-793)))) (-15 -3156 ($ $ (-663 |t#1|))) (-15 -3156 ($ $ |t#1| (-793))) (-15 -3156 ($ $ (-663 |t#1|) (-663 (-793)))))) -(((-922 $ |#1|) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 26 T ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1419 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-1420 (($ $ $) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4512)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3625 (($ $) 25 T ELT)) (-3157 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3626 (($ $) 23 T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) 20 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1236 |#1|) $) 9 T ELT) (((-888) $) 29 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-931 |#1|) (-13 (-121 |#1|) (-632 (-1236 |#1|)) (-10 -8 (-15 -3157 ($ |#1|)) (-15 -3157 ($ $ $)))) (-1133)) (T -931)) -((-3157 (*1 *1 *2) (-12 (-5 *1 (-931 *2)) (-4 *2 (-1133)))) (-3157 (*1 *1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-1133))))) -(-13 (-121 |#1|) (-632 (-1236 |#1|)) (-10 -8 (-15 -3157 ($ |#1|)) (-15 -3157 ($ $ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3173 (((-1129 |#1|) $) 60 T ELT)) (-3396 (((-663 $) (-663 $)) 103 T ELT)) (-4139 (((-560) $) 83 T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4288 (((-793) $) 80 T ELT)) (-3177 (((-1129 |#1|) $ |#1|) 70 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3160 (((-114) $) 88 T ELT)) (-3162 (((-793) $) 84 T ELT)) (-3016 (($ $ $) NIL (-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) ELT)) (-3344 (($ $ $) NIL (-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) ELT)) (-3166 (((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $) 55 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 130 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3159 (((-1129 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3161 (((-114) $) 81 T ELT)) (-4316 ((|#1| $ |#1|) 68 T ELT)) (-4464 (((-793) $) 62 T ELT)) (-3168 (($ (-663 (-663 |#1|))) 118 T ELT)) (-3163 (((-1003) $) 74 T ELT)) (-3169 (($ (-663 |#1|)) 32 T ELT)) (-3496 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3165 (($ (-663 (-663 |#1|))) 57 T ELT)) (-3164 (($ (-663 (-663 |#1|))) 123 T ELT)) (-3158 (($ (-663 |#1|)) 132 T ELT)) (-4462 (((-888) $) 117 T ELT) (($ (-663 (-663 |#1|))) 91 T ELT) (($ (-663 |#1|)) 92 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) 24 T CONST)) (-3051 (((-114) $ $) NIL (-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) ELT)) (-3052 (((-114) $ $) NIL (-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) ELT)) (-3540 (((-114) $ $) 66 T ELT)) (-3171 (((-114) $ $) NIL (-4043 (|has| |#1| (-381)) (|has| |#1| (-872))) ELT)) (-3172 (((-114) $ $) 90 T ELT)) (-4465 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-932 |#1|) (-13 (-934 |#1|) (-10 -8 (-15 -3166 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -3165 ($ (-663 (-663 |#1|)))) (-15 -4462 ($ (-663 (-663 |#1|)))) (-15 -4462 ($ (-663 |#1|))) (-15 -3164 ($ (-663 (-663 |#1|)))) (-15 -4464 ((-793) $)) (-15 -3163 ((-1003) $)) (-15 -4288 ((-793) $)) (-15 -3162 ((-793) $)) (-15 -4139 ((-560) $)) (-15 -3161 ((-114) $)) (-15 -3160 ((-114) $)) (-15 -3396 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3159 ((-1129 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3158 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -3158 ($ (-663 |#1|))) |%noBranch|)))) (-1133)) (T -932)) -((-3166 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-663 *3)) (|:| |image| (-663 *3)))) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3165 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-932 *3)) (-4 *3 (-381)) (-4 *3 (-1133)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-932 *3))))) -(-13 (-934 |#1|) (-10 -8 (-15 -3166 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -3165 ($ (-663 (-663 |#1|)))) (-15 -4462 ($ (-663 (-663 |#1|)))) (-15 -4462 ($ (-663 |#1|))) (-15 -3164 ($ (-663 (-663 |#1|)))) (-15 -4464 ((-793) $)) (-15 -3163 ((-1003) $)) (-15 -4288 ((-793) $)) (-15 -3162 ((-793) $)) (-15 -4139 ((-560) $)) (-15 -3161 ((-114) $)) (-15 -3160 ((-114) $)) (-15 -3396 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3159 ((-1129 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3158 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -3158 ($ (-663 |#1|))) |%noBranch|)))) -((-3167 ((|#2| (-1174 |#1| |#2|)) 48 T ELT))) -(((-933 |#1| |#2|) (-10 -7 (-15 -3167 (|#2| (-1174 |#1| |#2|)))) (-949) (-13 (-1081) (-10 -7 (-6 (-4513 "*"))))) (T -933)) -((-3167 (*1 *2 *3) (-12 (-5 *3 (-1174 *4 *2)) (-14 *4 (-949)) (-4 *2 (-13 (-1081) (-10 -7 (-6 (-4513 "*"))))) (-5 *1 (-933 *4 *2))))) -(-10 -7 (-15 -3167 (|#2| (-1174 |#1| |#2|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3173 (((-1129 |#1|) $) 42 T ELT)) (-4240 (($) 23 T CONST)) (-3973 (((-3 $ "failed") $) 20 T ELT)) (-3177 (((-1129 |#1|) $ |#1|) 41 T ELT)) (-2655 (((-114) $) 22 T ELT)) (-3016 (($ $ $) 35 (-4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ELT)) (-3344 (($ $ $) 36 (-4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 30 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4316 ((|#1| $ |#1|) 45 T ELT)) (-3168 (($ (-663 (-663 |#1|))) 43 T ELT)) (-3169 (($ (-663 |#1|)) 44 T ELT)) (-3496 (($ $ $) 27 T ELT)) (-2838 (($ $ $) 26 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3151 (($) 24 T CONST)) (-3051 (((-114) $ $) 37 (-4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ELT)) (-3052 (((-114) $ $) 39 (-4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 38 (-4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ELT)) (-3172 (((-114) $ $) 40 T ELT)) (-4465 (($ $ $) 29 T ELT)) (** (($ $ (-949)) 17 T ELT) (($ $ (-793)) 21 T ELT) (($ $ (-560)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-934 |#1|) (-142) (-1133)) (T -934)) -((-3169 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-934 *3)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-4 *1 (-934 *3)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-1129 *3)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-1129 *3)))) (-3172 (*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(-13 (-487) (-298 |t#1| |t#1|) (-10 -8 (-15 -3169 ($ (-663 |t#1|))) (-15 -3168 ($ (-663 (-663 |t#1|)))) (-15 -3173 ((-1129 |t#1|) $)) (-15 -3177 ((-1129 |t#1|) $ |t#1|)) (-15 -3172 ((-114) $ $)) (IF (|has| |t#1| (-872)) (-6 (-872)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-872)) |%noBranch|))) -(((-102) . T) ((-632 (-888)) . T) ((-298 |#1| |#1|) . T) ((-487) . T) ((-748) . T) ((-872) -4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ((-875) -4043 (|has| |#1| (-872)) (|has| |#1| (-381))) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3179 (((-663 (-663 (-793))) $) 163 T ELT)) (-3175 (((-663 (-793)) (-932 |#1|) $) 191 T ELT)) (-3174 (((-663 (-793)) (-932 |#1|) $) 192 T ELT)) (-3173 (((-1129 |#1|) $) 155 T ELT)) (-3180 (((-663 (-932 |#1|)) $) 152 T ELT)) (-3481 (((-932 |#1|) $ (-560)) 157 T ELT) (((-932 |#1|) $) 158 T ELT)) (-3178 (($ (-663 (-932 |#1|))) 165 T ELT)) (-4288 (((-793) $) 159 T ELT)) (-3176 (((-1129 (-1129 |#1|)) $) 189 T ELT)) (-3177 (((-1129 |#1|) $ |#1|) 180 T ELT) (((-1129 (-1129 |#1|)) $ (-1129 |#1|)) 201 T ELT) (((-1129 (-663 |#1|)) $ (-663 |#1|)) 204 T ELT)) (-3749 (((-114) (-932 |#1|) $) 140 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3170 (((-1305) $) 145 T ELT) (((-1305) $ (-560) (-560)) 205 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3182 (((-663 (-932 |#1|)) $) 146 T ELT)) (-4316 (((-932 |#1|) $ (-793)) 153 T ELT)) (-4464 (((-793) $) 160 T ELT)) (-4462 (((-888) $) 177 T ELT) (((-663 (-932 |#1|)) $) 28 T ELT) (($ (-663 (-932 |#1|))) 164 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (((-663 |#1|) $) 162 T ELT)) (-3540 (((-114) $ $) 198 T ELT)) (-3171 (((-114) $ $) 195 T ELT)) (-3172 (((-114) $ $) 194 T ELT))) -(((-935 |#1|) (-13 (-1133) (-10 -8 (-15 -4462 ((-663 (-932 |#1|)) $)) (-15 -3182 ((-663 (-932 |#1|)) $)) (-15 -4316 ((-932 |#1|) $ (-793))) (-15 -3481 ((-932 |#1|) $ (-560))) (-15 -3481 ((-932 |#1|) $)) (-15 -4288 ((-793) $)) (-15 -4464 ((-793) $)) (-15 -3181 ((-663 |#1|) $)) (-15 -3180 ((-663 (-932 |#1|)) $)) (-15 -3179 ((-663 (-663 (-793))) $)) (-15 -4462 ($ (-663 (-932 |#1|)))) (-15 -3178 ($ (-663 (-932 |#1|)))) (-15 -3177 ((-1129 |#1|) $ |#1|)) (-15 -3176 ((-1129 (-1129 |#1|)) $)) (-15 -3177 ((-1129 (-1129 |#1|)) $ (-1129 |#1|))) (-15 -3177 ((-1129 (-663 |#1|)) $ (-663 |#1|))) (-15 -3749 ((-114) (-932 |#1|) $)) (-15 -3175 ((-663 (-793)) (-932 |#1|) $)) (-15 -3174 ((-663 (-793)) (-932 |#1|) $)) (-15 -3173 ((-1129 |#1|) $)) (-15 -3172 ((-114) $ $)) (-15 -3171 ((-114) $ $)) (-15 -3170 ((-1305) $)) (-15 -3170 ((-1305) $ (-560) (-560))))) (-1133)) (T -935)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-932 *4)) (-5 *1 (-935 *4)) (-4 *4 (-1133)))) (-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-932 *4)) (-5 *1 (-935 *4)) (-4 *4 (-1133)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-932 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-663 (-932 *3))) (-4 *3 (-1133)) (-5 *1 (-935 *3)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-663 (-932 *3))) (-4 *3 (-1133)) (-5 *1 (-935 *3)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-1129 (-1129 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *4 (-1133)) (-5 *2 (-1129 (-1129 *4))) (-5 *1 (-935 *4)) (-5 *3 (-1129 *4)))) (-3177 (*1 *2 *1 *3) (-12 (-4 *4 (-1133)) (-5 *2 (-1129 (-663 *4))) (-5 *1 (-935 *4)) (-5 *3 (-663 *4)))) (-3749 (*1 *2 *3 *1) (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-114)) (-5 *1 (-935 *4)))) (-3175 (*1 *2 *3 *1) (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-663 (-793))) (-5 *1 (-935 *4)))) (-3174 (*1 *2 *3 *1) (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-663 (-793))) (-5 *1 (-935 *4)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3172 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) (-3170 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-935 *4)) (-4 *4 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -4462 ((-663 (-932 |#1|)) $)) (-15 -3182 ((-663 (-932 |#1|)) $)) (-15 -4316 ((-932 |#1|) $ (-793))) (-15 -3481 ((-932 |#1|) $ (-560))) (-15 -3481 ((-932 |#1|) $)) (-15 -4288 ((-793) $)) (-15 -4464 ((-793) $)) (-15 -3181 ((-663 |#1|) $)) (-15 -3180 ((-663 (-932 |#1|)) $)) (-15 -3179 ((-663 (-663 (-793))) $)) (-15 -4462 ($ (-663 (-932 |#1|)))) (-15 -3178 ($ (-663 (-932 |#1|)))) (-15 -3177 ((-1129 |#1|) $ |#1|)) (-15 -3176 ((-1129 (-1129 |#1|)) $)) (-15 -3177 ((-1129 (-1129 |#1|)) $ (-1129 |#1|))) (-15 -3177 ((-1129 (-663 |#1|)) $ (-663 |#1|))) (-15 -3749 ((-114) (-932 |#1|) $)) (-15 -3175 ((-663 (-793)) (-932 |#1|) $)) (-15 -3174 ((-663 (-793)) (-932 |#1|) $)) (-15 -3173 ((-1129 |#1|) $)) (-15 -3172 ((-114) $ $)) (-15 -3171 ((-114) $ $)) (-15 -3170 ((-1305) $)) (-15 -3170 ((-1305) $ (-560) (-560))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-4448 (((-114) $) NIL T ELT)) (-4445 (((-793)) NIL T ELT)) (-3836 (($ $ (-949)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 $ "failed") $) NIL T ELT)) (-3660 (($ $) NIL T ELT)) (-2014 (($ (-1299 $)) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-3320 (($) NIL T ELT)) (-1895 (((-114) $) NIL T ELT)) (-1988 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-4288 (((-856 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2237 (($) NIL (|has| $ (-381)) ELT)) (-2235 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3620 (($ $ (-949)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2238 (((-1203 $) $ (-949)) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL T ELT)) (-2234 (((-949) $) NIL T ELT)) (-1819 (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-1818 (((-3 (-1203 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-1820 (($ $ (-1203 $)) NIL (|has| $ (-381)) ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2645 (($ (-949)) NIL T ELT)) (-4447 (((-114) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) NIL (|has| $ (-381)) ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-4446 (((-949)) NIL T ELT) (((-856 (-949))) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-1989 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-4427 (((-136)) NIL T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4464 (((-949) $) NIL T ELT) (((-856 (-949)) $) NIL T ELT)) (-3689 (((-1203 $)) NIL T ELT)) (-1889 (($) NIL T ELT)) (-1821 (($) NIL (|has| $ (-381)) ELT)) (-3728 (((-711 $) (-1299 $)) NIL T ELT) (((-1299 $) $) NIL T ELT)) (-4488 (((-560) $) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-3189 (((-713 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $) (-949)) NIL T ELT) (((-1299 $)) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-4444 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-936 |#1|) (-13 (-363) (-341 $) (-633 (-560))) (-949)) (T -936)) -NIL -(-13 (-363) (-341 $) (-633 (-560))) -((-3184 (((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|)) 164 T ELT)) (-3187 ((|#1|) 101 T ELT)) (-3186 (((-419 (-1203 |#4|)) (-1203 |#4|)) 173 T ELT)) (-3188 (((-419 (-1203 |#4|)) (-663 |#3|) (-1203 |#4|)) 83 T ELT)) (-3185 (((-419 (-1203 |#4|)) (-1203 |#4|)) 183 T ELT)) (-3183 (((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|) |#3|) 117 T ELT))) -(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3184 ((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|))) (-15 -3185 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -3186 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -3187 (|#1|)) (-15 -3183 ((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|) |#3|)) (-15 -3188 ((-419 (-1203 |#4|)) (-663 |#3|) (-1203 |#4|)))) (-940) (-817) (-872) (-980 |#1| |#2| |#3|)) (T -937)) -((-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *7)) (-4 *7 (-872)) (-4 *5 (-940)) (-4 *6 (-817)) (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-419 (-1203 *8))) (-5 *1 (-937 *5 *6 *7 *8)) (-5 *4 (-1203 *8)))) (-3183 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-663 (-1203 *7))) (-5 *3 (-1203 *7)) (-4 *7 (-980 *5 *6 *4)) (-4 *5 (-940)) (-4 *6 (-817)) (-4 *4 (-872)) (-5 *1 (-937 *5 *6 *4 *7)))) (-3187 (*1 *2) (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-940)) (-5 *1 (-937 *2 *3 *4 *5)) (-4 *5 (-980 *2 *3 *4)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 *7))) (-5 *3 (-1203 *7)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-937 *4 *5 *6 *7))))) -(-10 -7 (-15 -3184 ((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|))) (-15 -3185 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -3186 ((-419 (-1203 |#4|)) (-1203 |#4|))) (-15 -3187 (|#1|)) (-15 -3183 ((-3 (-663 (-1203 |#4|)) "failed") (-663 (-1203 |#4|)) (-1203 |#4|) |#3|)) (-15 -3188 ((-419 (-1203 |#4|)) (-663 |#3|) (-1203 |#4|)))) -((-3184 (((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|)) 39 T ELT)) (-3187 ((|#1|) 71 T ELT)) (-3186 (((-419 (-1203 |#2|)) (-1203 |#2|)) 125 T ELT)) (-3188 (((-419 (-1203 |#2|)) (-1203 |#2|)) 109 T ELT)) (-3185 (((-419 (-1203 |#2|)) (-1203 |#2|)) 136 T ELT))) -(((-938 |#1| |#2|) (-10 -7 (-15 -3184 ((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|))) (-15 -3185 ((-419 (-1203 |#2|)) (-1203 |#2|))) (-15 -3186 ((-419 (-1203 |#2|)) (-1203 |#2|))) (-15 -3187 (|#1|)) (-15 -3188 ((-419 (-1203 |#2|)) (-1203 |#2|)))) (-940) (-1275 |#1|)) (T -938)) -((-3188 (*1 *2 *3) (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5)))) (-3187 (*1 *2) (-12 (-4 *2 (-940)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1275 *2)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5)))) (-3184 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 *5))) (-5 *3 (-1203 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-940)) (-5 *1 (-938 *4 *5))))) -(-10 -7 (-15 -3184 ((-3 (-663 (-1203 |#2|)) "failed") (-663 (-1203 |#2|)) (-1203 |#2|))) (-15 -3185 ((-419 (-1203 |#2|)) (-1203 |#2|))) (-15 -3186 ((-419 (-1203 |#2|)) (-1203 |#2|))) (-15 -3187 (|#1|)) (-15 -3188 ((-419 (-1203 |#2|)) (-1203 |#2|)))) -((-3191 (((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $)) 46 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 18 T ELT)) (-3189 (((-713 $) $) 40 T ELT))) -(((-939 |#1|) (-10 -8 (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) (-940)) (T -939)) -NIL -(-10 -8 (-15 -3189 ((-713 |#1|) |#1|)) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 72 T ELT)) (-4291 (($ $) 63 T ELT)) (-4487 (((-419 $) $) 64 T ELT)) (-3191 (((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $)) 69 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4239 (((-114) $) 65 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 70 T ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 71 T ELT)) (-4248 (((-419 $) $) 62 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) 68 (|has| $ (-147)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3189 (((-713 $) $) 67 (|has| $ (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-940) (-142)) (T -940)) -((-3195 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-940)))) (-3194 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1)))) (-3193 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1)))) (-3192 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1)))) (-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1203 *1))) (-5 *3 (-1203 *1)) (-4 *1 (-940)))) (-3190 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-940)) (-5 *2 (-1299 *1)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-147)) (-4 *1 (-940))))) -(-13 (-1254) (-10 -8 (-15 -3194 ((-419 (-1203 $)) (-1203 $))) (-15 -3193 ((-419 (-1203 $)) (-1203 $))) (-15 -3192 ((-419 (-1203 $)) (-1203 $))) (-15 -3195 ((-1203 $) (-1203 $) (-1203 $))) (-15 -3191 ((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $))) (IF (|has| $ (-147)) (PROGN (-15 -3190 ((-3 (-1299 $) "failed") (-711 $))) (-15 -3189 ((-713 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3197 (((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3196 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4288 (((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4288 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3196 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3197 ((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-571) (-1070 (-560))) (-435 |#1|) (-1275 |#2|) (-1275 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -941)) -((-3197 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-2 (|:| -4288 (-793)) (|:| -2628 *8))) (-5 *1 (-941 *4 *5 *6 *7 *8)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-114)) (-5 *1 (-941 *4 *5 *6 *7 *8)))) (-4288 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-793)) (-5 *1 (-941 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4288 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3196 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3197 ((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) -((-3197 (((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 64 T ELT)) (-3196 (((-114) (-346 (-421 (-560)) |#1| |#2| |#3|)) 16 T ELT)) (-4288 (((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 14 T ELT))) -(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -4288 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3196 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3197 ((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)))) (-1275 (-421 (-560))) (-1275 (-421 |#1|)) (-355 (-421 (-560)) |#1| |#2|)) (T -942)) -((-3197 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-2 (|:| -4288 (-793)) (|:| -2628 *6))) (-5 *1 (-942 *4 *5 *6)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-942 *4 *5 *6)))) (-4288 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793)) (-5 *1 (-942 *4 *5 *6))))) -(-10 -7 (-15 -4288 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3196 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3197 ((-3 (-2 (|:| -4288 (-793)) (|:| -2628 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)))) -((-3202 ((|#2| |#2|) 26 T ELT)) (-3200 (((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) 15 T ELT)) (-3198 (((-949) (-560)) 38 T ELT)) (-3201 (((-560) |#2|) 45 T ELT)) (-3199 (((-560) |#2|) 21 T ELT) (((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|) 20 T ELT))) -(((-943 |#1| |#2|) (-10 -7 (-15 -3198 ((-949) (-560))) (-15 -3199 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -3199 ((-560) |#2|)) (-15 -3200 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3201 ((-560) |#2|)) (-15 -3202 (|#2| |#2|))) (-1275 (-421 (-560))) (-1275 (-421 |#1|))) (T -943)) -((-3202 (*1 *2 *2) (-12 (-4 *3 (-1275 (-421 (-560)))) (-5 *1 (-943 *3 *2)) (-4 *2 (-1275 (-421 *3))))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1275 (-421 *4))))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *5)) (-4 *5 (-1275 (-421 *4))))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1275 (-421 *4))))) (-3199 (*1 *2 *3) (-12 (-4 *3 (-1275 (-421 (-560)))) (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-943 *3 *4)) (-4 *4 (-1275 (-421 *3))))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1275 (-421 *3))) (-5 *2 (-949)) (-5 *1 (-943 *4 *5)) (-4 *5 (-1275 (-421 *4)))))) -(-10 -7 (-15 -3198 ((-949) (-560))) (-15 -3199 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -3199 ((-560) |#2|)) (-15 -3200 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3201 ((-560) |#2|)) (-15 -3202 (|#2| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 ((|#1| $) 99 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3049 (($ $ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 93 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3210 (($ |#1| (-419 |#1|)) 91 T ELT)) (-3204 (((-1203 |#1|) |#1| |#1|) 52 T ELT)) (-3203 (($ $) 60 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3205 (((-560) $) 96 T ELT)) (-3206 (($ $ (-560)) 98 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3207 ((|#1| $) 95 T ELT)) (-3208 (((-419 |#1|) $) 94 T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) 92 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3209 (($ $) 49 T ELT)) (-4462 (((-888) $) 123 T ELT) (($ (-560)) 72 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 40 T ELT) (((-421 |#1|) $) 77 T ELT) (($ (-421 (-419 |#1|))) 85 T ELT)) (-3614 (((-793)) 70 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) 24 T CONST)) (-3151 (($) 12 T CONST)) (-3540 (((-114) $ $) 86 T ELT)) (-4465 (($ $ $) NIL T ELT)) (-4353 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 48 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-944 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -4462 ((-421 |#1|) $)) (-15 -4462 ($ (-421 (-419 |#1|)))) (-15 -3209 ($ $)) (-15 -3208 ((-419 |#1|) $)) (-15 -3207 (|#1| $)) (-15 -3206 ($ $ (-560))) (-15 -3205 ((-560) $)) (-15 -3204 ((-1203 |#1|) |#1| |#1|)) (-15 -3203 ($ $)) (-15 -3210 ($ |#1| (-419 |#1|))) (-15 -3617 (|#1| $)))) (-319)) (T -944)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-944 *3)))) (-3209 (*1 *1 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) (-3207 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319)))) (-3206 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) (-3204 (*1 *2 *3 *3) (-12 (-5 *2 (-1203 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) (-3203 (*1 *1 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-944 *2)))) (-3617 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319))))) -(-13 (-376) (-38 |#1|) (-10 -8 (-15 -4462 ((-421 |#1|) $)) (-15 -4462 ($ (-421 (-419 |#1|)))) (-15 -3209 ($ $)) (-15 -3208 ((-419 |#1|) $)) (-15 -3207 (|#1| $)) (-15 -3206 ($ $ (-560))) (-15 -3205 ((-560) $)) (-15 -3204 ((-1203 |#1|) |#1| |#1|)) (-15 -3203 ($ $)) (-15 -3210 ($ |#1| (-419 |#1|))) (-15 -3617 (|#1| $)))) -((-3210 (((-51) (-976 |#1|) (-419 (-976 |#1|)) (-1209)) 17 T ELT) (((-51) (-421 (-976 |#1|)) (-1209)) 18 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3210 ((-51) (-421 (-976 |#1|)) (-1209))) (-15 -3210 ((-51) (-976 |#1|) (-419 (-976 |#1|)) (-1209)))) (-13 (-319) (-149))) (T -945)) -((-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-419 (-976 *6))) (-5 *5 (-1209)) (-5 *3 (-976 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-945 *6)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-945 *5))))) -(-10 -7 (-15 -3210 ((-51) (-421 (-976 |#1|)) (-1209))) (-15 -3210 ((-51) (-976 |#1|) (-419 (-976 |#1|)) (-1209)))) -((-3211 ((|#4| (-663 |#4|)) 148 T ELT) (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3648 (((-1203 |#4|) (-663 (-1203 |#4|))) 141 T ELT) (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 61 T ELT) ((|#4| (-663 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-946 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 (|#4| |#4| |#4|)) (-15 -3648 (|#4| (-663 |#4|))) (-15 -3648 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3648 ((-1203 |#4|) (-663 (-1203 |#4|)))) (-15 -3211 (|#4| |#4| |#4|)) (-15 -3211 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3211 (|#4| (-663 |#4|)))) (-817) (-872) (-319) (-980 |#3| |#1| |#2|)) (T -946)) -((-3211 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *6 *4 *5)) (-5 *1 (-946 *4 *5 *6 *2)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)))) (-3211 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3211 (*1 *2 *2 *2) (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *2)) (-4 *2 (-980 *5 *3 *4)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-663 (-1203 *7))) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-1203 *7)) (-5 *1 (-946 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) (-3648 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *6 *4 *5)) (-5 *1 (-946 *4 *5 *6 *2)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)))) (-3648 (*1 *2 *2 *2) (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *2)) (-4 *2 (-980 *5 *3 *4))))) -(-10 -7 (-15 -3648 (|#4| |#4| |#4|)) (-15 -3648 (|#4| (-663 |#4|))) (-15 -3648 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3648 ((-1203 |#4|) (-663 (-1203 |#4|)))) (-15 -3211 (|#4| |#4| |#4|)) (-15 -3211 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -3211 (|#4| (-663 |#4|)))) -((-3224 (((-935 (-560)) (-1003)) 38 T ELT) (((-935 (-560)) (-663 (-560))) 34 T ELT)) (-3212 (((-935 (-560)) (-663 (-560))) 66 T ELT) (((-935 (-560)) (-949)) 67 T ELT)) (-3223 (((-935 (-560))) 39 T ELT)) (-3221 (((-935 (-560))) 53 T ELT) (((-935 (-560)) (-663 (-560))) 52 T ELT)) (-3220 (((-935 (-560))) 51 T ELT) (((-935 (-560)) (-663 (-560))) 50 T ELT)) (-3219 (((-935 (-560))) 49 T ELT) (((-935 (-560)) (-663 (-560))) 48 T ELT)) (-3218 (((-935 (-560))) 47 T ELT) (((-935 (-560)) (-663 (-560))) 46 T ELT)) (-3217 (((-935 (-560))) 45 T ELT) (((-935 (-560)) (-663 (-560))) 44 T ELT)) (-3222 (((-935 (-560))) 55 T ELT) (((-935 (-560)) (-663 (-560))) 54 T ELT)) (-3216 (((-935 (-560)) (-663 (-560))) 71 T ELT) (((-935 (-560)) (-949)) 73 T ELT)) (-3215 (((-935 (-560)) (-663 (-560))) 68 T ELT) (((-935 (-560)) (-949)) 69 T ELT)) (-3213 (((-935 (-560)) (-663 (-560))) 64 T ELT) (((-935 (-560)) (-949)) 65 T ELT)) (-3214 (((-935 (-560)) (-663 (-949))) 57 T ELT))) -(((-947) (-10 -7 (-15 -3212 ((-935 (-560)) (-949))) (-15 -3212 ((-935 (-560)) (-663 (-560)))) (-15 -3213 ((-935 (-560)) (-949))) (-15 -3213 ((-935 (-560)) (-663 (-560)))) (-15 -3214 ((-935 (-560)) (-663 (-949)))) (-15 -3215 ((-935 (-560)) (-949))) (-15 -3215 ((-935 (-560)) (-663 (-560)))) (-15 -3216 ((-935 (-560)) (-949))) (-15 -3216 ((-935 (-560)) (-663 (-560)))) (-15 -3217 ((-935 (-560)) (-663 (-560)))) (-15 -3217 ((-935 (-560)))) (-15 -3218 ((-935 (-560)) (-663 (-560)))) (-15 -3218 ((-935 (-560)))) (-15 -3219 ((-935 (-560)) (-663 (-560)))) (-15 -3219 ((-935 (-560)))) (-15 -3220 ((-935 (-560)) (-663 (-560)))) (-15 -3220 ((-935 (-560)))) (-15 -3221 ((-935 (-560)) (-663 (-560)))) (-15 -3221 ((-935 (-560)))) (-15 -3222 ((-935 (-560)) (-663 (-560)))) (-15 -3222 ((-935 (-560)))) (-15 -3223 ((-935 (-560)))) (-15 -3224 ((-935 (-560)) (-663 (-560)))) (-15 -3224 ((-935 (-560)) (-1003))))) (T -947)) -((-3224 (*1 *2 *3) (-12 (-5 *3 (-1003)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3223 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3222 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3221 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3220 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3219 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3218 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3217 (*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(-10 -7 (-15 -3212 ((-935 (-560)) (-949))) (-15 -3212 ((-935 (-560)) (-663 (-560)))) (-15 -3213 ((-935 (-560)) (-949))) (-15 -3213 ((-935 (-560)) (-663 (-560)))) (-15 -3214 ((-935 (-560)) (-663 (-949)))) (-15 -3215 ((-935 (-560)) (-949))) (-15 -3215 ((-935 (-560)) (-663 (-560)))) (-15 -3216 ((-935 (-560)) (-949))) (-15 -3216 ((-935 (-560)) (-663 (-560)))) (-15 -3217 ((-935 (-560)) (-663 (-560)))) (-15 -3217 ((-935 (-560)))) (-15 -3218 ((-935 (-560)) (-663 (-560)))) (-15 -3218 ((-935 (-560)))) (-15 -3219 ((-935 (-560)) (-663 (-560)))) (-15 -3219 ((-935 (-560)))) (-15 -3220 ((-935 (-560)) (-663 (-560)))) (-15 -3220 ((-935 (-560)))) (-15 -3221 ((-935 (-560)) (-663 (-560)))) (-15 -3221 ((-935 (-560)))) (-15 -3222 ((-935 (-560)) (-663 (-560)))) (-15 -3222 ((-935 (-560)))) (-15 -3223 ((-935 (-560)))) (-15 -3224 ((-935 (-560)) (-663 (-560)))) (-15 -3224 ((-935 (-560)) (-1003)))) -((-3226 (((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209))) 14 T ELT)) (-3225 (((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209))) 13 T ELT))) -(((-948 |#1|) (-10 -7 (-15 -3225 ((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -3226 ((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209))))) (-466)) (T -948)) -((-3226 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-976 *4))) (-5 *3 (-663 (-1209))) (-4 *4 (-466)) (-5 *1 (-948 *4)))) (-3225 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-976 *4))) (-5 *3 (-663 (-1209))) (-4 *4 (-466)) (-5 *1 (-948 *4))))) -(-10 -7 (-15 -3225 ((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -3226 ((-663 (-976 |#1|)) (-663 (-976 |#1|)) (-663 (-1209))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3648 (($ $ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3151 (($) NIL T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-949) (-13 (-818) (-748) (-10 -8 (-15 -3648 ($ $ $)) (-6 (-4513 "*"))))) (T -949)) -((-3648 (*1 *1 *1 *1) (-5 *1 (-949)))) -(-13 (-818) (-748) (-10 -8 (-15 -3648 ($ $ $)) (-6 (-4513 "*")))) +((-3036 (((-711 (-1256)) $ (-1256)) NIL T ELT)) (-3037 (((-711 (-562)) $ (-562)) NIL T ELT)) (-3035 (((-791) $ (-131)) NIL T ELT)) (-3038 (((-711 (-130)) $ (-130)) 22 T ELT)) (-3040 (($ (-402)) 12 T ELT) (($ (-1189)) 14 T ELT)) (-3039 (((-114) $) 19 T ELT)) (-4458 (((-886) $) 26 T ELT)) (-1913 (($ $) 23 T ELT))) +(((-885) (-13 (-884) (-630 (-886)) (-10 -8 (-15 -3040 ($ (-402))) (-15 -3040 ($ (-1189))) (-15 -3039 ((-114) $))))) (T -885)) +((-3040 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-885)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-885)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-885))))) +(-13 (-884) (-630 (-886)) (-10 -8 (-15 -3040 ($ (-402))) (-15 -3040 ($ (-1189))) (-15 -3039 ((-114) $)))) +((-3049 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-3070 (($ $ $) 125 T ELT)) (-3085 (((-558) $) 31 T ELT) (((-558)) 36 T ELT)) (-3080 (($ (-558)) 53 T ELT)) (-3077 (($ $ $) 54 T ELT) (($ (-661 $)) 84 T ELT)) (-3061 (($ $ (-661 $)) 82 T ELT)) (-3082 (((-558) $) 34 T ELT)) (-3064 (($ $ $) 73 T ELT)) (-4034 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3083 (((-558) $) 33 T ELT)) (-3065 (($ $ $) 72 T ELT)) (-4045 (($ $) 114 T ELT)) (-3068 (($ $ $) 129 T ELT)) (-3051 (($ (-661 $)) 61 T ELT)) (-4050 (($ $ (-661 $)) 79 T ELT)) (-3079 (($ (-558) (-558)) 55 T ELT)) (-3092 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3621 (($ $ (-558)) 43 T ELT) (($ $) 46 T ELT)) (-3045 (($ $ $) 97 T ELT)) (-3066 (($ $ $) 132 T ELT)) (-3060 (($ $) 115 T ELT)) (-3044 (($ $ $) 98 T ELT)) (-3056 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-3320 (((-1303) $) 10 T ELT)) (-3059 (($ $) 118 T ELT) (($ $ (-791)) 122 T ELT)) (-3062 (($ $ $) 75 T ELT)) (-3063 (($ $ $) 74 T ELT)) (-3076 (($ $ (-661 $)) 110 T ELT)) (-3074 (($ $ $) 113 T ELT)) (-3053 (($ (-661 $)) 59 T ELT)) (-3054 (($ $) 70 T ELT) (($ (-661 $)) 71 T ELT)) (-3057 (($ $ $) 123 T ELT)) (-3058 (($ $) 116 T ELT)) (-3069 (($ $ $) 128 T ELT)) (-4035 (($ (-558)) 21 T ELT) (($ (-1207)) 23 T ELT) (($ (-1189)) 30 T ELT) (($ (-229)) 25 T ELT)) (-3042 (($ $ $) 101 T ELT)) (-3041 (($ $) 102 T ELT)) (-3087 (((-1303) (-1189)) 15 T ELT)) (-3088 (($ (-1189)) 14 T ELT)) (-3608 (($ (-661 (-661 $))) 58 T ELT)) (-3622 (($ $ (-558)) 42 T ELT) (($ $) 45 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3072 (($ $ $) 131 T ELT)) (-3972 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3073 (((-114) $) 108 T ELT)) (-3075 (($ $ (-661 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-3081 (($ (-558)) 39 T ELT)) (-3084 (((-558) $) 32 T ELT) (((-558)) 35 T ELT)) (-3078 (($ $ $) 40 T ELT) (($ (-661 $)) 83 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (($ $ $) 99 T ELT)) (-4075 (($) 13 T ELT)) (-4312 (($ $ (-661 $)) 109 T ELT)) (-3086 (((-1189) (-1189)) 8 T ELT)) (-4348 (($ $) 117 T ELT) (($ $ (-791)) 121 T ELT)) (-3046 (($ $ $) 96 T ELT)) (-4270 (($ $ (-791)) 139 T ELT)) (-3052 (($ (-661 $)) 60 T ELT)) (-4458 (((-886) $) 19 T ELT)) (-4285 (($ $ (-558)) 41 T ELT) (($ $) 44 T ELT)) (-3055 (($ $) 68 T ELT) (($ (-661 $)) 69 T ELT)) (-3740 (($ $) 66 T ELT) (($ (-661 $)) 67 T ELT)) (-3071 (($ $) 124 T ELT)) (-3050 (($ (-661 $)) 65 T ELT)) (-3586 (($ $ $) 105 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3067 (($ $ $) 130 T ELT)) (-3043 (($ $ $) 100 T ELT)) (-4249 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-3047 (($ $ $) 89 T ELT)) (-3048 (($ $ $) 87 T ELT)) (-3536 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3167 (($ $ $) 88 T ELT)) (-3168 (($ $ $) 86 T ELT)) (-4461 (($ $ $) 94 T ELT)) (-4349 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-4351 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-886) (-13 (-1131) (-10 -8 (-15 -3320 ((-1303) $)) (-15 -3088 ($ (-1189))) (-15 -3087 ((-1303) (-1189))) (-15 -4035 ($ (-558))) (-15 -4035 ($ (-1207))) (-15 -4035 ($ (-1189))) (-15 -4035 ($ (-229))) (-15 -4075 ($)) (-15 -3086 ((-1189) (-1189))) (-15 -3085 ((-558) $)) (-15 -3084 ((-558) $)) (-15 -3085 ((-558))) (-15 -3084 ((-558))) (-15 -3083 ((-558) $)) (-15 -3082 ((-558) $)) (-15 -3081 ($ (-558))) (-15 -3080 ($ (-558))) (-15 -3079 ($ (-558) (-558))) (-15 -3622 ($ $ (-558))) (-15 -3621 ($ $ (-558))) (-15 -4285 ($ $ (-558))) (-15 -3622 ($ $)) (-15 -3621 ($ $)) (-15 -4285 ($ $)) (-15 -3078 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3078 ($ (-661 $))) (-15 -3077 ($ (-661 $))) (-15 -3076 ($ $ (-661 $))) (-15 -3075 ($ $ (-661 $))) (-15 -3075 ($ $ $ $)) (-15 -3074 ($ $ $)) (-15 -3073 ((-114) $)) (-15 -4312 ($ $ (-661 $))) (-15 -4045 ($ $)) (-15 -3072 ($ $ $)) (-15 -3071 ($ $)) (-15 -3608 ($ (-661 (-661 $)))) (-15 -3070 ($ $ $)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3068 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -4270 ($ $ (-791))) (-15 -3586 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -3064 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4050 ($ $ (-661 $))) (-15 -3061 ($ $ (-661 $))) (-15 -3060 ($ $)) (-15 -4348 ($ $)) (-15 -4348 ($ $ (-791))) (-15 -3059 ($ $)) (-15 -3059 ($ $ (-791))) (-15 -3058 ($ $)) (-15 -3057 ($ $ $)) (-15 -4034 ($ $)) (-15 -4034 ($ $ $)) (-15 -4034 ($ $ $ $)) (-15 -3056 ($ $)) (-15 -3056 ($ $ $)) (-15 -3056 ($ $ $ $)) (-15 -3972 ($ $)) (-15 -3972 ($ $ $)) (-15 -3972 ($ $ $ $)) (-15 -3740 ($ $)) (-15 -3740 ($ (-661 $))) (-15 -3055 ($ $)) (-15 -3055 ($ (-661 $))) (-15 -3054 ($ $)) (-15 -3054 ($ (-661 $))) (-15 -3053 ($ (-661 $))) (-15 -3052 ($ (-661 $))) (-15 -3051 ($ (-661 $))) (-15 -3050 ($ (-661 $))) (-15 -3536 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3168 ($ $ $)) (-15 -3048 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)) (-15 -4349 ($ $)) (-15 * ($ $ $)) (-15 -4461 ($ $ $)) (-15 ** ($ $ $)) (-15 -3046 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3968 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3041 ($ $)) (-15 -4249 ($ $ $)) (-15 -4249 ($ $))))) (T -886)) +((-3320 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-886)))) (-3088 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-886)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-886)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-886)))) (-4075 (*1 *1) (-5 *1 (-886))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3085 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3084 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3079 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3621 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) (-3622 (*1 *1 *1) (-5 *1 (-886))) (-3621 (*1 *1 *1) (-5 *1 (-886))) (-4285 (*1 *1 *1) (-5 *1 (-886))) (-3078 (*1 *1 *1 *1) (-5 *1 (-886))) (-3077 (*1 *1 *1 *1) (-5 *1 (-886))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3077 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3076 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3075 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-3074 (*1 *1 *1 *1) (-5 *1 (-886))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-4045 (*1 *1 *1) (-5 *1 (-886))) (-3072 (*1 *1 *1 *1) (-5 *1 (-886))) (-3071 (*1 *1 *1) (-5 *1 (-886))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-886)))) (-5 *1 (-886)))) (-3070 (*1 *1 *1 *1) (-5 *1 (-886))) (-3092 (*1 *1 *1) (-5 *1 (-886))) (-3092 (*1 *1 *1 *1) (-5 *1 (-886))) (-3069 (*1 *1 *1 *1) (-5 *1 (-886))) (-3068 (*1 *1 *1 *1) (-5 *1 (-886))) (-3067 (*1 *1 *1 *1) (-5 *1 (-886))) (-3066 (*1 *1 *1 *1) (-5 *1 (-886))) (-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) (-3586 (*1 *1 *1 *1) (-5 *1 (-886))) (-3065 (*1 *1 *1 *1) (-5 *1 (-886))) (-3064 (*1 *1 *1 *1) (-5 *1 (-886))) (-3063 (*1 *1 *1 *1) (-5 *1 (-886))) (-3062 (*1 *1 *1 *1) (-5 *1 (-886))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3060 (*1 *1 *1) (-5 *1 (-886))) (-4348 (*1 *1 *1) (-5 *1 (-886))) (-4348 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) (-3059 (*1 *1 *1) (-5 *1 (-886))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) (-3058 (*1 *1 *1) (-5 *1 (-886))) (-3057 (*1 *1 *1 *1) (-5 *1 (-886))) (-4034 (*1 *1 *1) (-5 *1 (-886))) (-4034 (*1 *1 *1 *1) (-5 *1 (-886))) (-4034 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-3056 (*1 *1 *1) (-5 *1 (-886))) (-3056 (*1 *1 *1 *1) (-5 *1 (-886))) (-3056 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-3972 (*1 *1 *1) (-5 *1 (-886))) (-3972 (*1 *1 *1 *1) (-5 *1 (-886))) (-3972 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-3740 (*1 *1 *1) (-5 *1 (-886))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3055 (*1 *1 *1) (-5 *1 (-886))) (-3055 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3054 (*1 *1 *1) (-5 *1 (-886))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3051 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3050 (*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) (-3536 (*1 *1 *1 *1) (-5 *1 (-886))) (-3049 (*1 *1 *1 *1) (-5 *1 (-886))) (-3168 (*1 *1 *1 *1) (-5 *1 (-886))) (-3048 (*1 *1 *1 *1) (-5 *1 (-886))) (-3167 (*1 *1 *1 *1) (-5 *1 (-886))) (-3047 (*1 *1 *1 *1) (-5 *1 (-886))) (-4351 (*1 *1 *1 *1) (-5 *1 (-886))) (-4349 (*1 *1 *1 *1) (-5 *1 (-886))) (-4349 (*1 *1 *1) (-5 *1 (-886))) (* (*1 *1 *1 *1) (-5 *1 (-886))) (-4461 (*1 *1 *1 *1) (-5 *1 (-886))) (** (*1 *1 *1 *1) (-5 *1 (-886))) (-3046 (*1 *1 *1 *1) (-5 *1 (-886))) (-3045 (*1 *1 *1 *1) (-5 *1 (-886))) (-3044 (*1 *1 *1 *1) (-5 *1 (-886))) (-3968 (*1 *1 *1 *1) (-5 *1 (-886))) (-3043 (*1 *1 *1 *1) (-5 *1 (-886))) (-3042 (*1 *1 *1 *1) (-5 *1 (-886))) (-3041 (*1 *1 *1) (-5 *1 (-886))) (-4249 (*1 *1 *1 *1) (-5 *1 (-886))) (-4249 (*1 *1 *1) (-5 *1 (-886)))) +(-13 (-1131) (-10 -8 (-15 -3320 ((-1303) $)) (-15 -3088 ($ (-1189))) (-15 -3087 ((-1303) (-1189))) (-15 -4035 ($ (-558))) (-15 -4035 ($ (-1207))) (-15 -4035 ($ (-1189))) (-15 -4035 ($ (-229))) (-15 -4075 ($)) (-15 -3086 ((-1189) (-1189))) (-15 -3085 ((-558) $)) (-15 -3084 ((-558) $)) (-15 -3085 ((-558))) (-15 -3084 ((-558))) (-15 -3083 ((-558) $)) (-15 -3082 ((-558) $)) (-15 -3081 ($ (-558))) (-15 -3080 ($ (-558))) (-15 -3079 ($ (-558) (-558))) (-15 -3622 ($ $ (-558))) (-15 -3621 ($ $ (-558))) (-15 -4285 ($ $ (-558))) (-15 -3622 ($ $)) (-15 -3621 ($ $)) (-15 -4285 ($ $)) (-15 -3078 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3078 ($ (-661 $))) (-15 -3077 ($ (-661 $))) (-15 -3076 ($ $ (-661 $))) (-15 -3075 ($ $ (-661 $))) (-15 -3075 ($ $ $ $)) (-15 -3074 ($ $ $)) (-15 -3073 ((-114) $)) (-15 -4312 ($ $ (-661 $))) (-15 -4045 ($ $)) (-15 -3072 ($ $ $)) (-15 -3071 ($ $)) (-15 -3608 ($ (-661 (-661 $)))) (-15 -3070 ($ $ $)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3069 ($ $ $)) (-15 -3068 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -4270 ($ $ (-791))) (-15 -3586 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -3064 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4050 ($ $ (-661 $))) (-15 -3061 ($ $ (-661 $))) (-15 -3060 ($ $)) (-15 -4348 ($ $)) (-15 -4348 ($ $ (-791))) (-15 -3059 ($ $)) (-15 -3059 ($ $ (-791))) (-15 -3058 ($ $)) (-15 -3057 ($ $ $)) (-15 -4034 ($ $)) (-15 -4034 ($ $ $)) (-15 -4034 ($ $ $ $)) (-15 -3056 ($ $)) (-15 -3056 ($ $ $)) (-15 -3056 ($ $ $ $)) (-15 -3972 ($ $)) (-15 -3972 ($ $ $)) (-15 -3972 ($ $ $ $)) (-15 -3740 ($ $)) (-15 -3740 ($ (-661 $))) (-15 -3055 ($ $)) (-15 -3055 ($ (-661 $))) (-15 -3054 ($ $)) (-15 -3054 ($ (-661 $))) (-15 -3053 ($ (-661 $))) (-15 -3052 ($ (-661 $))) (-15 -3051 ($ (-661 $))) (-15 -3050 ($ (-661 $))) (-15 -3536 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3168 ($ $ $)) (-15 -3048 ($ $ $)) (-15 -3167 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -4351 ($ $ $)) (-15 -4349 ($ $ $)) (-15 -4349 ($ $)) (-15 * ($ $ $)) (-15 -4461 ($ $ $)) (-15 ** ($ $ $)) (-15 -3046 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3968 ($ $ $)) (-15 -3043 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3041 ($ $)) (-15 -4249 ($ $ $)) (-15 -4249 ($ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4343 (((-3 $ "failed") (-1207)) 36 T ELT)) (-3620 (((-791)) 32 T ELT)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) 29 T ELT)) (-3742 (((-1189) $) 43 T ELT)) (-2641 (($ (-947)) 28 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4484 (((-1207) $) 13 T ELT) (((-547) $) 19 T ELT) (((-914 (-391)) $) 26 T ELT) (((-914 (-558)) $) 22 T ELT)) (-4458 (((-886) $) 16 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 40 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 38 T ELT))) +(((-887 |#1|) (-13 (-866) (-631 (-1207)) (-631 (-547)) (-631 (-914 (-391))) (-631 (-914 (-558))) (-10 -8 (-15 -4343 ((-3 $ "failed") (-1207))))) (-661 (-1207))) (T -887)) +((-4343 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-887 *3)) (-14 *3 (-661 *2))))) +(-13 (-866) (-631 (-1207)) (-631 (-547)) (-631 (-914 (-391))) (-631 (-914 (-558))) (-10 -8 (-15 -4343 ((-3 $ "failed") (-1207))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4052 (((-518) $) 9 T ELT)) (-3089 (((-661 (-451)) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 21 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 16 T ELT))) +(((-888) (-13 (-1131) (-10 -8 (-15 -4052 ((-518) $)) (-15 -3089 ((-661 (-451)) $))))) (T -888)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-661 (-451))) (-5 *1 (-888))))) +(-13 (-1131) (-10 -8 (-15 -4052 ((-518) $)) (-15 -3089 ((-661 (-451)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-974 |#1|)) NIL T ELT) (((-974 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4435 (((-1303) (-791)) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-889 |#1| |#2| |#3| |#4|) (-13 (-1079) (-502 (-974 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4461 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4435 ((-1303) (-791))))) (-1079) (-661 (-1207)) (-661 (-791)) (-791)) (T -889)) +((-4461 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1079)) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-791))) (-14 *5 (-791)))) (-4435 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-889 *4 *5 *6 *7)) (-4 *4 (-1079)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 *3)) (-14 *7 *3)))) +(-13 (-1079) (-502 (-974 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4461 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4435 ((-1303) (-791))))) +((-3090 (((-3 (-177 |#3|) "failed") (-791) (-791) |#2| |#2|) 38 T ELT)) (-3091 (((-3 (-419 |#3|) "failed") (-791) (-791) |#2| |#2|) 29 T ELT))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3091 ((-3 (-419 |#3|) "failed") (-791) (-791) |#2| |#2|)) (-15 -3090 ((-3 (-177 |#3|) "failed") (-791) (-791) |#2| |#2|))) (-376) (-1290 |#1|) (-1273 |#1|)) (T -890)) +((-3090 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))) (-3091 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-419 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5))))) +(-10 -7 (-15 -3091 ((-3 (-419 |#3|) "failed") (-791) (-791) |#2| |#2|)) (-15 -3090 ((-3 (-177 |#3|) "failed") (-791) (-791) |#2| |#2|))) +((-3091 (((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) 28 T ELT))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -3091 ((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -3091 ((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|)))) (-376) (-1207) |#1|) (T -891)) +((-3091 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-419 (-1266 *6 *5))) (-5 *1 (-891 *5 *6 *7)))) (-3091 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-419 (-1266 *6 *5))) (-5 *1 (-891 *5 *6 *7))))) +(-10 -7 (-15 -3091 ((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -3091 ((-3 (-419 (-1266 |#2| |#1|)) "failed") (-791) (-791) (-1287 |#1| |#2| |#3|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $ (-558)) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3092 (($ (-1201 (-558)) (-558)) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3093 (($ $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4284 (((-791) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-3095 (((-558)) NIL T ELT)) (-3094 (((-558) $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4281 (($ $ (-558)) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3096 (((-1185 (-558)) $) NIL T ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-558) $ (-558)) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-892 |#1|) (-893 |#1|) (-558)) (T -892)) +NIL +(-893 |#1|) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3520 (($ $ (-558)) 75 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-3092 (($ (-1201 (-558)) (-558)) 74 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3093 (($ $) 77 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4284 (((-791) $) 82 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-3095 (((-558)) 79 T ELT)) (-3094 (((-558) $) 78 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-4281 (($ $ (-558)) 81 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-3096 (((-1185 (-558)) $) 83 T ELT)) (-3374 (($ $) 80 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-4282 (((-558) $ (-558)) 76 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-893 |#1|) (-142) (-558)) (T -893)) +((-3096 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-1185 (-558))))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-791)))) (-4281 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) (-3374 (*1 *1 *1) (-4 *1 (-893 *2))) (-3095 (*1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) (-3093 (*1 *1 *1) (-4 *1 (-893 *2))) (-4282 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) (-3092 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *3 (-558)) (-4 *1 (-893 *4))))) +(-13 (-319) (-149) (-10 -8 (-15 -3096 ((-1185 (-558)) $)) (-15 -4284 ((-791) $)) (-15 -4281 ($ $ (-558))) (-15 -3374 ($ $)) (-15 -3095 ((-558))) (-15 -3094 ((-558) $)) (-15 -3093 ($ $)) (-15 -4282 ((-558) $ (-558))) (-15 -3520 ($ $ (-558))) (-15 -3092 ($ (-1201 (-558)) (-558))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-892 |#1|) $) NIL (|has| (-892 |#1|) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-892 |#1|) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-892 |#1|) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-892 |#1|) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-892 |#1|) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-892 |#1|) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| (-892 |#1|) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| (-892 |#1|) (-1068 (-558))) ELT)) (-3656 (((-892 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-892 |#1|) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-892 |#1|) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-892 |#1|) (-1068 (-558))) ELT)) (-4242 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-892 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-892 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-892 |#1|))) (|:| |vec| (-1297 (-892 |#1|)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-892 |#1|)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-892 |#1|) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| (-892 |#1|) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-892 |#1|) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-892 |#1|) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-892 |#1|) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| (-892 |#1|) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-892 |#1|) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-4470 (($ (-1 (-892 |#1|) (-892 |#1|)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-892 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-892 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-892 |#1|))) (|:| |vec| (-1297 (-892 |#1|)))) (-1297 $) $) NIL T ELT) (((-709 (-892 |#1|)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-892 |#1|) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-892 |#1|) (-319)) ELT)) (-3614 (((-892 |#1|) $) NIL (|has| (-892 |#1|) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-892 |#1|) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-892 |#1|) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-892 |#1|)) (-661 (-892 |#1|))) NIL (|has| (-892 |#1|) (-321 (-892 |#1|))) ELT) (($ $ (-892 |#1|) (-892 |#1|)) NIL (|has| (-892 |#1|) (-321 (-892 |#1|))) ELT) (($ $ (-305 (-892 |#1|))) NIL (|has| (-892 |#1|) (-321 (-892 |#1|))) ELT) (($ $ (-661 (-305 (-892 |#1|)))) NIL (|has| (-892 |#1|) (-321 (-892 |#1|))) ELT) (($ $ (-661 (-1207)) (-661 (-892 |#1|))) NIL (|has| (-892 |#1|) (-526 (-1207) (-892 |#1|))) ELT) (($ $ (-1207) (-892 |#1|)) NIL (|has| (-892 |#1|) (-526 (-1207) (-892 |#1|))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-892 |#1|)) NIL (|has| (-892 |#1|) (-298 (-892 |#1|) (-892 |#1|))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-892 |#1|) (-892 |#1|))) NIL T ELT) (($ $ (-1 (-892 |#1|) (-892 |#1|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-892 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-892 |#1|) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-892 |#1|) $) NIL T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-892 |#1|) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-892 |#1|) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-892 |#1|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-892 |#1|) (-1050)) ELT) (((-229) $) NIL (|has| (-892 |#1|) (-1050)) ELT)) (-3097 (((-177 (-419 (-558))) $) NIL T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-892 |#1|) (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-892 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-892 |#1|) (-1068 (-1207))) ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-892 |#1|) (-938))) (|has| (-892 |#1|) (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 (((-892 |#1|) $) NIL (|has| (-892 |#1|) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3885 (($ $) NIL (|has| (-892 |#1|) (-842)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-892 |#1|) (-892 |#1|))) NIL T ELT) (($ $ (-1 (-892 |#1|) (-892 |#1|)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-892 |#1|) (-928 (-1207))) ELT) (($ $) NIL (|has| (-892 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-892 |#1|) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-892 |#1|) (-870)) ELT)) (-4461 (($ $ $) NIL T ELT) (($ (-892 |#1|) (-892 |#1|)) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-892 |#1|) $) NIL T ELT) (($ $ (-892 |#1|)) NIL T ELT))) +(((-894 |#1|) (-13 (-1021 (-892 |#1|)) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) (-558)) (T -894)) +((-4282 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-894 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-894 *3)) (-14 *3 (-558)))) (-4242 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-558)))) (-4242 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-894 *3)) (-14 *3 *2)))) +(-13 (-1021 (-892 |#1|)) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| |#2| (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (|has| |#2| (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT)) (-3656 ((|#2| $) NIL T ELT) (((-1207) $) NIL (|has| |#2| (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT)) (-4242 (($ $) 35 T ELT) (($ (-558) $) 38 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) 64 T ELT)) (-3477 (($) NIL (|has| |#2| (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| |#2| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| |#2| (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 ((|#2| $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#2| (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 60 T ELT)) (-3948 (($) NIL (|has| |#2| (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3614 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 |#2|) (-661 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-661 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-661 (-1207)) (-661 |#2|)) NIL (|has| |#2| (-526 (-1207) |#2|)) ELT) (($ $ (-1207) |#2|) NIL (|has| |#2| (-526 (-1207) |#2|)) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 ((|#2| $) NIL T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| |#2| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| |#2| (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| |#2| (-631 (-547))) ELT) (((-391) $) NIL (|has| |#2| (-1050)) ELT) (((-229) $) NIL (|has| |#2| (-1050)) ELT)) (-3097 (((-177 (-419 (-558))) $) 78 T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4458 (((-886) $) 106 T ELT) (($ (-558)) 20 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1207)) NIL (|has| |#2| (-1068 (-1207))) ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-3615 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-419 (-558)) $ (-558)) 71 T ELT)) (-3885 (($ $) NIL (|has| |#2| (-842)) ELT)) (-3141 (($) 15 T CONST)) (-3147 (($) 17 T CONST)) (-3152 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3536 (((-114) $ $) 46 T ELT)) (-3167 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#2| (-870)) ELT)) (-4461 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-4349 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-4351 (($ $ $) 48 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 61 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-895 |#1| |#2|) (-13 (-1021 |#2|) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) (-558) (-893 |#1|)) (T -895)) +((-4282 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-895 *4 *5)) (-5 *3 (-558)) (-4 *5 (-893 *4)))) (-3097 (*1 *2 *1) (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-895 *3 *4)) (-4 *4 (-893 *3)))) (-4242 (*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-895 *2 *3)) (-4 *3 (-893 *2)))) (-4242 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) (-4 *4 (-893 *3))))) +(-13 (-1021 |#2|) (-10 -8 (-15 -4282 ((-419 (-558)) $ (-558))) (-15 -3097 ((-177 (-419 (-558))) $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)))) +((-3049 (((-114) $ $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4308 ((|#2| $) 12 T ELT)) (-3098 (($ |#1| |#2|) 9 T ELT)) (-3742 (((-1189) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-3743 (((-1150) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#1| $) 11 T ELT)) (-4032 (($ |#1| |#2|) 10 T ELT)) (-4458 (((-886) $) 18 (-4039 (-12 (|has| |#1| (-630 (-886))) (|has| |#2| (-630 (-886)))) (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131)))) ELT)) (-1387 (((-114) $ $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-3536 (((-114) $ $) 23 (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT))) +(((-896 |#1| |#2|) (-13 (-1247) (-10 -8 (IF (|has| |#1| (-630 (-886))) (IF (|has| |#2| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1131)) (IF (|has| |#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -3098 ($ |#1| |#2|)) (-15 -4032 ($ |#1| |#2|)) (-15 -4313 (|#1| $)) (-15 -4308 (|#2| $)))) (-1247) (-1247)) (T -896)) +((-3098 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-4032 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-4313 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) (-4308 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (IF (|has| |#1| (-630 (-886))) (IF (|has| |#2| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1131)) (IF (|has| |#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -3098 ($ |#1| |#2|)) (-15 -4032 ($ |#1| |#2|)) (-15 -4313 (|#1| $)) (-15 -4308 (|#2| $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3440 (((-558) $) 16 T ELT)) (-3100 (($ (-159)) 13 T ELT)) (-3099 (($ (-159)) 14 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3439 (((-159) $) 15 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3102 (($ (-159)) 11 T ELT)) (-3103 (($ (-159)) 10 T ELT)) (-4458 (((-886) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3101 (($ (-159)) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-897) (-13 (-1131) (-10 -8 (-15 -3103 ($ (-159))) (-15 -3102 ($ (-159))) (-15 -3101 ($ (-159))) (-15 -3100 ($ (-159))) (-15 -3099 ($ (-159))) (-15 -3439 ((-159) $)) (-15 -3440 ((-558) $)) (-15 -4458 ($ (-159)))))) (T -897)) +((-3103 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3099 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-897)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(-13 (-1131) (-10 -8 (-15 -3103 ($ (-159))) (-15 -3102 ($ (-159))) (-15 -3101 ($ (-159))) (-15 -3100 ($ (-159))) (-15 -3099 ($ (-159))) (-15 -3439 ((-159) $)) (-15 -3440 ((-558) $)) (-15 -4458 ($ (-159))))) +((-4458 (((-326 (-558)) (-419 (-974 (-48)))) 23 T ELT) (((-326 (-558)) (-974 (-48))) 18 T ELT))) +(((-898) (-10 -7 (-15 -4458 ((-326 (-558)) (-974 (-48)))) (-15 -4458 ((-326 (-558)) (-419 (-974 (-48))))))) (T -898)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-898)))) (-4458 (*1 *2 *3) (-12 (-5 *3 (-974 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-898))))) +(-10 -7 (-15 -4458 ((-326 (-558)) (-974 (-48)))) (-15 -4458 ((-326 (-558)) (-419 (-974 (-48)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4076 (((-114) $ (|[\|\|]| (-518))) 9 T ELT) (((-114) $ (|[\|\|]| (-1189))) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4082 (((-518) $) 10 T ELT) (((-1189) $) 14 T ELT)) (-3536 (((-114) $ $) 15 T ELT))) +(((-899) (-13 (-1113) (-1293) (-10 -8 (-15 -4076 ((-114) $ (|[\|\|]| (-518)))) (-15 -4082 ((-518) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4082 ((-1189) $))))) (T -899)) +((-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-899)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-899)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-899)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-899))))) +(-13 (-1113) (-1293) (-10 -8 (-15 -4076 ((-114) $ (|[\|\|]| (-518)))) (-15 -4082 ((-518) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4082 ((-1189) $)))) +((-4470 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 15 T ELT))) +(((-900 |#1| |#2|) (-10 -7 (-15 -4470 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1247) (-1247)) (T -900)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))) +(-10 -7 (-15 -4470 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) +((-3873 (($ |#1| |#1|) 8 T ELT)) (-3106 ((|#1| $ (-791)) 15 T ELT))) +(((-901 |#1|) (-10 -8 (-15 -3873 ($ |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) (-1247)) (T -901)) +((-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) (-3873 (*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -3873 ($ |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) +((-4470 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 15 T ELT))) +(((-902 |#1| |#2|) (-10 -7 (-15 -4470 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1247) (-1247)) (T -902)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) +(-10 -7 (-15 -4470 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) +((-3873 (($ |#1| |#1| |#1|) 8 T ELT)) (-3106 ((|#1| $ (-791)) 15 T ELT))) +(((-903 |#1|) (-10 -8 (-15 -3873 ($ |#1| |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) (-1247)) (T -903)) +((-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) (-3873 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -3873 ($ |#1| |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) +((-3104 (((-661 (-1212)) (-1189)) 9 T ELT))) +(((-904) (-10 -7 (-15 -3104 ((-661 (-1212)) (-1189))))) (T -904)) +((-3104 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-1212))) (-5 *1 (-904))))) +(-10 -7 (-15 -3104 ((-661 (-1212)) (-1189)))) +((-4470 (((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)) 15 T ELT))) +(((-905 |#1| |#2|) (-10 -7 (-15 -4470 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) (-1247) (-1247)) (T -905)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6))))) +(-10 -7 (-15 -4470 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) +((-3105 (($ |#1| |#1| |#1|) 8 T ELT)) (-3106 ((|#1| $ (-791)) 15 T ELT))) +(((-906 |#1|) (-10 -8 (-15 -3105 ($ |#1| |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) (-1247)) (T -906)) +((-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-906 *2)) (-4 *2 (-1247)))) (-3105 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -3105 ($ |#1| |#1| |#1|)) (-15 -3106 (|#1| $ (-791)))) +((-3109 (((-1185 (-661 (-558))) (-661 (-558)) (-1185 (-661 (-558)))) 41 T ELT)) (-3108 (((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558))) 31 T ELT)) (-3110 (((-1185 (-661 (-558))) (-661 (-558))) 53 T ELT) (((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558))) 50 T ELT)) (-3111 (((-1185 (-661 (-558))) (-558)) 55 T ELT)) (-3107 (((-1185 (-661 (-947))) (-1185 (-661 (-947)))) 22 T ELT)) (-3492 (((-661 (-947)) (-661 (-947))) 18 T ELT))) +(((-907) (-10 -7 (-15 -3492 ((-661 (-947)) (-661 (-947)))) (-15 -3107 ((-1185 (-661 (-947))) (-1185 (-661 (-947))))) (-15 -3108 ((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3109 ((-1185 (-661 (-558))) (-661 (-558)) (-1185 (-661 (-558))))) (-15 -3110 ((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3110 ((-1185 (-661 (-558))) (-661 (-558)))) (-15 -3111 ((-1185 (-661 (-558))) (-558))))) (T -907)) +((-3111 (*1 *2 *3) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-558)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558))))) (-3110 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558))))) (-3109 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *3 (-661 (-558))) (-5 *1 (-907)))) (-3108 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558))))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-1185 (-661 (-947)))) (-5 *1 (-907)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-907))))) +(-10 -7 (-15 -3492 ((-661 (-947)) (-661 (-947)))) (-15 -3107 ((-1185 (-661 (-947))) (-1185 (-661 (-947))))) (-15 -3108 ((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3109 ((-1185 (-661 (-558))) (-661 (-558)) (-1185 (-661 (-558))))) (-15 -3110 ((-1185 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3110 ((-1185 (-661 (-558))) (-661 (-558)))) (-15 -3111 ((-1185 (-661 (-558))) (-558)))) +((-4484 (((-914 (-391)) $) 9 (|has| |#1| (-631 (-914 (-391)))) ELT) (((-914 (-558)) $) 8 (|has| |#1| (-631 (-914 (-558)))) ELT))) +(((-908 |#1|) (-142) (-1247)) (T -908)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-631 (-914 (-558)))) (-6 (-631 (-914 (-558)))) |%noBranch|) (IF (|has| |t#1| (-631 (-914 (-391)))) (-6 (-631 (-914 (-391)))) |%noBranch|))) +(((-631 (-914 (-391))) |has| |#1| (-631 (-914 (-391)))) ((-631 (-914 (-558))) |has| |#1| (-631 (-914 (-558))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4126 (($) 14 T ELT)) (-3113 (($ (-912 |#1| |#2|) (-912 |#1| |#3|)) 28 T ELT)) (-3112 (((-912 |#1| |#3|) $) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3121 (((-114) $) 22 T ELT)) (-3120 (($) 19 T ELT)) (-4458 (((-886) $) 31 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3333 (((-912 |#1| |#2|) $) 15 T ELT)) (-3536 (((-114) $ $) 26 T ELT))) +(((-909 |#1| |#2| |#3|) (-13 (-1131) (-10 -8 (-15 -3121 ((-114) $)) (-15 -3120 ($)) (-15 -4126 ($)) (-15 -3113 ($ (-912 |#1| |#2|) (-912 |#1| |#3|))) (-15 -3333 ((-912 |#1| |#2|) $)) (-15 -3112 ((-912 |#1| |#3|) $)))) (-1131) (-1131) (-686 |#2|)) (T -909)) +((-3121 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-114)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-686 *4)))) (-3120 (*1 *1) (-12 (-4 *3 (-1131)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1131)) (-4 *4 (-686 *3)))) (-4126 (*1 *1) (-12 (-4 *3 (-1131)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1131)) (-4 *4 (-686 *3)))) (-3113 (*1 *1 *2 *3) (-12 (-5 *2 (-912 *4 *5)) (-5 *3 (-912 *4 *6)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-686 *5)) (-5 *1 (-909 *4 *5 *6)))) (-3333 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-912 *3 *4)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-686 *4)))) (-3112 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-912 *3 *5)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-686 *4))))) +(-13 (-1131) (-10 -8 (-15 -3121 ((-114) $)) (-15 -3120 ($)) (-15 -4126 ($)) (-15 -3113 ($ (-912 |#1| |#2|) (-912 |#1| |#3|))) (-15 -3333 ((-912 |#1| |#2|) $)) (-15 -3112 ((-912 |#1| |#3|) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3279 (((-912 |#1| $) $ (-914 |#1|) (-912 |#1| $)) 17 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-910 |#1|) (-142) (-1131)) (T -910)) +((-3279 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-912 *4 *1)) (-5 *3 (-914 *4)) (-4 *1 (-910 *4)) (-4 *4 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3279 ((-912 |t#1| $) $ (-914 |t#1|) (-912 |t#1| $))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3114 (((-114) (-661 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3115 (((-912 |#1| |#2|) |#2| |#3|) 45 (-12 (-3041 (|has| |#2| (-1068 (-1207)))) (-3041 (|has| |#2| (-1079)))) ELT) (((-661 (-305 (-974 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1079)) (-3041 (|has| |#2| (-1068 (-1207))))) ELT) (((-661 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1068 (-1207))) ELT) (((-909 |#1| |#2| (-661 |#2|)) (-661 |#2|) |#3|) 21 T ELT))) +(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -3114 ((-114) |#2| |#3|)) (-15 -3114 ((-114) (-661 |#2|) |#3|)) (-15 -3115 ((-909 |#1| |#2| (-661 |#2|)) (-661 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1207))) (-15 -3115 ((-661 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3115 ((-661 (-305 (-974 |#2|))) |#2| |#3|)) (-15 -3115 ((-912 |#1| |#2|) |#2| |#3|))))) (-1131) (-910 |#1|) (-631 (-914 |#1|))) (T -911)) +((-3115 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-912 *5 *3)) (-5 *1 (-911 *5 *3 *4)) (-3041 (-4 *3 (-1068 (-1207)))) (-3041 (-4 *3 (-1079))) (-4 *3 (-910 *5)) (-4 *4 (-631 (-914 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-661 (-305 (-974 *3)))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1079)) (-3041 (-4 *3 (-1068 (-1207)))) (-4 *3 (-910 *5)) (-4 *4 (-631 (-914 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-661 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1068 (-1207))) (-4 *3 (-910 *5)) (-4 *4 (-631 (-914 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-661 *6))) (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-661 *6)) (-4 *4 (-631 (-914 *5))))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-631 (-914 *5))))) (-3114 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-910 *5)) (-4 *4 (-631 (-914 *5)))))) +(-10 -7 (-15 -3114 ((-114) |#2| |#3|)) (-15 -3114 ((-114) (-661 |#2|) |#3|)) (-15 -3115 ((-909 |#1| |#2| (-661 |#2|)) (-661 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1207))) (-15 -3115 ((-661 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3115 ((-661 (-305 (-974 |#2|))) |#2| |#3|)) (-15 -3115 ((-912 |#1| |#2|) |#2| |#3|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3734 (($ $ $) 40 T ELT)) (-3142 (((-3 (-114) "failed") $ (-914 |#1|)) 37 T ELT)) (-4126 (($) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3117 (($ (-914 |#1|) |#2| $) 20 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3119 (((-3 |#2| "failed") (-914 |#1|) $) 51 T ELT)) (-3121 (((-114) $) 15 T ELT)) (-3120 (($) 13 T ELT)) (-3757 (((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|))) $) 25 T ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|)))) 23 T ELT)) (-4458 (((-886) $) 45 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3116 (($ (-914 |#1|) |#2| $ |#2|) 49 T ELT)) (-3118 (($ (-914 |#1|) |#2| $) 48 T ELT)) (-3536 (((-114) $ $) 42 T ELT))) +(((-912 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -3121 ((-114) $)) (-15 -3120 ($)) (-15 -4126 ($)) (-15 -3734 ($ $ $)) (-15 -3119 ((-3 |#2| "failed") (-914 |#1|) $)) (-15 -3118 ($ (-914 |#1|) |#2| $)) (-15 -3117 ($ (-914 |#1|) |#2| $)) (-15 -3116 ($ (-914 |#1|) |#2| $ |#2|)) (-15 -3757 ((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|))) $)) (-15 -4032 ($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|))))) (-15 -3142 ((-3 (-114) "failed") $ (-914 |#1|))))) (-1131) (-1131)) (T -912)) +((-3121 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-3120 (*1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4126 (*1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3734 (*1 *1 *1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3119 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) (-5 *1 (-912 *4 *2)))) (-3118 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131)))) (-3117 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131)))) (-3116 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 *4)))) (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 *4)))) (-4 *4 (-1131)) (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)))) (-3142 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-114)) (-5 *1 (-912 *4 *5)) (-4 *5 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3121 ((-114) $)) (-15 -3120 ($)) (-15 -4126 ($)) (-15 -3734 ($ $ $)) (-15 -3119 ((-3 |#2| "failed") (-914 |#1|) $)) (-15 -3118 ($ (-914 |#1|) |#2| $)) (-15 -3117 ($ (-914 |#1|) |#2| $)) (-15 -3116 ($ (-914 |#1|) |#2| $ |#2|)) (-15 -3757 ((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|))) $)) (-15 -4032 ($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 |#2|))))) (-15 -3142 ((-3 (-114) "failed") $ (-914 |#1|))))) +((-4470 (((-912 |#1| |#3|) (-1 |#3| |#2|) (-912 |#1| |#2|)) 22 T ELT))) +(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -4470 ((-912 |#1| |#3|) (-1 |#3| |#2|) (-912 |#1| |#2|)))) (-1131) (-1131) (-1131)) (T -913)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-912 *5 *6)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-912 *5 *7)) (-5 *1 (-913 *5 *6 *7))))) +(-10 -7 (-15 -4470 ((-912 |#1| |#3|) (-1 |#3| |#2|) (-912 |#1| |#2|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3129 (($ $ (-661 (-51))) 74 T ELT)) (-3566 (((-661 $) $) 139 T ELT)) (-3126 (((-2 (|:| |var| (-661 (-1207))) (|:| |pred| (-51))) $) 30 T ELT)) (-3760 (((-114) $) 35 T ELT)) (-3127 (($ $ (-661 (-1207)) (-51)) 31 T ELT)) (-3130 (($ $ (-661 (-51))) 73 T ELT)) (-3657 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1207) #1#) $) 167 T ELT)) (-3656 ((|#1| $) 68 T ELT) (((-1207) $) NIL T ELT)) (-3124 (($ $) 126 T ELT)) (-3136 (((-114) $) 55 T ELT)) (-3131 (((-661 (-51)) $) 50 T ELT)) (-3128 (($ (-1207) (-114) (-114) (-114)) 75 T ELT)) (-3122 (((-3 (-661 $) "failed") (-661 $)) 82 T ELT)) (-3133 (((-114) $) 58 T ELT)) (-3134 (((-114) $) 57 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) "failed") $) 41 T ELT)) (-3139 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-3308 (((-3 (-2 (|:| |val| $) (|:| -2642 $)) "failed") $) 97 T ELT)) (-3305 (((-3 (-661 $) "failed") $) 40 T ELT)) (-3140 (((-3 (-661 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -2980 (-115)) (|:| |arg| (-661 $))) "failed") $) 107 T ELT)) (-3138 (((-3 (-661 $) "failed") $) 42 T ELT)) (-3307 (((-3 (-2 (|:| |val| $) (|:| -2642 (-791))) "failed") $) 45 T ELT)) (-3137 (((-114) $) 34 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3125 (((-114) $) 28 T ELT)) (-3132 (((-114) $) 52 T ELT)) (-3123 (((-661 (-51)) $) 130 T ELT)) (-3135 (((-114) $) 56 T ELT)) (-4312 (($ (-115) (-661 $)) 104 T ELT)) (-3825 (((-791) $) 33 T ELT)) (-3902 (($ $) 72 T ELT)) (-4484 (($ (-661 $)) 69 T ELT)) (-4465 (((-114) $) 32 T ELT)) (-4458 (((-886) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1207)) 76 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3143 (($ $ (-51)) 129 T ELT)) (-3141 (($) 103 T CONST)) (-3147 (($) 83 T CONST)) (-3536 (((-114) $ $) 93 T ELT)) (-4461 (($ $ $) 117 T ELT)) (-4351 (($ $ $) 121 T ELT)) (** (($ $ (-791)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-914 |#1|) (-13 (-1131) (-1068 |#1|) (-1068 (-1207)) (-10 -8 (-15 0 ($) -4464) (-15 1 ($) -4464) (-15 -3305 ((-3 (-661 $) "failed") $)) (-15 -3306 ((-3 (-661 $) "failed") $)) (-15 -3140 ((-3 (-661 $) "failed") $ (-115))) (-15 -3140 ((-3 (-2 (|:| -2980 (-115)) (|:| |arg| (-661 $))) "failed") $)) (-15 -3307 ((-3 (-2 (|:| |val| $) (|:| -2642 (-791))) "failed") $)) (-15 -3139 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3138 ((-3 (-661 $) "failed") $)) (-15 -3308 ((-3 (-2 (|:| |val| $) (|:| -2642 $)) "failed") $)) (-15 -4312 ($ (-115) (-661 $))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ $)) (-15 -4461 ($ $ $)) (-15 -3825 ((-791) $)) (-15 -4484 ($ (-661 $))) (-15 -3902 ($ $)) (-15 -3137 ((-114) $)) (-15 -3136 ((-114) $)) (-15 -3760 ((-114) $)) (-15 -4465 ((-114) $)) (-15 -3135 ((-114) $)) (-15 -3134 ((-114) $)) (-15 -3133 ((-114) $)) (-15 -3132 ((-114) $)) (-15 -3131 ((-661 (-51)) $)) (-15 -3130 ($ $ (-661 (-51)))) (-15 -3129 ($ $ (-661 (-51)))) (-15 -3128 ($ (-1207) (-114) (-114) (-114))) (-15 -3127 ($ $ (-661 (-1207)) (-51))) (-15 -3126 ((-2 (|:| |var| (-661 (-1207))) (|:| |pred| (-51))) $)) (-15 -3125 ((-114) $)) (-15 -3124 ($ $)) (-15 -3143 ($ $ (-51))) (-15 -3123 ((-661 (-51)) $)) (-15 -3566 ((-661 $) $)) (-15 -3122 ((-3 (-661 $) "failed") (-661 $))))) (-1131)) (T -914)) +((-3141 (*1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-3147 (*1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-3305 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3306 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3140 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-914 *4))) (-5 *1 (-914 *4)) (-4 *4 (-1131)))) (-3140 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2980 (-115)) (|:| |arg| (-661 (-914 *3))))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3307 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-914 *3)) (|:| -2642 (-791)))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3139 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-914 *3)) (|:| |den| (-914 *3)))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3138 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3308 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-914 *3)) (|:| -2642 (-914 *3)))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-4312 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 (-914 *4))) (-5 *1 (-914 *4)) (-4 *4 (-1131)))) (-4351 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-4461 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-4465 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3128 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-914 *4)) (-4 *4 (-1131)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-51)) (-5 *1 (-914 *4)) (-4 *4 (-1131)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-661 (-1207))) (|:| |pred| (-51)))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3124 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) (-3143 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) (-3122 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(-13 (-1131) (-1068 |#1|) (-1068 (-1207)) (-10 -8 (-15 (-3141) ($) -4464) (-15 (-3147) ($) -4464) (-15 -3305 ((-3 (-661 $) "failed") $)) (-15 -3306 ((-3 (-661 $) "failed") $)) (-15 -3140 ((-3 (-661 $) "failed") $ (-115))) (-15 -3140 ((-3 (-2 (|:| -2980 (-115)) (|:| |arg| (-661 $))) "failed") $)) (-15 -3307 ((-3 (-2 (|:| |val| $) (|:| -2642 (-791))) "failed") $)) (-15 -3139 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3138 ((-3 (-661 $) "failed") $)) (-15 -3308 ((-3 (-2 (|:| |val| $) (|:| -2642 $)) "failed") $)) (-15 -4312 ($ (-115) (-661 $))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ $)) (-15 -4461 ($ $ $)) (-15 -3825 ((-791) $)) (-15 -4484 ($ (-661 $))) (-15 -3902 ($ $)) (-15 -3137 ((-114) $)) (-15 -3136 ((-114) $)) (-15 -3760 ((-114) $)) (-15 -4465 ((-114) $)) (-15 -3135 ((-114) $)) (-15 -3134 ((-114) $)) (-15 -3133 ((-114) $)) (-15 -3132 ((-114) $)) (-15 -3131 ((-661 (-51)) $)) (-15 -3130 ($ $ (-661 (-51)))) (-15 -3129 ($ $ (-661 (-51)))) (-15 -3128 ($ (-1207) (-114) (-114) (-114))) (-15 -3127 ($ $ (-661 (-1207)) (-51))) (-15 -3126 ((-2 (|:| |var| (-661 (-1207))) (|:| |pred| (-51))) $)) (-15 -3125 ((-114) $)) (-15 -3124 ($ $)) (-15 -3143 ($ $ (-51))) (-15 -3123 ((-661 (-51)) $)) (-15 -3566 ((-661 $) $)) (-15 -3122 ((-3 (-661 $) "failed") (-661 $))))) +((-3709 (((-914 |#1|) (-914 |#1|) (-661 (-1207)) (-1 (-114) (-661 |#2|))) 32 T ELT) (((-914 |#1|) (-914 |#1|) (-661 (-1 (-114) |#2|))) 46 T ELT) (((-914 |#1|) (-914 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3142 (((-114) (-661 |#2|) (-914 |#1|)) 42 T ELT) (((-114) |#2| (-914 |#1|)) 36 T ELT)) (-4033 (((-1 (-114) |#2|) (-914 |#1|)) 16 T ELT)) (-3144 (((-661 |#2|) (-914 |#1|)) 24 T ELT)) (-3143 (((-914 |#1|) (-914 |#1|) |#2|) 20 T ELT))) +(((-915 |#1| |#2|) (-10 -7 (-15 -3709 ((-914 |#1|) (-914 |#1|) (-1 (-114) |#2|))) (-15 -3709 ((-914 |#1|) (-914 |#1|) (-661 (-1 (-114) |#2|)))) (-15 -3709 ((-914 |#1|) (-914 |#1|) (-661 (-1207)) (-1 (-114) (-661 |#2|)))) (-15 -4033 ((-1 (-114) |#2|) (-914 |#1|))) (-15 -3142 ((-114) |#2| (-914 |#1|))) (-15 -3142 ((-114) (-661 |#2|) (-914 |#1|))) (-15 -3143 ((-914 |#1|) (-914 |#1|) |#2|)) (-15 -3144 ((-661 |#2|) (-914 |#1|)))) (-1131) (-1247)) (T -915)) +((-3144 (*1 *2 *3) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-661 *5)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1247)))) (-3143 (*1 *2 *2 *3) (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1247)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-1247)) (-5 *2 (-114)) (-5 *1 (-915 *5 *6)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-915 *5 *3)) (-4 *3 (-1247)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1247)))) (-3709 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-914 *5)) (-5 *3 (-661 (-1207))) (-5 *4 (-1 (-114) (-661 *6))) (-4 *5 (-1131)) (-4 *6 (-1247)) (-5 *1 (-915 *5 *6)))) (-3709 (*1 *2 *2 *3) (-12 (-5 *2 (-914 *4)) (-5 *3 (-661 (-1 (-114) *5))) (-4 *4 (-1131)) (-4 *5 (-1247)) (-5 *1 (-915 *4 *5)))) (-3709 (*1 *2 *2 *3) (-12 (-5 *2 (-914 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1131)) (-4 *5 (-1247)) (-5 *1 (-915 *4 *5))))) +(-10 -7 (-15 -3709 ((-914 |#1|) (-914 |#1|) (-1 (-114) |#2|))) (-15 -3709 ((-914 |#1|) (-914 |#1|) (-661 (-1 (-114) |#2|)))) (-15 -3709 ((-914 |#1|) (-914 |#1|) (-661 (-1207)) (-1 (-114) (-661 |#2|)))) (-15 -4033 ((-1 (-114) |#2|) (-914 |#1|))) (-15 -3142 ((-114) |#2| (-914 |#1|))) (-15 -3142 ((-114) (-661 |#2|) (-914 |#1|))) (-15 -3143 ((-914 |#1|) (-914 |#1|) |#2|)) (-15 -3144 ((-661 |#2|) (-914 |#1|)))) +((-4470 (((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)) 19 T ELT))) +(((-916 |#1| |#2|) (-10 -7 (-15 -4470 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) (-1131) (-1131)) (T -916)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-914 *6)) (-5 *1 (-916 *5 *6))))) +(-10 -7 (-15 -4470 ((-914 |#2|) (-1 |#2| |#1|) (-914 |#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4446 (((-661 |#1|) $) 19 T ELT)) (-3145 (((-114) $) 49 T ELT)) (-3657 (((-3 (-692 |#1|) "failed") $) 55 T ELT)) (-3656 (((-692 |#1|) $) 53 T ELT)) (-4311 (($ $) 23 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4345 (((-791) $) 60 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-692 |#1|) $) 21 T ELT)) (-4458 (((-886) $) 47 T ELT) (($ (-692 |#1|)) 26 T ELT) (((-841 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 9 T CONST)) (-3146 (((-661 (-692 |#1|)) $) 28 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 12 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 66 T ELT))) +(((-917 |#1|) (-13 (-870) (-1068 (-692 |#1|)) (-10 -8 (-15 1 ($) -4464) (-15 -4458 ((-841 |#1|) $)) (-15 -4458 ($ |#1|)) (-15 -4313 ((-692 |#1|) $)) (-15 -4345 ((-791) $)) (-15 -3146 ((-661 (-692 |#1|)) $)) (-15 -4311 ($ $)) (-15 -3145 ((-114) $)) (-15 -4446 ((-661 |#1|) $)))) (-870)) (T -917)) +((-3147 (*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4458 (*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-661 (-692 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4311 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4446 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(-13 (-870) (-1068 (-692 |#1|)) (-10 -8 (-15 (-3147) ($) -4464) (-15 -4458 ((-841 |#1|) $)) (-15 -4458 ($ |#1|)) (-15 -4313 ((-692 |#1|) $)) (-15 -4345 ((-791) $)) (-15 -3146 ((-661 (-692 |#1|)) $)) (-15 -4311 ($ $)) (-15 -3145 ((-114) $)) (-15 -4446 ((-661 |#1|) $)))) +((-3976 ((|#1| |#1| |#1|) 19 T ELT))) +(((-918 |#1| |#2|) (-10 -7 (-15 -3976 (|#1| |#1| |#1|))) (-1273 |#2|) (-1079)) (T -918)) +((-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -3976 (|#1| |#1| |#1|))) +((-3152 ((|#2| $ |#3|) 10 T ELT))) +(((-919 |#1| |#2| |#3|) (-10 -8 (-15 -3152 (|#2| |#1| |#3|))) (-920 |#2| |#3|) (-1247) (-1247)) (T -919)) +NIL +(-10 -8 (-15 -3152 (|#2| |#1| |#3|))) +((-4270 ((|#1| $ |#2|) 7 T ELT)) (-3152 ((|#1| $ |#2|) 6 T ELT))) +(((-920 |#1| |#2|) (-142) (-1247) (-1247)) (T -920)) +((-4270 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) (-3152 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4270 (|t#1| $ |t#2|)) (-15 -3152 (|t#1| $ |t#2|)))) +(((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 18 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3148 (((-1065) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 17 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-921) (-142)) (T -921)) +((-3151 (*1 *2 *3 *4) (-12 (-4 *1 (-921)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) (-3148 (*1 *2 *3) (-12 (-4 *1 (-921)) (-5 *3 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-1065))))) +(-13 (-1131) (-10 -7 (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| |explanations| (-1189))) (-1093) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3148 ((-1065) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3150 ((|#1| |#1| (-791)) 26 T ELT)) (-3149 (((-3 |#1| "failed") |#1| |#1|) 23 T ELT)) (-3937 (((-3 (-2 (|:| -3622 |#1|) (|:| -3621 |#1|)) "failed") |#1| (-791) (-791)) 29 T ELT) (((-661 |#1|) |#1|) 38 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3937 ((-661 |#1|) |#1|)) (-15 -3937 ((-3 (-2 (|:| -3622 |#1|) (|:| -3621 |#1|)) "failed") |#1| (-791) (-791))) (-15 -3149 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3150 (|#1| |#1| (-791)))) (-1273 |#2|) (-376)) (T -922)) +((-3150 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-5 *1 (-922 *2 *4)) (-4 *2 (-1273 *4)))) (-3149 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-922 *2 *3)) (-4 *2 (-1273 *3)))) (-3937 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3622 *3) (|:| -3621 *3))) (-5 *1 (-922 *3 *5)) (-4 *3 (-1273 *5)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-922 *3 *4)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3937 ((-661 |#1|) |#1|)) (-15 -3937 ((-3 (-2 (|:| -3622 |#1|) (|:| -3621 |#1|)) "failed") |#1| (-791) (-791))) (-15 -3149 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3150 (|#1| |#1| (-791)))) +((-4083 (((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189)) 103 T ELT) (((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189) (-229)) 100 T ELT) (((-1065) (-924) (-1093)) 92 T ELT) (((-1065) (-924)) 93 T ELT)) (-3151 (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924) (-1093)) 62 T ELT) (((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924)) 64 T ELT))) +(((-923) (-10 -7 (-15 -4083 ((-1065) (-924))) (-15 -4083 ((-1065) (-924) (-1093))) (-15 -4083 ((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189) (-229))) (-15 -4083 ((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924) (-1093))))) (T -923)) +((-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-923)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189))))) (-5 *1 (-923)))) (-4083 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1189)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-4083 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1189)) (-5 *8 (-229)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923))))) +(-10 -7 (-15 -4083 ((-1065) (-924))) (-15 -4083 ((-1065) (-924) (-1093))) (-15 -4083 ((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189) (-229))) (-15 -4083 ((-1065) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1189))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924))) (-15 -3151 ((-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) (|:| |explanations| (-661 (-1189)))) (-924) (-1093)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3656 (((-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $) 19 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 21 T ELT) (($ (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 18 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-924) (-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3656 ((-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))) (T -924)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-924)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-924))))) +(-13 (-1131) (-10 -8 (-15 -4458 ($ (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3656 ((-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-661 |#2|) (-661 (-791))) 44 T ELT) (($ $ |#2| (-791)) 43 T ELT) (($ $ (-661 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3152 (($ $ (-661 |#2|) (-661 (-791))) 47 T ELT) (($ $ |#2| (-791)) 46 T ELT) (($ $ (-661 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-925 |#1| |#2|) (-142) (-1079) (-1131)) (T -925)) +NIL +(-13 (-111 |t#1| |t#1|) (-928 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-920 $ |#2|) . T) ((-928 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4270 (($ $ (-661 |#1|) (-661 (-791))) 49 T ELT) (($ $ |#1| (-791)) 48 T ELT) (($ $ (-661 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 |#1|) (-661 (-791))) 52 T ELT) (($ $ |#1| (-791)) 51 T ELT) (($ $ (-661 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-926 |#1|) (-142) (-1131)) (T -926)) +NIL +(-13 (-1079) (-928 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-920 $ |#1|) . T) ((-928 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-4270 (($ $ |#2|) NIL T ELT) (($ $ (-661 |#2|)) 10 T ELT) (($ $ |#2| (-791)) 12 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 15 T ELT)) (-3152 (($ $ |#2|) 16 T ELT) (($ $ (-661 |#2|)) 18 T ELT) (($ $ |#2| (-791)) 19 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 21 T ELT))) +(((-927 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -3152 (|#1| |#1| |#2| (-791))) (-15 -3152 (|#1| |#1| (-661 |#2|))) (-15 -4270 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -4270 (|#1| |#1| |#2| (-791))) (-15 -4270 (|#1| |#1| (-661 |#2|))) (-15 -3152 (|#1| |#1| |#2|)) (-15 -4270 (|#1| |#1| |#2|))) (-928 |#2|) (-1131)) (T -927)) +NIL +(-10 -8 (-15 -3152 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -3152 (|#1| |#1| |#2| (-791))) (-15 -3152 (|#1| |#1| (-661 |#2|))) (-15 -4270 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -4270 (|#1| |#1| |#2| (-791))) (-15 -4270 (|#1| |#1| (-661 |#2|))) (-15 -3152 (|#1| |#1| |#2|)) (-15 -4270 (|#1| |#1| |#2|))) +((-4270 (($ $ |#1|) 7 T ELT) (($ $ (-661 |#1|)) 15 T ELT) (($ $ |#1| (-791)) 14 T ELT) (($ $ (-661 |#1|) (-661 (-791))) 13 T ELT)) (-3152 (($ $ |#1|) 6 T ELT) (($ $ (-661 |#1|)) 12 T ELT) (($ $ |#1| (-791)) 11 T ELT) (($ $ (-661 |#1|) (-661 (-791))) 10 T ELT))) +(((-928 |#1|) (-142) (-1131)) (T -928)) +((-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1131)))) (-4270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-928 *2)) (-4 *2 (-1131)))) (-4270 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-928 *4)) (-4 *4 (-1131)))) (-3152 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1131)))) (-3152 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-928 *2)) (-4 *2 (-1131)))) (-3152 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-928 *4)) (-4 *4 (-1131))))) +(-13 (-920 $ |t#1|) (-10 -8 (-15 -4270 ($ $ (-661 |t#1|))) (-15 -4270 ($ $ |t#1| (-791))) (-15 -4270 ($ $ (-661 |t#1|) (-661 (-791)))) (-15 -3152 ($ $ (-661 |t#1|))) (-15 -3152 ($ $ |t#1| (-791))) (-15 -3152 ($ $ (-661 |t#1|) (-661 (-791)))))) +(((-920 $ |#1|) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 26 T ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1417 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-1418 (($ $ $) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4508)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3621 (($ $) 25 T ELT)) (-3153 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3622 (($ $) 23 T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) 20 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1234 |#1|) $) 9 T ELT) (((-886) $) 29 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-929 |#1|) (-13 (-121 |#1|) (-630 (-1234 |#1|)) (-10 -8 (-15 -3153 ($ |#1|)) (-15 -3153 ($ $ $)))) (-1131)) (T -929)) +((-3153 (*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1131)))) (-3153 (*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1131))))) +(-13 (-121 |#1|) (-630 (-1234 |#1|)) (-10 -8 (-15 -3153 ($ |#1|)) (-15 -3153 ($ $ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3169 (((-1127 |#1|) $) 60 T ELT)) (-3392 (((-661 $) (-661 $)) 103 T ELT)) (-4135 (((-558) $) 83 T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4284 (((-791) $) 80 T ELT)) (-3173 (((-1127 |#1|) $ |#1|) 70 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3156 (((-114) $) 88 T ELT)) (-3158 (((-791) $) 84 T ELT)) (-3012 (($ $ $) NIL (-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) ELT)) (-3340 (($ $ $) NIL (-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) ELT)) (-3162 (((-2 (|:| |preimage| (-661 |#1|)) (|:| |image| (-661 |#1|))) $) 55 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 130 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3155 (((-1127 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3157 (((-114) $) 81 T ELT)) (-4312 ((|#1| $ |#1|) 68 T ELT)) (-4460 (((-791) $) 62 T ELT)) (-3164 (($ (-661 (-661 |#1|))) 118 T ELT)) (-3159 (((-1001) $) 74 T ELT)) (-3165 (($ (-661 |#1|)) 32 T ELT)) (-3492 (($ $ $) NIL T ELT)) (-2834 (($ $ $) NIL T ELT)) (-3161 (($ (-661 (-661 |#1|))) 57 T ELT)) (-3160 (($ (-661 (-661 |#1|))) 123 T ELT)) (-3154 (($ (-661 |#1|)) 132 T ELT)) (-4458 (((-886) $) 117 T ELT) (($ (-661 (-661 |#1|))) 91 T ELT) (($ (-661 |#1|)) 92 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) 24 T CONST)) (-3047 (((-114) $ $) NIL (-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) ELT)) (-3048 (((-114) $ $) NIL (-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) ELT)) (-3536 (((-114) $ $) 66 T ELT)) (-3167 (((-114) $ $) NIL (-4039 (|has| |#1| (-381)) (|has| |#1| (-870))) ELT)) (-3168 (((-114) $ $) 90 T ELT)) (-4461 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-930 |#1|) (-13 (-932 |#1|) (-10 -8 (-15 -3162 ((-2 (|:| |preimage| (-661 |#1|)) (|:| |image| (-661 |#1|))) $)) (-15 -3161 ($ (-661 (-661 |#1|)))) (-15 -4458 ($ (-661 (-661 |#1|)))) (-15 -4458 ($ (-661 |#1|))) (-15 -3160 ($ (-661 (-661 |#1|)))) (-15 -4460 ((-791) $)) (-15 -3159 ((-1001) $)) (-15 -4284 ((-791) $)) (-15 -3158 ((-791) $)) (-15 -4135 ((-558) $)) (-15 -3157 ((-114) $)) (-15 -3156 ((-114) $)) (-15 -3392 ((-661 $) (-661 $))) (IF (|has| |#1| (-381)) (-15 -3155 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3154 ($ (-661 |#1|))) (IF (|has| |#1| (-381)) (-15 -3154 ($ (-661 |#1|))) |%noBranch|)))) (-1131)) (T -930)) +((-3162 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-661 *3)) (|:| |image| (-661 *3)))) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-930 *3)) (-4 *3 (-381)) (-4 *3 (-1131)))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-930 *3))))) +(-13 (-932 |#1|) (-10 -8 (-15 -3162 ((-2 (|:| |preimage| (-661 |#1|)) (|:| |image| (-661 |#1|))) $)) (-15 -3161 ($ (-661 (-661 |#1|)))) (-15 -4458 ($ (-661 (-661 |#1|)))) (-15 -4458 ($ (-661 |#1|))) (-15 -3160 ($ (-661 (-661 |#1|)))) (-15 -4460 ((-791) $)) (-15 -3159 ((-1001) $)) (-15 -4284 ((-791) $)) (-15 -3158 ((-791) $)) (-15 -4135 ((-558) $)) (-15 -3157 ((-114) $)) (-15 -3156 ((-114) $)) (-15 -3392 ((-661 $) (-661 $))) (IF (|has| |#1| (-381)) (-15 -3155 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3154 ($ (-661 |#1|))) (IF (|has| |#1| (-381)) (-15 -3154 ($ (-661 |#1|))) |%noBranch|)))) +((-3163 ((|#2| (-1172 |#1| |#2|)) 48 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3163 (|#2| (-1172 |#1| |#2|)))) (-947) (-13 (-1079) (-10 -7 (-6 (-4509 "*"))))) (T -931)) +((-3163 (*1 *2 *3) (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-947)) (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4509 "*"))))) (-5 *1 (-931 *4 *2))))) +(-10 -7 (-15 -3163 (|#2| (-1172 |#1| |#2|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3169 (((-1127 |#1|) $) 42 T ELT)) (-4236 (($) 23 T CONST)) (-3969 (((-3 $ "failed") $) 20 T ELT)) (-3173 (((-1127 |#1|) $ |#1|) 41 T ELT)) (-2651 (((-114) $) 22 T ELT)) (-3012 (($ $ $) 35 (-4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ELT)) (-3340 (($ $ $) 36 (-4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 30 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4312 ((|#1| $ |#1|) 45 T ELT)) (-3164 (($ (-661 (-661 |#1|))) 43 T ELT)) (-3165 (($ (-661 |#1|)) 44 T ELT)) (-3492 (($ $ $) 27 T ELT)) (-2834 (($ $ $) 26 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3147 (($) 24 T CONST)) (-3047 (((-114) $ $) 37 (-4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ELT)) (-3048 (((-114) $ $) 39 (-4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 38 (-4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ELT)) (-3168 (((-114) $ $) 40 T ELT)) (-4461 (($ $ $) 29 T ELT)) (** (($ $ (-947)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-932 |#1|) (-142) (-1131)) (T -932)) +((-3165 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-932 *3)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-4 *1 (-932 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1127 *3)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1127 *3)))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(-13 (-485) (-298 |t#1| |t#1|) (-10 -8 (-15 -3165 ($ (-661 |t#1|))) (-15 -3164 ($ (-661 (-661 |t#1|)))) (-15 -3169 ((-1127 |t#1|) $)) (-15 -3173 ((-1127 |t#1|) $ |t#1|)) (-15 -3168 ((-114) $ $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-870)) |%noBranch|))) +(((-102) . T) ((-630 (-886)) . T) ((-298 |#1| |#1|) . T) ((-485) . T) ((-746) . T) ((-870) -4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ((-873) -4039 (|has| |#1| (-870)) (|has| |#1| (-381))) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3175 (((-661 (-661 (-791))) $) 163 T ELT)) (-3171 (((-661 (-791)) (-930 |#1|) $) 191 T ELT)) (-3170 (((-661 (-791)) (-930 |#1|) $) 192 T ELT)) (-3169 (((-1127 |#1|) $) 155 T ELT)) (-3176 (((-661 (-930 |#1|)) $) 152 T ELT)) (-3477 (((-930 |#1|) $ (-558)) 157 T ELT) (((-930 |#1|) $) 158 T ELT)) (-3174 (($ (-661 (-930 |#1|))) 165 T ELT)) (-4284 (((-791) $) 159 T ELT)) (-3172 (((-1127 (-1127 |#1|)) $) 189 T ELT)) (-3173 (((-1127 |#1|) $ |#1|) 180 T ELT) (((-1127 (-1127 |#1|)) $ (-1127 |#1|)) 201 T ELT) (((-1127 (-661 |#1|)) $ (-661 |#1|)) 204 T ELT)) (-3745 (((-114) (-930 |#1|) $) 140 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3166 (((-1303) $) 145 T ELT) (((-1303) $ (-558) (-558)) 205 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3178 (((-661 (-930 |#1|)) $) 146 T ELT)) (-4312 (((-930 |#1|) $ (-791)) 153 T ELT)) (-4460 (((-791) $) 160 T ELT)) (-4458 (((-886) $) 177 T ELT) (((-661 (-930 |#1|)) $) 28 T ELT) (($ (-661 (-930 |#1|))) 164 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (((-661 |#1|) $) 162 T ELT)) (-3536 (((-114) $ $) 198 T ELT)) (-3167 (((-114) $ $) 195 T ELT)) (-3168 (((-114) $ $) 194 T ELT))) +(((-933 |#1|) (-13 (-1131) (-10 -8 (-15 -4458 ((-661 (-930 |#1|)) $)) (-15 -3178 ((-661 (-930 |#1|)) $)) (-15 -4312 ((-930 |#1|) $ (-791))) (-15 -3477 ((-930 |#1|) $ (-558))) (-15 -3477 ((-930 |#1|) $)) (-15 -4284 ((-791) $)) (-15 -4460 ((-791) $)) (-15 -3177 ((-661 |#1|) $)) (-15 -3176 ((-661 (-930 |#1|)) $)) (-15 -3175 ((-661 (-661 (-791))) $)) (-15 -4458 ($ (-661 (-930 |#1|)))) (-15 -3174 ($ (-661 (-930 |#1|)))) (-15 -3173 ((-1127 |#1|) $ |#1|)) (-15 -3172 ((-1127 (-1127 |#1|)) $)) (-15 -3173 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -3173 ((-1127 (-661 |#1|)) $ (-661 |#1|))) (-15 -3745 ((-114) (-930 |#1|) $)) (-15 -3171 ((-661 (-791)) (-930 |#1|) $)) (-15 -3170 ((-661 (-791)) (-930 |#1|) $)) (-15 -3169 ((-1127 |#1|) $)) (-15 -3168 ((-114) $ $)) (-15 -3167 ((-114) $ $)) (-15 -3166 ((-1303) $)) (-15 -3166 ((-1303) $ (-558) (-558))))) (-1131)) (T -933)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-930 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) (-3477 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-930 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-930 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-791)))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-661 (-930 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-661 (-930 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-933 *4)) (-5 *3 (-1127 *4)))) (-3173 (*1 *2 *1 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-1127 (-661 *4))) (-5 *1 (-933 *4)) (-5 *3 (-661 *4)))) (-3745 (*1 *2 *3 *1) (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-114)) (-5 *1 (-933 *4)))) (-3171 (*1 *2 *3 *1) (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-661 (-791))) (-5 *1 (-933 *4)))) (-3170 (*1 *2 *3 *1) (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-661 (-791))) (-5 *1 (-933 *4)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3168 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3167 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3166 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-933 *4)) (-4 *4 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -4458 ((-661 (-930 |#1|)) $)) (-15 -3178 ((-661 (-930 |#1|)) $)) (-15 -4312 ((-930 |#1|) $ (-791))) (-15 -3477 ((-930 |#1|) $ (-558))) (-15 -3477 ((-930 |#1|) $)) (-15 -4284 ((-791) $)) (-15 -4460 ((-791) $)) (-15 -3177 ((-661 |#1|) $)) (-15 -3176 ((-661 (-930 |#1|)) $)) (-15 -3175 ((-661 (-661 (-791))) $)) (-15 -4458 ($ (-661 (-930 |#1|)))) (-15 -3174 ($ (-661 (-930 |#1|)))) (-15 -3173 ((-1127 |#1|) $ |#1|)) (-15 -3172 ((-1127 (-1127 |#1|)) $)) (-15 -3173 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -3173 ((-1127 (-661 |#1|)) $ (-661 |#1|))) (-15 -3745 ((-114) (-930 |#1|) $)) (-15 -3171 ((-661 (-791)) (-930 |#1|) $)) (-15 -3170 ((-661 (-791)) (-930 |#1|) $)) (-15 -3169 ((-1127 |#1|) $)) (-15 -3168 ((-114) $ $)) (-15 -3167 ((-114) $ $)) (-15 -3166 ((-1303) $)) (-15 -3166 ((-1303) $ (-558) (-558))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-4444 (((-114) $) NIL T ELT)) (-4441 (((-791)) NIL T ELT)) (-3832 (($ $ (-947)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 $ "failed") $) NIL T ELT)) (-3656 (($ $) NIL T ELT)) (-2010 (($ (-1297 $)) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-3316 (($) NIL T ELT)) (-1893 (((-114) $) NIL T ELT)) (-1984 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-4284 (((-854 (-947)) $) NIL T ELT) (((-947) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2233 (($) NIL (|has| $ (-381)) ELT)) (-2231 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3616 (($ $ (-947)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2234 (((-1201 $) $ (-947)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL T ELT)) (-2230 (((-947) $) NIL T ELT)) (-1817 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1816 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1818 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2641 (($ (-947)) NIL T ELT)) (-4443 (((-114) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) NIL (|has| $ (-381)) ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-4442 (((-947)) NIL T ELT) (((-854 (-947))) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-1985 (((-3 (-791) "failed") $ $) NIL T ELT) (((-791) $) NIL T ELT)) (-4423 (((-136)) NIL T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4460 (((-947) $) NIL T ELT) (((-854 (-947)) $) NIL T ELT)) (-3685 (((-1201 $)) NIL T ELT)) (-1887 (($) NIL T ELT)) (-1819 (($) NIL (|has| $ (-381)) ELT)) (-3724 (((-709 $) (-1297 $)) NIL T ELT) (((-1297 $) $) NIL T ELT)) (-4484 (((-558) $) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3185 (((-711 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $) (-947)) NIL T ELT) (((-1297 $)) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4445 (((-114) $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-4440 (($ $ (-791)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-934 |#1|) (-13 (-363) (-341 $) (-631 (-558))) (-947)) (T -934)) +NIL +(-13 (-363) (-341 $) (-631 (-558))) +((-3180 (((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|)) 164 T ELT)) (-3183 ((|#1|) 101 T ELT)) (-3182 (((-417 (-1201 |#4|)) (-1201 |#4|)) 173 T ELT)) (-3184 (((-417 (-1201 |#4|)) (-661 |#3|) (-1201 |#4|)) 83 T ELT)) (-3181 (((-417 (-1201 |#4|)) (-1201 |#4|)) 183 T ELT)) (-3179 (((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|) |#3|) 117 T ELT))) +(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3180 ((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|))) (-15 -3181 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -3182 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -3183 (|#1|)) (-15 -3179 ((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3184 ((-417 (-1201 |#4|)) (-661 |#3|) (-1201 |#4|)))) (-938) (-815) (-870) (-978 |#1| |#2| |#3|)) (T -935)) +((-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *7)) (-4 *7 (-870)) (-4 *5 (-938)) (-4 *6 (-815)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-417 (-1201 *8))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-1201 *8)))) (-3179 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-661 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-978 *5 *6 *4)) (-4 *5 (-938)) (-4 *6 (-815)) (-4 *4 (-870)) (-5 *1 (-935 *5 *6 *4 *7)))) (-3183 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-938)) (-5 *1 (-935 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-935 *4 *5 *6 *7))))) +(-10 -7 (-15 -3180 ((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|))) (-15 -3181 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -3182 ((-417 (-1201 |#4|)) (-1201 |#4|))) (-15 -3183 (|#1|)) (-15 -3179 ((-3 (-661 (-1201 |#4|)) "failed") (-661 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3184 ((-417 (-1201 |#4|)) (-661 |#3|) (-1201 |#4|)))) +((-3180 (((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|)) 39 T ELT)) (-3183 ((|#1|) 71 T ELT)) (-3182 (((-417 (-1201 |#2|)) (-1201 |#2|)) 125 T ELT)) (-3184 (((-417 (-1201 |#2|)) (-1201 |#2|)) 109 T ELT)) (-3181 (((-417 (-1201 |#2|)) (-1201 |#2|)) 136 T ELT))) +(((-936 |#1| |#2|) (-10 -7 (-15 -3180 ((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|))) (-15 -3181 ((-417 (-1201 |#2|)) (-1201 |#2|))) (-15 -3182 ((-417 (-1201 |#2|)) (-1201 |#2|))) (-15 -3183 (|#1|)) (-15 -3184 ((-417 (-1201 |#2|)) (-1201 |#2|)))) (-938) (-1273 |#1|)) (T -936)) +((-3184 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5)))) (-3183 (*1 *2) (-12 (-4 *2 (-938)) (-5 *1 (-936 *2 *3)) (-4 *3 (-1273 *2)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5)))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5)))) (-3180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-938)) (-5 *1 (-936 *4 *5))))) +(-10 -7 (-15 -3180 ((-3 (-661 (-1201 |#2|)) "failed") (-661 (-1201 |#2|)) (-1201 |#2|))) (-15 -3181 ((-417 (-1201 |#2|)) (-1201 |#2|))) (-15 -3182 ((-417 (-1201 |#2|)) (-1201 |#2|))) (-15 -3183 (|#1|)) (-15 -3184 ((-417 (-1201 |#2|)) (-1201 |#2|)))) +((-3187 (((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $)) 46 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 18 T ELT)) (-3185 (((-711 $) $) 40 T ELT))) +(((-937 |#1|) (-10 -8 (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-938)) (T -937)) +NIL +(-10 -8 (-15 -3185 ((-711 |#1|) |#1|)) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 72 T ELT)) (-4287 (($ $) 63 T ELT)) (-4483 (((-417 $) $) 64 T ELT)) (-3187 (((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $)) 69 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4235 (((-114) $) 65 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 70 T ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 71 T ELT)) (-4244 (((-417 $) $) 62 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) 68 (|has| $ (-147)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3185 (((-711 $) $) 67 (|has| $ (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-938) (-142)) (T -938)) +((-3191 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-938)))) (-3190 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3189 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3188 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3187 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1201 *1))) (-5 *3 (-1201 *1)) (-4 *1 (-938)))) (-3186 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-938)) (-5 *2 (-1297 *1)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-938))))) +(-13 (-1252) (-10 -8 (-15 -3190 ((-417 (-1201 $)) (-1201 $))) (-15 -3189 ((-417 (-1201 $)) (-1201 $))) (-15 -3188 ((-417 (-1201 $)) (-1201 $))) (-15 -3191 ((-1201 $) (-1201 $) (-1201 $))) (-15 -3187 ((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $))) (IF (|has| $ (-147)) (PROGN (-15 -3186 ((-3 (-1297 $) "failed") (-709 $))) (-15 -3185 ((-711 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3193 (((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3192 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4284 (((-3 (-791) "failed") (-346 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-939 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4284 ((-3 (-791) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3192 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3193 ((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1068 (-558))) (-433 |#1|) (-1273 |#2|) (-1273 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -939)) +((-3193 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-2 (|:| -4284 (-791)) (|:| -2624 *8))) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-114)) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-4284 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-791)) (-5 *1 (-939 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4284 ((-3 (-791) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3192 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3193 ((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) +((-3193 (((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#3|)) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|)) 64 T ELT)) (-3192 (((-114) (-346 (-419 (-558)) |#1| |#2| |#3|)) 16 T ELT)) (-4284 (((-3 (-791) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|)) 14 T ELT))) +(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -4284 ((-3 (-791) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3192 ((-114) (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3193 ((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#3|)) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|)))) (-1273 (-419 (-558))) (-1273 (-419 |#1|)) (-355 (-419 (-558)) |#1| |#2|)) (T -940)) +((-3193 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-2 (|:| -4284 (-791)) (|:| -2624 *6))) (-5 *1 (-940 *4 *5 *6)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-940 *4 *5 *6)))) (-4284 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-791)) (-5 *1 (-940 *4 *5 *6))))) +(-10 -7 (-15 -4284 ((-3 (-791) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3192 ((-114) (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3193 ((-3 (-2 (|:| -4284 (-791)) (|:| -2624 |#3|)) "failed") (-346 (-419 (-558)) |#1| |#2| |#3|)))) +((-3198 ((|#2| |#2|) 26 T ELT)) (-3196 (((-558) (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) 15 T ELT)) (-3194 (((-947) (-558)) 38 T ELT)) (-3197 (((-558) |#2|) 45 T ELT)) (-3195 (((-558) |#2|) 21 T ELT) (((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|) 20 T ELT))) +(((-941 |#1| |#2|) (-10 -7 (-15 -3194 ((-947) (-558))) (-15 -3195 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3195 ((-558) |#2|)) (-15 -3196 ((-558) (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3197 ((-558) |#2|)) (-15 -3198 (|#2| |#2|))) (-1273 (-419 (-558))) (-1273 (-419 |#1|))) (T -941)) +((-3198 (*1 *2 *2) (-12 (-4 *3 (-1273 (-419 (-558)))) (-5 *1 (-941 *3 *2)) (-4 *2 (-1273 (-419 *3))))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-419 *4))))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-419 *4))))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-419 *4))))) (-3195 (*1 *2 *3) (-12 (-4 *3 (-1273 (-419 (-558)))) (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-941 *3 *4)) (-4 *4 (-1273 (-419 *3))))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1273 (-419 *3))) (-5 *2 (-947)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-419 *4)))))) +(-10 -7 (-15 -3194 ((-947) (-558))) (-15 -3195 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3195 ((-558) |#2|)) (-15 -3196 ((-558) (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3197 ((-558) |#2|)) (-15 -3198 (|#2| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 ((|#1| $) 99 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3045 (($ $ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 93 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3206 (($ |#1| (-417 |#1|)) 91 T ELT)) (-3200 (((-1201 |#1|) |#1| |#1|) 52 T ELT)) (-3199 (($ $) 60 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3201 (((-558) $) 96 T ELT)) (-3202 (($ $ (-558)) 98 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3203 ((|#1| $) 95 T ELT)) (-3204 (((-417 |#1|) $) 94 T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) 92 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3205 (($ $) 49 T ELT)) (-4458 (((-886) $) 123 T ELT) (($ (-558)) 72 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 40 T ELT) (((-419 |#1|) $) 77 T ELT) (($ (-419 (-417 |#1|))) 85 T ELT)) (-3610 (((-791)) 70 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) 24 T CONST)) (-3147 (($) 12 T CONST)) (-3536 (((-114) $ $) 86 T ELT)) (-4461 (($ $ $) NIL T ELT)) (-4349 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 48 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-942 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -4458 ((-419 |#1|) $)) (-15 -4458 ($ (-419 (-417 |#1|)))) (-15 -3205 ($ $)) (-15 -3204 ((-417 |#1|) $)) (-15 -3203 (|#1| $)) (-15 -3202 ($ $ (-558))) (-15 -3201 ((-558) $)) (-15 -3200 ((-1201 |#1|) |#1| |#1|)) (-15 -3199 ($ $)) (-15 -3206 ($ |#1| (-417 |#1|))) (-15 -3613 (|#1| $)))) (-319)) (T -942)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-942 *3)))) (-3205 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) (-3203 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) (-3200 (*1 *2 *3 *3) (-12 (-5 *2 (-1201 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319)))) (-3206 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-942 *2)))) (-3613 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319))))) +(-13 (-376) (-38 |#1|) (-10 -8 (-15 -4458 ((-419 |#1|) $)) (-15 -4458 ($ (-419 (-417 |#1|)))) (-15 -3205 ($ $)) (-15 -3204 ((-417 |#1|) $)) (-15 -3203 (|#1| $)) (-15 -3202 ($ $ (-558))) (-15 -3201 ((-558) $)) (-15 -3200 ((-1201 |#1|) |#1| |#1|)) (-15 -3199 ($ $)) (-15 -3206 ($ |#1| (-417 |#1|))) (-15 -3613 (|#1| $)))) +((-3206 (((-51) (-974 |#1|) (-417 (-974 |#1|)) (-1207)) 17 T ELT) (((-51) (-419 (-974 |#1|)) (-1207)) 18 T ELT))) +(((-943 |#1|) (-10 -7 (-15 -3206 ((-51) (-419 (-974 |#1|)) (-1207))) (-15 -3206 ((-51) (-974 |#1|) (-417 (-974 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -943)) +((-3206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-974 *6))) (-5 *5 (-1207)) (-5 *3 (-974 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-943 *6)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-943 *5))))) +(-10 -7 (-15 -3206 ((-51) (-419 (-974 |#1|)) (-1207))) (-15 -3206 ((-51) (-974 |#1|) (-417 (-974 |#1|)) (-1207)))) +((-3207 ((|#4| (-661 |#4|)) 148 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3644 (((-1201 |#4|) (-661 (-1201 |#4|))) 141 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 61 T ELT) ((|#4| (-661 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3644 (|#4| |#4| |#4|)) (-15 -3644 (|#4| (-661 |#4|))) (-15 -3644 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3644 ((-1201 |#4|) (-661 (-1201 |#4|)))) (-15 -3207 (|#4| |#4| |#4|)) (-15 -3207 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3207 (|#4| (-661 |#4|)))) (-815) (-870) (-319) (-978 |#3| |#1| |#2|)) (T -944)) +((-3207 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)))) (-3207 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *6)))) (-3207 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-661 (-1201 *7))) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-1201 *7)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-3644 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *6)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)))) (-3644 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4))))) +(-10 -7 (-15 -3644 (|#4| |#4| |#4|)) (-15 -3644 (|#4| (-661 |#4|))) (-15 -3644 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3644 ((-1201 |#4|) (-661 (-1201 |#4|)))) (-15 -3207 (|#4| |#4| |#4|)) (-15 -3207 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3207 (|#4| (-661 |#4|)))) +((-3220 (((-933 (-558)) (-1001)) 38 T ELT) (((-933 (-558)) (-661 (-558))) 34 T ELT)) (-3208 (((-933 (-558)) (-661 (-558))) 66 T ELT) (((-933 (-558)) (-947)) 67 T ELT)) (-3219 (((-933 (-558))) 39 T ELT)) (-3217 (((-933 (-558))) 53 T ELT) (((-933 (-558)) (-661 (-558))) 52 T ELT)) (-3216 (((-933 (-558))) 51 T ELT) (((-933 (-558)) (-661 (-558))) 50 T ELT)) (-3215 (((-933 (-558))) 49 T ELT) (((-933 (-558)) (-661 (-558))) 48 T ELT)) (-3214 (((-933 (-558))) 47 T ELT) (((-933 (-558)) (-661 (-558))) 46 T ELT)) (-3213 (((-933 (-558))) 45 T ELT) (((-933 (-558)) (-661 (-558))) 44 T ELT)) (-3218 (((-933 (-558))) 55 T ELT) (((-933 (-558)) (-661 (-558))) 54 T ELT)) (-3212 (((-933 (-558)) (-661 (-558))) 71 T ELT) (((-933 (-558)) (-947)) 73 T ELT)) (-3211 (((-933 (-558)) (-661 (-558))) 68 T ELT) (((-933 (-558)) (-947)) 69 T ELT)) (-3209 (((-933 (-558)) (-661 (-558))) 64 T ELT) (((-933 (-558)) (-947)) 65 T ELT)) (-3210 (((-933 (-558)) (-661 (-947))) 57 T ELT))) +(((-945) (-10 -7 (-15 -3208 ((-933 (-558)) (-947))) (-15 -3208 ((-933 (-558)) (-661 (-558)))) (-15 -3209 ((-933 (-558)) (-947))) (-15 -3209 ((-933 (-558)) (-661 (-558)))) (-15 -3210 ((-933 (-558)) (-661 (-947)))) (-15 -3211 ((-933 (-558)) (-947))) (-15 -3211 ((-933 (-558)) (-661 (-558)))) (-15 -3212 ((-933 (-558)) (-947))) (-15 -3212 ((-933 (-558)) (-661 (-558)))) (-15 -3213 ((-933 (-558)) (-661 (-558)))) (-15 -3213 ((-933 (-558)))) (-15 -3214 ((-933 (-558)) (-661 (-558)))) (-15 -3214 ((-933 (-558)))) (-15 -3215 ((-933 (-558)) (-661 (-558)))) (-15 -3215 ((-933 (-558)))) (-15 -3216 ((-933 (-558)) (-661 (-558)))) (-15 -3216 ((-933 (-558)))) (-15 -3217 ((-933 (-558)) (-661 (-558)))) (-15 -3217 ((-933 (-558)))) (-15 -3218 ((-933 (-558)) (-661 (-558)))) (-15 -3218 ((-933 (-558)))) (-15 -3219 ((-933 (-558)))) (-15 -3220 ((-933 (-558)) (-661 (-558)))) (-15 -3220 ((-933 (-558)) (-1001))))) (T -945)) +((-3220 (*1 *2 *3) (-12 (-5 *3 (-1001)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3219 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3218 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3217 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3216 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3215 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3214 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3213 (*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(-10 -7 (-15 -3208 ((-933 (-558)) (-947))) (-15 -3208 ((-933 (-558)) (-661 (-558)))) (-15 -3209 ((-933 (-558)) (-947))) (-15 -3209 ((-933 (-558)) (-661 (-558)))) (-15 -3210 ((-933 (-558)) (-661 (-947)))) (-15 -3211 ((-933 (-558)) (-947))) (-15 -3211 ((-933 (-558)) (-661 (-558)))) (-15 -3212 ((-933 (-558)) (-947))) (-15 -3212 ((-933 (-558)) (-661 (-558)))) (-15 -3213 ((-933 (-558)) (-661 (-558)))) (-15 -3213 ((-933 (-558)))) (-15 -3214 ((-933 (-558)) (-661 (-558)))) (-15 -3214 ((-933 (-558)))) (-15 -3215 ((-933 (-558)) (-661 (-558)))) (-15 -3215 ((-933 (-558)))) (-15 -3216 ((-933 (-558)) (-661 (-558)))) (-15 -3216 ((-933 (-558)))) (-15 -3217 ((-933 (-558)) (-661 (-558)))) (-15 -3217 ((-933 (-558)))) (-15 -3218 ((-933 (-558)) (-661 (-558)))) (-15 -3218 ((-933 (-558)))) (-15 -3219 ((-933 (-558)))) (-15 -3220 ((-933 (-558)) (-661 (-558)))) (-15 -3220 ((-933 (-558)) (-1001)))) +((-3222 (((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207))) 14 T ELT)) (-3221 (((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207))) 13 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3221 ((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -3222 ((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207))))) (-464)) (T -946)) +((-3222 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-974 *4))) (-5 *3 (-661 (-1207))) (-4 *4 (-464)) (-5 *1 (-946 *4)))) (-3221 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-974 *4))) (-5 *3 (-661 (-1207))) (-4 *4 (-464)) (-5 *1 (-946 *4))))) +(-10 -7 (-15 -3221 ((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -3222 ((-661 (-974 |#1|)) (-661 (-974 |#1|)) (-661 (-1207))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3644 (($ $ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3147 (($) NIL T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-947) (-13 (-816) (-746) (-10 -8 (-15 -3644 ($ $ $)) (-6 (-4509 "*"))))) (T -947)) +((-3644 (*1 *1 *1 *1) (-5 *1 (-947)))) +(-13 (-816) (-746) (-10 -8 (-15 -3644 ($ $ $)) (-6 (-4509 "*")))) ((|NonNegativeInteger|) (|%ilt| 0 |#1|)) -((-4462 (((-326 |#1|) (-491)) 16 T ELT))) -(((-950 |#1|) (-10 -7 (-15 -4462 ((-326 |#1|) (-491)))) (-571)) (T -950)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-950 *4)) (-4 *4 (-571))))) -(-10 -7 (-15 -4462 ((-326 |#1|) (-491)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-951) (-142)) (T -951)) -((-3228 (*1 *2 *3) (-12 (-4 *1 (-951)) (-5 *2 (-2 (|:| -4470 (-663 *1)) (|:| -2654 *1))) (-5 *3 (-663 *1)))) (-3227 (*1 *2 *3 *1) (-12 (-4 *1 (-951)) (-5 *2 (-713 (-663 *1))) (-5 *3 (-663 *1))))) -(-13 (-466) (-10 -8 (-15 -3228 ((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $))) (-15 -3227 ((-713 (-663 $)) (-663 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3594 (((-1203 |#2|) (-663 |#2|) (-663 |#2|)) 17 T ELT) (((-1268 |#1| |#2|) (-1268 |#1| |#2|) (-663 |#2|) (-663 |#2|)) 13 T ELT))) -(((-952 |#1| |#2|) (-10 -7 (-15 -3594 ((-1268 |#1| |#2|) (-1268 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -3594 ((-1203 |#2|) (-663 |#2|) (-663 |#2|)))) (-1209) (-376)) (T -952)) -((-3594 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1203 *5)) (-5 *1 (-952 *4 *5)) (-14 *4 (-1209)))) (-3594 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1268 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1209)) (-4 *5 (-376)) (-5 *1 (-952 *4 *5))))) -(-10 -7 (-15 -3594 ((-1268 |#1| |#2|) (-1268 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -3594 ((-1203 |#2|) (-663 |#2|) (-663 |#2|)))) -((-3229 ((|#2| (-663 |#1|) (-663 |#1|)) 28 T ELT))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3229 (|#2| (-663 |#1|) (-663 |#1|)))) (-376) (-1275 |#1|)) (T -953)) -((-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1275 *4)) (-5 *1 (-953 *4 *2))))) -(-10 -7 (-15 -3229 (|#2| (-663 |#1|) (-663 |#1|)))) -((-3231 (((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191)) 175 T ELT)) (-3250 ((|#4| |#4|) 194 T ELT)) (-3235 (((-663 (-421 (-976 |#1|))) (-663 (-1209))) 146 T ELT)) (-3249 (((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560)) 88 T ELT)) (-3239 (((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-663 |#4|)) 69 T ELT)) (-3248 (((-711 |#4|) (-711 |#4|) (-663 |#4|)) 65 T ELT)) (-3232 (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191)) 187 T ELT)) (-3230 (((-560) (-711 |#4|) (-949) (-1191)) 167 T ELT) (((-560) (-711 |#4|) (-663 (-1209)) (-949) (-1191)) 166 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-949) (-1191)) 165 T ELT) (((-560) (-711 |#4|) (-1191)) 154 T ELT) (((-560) (-711 |#4|) (-663 (-1209)) (-1191)) 153 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-1191)) 152 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-949)) 151 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209)) (-949)) 150 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-949)) 149 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|)) 148 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209))) 147 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|)) 143 T ELT)) (-3236 ((|#4| (-976 |#1|)) 80 T ELT)) (-3246 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 191 T ELT)) (-3245 (((-663 (-663 (-560))) (-560) (-560)) 161 T ELT)) (-3244 (((-663 (-663 |#4|)) (-663 (-663 |#4|))) 106 T ELT)) (-3243 (((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 100 T ELT)) (-3242 (((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 99 T ELT)) (-3251 (((-114) (-663 (-976 |#1|))) 19 T ELT) (((-114) (-663 |#4|)) 15 T ELT)) (-3237 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|)) 84 T ELT)) (-3241 (((-663 |#4|) |#4|) 57 T ELT)) (-3234 (((-663 (-421 (-976 |#1|))) (-663 |#4|)) 142 T ELT) (((-711 (-421 (-976 |#1|))) (-711 |#4|)) 66 T ELT) (((-421 (-976 |#1|)) |#4|) 139 T ELT)) (-3233 (((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-793) (-1191) (-560)) 112 T ELT)) (-3238 (((-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793)) 98 T ELT)) (-3247 (((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793)) 121 T ELT)) (-3240 (((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| -1795 (-711 (-421 (-976 |#1|)))) (|:| |vec| (-663 (-421 (-976 |#1|)))) (|:| -3597 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) 56 T ELT))) -(((-954 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209)))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-949))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209)) (-949))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-949))) (-15 -3230 ((-560) (-711 |#4|) (-663 |#4|) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 (-1209)) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 |#4|) (-949) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 (-1209)) (-949) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-949) (-1191))) (-15 -3231 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191))) (-15 -3232 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191))) (-15 -3233 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-793) (-1191) (-560))) (-15 -3234 ((-421 (-976 |#1|)) |#4|)) (-15 -3234 ((-711 (-421 (-976 |#1|))) (-711 |#4|))) (-15 -3234 ((-663 (-421 (-976 |#1|))) (-663 |#4|))) (-15 -3235 ((-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3236 (|#4| (-976 |#1|))) (-15 -3237 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -3238 ((-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -3239 ((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-663 |#4|))) (-15 -3240 ((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| -1795 (-711 (-421 (-976 |#1|)))) (|:| |vec| (-663 (-421 (-976 |#1|)))) (|:| -3597 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -3241 ((-663 |#4|) |#4|)) (-15 -3242 ((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3243 ((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3244 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -3245 ((-663 (-663 (-560))) (-560) (-560))) (-15 -3246 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3247 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -3248 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -3249 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3250 (|#4| |#4|)) (-15 -3251 ((-114) (-663 |#4|))) (-15 -3251 ((-114) (-663 (-976 |#1|))))) (-13 (-319) (-149)) (-13 (-872) (-633 (-1209))) (-817) (-980 |#1| |#3| |#2|)) (T -954)) -((-3251 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-114)) (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-114)) (-5 *1 (-954 *4 *5 *6 *7)))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-872) (-633 (-1209)))) (-4 *5 (-817)) (-5 *1 (-954 *3 *4 *5 *2)) (-4 *2 (-980 *3 *5 *4)))) (-3249 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-976 *9)))) (-5 *6 (-663 (-663 *12))) (-5 *7 (-793)) (-5 *8 (-560)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-980 *9 *11 *10)) (-4 *10 (-13 (-872) (-633 (-1209)))) (-4 *11 (-817)) (-5 *2 (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12)) (|:| |wcond| (-663 (-976 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *9)))) (|:| -2236 (-663 (-1299 (-421 (-976 *9))))))))) (-5 *1 (-954 *9 *10 *11 *12)))) (-3248 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *1 (-954 *4 *5 *6 *7)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-114)) (-5 *1 (-954 *5 *6 *7 *8)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 (-663 (-560)))) (-5 *1 (-954 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-980 *4 *6 *5)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-980 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-872) (-633 (-1209)))) (-4 *5 (-817)) (-5 *1 (-954 *3 *4 *5 *6)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-793)) (-5 *1 (-954 *4 *5 *6 *7)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-793)) (-5 *1 (-954 *4 *5 *6 *7)))) (-3241 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 *3)) (-5 *1 (-954 *4 *5 *6 *3)) (-4 *3 (-980 *4 *6 *5)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1795 (-711 (-421 (-976 *4)))) (|:| |vec| (-663 (-421 (-976 *4)))) (|:| -3597 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) (|:| -2236 (-663 (-1299 (-421 (-976 *4))))))) (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5)))) (-3239 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) (|:| -2236 (-663 (-1299 (-421 (-976 *4))))))) (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-980 *4 *6 *5)) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *1 (-954 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *8))))) (-5 *1 (-954 *5 *6 *7 *8)) (-5 *4 (-793)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-4 *7 (-980 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7)))) (-5 *1 (-954 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-980 *4 *6 *5)) (-5 *1 (-954 *4 *5 *6 *2)) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-711 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7)))) (-3234 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-421 (-976 *4))) (-5 *1 (-954 *4 *5 *6 *3)) (-4 *3 (-980 *4 *6 *5)))) (-3233 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-976 *8)))) (-5 *5 (-793)) (-5 *6 (-1191)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-980 *8 *10 *9)) (-4 *9 (-13 (-872) (-633 (-1209)))) (-4 *10 (-817)) (-5 *2 (-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11)) (|:| |wcond| (-663 (-976 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *8)))) (|:| -2236 (-663 (-1299 (-421 (-976 *8)))))))))) (|:| |rgsz| (-560)))) (-5 *1 (-954 *8 *9 *10 *11)) (-5 *7 (-560)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-976 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) (|:| -2236 (-663 (-1299 (-421 (-976 *4)))))))))) (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-976 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) (-5 *4 (-1191)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-980 *5 *7 *6)) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-949)) (-5 *5 (-1191)) (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *6 *7 *8 *9)))) (-3230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 (-1209))) (-5 *5 (-949)) (-5 *6 (-1191)) (-4 *10 (-980 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-872) (-633 (-1209)))) (-4 *9 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *7 *8 *9 *10)))) (-3230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 *10)) (-5 *5 (-949)) (-5 *6 (-1191)) (-4 *10 (-980 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-872) (-633 (-1209)))) (-4 *9 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *7 *8 *9 *10)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-1191)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1209))) (-5 *5 (-1191)) (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *6 *7 *8 *9)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 *9)) (-5 *5 (-1191)) (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *6 *7 *8 *9)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-949)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-976 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1209))) (-5 *5 (-949)) (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-976 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *6)))) (|:| -2236 (-663 (-1299 (-421 (-976 *6)))))))))) (-5 *1 (-954 *6 *7 *8 *9)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *5 (-949)) (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-976 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *6)))) (|:| -2236 (-663 (-1299 (-421 (-976 *6)))))))))) (-5 *1 (-954 *6 *7 *8 *9)) (-5 *4 (-663 *9)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-976 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) (|:| -2236 (-663 (-1299 (-421 (-976 *4)))))))))) (-5 *1 (-954 *4 *5 *6 *7)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-663 (-1209))) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-976 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) (-5 *1 (-954 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-976 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) (-5 *1 (-954 *5 *6 *7 *8)) (-5 *4 (-663 *8))))) -(-10 -7 (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209)))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-949))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-663 (-1209)) (-949))) (-15 -3230 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-711 |#4|) (-949))) (-15 -3230 ((-560) (-711 |#4|) (-663 |#4|) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 (-1209)) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 |#4|) (-949) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-663 (-1209)) (-949) (-1191))) (-15 -3230 ((-560) (-711 |#4|) (-949) (-1191))) (-15 -3231 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191))) (-15 -3232 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|))))))))) (-1191))) (-15 -3233 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-793) (-1191) (-560))) (-15 -3234 ((-421 (-976 |#1|)) |#4|)) (-15 -3234 ((-711 (-421 (-976 |#1|))) (-711 |#4|))) (-15 -3234 ((-663 (-421 (-976 |#1|))) (-663 |#4|))) (-15 -3235 ((-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3236 (|#4| (-976 |#1|))) (-15 -3237 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -3238 ((-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -3239 ((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-663 |#4|))) (-15 -3240 ((-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))) (-2 (|:| -1795 (-711 (-421 (-976 |#1|)))) (|:| |vec| (-663 (-421 (-976 |#1|)))) (|:| -3597 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -3241 ((-663 |#4|) |#4|)) (-15 -3242 ((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3243 ((-793) (-663 (-2 (|:| -3597 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3244 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -3245 ((-663 (-663 (-560))) (-560) (-560))) (-15 -3246 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3247 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -3248 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -3249 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-976 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1299 (-421 (-976 |#1|)))) (|:| -2236 (-663 (-1299 (-421 (-976 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-976 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3250 (|#4| |#4|)) (-15 -3251 ((-114) (-663 |#4|))) (-15 -3251 ((-114) (-663 (-976 |#1|))))) -((-4390 (($ $ (-1121 (-229))) 125 T ELT) (($ $ (-1121 (-229)) (-1121 (-229))) 126 T ELT)) (-3383 (((-1121 (-229)) $) 73 T ELT)) (-3384 (((-1121 (-229)) $) 72 T ELT)) (-3275 (((-1121 (-229)) $) 74 T ELT)) (-3256 (((-560) (-560)) 66 T ELT)) (-3260 (((-560) (-560)) 61 T ELT)) (-3258 (((-560) (-560)) 64 T ELT)) (-3254 (((-114) (-114)) 68 T ELT)) (-3257 (((-560)) 65 T ELT)) (-3622 (($ $ (-1121 (-229))) 129 T ELT) (($ $) 130 T ELT)) (-3277 (($ (-1 (-973 (-229)) (-229)) (-1121 (-229))) 148 T ELT) (($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229))) 149 T ELT)) (-3263 (($ (-1 (-229) (-229)) (-1121 (-229))) 156 T ELT) (($ (-1 (-229) (-229))) 160 T ELT)) (-3276 (($ (-1 (-229) (-229)) (-1121 (-229))) 144 T ELT) (($ (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229))) 145 T ELT) (($ (-663 (-1 (-229) (-229))) (-1121 (-229))) 153 T ELT) (($ (-663 (-1 (-229) (-229))) (-1121 (-229)) (-1121 (-229))) 154 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229))) 146 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229))) 147 T ELT) (($ $ (-1121 (-229))) 131 T ELT)) (-3262 (((-114) $) 69 T ELT)) (-3253 (((-560)) 70 T ELT)) (-3261 (((-560)) 59 T ELT)) (-3259 (((-560)) 62 T ELT)) (-3385 (((-663 (-663 (-973 (-229)))) $) 35 T ELT)) (-3252 (((-114) (-114)) 71 T ELT)) (-4462 (((-888) $) 174 T ELT)) (-3255 (((-114)) 67 T ELT))) -(((-955) (-13 (-985) (-10 -8 (-15 -3276 ($ (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-663 (-1 (-229) (-229))) (-1121 (-229)))) (-15 -3276 ($ (-663 (-1 (-229) (-229))) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3263 ($ (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3263 ($ (-1 (-229) (-229)))) (-15 -3276 ($ $ (-1121 (-229)))) (-15 -3262 ((-114) $)) (-15 -4390 ($ $ (-1121 (-229)))) (-15 -4390 ($ $ (-1121 (-229)) (-1121 (-229)))) (-15 -3622 ($ $ (-1121 (-229)))) (-15 -3622 ($ $)) (-15 -3275 ((-1121 (-229)) $)) (-15 -3261 ((-560))) (-15 -3260 ((-560) (-560))) (-15 -3259 ((-560))) (-15 -3258 ((-560) (-560))) (-15 -3257 ((-560))) (-15 -3256 ((-560) (-560))) (-15 -3255 ((-114))) (-15 -3254 ((-114) (-114))) (-15 -3253 ((-560))) (-15 -3252 ((-114) (-114)))))) (T -955)) -((-3276 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3277 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3277 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3263 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-955)))) (-3276 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-955)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) (-4390 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) (-3622 (*1 *1 *1) (-5 *1 (-955))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) (-3261 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3259 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3257 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3255 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955)))) (-3253 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) -(-13 (-985) (-10 -8 (-15 -3276 ($ (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-663 (-1 (-229) (-229))) (-1121 (-229)))) (-15 -3276 ($ (-663 (-1 (-229) (-229))) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3263 ($ (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3263 ($ (-1 (-229) (-229)))) (-15 -3276 ($ $ (-1121 (-229)))) (-15 -3262 ((-114) $)) (-15 -4390 ($ $ (-1121 (-229)))) (-15 -4390 ($ $ (-1121 (-229)) (-1121 (-229)))) (-15 -3622 ($ $ (-1121 (-229)))) (-15 -3622 ($ $)) (-15 -3275 ((-1121 (-229)) $)) (-15 -3261 ((-560))) (-15 -3260 ((-560) (-560))) (-15 -3259 ((-560))) (-15 -3258 ((-560) (-560))) (-15 -3257 ((-560))) (-15 -3256 ((-560) (-560))) (-15 -3255 ((-114))) (-15 -3254 ((-114) (-114))) (-15 -3253 ((-560))) (-15 -3252 ((-114) (-114))))) -((-3263 (((-955) |#1| (-1209)) 17 T ELT) (((-955) |#1| (-1209) (-1121 (-229))) 21 T ELT)) (-3276 (((-955) |#1| |#1| (-1209) (-1121 (-229))) 19 T ELT) (((-955) |#1| (-1209) (-1121 (-229))) 15 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -3276 ((-955) |#1| (-1209) (-1121 (-229)))) (-15 -3276 ((-955) |#1| |#1| (-1209) (-1121 (-229)))) (-15 -3263 ((-955) |#1| (-1209) (-1121 (-229)))) (-15 -3263 ((-955) |#1| (-1209)))) (-633 (-549))) (T -956)) -((-3263 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-5 *2 (-955)) (-5 *1 (-956 *3)) (-4 *3 (-633 (-549))))) (-3263 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) (-4 *3 (-633 (-549))))) (-3276 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) (-4 *3 (-633 (-549))))) (-3276 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) (-4 *3 (-633 (-549)))))) -(-10 -7 (-15 -3276 ((-955) |#1| (-1209) (-1121 (-229)))) (-15 -3276 ((-955) |#1| |#1| (-1209) (-1121 (-229)))) (-15 -3263 ((-955) |#1| (-1209) (-1121 (-229)))) (-15 -3263 ((-955) |#1| (-1209)))) -((-4390 (($ $ (-1121 (-229)) (-1121 (-229)) (-1121 (-229))) 123 T ELT)) (-3382 (((-1121 (-229)) $) 64 T ELT)) (-3383 (((-1121 (-229)) $) 63 T ELT)) (-3384 (((-1121 (-229)) $) 62 T ELT)) (-3274 (((-663 (-663 (-229))) $) 69 T ELT)) (-3275 (((-1121 (-229)) $) 65 T ELT)) (-3268 (((-560) (-560)) 57 T ELT)) (-3272 (((-560) (-560)) 52 T ELT)) (-3270 (((-560) (-560)) 55 T ELT)) (-3266 (((-114) (-114)) 59 T ELT)) (-3269 (((-560)) 56 T ELT)) (-3622 (($ $ (-1121 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3277 (($ (-1 (-973 (-229)) (-229)) (-1121 (-229))) 133 T ELT) (($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229))) 134 T ELT)) (-3276 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229))) 140 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229))) 141 T ELT) (($ $ (-1121 (-229))) 129 T ELT)) (-3265 (((-560)) 60 T ELT)) (-3273 (((-560)) 50 T ELT)) (-3271 (((-560)) 53 T ELT)) (-3385 (((-663 (-663 (-973 (-229)))) $) 157 T ELT)) (-3264 (((-114) (-114)) 61 T ELT)) (-4462 (((-888) $) 155 T ELT)) (-3267 (((-114)) 58 T ELT))) -(((-957) (-13 (-1006) (-10 -8 (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ $ (-1121 (-229)))) (-15 -4390 ($ $ (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3622 ($ $ (-1121 (-229)))) (-15 -3622 ($ $)) (-15 -3275 ((-1121 (-229)) $)) (-15 -3274 ((-663 (-663 (-229))) $)) (-15 -3273 ((-560))) (-15 -3272 ((-560) (-560))) (-15 -3271 ((-560))) (-15 -3270 ((-560) (-560))) (-15 -3269 ((-560))) (-15 -3268 ((-560) (-560))) (-15 -3267 ((-114))) (-15 -3266 ((-114) (-114))) (-15 -3265 ((-560))) (-15 -3264 ((-114) (-114)))))) (T -957)) -((-3277 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957)))) (-3277 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957)))) (-3276 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957)))) (-3276 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957)))) (-3276 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) (-4390 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) (-3622 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) (-3622 (*1 *1 *1) (-5 *1 (-957))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-957)))) (-3273 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3271 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3269 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3267 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957)))) (-3265 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957))))) -(-13 (-1006) (-10 -8 (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)))) (-15 -3277 ($ (-1 (-973 (-229)) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)))) (-15 -3276 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3276 ($ $ (-1121 (-229)))) (-15 -4390 ($ $ (-1121 (-229)) (-1121 (-229)) (-1121 (-229)))) (-15 -3622 ($ $ (-1121 (-229)))) (-15 -3622 ($ $)) (-15 -3275 ((-1121 (-229)) $)) (-15 -3274 ((-663 (-663 (-229))) $)) (-15 -3273 ((-560))) (-15 -3272 ((-560) (-560))) (-15 -3271 ((-560))) (-15 -3270 ((-560) (-560))) (-15 -3269 ((-560))) (-15 -3268 ((-560) (-560))) (-15 -3267 ((-114))) (-15 -3266 ((-114) (-114))) (-15 -3265 ((-560))) (-15 -3264 ((-114) (-114))))) -((-3278 (((-663 (-1121 (-229))) (-663 (-663 (-973 (-229))))) 34 T ELT))) -(((-958) (-10 -7 (-15 -3278 ((-663 (-1121 (-229))) (-663 (-663 (-973 (-229)))))))) (T -958)) -((-3278 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-663 (-1121 (-229)))) (-5 *1 (-958))))) -(-10 -7 (-15 -3278 ((-663 (-1121 (-229))) (-663 (-663 (-973 (-229))))))) -((-3280 (((-326 (-560)) (-1209)) 16 T ELT)) (-3281 (((-326 (-560)) (-1209)) 14 T ELT)) (-4468 (((-326 (-560)) (-1209)) 12 T ELT)) (-3279 (((-326 (-560)) (-1209) (-520)) 19 T ELT))) -(((-959) (-10 -7 (-15 -3279 ((-326 (-560)) (-1209) (-520))) (-15 -4468 ((-326 (-560)) (-1209))) (-15 -3280 ((-326 (-560)) (-1209))) (-15 -3281 ((-326 (-560)) (-1209))))) (T -959)) -((-3281 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) (-4468 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-520)) (-5 *2 (-326 (-560))) (-5 *1 (-959))))) -(-10 -7 (-15 -3279 ((-326 (-560)) (-1209) (-520))) (-15 -4468 ((-326 (-560)) (-1209))) (-15 -3280 ((-326 (-560)) (-1209))) (-15 -3281 ((-326 (-560)) (-1209)))) -((-3280 ((|#2| |#2|) 28 T ELT)) (-3281 ((|#2| |#2|) 29 T ELT)) (-4468 ((|#2| |#2|) 27 T ELT)) (-3279 ((|#2| |#2| (-520)) 26 T ELT))) -(((-960 |#1| |#2|) (-10 -7 (-15 -3279 (|#2| |#2| (-520))) (-15 -4468 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3281 (|#2| |#2|))) (-1133) (-435 |#1|)) (T -960)) -((-3281 (*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3)))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3)))) (-4468 (*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3)))) (-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1133)) (-5 *1 (-960 *4 *2)) (-4 *2 (-435 *4))))) -(-10 -7 (-15 -3279 (|#2| |#2| (-520))) (-15 -4468 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3281 (|#2| |#2|))) -((-3283 (((-914 |#1| |#3|) |#2| (-916 |#1|) (-914 |#1| |#3|)) 25 T ELT)) (-3282 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT))) -(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -3282 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3283 ((-914 |#1| |#3|) |#2| (-916 |#1|) (-914 |#1| |#3|)))) (-1133) (-912 |#1|) (-13 (-1133) (-1070 |#2|))) (T -961)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-13 (-1133) (-1070 *3))) (-4 *3 (-912 *5)) (-5 *1 (-961 *5 *3 *6)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1133) (-1070 *5))) (-4 *5 (-912 *4)) (-4 *4 (-1133)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-961 *4 *5 *6))))) -(-10 -7 (-15 -3282 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3283 ((-914 |#1| |#3|) |#2| (-916 |#1|) (-914 |#1| |#3|)))) -((-3283 (((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)) 30 T ELT))) -(((-962 |#1| |#2| |#3|) (-10 -7 (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) (-1133) (-13 (-571) (-912 |#1|)) (-13 (-435 |#2|) (-633 (-916 |#1|)) (-912 |#1|) (-1070 (-630 $)))) (T -962)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) (-4 *3 (-13 (-435 *6) (-633 *4) (-912 *5) (-1070 (-630 $)))) (-5 *4 (-916 *5)) (-4 *6 (-13 (-571) (-912 *5))) (-5 *1 (-962 *5 *6 *3))))) -(-10 -7 (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) -((-3283 (((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|)) 13 T ELT))) -(((-963 |#1|) (-10 -7 (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|)))) (-559)) (T -963)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 (-560) *3)) (-5 *4 (-916 (-560))) (-4 *3 (-559)) (-5 *1 (-963 *3))))) -(-10 -7 (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|)))) -((-3283 (((-914 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-914 |#1| |#2|)) 57 T ELT))) -(((-964 |#1| |#2|) (-10 -7 (-15 -3283 ((-914 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-914 |#1| |#2|)))) (-1133) (-13 (-1133) (-1070 (-630 $)) (-633 (-916 |#1|)) (-912 |#1|))) (T -964)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1133)) (-4 *6 (-13 (-1133) (-1070 (-630 $)) (-633 *4) (-912 *5))) (-5 *4 (-916 *5)) (-5 *1 (-964 *5 *6))))) -(-10 -7 (-15 -3283 ((-914 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-914 |#1| |#2|)))) -((-3283 (((-911 |#1| |#2| |#3|) |#3| (-916 |#1|) (-911 |#1| |#2| |#3|)) 17 T ELT))) -(((-965 |#1| |#2| |#3|) (-10 -7 (-15 -3283 ((-911 |#1| |#2| |#3|) |#3| (-916 |#1|) (-911 |#1| |#2| |#3|)))) (-1133) (-912 |#1|) (-688 |#2|)) (T -965)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-911 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-912 *5)) (-4 *3 (-688 *6)) (-5 *1 (-965 *5 *6 *3))))) -(-10 -7 (-15 -3283 ((-911 |#1| |#2| |#3|) |#3| (-916 |#1|) (-911 |#1| |#2| |#3|)))) -((-3283 (((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|)) 17 (|has| |#3| (-912 |#1|)) ELT) (((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-916 |#1|) (-914 |#1| |#5|))) 16 T ELT))) -(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-916 |#1|) (-914 |#1| |#5|)))) (IF (|has| |#3| (-912 |#1|)) (-15 -3283 ((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|))) |%noBranch|)) (-1133) (-817) (-872) (-13 (-1081) (-912 |#1|)) (-13 (-980 |#4| |#2| |#3|) (-633 (-916 |#1|)))) (T -966)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) (-4 *3 (-13 (-980 *8 *6 *7) (-633 *4))) (-5 *4 (-916 *5)) (-4 *7 (-912 *5)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-13 (-1081) (-912 *5))) (-5 *1 (-966 *5 *6 *7 *8 *3)))) (-3283 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-914 *6 *3) *8 (-916 *6) (-914 *6 *3))) (-4 *8 (-872)) (-5 *2 (-914 *6 *3)) (-5 *4 (-916 *6)) (-4 *6 (-1133)) (-4 *3 (-13 (-980 *9 *7 *8) (-633 *4))) (-4 *7 (-817)) (-4 *9 (-13 (-1081) (-912 *6))) (-5 *1 (-966 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3283 ((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-916 |#1|) (-914 |#1| |#5|)))) (IF (|has| |#3| (-912 |#1|)) (-15 -3283 ((-914 |#1| |#5|) |#5| (-916 |#1|) (-914 |#1| |#5|))) |%noBranch|)) -((-3713 (((-326 (-560)) (-1209) (-663 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-560)) (-1209) (-1 (-114) |#1|)) 15 T ELT))) -(((-967 |#1|) (-10 -7 (-15 -3713 ((-326 (-560)) (-1209) (-1 (-114) |#1|))) (-15 -3713 ((-326 (-560)) (-1209) (-663 (-1 (-114) |#1|))))) (-1249)) (T -967)) -((-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1249)) (-5 *2 (-326 (-560))) (-5 *1 (-967 *5)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1249)) (-5 *2 (-326 (-560))) (-5 *1 (-967 *5))))) -(-10 -7 (-15 -3713 ((-326 (-560)) (-1209) (-1 (-114) |#1|))) (-15 -3713 ((-326 (-560)) (-1209) (-663 (-1 (-114) |#1|))))) -((-3713 ((|#2| |#2| (-663 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT))) -(((-968 |#1| |#2| |#3|) (-10 -7 (-15 -3713 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3713 (|#2| |#2| (-663 (-1 (-114) |#3|))))) (-1133) (-435 |#1|) (-1249)) (T -968)) -((-3713 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1249)) (-4 *4 (-1133)) (-5 *1 (-968 *4 *2 *5)) (-4 *2 (-435 *4)))) (-3713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1249)) (-4 *4 (-1133)) (-5 *1 (-968 *4 *2 *5)) (-4 *2 (-435 *4))))) -(-10 -7 (-15 -3713 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3713 (|#2| |#2| (-663 (-1 (-114) |#3|))))) -((-3283 (((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)) 25 T ELT))) -(((-969 |#1| |#2| |#3|) (-10 -7 (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) (-1133) (-13 (-571) (-912 |#1|) (-633 (-916 |#1|))) (-1023 |#2|)) (T -969)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) (-4 *3 (-1023 *6)) (-4 *6 (-13 (-571) (-912 *5) (-633 *4))) (-5 *4 (-916 *5)) (-5 *1 (-969 *5 *6 *3))))) -(-10 -7 (-15 -3283 ((-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) -((-3283 (((-914 |#1| (-1209)) (-1209) (-916 |#1|) (-914 |#1| (-1209))) 18 T ELT))) -(((-970 |#1|) (-10 -7 (-15 -3283 ((-914 |#1| (-1209)) (-1209) (-916 |#1|) (-914 |#1| (-1209))))) (-1133)) (T -970)) -((-3283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 (-1209))) (-5 *3 (-1209)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-5 *1 (-970 *5))))) -(-10 -7 (-15 -3283 ((-914 |#1| (-1209)) (-1209) (-916 |#1|) (-914 |#1| (-1209))))) -((-3284 (((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))) 34 T ELT)) (-3283 (((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-1 |#3| (-663 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))) 33 T ELT))) -(((-971 |#1| |#2| |#3|) (-10 -7 (-15 -3283 ((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-1 |#3| (-663 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) (-15 -3284 ((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))))) (-1133) (-1081) (-13 (-1081) (-633 (-916 |#1|)) (-1070 |#2|))) (T -971)) -((-3284 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-916 *6))) (-5 *5 (-1 (-914 *6 *8) *8 (-916 *6) (-914 *6 *8))) (-4 *6 (-1133)) (-4 *8 (-13 (-1081) (-633 (-916 *6)) (-1070 *7))) (-5 *2 (-914 *6 *8)) (-4 *7 (-1081)) (-5 *1 (-971 *6 *7 *8)))) (-3283 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-663 (-916 *7))) (-5 *5 (-1 *9 (-663 *9))) (-5 *6 (-1 (-914 *7 *9) *9 (-916 *7) (-914 *7 *9))) (-4 *7 (-1133)) (-4 *9 (-13 (-1081) (-633 (-916 *7)) (-1070 *8))) (-5 *2 (-914 *7 *9)) (-5 *3 (-663 *9)) (-4 *8 (-1081)) (-5 *1 (-971 *7 *8 *9))))) -(-10 -7 (-15 -3283 ((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-1 |#3| (-663 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|)))) (-15 -3284 ((-914 |#1| |#3|) (-663 |#3|) (-663 (-916 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-916 |#1|) (-914 |#1| |#3|))))) -((-3292 (((-1203 (-421 (-560))) (-560)) 80 T ELT)) (-3291 (((-1203 (-560)) (-560)) 83 T ELT)) (-3840 (((-1203 (-560)) (-560)) 77 T ELT)) (-3290 (((-560) (-1203 (-560))) 73 T ELT)) (-3289 (((-1203 (-421 (-560))) (-560)) 66 T ELT)) (-3288 (((-1203 (-560)) (-560)) 49 T ELT)) (-3287 (((-1203 (-560)) (-560)) 85 T ELT)) (-3286 (((-1203 (-560)) (-560)) 84 T ELT)) (-3285 (((-1203 (-421 (-560))) (-560)) 68 T ELT))) -(((-972) (-10 -7 (-15 -3285 ((-1203 (-421 (-560))) (-560))) (-15 -3286 ((-1203 (-560)) (-560))) (-15 -3287 ((-1203 (-560)) (-560))) (-15 -3288 ((-1203 (-560)) (-560))) (-15 -3289 ((-1203 (-421 (-560))) (-560))) (-15 -3290 ((-560) (-1203 (-560)))) (-15 -3840 ((-1203 (-560)) (-560))) (-15 -3291 ((-1203 (-560)) (-560))) (-15 -3292 ((-1203 (-421 (-560))) (-560))))) (T -972)) -((-3292 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3291 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3840 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1203 (-560))) (-5 *2 (-560)) (-5 *1 (-972)))) (-3289 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3288 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3286 (*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) (-3285 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560))))) -(-10 -7 (-15 -3285 ((-1203 (-421 (-560))) (-560))) (-15 -3286 ((-1203 (-560)) (-560))) (-15 -3287 ((-1203 (-560)) (-560))) (-15 -3288 ((-1203 (-560)) (-560))) (-15 -3289 ((-1203 (-421 (-560))) (-560))) (-15 -3290 ((-560) (-1203 (-560)))) (-15 -3840 ((-1203 (-560)) (-560))) (-15 -3291 ((-1203 (-560)) (-560))) (-15 -3292 ((-1203 (-421 (-560))) (-560)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-4222 (($ (-663 |#1|)) 9 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4351 (((-711 |#1|) $ $) NIL (|has| |#1| (-1081)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4348 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-4349 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4285 (($ $ (-663 |#1|)) 25 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4352 ((|#1| $ $) NIL (|has| |#1| (-1081)) ELT)) (-4427 (((-949) $) 13 T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4350 (($ $ $) 23 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 14 T ELT)) (-4036 (($ (-663 |#1|)) NIL T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4353 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-4473 (((-793) $) 11 (|has| $ (-6 -4511)) ELT))) -(((-973 |#1|) (-1012 |#1|) (-1081)) (T -973)) -NIL -(-1012 |#1|) -((-3295 (((-495 |#1| |#2|) (-976 |#2|)) 22 T ELT)) (-3298 (((-255 |#1| |#2|) (-976 |#2|)) 35 T ELT)) (-3296 (((-976 |#2|) (-495 |#1| |#2|)) 27 T ELT)) (-3294 (((-255 |#1| |#2|) (-495 |#1| |#2|)) 57 T ELT)) (-3297 (((-976 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-3293 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) -(((-974 |#1| |#2|) (-10 -7 (-15 -3293 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3294 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -3295 ((-495 |#1| |#2|) (-976 |#2|))) (-15 -3296 ((-976 |#2|) (-495 |#1| |#2|))) (-15 -3297 ((-976 |#2|) (-255 |#1| |#2|))) (-15 -3298 ((-255 |#1| |#2|) (-976 |#2|)))) (-663 (-1209)) (-1081)) (T -974)) -((-3298 (*1 *2 *3) (-12 (-5 *3 (-976 *5)) (-4 *5 (-1081)) (-5 *2 (-255 *4 *5)) (-5 *1 (-974 *4 *5)) (-14 *4 (-663 (-1209))))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) (-5 *2 (-976 *5)) (-5 *1 (-974 *4 *5)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) (-5 *2 (-976 *5)) (-5 *1 (-974 *4 *5)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-976 *5)) (-4 *5 (-1081)) (-5 *2 (-495 *4 *5)) (-5 *1 (-974 *4 *5)) (-14 *4 (-663 (-1209))))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) (-5 *2 (-255 *4 *5)) (-5 *1 (-974 *4 *5)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) (-5 *2 (-495 *4 *5)) (-5 *1 (-974 *4 *5))))) -(-10 -7 (-15 -3293 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3294 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -3295 ((-495 |#1| |#2|) (-976 |#2|))) (-15 -3296 ((-976 |#2|) (-495 |#1| |#2|))) (-15 -3297 ((-976 |#2|) (-255 |#1| |#2|))) (-15 -3298 ((-255 |#1| |#2|) (-976 |#2|)))) -((-3299 (((-663 |#2|) |#2| |#2|) 10 T ELT)) (-3302 (((-793) (-663 |#1|)) 47 (|has| |#1| (-871)) ELT)) (-3300 (((-663 |#2|) |#2|) 11 T ELT)) (-3303 (((-793) (-663 |#1|) (-560) (-560)) 52 (|has| |#1| (-871)) ELT)) (-3301 ((|#1| |#2|) 37 (|has| |#1| (-871)) ELT))) -(((-975 |#1| |#2|) (-10 -7 (-15 -3299 ((-663 |#2|) |#2| |#2|)) (-15 -3300 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-871)) (PROGN (-15 -3301 (|#1| |#2|)) (-15 -3302 ((-793) (-663 |#1|))) (-15 -3303 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|)) (-376) (-1275 |#1|)) (T -975)) -((-3303 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-871)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-975 *5 *6)) (-4 *6 (-1275 *5)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-975 *4 *5)) (-4 *5 (-1275 *4)))) (-3301 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-871)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1275 *2)))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1275 *4)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -3299 ((-663 |#2|) |#2| |#2|)) (-15 -3300 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-871)) (PROGN (-15 -3301 (|#1| |#2|)) (-15 -3302 ((-793) (-663 |#1|))) (-15 -3303 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1209)) $) 16 T ELT)) (-3572 (((-1203 $) $ (-1209)) 21 T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1209))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) 8 T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1209) #2#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-1209) $) NIL T ELT)) (-4272 (($ $ $ (-1209)) NIL (|has| |#1| (-175)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-545 (-1209)) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1209) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1209) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#1|) (-1209)) NIL T ELT) (($ (-1203 $) (-1209)) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-545 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1209)) NIL T ELT)) (-3307 (((-545 (-1209)) $) NIL T ELT) (((-793) $ (-1209)) NIL T ELT) (((-663 (-793)) $ (-663 (-1209))) NIL T ELT)) (-1817 (($ (-1 (-545 (-1209)) (-545 (-1209))) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3571 (((-3 (-1209) #3="failed") $) 19 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1209)) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-4328 (($ $ (-1209)) 29 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1209) |#1|) NIL T ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL T ELT) (($ $ (-1209) $) NIL T ELT) (($ $ (-663 (-1209)) (-663 $)) NIL T ELT)) (-4273 (($ $ (-1209)) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT)) (-4464 (((-545 (-1209)) $) NIL T ELT) (((-793) $ (-1209)) NIL T ELT) (((-663 (-793)) $ (-663 (-1209))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1209) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1209) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1209) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 25 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1209)) 27 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-545 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-976 |#1|) (-13 (-980 |#1| (-545 (-1209)) (-1209)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1209))) |%noBranch|))) (-1081)) (T -976)) -((-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-976 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081))))) -(-13 (-980 |#1| (-545 (-1209)) (-1209)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1209))) |%noBranch|))) -((-4474 (((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)) 19 T ELT))) -(((-977 |#1| |#2|) (-10 -7 (-15 -4474 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)))) (-1081) (-1081)) (T -977)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-5 *2 (-976 *6)) (-5 *1 (-977 *5 *6))))) -(-10 -7 (-15 -4474 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)))) -((-3572 (((-1268 |#1| (-976 |#2|)) (-976 |#2|) (-1296 |#1|)) 18 T ELT))) -(((-978 |#1| |#2|) (-10 -7 (-15 -3572 ((-1268 |#1| (-976 |#2|)) (-976 |#2|) (-1296 |#1|)))) (-1209) (-1081)) (T -978)) -((-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1296 *5)) (-14 *5 (-1209)) (-4 *6 (-1081)) (-5 *2 (-1268 *5 (-976 *6))) (-5 *1 (-978 *5 *6)) (-5 *3 (-976 *6))))) -(-10 -7 (-15 -3572 ((-1268 |#1| (-976 |#2|)) (-976 |#2|) (-1296 |#1|)))) -((-3306 (((-793) $) 88 T ELT) (((-793) $ (-663 |#4|)) 93 T ELT)) (-4291 (($ $) 213 T ELT)) (-4487 (((-419 $) $) 205 T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 141 T ELT)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL T ELT) (((-3 (-560) #2#) $) NIL T ELT) (((-3 |#4| #2#) $) 74 T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-4272 (($ $ $ |#4|) 95 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 131 T ELT) (((-711 |#2|) (-711 $)) 121 T ELT)) (-4009 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-3305 (((-663 $) $) 77 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 239 T ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 232 T ELT)) (-3308 (((-663 $) $) 34 T ELT)) (-3380 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|) (-663 (-793))) 71 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#4|) 202 T ELT)) (-3310 (((-3 (-663 $) "failed") $) 52 T ELT)) (-3309 (((-3 (-663 $) "failed") $) 39 T ELT)) (-3311 (((-3 (-2 (|:| |var| |#4|) (|:| -2646 (-793))) "failed") $) 57 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 134 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 147 T ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 145 T ELT)) (-4248 (((-419 $) $) 165 T ELT)) (-4284 (($ $ (-663 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT)) (-4273 (($ $ |#4|) 97 T ELT)) (-4488 (((-916 (-391)) $) 253 T ELT) (((-916 (-560)) $) 246 T ELT) (((-549) $) 261 T ELT)) (-3304 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 184 T ELT)) (-4193 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-793)) 62 T ELT) (($ $ (-663 |#4|) (-663 (-793))) 69 T ELT)) (-3189 (((-713 $) $) 194 T ELT)) (-1389 (((-114) $ $) 226 T ELT))) -(((-979 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -3189 ((-713 |#1|) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) #1="failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3190 ((-3 (-1299 |#1|) #1#) (-711 |#1|))) (-15 -4009 (|#1| |#1| |#4|)) (-15 -3304 (|#1| |#1| |#4|)) (-15 -4273 (|#1| |#1| |#4|)) (-15 -4272 (|#1| |#1| |#1| |#4|)) (-15 -3305 ((-663 |#1|) |#1|)) (-15 -3306 ((-793) |#1| (-663 |#4|))) (-15 -3306 ((-793) |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| |#4|) (|:| -2646 (-793))) "failed") |#1|)) (-15 -3310 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3309 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -3380 (|#1| |#1| |#4| (-793))) (-15 -4279 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3308 ((-663 |#1|) |#1|)) (-15 -4193 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4193 (|#1| |#1| |#4| (-793))) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -3661 ((-3 |#4| #2="failed") |#1|)) (-15 -3660 (|#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#4| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3380 (|#1| |#2| |#3|)) (-15 -4193 (|#2| |#1| |#3|)) (-15 -3661 ((-3 (-560) #2#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #2#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #2#) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -1389 ((-114) |#1| |#1|))) (-980 |#2| |#3| |#4|) (-1081) (-817) (-872)) (T -979)) -NIL -(-10 -8 (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -3189 ((-713 |#1|) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) #1="failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3190 ((-3 (-1299 |#1|) #1#) (-711 |#1|))) (-15 -4009 (|#1| |#1| |#4|)) (-15 -3304 (|#1| |#1| |#4|)) (-15 -4273 (|#1| |#1| |#4|)) (-15 -4272 (|#1| |#1| |#1| |#4|)) (-15 -3305 ((-663 |#1|) |#1|)) (-15 -3306 ((-793) |#1| (-663 |#4|))) (-15 -3306 ((-793) |#1|)) (-15 -3311 ((-3 (-2 (|:| |var| |#4|) (|:| -2646 (-793))) "failed") |#1|)) (-15 -3310 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3309 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -3380 (|#1| |#1| |#4| (-793))) (-15 -4279 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3308 ((-663 |#1|) |#1|)) (-15 -4193 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4193 (|#1| |#1| |#4| (-793))) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -3661 ((-3 |#4| #2="failed") |#1|)) (-15 -3660 (|#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#4| |#1|)) (-15 -4284 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4284 (|#1| |#1| |#4| |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3380 (|#1| |#2| |#3|)) (-15 -4193 (|#2| |#1| |#3|)) (-15 -3661 ((-3 (-560) #2#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #2#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #2#) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -4009 (|#1| |#1|)) (-15 -1389 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 |#3|) $) 120 T ELT)) (-3572 (((-1203 $) $ |#3|) 135 T ELT) (((-1203 |#1|) $) 134 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 97 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 98 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 100 (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) 122 T ELT) (((-793) $ (-663 |#3|)) 121 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 110 (|has| |#1| (-940)) ELT)) (-4291 (($ $) 108 (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) 107 (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 113 (|has| |#1| (-940)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-421 (-560)) #2#) $) 175 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) 173 (|has| |#1| (-1070 (-560))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3660 ((|#1| $) 177 T ELT) (((-421 (-560)) $) 176 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) 174 (|has| |#1| (-1070 (-560))) ELT) ((|#3| $) 151 T ELT)) (-4272 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4475 (($ $) 168 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 146 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 145 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 144 T ELT) (((-711 |#1|) (-711 $)) 143 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) 190 (|has| |#1| (-466)) ELT) (($ $ |#3|) 115 (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) 119 T ELT)) (-4239 (((-114) $) 106 (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| |#2| $) 186 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 94 (-12 (|has| |#3| (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 93 (-12 (|has| |#3| (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-2655 (((-114) $) 40 T ELT)) (-2663 (((-793) $) 183 T ELT)) (-3573 (($ (-1203 |#1|) |#3|) 127 T ELT) (($ (-1203 $) |#3|) 126 T ELT)) (-3308 (((-663 $) $) 136 T ELT)) (-4453 (((-114) $) 166 T ELT)) (-3380 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-793)) 129 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 128 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#3|) 130 T ELT)) (-3307 ((|#2| $) 184 T ELT) (((-793) $ |#3|) 132 T ELT) (((-663 (-793)) $ (-663 |#3|)) 131 T ELT)) (-1817 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3571 (((-3 |#3| "failed") $) 133 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 148 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 147 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 142 T ELT) (((-711 |#1|) (-1299 $)) 141 T ELT)) (-3381 (($ $) 163 T ELT)) (-3678 ((|#1| $) 162 T ELT)) (-2116 (($ (-663 $)) 104 (|has| |#1| (-466)) ELT) (($ $ $) 103 (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3310 (((-3 (-663 $) "failed") $) 124 T ELT)) (-3309 (((-3 (-663 $) "failed") $) 125 T ELT)) (-3311 (((-3 (-2 (|:| |var| |#3|) (|:| -2646 (-793))) "failed") $) 123 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 180 T ELT)) (-2018 ((|#1| $) 181 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 105 (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) 102 (|has| |#1| (-466)) ELT) (($ $ $) 101 (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 112 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 111 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 109 (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-663 $) (-663 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-663 |#3|) (-663 $)) 152 T ELT)) (-4273 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#3|) (-663 (-793))) 49 T ELT) (($ $ |#3| (-793)) 48 T ELT) (($ $ (-663 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4464 ((|#2| $) 164 T ELT) (((-793) $ |#3|) 140 T ELT) (((-663 (-793)) $ (-663 |#3|)) 139 T ELT)) (-4488 (((-916 (-391)) $) 92 (-12 (|has| |#3| (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) 91 (-12 (|has| |#3| (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) 90 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) 189 (|has| |#1| (-466)) ELT) (($ $ |#3|) 116 (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 114 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 88 (-4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-4333 (((-663 |#1|) $) 182 T ELT)) (-4193 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-793)) 138 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 137 T ELT)) (-3189 (((-713 $) $) 89 (-4043 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1815 (($ $ $ (-793)) 187 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 99 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 |#3|) (-663 (-793))) 52 T ELT) (($ $ |#3| (-793)) 51 T ELT) (($ $ (-663 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-980 |#1| |#2| |#3|) (-142) (-1081) (-817) (-872)) (T -980)) -((-4009 (*1 *1 *1) (-12 (-4 *1 (-980 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-4464 (*1 *2 *1 *3) (-12 (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-793)))) (-4464 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 (-793))))) (-4193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-980 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *2 (-872)))) (-4193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)))) (-3308 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) (-3572 (*1 *2 *1 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-1203 *1)) (-4 *1 (-980 *4 *5 *3)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-1203 *3)))) (-3571 (*1 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3307 (*1 *2 *1 *3) (-12 (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-793)))) (-3307 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 (-793))))) (-4279 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-980 *4 *5 *3)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-980 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *2 (-872)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *4)) (-4 *4 (-1081)) (-4 *1 (-980 *4 *5 *3)) (-4 *5 (-817)) (-4 *3 (-872)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)))) (-3309 (*1 *2 *1) (|partial| -12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) (-3310 (*1 *2 *1) (|partial| -12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) (-3311 (*1 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| |var| *5) (|:| -2646 (-793)))))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-793)))) (-3306 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-793)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *5)))) (-3305 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) (-4272 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *3 (-175)))) (-4273 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *3 (-175)))) (-3304 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *3 (-466)))) (-4009 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *3 (-466)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-980 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-4487 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-419 *1)) (-4 *1 (-980 *3 *4 *5))))) -(-13 (-928 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-528 |t#3| |t#1|) (-528 |t#3| $) (-1070 |t#3|) (-390 |t#1|) (-10 -8 (-15 -4464 ((-793) $ |t#3|)) (-15 -4464 ((-663 (-793)) $ (-663 |t#3|))) (-15 -4193 ($ $ |t#3| (-793))) (-15 -4193 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -3308 ((-663 $) $)) (-15 -3572 ((-1203 $) $ |t#3|)) (-15 -3572 ((-1203 |t#1|) $)) (-15 -3571 ((-3 |t#3| "failed") $)) (-15 -3307 ((-793) $ |t#3|)) (-15 -3307 ((-663 (-793)) $ (-663 |t#3|))) (-15 -4279 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |t#3|)) (-15 -3380 ($ $ |t#3| (-793))) (-15 -3380 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -3573 ($ (-1203 |t#1|) |t#3|)) (-15 -3573 ($ (-1203 $) |t#3|)) (-15 -3309 ((-3 (-663 $) "failed") $)) (-15 -3310 ((-3 (-663 $) "failed") $)) (-15 -3311 ((-3 (-2 (|:| |var| |t#3|) (|:| -2646 (-793))) "failed") $)) (-15 -3306 ((-793) $)) (-15 -3306 ((-793) $ (-663 |t#3|))) (-15 -3570 ((-663 |t#3|) $)) (-15 -3305 ((-663 $) $)) (IF (|has| |t#1| (-633 (-549))) (IF (|has| |t#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-916 (-560)))) (IF (|has| |t#3| (-633 (-916 (-560)))) (-6 (-633 (-916 (-560)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-916 (-391)))) (IF (|has| |t#3| (-633 (-916 (-391)))) (-6 (-633 (-916 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-912 (-560))) (IF (|has| |t#3| (-912 (-560))) (-6 (-912 (-560))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-912 (-391))) (IF (|has| |t#3| (-912 (-391))) (-6 (-912 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4272 ($ $ $ |t#3|)) (-15 -4273 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-6 (-466)) (-15 -3304 ($ $ |t#3|)) (-15 -4009 ($ $)) (-15 -4009 ($ $ |t#3|)) (-15 -4487 ((-419 $) $)) (-15 -4291 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4509)) (-6 -4509) |%noBranch|) (IF (|has| |t#1| (-940)) (-6 (-940)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#3| (-633 (-916 (-391))))) ((-633 (-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#3| (-633 (-916 (-560))))) ((-302) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-940)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-922 $ |#3|) . T) ((-928 |#3|) . T) ((-930 |#3|) . T) ((-912 (-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#3| (-912 (-391)))) ((-912 (-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#3| (-912 (-560)))) ((-940) |has| |#1| (-940)) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1070 |#3|) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) |has| |#1| (-940))) -((-3570 (((-663 |#2|) |#5|) 40 T ELT)) (-3572 (((-1203 |#5|) |#5| |#2| (-1203 |#5|)) 23 T ELT) (((-421 (-1203 |#5|)) |#5| |#2|) 16 T ELT)) (-3573 ((|#5| (-421 (-1203 |#5|)) |#2|) 30 T ELT)) (-3571 (((-3 |#2| "failed") |#5|) 70 T ELT)) (-3310 (((-3 (-663 |#5|) "failed") |#5|) 64 T ELT)) (-3312 (((-3 (-2 (|:| |val| |#5|) (|:| -2646 (-560))) "failed") |#5|) 53 T ELT)) (-3309 (((-3 (-663 |#5|) "failed") |#5|) 66 T ELT)) (-3311 (((-3 (-2 (|:| |var| |#2|) (|:| -2646 (-560))) "failed") |#5|) 56 T ELT))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3570 ((-663 |#2|) |#5|)) (-15 -3571 ((-3 |#2| "failed") |#5|)) (-15 -3572 ((-421 (-1203 |#5|)) |#5| |#2|)) (-15 -3573 (|#5| (-421 (-1203 |#5|)) |#2|)) (-15 -3572 ((-1203 |#5|) |#5| |#2| (-1203 |#5|))) (-15 -3309 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3310 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3311 ((-3 (-2 (|:| |var| |#2|) (|:| -2646 (-560))) "failed") |#5|)) (-15 -3312 ((-3 (-2 (|:| |val| |#5|) (|:| -2646 (-560))) "failed") |#5|))) (-817) (-872) (-1081) (-980 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4462 ($ |#4|)) (-15 -3485 (|#4| $)) (-15 -3484 (|#4| $))))) (T -981)) -((-3312 (*1 *2 *3) (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2646 (-560)))) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) (-3311 (*1 *2 *3) (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2646 (-560)))) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) (-3310 (*1 *2 *3) (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) (-3309 (*1 *2 *3) (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) (-3572 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))) (-4 *7 (-980 *6 *5 *4)) (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) (-5 *1 (-981 *5 *4 *6 *7 *3)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1203 *2))) (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) (-4 *2 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))) (-5 *1 (-981 *5 *4 *6 *7 *2)) (-4 *7 (-980 *6 *5 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *5 *4)) (-5 *2 (-421 (-1203 *3))) (-5 *1 (-981 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) (-3571 (*1 *2 *3) (|partial| -12 (-4 *4 (-817)) (-4 *5 (-1081)) (-4 *6 (-980 *5 *4 *2)) (-4 *2 (-872)) (-5 *1 (-981 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *6)) (-15 -3485 (*6 $)) (-15 -3484 (*6 $))))))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-663 *5)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) -(-10 -7 (-15 -3570 ((-663 |#2|) |#5|)) (-15 -3571 ((-3 |#2| "failed") |#5|)) (-15 -3572 ((-421 (-1203 |#5|)) |#5| |#2|)) (-15 -3573 (|#5| (-421 (-1203 |#5|)) |#2|)) (-15 -3572 ((-1203 |#5|) |#5| |#2| (-1203 |#5|))) (-15 -3309 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3310 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3311 ((-3 (-2 (|:| |var| |#2|) (|:| -2646 (-560))) "failed") |#5|)) (-15 -3312 ((-3 (-2 (|:| |val| |#5|) (|:| -2646 (-560))) "failed") |#5|))) -((-4474 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4474 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-817) (-872) (-1081) (-980 |#3| |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (T -982)) -((-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-872)) (-4 *8 (-1081)) (-4 *6 (-817)) (-4 *2 (-13 (-1133) (-10 -8 (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (-5 *1 (-982 *6 *7 *8 *5 *2)) (-4 *5 (-980 *8 *6 *7))))) -(-10 -7 (-15 -4474 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3313 (((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#3| (-793)) 48 T ELT)) (-3314 (((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793)) 43 T ELT)) (-3316 (((-2 (|:| -2646 (-793)) (|:| -4470 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)) 64 T ELT)) (-3315 (((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#5| (-793)) 73 (|has| |#3| (-466)) ELT))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3313 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -3314 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -3315 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -3316 ((-2 (|:| -2646 (-793)) (|:| -4470 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)))) (-817) (-872) (-571) (-980 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4462 ($ |#4|)) (-15 -3485 (|#4| $)) (-15 -3484 (|#4| $))))) (T -983)) -((-3316 (*1 *2 *3 *4) (-12 (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) (-4 *3 (-980 *7 *5 *6)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| (-663 *3)))) (-5 *1 (-983 *5 *6 *7 *3 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4462 ($ *3)) (-15 -3485 (*3 $)) (-15 -3484 (*3 $))))))) (-3315 (*1 *2 *3 *4) (-12 (-4 *7 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) (-4 *8 (-980 *7 *5 *6)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| *3))) (-5 *1 (-983 *5 *6 *7 *8 *3)) (-5 *4 (-793)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4462 ($ *8)) (-15 -3485 (*8 $)) (-15 -3484 (*8 $))))))) (-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) (-4 *8 (-980 *7 *5 *6)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *9) (|:| |radicand| *9))) (-5 *1 (-983 *5 *6 *7 *8 *9)) (-5 *4 (-793)) (-4 *9 (-13 (-376) (-10 -8 (-15 -4462 ($ *8)) (-15 -3485 (*8 $)) (-15 -3484 (*8 $))))))) (-3313 (*1 *2 *3 *4) (-12 (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-571)) (-4 *7 (-980 *3 *5 *6)) (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *8) (|:| |radicand| *8))) (-5 *1 (-983 *5 *6 *3 *7 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) -(-10 -7 (-15 -3313 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -3314 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -3315 ((-2 (|:| -2646 (-793)) (|:| -4470 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -3316 ((-2 (|:| -2646 (-793)) (|:| -4470 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3317 (($ (-1152)) 8 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT) (((-1152) $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 11 T ELT))) -(((-984) (-13 (-1133) (-632 (-1152)) (-10 -8 (-15 -3317 ($ (-1152)))))) (T -984)) -((-3317 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-984))))) -(-13 (-1133) (-632 (-1152)) (-10 -8 (-15 -3317 ($ (-1152))))) -((-3383 (((-1121 (-229)) $) 8 T ELT)) (-3384 (((-1121 (-229)) $) 9 T ELT)) (-3385 (((-663 (-663 (-973 (-229)))) $) 10 T ELT)) (-4462 (((-888) $) 6 T ELT))) -(((-985) (-142)) (T -985)) -((-3385 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-663 (-663 (-973 (-229))))))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1121 (-229))))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1121 (-229)))))) -(-13 (-632 (-888)) (-10 -8 (-15 -3385 ((-663 (-663 (-973 (-229)))) $)) (-15 -3384 ((-1121 (-229)) $)) (-15 -3383 ((-1121 (-229)) $)))) -(((-632 (-888)) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 79 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 80 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) 31 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1816 (($ $ |#1| |#2| $) 63 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) 17 T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| |#2|) NIL T ELT)) (-3307 ((|#2| $) 24 T ELT)) (-1817 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3381 (($ $) 28 T ELT)) (-3678 ((|#1| $) 26 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) 51 T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-4254 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-133)) (|has| |#1| (-571))) ELT)) (-3972 (((-3 $ "failed") $ $) 92 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-571)) ELT)) (-4464 ((|#2| $) 22 T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 46 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 41 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ |#2|) 37 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 15 T CONST)) (-1815 (($ $ $ (-793)) 75 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) 85 (|has| |#1| (-571)) ELT)) (-3145 (($) 27 T CONST)) (-3151 (($) 12 T CONST)) (-3540 (((-114) $ $) 84 T ELT)) (-4465 (($ $ |#1|) 93 (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 70 T ELT) (($ $ (-793)) 68 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-986 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -4254 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) (-1081) (-816)) (T -986)) -((-4254 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *2 (-816))))) -(-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -4254 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) -((-3318 (((-3 (-711 |#1|) "failed") |#2| (-949)) 18 T ELT))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3318 ((-3 (-711 |#1|) "failed") |#2| (-949)))) (-571) (-680 |#1|)) (T -987)) -((-3318 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-949)) (-4 *5 (-571)) (-5 *2 (-711 *5)) (-5 *1 (-987 *5 *3)) (-4 *3 (-680 *5))))) -(-10 -7 (-15 -3318 ((-3 (-711 |#1|) "failed") |#2| (-949)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 20 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 19 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 17 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) |#1|) 16 T ELT)) (-2429 (((-560) $) 11 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) 21 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) 13 T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 22 T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 15 T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4473 (((-793) $) 8 (|has| $ (-6 -4511)) ELT))) -(((-988 |#1|) (-19 |#1|) (-1249)) (T -988)) +((-4458 (((-326 |#1|) (-489)) 16 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -4458 ((-326 |#1|) (-489)))) (-569)) (T -948)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-948 *4)) (-4 *4 (-569))))) +(-10 -7 (-15 -4458 ((-326 |#1|) (-489)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-949) (-142)) (T -949)) +((-3224 (*1 *2 *3) (-12 (-4 *1 (-949)) (-5 *2 (-2 (|:| -4466 (-661 *1)) (|:| -2650 *1))) (-5 *3 (-661 *1)))) (-3223 (*1 *2 *3 *1) (-12 (-4 *1 (-949)) (-5 *2 (-711 (-661 *1))) (-5 *3 (-661 *1))))) +(-13 (-464) (-10 -8 (-15 -3224 ((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $))) (-15 -3223 ((-711 (-661 $)) (-661 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3590 (((-1201 |#2|) (-661 |#2|) (-661 |#2|)) 17 T ELT) (((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-661 |#2|) (-661 |#2|)) 13 T ELT))) +(((-950 |#1| |#2|) (-10 -7 (-15 -3590 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-661 |#2|) (-661 |#2|))) (-15 -3590 ((-1201 |#2|) (-661 |#2|) (-661 |#2|)))) (-1207) (-376)) (T -950)) +((-3590 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-1207)))) (-3590 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-661 *5)) (-14 *4 (-1207)) (-4 *5 (-376)) (-5 *1 (-950 *4 *5))))) +(-10 -7 (-15 -3590 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-661 |#2|) (-661 |#2|))) (-15 -3590 ((-1201 |#2|) (-661 |#2|) (-661 |#2|)))) +((-3225 ((|#2| (-661 |#1|) (-661 |#1|)) 28 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3225 (|#2| (-661 |#1|) (-661 |#1|)))) (-376) (-1273 |#1|)) (T -951)) +((-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4)) (-5 *1 (-951 *4 *2))))) +(-10 -7 (-15 -3225 (|#2| (-661 |#1|) (-661 |#1|)))) +((-3227 (((-558) (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189)) 175 T ELT)) (-3246 ((|#4| |#4|) 194 T ELT)) (-3231 (((-661 (-419 (-974 |#1|))) (-661 (-1207))) 146 T ELT)) (-3245 (((-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-661 (-661 |#4|)) (-791) (-791) (-558)) 88 T ELT)) (-3235 (((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-661 |#4|)) 69 T ELT)) (-3244 (((-709 |#4|) (-709 |#4|) (-661 |#4|)) 65 T ELT)) (-3228 (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189)) 187 T ELT)) (-3226 (((-558) (-709 |#4|) (-947) (-1189)) 167 T ELT) (((-558) (-709 |#4|) (-661 (-1207)) (-947) (-1189)) 166 T ELT) (((-558) (-709 |#4|) (-661 |#4|) (-947) (-1189)) 165 T ELT) (((-558) (-709 |#4|) (-1189)) 154 T ELT) (((-558) (-709 |#4|) (-661 (-1207)) (-1189)) 153 T ELT) (((-558) (-709 |#4|) (-661 |#4|) (-1189)) 152 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-947)) 151 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207)) (-947)) 150 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|) (-947)) 149 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|)) 148 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207))) 147 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|)) 143 T ELT)) (-3232 ((|#4| (-974 |#1|)) 80 T ELT)) (-3242 (((-114) (-661 |#4|) (-661 (-661 |#4|))) 191 T ELT)) (-3241 (((-661 (-661 (-558))) (-558) (-558)) 161 T ELT)) (-3240 (((-661 (-661 |#4|)) (-661 (-661 |#4|))) 106 T ELT)) (-3239 (((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|))))) 100 T ELT)) (-3238 (((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|))))) 99 T ELT)) (-3247 (((-114) (-661 (-974 |#1|))) 19 T ELT) (((-114) (-661 |#4|)) 15 T ELT)) (-3233 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-661 |#4|)) (|:| |n0| (-661 |#4|))) (-661 |#4|) (-661 |#4|)) 84 T ELT)) (-3237 (((-661 |#4|) |#4|) 57 T ELT)) (-3230 (((-661 (-419 (-974 |#1|))) (-661 |#4|)) 142 T ELT) (((-709 (-419 (-974 |#1|))) (-709 |#4|)) 66 T ELT) (((-419 (-974 |#1|)) |#4|) 139 T ELT)) (-3229 (((-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))))) (|:| |rgsz| (-558))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-791) (-1189) (-558)) 112 T ELT)) (-3234 (((-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))) (-709 |#4|) (-791)) 98 T ELT)) (-3243 (((-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-709 |#4|) (-791)) 121 T ELT)) (-3236 (((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| -1793 (-709 (-419 (-974 |#1|)))) (|:| |vec| (-661 (-419 (-974 |#1|)))) (|:| -3593 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) 56 T ELT))) +(((-952 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207)))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|) (-947))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207)) (-947))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-947))) (-15 -3226 ((-558) (-709 |#4|) (-661 |#4|) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 (-1207)) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 |#4|) (-947) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 (-1207)) (-947) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-947) (-1189))) (-15 -3227 ((-558) (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189))) (-15 -3228 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189))) (-15 -3229 ((-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))))) (|:| |rgsz| (-558))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-791) (-1189) (-558))) (-15 -3230 ((-419 (-974 |#1|)) |#4|)) (-15 -3230 ((-709 (-419 (-974 |#1|))) (-709 |#4|))) (-15 -3230 ((-661 (-419 (-974 |#1|))) (-661 |#4|))) (-15 -3231 ((-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3232 (|#4| (-974 |#1|))) (-15 -3233 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-661 |#4|)) (|:| |n0| (-661 |#4|))) (-661 |#4|) (-661 |#4|))) (-15 -3234 ((-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))) (-709 |#4|) (-791))) (-15 -3235 ((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-661 |#4|))) (-15 -3236 ((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| -1793 (-709 (-419 (-974 |#1|)))) (|:| |vec| (-661 (-419 (-974 |#1|)))) (|:| -3593 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (-15 -3237 ((-661 |#4|) |#4|)) (-15 -3238 ((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3239 ((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3240 ((-661 (-661 |#4|)) (-661 (-661 |#4|)))) (-15 -3241 ((-661 (-661 (-558))) (-558) (-558))) (-15 -3242 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3243 ((-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-709 |#4|) (-791))) (-15 -3244 ((-709 |#4|) (-709 |#4|) (-661 |#4|))) (-15 -3245 ((-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-661 (-661 |#4|)) (-791) (-791) (-558))) (-15 -3246 (|#4| |#4|)) (-15 -3247 ((-114) (-661 |#4|))) (-15 -3247 ((-114) (-661 (-974 |#1|))))) (-13 (-319) (-149)) (-13 (-870) (-631 (-1207))) (-815) (-978 |#1| |#3| |#2|)) (T -952)) +((-3247 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3246 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-870) (-631 (-1207)))) (-4 *5 (-815)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-978 *3 *5 *4)))) (-3245 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-5 *4 (-709 *12)) (-5 *5 (-661 (-419 (-974 *9)))) (-5 *6 (-661 (-661 *12))) (-5 *7 (-791)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-978 *9 *11 *10)) (-4 *10 (-13 (-870) (-631 (-1207)))) (-4 *11 (-815)) (-5 *2 (-2 (|:| |eqzro| (-661 *12)) (|:| |neqzro| (-661 *12)) (|:| |wcond| (-661 (-974 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *9)))) (|:| -2232 (-661 (-1297 (-419 (-974 *9))))))))) (-5 *1 (-952 *9 *10 *11 *12)))) (-3244 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *7)) (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3243 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-791)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-952 *5 *6 *7 *8)))) (-3241 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 (-661 (-558)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-978 *4 *6 *5)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-661 (-661 *6))) (-4 *6 (-978 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-870) (-631 (-1207)))) (-4 *5 (-815)) (-5 *1 (-952 *3 *4 *5 *6)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *7))))) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-791)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *7))))) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-791)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3237 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 *3)) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-978 *4 *6 *5)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1793 (-709 (-419 (-974 *4)))) (|:| |vec| (-661 (-419 (-974 *4)))) (|:| -3593 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) (|:| -2232 (-661 (-1297 (-419 (-974 *4))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3235 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) (|:| -2232 (-661 (-1297 (-419 (-974 *4))))))) (-5 *3 (-661 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-978 *4 *6 *5)) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *8))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-791)))) (-3233 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-4 *7 (-978 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-661 *7)) (|:| |n0| (-661 *7)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-974 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-978 *4 *6 *5)) (-5 *1 (-952 *4 *5 *6 *2)) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-709 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-709 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-419 (-974 *4))) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-978 *4 *6 *5)))) (-3229 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-709 *11)) (-5 *4 (-661 (-419 (-974 *8)))) (-5 *5 (-791)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-978 *8 *10 *9)) (-4 *9 (-13 (-870) (-631 (-1207)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 *11)) (|:| |neqzro| (-661 *11)) (|:| |wcond| (-661 (-974 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *8)))) (|:| -2232 (-661 (-1297 (-419 (-974 *8)))))))))) (|:| |rgsz| (-558)))) (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-558)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) (|:| |wcond| (-661 (-974 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) (|:| -2232 (-661 (-1297 (-419 (-974 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-978 *5 *7 *6)) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *5 *6 *7 *8)))) (-3226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-947)) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *6 *7 *8 *9)))) (-3226 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 (-1207))) (-5 *5 (-947)) (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-870) (-631 (-1207)))) (-4 *9 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *7 *8 *9 *10)))) (-3226 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 *10)) (-5 *5 (-947)) (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-870) (-631 (-1207)))) (-4 *9 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *7 *8 *9 *10)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-1189)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *5 *6 *7 *8)))) (-3226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1207))) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *6 *7 *8 *9)))) (-3226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 *9)) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *6 *7 *8 *9)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-947)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-3226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1207))) (-5 *5 (-947)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) (|:| |wcond| (-661 (-974 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *6)))) (|:| -2232 (-661 (-1297 (-419 (-974 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)))) (-3226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *5 (-947)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) (|:| |wcond| (-661 (-974 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *6)))) (|:| -2232 (-661 (-1297 (-419 (-974 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-661 *9)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-709 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) (|:| |wcond| (-661 (-974 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) (|:| -2232 (-661 (-1297 (-419 (-974 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-661 (-1207))) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) +(-10 -7 (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207)))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 |#4|) (-947))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-661 (-1207)) (-947))) (-15 -3226 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-709 |#4|) (-947))) (-15 -3226 ((-558) (-709 |#4|) (-661 |#4|) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 (-1207)) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 |#4|) (-947) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-661 (-1207)) (-947) (-1189))) (-15 -3226 ((-558) (-709 |#4|) (-947) (-1189))) (-15 -3227 ((-558) (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189))) (-15 -3228 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|))))))))) (-1189))) (-15 -3229 ((-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))))) (|:| |rgsz| (-558))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-791) (-1189) (-558))) (-15 -3230 ((-419 (-974 |#1|)) |#4|)) (-15 -3230 ((-709 (-419 (-974 |#1|))) (-709 |#4|))) (-15 -3230 ((-661 (-419 (-974 |#1|))) (-661 |#4|))) (-15 -3231 ((-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3232 (|#4| (-974 |#1|))) (-15 -3233 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-661 |#4|)) (|:| |n0| (-661 |#4|))) (-661 |#4|) (-661 |#4|))) (-15 -3234 ((-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))) (-709 |#4|) (-791))) (-15 -3235 ((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-661 |#4|))) (-15 -3236 ((-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))) (-2 (|:| -1793 (-709 (-419 (-974 |#1|)))) (|:| |vec| (-661 (-419 (-974 |#1|)))) (|:| -3593 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (-15 -3237 ((-661 |#4|) |#4|)) (-15 -3238 ((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3239 ((-791) (-661 (-2 (|:| -3593 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3240 ((-661 (-661 |#4|)) (-661 (-661 |#4|)))) (-15 -3241 ((-661 (-661 (-558))) (-558) (-558))) (-15 -3242 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3243 ((-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-709 |#4|) (-791))) (-15 -3244 ((-709 |#4|) (-709 |#4|) (-661 |#4|))) (-15 -3245 ((-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-974 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-419 (-974 |#1|)))) (|:| -2232 (-661 (-1297 (-419 (-974 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))) (-709 |#4|) (-661 (-419 (-974 |#1|))) (-661 (-661 |#4|)) (-791) (-791) (-558))) (-15 -3246 (|#4| |#4|)) (-15 -3247 ((-114) (-661 |#4|))) (-15 -3247 ((-114) (-661 (-974 |#1|))))) +((-4386 (($ $ (-1119 (-229))) 125 T ELT) (($ $ (-1119 (-229)) (-1119 (-229))) 126 T ELT)) (-3379 (((-1119 (-229)) $) 73 T ELT)) (-3380 (((-1119 (-229)) $) 72 T ELT)) (-3271 (((-1119 (-229)) $) 74 T ELT)) (-3252 (((-558) (-558)) 66 T ELT)) (-3256 (((-558) (-558)) 61 T ELT)) (-3254 (((-558) (-558)) 64 T ELT)) (-3250 (((-114) (-114)) 68 T ELT)) (-3253 (((-558)) 65 T ELT)) (-3618 (($ $ (-1119 (-229))) 129 T ELT) (($ $) 130 T ELT)) (-3273 (($ (-1 (-971 (-229)) (-229)) (-1119 (-229))) 148 T ELT) (($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229))) 149 T ELT)) (-3259 (($ (-1 (-229) (-229)) (-1119 (-229))) 156 T ELT) (($ (-1 (-229) (-229))) 160 T ELT)) (-3272 (($ (-1 (-229) (-229)) (-1119 (-229))) 144 T ELT) (($ (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229))) 145 T ELT) (($ (-661 (-1 (-229) (-229))) (-1119 (-229))) 153 T ELT) (($ (-661 (-1 (-229) (-229))) (-1119 (-229)) (-1119 (-229))) 154 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229))) 146 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229))) 147 T ELT) (($ $ (-1119 (-229))) 131 T ELT)) (-3258 (((-114) $) 69 T ELT)) (-3249 (((-558)) 70 T ELT)) (-3257 (((-558)) 59 T ELT)) (-3255 (((-558)) 62 T ELT)) (-3381 (((-661 (-661 (-971 (-229)))) $) 35 T ELT)) (-3248 (((-114) (-114)) 71 T ELT)) (-4458 (((-886) $) 174 T ELT)) (-3251 (((-114)) 67 T ELT))) +(((-953) (-13 (-983) (-10 -8 (-15 -3272 ($ (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-661 (-1 (-229) (-229))) (-1119 (-229)))) (-15 -3272 ($ (-661 (-1 (-229) (-229))) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3259 ($ (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3259 ($ (-1 (-229) (-229)))) (-15 -3272 ($ $ (-1119 (-229)))) (-15 -3258 ((-114) $)) (-15 -4386 ($ $ (-1119 (-229)))) (-15 -4386 ($ $ (-1119 (-229)) (-1119 (-229)))) (-15 -3618 ($ $ (-1119 (-229)))) (-15 -3618 ($ $)) (-15 -3271 ((-1119 (-229)) $)) (-15 -3257 ((-558))) (-15 -3256 ((-558) (-558))) (-15 -3255 ((-558))) (-15 -3254 ((-558) (-558))) (-15 -3253 ((-558))) (-15 -3252 ((-558) (-558))) (-15 -3251 ((-114))) (-15 -3250 ((-114) (-114))) (-15 -3249 ((-558))) (-15 -3248 ((-114) (-114)))))) (T -953)) +((-3272 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3273 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3273 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3259 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-953)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-953)))) (-4386 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) (-4386 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) (-3618 (*1 *1 *1) (-5 *1 (-953))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) (-3257 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3255 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3253 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3251 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953)))) (-3249 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953))))) +(-13 (-983) (-10 -8 (-15 -3272 ($ (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-661 (-1 (-229) (-229))) (-1119 (-229)))) (-15 -3272 ($ (-661 (-1 (-229) (-229))) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3259 ($ (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3259 ($ (-1 (-229) (-229)))) (-15 -3272 ($ $ (-1119 (-229)))) (-15 -3258 ((-114) $)) (-15 -4386 ($ $ (-1119 (-229)))) (-15 -4386 ($ $ (-1119 (-229)) (-1119 (-229)))) (-15 -3618 ($ $ (-1119 (-229)))) (-15 -3618 ($ $)) (-15 -3271 ((-1119 (-229)) $)) (-15 -3257 ((-558))) (-15 -3256 ((-558) (-558))) (-15 -3255 ((-558))) (-15 -3254 ((-558) (-558))) (-15 -3253 ((-558))) (-15 -3252 ((-558) (-558))) (-15 -3251 ((-114))) (-15 -3250 ((-114) (-114))) (-15 -3249 ((-558))) (-15 -3248 ((-114) (-114))))) +((-3259 (((-953) |#1| (-1207)) 17 T ELT) (((-953) |#1| (-1207) (-1119 (-229))) 21 T ELT)) (-3272 (((-953) |#1| |#1| (-1207) (-1119 (-229))) 19 T ELT) (((-953) |#1| (-1207) (-1119 (-229))) 15 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3272 ((-953) |#1| (-1207) (-1119 (-229)))) (-15 -3272 ((-953) |#1| |#1| (-1207) (-1119 (-229)))) (-15 -3259 ((-953) |#1| (-1207) (-1119 (-229)))) (-15 -3259 ((-953) |#1| (-1207)))) (-631 (-547))) (T -954)) +((-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-953)) (-5 *1 (-954 *3)) (-4 *3 (-631 (-547))))) (-3259 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) (-4 *3 (-631 (-547))))) (-3272 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) (-4 *3 (-631 (-547))))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) (-4 *3 (-631 (-547)))))) +(-10 -7 (-15 -3272 ((-953) |#1| (-1207) (-1119 (-229)))) (-15 -3272 ((-953) |#1| |#1| (-1207) (-1119 (-229)))) (-15 -3259 ((-953) |#1| (-1207) (-1119 (-229)))) (-15 -3259 ((-953) |#1| (-1207)))) +((-4386 (($ $ (-1119 (-229)) (-1119 (-229)) (-1119 (-229))) 123 T ELT)) (-3378 (((-1119 (-229)) $) 64 T ELT)) (-3379 (((-1119 (-229)) $) 63 T ELT)) (-3380 (((-1119 (-229)) $) 62 T ELT)) (-3270 (((-661 (-661 (-229))) $) 69 T ELT)) (-3271 (((-1119 (-229)) $) 65 T ELT)) (-3264 (((-558) (-558)) 57 T ELT)) (-3268 (((-558) (-558)) 52 T ELT)) (-3266 (((-558) (-558)) 55 T ELT)) (-3262 (((-114) (-114)) 59 T ELT)) (-3265 (((-558)) 56 T ELT)) (-3618 (($ $ (-1119 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3273 (($ (-1 (-971 (-229)) (-229)) (-1119 (-229))) 133 T ELT) (($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229))) 134 T ELT)) (-3272 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229))) 140 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229))) 141 T ELT) (($ $ (-1119 (-229))) 129 T ELT)) (-3261 (((-558)) 60 T ELT)) (-3269 (((-558)) 50 T ELT)) (-3267 (((-558)) 53 T ELT)) (-3381 (((-661 (-661 (-971 (-229)))) $) 157 T ELT)) (-3260 (((-114) (-114)) 61 T ELT)) (-4458 (((-886) $) 155 T ELT)) (-3263 (((-114)) 58 T ELT))) +(((-955) (-13 (-1004) (-10 -8 (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ $ (-1119 (-229)))) (-15 -4386 ($ $ (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3618 ($ $ (-1119 (-229)))) (-15 -3618 ($ $)) (-15 -3271 ((-1119 (-229)) $)) (-15 -3270 ((-661 (-661 (-229))) $)) (-15 -3269 ((-558))) (-15 -3268 ((-558) (-558))) (-15 -3267 ((-558))) (-15 -3266 ((-558) (-558))) (-15 -3265 ((-558))) (-15 -3264 ((-558) (-558))) (-15 -3263 ((-114))) (-15 -3262 ((-114) (-114))) (-15 -3261 ((-558))) (-15 -3260 ((-114) (-114)))))) (T -955)) +((-3273 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955)))) (-3273 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955)))) (-3272 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955)))) (-3272 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) (-4386 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) (-3618 (*1 *1 *1) (-5 *1 (-955))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-955)))) (-3269 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3267 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3265 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3263 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955)))) (-3261 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) +(-13 (-1004) (-10 -8 (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)))) (-15 -3273 ($ (-1 (-971 (-229)) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)))) (-15 -3272 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3272 ($ $ (-1119 (-229)))) (-15 -4386 ($ $ (-1119 (-229)) (-1119 (-229)) (-1119 (-229)))) (-15 -3618 ($ $ (-1119 (-229)))) (-15 -3618 ($ $)) (-15 -3271 ((-1119 (-229)) $)) (-15 -3270 ((-661 (-661 (-229))) $)) (-15 -3269 ((-558))) (-15 -3268 ((-558) (-558))) (-15 -3267 ((-558))) (-15 -3266 ((-558) (-558))) (-15 -3265 ((-558))) (-15 -3264 ((-558) (-558))) (-15 -3263 ((-114))) (-15 -3262 ((-114) (-114))) (-15 -3261 ((-558))) (-15 -3260 ((-114) (-114))))) +((-3274 (((-661 (-1119 (-229))) (-661 (-661 (-971 (-229))))) 34 T ELT))) +(((-956) (-10 -7 (-15 -3274 ((-661 (-1119 (-229))) (-661 (-661 (-971 (-229)))))))) (T -956)) +((-3274 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-661 (-1119 (-229)))) (-5 *1 (-956))))) +(-10 -7 (-15 -3274 ((-661 (-1119 (-229))) (-661 (-661 (-971 (-229))))))) +((-3276 (((-326 (-558)) (-1207)) 16 T ELT)) (-3277 (((-326 (-558)) (-1207)) 14 T ELT)) (-4464 (((-326 (-558)) (-1207)) 12 T ELT)) (-3275 (((-326 (-558)) (-1207) (-518)) 19 T ELT))) +(((-957) (-10 -7 (-15 -3275 ((-326 (-558)) (-1207) (-518))) (-15 -4464 ((-326 (-558)) (-1207))) (-15 -3276 ((-326 (-558)) (-1207))) (-15 -3277 ((-326 (-558)) (-1207))))) (T -957)) +((-3277 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) (-4464 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-957))))) +(-10 -7 (-15 -3275 ((-326 (-558)) (-1207) (-518))) (-15 -4464 ((-326 (-558)) (-1207))) (-15 -3276 ((-326 (-558)) (-1207))) (-15 -3277 ((-326 (-558)) (-1207)))) +((-3276 ((|#2| |#2|) 28 T ELT)) (-3277 ((|#2| |#2|) 29 T ELT)) (-4464 ((|#2| |#2|) 27 T ELT)) (-3275 ((|#2| |#2| (-518)) 26 T ELT))) +(((-958 |#1| |#2|) (-10 -7 (-15 -3275 (|#2| |#2| (-518))) (-15 -4464 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3277 (|#2| |#2|))) (-1131) (-433 |#1|)) (T -958)) +((-3277 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3)))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3)))) (-4464 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3)))) (-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1131)) (-5 *1 (-958 *4 *2)) (-4 *2 (-433 *4))))) +(-10 -7 (-15 -3275 (|#2| |#2| (-518))) (-15 -4464 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3277 (|#2| |#2|))) +((-3279 (((-912 |#1| |#3|) |#2| (-914 |#1|) (-912 |#1| |#3|)) 25 T ELT)) (-3278 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT))) +(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -3278 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3279 ((-912 |#1| |#3|) |#2| (-914 |#1|) (-912 |#1| |#3|)))) (-1131) (-910 |#1|) (-13 (-1131) (-1068 |#2|))) (T -959)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *6)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-13 (-1131) (-1068 *3))) (-4 *3 (-910 *5)) (-5 *1 (-959 *5 *3 *6)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1131) (-1068 *5))) (-4 *5 (-910 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-959 *4 *5 *6))))) +(-10 -7 (-15 -3278 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3279 ((-912 |#1| |#3|) |#2| (-914 |#1|) (-912 |#1| |#3|)))) +((-3279 (((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)) 30 T ELT))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) (-1131) (-13 (-569) (-910 |#1|)) (-13 (-433 |#2|) (-631 (-914 |#1|)) (-910 |#1|) (-1068 (-628 $)))) (T -960)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-13 (-433 *6) (-631 *4) (-910 *5) (-1068 (-628 $)))) (-5 *4 (-914 *5)) (-4 *6 (-13 (-569) (-910 *5))) (-5 *1 (-960 *5 *6 *3))))) +(-10 -7 (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) +((-3279 (((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|)) 13 T ELT))) +(((-961 |#1|) (-10 -7 (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|)))) (-557)) (T -961)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 (-558) *3)) (-5 *4 (-914 (-558))) (-4 *3 (-557)) (-5 *1 (-961 *3))))) +(-10 -7 (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|)))) +((-3279 (((-912 |#1| |#2|) (-628 |#2|) (-914 |#1|) (-912 |#1| |#2|)) 57 T ELT))) +(((-962 |#1| |#2|) (-10 -7 (-15 -3279 ((-912 |#1| |#2|) (-628 |#2|) (-914 |#1|) (-912 |#1| |#2|)))) (-1131) (-13 (-1131) (-1068 (-628 $)) (-631 (-914 |#1|)) (-910 |#1|))) (T -962)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *6)) (-5 *3 (-628 *6)) (-4 *5 (-1131)) (-4 *6 (-13 (-1131) (-1068 (-628 $)) (-631 *4) (-910 *5))) (-5 *4 (-914 *5)) (-5 *1 (-962 *5 *6))))) +(-10 -7 (-15 -3279 ((-912 |#1| |#2|) (-628 |#2|) (-914 |#1|) (-912 |#1| |#2|)))) +((-3279 (((-909 |#1| |#2| |#3|) |#3| (-914 |#1|) (-909 |#1| |#2| |#3|)) 17 T ELT))) +(((-963 |#1| |#2| |#3|) (-10 -7 (-15 -3279 ((-909 |#1| |#2| |#3|) |#3| (-914 |#1|) (-909 |#1| |#2| |#3|)))) (-1131) (-910 |#1|) (-686 |#2|)) (T -963)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-910 *5)) (-4 *3 (-686 *6)) (-5 *1 (-963 *5 *6 *3))))) +(-10 -7 (-15 -3279 ((-909 |#1| |#2| |#3|) |#3| (-914 |#1|) (-909 |#1| |#2| |#3|)))) +((-3279 (((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|)) 17 (|has| |#3| (-910 |#1|)) ELT) (((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|) (-1 (-912 |#1| |#5|) |#3| (-914 |#1|) (-912 |#1| |#5|))) 16 T ELT))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3279 ((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|) (-1 (-912 |#1| |#5|) |#3| (-914 |#1|) (-912 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -3279 ((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|))) |%noBranch|)) (-1131) (-815) (-870) (-13 (-1079) (-910 |#1|)) (-13 (-978 |#4| |#2| |#3|) (-631 (-914 |#1|)))) (T -964)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-13 (-978 *8 *6 *7) (-631 *4))) (-5 *4 (-914 *5)) (-4 *7 (-910 *5)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-13 (-1079) (-910 *5))) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-912 *6 *3) *8 (-914 *6) (-912 *6 *3))) (-4 *8 (-870)) (-5 *2 (-912 *6 *3)) (-5 *4 (-914 *6)) (-4 *6 (-1131)) (-4 *3 (-13 (-978 *9 *7 *8) (-631 *4))) (-4 *7 (-815)) (-4 *9 (-13 (-1079) (-910 *6))) (-5 *1 (-964 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3279 ((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|) (-1 (-912 |#1| |#5|) |#3| (-914 |#1|) (-912 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -3279 ((-912 |#1| |#5|) |#5| (-914 |#1|) (-912 |#1| |#5|))) |%noBranch|)) +((-3709 (((-326 (-558)) (-1207) (-661 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-558)) (-1207) (-1 (-114) |#1|)) 15 T ELT))) +(((-965 |#1|) (-10 -7 (-15 -3709 ((-326 (-558)) (-1207) (-1 (-114) |#1|))) (-15 -3709 ((-326 (-558)) (-1207) (-661 (-1 (-114) |#1|))))) (-1247)) (T -965)) +((-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-661 (-1 (-114) *5))) (-4 *5 (-1247)) (-5 *2 (-326 (-558))) (-5 *1 (-965 *5)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247)) (-5 *2 (-326 (-558))) (-5 *1 (-965 *5))))) +(-10 -7 (-15 -3709 ((-326 (-558)) (-1207) (-1 (-114) |#1|))) (-15 -3709 ((-326 (-558)) (-1207) (-661 (-1 (-114) |#1|))))) +((-3709 ((|#2| |#2| (-661 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT))) +(((-966 |#1| |#2| |#3|) (-10 -7 (-15 -3709 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3709 (|#2| |#2| (-661 (-1 (-114) |#3|))))) (-1131) (-433 |#1|) (-1247)) (T -966)) +((-3709 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1131)) (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-433 *4)))) (-3709 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1131)) (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-433 *4))))) +(-10 -7 (-15 -3709 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3709 (|#2| |#2| (-661 (-1 (-114) |#3|))))) +((-3279 (((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)) 25 T ELT))) +(((-967 |#1| |#2| |#3|) (-10 -7 (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) (-1131) (-13 (-569) (-910 |#1|) (-631 (-914 |#1|))) (-1021 |#2|)) (T -967)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-1021 *6)) (-4 *6 (-13 (-569) (-910 *5) (-631 *4))) (-5 *4 (-914 *5)) (-5 *1 (-967 *5 *6 *3))))) +(-10 -7 (-15 -3279 ((-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) +((-3279 (((-912 |#1| (-1207)) (-1207) (-914 |#1|) (-912 |#1| (-1207))) 18 T ELT))) +(((-968 |#1|) (-10 -7 (-15 -3279 ((-912 |#1| (-1207)) (-1207) (-914 |#1|) (-912 |#1| (-1207))))) (-1131)) (T -968)) +((-3279 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-912 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-5 *1 (-968 *5))))) +(-10 -7 (-15 -3279 ((-912 |#1| (-1207)) (-1207) (-914 |#1|) (-912 |#1| (-1207))))) +((-3280 (((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))) 34 T ELT)) (-3279 (((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-1 |#3| (-661 |#3|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))) 33 T ELT))) +(((-969 |#1| |#2| |#3|) (-10 -7 (-15 -3279 ((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-1 |#3| (-661 |#3|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) (-15 -3280 ((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))))) (-1131) (-1079) (-13 (-1079) (-631 (-914 |#1|)) (-1068 |#2|))) (T -969)) +((-3280 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-914 *6))) (-5 *5 (-1 (-912 *6 *8) *8 (-914 *6) (-912 *6 *8))) (-4 *6 (-1131)) (-4 *8 (-13 (-1079) (-631 (-914 *6)) (-1068 *7))) (-5 *2 (-912 *6 *8)) (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8)))) (-3279 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-661 (-914 *7))) (-5 *5 (-1 *9 (-661 *9))) (-5 *6 (-1 (-912 *7 *9) *9 (-914 *7) (-912 *7 *9))) (-4 *7 (-1131)) (-4 *9 (-13 (-1079) (-631 (-914 *7)) (-1068 *8))) (-5 *2 (-912 *7 *9)) (-5 *3 (-661 *9)) (-4 *8 (-1079)) (-5 *1 (-969 *7 *8 *9))))) +(-10 -7 (-15 -3279 ((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-1 |#3| (-661 |#3|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|)))) (-15 -3280 ((-912 |#1| |#3|) (-661 |#3|) (-661 (-914 |#1|)) (-912 |#1| |#3|) (-1 (-912 |#1| |#3|) |#3| (-914 |#1|) (-912 |#1| |#3|))))) +((-3288 (((-1201 (-419 (-558))) (-558)) 80 T ELT)) (-3287 (((-1201 (-558)) (-558)) 83 T ELT)) (-3836 (((-1201 (-558)) (-558)) 77 T ELT)) (-3286 (((-558) (-1201 (-558))) 73 T ELT)) (-3285 (((-1201 (-419 (-558))) (-558)) 66 T ELT)) (-3284 (((-1201 (-558)) (-558)) 49 T ELT)) (-3283 (((-1201 (-558)) (-558)) 85 T ELT)) (-3282 (((-1201 (-558)) (-558)) 84 T ELT)) (-3281 (((-1201 (-419 (-558))) (-558)) 68 T ELT))) +(((-970) (-10 -7 (-15 -3281 ((-1201 (-419 (-558))) (-558))) (-15 -3282 ((-1201 (-558)) (-558))) (-15 -3283 ((-1201 (-558)) (-558))) (-15 -3284 ((-1201 (-558)) (-558))) (-15 -3285 ((-1201 (-419 (-558))) (-558))) (-15 -3286 ((-558) (-1201 (-558)))) (-15 -3836 ((-1201 (-558)) (-558))) (-15 -3287 ((-1201 (-558)) (-558))) (-15 -3288 ((-1201 (-419 (-558))) (-558))))) (T -970)) +((-3288 (*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-1201 (-558))) (-5 *2 (-558)) (-5 *1 (-970)))) (-3285 (*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3284 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3282 (*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) (-3281 (*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558))))) +(-10 -7 (-15 -3281 ((-1201 (-419 (-558))) (-558))) (-15 -3282 ((-1201 (-558)) (-558))) (-15 -3283 ((-1201 (-558)) (-558))) (-15 -3284 ((-1201 (-558)) (-558))) (-15 -3285 ((-1201 (-419 (-558))) (-558))) (-15 -3286 ((-558) (-1201 (-558)))) (-15 -3836 ((-1201 (-558)) (-558))) (-15 -3287 ((-1201 (-558)) (-558))) (-15 -3288 ((-1201 (-419 (-558))) (-558)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-4218 (($ (-661 |#1|)) 9 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4347 (((-709 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4344 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-4345 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4281 (($ $ (-661 |#1|)) 25 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4348 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-4423 (((-947) $) 13 T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4346 (($ $ $) 23 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT) (($ (-661 |#1|)) 14 T ELT)) (-4032 (($ (-661 |#1|)) NIL T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4349 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4469 (((-791) $) 11 (|has| $ (-6 -4507)) ELT))) +(((-971 |#1|) (-1010 |#1|) (-1079)) (T -971)) +NIL +(-1010 |#1|) +((-3291 (((-493 |#1| |#2|) (-974 |#2|)) 22 T ELT)) (-3294 (((-255 |#1| |#2|) (-974 |#2|)) 35 T ELT)) (-3292 (((-974 |#2|) (-493 |#1| |#2|)) 27 T ELT)) (-3290 (((-255 |#1| |#2|) (-493 |#1| |#2|)) 57 T ELT)) (-3293 (((-974 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-3289 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) +(((-972 |#1| |#2|) (-10 -7 (-15 -3289 ((-493 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3290 ((-255 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3291 ((-493 |#1| |#2|) (-974 |#2|))) (-15 -3292 ((-974 |#2|) (-493 |#1| |#2|))) (-15 -3293 ((-974 |#2|) (-255 |#1| |#2|))) (-15 -3294 ((-255 |#1| |#2|) (-974 |#2|)))) (-661 (-1207)) (-1079)) (T -972)) +((-3294 (*1 *2 *3) (-12 (-5 *3 (-974 *5)) (-4 *5 (-1079)) (-5 *2 (-255 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-661 (-1207))))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) (-5 *2 (-974 *5)) (-5 *1 (-972 *4 *5)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) (-5 *2 (-974 *5)) (-5 *1 (-972 *4 *5)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-974 *5)) (-4 *5 (-1079)) (-5 *2 (-493 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-661 (-1207))))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) (-5 *2 (-255 *4 *5)) (-5 *1 (-972 *4 *5)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) (-5 *2 (-493 *4 *5)) (-5 *1 (-972 *4 *5))))) +(-10 -7 (-15 -3289 ((-493 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3290 ((-255 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3291 ((-493 |#1| |#2|) (-974 |#2|))) (-15 -3292 ((-974 |#2|) (-493 |#1| |#2|))) (-15 -3293 ((-974 |#2|) (-255 |#1| |#2|))) (-15 -3294 ((-255 |#1| |#2|) (-974 |#2|)))) +((-3295 (((-661 |#2|) |#2| |#2|) 10 T ELT)) (-3298 (((-791) (-661 |#1|)) 47 (|has| |#1| (-869)) ELT)) (-3296 (((-661 |#2|) |#2|) 11 T ELT)) (-3299 (((-791) (-661 |#1|) (-558) (-558)) 52 (|has| |#1| (-869)) ELT)) (-3297 ((|#1| |#2|) 37 (|has| |#1| (-869)) ELT))) +(((-973 |#1| |#2|) (-10 -7 (-15 -3295 ((-661 |#2|) |#2| |#2|)) (-15 -3296 ((-661 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -3297 (|#1| |#2|)) (-15 -3298 ((-791) (-661 |#1|))) (-15 -3299 ((-791) (-661 |#1|) (-558) (-558)))) |%noBranch|)) (-376) (-1273 |#1|)) (T -973)) +((-3299 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-558)) (-4 *5 (-869)) (-4 *5 (-376)) (-5 *2 (-791)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-869)) (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4)))) (-3297 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1273 *2)))) (-3296 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3295 ((-661 |#2|) |#2| |#2|)) (-15 -3296 ((-661 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -3297 (|#1| |#2|)) (-15 -3298 ((-791) (-661 |#1|))) (-15 -3299 ((-791) (-661 |#1|) (-558) (-558)))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1207)) $) 16 T ELT)) (-3568 (((-1201 $) $ (-1207)) 21 T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1207))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) 8 T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1207) #2#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-1207) $) NIL T ELT)) (-4268 (($ $ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-543 (-1207)) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1207) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1207) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#1|) (-1207)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-543 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1207)) NIL T ELT)) (-3303 (((-543 (-1207)) $) NIL T ELT) (((-791) $ (-1207)) NIL T ELT) (((-661 (-791)) $ (-661 (-1207))) NIL T ELT)) (-1815 (($ (-1 (-543 (-1207)) (-543 (-1207))) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3567 (((-3 (-1207) #3="failed") $) 19 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1207)) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-4324 (($ $ (-1207)) 29 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1207) |#1|) NIL T ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL T ELT) (($ $ (-1207) $) NIL T ELT) (($ $ (-661 (-1207)) (-661 $)) NIL T ELT)) (-4269 (($ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-4460 (((-543 (-1207)) $) NIL T ELT) (((-791) $ (-1207)) NIL T ELT) (((-661 (-791)) $ (-661 (-1207))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1207) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1207) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1207) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 25 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1207)) 27 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-543 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-974 |#1|) (-13 (-978 |#1| (-543 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1207))) |%noBranch|))) (-1079)) (T -974)) +((-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-974 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079))))) +(-13 (-978 |#1| (-543 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1207))) |%noBranch|))) +((-4470 (((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)) 19 T ELT))) +(((-975 |#1| |#2|) (-10 -7 (-15 -4470 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)))) (-1079) (-1079)) (T -975)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-974 *6)) (-5 *1 (-975 *5 *6))))) +(-10 -7 (-15 -4470 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)))) +((-3568 (((-1266 |#1| (-974 |#2|)) (-974 |#2|) (-1294 |#1|)) 18 T ELT))) +(((-976 |#1| |#2|) (-10 -7 (-15 -3568 ((-1266 |#1| (-974 |#2|)) (-974 |#2|) (-1294 |#1|)))) (-1207) (-1079)) (T -976)) +((-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1079)) (-5 *2 (-1266 *5 (-974 *6))) (-5 *1 (-976 *5 *6)) (-5 *3 (-974 *6))))) +(-10 -7 (-15 -3568 ((-1266 |#1| (-974 |#2|)) (-974 |#2|) (-1294 |#1|)))) +((-3302 (((-791) $) 88 T ELT) (((-791) $ (-661 |#4|)) 93 T ELT)) (-4287 (($ $) 213 T ELT)) (-4483 (((-417 $) $) 205 T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 141 T ELT)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL T ELT) (((-3 (-558) #2#) $) NIL T ELT) (((-3 |#4| #2#) $) 74 T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-4268 (($ $ $ |#4|) 95 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 131 T ELT) (((-709 |#2|) (-709 $)) 121 T ELT)) (-4005 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-3301 (((-661 $) $) 77 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 239 T ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 232 T ELT)) (-3304 (((-661 $) $) 34 T ELT)) (-3376 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-791)) NIL T ELT) (($ $ (-661 |#4|) (-661 (-791))) 71 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#4|) 202 T ELT)) (-3306 (((-3 (-661 $) "failed") $) 52 T ELT)) (-3305 (((-3 (-661 $) "failed") $) 39 T ELT)) (-3307 (((-3 (-2 (|:| |var| |#4|) (|:| -2642 (-791))) "failed") $) 57 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 134 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 147 T ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 145 T ELT)) (-4244 (((-417 $) $) 165 T ELT)) (-4280 (($ $ (-661 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-661 |#4|) (-661 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-661 |#4|) (-661 $)) NIL T ELT)) (-4269 (($ $ |#4|) 97 T ELT)) (-4484 (((-914 (-391)) $) 253 T ELT) (((-914 (-558)) $) 246 T ELT) (((-547) $) 261 T ELT)) (-3300 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 184 T ELT)) (-4189 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-791)) 62 T ELT) (($ $ (-661 |#4|) (-661 (-791))) 69 T ELT)) (-3185 (((-711 $) $) 194 T ELT)) (-1387 (((-114) $ $) 226 T ELT))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3185 ((-711 |#1|) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) #1="failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3186 ((-3 (-1297 |#1|) #1#) (-709 |#1|))) (-15 -4005 (|#1| |#1| |#4|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -4269 (|#1| |#1| |#4|)) (-15 -4268 (|#1| |#1| |#1| |#4|)) (-15 -3301 ((-661 |#1|) |#1|)) (-15 -3302 ((-791) |#1| (-661 |#4|))) (-15 -3302 ((-791) |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| |#4|) (|:| -2642 (-791))) "failed") |#1|)) (-15 -3306 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3305 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3376 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -3376 (|#1| |#1| |#4| (-791))) (-15 -4275 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3304 ((-661 |#1|) |#1|)) (-15 -4189 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4189 (|#1| |#1| |#4| (-791))) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -3657 ((-3 |#4| #2="failed") |#1|)) (-15 -3656 (|#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#4| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -3376 (|#1| |#2| |#3|)) (-15 -4189 (|#2| |#1| |#3|)) (-15 -3657 ((-3 (-558) #2#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #2#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #2#) |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -1387 ((-114) |#1| |#1|))) (-978 |#2| |#3| |#4|) (-1079) (-815) (-870)) (T -977)) +NIL +(-10 -8 (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3185 ((-711 |#1|) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) #1="failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3186 ((-3 (-1297 |#1|) #1#) (-709 |#1|))) (-15 -4005 (|#1| |#1| |#4|)) (-15 -3300 (|#1| |#1| |#4|)) (-15 -4269 (|#1| |#1| |#4|)) (-15 -4268 (|#1| |#1| |#1| |#4|)) (-15 -3301 ((-661 |#1|) |#1|)) (-15 -3302 ((-791) |#1| (-661 |#4|))) (-15 -3302 ((-791) |#1|)) (-15 -3307 ((-3 (-2 (|:| |var| |#4|) (|:| -2642 (-791))) "failed") |#1|)) (-15 -3306 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3305 ((-3 (-661 |#1|) "failed") |#1|)) (-15 -3376 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -3376 (|#1| |#1| |#4| (-791))) (-15 -4275 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3304 ((-661 |#1|) |#1|)) (-15 -4189 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4189 (|#1| |#1| |#4| (-791))) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -3657 ((-3 |#4| #2="failed") |#1|)) (-15 -3656 (|#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#4| |#1|)) (-15 -4280 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4280 (|#1| |#1| |#4| |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -3376 (|#1| |#2| |#3|)) (-15 -4189 (|#2| |#1| |#3|)) (-15 -3657 ((-3 (-558) #2#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #2#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #2#) |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -1387 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 |#3|) $) 120 T ELT)) (-3568 (((-1201 $) $ |#3|) 135 T ELT) (((-1201 |#1|) $) 134 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 110 (|has| |#1| (-938)) ELT)) (-4287 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 113 (|has| |#1| (-938)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1068 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3656 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1068 (-558))) ELT) ((|#3| $) 151 T ELT)) (-4268 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4471 (($ $) 168 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) 119 T ELT)) (-4235 (((-114) $) 106 (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| |#2| $) 186 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 94 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 93 (-12 (|has| |#3| (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-2651 (((-114) $) 40 T ELT)) (-2659 (((-791) $) 183 T ELT)) (-3569 (($ (-1201 |#1|) |#3|) 127 T ELT) (($ (-1201 $) |#3|) 126 T ELT)) (-3304 (((-661 $) $) 136 T ELT)) (-4449 (((-114) $) 166 T ELT)) (-3376 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#3|) 130 T ELT)) (-3303 ((|#2| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-1815 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3567 (((-3 |#3| "failed") $) 133 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 142 T ELT) (((-709 |#1|) (-1297 $)) 141 T ELT)) (-3377 (($ $) 163 T ELT)) (-3674 ((|#1| $) 162 T ELT)) (-2112 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3306 (((-3 (-661 $) "failed") $) 124 T ELT)) (-3305 (((-3 (-661 $) "failed") $) 125 T ELT)) (-3307 (((-3 (-2 (|:| |var| |#3|) (|:| -2642 (-791))) "failed") $) 123 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 180 T ELT)) (-2014 ((|#1| $) 181 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 105 (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 112 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 111 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 109 (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT)) (-4269 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4460 ((|#2| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT)) (-4484 (((-914 (-391)) $) 92 (-12 (|has| |#3| (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) 91 (-12 (|has| |#3| (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 114 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 88 (-4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4329 (((-661 |#1|) $) 182 T ELT)) (-4189 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3185 (((-711 $) $) 89 (-4039 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1813 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-978 |#1| |#2| |#3|) (-142) (-1079) (-815) (-870)) (T -978)) +((-4005 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-4460 (*1 *2 *1 *3) (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-791)))) (-4460 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 (-791))))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *2 (-870)))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)))) (-3304 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-1201 *1)) (-4 *1 (-978 *4 *5 *3)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-1201 *3)))) (-3567 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3303 (*1 *2 *1 *3) (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-791)))) (-3303 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 (-791))))) (-4275 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *2 (-870)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)))) (-3569 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1079)) (-4 *1 (-978 *4 *5 *3)) (-4 *5 (-815)) (-4 *3 (-870)))) (-3569 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)))) (-3305 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3307 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2642 (-791)))))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-791)))) (-3302 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-791)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *5)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) (-4268 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-175)))) (-4269 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-175)))) (-3300 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-464)))) (-4005 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-464)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-4483 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-417 *1)) (-4 *1 (-978 *3 *4 *5))))) +(-13 (-926 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1068 |t#3|) (-390 |t#1|) (-10 -8 (-15 -4460 ((-791) $ |t#3|)) (-15 -4460 ((-661 (-791)) $ (-661 |t#3|))) (-15 -4189 ($ $ |t#3| (-791))) (-15 -4189 ($ $ (-661 |t#3|) (-661 (-791)))) (-15 -3304 ((-661 $) $)) (-15 -3568 ((-1201 $) $ |t#3|)) (-15 -3568 ((-1201 |t#1|) $)) (-15 -3567 ((-3 |t#3| "failed") $)) (-15 -3303 ((-791) $ |t#3|)) (-15 -3303 ((-661 (-791)) $ (-661 |t#3|))) (-15 -4275 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |t#3|)) (-15 -3376 ($ $ |t#3| (-791))) (-15 -3376 ($ $ (-661 |t#3|) (-661 (-791)))) (-15 -3569 ($ (-1201 |t#1|) |t#3|)) (-15 -3569 ($ (-1201 $) |t#3|)) (-15 -3305 ((-3 (-661 $) "failed") $)) (-15 -3306 ((-3 (-661 $) "failed") $)) (-15 -3307 ((-3 (-2 (|:| |var| |t#3|) (|:| -2642 (-791))) "failed") $)) (-15 -3302 ((-791) $)) (-15 -3302 ((-791) $ (-661 |t#3|))) (-15 -3566 ((-661 |t#3|) $)) (-15 -3301 ((-661 $) $)) (IF (|has| |t#1| (-631 (-547))) (IF (|has| |t#3| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-631 (-914 (-558)))) (IF (|has| |t#3| (-631 (-914 (-558)))) (-6 (-631 (-914 (-558)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-631 (-914 (-391)))) (IF (|has| |t#3| (-631 (-914 (-391)))) (-6 (-631 (-914 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-558))) (IF (|has| |t#3| (-910 (-558))) (-6 (-910 (-558))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (IF (|has| |t#3| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4268 ($ $ $ |t#3|)) (-15 -4269 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3300 ($ $ |t#3|)) (-15 -4005 ($ $)) (-15 -4005 ($ $ |t#3|)) (-15 -4483 ((-417 $) $)) (-15 -4287 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#3|) . T) ((-633 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#3| (-631 (-914 (-391))))) ((-631 (-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#3| (-631 (-914 (-558))))) ((-302) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-938)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 #2=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 #2#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#3| (-910 (-558)))) ((-938) |has| |#1| (-938)) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) |has| |#1| (-938))) +((-3566 (((-661 |#2|) |#5|) 40 T ELT)) (-3568 (((-1201 |#5|) |#5| |#2| (-1201 |#5|)) 23 T ELT) (((-419 (-1201 |#5|)) |#5| |#2|) 16 T ELT)) (-3569 ((|#5| (-419 (-1201 |#5|)) |#2|) 30 T ELT)) (-3567 (((-3 |#2| "failed") |#5|) 70 T ELT)) (-3306 (((-3 (-661 |#5|) "failed") |#5|) 64 T ELT)) (-3308 (((-3 (-2 (|:| |val| |#5|) (|:| -2642 (-558))) "failed") |#5|) 53 T ELT)) (-3305 (((-3 (-661 |#5|) "failed") |#5|) 66 T ELT)) (-3307 (((-3 (-2 (|:| |var| |#2|) (|:| -2642 (-558))) "failed") |#5|) 56 T ELT))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3566 ((-661 |#2|) |#5|)) (-15 -3567 ((-3 |#2| "failed") |#5|)) (-15 -3568 ((-419 (-1201 |#5|)) |#5| |#2|)) (-15 -3569 (|#5| (-419 (-1201 |#5|)) |#2|)) (-15 -3568 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -3305 ((-3 (-661 |#5|) "failed") |#5|)) (-15 -3306 ((-3 (-661 |#5|) "failed") |#5|)) (-15 -3307 ((-3 (-2 (|:| |var| |#2|) (|:| -2642 (-558))) "failed") |#5|)) (-15 -3308 ((-3 (-2 (|:| |val| |#5|) (|:| -2642 (-558))) "failed") |#5|))) (-815) (-870) (-1079) (-978 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4458 ($ |#4|)) (-15 -3481 (|#4| $)) (-15 -3480 (|#4| $))))) (T -979)) +((-3308 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2642 (-558)))) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) (-3307 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2642 (-558)))) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) (-3306 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) (-3305 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) (-3568 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))) (-4 *7 (-978 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) (-5 *1 (-979 *5 *4 *6 *7 *3)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *2 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))) (-5 *1 (-979 *5 *4 *6 *7 *2)) (-4 *7 (-978 *6 *5 *4)))) (-3568 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-419 (-1201 *3))) (-5 *1 (-979 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) (-3567 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1079)) (-4 *6 (-978 *5 *4 *2)) (-4 *2 (-870)) (-5 *1 (-979 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *6)) (-15 -3481 (*6 $)) (-15 -3480 (*6 $))))))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-661 *5)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) +(-10 -7 (-15 -3566 ((-661 |#2|) |#5|)) (-15 -3567 ((-3 |#2| "failed") |#5|)) (-15 -3568 ((-419 (-1201 |#5|)) |#5| |#2|)) (-15 -3569 (|#5| (-419 (-1201 |#5|)) |#2|)) (-15 -3568 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -3305 ((-3 (-661 |#5|) "failed") |#5|)) (-15 -3306 ((-3 (-661 |#5|) "failed") |#5|)) (-15 -3307 ((-3 (-2 (|:| |var| |#2|) (|:| -2642 (-558))) "failed") |#5|)) (-15 -3308 ((-3 (-2 (|:| |val| |#5|) (|:| -2642 (-558))) "failed") |#5|))) +((-4470 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4470 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-815) (-870) (-1079) (-978 |#3| |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) (T -980)) +((-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *6 (-815)) (-4 *2 (-13 (-1131) (-10 -8 (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) (-5 *1 (-980 *6 *7 *8 *5 *2)) (-4 *5 (-978 *8 *6 *7))))) +(-10 -7 (-15 -4470 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3309 (((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#3| (-791)) 48 T ELT)) (-3310 (((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-791)) 43 T ELT)) (-3312 (((-2 (|:| -2642 (-791)) (|:| -4466 |#4|) (|:| |radicand| (-661 |#4|))) |#4| (-791)) 64 T ELT)) (-3311 (((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#5| (-791)) 73 (|has| |#3| (-464)) ELT))) +(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3309 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#3| (-791))) (-15 -3310 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-791))) (IF (|has| |#3| (-464)) (-15 -3311 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#5| (-791))) |%noBranch|) (-15 -3312 ((-2 (|:| -2642 (-791)) (|:| -4466 |#4|) (|:| |radicand| (-661 |#4|))) |#4| (-791)))) (-815) (-870) (-569) (-978 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4458 ($ |#4|)) (-15 -3481 (|#4| $)) (-15 -3480 (|#4| $))))) (T -981)) +((-3312 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *3 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| (-661 *3)))) (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4458 ($ *3)) (-15 -3481 (*3 $)) (-15 -3480 (*3 $))))))) (-3311 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| *3))) (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-791)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4458 ($ *8)) (-15 -3481 (*8 $)) (-15 -3480 (*8 $))))))) (-3310 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *9) (|:| |radicand| *9))) (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-791)) (-4 *9 (-13 (-376) (-10 -8 (-15 -4458 ($ *8)) (-15 -3481 (*8 $)) (-15 -3480 (*8 $))))))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-569)) (-4 *7 (-978 *3 *5 *6)) (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *8) (|:| |radicand| *8))) (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) +(-10 -7 (-15 -3309 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#3| (-791))) (-15 -3310 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-791))) (IF (|has| |#3| (-464)) (-15 -3311 ((-2 (|:| -2642 (-791)) (|:| -4466 |#5|) (|:| |radicand| |#5|)) |#5| (-791))) |%noBranch|) (-15 -3312 ((-2 (|:| -2642 (-791)) (|:| -4466 |#4|) (|:| |radicand| (-661 |#4|))) |#4| (-791)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3313 (($ (-1150)) 8 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT) (((-1150) $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 11 T ELT))) +(((-982) (-13 (-1131) (-630 (-1150)) (-10 -8 (-15 -3313 ($ (-1150)))))) (T -982)) +((-3313 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) +(-13 (-1131) (-630 (-1150)) (-10 -8 (-15 -3313 ($ (-1150))))) +((-3379 (((-1119 (-229)) $) 8 T ELT)) (-3380 (((-1119 (-229)) $) 9 T ELT)) (-3381 (((-661 (-661 (-971 (-229)))) $) 10 T ELT)) (-4458 (((-886) $) 6 T ELT))) +(((-983) (-142)) (T -983)) +((-3381 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-661 (-661 (-971 (-229))))))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1119 (-229))))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1119 (-229)))))) +(-13 (-630 (-886)) (-10 -8 (-15 -3381 ((-661 (-661 (-971 (-229)))) $)) (-15 -3380 ((-1119 (-229)) $)) (-15 -3379 ((-1119 (-229)) $)))) +(((-630 (-886)) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 79 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 80 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) 31 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1814 (($ $ |#1| |#2| $) 63 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) 17 T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| |#2|) NIL T ELT)) (-3303 ((|#2| $) 24 T ELT)) (-1815 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3377 (($ $) 28 T ELT)) (-3674 ((|#1| $) 26 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) 51 T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-4250 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-133)) (|has| |#1| (-569))) ELT)) (-3968 (((-3 $ "failed") $ $) 92 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-4460 ((|#2| $) 22 T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ |#2|) 37 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 15 T CONST)) (-1813 (($ $ $ (-791)) 75 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) 85 (|has| |#1| (-569)) ELT)) (-3141 (($) 27 T CONST)) (-3147 (($) 12 T CONST)) (-3536 (((-114) $ $) 84 T ELT)) (-4461 (($ $ |#1|) 93 (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) 70 T ELT) (($ $ (-791)) 68 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-984 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-133)) (-15 -4250 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) (-1079) (-814)) (T -984)) +((-4250 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-984 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *2 (-814))))) +(-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-133)) (-15 -4250 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) +((-3314 (((-3 (-709 |#1|) "failed") |#2| (-947)) 18 T ELT))) +(((-985 |#1| |#2|) (-10 -7 (-15 -3314 ((-3 (-709 |#1|) "failed") |#2| (-947)))) (-569) (-678 |#1|)) (T -985)) +((-3314 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-947)) (-4 *5 (-569)) (-5 *2 (-709 *5)) (-5 *1 (-985 *5 *3)) (-4 *3 (-678 *5))))) +(-10 -7 (-15 -3314 ((-3 (-709 |#1|) "failed") |#2| (-947)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 20 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 19 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 17 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) |#1|) 16 T ELT)) (-2425 (((-558) $) 11 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) 21 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) 13 T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 22 T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 15 T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4469 (((-791) $) 8 (|has| $ (-6 -4507)) ELT))) +(((-986 |#1|) (-19 |#1|) (-1247)) (T -986)) NIL (-19 |#1|) -((-4357 (((-988 |#2|) (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|) 16 T ELT)) (-4358 ((|#2| (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|) 18 T ELT)) (-4474 (((-988 |#2|) (-1 |#2| |#1|) (-988 |#1|)) 13 T ELT))) -(((-989 |#1| |#2|) (-10 -7 (-15 -4357 ((-988 |#2|) (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|)) (-15 -4474 ((-988 |#2|) (-1 |#2| |#1|) (-988 |#1|)))) (-1249) (-1249)) (T -989)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-988 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-988 *6)) (-5 *1 (-989 *5 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-988 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-989 *5 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-988 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-5 *2 (-988 *5)) (-5 *1 (-989 *6 *5))))) -(-10 -7 (-15 -4357 ((-988 |#2|) (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-988 |#1|) |#2|)) (-15 -4474 ((-988 |#2|) (-1 |#2| |#1|) (-988 |#1|)))) -((-3319 (($ $ (-1124 $)) 7 T ELT) (($ $ (-1209)) 6 T ELT))) -(((-990) (-142)) (T -990)) -((-3319 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-990)))) (-3319 (*1 *1 *1 *2) (-12 (-4 *1 (-990)) (-5 *2 (-1209))))) -(-13 (-10 -8 (-15 -3319 ($ $ (-1209))) (-15 -3319 ($ $ (-1124 $))))) -((-3320 (((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209)) (-1209)) 26 T ELT) (((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209))) 27 T ELT) (((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1203 |#1|))) (-976 |#1|) (-1209) (-976 |#1|) (-1209)) 49 T ELT))) -(((-991 |#1|) (-10 -7 (-15 -3320 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1203 |#1|))) (-976 |#1|) (-1209) (-976 |#1|) (-1209))) (-15 -3320 ((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -3320 ((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209)) (-1209)))) (-13 (-376) (-149))) (T -991)) -((-3320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) (-5 *5 (-1209)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 *6))) (|:| |prim| (-1203 *6)))) (-5 *1 (-991 *6)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 *5))) (|:| |prim| (-1203 *5)))) (-5 *1 (-991 *5)))) (-3320 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-976 *5)) (-5 *4 (-1209)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1203 *5)))) (-5 *1 (-991 *5))))) -(-10 -7 (-15 -3320 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1203 |#1|))) (-976 |#1|) (-1209) (-976 |#1|) (-1209))) (-15 -3320 ((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209)))) (-15 -3320 ((-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-663 (-976 |#1|)) (-663 (-1209)) (-1209)))) -((-3323 (((-663 |#1|) |#1| |#1|) 47 T ELT)) (-4239 (((-114) |#1|) 44 T ELT)) (-3322 ((|#1| |#1|) 80 T ELT)) (-3321 ((|#1| |#1|) 79 T ELT))) -(((-992 |#1|) (-10 -7 (-15 -4239 ((-114) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -3322 (|#1| |#1|)) (-15 -3323 ((-663 |#1|) |#1| |#1|))) (-559)) (T -992)) -((-3323 (*1 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-5 *1 (-992 *3)) (-4 *3 (-559)))) (-3322 (*1 *2 *2) (-12 (-5 *1 (-992 *2)) (-4 *2 (-559)))) (-3321 (*1 *2 *2) (-12 (-5 *1 (-992 *2)) (-4 *2 (-559)))) (-4239 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-992 *3)) (-4 *3 (-559))))) -(-10 -7 (-15 -4239 ((-114) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -3322 (|#1| |#1|)) (-15 -3323 ((-663 |#1|) |#1| |#1|))) -((-3324 (((-1305) (-888)) 9 T ELT))) -(((-993) (-10 -7 (-15 -3324 ((-1305) (-888))))) (T -993)) -((-3324 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-993))))) -(-10 -7 (-15 -3324 ((-1305) (-888)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) ELT)) (-2887 (($ $ $) 65 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) ELT)) (-1438 (((-3 $ "failed") $ $) 52 (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) ELT)) (-3624 (((-793)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3325 ((|#2| $) 22 T ELT)) (-3326 ((|#1| $) 21 T ELT)) (-4240 (($) NIL (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) CONST)) (-3973 (((-3 $ "failed") $) NIL (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-3481 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3690 (((-114) $) NIL (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) ELT)) (-2655 (((-114) $) NIL (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-3016 (($ $ $) NIL (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-3344 (($ $ $) NIL (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-3327 (($ |#1| |#2|) 20 T ELT)) (-2234 (((-949) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 39 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2645 (($ (-949)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3496 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2838 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-4462 (((-888) $) 14 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 42 (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) CONST)) (-3151 (($) 25 (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) CONST)) (-3051 (((-114) $ $) NIL (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-3052 (((-114) $ $) NIL (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-3540 (((-114) $ $) 19 T ELT)) (-3171 (((-114) $ $) NIL (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-3172 (((-114) $ $) 69 (-4043 (-12 (|has| |#1| (-817)) (|has| |#2| (-817))) (-12 (|has| |#1| (-872)) (|has| |#2| (-872)))) ELT)) (-4465 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-4353 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-4355 (($ $ $) 45 (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) ELT)) (** (($ $ (-560)) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT) (($ $ (-793)) 32 (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT) (($ $ (-949)) NIL (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (* (($ (-560) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-793) $) 48 (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) ELT) (($ (-949) $) NIL (-4043 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-817)) (|has| |#2| (-817)))) ELT) (($ $ $) 28 (-4043 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT))) -(((-994 |#1| |#2|) (-13 (-1133) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-817)) (IF (|has| |#2| (-817)) (-6 (-817)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-872)) (IF (|has| |#2| (-872)) (-6 (-872)) |%noBranch|) |%noBranch|) (-15 -3327 ($ |#1| |#2|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#2| $)))) (-1133) (-1133)) (T -994)) -((-3327 (*1 *1 *2 *3) (-12 (-5 *1 (-994 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-3326 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1133)))) (-3325 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-994 *3 *2)) (-4 *3 (-1133))))) -(-13 (-1133) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-817)) (IF (|has| |#2| (-817)) (-6 (-817)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-872)) (IF (|has| |#2| (-872)) (-6 (-872)) |%noBranch|) |%noBranch|) (-15 -3327 ($ |#1| |#2|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#2| $)))) -((-3908 (((-1135) $) 12 T ELT)) (-3328 (($ (-520) (-1135)) 14 T ELT)) (-4056 (((-520) $) 9 T ELT)) (-4462 (((-888) $) 24 T ELT))) -(((-995) (-13 (-632 (-888)) (-10 -8 (-15 -4056 ((-520) $)) (-15 -3908 ((-1135) $)) (-15 -3328 ($ (-520) (-1135)))))) (T -995)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-995)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-995)))) (-3328 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-995))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4056 ((-520) $)) (-15 -3908 ((-1135) $)) (-15 -3328 ($ (-520) (-1135))))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3342 (($) 17 T CONST)) (-3046 (($ $ $) 37 T ELT)) (-3045 (($ $) 29 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3333 (((-713 (-898 $ $)) $) 62 T ELT)) (-3335 (((-713 $) $) 52 T ELT)) (-3332 (((-713 (-898 $ $)) $) 63 T ELT)) (-3331 (((-713 (-898 $ $)) $) 64 T ELT)) (-3336 (((-713 |#1|) $) 43 T ELT)) (-3334 (((-713 (-898 $ $)) $) 61 T ELT)) (-3340 (($ $ $) 38 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3341 (($) 16 T CONST)) (-3339 (($ $ $) 39 T ELT)) (-3329 (($ $ $) 36 T ELT)) (-3330 (($ $ $) 34 T ELT)) (-4462 (((-888) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3047 (($ $ $) 35 T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-996 |#1|) (-13 (-999) (-635 |#1|) (-10 -8 (-15 -3336 ((-713 |#1|) $)) (-15 -3335 ((-713 $) $)) (-15 -3334 ((-713 (-898 $ $)) $)) (-15 -3333 ((-713 (-898 $ $)) $)) (-15 -3332 ((-713 (-898 $ $)) $)) (-15 -3331 ((-713 (-898 $ $)) $)) (-15 -3330 ($ $ $)) (-15 -3329 ($ $ $)))) (-1133)) (T -996)) -((-3336 (*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-713 (-996 *3))) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) (-4 *3 (-1133)))) (-3330 (*1 *1 *1 *1) (-12 (-5 *1 (-996 *2)) (-4 *2 (-1133)))) (-3329 (*1 *1 *1 *1) (-12 (-5 *1 (-996 *2)) (-4 *2 (-1133))))) -(-13 (-999) (-635 |#1|) (-10 -8 (-15 -3336 ((-713 |#1|) $)) (-15 -3335 ((-713 $) $)) (-15 -3334 ((-713 (-898 $ $)) $)) (-15 -3333 ((-713 (-898 $ $)) $)) (-15 -3332 ((-713 (-898 $ $)) $)) (-15 -3331 ((-713 (-898 $ $)) $)) (-15 -3330 ($ $ $)) (-15 -3329 ($ $ $)))) -((-4165 (((-996 |#1|) (-996 |#1|)) 46 T ELT)) (-3338 (((-996 |#1|) (-996 |#1|)) 22 T ELT)) (-3337 (((-1129 |#1|) (-996 |#1|)) 41 T ELT))) -(((-997 |#1|) (-13 (-1249) (-10 -7 (-15 -3338 ((-996 |#1|) (-996 |#1|))) (-15 -3337 ((-1129 |#1|) (-996 |#1|))) (-15 -4165 ((-996 |#1|) (-996 |#1|))))) (-1133)) (T -997)) -((-3338 (*1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-1133)) (-5 *1 (-997 *3)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-996 *4)) (-4 *4 (-1133)) (-5 *2 (-1129 *4)) (-5 *1 (-997 *4)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-1133)) (-5 *1 (-997 *3))))) -(-13 (-1249) (-10 -7 (-15 -3338 ((-996 |#1|) (-996 |#1|))) (-15 -3337 ((-1129 |#1|) (-996 |#1|))) (-15 -4165 ((-996 |#1|) (-996 |#1|))))) -((-4474 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 29 T ELT))) -(((-998 |#1| |#2|) (-13 (-1249) (-10 -7 (-15 -4474 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))) (-1133) (-1133)) (T -998)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-996 *6)) (-5 *1 (-998 *5 *6))))) -(-13 (-1249) (-10 -7 (-15 -4474 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))) -((-3053 (((-114) $ $) 19 T ELT)) (-2540 (($ $) 8 T ELT)) (-3342 (($) 17 T CONST)) (-3046 (($ $ $) 9 T ELT)) (-3045 (($ $) 11 T ELT)) (-3746 (((-1191) $) 23 T ELT)) (-3340 (($ $ $) 15 T ELT)) (-3747 (((-1152) $) 22 T ELT)) (-3341 (($) 16 T CONST)) (-3339 (($ $ $) 14 T ELT)) (-4462 (((-888) $) 21 T ELT)) (-1389 (((-114) $ $) 20 T ELT)) (-3047 (($ $ $) 10 T ELT)) (-2538 (($ $ $) 6 T ELT)) (-3540 (((-114) $ $) 18 T ELT)) (-2539 (($ $ $) 7 T ELT))) -(((-999) (-142)) (T -999)) -((-3342 (*1 *1) (-4 *1 (-999))) (-3341 (*1 *1) (-4 *1 (-999))) (-3340 (*1 *1 *1 *1) (-4 *1 (-999))) (-3339 (*1 *1 *1 *1) (-4 *1 (-999)))) -(-13 (-113) (-1133) (-10 -8 (-15 -3342 ($) -4468) (-15 -3341 ($) -4468) (-15 -3340 ($ $ $)) (-15 -3339 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-632 (-888)) . T) ((-684) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4240 (($) 7 T CONST)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3343 (($ $ $) 47 T ELT)) (-4024 (($ $ $) 48 T ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3344 ((|#1| $) 49 T ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1000 |#1|) (-142) (-872)) (T -1000)) -((-3344 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872)))) (-4024 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872)))) (-3343 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4511) (-15 -3344 (|t#1| $)) (-15 -4024 ($ $ $)) (-15 -3343 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3356 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|) 105 T ELT)) (-4271 ((|#2| |#2| |#2|) 103 T ELT)) (-3357 (((-2 (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|) 107 T ELT)) (-3358 (((-2 (|:| |coef1| |#2|) (|:| -3648 |#2|)) |#2| |#2|) 109 T ELT)) (-3365 (((-2 (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|) 132 (|has| |#1| (-466)) ELT)) (-3372 (((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|) 56 T ELT)) (-3346 (((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|) 80 T ELT)) (-3347 (((-2 (|:| |coef1| |#2|) (|:| -4272 |#1|)) |#2| |#2|) 82 T ELT)) (-3355 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3350 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 89 T ELT)) (-3360 (((-2 (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|) 121 T ELT)) (-3353 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 92 T ELT)) (-3362 (((-663 (-793)) |#2| |#2|) 102 T ELT)) (-3370 ((|#1| |#2| |#2|) 50 T ELT)) (-3364 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|) 130 (|has| |#1| (-466)) ELT)) (-3363 ((|#1| |#2| |#2|) 128 (|has| |#1| (-466)) ELT)) (-3371 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|) 54 T ELT)) (-3345 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|) 79 T ELT)) (-4272 ((|#1| |#2| |#2|) 76 T ELT)) (-4268 (((-2 (|:| -4470 |#1|) (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|) 41 T ELT)) (-3369 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3354 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3694 ((|#2| |#2| |#2|) 93 T ELT)) (-3349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 87 T ELT)) (-3348 ((|#2| |#2| |#2| (-793)) 85 T ELT)) (-3648 ((|#2| |#2| |#2|) 136 (|has| |#1| (-466)) ELT)) (-3972 (((-1299 |#2|) (-1299 |#2|) |#1|) 22 T ELT)) (-3366 (((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|) 46 T ELT)) (-3359 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|) 119 T ELT)) (-4273 ((|#1| |#2|) 116 T ELT)) (-3352 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 91 T ELT)) (-3351 ((|#2| |#2| |#2| (-793)) 90 T ELT)) (-3361 (((-663 |#2|) |#2| |#2|) 99 T ELT)) (-3368 ((|#2| |#2| |#1| |#1| (-793)) 62 T ELT)) (-3367 ((|#1| |#1| |#1| (-793)) 61 T ELT)) (* (((-1299 |#2|) |#1| (-1299 |#2|)) 17 T ELT))) -(((-1001 |#1| |#2|) (-10 -7 (-15 -4272 (|#1| |#2| |#2|)) (-15 -3345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3346 ((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3347 ((-2 (|:| |coef1| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| (-793))) (-15 -3349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3350 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3351 (|#2| |#2| |#2| (-793))) (-15 -3352 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3353 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3694 (|#2| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3355 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -3357 ((-2 (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -3358 ((-2 (|:| |coef1| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -4273 (|#1| |#2|)) (-15 -3359 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|)) (-15 -3360 ((-2 (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|)) (-15 -3361 ((-663 |#2|) |#2| |#2|)) (-15 -3362 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -3363 (|#1| |#2| |#2|)) (-15 -3364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|)) (-15 -3648 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1299 |#2|) |#1| (-1299 |#2|))) (-15 -3972 ((-1299 |#2|) (-1299 |#2|) |#1|)) (-15 -4268 ((-2 (|:| -4470 |#1|) (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|)) (-15 -3366 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|)) (-15 -3367 (|#1| |#1| |#1| (-793))) (-15 -3368 (|#2| |#2| |#1| |#1| (-793))) (-15 -3369 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3370 (|#1| |#2| |#2|)) (-15 -3371 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|))) (-571) (-1275 |#1|)) (T -1001)) -((-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4272 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3371 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4272 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3370 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2)))) (-3369 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) (-3368 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) (-3367 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1001 *2 *4)) (-4 *4 (-1275 *2)))) (-3366 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-4268 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -4470 *4) (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3972 (*1 *2 *2 *3) (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *4)))) (-3648 (*1 *2 *2 *2) (-12 (-4 *3 (-466)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) (-3365 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3363 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3364 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3363 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3361 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4273 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3359 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4273 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-4273 (*1 *2 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2)))) (-3358 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3648 *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3357 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3648 *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3648 *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-4271 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) (-3355 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3694 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) (-3353 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5)))) (-3352 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5)))) (-3351 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1001 *4 *2)) (-4 *2 (-1275 *4)))) (-3350 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5)))) (-3349 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5)))) (-3348 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1001 *4 *2)) (-4 *2 (-1275 *4)))) (-3347 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4272 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3346 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4272 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-3345 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4272 *4))) (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) (-4272 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2))))) -(-10 -7 (-15 -4272 (|#1| |#2| |#2|)) (-15 -3345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3346 ((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3347 ((-2 (|:| |coef1| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| (-793))) (-15 -3349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3350 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3351 (|#2| |#2| |#2| (-793))) (-15 -3352 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3353 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3694 (|#2| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3355 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -3357 ((-2 (|:| |coef2| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -3358 ((-2 (|:| |coef1| |#2|) (|:| -3648 |#2|)) |#2| |#2|)) (-15 -4273 (|#1| |#2|)) (-15 -3359 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|)) (-15 -3360 ((-2 (|:| |coef2| |#2|) (|:| -4273 |#1|)) |#2|)) (-15 -3361 ((-663 |#2|) |#2| |#2|)) (-15 -3362 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -3363 (|#1| |#2| |#2|)) (-15 -3364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| -3363 |#1|)) |#2| |#2|)) (-15 -3648 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1299 |#2|) |#1| (-1299 |#2|))) (-15 -3972 ((-1299 |#2|) (-1299 |#2|) |#1|)) (-15 -4268 ((-2 (|:| -4470 |#1|) (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|)) (-15 -3366 ((-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) |#2| |#2|)) (-15 -3367 (|#1| |#1| |#1| (-793))) (-15 -3368 (|#2| |#2| |#1| |#1| (-793))) (-15 -3369 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3370 (|#1| |#2| |#2|)) (-15 -3371 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| |coef2| |#2|) (|:| -4272 |#1|)) |#2| |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3822 (((-1250) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 10 T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1002) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $))))) (T -1002)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1002)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-1002))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 40 T ELT)) (-1438 (((-3 $ "failed") $ $) 54 T ELT)) (-4240 (($) NIL T CONST)) (-3374 (((-663 (-898 (-949) (-949))) $) 67 T ELT)) (-3690 (((-114) $) NIL T ELT)) (-3373 (((-949) $) 94 T ELT)) (-3376 (((-663 (-949)) $) 17 T ELT)) (-3375 (((-1187 $) (-793)) 39 T ELT)) (-3377 (($ (-663 (-949))) 16 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3496 (($ $) 70 T ELT)) (-4462 (((-888) $) 90 T ELT) (((-663 (-949)) $) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 8 T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 44 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 42 T ELT)) (-4355 (($ $ $) 46 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) 49 T ELT)) (-4473 (((-793) $) 22 T ELT))) -(((-1003) (-13 (-821) (-632 (-663 (-949))) (-10 -8 (-15 -3377 ($ (-663 (-949)))) (-15 -3376 ((-663 (-949)) $)) (-15 -4473 ((-793) $)) (-15 -3375 ((-1187 $) (-793))) (-15 -3374 ((-663 (-898 (-949) (-949))) $)) (-15 -3373 ((-949) $)) (-15 -3496 ($ $))))) (T -1003)) -((-3377 (*1 *1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1003)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1003)))) (-4473 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1003)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1187 (-1003))) (-5 *1 (-1003)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-663 (-898 (-949) (-949)))) (-5 *1 (-1003)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1003)))) (-3496 (*1 *1 *1) (-5 *1 (-1003)))) -(-13 (-821) (-632 (-663 (-949))) (-10 -8 (-15 -3377 ($ (-663 (-949)))) (-15 -3376 ((-663 (-949)) $)) (-15 -4473 ((-793) $)) (-15 -3375 ((-1187 $) (-793))) (-15 -3374 ((-663 (-898 (-949) (-949))) $)) (-15 -3373 ((-949) $)) (-15 -3496 ($ $)))) -((-4465 (($ $ |#2|) 31 T ELT)) (-4353 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-421 (-560)) $) 27 T ELT) (($ $ (-421 (-560))) 29 T ELT))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4465 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) (-1005 |#2| |#3| |#4|) (-1081) (-816) (-872)) (T -1004)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -4465 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 |#3|) $) 92 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3379 (((-114) $) 91 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-4464 ((|#2| $) 81 T ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4193 ((|#1| $ |#2|) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1005 |#1| |#2| |#3|) (-142) (-1081) (-816) (-872)) (T -1005)) -((-3678 (*1 *2 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *3 (-816)) (-4 *4 (-872)) (-4 *2 (-1081)))) (-3381 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *4 (-872)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *2 *4)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *2 (-816)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1005 *4 *3 *2)) (-4 *4 (-1081)) (-4 *3 (-816)) (-4 *2 (-872)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1005 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-816)) (-4 *6 (-872)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-816)) (-4 *5 (-872)) (-5 *2 (-663 *5)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-816)) (-4 *5 (-872)) (-5 *2 (-114)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *4 (-872))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3380 ($ $ |t#3| |t#2|)) (-15 -3380 ($ $ (-663 |t#3|) (-663 |t#2|))) (-15 -3381 ($ $)) (-15 -3678 (|t#1| $)) (-15 -4464 (|t#2| $)) (-15 -3570 ((-663 |t#3|) $)) (-15 -3379 ((-114) $)) (-15 -3378 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3382 (((-1121 (-229)) $) 8 T ELT)) (-3383 (((-1121 (-229)) $) 9 T ELT)) (-3384 (((-1121 (-229)) $) 10 T ELT)) (-3385 (((-663 (-663 (-973 (-229)))) $) 11 T ELT)) (-4462 (((-888) $) 6 T ELT))) -(((-1006) (-142)) (T -1006)) -((-3385 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-663 (-663 (-973 (-229))))))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229))))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229))))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229)))))) -(-13 (-632 (-888)) (-10 -8 (-15 -3385 ((-663 (-663 (-973 (-229)))) $)) (-15 -3384 ((-1121 (-229)) $)) (-15 -3383 ((-1121 (-229)) $)) (-15 -3382 ((-1121 (-229)) $)))) -(((-632 (-888)) . T)) -((-3570 (((-663 |#4|) $) 23 T ELT)) (-3395 (((-114) $) 55 T ELT)) (-3386 (((-114) $) 54 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3391 (((-114) $) 56 T ELT)) (-3393 (((-114) $ $) 62 T ELT)) (-3392 (((-114) $ $) 65 T ELT)) (-3394 (((-114) $) 60 T ELT)) (-3387 (((-663 |#5|) (-663 |#5|) $) 98 T ELT)) (-3388 (((-663 |#5|) (-663 |#5|) $) 95 T ELT)) (-3389 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3401 (((-663 |#4|) $) 27 T ELT)) (-3400 (((-114) |#4| $) 34 T ELT)) (-3390 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3397 (($ $ |#4|) 39 T ELT)) (-3399 (($ $ |#4|) 38 T ELT)) (-3398 (($ $ |#4|) 40 T ELT)) (-3540 (((-114) $ $) 46 T ELT))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3386 ((-114) |#1|)) (-15 -3387 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3388 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3389 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3390 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3391 ((-114) |#1|)) (-15 -3392 ((-114) |#1| |#1|)) (-15 -3393 ((-114) |#1| |#1|)) (-15 -3394 ((-114) |#1|)) (-15 -3395 ((-114) |#1|)) (-15 -3396 ((-2 (|:| |under| |#1|) (|:| -3618 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3397 (|#1| |#1| |#4|)) (-15 -3398 (|#1| |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3400 ((-114) |#4| |#1|)) (-15 -3401 ((-663 |#4|) |#1|)) (-15 -3570 ((-663 |#4|) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-1008 |#2| |#3| |#4| |#5|) (-1081) (-817) (-872) (-1097 |#2| |#3| |#4|)) (T -1007)) -NIL -(-10 -8 (-15 -3386 ((-114) |#1|)) (-15 -3387 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3388 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3389 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3390 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3391 ((-114) |#1|)) (-15 -3392 ((-114) |#1| |#1|)) (-15 -3393 ((-114) |#1| |#1|)) (-15 -3394 ((-114) |#1|)) (-15 -3395 ((-114) |#1|)) (-15 -3396 ((-2 (|:| |under| |#1|) (|:| -3618 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3397 (|#1| |#1| |#4|)) (-15 -3398 (|#1| |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3400 ((-114) |#4| |#1|)) (-15 -3401 ((-663 |#4|) |#1|)) (-15 -3570 ((-663 |#4|) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-1008 |#1| |#2| |#3| |#4|) (-142) (-1081) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -1008)) -((-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *1 (-1008 *3 *4 *5 *6)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *1 (-1008 *3 *4 *5 *6)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-1097 *3 *4 *2)) (-4 *2 (-872)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5)))) (-3400 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *5 *3 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-4 *6 (-1097 *4 *5 *3)) (-5 *2 (-114)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2)))) (-3396 (*1 *2 *1 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-4 *6 (-1097 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3618 *1) (|:| |upper| *1))) (-4 *1 (-1008 *4 *5 *3 *6)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3393 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3392 (*1 *2 *1 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3390 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *5 *6 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3389 (*1 *2 *3 *1) (-12 (-4 *1 (-1008 *4 *5 *6 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3388 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)))) (-3387 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) -(-13 (-1133) (-153 |t#4|) (-632 (-663 |t#4|)) (-10 -8 (-6 -4511) (-15 -3661 ((-3 $ "failed") (-663 |t#4|))) (-15 -3660 ($ (-663 |t#4|))) (-15 -3684 (|t#3| $)) (-15 -3570 ((-663 |t#3|) $)) (-15 -3401 ((-663 |t#3|) $)) (-15 -3400 ((-114) |t#3| $)) (-15 -3399 ($ $ |t#3|)) (-15 -3398 ($ $ |t#3|)) (-15 -3397 ($ $ |t#3|)) (-15 -3396 ((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |t#3|)) (-15 -3395 ((-114) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -3394 ((-114) $)) (-15 -3393 ((-114) $ $)) (-15 -3392 ((-114) $ $)) (-15 -3391 ((-114) $)) (-15 -3390 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3389 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3388 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -3387 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -3386 ((-114) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-1133) . T) ((-1249) . T)) -((-3403 (((-663 |#4|) |#4| |#4|) 137 T ELT)) (-3426 (((-663 |#4|) (-663 |#4|) (-114)) 125 (|has| |#1| (-466)) ELT) (((-663 |#4|) (-663 |#4|)) 126 (|has| |#1| (-466)) ELT)) (-3413 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 44 T ELT)) (-3412 (((-114) |#4|) 43 T ELT)) (-3425 (((-663 |#4|) |#4|) 121 (|has| |#1| (-466)) ELT)) (-3408 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|)) 24 T ELT)) (-3409 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 30 T ELT)) (-3410 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 31 T ELT)) (-3421 (((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3830 (-663 |#4|))) "failed") (-663 |#4|)) 90 T ELT)) (-3423 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3424 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3402 (((-663 |#4|) (-663 |#4|)) 128 T ELT)) (-3418 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114)) 59 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 61 T ELT)) (-3419 ((|#4| |#4| (-663 |#4|)) 60 T ELT)) (-3427 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 133 (|has| |#1| (-466)) ELT)) (-3429 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 136 (|has| |#1| (-466)) ELT)) (-3428 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 135 (|has| |#1| (-466)) ELT)) (-3404 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|))) 105 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 107 T ELT) (((-663 |#4|) (-663 |#4|) |#4|) 141 T ELT) (((-663 |#4|) |#4| |#4|) 138 T ELT) (((-663 |#4|) (-663 |#4|)) 106 T ELT)) (-3432 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3411 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 52 T ELT)) (-3407 (((-114) (-663 |#4|)) 79 T ELT)) (-3406 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 67 T ELT)) (-3415 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 37 T ELT)) (-3414 (((-114) |#4|) 36 T ELT)) (-3431 (((-663 |#4|) (-663 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3430 (((-663 |#4|) (-663 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3420 (((-663 |#4|) (-663 |#4|)) 83 T ELT)) (-3422 (((-663 |#4|) (-663 |#4|)) 97 T ELT)) (-3405 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3417 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 50 T ELT)) (-3416 (((-114) |#4|) 45 T ELT))) -(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3404 ((-663 |#4|) (-663 |#4|))) (-15 -3404 ((-663 |#4|) |#4| |#4|)) (-15 -3402 ((-663 |#4|) (-663 |#4|))) (-15 -3403 ((-663 |#4|) |#4| |#4|)) (-15 -3404 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -3404 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3404 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -3405 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3406 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3407 ((-114) (-663 |#4|))) (-15 -3408 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -3409 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3410 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3411 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3412 ((-114) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3414 ((-114) |#4|)) (-15 -3415 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3416 ((-114) |#4|)) (-15 -3417 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3418 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3418 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -3419 (|#4| |#4| (-663 |#4|))) (-15 -3420 ((-663 |#4|) (-663 |#4|))) (-15 -3421 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3830 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -3422 ((-663 |#4|) (-663 |#4|))) (-15 -3423 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3424 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3425 ((-663 |#4|) |#4|)) (-15 -3426 ((-663 |#4|) (-663 |#4|))) (-15 -3426 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3427 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3428 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3429 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3430 ((-663 |#4|) (-663 |#4|))) (-15 -3431 ((-663 |#4|) (-663 |#4|))) (-15 -3432 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|)) (-571) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -1009)) -((-3432 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3431 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3429 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3428 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3427 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3426 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *7)))) (-3426 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3425 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3424 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1009 *5 *6 *7 *8)))) (-3423 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) (-4 *8 (-872)) (-5 *1 (-1009 *6 *7 *8 *9)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3421 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -3830 (-663 *7)))) (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3419 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *2)))) (-3418 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *7)))) (-3418 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3416 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3415 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3414 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3413 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3407 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *5 *6 *7 *8)))) (-3405 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7)))) (-3404 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *7)))) (-3404 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *3)))) (-3403 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) (-3404 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) -(-10 -7 (-15 -3404 ((-663 |#4|) (-663 |#4|))) (-15 -3404 ((-663 |#4|) |#4| |#4|)) (-15 -3402 ((-663 |#4|) (-663 |#4|))) (-15 -3403 ((-663 |#4|) |#4| |#4|)) (-15 -3404 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -3404 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3404 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -3405 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3406 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3407 ((-114) (-663 |#4|))) (-15 -3408 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -3409 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3410 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3411 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3412 ((-114) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3414 ((-114) |#4|)) (-15 -3415 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3416 ((-114) |#4|)) (-15 -3417 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3418 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3418 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -3419 (|#4| |#4| (-663 |#4|))) (-15 -3420 ((-663 |#4|) (-663 |#4|))) (-15 -3421 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3830 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -3422 ((-663 |#4|) (-663 |#4|))) (-15 -3423 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3424 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3425 ((-663 |#4|) |#4|)) (-15 -3426 ((-663 |#4|) (-663 |#4|))) (-15 -3426 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3427 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3428 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3429 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3430 ((-663 |#4|) (-663 |#4|))) (-15 -3431 ((-663 |#4|) (-663 |#4|))) (-15 -3432 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|)) -((-3433 (((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3435 (((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|)) 45 T ELT)) (-3434 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-1010 |#1|) (-10 -7 (-15 -3433 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3434 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3435 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|)))) (-376)) (T -1010)) -((-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1299 *5))))) (-5 *1 (-1010 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)))) (-3434 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-1010 *5)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) (-5 *1 (-1010 *6)) (-5 *3 (-711 *6))))) -(-10 -7 (-15 -3433 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3434 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3435 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1299 |#1|)))) (-711 |#1|) (-1299 |#1|)))) -((-4487 (((-419 |#4|) |#4|) 61 T ELT))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4487 ((-419 |#4|) |#4|))) (-872) (-817) (-466) (-980 |#3| |#2| |#1|)) (T -1011)) -((-4487 (*1 *2 *3) (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-466)) (-5 *2 (-419 *3)) (-5 *1 (-1011 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4))))) -(-10 -7 (-15 -4487 ((-419 |#4|) |#4|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4354 (($ (-793)) 121 (|has| |#1| (-23)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4512)) ELT) (($ $) 97 (-12 (|has| |#1| (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 99 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 109 T ELT)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) 106 T ELT) (((-560) |#1| $) 105 (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) 104 (|has| |#1| (-1133)) ELT)) (-4222 (($ (-663 |#1|)) 127 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4351 (((-711 |#1|) $ $) 114 (|has| |#1| (-1081)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 91 (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 92 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4348 ((|#1| $) 111 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1034))) ELT)) (-4349 ((|#1| $) 112 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1034))) ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-4285 (($ $ (-663 |#1|)) 125 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-4352 ((|#1| $ $) 115 (|has| |#1| (-1081)) ELT)) (-4427 (((-949) $) 126 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-4350 (($ $ $) 113 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 100 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 128 T ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 93 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 95 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) 94 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 96 (|has| |#1| (-872)) ELT)) (-4353 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-748)) ELT) (($ $ |#1|) 116 (|has| |#1| (-748)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1012 |#1|) (-142) (-1081)) (T -1012)) -((-4222 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1081)) (-4 *1 (-1012 *3)))) (-4427 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1081)) (-5 *2 (-949)))) (-4350 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1081)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1012 *3)) (-4 *3 (-1081))))) -(-13 (-1298 |t#1|) (-637 (-663 |t#1|)) (-10 -8 (-15 -4222 ($ (-663 |t#1|))) (-15 -4427 ((-949) $)) (-15 -4350 ($ $ $)) (-15 -4285 ($ $ (-663 |t#1|))))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-637 (-663 |#1|)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1133) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872))) ((-1249) . T) ((-1298 |#1|) . T)) -((-4474 (((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)) 17 T ELT))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -4474 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))) (-1081) (-1081)) (T -1013)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-5 *2 (-973 *6)) (-5 *1 (-1013 *5 *6))))) -(-10 -7 (-15 -4474 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))) -((-3438 ((|#1| (-973 |#1|)) 14 T ELT)) (-3437 ((|#1| (-973 |#1|)) 13 T ELT)) (-3436 ((|#1| (-973 |#1|)) 12 T ELT)) (-3440 ((|#1| (-973 |#1|)) 16 T ELT)) (-3444 ((|#1| (-973 |#1|)) 24 T ELT)) (-3439 ((|#1| (-973 |#1|)) 15 T ELT)) (-3441 ((|#1| (-973 |#1|)) 17 T ELT)) (-3443 ((|#1| (-973 |#1|)) 23 T ELT)) (-3442 ((|#1| (-973 |#1|)) 22 T ELT))) -(((-1014 |#1|) (-10 -7 (-15 -3436 (|#1| (-973 |#1|))) (-15 -3437 (|#1| (-973 |#1|))) (-15 -3438 (|#1| (-973 |#1|))) (-15 -3439 (|#1| (-973 |#1|))) (-15 -3440 (|#1| (-973 |#1|))) (-15 -3441 (|#1| (-973 |#1|))) (-15 -3442 (|#1| (-973 |#1|))) (-15 -3443 (|#1| (-973 |#1|))) (-15 -3444 (|#1| (-973 |#1|)))) (-1081)) (T -1014)) -((-3444 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(-10 -7 (-15 -3436 (|#1| (-973 |#1|))) (-15 -3437 (|#1| (-973 |#1|))) (-15 -3438 (|#1| (-973 |#1|))) (-15 -3439 (|#1| (-973 |#1|))) (-15 -3440 (|#1| (-973 |#1|))) (-15 -3441 (|#1| (-973 |#1|))) (-15 -3442 (|#1| (-973 |#1|))) (-15 -3443 (|#1| (-973 |#1|))) (-15 -3444 (|#1| (-973 |#1|)))) -((-3462 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3450 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3460 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3448 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3464 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3452 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3445 (((-3 |#1| "failed") |#1| (-793)) 1 T ELT)) (-3447 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3446 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3465 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3453 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3463 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3451 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3461 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3449 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3468 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3456 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3466 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3454 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3470 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3458 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3471 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3459 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3469 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3457 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3467 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3455 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-1015 |#1|) (-142) (-1235)) (T -1015)) -((-3471 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3470 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3469 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3468 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3467 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3466 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3465 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3464 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3463 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3462 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3461 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3460 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3459 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3458 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3457 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3456 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3455 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3454 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3453 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3452 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3451 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3450 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3449 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3448 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3447 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235)))) (-3445 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(-13 (-10 -7 (-15 -3445 ((-3 |t#1| "failed") |t#1| (-793))) (-15 -3446 ((-3 |t#1| "failed") |t#1|)) (-15 -3447 ((-3 |t#1| "failed") |t#1|)) (-15 -3448 ((-3 |t#1| "failed") |t#1|)) (-15 -3449 ((-3 |t#1| "failed") |t#1|)) (-15 -3450 ((-3 |t#1| "failed") |t#1|)) (-15 -3451 ((-3 |t#1| "failed") |t#1|)) (-15 -3452 ((-3 |t#1| "failed") |t#1|)) (-15 -3453 ((-3 |t#1| "failed") |t#1|)) (-15 -3454 ((-3 |t#1| "failed") |t#1|)) (-15 -3455 ((-3 |t#1| "failed") |t#1|)) (-15 -3456 ((-3 |t#1| "failed") |t#1|)) (-15 -3457 ((-3 |t#1| "failed") |t#1|)) (-15 -3458 ((-3 |t#1| "failed") |t#1|)) (-15 -3459 ((-3 |t#1| "failed") |t#1|)) (-15 -3460 ((-3 |t#1| "failed") |t#1|)) (-15 -3461 ((-3 |t#1| "failed") |t#1|)) (-15 -3462 ((-3 |t#1| "failed") |t#1|)) (-15 -3463 ((-3 |t#1| "failed") |t#1|)) (-15 -3464 ((-3 |t#1| "failed") |t#1|)) (-15 -3465 ((-3 |t#1| "failed") |t#1|)) (-15 -3466 ((-3 |t#1| "failed") |t#1|)) (-15 -3467 ((-3 |t#1| "failed") |t#1|)) (-15 -3468 ((-3 |t#1| "failed") |t#1|)) (-15 -3469 ((-3 |t#1| "failed") |t#1|)) (-15 -3470 ((-3 |t#1| "failed") |t#1|)) (-15 -3471 ((-3 |t#1| "failed") |t#1|)))) -((-3473 ((|#4| |#4| (-663 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3472 ((|#4| |#4| (-663 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4474 ((|#4| (-1 |#4| (-976 |#1|)) |#4|) 31 T ELT))) -(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3472 (|#4| |#4| |#3|)) (-15 -3472 (|#4| |#4| (-663 |#3|))) (-15 -3473 (|#4| |#4| |#3|)) (-15 -3473 (|#4| |#4| (-663 |#3|))) (-15 -4474 (|#4| (-1 |#4| (-976 |#1|)) |#4|))) (-1081) (-817) (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209))))) (-980 (-976 |#1|) |#2| |#3|)) (T -1016)) -((-4474 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-976 *4))) (-4 *4 (-1081)) (-4 *2 (-980 (-976 *4) *5 *6)) (-4 *5 (-817)) (-4 *6 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1="failed") (-1209)))))) (-5 *1 (-1016 *4 *5 *6 *2)))) (-3473 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) (-4 *4 (-1081)) (-4 *5 (-817)) (-5 *1 (-1016 *4 *5 *6 *2)) (-4 *2 (-980 (-976 *4) *5 *6)))) (-3473 (*1 *2 *2 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) (-5 *1 (-1016 *4 *5 *3 *2)) (-4 *2 (-980 (-976 *4) *5 *3)))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) (-4 *4 (-1081)) (-4 *5 (-817)) (-5 *1 (-1016 *4 *5 *6 *2)) (-4 *2 (-980 (-976 *4) *5 *6)))) (-3472 (*1 *2 *2 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) (-5 *1 (-1016 *4 *5 *3 *2)) (-4 *2 (-980 (-976 *4) *5 *3))))) -(-10 -7 (-15 -3472 (|#4| |#4| |#3|)) (-15 -3472 (|#4| |#4| (-663 |#3|))) (-15 -3473 (|#4| |#4| |#3|)) (-15 -3473 (|#4| |#4| (-663 |#3|))) (-15 -4474 (|#4| (-1 |#4| (-976 |#1|)) |#4|))) -((-3474 ((|#2| |#3|) 35 T ELT)) (-4435 (((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 79 T ELT)) (-4434 (((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 100 T ELT))) -(((-1017 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -3474 (|#2| |#3|))) (-363) (-1275 |#1|) (-1275 |#2|) (-746 |#2| |#3|)) (T -1017)) -((-3474 (*1 *2 *3) (-12 (-4 *3 (-1275 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1017 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-746 *2 *3)))) (-4435 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 *3)) (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1017 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) (-4434 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| -2236 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5))))) -(-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -3474 (|#2| |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3907 (((-3 (-114) #1="failed") $) 71 T ELT)) (-4165 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3478 (($ $ (-3 (-114) #1#)) 72 T ELT)) (-3479 (($ (-663 |#4|) |#4|) 25 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3475 (($ $) 69 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3909 (((-114) $) 70 T ELT)) (-4079 (($) 30 T ELT)) (-3476 ((|#4| $) 74 T ELT)) (-3477 (((-663 |#4|) $) 73 T ELT)) (-4462 (((-888) $) 68 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1018 |#1| |#2| |#3| |#4|) (-13 (-1133) (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -3479 ($ (-663 |#4|) |#4|)) (-15 -3907 ((-3 (-114) #1="failed") $)) (-15 -3478 ($ $ (-3 (-114) #1#))) (-15 -3909 ((-114) $)) (-15 -3477 ((-663 |#4|) $)) (-15 -3476 (|#4| $)) (-15 -3475 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4165 ($ $)) |%noBranch|) |%noBranch|))) (-466) (-872) (-817) (-980 |#1| |#3| |#2|)) (T -1018)) -((-4079 (*1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-872)) (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-980 *2 *4 *3)))) (-3479 (*1 *1 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-980 *4 *6 *5)) (-4 *4 (-466)) (-4 *5 (-872)) (-4 *6 (-817)) (-5 *1 (-1018 *4 *5 *6 *3)))) (-3907 (*1 *2 *1) (|partial| -12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-114)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) (-3478 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) (-3909 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-114)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) (-3477 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-663 *6)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) (-3476 (*1 *2 *1) (-12 (-4 *2 (-980 *3 *5 *4)) (-5 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)))) (-3475 (*1 *1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-872)) (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-980 *2 *4 *3)))) (-4165 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-872)) (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-980 *2 *4 *3))))) -(-13 (-1133) (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -3479 ($ (-663 |#4|) |#4|)) (-15 -3907 ((-3 (-114) #1="failed") $)) (-15 -3478 ($ $ (-3 (-114) #1#))) (-15 -3909 ((-114) $)) (-15 -3477 ((-663 |#4|) $)) (-15 -3476 (|#4| $)) (-15 -3475 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4165 ($ $)) |%noBranch|) |%noBranch|))) -((-3480 (((-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))) 82 T ELT))) -(((-1019 |#1| |#2|) (-10 -7 (-15 -3480 ((-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))))) (-663 (-1209)) (-793)) (T -1019)) -((-3480 (*1 *2 *2) (-12 (-5 *2 (-1018 (-421 (-560)) (-889 *3) (-246 *4 (-793)) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1209))) (-14 *4 (-793)) (-5 *1 (-1019 *3 *4))))) -(-10 -7 (-15 -3480 ((-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1018 (-421 (-560)) (-889 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))))) -((-3774 (((-114) |#5| |#5|) 44 T ELT)) (-3777 (((-114) |#5| |#5|) 59 T ELT)) (-3782 (((-114) |#5| (-663 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3778 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3784 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) 70 T ELT)) (-3773 (((-1305)) 32 T ELT)) (-3772 (((-1305) (-1191) (-1191) (-1191)) 28 T ELT)) (-3783 (((-663 |#5|) (-663 |#5|)) 100 T ELT)) (-3785 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) 92 T ELT)) (-3786 (((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 122 T ELT)) (-3776 (((-114) |#5| |#5|) 53 T ELT)) (-3781 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3779 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-3780 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-4215 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-3787 (((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-3775 (((-663 |#5|) (-663 |#5|)) 49 T ELT))) -(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-1305) (-1191) (-1191) (-1191))) (-15 -3773 ((-1305))) (-15 -3774 ((-114) |#5| |#5|)) (-15 -3775 ((-663 |#5|) (-663 |#5|))) (-15 -3776 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3778 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3779 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3780 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4215 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3781 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3782 ((-114) |#5| |#5|)) (-15 -3782 ((-114) |#5| (-663 |#5|))) (-15 -3783 ((-663 |#5|) (-663 |#5|))) (-15 -3784 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3785 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-15 -3786 ((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3787 ((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1020)) -((-3787 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1103 *6 *7 *8 *9)))) (-3786 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1103 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -1755 *7)))) (-4 *6 (-1097 *3 *4 *5)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3784 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-3782 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3781 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-4215 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3780 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3779 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3778 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3776 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3773 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3772 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7))))) -(-10 -7 (-15 -3772 ((-1305) (-1191) (-1191) (-1191))) (-15 -3773 ((-1305))) (-15 -3774 ((-114) |#5| |#5|)) (-15 -3775 ((-663 |#5|) (-663 |#5|))) (-15 -3776 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3778 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3779 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3780 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4215 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3781 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3782 ((-114) |#5| |#5|)) (-15 -3782 ((-114) |#5| (-663 |#5|))) (-15 -3783 ((-663 |#5|) (-663 |#5|))) (-15 -3784 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3785 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-15 -3786 ((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3787 ((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) -((-4347 (((-1209) $) 15 T ELT)) (-3908 (((-1191) $) 16 T ELT)) (-3730 (($ (-1209) (-1191)) 14 T ELT)) (-4462 (((-888) $) 13 T ELT))) -(((-1021) (-13 (-632 (-888)) (-10 -8 (-15 -3730 ($ (-1209) (-1191))) (-15 -4347 ((-1209) $)) (-15 -3908 ((-1191) $))))) (T -1021)) -((-3730 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1191)) (-5 *1 (-1021)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1021)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1021))))) -(-13 (-632 (-888)) (-10 -8 (-15 -3730 ($ (-1209) (-1191))) (-15 -4347 ((-1209) $)) (-15 -3908 ((-1191) $)))) -((-3661 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1209) #1#) $) 72 T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 (-560) #1#) $) 102 T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-1209) $) 67 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) 99 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 121 T ELT) (((-711 |#2|) (-711 $)) 35 T ELT)) (-3481 (($) 105 T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 82 T ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 91 T ELT)) (-3483 (($ $) 10 T ELT)) (-3951 (((-713 $) $) 27 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3952 (($) 16 T ELT)) (-3616 (($ $) 61 T ELT)) (-4274 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3482 (($ $) 12 T ELT)) (-4488 (((-916 (-560)) $) 77 T ELT) (((-916 (-391)) $) 86 T ELT) (((-549) $) 47 T ELT) (((-391) $) 51 T ELT) (((-229) $) 55 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1209)) 64 T ELT)) (-3614 (((-793)) 38 T ELT)) (-3172 (((-114) $ $) 57 T ELT))) -(((-1022 |#1| |#2|) (-10 -8 (-15 -3172 ((-114) |#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4462 (|#1| (-1209))) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -3481 (|#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| |#1|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-1023 |#2|) (-571)) (T -1022)) -((-3614 (*1 *2) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1022 *3 *4)) (-4 *3 (-1023 *4))))) -(-10 -8 (-15 -3172 ((-114) |#1| |#1|)) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4462 (|#1| (-1209))) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -3481 (|#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -3283 ((-914 (-560) |#1|) |#1| (-916 (-560)) (-914 (-560) |#1|))) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -2507 ((-711 |#2|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| |#1|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3617 ((|#1| $) 170 (|has| |#1| (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 161 (|has| |#1| (-940)) ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 164 (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4139 (((-560) $) 151 (|has| |#1| (-844)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1209) #2#) $) 159 (|has| |#1| (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) 142 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-560) #2#) $) 140 (|has| |#1| (-1070 (-560))) ELT)) (-3660 ((|#1| $) 201 T ELT) (((-1209) $) 160 (|has| |#1| (-1070 (-1209))) ELT) (((-421 (-560)) $) 143 (|has| |#1| (-1070 (-560))) ELT) (((-560) $) 141 (|has| |#1| (-1070 (-560))) ELT)) (-3049 (($ $ $) 68 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 185 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 184 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 183 T ELT) (((-711 |#1|) (-711 $)) 182 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3481 (($) 168 (|has| |#1| (-559)) ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-3690 (((-114) $) 153 (|has| |#1| (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 177 (|has| |#1| (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 176 (|has| |#1| (-912 (-391))) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3483 (($ $) 172 T ELT)) (-3485 ((|#1| $) 174 T ELT)) (-3951 (((-713 $) $) 139 (|has| |#1| (-1184)) ELT)) (-3691 (((-114) $) 152 (|has| |#1| (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) 65 T ELT)) (-3016 (($ $ $) 144 (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) 145 (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 187 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 186 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 181 T ELT) (((-711 |#1|) (-1299 $)) 180 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3952 (($) 138 (|has| |#1| (-1184)) CONST)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3616 (($ $) 169 (|has| |#1| (-319)) ELT)) (-3618 ((|#1| $) 166 (|has| |#1| (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 163 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 162 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) 198 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 196 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 195 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 194 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) 193 (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-1799 (((-793) $) 71 T ELT)) (-4316 (($ $ |#1|) 199 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-4274 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 190 T ELT) (($ $) 137 (|has| |#1| (-239)) ELT) (($ $ (-793)) 135 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 133 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 131 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 130 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 129 (|has| |#1| (-930 (-1209))) ELT)) (-3482 (($ $) 171 T ELT)) (-3484 ((|#1| $) 173 T ELT)) (-4488 (((-916 (-560)) $) 179 (|has| |#1| (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) 178 (|has| |#1| (-633 (-916 (-391)))) ELT) (((-549) $) 156 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 155 (|has| |#1| (-1052)) ELT) (((-229) $) 154 (|has| |#1| (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 165 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1209)) 158 (|has| |#1| (-1070 (-1209))) ELT)) (-3189 (((-713 $) $) 157 (-4043 (|has| |#1| (-147)) (-3047 (|has| $ (-147)) (|has| |#1| (-940)))) ELT)) (-3614 (((-793)) 37 T CONST)) (-3619 ((|#1| $) 167 (|has| |#1| (-559)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3889 (($ $) 150 (|has| |#1| (-844)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 188 T ELT) (($ $) 136 (|has| |#1| (-239)) ELT) (($ $ (-793)) 134 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 132 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 128 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 127 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 126 (|has| |#1| (-930 (-1209))) ELT)) (-3051 (((-114) $ $) 146 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 148 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 147 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 149 (|has| |#1| (-872)) ELT)) (-4465 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) -(((-1023 |#1|) (-142) (-571)) (T -1023)) -((-4465 (*1 *1 *2 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) (-3482 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-3481 (*1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-559)) (-4 *2 (-571)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-559)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-559))))) -(-13 (-376) (-38 |t#1|) (-1070 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-910 |t#1|) (-414 |t#1|) (-10 -8 (-15 -4465 ($ |t#1| |t#1|)) (-15 -3485 (|t#1| $)) (-15 -3484 (|t#1| $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (IF (|has| |t#1| (-1184)) (-6 (-1184)) |%noBranch|) (IF (|has| |t#1| (-1070 (-560))) (PROGN (-6 (-1070 (-560))) (-6 (-1070 (-421 (-560))))) |%noBranch|) (IF (|has| |t#1| (-872)) (-6 (-872)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1070 (-1209))) (-6 (-1070 (-1209))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3617 (|t#1| $)) (-15 -3616 ($ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3481 ($)) (-15 -3619 (|t#1| $)) (-15 -3618 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-940)) (-6 (-940)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 #2=(-1209)) |has| |#1| (-1070 (-1209))) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-633 (-229)) |has| |#1| (-1052)) ((-633 (-391)) |has| |#1| (-1052)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-916 (-391))) |has| |#1| (-633 (-916 (-391)))) ((-633 (-916 (-560))) |has| |#1| (-633 (-916 (-560)))) ((-236 $) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-466) . T) ((-528 (-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 #3=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-660 #3#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-814) |has| |#1| (-844)) ((-816) |has| |#1| (-844)) ((-818) |has| |#1| (-844)) ((-821) |has| |#1| (-844)) ((-844) |has| |#1| (-844)) ((-871) |has| |#1| (-844)) ((-872) -4043 (|has| |#1| (-872)) (|has| |#1| (-844))) ((-875) -4043 (|has| |#1| (-872)) (|has| |#1| (-844))) ((-922 $ #4=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-930 #4#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-912 (-391)) |has| |#1| (-912 (-391))) ((-912 (-560)) |has| |#1| (-912 (-560))) ((-910 |#1|) . T) ((-940) |has| |#1| (-940)) ((-951) . T) ((-1052) |has| |#1| (-1052)) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-560))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 #2#) |has| |#1| (-1070 (-1209))) ((-1070 |#1|) . T) ((-1083 #1#) . T) ((-1083 |#1|) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 |#1|) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| |#1| (-1184)) ((-1249) . T) ((-1254) . T)) -((-4474 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-1024 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#2| |#1|) |#3|))) (-571) (-571) (-1023 |#1|) (-1023 |#2|)) (T -1024)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-4 *2 (-1023 *6)) (-5 *1 (-1024 *5 *6 *4 *2)) (-4 *4 (-1023 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#2| |#1|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3486 (($ (-1174 |#1| |#2|)) 11 T ELT)) (-3612 (((-1174 |#1| |#2|) $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT))) -(((-1025 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3486 ($ (-1174 |#1| |#2|))) (-15 -3612 ((-1174 |#1| |#2|) $)))) (-949) (-376)) (T -1025)) -((-3486 (*1 *1 *2) (-12 (-5 *2 (-1174 *3 *4)) (-14 *3 (-949)) (-4 *4 (-376)) (-5 *1 (-1025 *3 *4)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-1174 *3 *4)) (-5 *1 (-1025 *3 *4)) (-14 *3 (-949)) (-4 *4 (-376))))) -(-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3486 ($ (-1174 |#1| |#2|))) (-15 -3612 ((-1174 |#1| |#2|) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 9 T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1026) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $))))) (T -1026)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1026))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4240 (($) 7 T CONST)) (-3489 (($ $) 50 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4349 (((-793) $) 49 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-3488 ((|#1| $) 48 T ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3491 ((|#1| |#1| $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-3490 ((|#1| $) 51 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-3487 ((|#1| $) 47 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1027 |#1|) (-142) (-1249)) (T -1027)) -((-3491 (*1 *2 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249)))) (-3489 (*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4511) (-15 -3491 (|t#1| |t#1| $)) (-15 -3490 (|t#1| $)) (-15 -3489 ($ $)) (-15 -4349 ((-793) $)) (-15 -3488 (|t#1| $)) (-15 -3487 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4159 ((|#1| $) 12 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-3492 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3620 ((|#1| $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3493 ((|#1| $) 15 T ELT)) (-3494 ((|#1| $) 14 T ELT)) (-3495 ((|#1| $) 13 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-4316 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4274 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3889 ((|#1| $) NIL (|has| |#1| (-1092)) ELT)) (-3145 (($) 8 T CONST)) (-3151 (($) 10 T CONST)) (-3156 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT))) -(((-1028 |#1|) (-1030 |#1|) (-175)) (T -1028)) -NIL -(-1030 |#1|) -((-3692 (((-114) $) 43 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-3510 (((-114) $) 72 T ELT)) (-3509 (((-421 (-560)) $) 76 T ELT)) (-2655 (((-114) $) 42 T ELT)) (-3620 ((|#2| $) 22 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2888 (($ $) 58 T ELT)) (-4274 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4488 (((-549) $) 67 T ELT)) (-3496 (($ $) 17 T ELT)) (-4462 (((-888) $) 53 T ELT) (($ (-560)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-421 (-560))) NIL T ELT)) (-3614 (((-793)) 10 T ELT)) (-3889 ((|#2| $) 71 T ELT)) (-3540 (((-114) $ $) 26 T ELT)) (-3172 (((-114) $ $) 69 T ELT)) (-4353 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-4355 (($ $ $) 27 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT))) -(((-1029 |#1| |#2|) (-10 -8 (-15 -4462 (|#1| (-421 (-560)))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3172 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -2888 (|#1| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -2655 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-1030 |#2|) (-175)) (T -1029)) -((-3614 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1030 *4))))) -(-10 -8 (-15 -4462 (|#1| (-421 (-560)))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -3172 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -2888 (|#1| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -3620 (|#2| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -4474 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3661 ((-3 |#2| #1="failed") |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -2655 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3692 ((-114) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -4355 (|#1| |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 (-560) #1="failed") $) 140 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 138 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3660 (((-560) $) 139 (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) 137 (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) 136 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 120 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 119 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 118 T ELT) (((-711 |#1|) (-711 $)) 117 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4159 ((|#1| $) 108 T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) 104 (|has| |#1| (-559)) ELT)) (-3510 (((-114) $) 106 (|has| |#1| (-559)) ELT)) (-3509 (((-421 (-560)) $) 105 (|has| |#1| (-559)) ELT)) (-3492 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3620 ((|#1| $) 110 T ELT)) (-3016 (($ $ $) 92 (|has| |#1| (-872)) ELT)) (-3344 (($ $ $) 93 (|has| |#1| (-872)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 122 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 121 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 116 T ELT) (((-711 |#1|) (-1299 $)) 115 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 101 (|has| |#1| (-376)) ELT)) (-3493 ((|#1| $) 111 T ELT)) (-3494 ((|#1| $) 112 T ELT)) (-3495 ((|#1| $) 113 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) 129 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 127 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 126 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) 125 (|has| |#1| (-528 (-1209) |#1|)) ELT) (($ $ (-1209) |#1|) 124 (|has| |#1| (-528 (-1209) |#1|)) ELT)) (-4316 (($ $ |#1|) 130 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4274 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 T ELT) (($ $) 91 (|has| |#1| (-239)) ELT) (($ $ (-793)) 89 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 87 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 85 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 84 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 83 (|has| |#1| (-930 (-1209))) ELT)) (-4488 (((-549) $) 102 (|has| |#1| (-633 (-549))) ELT)) (-3496 (($ $) 114 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-421 (-560))) 79 (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (((-713 $) $) 103 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3889 ((|#1| $) 107 (|has| |#1| (-1092)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 131 T ELT) (($ $) 90 (|has| |#1| (-239)) ELT) (($ $ (-793)) 88 (|has| |#1| (-239)) ELT) (($ $ (-1209)) 86 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 82 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 81 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 80 (|has| |#1| (-930 (-1209))) ELT)) (-3051 (((-114) $ $) 94 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 96 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 95 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 97 (|has| |#1| (-872)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 100 (|has| |#1| (-376)) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-421 (-560))) 99 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 98 (|has| |#1| (-376)) ELT))) -(((-1030 |#1|) (-142) (-175)) (T -1030)) -((-3496 (*1 *1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3492 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560)))))) -(-13 (-38 |t#1|) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3496 ($ $)) (-15 -3495 (|t#1| $)) (-15 -3494 (|t#1| $)) (-15 -3493 (|t#1| $)) (-15 -3620 (|t#1| $)) (-15 -3492 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4159 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-872)) (-6 (-872)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1092)) (-15 -3889 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3510 ((-114) $)) (-15 -3509 ((-421 (-560)) $)) (-15 -3511 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-236 $) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4043 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -4043 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-528 (-1209) |#1|) |has| |#1| (-528 (-1209) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 #1#) |has| |#1| (-376)) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-376)) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-376)) ((-662 |#1|) . T) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-376)) ((-739 |#1|) . T) ((-748) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-922 $ #3=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-930 #3#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1083 #1#) |has| |#1| (-376)) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1088 #1#) |has| |#1| (-376)) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-4474 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-1031 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) (-1030 |#2|) (-175) (-1030 |#4|) (-175)) (T -1031)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1030 *6)) (-5 *1 (-1031 *4 *5 *2 *6)) (-4 *4 (-1030 *5))))) -(-10 -7 (-15 -4474 (|#3| (-1 |#4| |#2|) |#1|))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4240 (($) NIL T CONST)) (-3489 (($ $) 23 T ELT)) (-3497 (($ (-663 |#1|)) 33 T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4349 (((-793) $) 26 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 28 T ELT)) (-4123 (($ |#1| $) 17 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-3488 ((|#1| $) 27 T ELT)) (-1401 ((|#1| $) 22 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3491 ((|#1| |#1| $) 16 T ELT)) (-3909 (((-114) $) 18 T ELT)) (-4079 (($) NIL T ELT)) (-3490 ((|#1| $) 21 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) NIL T ELT)) (-3487 ((|#1| $) 30 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1032 |#1|) (-13 (-1027 |#1|) (-10 -8 (-15 -3497 ($ (-663 |#1|))))) (-1133)) (T -1032)) -((-3497 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-1032 *3))))) -(-13 (-1027 |#1|) (-10 -8 (-15 -3497 ($ (-663 |#1|))))) -((-3524 (($ $) 12 T ELT)) (-3498 (($ $ (-560)) 13 T ELT))) -(((-1033 |#1|) (-10 -8 (-15 -3524 (|#1| |#1|)) (-15 -3498 (|#1| |#1| (-560)))) (-1034)) (T -1033)) -NIL -(-10 -8 (-15 -3524 (|#1| |#1|)) (-15 -3498 (|#1| |#1| (-560)))) -((-3524 (($ $) 6 T ELT)) (-3498 (($ $ (-560)) 7 T ELT)) (** (($ $ (-421 (-560))) 8 T ELT))) -(((-1034) (-142)) (T -1034)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-421 (-560))))) (-3498 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-560)))) (-3524 (*1 *1 *1) (-4 *1 (-1034)))) -(-13 (-10 -8 (-15 -3524 ($ $)) (-15 -3498 ($ $ (-560))) (-15 ** ($ $ (-421 (-560)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1862 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2287 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2285 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2004 (((-711 (-421 |#2|)) (-1299 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-3836 (((-421 |#2|) $) NIL T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1800 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3624 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1876 (((-114)) NIL T ELT)) (-1875 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-3 (-421 |#2|) #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| (-421 |#2|) (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1070 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-2014 (($ (-1299 (-421 |#2|)) (-1299 $)) NIL T ELT) (($ (-1299 (-421 |#2|))) 79 T ELT) (($ (-1299 |#2|) |#2|) NIL T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3049 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2003 (((-711 (-421 |#2|)) $ (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-1867 (((-1299 $) (-1299 $)) NIL T ELT)) (-4358 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-1854 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1879 (((-114) |#1| |#1|) NIL T ELT)) (-3597 (((-949)) NIL T ELT)) (-3481 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1874 (((-114)) NIL T ELT)) (-1873 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-3048 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4009 (($ $) NIL T ELT)) (-3320 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1895 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1988 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4239 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4288 (((-949) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-856 (-949)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3883 (((-793)) NIL T ELT)) (-1868 (((-1299 $) (-1299 $)) NIL T ELT)) (-3620 (((-421 |#2|) $) NIL T ELT)) (-1855 (((-663 (-976 |#1|)) (-1209)) NIL (|has| |#1| (-376)) ELT)) (-3951 (((-713 $) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2238 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2234 (((-949) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-3566 ((|#3| $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-421 |#2|))) (|:| |vec| (-1299 (-421 |#2|)))) (-1299 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1863 (((-711 (-421 |#2|))) 57 T ELT)) (-1865 (((-711 (-421 |#2|))) 56 T ELT)) (-2888 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1860 (($ (-1299 |#2|) |#2|) 80 T ELT)) (-1864 (((-711 (-421 |#2|))) 55 T ELT)) (-1866 (((-711 (-421 |#2|))) 54 T ELT)) (-1859 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1861 (((-2 (|:| |num| (-1299 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1872 (((-1299 $)) 51 T ELT)) (-4434 (((-1299 $)) 50 T ELT)) (-1871 (((-114) $) NIL T ELT)) (-1870 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3952 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-2645 (($ (-949)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1857 (((-3 |#2| #3="failed")) 70 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1881 (((-793)) NIL T ELT)) (-2654 (($) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4248 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1799 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4316 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1858 (((-3 |#2| #3#)) 68 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4273 (((-421 |#2|) (-1299 $)) NIL T ELT) (((-421 |#2|)) 47 T ELT)) (-1989 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4274 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2653 (((-711 (-421 |#2|)) (-1299 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3689 ((|#3|) 58 T ELT)) (-1889 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3728 (((-1299 (-421 |#2|)) $ (-1299 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 (-421 |#2|)) $) 81 T ELT) (((-711 (-421 |#2|)) (-1299 $)) NIL T ELT)) (-4488 (((-1299 (-421 |#2|)) $) NIL T ELT) (($ (-1299 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1869 (((-1299 $) (-1299 $)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3189 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-713 $) $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2852 ((|#3| $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1878 (((-114)) 65 T ELT)) (-1877 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1856 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1880 (((-114)) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-928 (-1209)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-930 (-1209))))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT))) -(((-1035 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1254) (-1275 |#1|) (-1275 (-421 |#2|)) (-421 |#2|) (-793)) (T -1035)) +((-4353 (((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 16 T ELT)) (-4354 ((|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 18 T ELT)) (-4470 (((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)) 13 T ELT))) +(((-987 |#1| |#2|) (-10 -7 (-15 -4353 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4470 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) (-1247) (-1247)) (T -987)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-986 *6)) (-5 *1 (-987 *5 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-987 *5 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-986 *5)) (-5 *1 (-987 *6 *5))))) +(-10 -7 (-15 -4353 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4470 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) +((-3315 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT))) +(((-988) (-142)) (T -988)) +((-3315 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-988)))) (-3315 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-1207))))) +(-13 (-10 -8 (-15 -3315 ($ $ (-1207))) (-15 -3315 ($ $ (-1122 $))))) +((-3316 (((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207)) (-1207)) 26 T ELT) (((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207))) 27 T ELT) (((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1201 |#1|))) (-974 |#1|) (-1207) (-974 |#1|) (-1207)) 49 T ELT))) +(((-989 |#1|) (-10 -7 (-15 -3316 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1201 |#1|))) (-974 |#1|) (-1207) (-974 |#1|) (-1207))) (-15 -3316 ((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -3316 ((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207)) (-1207)))) (-13 (-376) (-149))) (T -989)) +((-3316 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) (-5 *5 (-1207)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 *6))) (|:| |prim| (-1201 *6)))) (-5 *1 (-989 *6)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-989 *5)))) (-3316 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-974 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1201 *5)))) (-5 *1 (-989 *5))))) +(-10 -7 (-15 -3316 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1201 |#1|))) (-974 |#1|) (-1207) (-974 |#1|) (-1207))) (-15 -3316 ((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207)))) (-15 -3316 ((-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-661 (-974 |#1|)) (-661 (-1207)) (-1207)))) +((-3319 (((-661 |#1|) |#1| |#1|) 47 T ELT)) (-4235 (((-114) |#1|) 44 T ELT)) (-3318 ((|#1| |#1|) 80 T ELT)) (-3317 ((|#1| |#1|) 79 T ELT))) +(((-990 |#1|) (-10 -7 (-15 -4235 ((-114) |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -3319 ((-661 |#1|) |#1| |#1|))) (-557)) (T -990)) +((-3319 (*1 *2 *3 *3) (-12 (-5 *2 (-661 *3)) (-5 *1 (-990 *3)) (-4 *3 (-557)))) (-3318 (*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-557)))) (-3317 (*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-557)))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-990 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -4235 ((-114) |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -3319 ((-661 |#1|) |#1| |#1|))) +((-3320 (((-1303) (-886)) 9 T ELT))) +(((-991) (-10 -7 (-15 -3320 ((-1303) (-886))))) (T -991)) +((-3320 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-991))))) +(-10 -7 (-15 -3320 ((-1303) (-886)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-2883 (($ $ $) 65 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-1436 (((-3 $ "failed") $ $) 52 (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-3620 (((-791)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3321 ((|#2| $) 22 T ELT)) (-3322 ((|#1| $) 21 T ELT)) (-4236 (($) NIL (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-3969 (((-3 $ "failed") $) NIL (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (-3477 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3686 (((-114) $) NIL (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-2651 (((-114) $) NIL (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (-3012 (($ $ $) NIL (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3340 (($ $ $) NIL (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3323 (($ |#1| |#2|) 20 T ELT)) (-2230 (((-947) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2641 (($ (-947)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3492 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2834 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4458 (((-886) $) 14 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 42 (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-3147 (($) 25 (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) CONST)) (-3047 (((-114) $ $) NIL (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3048 (((-114) $ $) NIL (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3536 (((-114) $ $) 19 T ELT)) (-3167 (((-114) $ $) NIL (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3168 (((-114) $ $) 69 (-4039 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-4461 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4349 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-4351 (($ $ $) 45 (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (** (($ $ (-558)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT) (($ $ (-791)) 32 (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT) (($ $ (-947)) NIL (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (* (($ (-558) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-791) $) 48 (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ (-947) $) NIL (-4039 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ $ $) 28 (-4039 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT))) +(((-992 |#1| |#2|) (-13 (-1131) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-746)) (IF (|has| |#2| (-746)) (-6 (-746)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -3323 ($ |#1| |#2|)) (-15 -3322 (|#1| $)) (-15 -3321 (|#2| $)))) (-1131) (-1131)) (T -992)) +((-3323 (*1 *1 *2 *3) (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3322 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1131)))) (-3321 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1131))))) +(-13 (-1131) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-746)) (IF (|has| |#2| (-746)) (-6 (-746)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -3323 ($ |#1| |#2|)) (-15 -3322 (|#1| $)) (-15 -3321 (|#2| $)))) +((-3904 (((-1133) $) 12 T ELT)) (-3324 (($ (-518) (-1133)) 14 T ELT)) (-4052 (((-518) $) 9 T ELT)) (-4458 (((-886) $) 24 T ELT))) +(((-993) (-13 (-630 (-886)) (-10 -8 (-15 -4052 ((-518) $)) (-15 -3904 ((-1133) $)) (-15 -3324 ($ (-518) (-1133)))))) (T -993)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-993)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-993)))) (-3324 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1133)) (-5 *1 (-993))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4052 ((-518) $)) (-15 -3904 ((-1133) $)) (-15 -3324 ($ (-518) (-1133))))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3338 (($) 17 T CONST)) (-3042 (($ $ $) 37 T ELT)) (-3041 (($ $) 29 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3329 (((-711 (-896 $ $)) $) 62 T ELT)) (-3331 (((-711 $) $) 52 T ELT)) (-3328 (((-711 (-896 $ $)) $) 63 T ELT)) (-3327 (((-711 (-896 $ $)) $) 64 T ELT)) (-3332 (((-711 |#1|) $) 43 T ELT)) (-3330 (((-711 (-896 $ $)) $) 61 T ELT)) (-3336 (($ $ $) 38 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3337 (($) 16 T CONST)) (-3335 (($ $ $) 39 T ELT)) (-3325 (($ $ $) 36 T ELT)) (-3326 (($ $ $) 34 T ELT)) (-4458 (((-886) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3043 (($ $ $) 35 T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-994 |#1|) (-13 (-997) (-633 |#1|) (-10 -8 (-15 -3332 ((-711 |#1|) $)) (-15 -3331 ((-711 $) $)) (-15 -3330 ((-711 (-896 $ $)) $)) (-15 -3329 ((-711 (-896 $ $)) $)) (-15 -3328 ((-711 (-896 $ $)) $)) (-15 -3327 ((-711 (-896 $ $)) $)) (-15 -3326 ($ $ $)) (-15 -3325 ($ $ $)))) (-1131)) (T -994)) +((-3332 (*1 *2 *1) (-12 (-5 *2 (-711 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-711 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1131)))) (-3326 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1131)))) (-3325 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1131))))) +(-13 (-997) (-633 |#1|) (-10 -8 (-15 -3332 ((-711 |#1|) $)) (-15 -3331 ((-711 $) $)) (-15 -3330 ((-711 (-896 $ $)) $)) (-15 -3329 ((-711 (-896 $ $)) $)) (-15 -3328 ((-711 (-896 $ $)) $)) (-15 -3327 ((-711 (-896 $ $)) $)) (-15 -3326 ($ $ $)) (-15 -3325 ($ $ $)))) +((-4161 (((-994 |#1|) (-994 |#1|)) 46 T ELT)) (-3334 (((-994 |#1|) (-994 |#1|)) 22 T ELT)) (-3333 (((-1127 |#1|) (-994 |#1|)) 41 T ELT))) +(((-995 |#1|) (-13 (-1247) (-10 -7 (-15 -3334 ((-994 |#1|) (-994 |#1|))) (-15 -3333 ((-1127 |#1|) (-994 |#1|))) (-15 -4161 ((-994 |#1|) (-994 |#1|))))) (-1131)) (T -995)) +((-3334 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1131)) (-5 *1 (-995 *3)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-994 *4)) (-4 *4 (-1131)) (-5 *2 (-1127 *4)) (-5 *1 (-995 *4)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1131)) (-5 *1 (-995 *3))))) +(-13 (-1247) (-10 -7 (-15 -3334 ((-994 |#1|) (-994 |#1|))) (-15 -3333 ((-1127 |#1|) (-994 |#1|))) (-15 -4161 ((-994 |#1|) (-994 |#1|))))) +((-4470 (((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|)) 29 T ELT))) +(((-996 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -4470 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) (-1131) (-1131)) (T -996)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6))))) +(-13 (-1247) (-10 -7 (-15 -4470 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) +((-3049 (((-114) $ $) 19 T ELT)) (-2536 (($ $) 8 T ELT)) (-3338 (($) 17 T CONST)) (-3042 (($ $ $) 9 T ELT)) (-3041 (($ $) 11 T ELT)) (-3742 (((-1189) $) 23 T ELT)) (-3336 (($ $ $) 15 T ELT)) (-3743 (((-1150) $) 22 T ELT)) (-3337 (($) 16 T CONST)) (-3335 (($ $ $) 14 T ELT)) (-4458 (((-886) $) 21 T ELT)) (-1387 (((-114) $ $) 20 T ELT)) (-3043 (($ $ $) 10 T ELT)) (-2534 (($ $ $) 6 T ELT)) (-3536 (((-114) $ $) 18 T ELT)) (-2535 (($ $ $) 7 T ELT))) +(((-997) (-142)) (T -997)) +((-3338 (*1 *1) (-4 *1 (-997))) (-3337 (*1 *1) (-4 *1 (-997))) (-3336 (*1 *1 *1 *1) (-4 *1 (-997))) (-3335 (*1 *1 *1 *1) (-4 *1 (-997)))) +(-13 (-113) (-1131) (-10 -8 (-15 -3338 ($) -4464) (-15 -3337 ($) -4464) (-15 -3336 ($ $ $)) (-15 -3335 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-630 (-886)) . T) ((-682) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4236 (($) 7 T CONST)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3339 (($ $ $) 47 T ELT)) (-4020 (($ $ $) 48 T ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3340 ((|#1| $) 49 T ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-998 |#1|) (-142) (-870)) (T -998)) +((-3340 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-3339 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4507) (-15 -3340 (|t#1| $)) (-15 -4020 ($ $ $)) (-15 -3339 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3352 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|) 105 T ELT)) (-4267 ((|#2| |#2| |#2|) 103 T ELT)) (-3353 (((-2 (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|) 107 T ELT)) (-3354 (((-2 (|:| |coef1| |#2|) (|:| -3644 |#2|)) |#2| |#2|) 109 T ELT)) (-3361 (((-2 (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|) 132 (|has| |#1| (-464)) ELT)) (-3368 (((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|) 56 T ELT)) (-3342 (((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|) 80 T ELT)) (-3343 (((-2 (|:| |coef1| |#2|) (|:| -4268 |#1|)) |#2| |#2|) 82 T ELT)) (-3351 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3346 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 89 T ELT)) (-3356 (((-2 (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|) 121 T ELT)) (-3349 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 92 T ELT)) (-3358 (((-661 (-791)) |#2| |#2|) 102 T ELT)) (-3366 ((|#1| |#2| |#2|) 50 T ELT)) (-3360 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|) 130 (|has| |#1| (-464)) ELT)) (-3359 ((|#1| |#2| |#2|) 128 (|has| |#1| (-464)) ELT)) (-3367 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|) 54 T ELT)) (-3341 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|) 79 T ELT)) (-4268 ((|#1| |#2| |#2|) 76 T ELT)) (-4264 (((-2 (|:| -4466 |#1|) (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|) 41 T ELT)) (-3365 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3350 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3690 ((|#2| |#2| |#2|) 93 T ELT)) (-3345 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 87 T ELT)) (-3344 ((|#2| |#2| |#2| (-791)) 85 T ELT)) (-3644 ((|#2| |#2| |#2|) 136 (|has| |#1| (-464)) ELT)) (-3968 (((-1297 |#2|) (-1297 |#2|) |#1|) 22 T ELT)) (-3362 (((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|) 46 T ELT)) (-3355 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|) 119 T ELT)) (-4269 ((|#1| |#2|) 116 T ELT)) (-3348 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 91 T ELT)) (-3347 ((|#2| |#2| |#2| (-791)) 90 T ELT)) (-3357 (((-661 |#2|) |#2| |#2|) 99 T ELT)) (-3364 ((|#2| |#2| |#1| |#1| (-791)) 62 T ELT)) (-3363 ((|#1| |#1| |#1| (-791)) 61 T ELT)) (* (((-1297 |#2|) |#1| (-1297 |#2|)) 17 T ELT))) +(((-999 |#1| |#2|) (-10 -7 (-15 -4268 (|#1| |#2| |#2|)) (-15 -3341 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3342 ((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3343 ((-2 (|:| |coef1| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3344 (|#2| |#2| |#2| (-791))) (-15 -3345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3346 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3347 (|#2| |#2| |#2| (-791))) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3349 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3690 (|#2| |#2| |#2|)) (-15 -3350 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3351 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4267 (|#2| |#2| |#2|)) (-15 -3352 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3353 ((-2 (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -4269 (|#1| |#2|)) (-15 -3355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|)) (-15 -3356 ((-2 (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|)) (-15 -3357 ((-661 |#2|) |#2| |#2|)) (-15 -3358 ((-661 (-791)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3359 (|#1| |#2| |#2|)) (-15 -3360 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|)) (-15 -3644 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3968 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -4264 ((-2 (|:| -4466 |#1|) (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|)) (-15 -3363 (|#1| |#1| |#1| (-791))) (-15 -3364 (|#2| |#2| |#1| |#1| (-791))) (-15 -3365 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3366 (|#1| |#2| |#2|)) (-15 -3367 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3368 ((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|))) (-569) (-1273 |#1|)) (T -999)) +((-3368 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4268 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3367 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4268 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3366 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-3365 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3364 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3363 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) (-4 *4 (-1273 *2)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4264 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4466 *4) (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3968 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (-3644 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3361 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3359 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3360 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3359 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3359 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-3358 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-791))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3357 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4269 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4269 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4269 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-3354 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3644 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3353 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3644 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3352 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3644 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4267 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3351 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3690 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3349 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3348 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3347 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-3346 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3345 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3344 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4268 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3342 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4268 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4268 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4268 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) +(-10 -7 (-15 -4268 (|#1| |#2| |#2|)) (-15 -3341 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3342 ((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3343 ((-2 (|:| |coef1| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3344 (|#2| |#2| |#2| (-791))) (-15 -3345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3346 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3347 (|#2| |#2| |#2| (-791))) (-15 -3348 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3349 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3690 (|#2| |#2| |#2|)) (-15 -3350 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3351 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4267 (|#2| |#2| |#2|)) (-15 -3352 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3353 ((-2 (|:| |coef2| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -4269 (|#1| |#2|)) (-15 -3355 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|)) (-15 -3356 ((-2 (|:| |coef2| |#2|) (|:| -4269 |#1|)) |#2|)) (-15 -3357 ((-661 |#2|) |#2| |#2|)) (-15 -3358 ((-661 (-791)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3359 (|#1| |#2| |#2|)) (-15 -3360 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -3359 |#1|)) |#2| |#2|)) (-15 -3644 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3968 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -4264 ((-2 (|:| -4466 |#1|) (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) |#2| |#2|)) (-15 -3363 (|#1| |#1| |#1| (-791))) (-15 -3364 (|#2| |#2| |#1| |#1| (-791))) (-15 -3365 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3366 (|#1| |#2| |#2|)) (-15 -3367 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|)) (-15 -3368 ((-2 (|:| |coef2| |#2|) (|:| -4268 |#1|)) |#2| |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3818 (((-1248) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 10 T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1000) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $))))) (T -1000)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1000))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 40 T ELT)) (-1436 (((-3 $ "failed") $ $) 54 T ELT)) (-4236 (($) NIL T CONST)) (-3370 (((-661 (-896 (-947) (-947))) $) 67 T ELT)) (-3686 (((-114) $) NIL T ELT)) (-3369 (((-947) $) 94 T ELT)) (-3372 (((-661 (-947)) $) 17 T ELT)) (-3371 (((-1185 $) (-791)) 39 T ELT)) (-3373 (($ (-661 (-947))) 16 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3492 (($ $) 70 T ELT)) (-4458 (((-886) $) 90 T ELT) (((-661 (-947)) $) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 8 T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 44 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 42 T ELT)) (-4351 (($ $ $) 46 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) 49 T ELT)) (-4469 (((-791) $) 22 T ELT))) +(((-1001) (-13 (-819) (-630 (-661 (-947))) (-10 -8 (-15 -3373 ($ (-661 (-947)))) (-15 -3372 ((-661 (-947)) $)) (-15 -4469 ((-791) $)) (-15 -3371 ((-1185 $) (-791))) (-15 -3370 ((-661 (-896 (-947) (-947))) $)) (-15 -3369 ((-947) $)) (-15 -3492 ($ $))))) (T -1001)) +((-3373 (*1 *1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1001)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1001)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1001)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1185 (-1001))) (-5 *1 (-1001)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-661 (-896 (-947) (-947)))) (-5 *1 (-1001)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-1001)))) (-3492 (*1 *1 *1) (-5 *1 (-1001)))) +(-13 (-819) (-630 (-661 (-947))) (-10 -8 (-15 -3373 ($ (-661 (-947)))) (-15 -3372 ((-661 (-947)) $)) (-15 -4469 ((-791) $)) (-15 -3371 ((-1185 $) (-791))) (-15 -3370 ((-661 (-896 (-947) (-947))) $)) (-15 -3369 ((-947) $)) (-15 -3492 ($ $)))) +((-4461 (($ $ |#2|) 31 T ELT)) (-4349 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-419 (-558)) $) 27 T ELT) (($ $ (-419 (-558))) 29 T ELT))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4461 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) (-1003 |#2| |#3| |#4|) (-1079) (-814) (-870)) (T -1002)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4461 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-947) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 |#3|) $) 92 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3375 (((-114) $) 91 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-661 |#3|) (-661 |#2|)) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4460 ((|#2| $) 81 T ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4189 ((|#1| $ |#2|) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1003 |#1| |#2| |#3|) (-142) (-1079) (-814) (-870)) (T -1003)) +((-3674 (*1 *2 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *2 (-814)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-814)) (-4 *2 (-870)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 *5)) (-4 *1 (-1003 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-661 *5)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-114)))) (-3374 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3376 ($ $ |t#3| |t#2|)) (-15 -3376 ($ $ (-661 |t#3|) (-661 |t#2|))) (-15 -3377 ($ $)) (-15 -3674 (|t#1| $)) (-15 -4460 (|t#2| $)) (-15 -3566 ((-661 |t#3|) $)) (-15 -3375 ((-114) $)) (-15 -3374 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3378 (((-1119 (-229)) $) 8 T ELT)) (-3379 (((-1119 (-229)) $) 9 T ELT)) (-3380 (((-1119 (-229)) $) 10 T ELT)) (-3381 (((-661 (-661 (-971 (-229)))) $) 11 T ELT)) (-4458 (((-886) $) 6 T ELT))) +(((-1004) (-142)) (T -1004)) +((-3381 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-661 (-661 (-971 (-229))))))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229))))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229))))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229)))))) +(-13 (-630 (-886)) (-10 -8 (-15 -3381 ((-661 (-661 (-971 (-229)))) $)) (-15 -3380 ((-1119 (-229)) $)) (-15 -3379 ((-1119 (-229)) $)) (-15 -3378 ((-1119 (-229)) $)))) +(((-630 (-886)) . T)) +((-3566 (((-661 |#4|) $) 23 T ELT)) (-3391 (((-114) $) 55 T ELT)) (-3382 (((-114) $) 54 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3387 (((-114) $) 56 T ELT)) (-3389 (((-114) $ $) 62 T ELT)) (-3388 (((-114) $ $) 65 T ELT)) (-3390 (((-114) $) 60 T ELT)) (-3383 (((-661 |#5|) (-661 |#5|) $) 98 T ELT)) (-3384 (((-661 |#5|) (-661 |#5|) $) 95 T ELT)) (-3385 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3397 (((-661 |#4|) $) 27 T ELT)) (-3396 (((-114) |#4| $) 34 T ELT)) (-3386 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3393 (($ $ |#4|) 39 T ELT)) (-3395 (($ $ |#4|) 38 T ELT)) (-3394 (($ $ |#4|) 40 T ELT)) (-3536 (((-114) $ $) 46 T ELT))) +(((-1005 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3382 ((-114) |#1|)) (-15 -3383 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3384 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3385 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3386 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3387 ((-114) |#1|)) (-15 -3388 ((-114) |#1| |#1|)) (-15 -3389 ((-114) |#1| |#1|)) (-15 -3390 ((-114) |#1|)) (-15 -3391 ((-114) |#1|)) (-15 -3392 ((-2 (|:| |under| |#1|) (|:| -3614 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3393 (|#1| |#1| |#4|)) (-15 -3394 (|#1| |#1| |#4|)) (-15 -3395 (|#1| |#1| |#4|)) (-15 -3396 ((-114) |#4| |#1|)) (-15 -3397 ((-661 |#4|) |#1|)) (-15 -3566 ((-661 |#4|) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-1006 |#2| |#3| |#4| |#5|) (-1079) (-815) (-870) (-1095 |#2| |#3| |#4|)) (T -1005)) +NIL +(-10 -8 (-15 -3382 ((-114) |#1|)) (-15 -3383 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3384 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3385 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3386 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3387 ((-114) |#1|)) (-15 -3388 ((-114) |#1| |#1|)) (-15 -3389 ((-114) |#1| |#1|)) (-15 -3390 ((-114) |#1|)) (-15 -3391 ((-114) |#1|)) (-15 -3392 ((-2 (|:| |under| |#1|) (|:| -3614 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3393 (|#1| |#1| |#4|)) (-15 -3394 (|#1| |#1| |#4|)) (-15 -3395 (|#1| |#1| |#4|)) (-15 -3396 ((-114) |#4| |#1|)) (-15 -3397 ((-661 |#4|) |#1|)) (-15 -3566 ((-661 |#4|) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-1006 |#1| |#2| |#3| |#4|) (-142) (-1079) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1006)) +((-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5)))) (-3396 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-114)))) (-3395 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-3393 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-3392 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3614 *1) (|:| |upper| *1))) (-4 *1 (-1006 *4 *5 *3 *6)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3389 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3386 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3385 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3384 (*1 *2 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-3383 (*1 *2 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) +(-13 (-1131) (-153 |t#4|) (-630 (-661 |t#4|)) (-10 -8 (-6 -4507) (-15 -3657 ((-3 $ "failed") (-661 |t#4|))) (-15 -3656 ($ (-661 |t#4|))) (-15 -3680 (|t#3| $)) (-15 -3566 ((-661 |t#3|) $)) (-15 -3397 ((-661 |t#3|) $)) (-15 -3396 ((-114) |t#3| $)) (-15 -3395 ($ $ |t#3|)) (-15 -3394 ($ $ |t#3|)) (-15 -3393 ($ $ |t#3|)) (-15 -3392 ((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |t#3|)) (-15 -3391 ((-114) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3390 ((-114) $)) (-15 -3389 ((-114) $ $)) (-15 -3388 ((-114) $ $)) (-15 -3387 ((-114) $)) (-15 -3386 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3385 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3384 ((-661 |t#4|) (-661 |t#4|) $)) (-15 -3383 ((-661 |t#4|) (-661 |t#4|) $)) (-15 -3382 ((-114) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1131) . T) ((-1247) . T)) +((-3399 (((-661 |#4|) |#4| |#4|) 137 T ELT)) (-3422 (((-661 |#4|) (-661 |#4|) (-114)) 125 (|has| |#1| (-464)) ELT) (((-661 |#4|) (-661 |#4|)) 126 (|has| |#1| (-464)) ELT)) (-3409 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 44 T ELT)) (-3408 (((-114) |#4|) 43 T ELT)) (-3421 (((-661 |#4|) |#4|) 121 (|has| |#1| (-464)) ELT)) (-3404 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-1 (-114) |#4|) (-661 |#4|)) 24 T ELT)) (-3405 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|)) 30 T ELT)) (-3406 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|)) 31 T ELT)) (-3417 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3826 (-661 |#4|))) "failed") (-661 |#4|)) 90 T ELT)) (-3419 (((-661 |#4|) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3420 (((-661 |#4|) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3398 (((-661 |#4|) (-661 |#4|)) 128 T ELT)) (-3414 (((-661 |#4|) (-661 |#4|) (-661 |#4|) (-114)) 59 T ELT) (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 61 T ELT)) (-3415 ((|#4| |#4| (-661 |#4|)) 60 T ELT)) (-3423 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 133 (|has| |#1| (-464)) ELT)) (-3425 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 136 (|has| |#1| (-464)) ELT)) (-3424 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 135 (|has| |#1| (-464)) ELT)) (-3400 (((-661 |#4|) (-661 |#4|) (-661 |#4|) (-1 (-661 |#4|) (-661 |#4|))) 105 T ELT) (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 107 T ELT) (((-661 |#4|) (-661 |#4|) |#4|) 141 T ELT) (((-661 |#4|) |#4| |#4|) 138 T ELT) (((-661 |#4|) (-661 |#4|)) 106 T ELT)) (-3428 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3407 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 52 T ELT)) (-3403 (((-114) (-661 |#4|)) 79 T ELT)) (-3402 (((-114) (-661 |#4|) (-661 (-661 |#4|))) 67 T ELT)) (-3411 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 37 T ELT)) (-3410 (((-114) |#4|) 36 T ELT)) (-3427 (((-661 |#4|) (-661 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3426 (((-661 |#4|) (-661 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3416 (((-661 |#4|) (-661 |#4|)) 83 T ELT)) (-3418 (((-661 |#4|) (-661 |#4|)) 97 T ELT)) (-3401 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3413 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 50 T ELT)) (-3412 (((-114) |#4|) 45 T ELT))) +(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3400 ((-661 |#4|) (-661 |#4|))) (-15 -3400 ((-661 |#4|) |#4| |#4|)) (-15 -3398 ((-661 |#4|) (-661 |#4|))) (-15 -3399 ((-661 |#4|) |#4| |#4|)) (-15 -3400 ((-661 |#4|) (-661 |#4|) |#4|)) (-15 -3400 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3400 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-1 (-661 |#4|) (-661 |#4|)))) (-15 -3401 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3402 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3403 ((-114) (-661 |#4|))) (-15 -3404 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-1 (-114) |#4|) (-661 |#4|))) (-15 -3405 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3406 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3407 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3408 ((-114) |#4|)) (-15 -3409 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3410 ((-114) |#4|)) (-15 -3411 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3412 ((-114) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3414 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3414 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-114))) (-15 -3415 (|#4| |#4| (-661 |#4|))) (-15 -3416 ((-661 |#4|) (-661 |#4|))) (-15 -3417 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3826 (-661 |#4|))) "failed") (-661 |#4|))) (-15 -3418 ((-661 |#4|) (-661 |#4|))) (-15 -3419 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3420 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3421 ((-661 |#4|) |#4|)) (-15 -3422 ((-661 |#4|) (-661 |#4|))) (-15 -3422 ((-661 |#4|) (-661 |#4|) (-114))) (-15 -3423 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3424 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3425 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3426 ((-661 |#4|) (-661 |#4|))) (-15 -3427 ((-661 |#4|) (-661 |#4|))) (-15 -3428 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -1007)) +((-3428 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3426 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3425 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3423 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3422 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3421 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3420 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-3419 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-661 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3417 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3826 (-661 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3415 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2)))) (-3414 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3414 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3413 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3410 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3409 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3407 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-3401 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3400 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-661 *7) (-661 *7))) (-5 *2 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3400 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) (-3399 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3400 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) +(-10 -7 (-15 -3400 ((-661 |#4|) (-661 |#4|))) (-15 -3400 ((-661 |#4|) |#4| |#4|)) (-15 -3398 ((-661 |#4|) (-661 |#4|))) (-15 -3399 ((-661 |#4|) |#4| |#4|)) (-15 -3400 ((-661 |#4|) (-661 |#4|) |#4|)) (-15 -3400 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3400 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-1 (-661 |#4|) (-661 |#4|)))) (-15 -3401 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3402 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3403 ((-114) (-661 |#4|))) (-15 -3404 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-1 (-114) |#4|) (-661 |#4|))) (-15 -3405 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3406 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3407 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3408 ((-114) |#4|)) (-15 -3409 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3410 ((-114) |#4|)) (-15 -3411 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3412 ((-114) |#4|)) (-15 -3413 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3414 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3414 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-114))) (-15 -3415 (|#4| |#4| (-661 |#4|))) (-15 -3416 ((-661 |#4|) (-661 |#4|))) (-15 -3417 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3826 (-661 |#4|))) "failed") (-661 |#4|))) (-15 -3418 ((-661 |#4|) (-661 |#4|))) (-15 -3419 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3420 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3421 ((-661 |#4|) |#4|)) (-15 -3422 ((-661 |#4|) (-661 |#4|))) (-15 -3422 ((-661 |#4|) (-661 |#4|) (-114))) (-15 -3423 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3424 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3425 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3426 ((-661 |#4|) (-661 |#4|))) (-15 -3427 ((-661 |#4|) (-661 |#4|))) (-15 -3428 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) |%noBranch|)) +((-3429 (((-2 (|:| R (-709 |#1|)) (|:| A (-709 |#1|)) (|:| |Ainv| (-709 |#1|))) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3431 (((-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|)) 45 T ELT)) (-3430 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-1008 |#1|) (-10 -7 (-15 -3429 ((-2 (|:| R (-709 |#1|)) (|:| A (-709 |#1|)) (|:| |Ainv| (-709 |#1|))) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3430 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3431 ((-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|)))) (-376)) (T -1008)) +((-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1297 *5))))) (-5 *1 (-1008 *5)) (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)))) (-3430 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-709 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-1008 *5)))) (-3429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-709 *6)) (|:| A (-709 *6)) (|:| |Ainv| (-709 *6)))) (-5 *1 (-1008 *6)) (-5 *3 (-709 *6))))) +(-10 -7 (-15 -3429 ((-2 (|:| R (-709 |#1|)) (|:| A (-709 |#1|)) (|:| |Ainv| (-709 |#1|))) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3430 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3431 ((-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1297 |#1|)))) (-709 |#1|) (-1297 |#1|)))) +((-4483 (((-417 |#4|) |#4|) 61 T ELT))) +(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4483 ((-417 |#4|) |#4|))) (-870) (-815) (-464) (-978 |#3| |#2| |#1|)) (T -1009)) +((-4483 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-464)) (-5 *2 (-417 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -4483 ((-417 |#4|) |#4|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4350 (($ (-791)) 121 (|has| |#1| (-23)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4508)) ELT) (($ $) 97 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 99 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 109 T ELT)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1131)) ELT)) (-4218 (($ (-661 |#1|)) 127 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4347 (((-709 |#1|) $ $) 114 (|has| |#1| (-1079)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 91 (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 92 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4344 ((|#1| $) 111 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-4345 ((|#1| $) 112 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-4281 (($ $ (-661 |#1|)) 125 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-4348 ((|#1| $ $) 115 (|has| |#1| (-1079)) ELT)) (-4423 (((-947) $) 126 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-4346 (($ $ $) 113 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 100 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT) (($ (-661 |#1|)) 128 T ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 93 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 95 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) 94 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 96 (|has| |#1| (-870)) ELT)) (-4349 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-746)) ELT) (($ $ |#1|) 116 (|has| |#1| (-746)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1010 |#1|) (-142) (-1079)) (T -1010)) +((-4218 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) (-4423 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-947)))) (-4346 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079))))) +(-13 (-1296 |t#1|) (-635 (-661 |t#1|)) (-10 -8 (-15 -4218 ($ (-661 |t#1|))) (-15 -4423 ((-947) $)) (-15 -4346 ($ $ $)) (-15 -4281 ($ $ (-661 |t#1|))))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-635 (-661 |#1|)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1131) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870))) ((-1247) . T) ((-1296 |#1|) . T)) +((-4470 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 17 T ELT))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -4470 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1079) (-1079)) (T -1011)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6))))) +(-10 -7 (-15 -4470 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) +((-3434 ((|#1| (-971 |#1|)) 14 T ELT)) (-3433 ((|#1| (-971 |#1|)) 13 T ELT)) (-3432 ((|#1| (-971 |#1|)) 12 T ELT)) (-3436 ((|#1| (-971 |#1|)) 16 T ELT)) (-3440 ((|#1| (-971 |#1|)) 24 T ELT)) (-3435 ((|#1| (-971 |#1|)) 15 T ELT)) (-3437 ((|#1| (-971 |#1|)) 17 T ELT)) (-3439 ((|#1| (-971 |#1|)) 23 T ELT)) (-3438 ((|#1| (-971 |#1|)) 22 T ELT))) +(((-1012 |#1|) (-10 -7 (-15 -3432 (|#1| (-971 |#1|))) (-15 -3433 (|#1| (-971 |#1|))) (-15 -3434 (|#1| (-971 |#1|))) (-15 -3435 (|#1| (-971 |#1|))) (-15 -3436 (|#1| (-971 |#1|))) (-15 -3437 (|#1| (-971 |#1|))) (-15 -3438 (|#1| (-971 |#1|))) (-15 -3439 (|#1| (-971 |#1|))) (-15 -3440 (|#1| (-971 |#1|)))) (-1079)) (T -1012)) +((-3440 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(-10 -7 (-15 -3432 (|#1| (-971 |#1|))) (-15 -3433 (|#1| (-971 |#1|))) (-15 -3434 (|#1| (-971 |#1|))) (-15 -3435 (|#1| (-971 |#1|))) (-15 -3436 (|#1| (-971 |#1|))) (-15 -3437 (|#1| (-971 |#1|))) (-15 -3438 (|#1| (-971 |#1|))) (-15 -3439 (|#1| (-971 |#1|))) (-15 -3440 (|#1| (-971 |#1|)))) +((-3458 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3446 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3456 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3444 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3460 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3448 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3441 (((-3 |#1| "failed") |#1| (-791)) 1 T ELT)) (-3443 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3442 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3461 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3449 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3459 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3447 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3457 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3445 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3464 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3452 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3462 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3450 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3466 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3454 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3467 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3455 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3465 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3453 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3463 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3451 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-1013 |#1|) (-142) (-1233)) (T -1013)) +((-3467 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3466 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3465 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3464 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3463 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3462 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3461 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3460 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3459 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3458 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3457 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3456 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3455 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3454 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3453 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3452 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3451 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3450 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3449 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3448 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3447 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3445 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3444 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3443 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3442 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233)))) (-3441 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(-13 (-10 -7 (-15 -3441 ((-3 |t#1| "failed") |t#1| (-791))) (-15 -3442 ((-3 |t#1| "failed") |t#1|)) (-15 -3443 ((-3 |t#1| "failed") |t#1|)) (-15 -3444 ((-3 |t#1| "failed") |t#1|)) (-15 -3445 ((-3 |t#1| "failed") |t#1|)) (-15 -3446 ((-3 |t#1| "failed") |t#1|)) (-15 -3447 ((-3 |t#1| "failed") |t#1|)) (-15 -3448 ((-3 |t#1| "failed") |t#1|)) (-15 -3449 ((-3 |t#1| "failed") |t#1|)) (-15 -3450 ((-3 |t#1| "failed") |t#1|)) (-15 -3451 ((-3 |t#1| "failed") |t#1|)) (-15 -3452 ((-3 |t#1| "failed") |t#1|)) (-15 -3453 ((-3 |t#1| "failed") |t#1|)) (-15 -3454 ((-3 |t#1| "failed") |t#1|)) (-15 -3455 ((-3 |t#1| "failed") |t#1|)) (-15 -3456 ((-3 |t#1| "failed") |t#1|)) (-15 -3457 ((-3 |t#1| "failed") |t#1|)) (-15 -3458 ((-3 |t#1| "failed") |t#1|)) (-15 -3459 ((-3 |t#1| "failed") |t#1|)) (-15 -3460 ((-3 |t#1| "failed") |t#1|)) (-15 -3461 ((-3 |t#1| "failed") |t#1|)) (-15 -3462 ((-3 |t#1| "failed") |t#1|)) (-15 -3463 ((-3 |t#1| "failed") |t#1|)) (-15 -3464 ((-3 |t#1| "failed") |t#1|)) (-15 -3465 ((-3 |t#1| "failed") |t#1|)) (-15 -3466 ((-3 |t#1| "failed") |t#1|)) (-15 -3467 ((-3 |t#1| "failed") |t#1|)))) +((-3469 ((|#4| |#4| (-661 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3468 ((|#4| |#4| (-661 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4470 ((|#4| (-1 |#4| (-974 |#1|)) |#4|) 31 T ELT))) +(((-1014 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 (|#4| |#4| |#3|)) (-15 -3468 (|#4| |#4| (-661 |#3|))) (-15 -3469 (|#4| |#4| |#3|)) (-15 -3469 (|#4| |#4| (-661 |#3|))) (-15 -4470 (|#4| (-1 |#4| (-974 |#1|)) |#4|))) (-1079) (-815) (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207))))) (-978 (-974 |#1|) |#2| |#3|)) (T -1014)) +((-4470 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-974 *4))) (-4 *4 (-1079)) (-4 *2 (-978 (-974 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1="failed") (-1207)))))) (-5 *1 (-1014 *4 *5 *6 *2)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) (-4 *4 (-1079)) (-4 *5 (-815)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-978 (-974 *4) *5 *6)))) (-3469 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-978 (-974 *4) *5 *3)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) (-4 *4 (-1079)) (-4 *5 (-815)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-978 (-974 *4) *5 *6)))) (-3468 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-978 (-974 *4) *5 *3))))) +(-10 -7 (-15 -3468 (|#4| |#4| |#3|)) (-15 -3468 (|#4| |#4| (-661 |#3|))) (-15 -3469 (|#4| |#4| |#3|)) (-15 -3469 (|#4| |#4| (-661 |#3|))) (-15 -4470 (|#4| (-1 |#4| (-974 |#1|)) |#4|))) +((-3470 ((|#2| |#3|) 35 T ELT)) (-4431 (((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|) 79 T ELT)) (-4430 (((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) 100 T ELT))) +(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|)) (-15 -3470 (|#2| |#3|))) (-363) (-1273 |#1|) (-1273 |#2|) (-744 |#2| |#3|)) (T -1015)) +((-3470 (*1 *2 *3) (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1015 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-744 *2 *3)))) (-4431 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-744 *3 *5)))) (-4430 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2232 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-744 *4 *5))))) +(-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|)) (-15 -3470 (|#2| |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3903 (((-3 (-114) #1="failed") $) 71 T ELT)) (-4161 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3474 (($ $ (-3 (-114) #1#)) 72 T ELT)) (-3475 (($ (-661 |#4|) |#4|) 25 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3471 (($ $) 69 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3905 (((-114) $) 70 T ELT)) (-4075 (($) 30 T ELT)) (-3472 ((|#4| $) 74 T ELT)) (-3473 (((-661 |#4|) $) 73 T ELT)) (-4458 (((-886) $) 68 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1016 |#1| |#2| |#3| |#4|) (-13 (-1131) (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -3475 ($ (-661 |#4|) |#4|)) (-15 -3903 ((-3 (-114) #1="failed") $)) (-15 -3474 ($ $ (-3 (-114) #1#))) (-15 -3905 ((-114) $)) (-15 -3473 ((-661 |#4|) $)) (-15 -3472 (|#4| $)) (-15 -3471 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4161 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-870) (-815) (-978 |#1| |#3| |#2|)) (T -1016)) +((-4075 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-870)) (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) (-3475 (*1 *1 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-978 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-870)) (-4 *6 (-815)) (-5 *1 (-1016 *4 *5 *6 *3)))) (-3903 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-3473 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-661 *6)) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-1016 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)))) (-3471 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-870)) (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) (-4161 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-870)) (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3))))) +(-13 (-1131) (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -3475 ($ (-661 |#4|) |#4|)) (-15 -3903 ((-3 (-114) #1="failed") $)) (-15 -3474 ($ $ (-3 (-114) #1#))) (-15 -3905 ((-114) $)) (-15 -3473 ((-661 |#4|) $)) (-15 -3472 (|#4| $)) (-15 -3471 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4161 ($ $)) |%noBranch|) |%noBranch|))) +((-3476 (((-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558)))) (-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558))))) 82 T ELT))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3476 ((-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558)))) (-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558))))))) (-661 (-1207)) (-791)) (T -1017)) +((-3476 (*1 *2 *2) (-12 (-5 *2 (-1016 (-419 (-558)) (-887 *3) (-246 *4 (-791)) (-255 *3 (-419 (-558))))) (-14 *3 (-661 (-1207))) (-14 *4 (-791)) (-5 *1 (-1017 *3 *4))))) +(-10 -7 (-15 -3476 ((-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558)))) (-1016 (-419 (-558)) (-887 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558))))))) +((-3770 (((-114) |#5| |#5|) 44 T ELT)) (-3773 (((-114) |#5| |#5|) 59 T ELT)) (-3778 (((-114) |#5| (-661 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3774 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3780 (((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) 70 T ELT)) (-3769 (((-1303)) 32 T ELT)) (-3768 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-3779 (((-661 |#5|) (-661 |#5|)) 100 T ELT)) (-3781 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) 92 T ELT)) (-3782 (((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114)) 122 T ELT)) (-3772 (((-114) |#5| |#5|) 53 T ELT)) (-3777 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3775 (((-114) (-661 |#4|) (-661 |#4|)) 64 T ELT)) (-3776 (((-114) (-661 |#4|) (-661 |#4|)) 66 T ELT)) (-4211 (((-114) (-661 |#4|) (-661 |#4|)) 67 T ELT)) (-3783 (((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-3771 (((-661 |#5|) (-661 |#5|)) 49 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-1303) (-1189) (-1189) (-1189))) (-15 -3769 ((-1303))) (-15 -3770 ((-114) |#5| |#5|)) (-15 -3771 ((-661 |#5|) (-661 |#5|))) (-15 -3772 ((-114) |#5| |#5|)) (-15 -3773 ((-114) |#5| |#5|)) (-15 -3774 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3775 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3776 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4211 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3777 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3778 ((-114) |#5| |#5|)) (-15 -3778 ((-114) |#5| (-661 |#5|))) (-15 -3779 ((-661 |#5|) (-661 |#5|))) (-15 -3780 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3781 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-15 -3782 ((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3783 ((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1018)) +((-3783 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *4) (|:| |ineq| (-661 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-3782 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *10) (|:| |ineq| (-661 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1753 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3780 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3778 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3775 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3774 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3773 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3772 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3769 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3768 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -3768 ((-1303) (-1189) (-1189) (-1189))) (-15 -3769 ((-1303))) (-15 -3770 ((-114) |#5| |#5|)) (-15 -3771 ((-661 |#5|) (-661 |#5|))) (-15 -3772 ((-114) |#5| |#5|)) (-15 -3773 ((-114) |#5| |#5|)) (-15 -3774 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3775 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3776 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4211 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3777 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3778 ((-114) |#5| |#5|)) (-15 -3778 ((-114) |#5| (-661 |#5|))) (-15 -3779 ((-661 |#5|) (-661 |#5|))) (-15 -3780 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3781 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-15 -3782 ((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3783 ((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) +((-4343 (((-1207) $) 15 T ELT)) (-3904 (((-1189) $) 16 T ELT)) (-3726 (($ (-1207) (-1189)) 14 T ELT)) (-4458 (((-886) $) 13 T ELT))) +(((-1019) (-13 (-630 (-886)) (-10 -8 (-15 -3726 ($ (-1207) (-1189))) (-15 -4343 ((-1207) $)) (-15 -3904 ((-1189) $))))) (T -1019)) +((-3726 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1019)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1019)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1019))))) +(-13 (-630 (-886)) (-10 -8 (-15 -3726 ($ (-1207) (-1189))) (-15 -4343 ((-1207) $)) (-15 -3904 ((-1189) $)))) +((-3657 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1207) #1#) $) 72 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) 102 T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-1207) $) 67 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) 99 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 121 T ELT) (((-709 |#2|) (-709 $)) 35 T ELT)) (-3477 (($) 105 T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 82 T ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 91 T ELT)) (-3479 (($ $) 10 T ELT)) (-3947 (((-711 $) $) 27 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3948 (($) 16 T ELT)) (-3612 (($ $) 61 T ELT)) (-4270 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3478 (($ $) 12 T ELT)) (-4484 (((-914 (-558)) $) 77 T ELT) (((-914 (-391)) $) 86 T ELT) (((-547) $) 47 T ELT) (((-391) $) 51 T ELT) (((-229) $) 55 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1207)) 64 T ELT)) (-3610 (((-791)) 38 T ELT)) (-3168 (((-114) $ $) 57 T ELT))) +(((-1020 |#1| |#2|) (-10 -8 (-15 -3168 ((-114) |#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4458 (|#1| (-1207))) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -3477 (|#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| |#1|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-1021 |#2|) (-569)) (T -1020)) +((-3610 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-1020 *3 *4)) (-4 *3 (-1021 *4))))) +(-10 -8 (-15 -3168 ((-114) |#1| |#1|)) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4458 (|#1| (-1207))) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -3477 (|#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -3279 ((-912 (-558) |#1|) |#1| (-914 (-558)) (-912 (-558) |#1|))) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -2503 ((-709 |#2|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| |#1|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3613 ((|#1| $) 170 (|has| |#1| (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 161 (|has| |#1| (-938)) ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 164 (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4135 (((-558) $) 151 (|has| |#1| (-842)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1207) #2#) $) 159 (|has| |#1| (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) 142 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-558) #2#) $) 140 (|has| |#1| (-1068 (-558))) ELT)) (-3656 ((|#1| $) 201 T ELT) (((-1207) $) 160 (|has| |#1| (-1068 (-1207))) ELT) (((-419 (-558)) $) 143 (|has| |#1| (-1068 (-558))) ELT) (((-558) $) 141 (|has| |#1| (-1068 (-558))) ELT)) (-3045 (($ $ $) 68 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 183 T ELT) (((-709 |#1|) (-709 $)) 182 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3477 (($) 168 (|has| |#1| (-557)) ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-3686 (((-114) $) 153 (|has| |#1| (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 177 (|has| |#1| (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 176 (|has| |#1| (-910 (-391))) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3479 (($ $) 172 T ELT)) (-3481 ((|#1| $) 174 T ELT)) (-3947 (((-711 $) $) 139 (|has| |#1| (-1182)) ELT)) (-3687 (((-114) $) 152 (|has| |#1| (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) 65 T ELT)) (-3012 (($ $ $) 144 (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) 145 (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 187 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 186 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 181 T ELT) (((-709 |#1|) (-1297 $)) 180 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3948 (($) 138 (|has| |#1| (-1182)) CONST)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3612 (($ $) 169 (|has| |#1| (-319)) ELT)) (-3614 ((|#1| $) 166 (|has| |#1| (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 163 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 162 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) 198 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 196 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 195 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 194 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 193 (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-1797 (((-791) $) 71 T ELT)) (-4312 (($ $ |#1|) 199 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-4270 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 190 T ELT) (($ $) 137 (|has| |#1| (-239)) ELT) (($ $ (-791)) 135 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 133 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 131 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 130 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 129 (|has| |#1| (-928 (-1207))) ELT)) (-3478 (($ $) 171 T ELT)) (-3480 ((|#1| $) 173 T ELT)) (-4484 (((-914 (-558)) $) 179 (|has| |#1| (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) 178 (|has| |#1| (-631 (-914 (-391)))) ELT) (((-547) $) 156 (|has| |#1| (-631 (-547))) ELT) (((-391) $) 155 (|has| |#1| (-1050)) ELT) (((-229) $) 154 (|has| |#1| (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 165 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1207)) 158 (|has| |#1| (-1068 (-1207))) ELT)) (-3185 (((-711 $) $) 157 (-4039 (|has| |#1| (-147)) (-3043 (|has| $ (-147)) (|has| |#1| (-938)))) ELT)) (-3610 (((-791)) 37 T CONST)) (-3615 ((|#1| $) 167 (|has| |#1| (-557)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3885 (($ $) 150 (|has| |#1| (-842)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 188 T ELT) (($ $) 136 (|has| |#1| (-239)) ELT) (($ $ (-791)) 134 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 132 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 128 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 127 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 126 (|has| |#1| (-928 (-1207))) ELT)) (-3047 (((-114) $ $) 146 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 148 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 147 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 149 (|has| |#1| (-870)) ELT)) (-4461 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) +(((-1021 |#1|) (-142) (-569)) (T -1021)) +((-4461 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) (-3479 (*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) (-3478 (*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3612 (*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3477 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-557)) (-4 *2 (-569)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-557))))) +(-13 (-376) (-38 |t#1|) (-1068 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-908 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4461 ($ |t#1| |t#1|)) (-15 -3481 (|t#1| $)) (-15 -3480 (|t#1| $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-1068 (-558))) (PROGN (-6 (-1068 (-558))) (-6 (-1068 (-419 (-558))))) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#1| (-1050)) (-6 (-1050)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1068 (-1207))) (-6 (-1068 (-1207))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3613 (|t#1| $)) (-15 -3612 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3477 ($)) (-15 -3615 (|t#1| $)) (-15 -3614 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 #2=(-1207)) |has| |#1| (-1068 (-1207))) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-631 (-229)) |has| |#1| (-1050)) ((-631 (-391)) |has| |#1| (-1050)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-914 (-391))) |has| |#1| (-631 (-914 (-391)))) ((-631 (-914 (-558))) |has| |#1| (-631 (-914 (-558)))) ((-236 $) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 #3=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-658 #3#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-812) |has| |#1| (-842)) ((-814) |has| |#1| (-842)) ((-816) |has| |#1| (-842)) ((-819) |has| |#1| (-842)) ((-842) |has| |#1| (-842)) ((-869) |has| |#1| (-842)) ((-870) -4039 (|has| |#1| (-870)) (|has| |#1| (-842))) ((-873) -4039 (|has| |#1| (-870)) (|has| |#1| (-842))) ((-920 $ #4=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-928 #4#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-558)) |has| |#1| (-910 (-558))) ((-908 |#1|) . T) ((-938) |has| |#1| (-938)) ((-949) . T) ((-1050) |has| |#1| (-1050)) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-558))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 #2#) |has| |#1| (-1068 (-1207))) ((-1068 |#1|) . T) ((-1081 #1#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) . T)) +((-4470 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-1022 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1021 |#1|) (-1021 |#2|)) (T -1022)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1021 *6)) (-5 *1 (-1022 *5 *6 *4 *2)) (-4 *4 (-1021 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#2| |#1|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3482 (($ (-1172 |#1| |#2|)) 11 T ELT)) (-3608 (((-1172 |#1| |#2|) $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT))) +(((-1023 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3482 ($ (-1172 |#1| |#2|))) (-15 -3608 ((-1172 |#1| |#2|) $)))) (-947) (-376)) (T -1023)) +((-3482 (*1 *1 *2) (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-947)) (-4 *4 (-376)) (-5 *1 (-1023 *3 *4)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-947)) (-4 *4 (-376))))) +(-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3482 ($ (-1172 |#1| |#2|))) (-15 -3608 ((-1172 |#1| |#2|) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 9 T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1024) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $))))) (T -1024)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4236 (($) 7 T CONST)) (-3485 (($ $) 50 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4345 (((-791) $) 49 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-3484 ((|#1| $) 48 T ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3487 ((|#1| |#1| $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-3486 ((|#1| $) 51 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-3483 ((|#1| $) 47 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1025 |#1|) (-142) (-1247)) (T -1025)) +((-3487 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4507) (-15 -3487 (|t#1| |t#1| $)) (-15 -3486 (|t#1| $)) (-15 -3485 ($ $)) (-15 -4345 ((-791) $)) (-15 -3484 (|t#1| $)) (-15 -3483 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4155 ((|#1| $) 12 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3488 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3616 ((|#1| $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3489 ((|#1| $) 15 T ELT)) (-3490 ((|#1| $) 14 T ELT)) (-3491 ((|#1| $) 13 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-4312 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4270 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3885 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-3141 (($) 8 T CONST)) (-3147 (($) 10 T CONST)) (-3152 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT))) +(((-1026 |#1|) (-1028 |#1|) (-175)) (T -1026)) +NIL +(-1028 |#1|) +((-3688 (((-114) $) 43 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 78 T ELT)) (-3506 (((-114) $) 72 T ELT)) (-3505 (((-419 (-558)) $) 76 T ELT)) (-2651 (((-114) $) 42 T ELT)) (-3616 ((|#2| $) 22 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2884 (($ $) 58 T ELT)) (-4270 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4484 (((-547) $) 67 T ELT)) (-3492 (($ $) 17 T ELT)) (-4458 (((-886) $) 53 T ELT) (($ (-558)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3610 (((-791)) 10 T ELT)) (-3885 ((|#2| $) 71 T ELT)) (-3536 (((-114) $ $) 26 T ELT)) (-3168 (((-114) $ $) 69 T ELT)) (-4349 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-4351 (($ $ $) 27 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-1027 |#1| |#2|) (-10 -8 (-15 -4458 (|#1| (-419 (-558)))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3168 ((-114) |#1| |#1|)) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 -2884 (|#1| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -2651 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-1028 |#2|) (-175)) (T -1027)) +((-3610 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-1027 *3 *4)) (-4 *3 (-1028 *4))))) +(-10 -8 (-15 -4458 (|#1| (-419 (-558)))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -3168 ((-114) |#1| |#1|)) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 -2884 (|#1| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|)) (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3885 (|#2| |#1|)) (-15 -3616 (|#2| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4470 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3657 ((-3 |#2| #1="failed") |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -2651 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3688 ((-114) |#1|)) (-15 * (|#1| (-947) |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 (-558) #1="failed") $) 140 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 138 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3656 (((-558) $) 139 (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) 137 (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) 136 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 120 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 119 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 118 T ELT) (((-709 |#1|) (-709 $)) 117 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4155 ((|#1| $) 108 T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) 104 (|has| |#1| (-557)) ELT)) (-3506 (((-114) $) 106 (|has| |#1| (-557)) ELT)) (-3505 (((-419 (-558)) $) 105 (|has| |#1| (-557)) ELT)) (-3488 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3616 ((|#1| $) 110 T ELT)) (-3012 (($ $ $) 92 (|has| |#1| (-870)) ELT)) (-3340 (($ $ $) 93 (|has| |#1| (-870)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 122 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 121 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 116 T ELT) (((-709 |#1|) (-1297 $)) 115 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 101 (|has| |#1| (-376)) ELT)) (-3489 ((|#1| $) 111 T ELT)) (-3490 ((|#1| $) 112 T ELT)) (-3491 ((|#1| $) 113 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) 129 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 127 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 126 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) 125 (|has| |#1| (-526 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 124 (|has| |#1| (-526 (-1207) |#1|)) ELT)) (-4312 (($ $ |#1|) 130 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4270 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 133 T ELT) (($ $) 91 (|has| |#1| (-239)) ELT) (($ $ (-791)) 89 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 87 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 85 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 84 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 83 (|has| |#1| (-928 (-1207))) ELT)) (-4484 (((-547) $) 102 (|has| |#1| (-631 (-547))) ELT)) (-3492 (($ $) 114 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 79 (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (((-711 $) $) 103 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3885 ((|#1| $) 107 (|has| |#1| (-1090)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 131 T ELT) (($ $) 90 (|has| |#1| (-239)) ELT) (($ $ (-791)) 88 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 86 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 82 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 81 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 80 (|has| |#1| (-928 (-1207))) ELT)) (-3047 (((-114) $ $) 94 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 96 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 95 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 97 (|has| |#1| (-870)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 100 (|has| |#1| (-376)) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-419 (-558))) 99 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 98 (|has| |#1| (-376)) ELT))) +(((-1028 |#1|) (-142) (-175)) (T -1028)) +((-3492 (*1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3488 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3507 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3492 ($ $)) (-15 -3491 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -3489 (|t#1| $)) (-15 -3616 (|t#1| $)) (-15 -3488 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4155 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3885 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3506 ((-114) $)) (-15 -3505 ((-419 (-558)) $)) (-15 -3507 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-236 $) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -4039 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -4039 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1207) |#1|) |has| |#1| (-526 (-1207) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-666 #1#) |has| |#1| (-376)) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-376)) ((-668 #2=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-376)) ((-660 |#1|) . T) ((-658 #2#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) |has| |#1| (-376)) ((-737 |#1|) . T) ((-746) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-920 $ #3=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-928 #3#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1081 #1#) |has| |#1| (-376)) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1086 #1#) |has| |#1| (-376)) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-4470 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-1029 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) (-1028 |#2|) (-175) (-1028 |#4|) (-175)) (T -1029)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1028 *6)) (-5 *1 (-1029 *4 *5 *2 *6)) (-4 *4 (-1028 *5))))) +(-10 -7 (-15 -4470 (|#3| (-1 |#4| |#2|) |#1|))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4236 (($) NIL T CONST)) (-3485 (($ $) 23 T ELT)) (-3493 (($ (-661 |#1|)) 33 T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4345 (((-791) $) 26 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 28 T ELT)) (-4119 (($ |#1| $) 17 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-3484 ((|#1| $) 27 T ELT)) (-1399 ((|#1| $) 22 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3487 ((|#1| |#1| $) 16 T ELT)) (-3905 (((-114) $) 18 T ELT)) (-4075 (($) NIL T ELT)) (-3486 ((|#1| $) 21 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) NIL T ELT)) (-3483 ((|#1| $) 30 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1030 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -3493 ($ (-661 |#1|))))) (-1131)) (T -1030)) +((-3493 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-1030 *3))))) +(-13 (-1025 |#1|) (-10 -8 (-15 -3493 ($ (-661 |#1|))))) +((-3520 (($ $) 12 T ELT)) (-3494 (($ $ (-558)) 13 T ELT))) +(((-1031 |#1|) (-10 -8 (-15 -3520 (|#1| |#1|)) (-15 -3494 (|#1| |#1| (-558)))) (-1032)) (T -1031)) +NIL +(-10 -8 (-15 -3520 (|#1| |#1|)) (-15 -3494 (|#1| |#1| (-558)))) +((-3520 (($ $) 6 T ELT)) (-3494 (($ $ (-558)) 7 T ELT)) (** (($ $ (-419 (-558))) 8 T ELT))) +(((-1032) (-142)) (T -1032)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-558))))) (-3494 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-558)))) (-3520 (*1 *1 *1) (-4 *1 (-1032)))) +(-13 (-10 -8 (-15 -3520 ($ $)) (-15 -3494 ($ $ (-558))) (-15 ** ($ $ (-419 (-558)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1860 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2283 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2281 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2000 (((-709 (-419 |#2|)) (-1297 $)) NIL T ELT) (((-709 (-419 |#2|))) NIL T ELT)) (-3832 (((-419 |#2|) $) NIL T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1798 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3620 (((-791)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1874 (((-114)) NIL T ELT)) (-1873 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| (-419 |#2|) (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1068 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-2010 (($ (-1297 (-419 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-419 |#2|))) 79 T ELT) (($ (-1297 |#2|) |#2|) NIL T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3045 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1999 (((-709 (-419 |#2|)) $ (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) (-709 $)) NIL T ELT)) (-1865 (((-1297 $) (-1297 $)) NIL T ELT)) (-4354 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-1852 (((-661 (-661 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-114) |#1| |#1|) NIL T ELT)) (-3593 (((-947)) NIL T ELT)) (-3477 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1872 (((-114)) NIL T ELT)) (-1871 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-3044 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4005 (($ $) NIL T ELT)) (-3316 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1893 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1984 (($ $ (-791)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4235 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4284 (((-947) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-854 (-947)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3879 (((-791)) NIL T ELT)) (-1866 (((-1297 $) (-1297 $)) NIL T ELT)) (-3616 (((-419 |#2|) $) NIL T ELT)) (-1853 (((-661 (-974 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3947 (((-711 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2234 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2230 (((-947) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3562 ((|#3| $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-419 |#2|))) (|:| |vec| (-1297 (-419 |#2|)))) (-1297 $) $) NIL T ELT) (((-709 (-419 |#2|)) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1861 (((-709 (-419 |#2|))) 57 T ELT)) (-1863 (((-709 (-419 |#2|))) 56 T ELT)) (-2884 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1858 (($ (-1297 |#2|) |#2|) 80 T ELT)) (-1862 (((-709 (-419 |#2|))) 55 T ELT)) (-1864 (((-709 (-419 |#2|))) 54 T ELT)) (-1857 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1859 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1870 (((-1297 $)) 51 T ELT)) (-4430 (((-1297 $)) 50 T ELT)) (-1869 (((-114) $) NIL T ELT)) (-1868 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3948 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2641 (($ (-947)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1855 (((-3 |#2| #3="failed")) 70 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1879 (((-791)) NIL T ELT)) (-2650 (($) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4244 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1797 (((-791) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4312 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1856 (((-3 |#2| #3#)) 68 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4269 (((-419 |#2|) (-1297 $)) NIL T ELT) (((-419 |#2|)) 47 T ELT)) (-1985 (((-791) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) "failed") $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4270 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2649 (((-709 (-419 |#2|)) (-1297 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3685 ((|#3|) 58 T ELT)) (-1887 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3724 (((-1297 (-419 |#2|)) $ (-1297 $)) NIL T ELT) (((-709 (-419 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-419 |#2|)) $) 81 T ELT) (((-709 (-419 |#2|)) (-1297 $)) NIL T ELT)) (-4484 (((-1297 (-419 |#2|)) $) NIL T ELT) (($ (-1297 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1867 (((-1297 $) (-1297 $)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3185 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2848 ((|#3| $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1876 (((-114)) 65 T ELT)) (-1875 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1854 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1878 (((-114)) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-926 (-1207)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-928 (-1207))))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) +(((-1033 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1252) (-1273 |#1|) (-1273 (-419 |#2|)) (-419 |#2|) (-791)) (T -1033)) NIL (-355 |#1| |#2| |#3|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3504 (((-663 (-560)) $) 73 T ELT)) (-3500 (($ (-663 (-560))) 81 T ELT)) (-3617 (((-560) $) 48 (|has| (-560) (-319)) ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL (|has| (-560) (-844)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #2="failed") $) 60 T ELT) (((-3 (-1209) #2#) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-3 (-421 (-560)) #2#) $) 57 (|has| (-560) (-1070 (-560))) ELT) (((-3 (-560) #2#) $) 60 (|has| (-560) (-1070 (-560))) ELT)) (-3660 (((-560) $) NIL T ELT) (((-1209) $) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1070 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1070 (-560))) ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3481 (($) NIL (|has| (-560) (-559)) ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3502 (((-663 (-560)) $) 79 T ELT)) (-3690 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (|has| (-560) (-912 (-560))) ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (|has| (-560) (-912 (-391))) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3485 (((-560) $) 45 T ELT)) (-3951 (((-713 $) $) NIL (|has| (-560) (-1184)) ELT)) (-3691 (((-114) $) NIL (|has| (-560) (-844)) ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-560) (-872)) ELT)) (-4474 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL T ELT)) (-3952 (($) NIL (|has| (-560) (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3616 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) 50 T ELT)) (-3503 (((-1187 (-560)) $) 78 T ELT)) (-3499 (($ (-663 (-560)) (-663 (-560))) 82 T ELT)) (-3618 (((-560) $) 64 (|has| (-560) (-559)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| (-560) (-940)) ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-4284 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1209)) (-663 (-560))) NIL (|has| (-560) (-528 (-1209) (-560))) ELT) (($ $ (-1209) (-560)) NIL (|has| (-560) (-528 (-1209) (-560))) ELT)) (-1799 (((-793) $) NIL T ELT)) (-4316 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) 15 (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3482 (($ $) NIL T ELT)) (-3484 (((-560) $) 47 T ELT)) (-3501 (((-663 (-560)) $) 80 T ELT)) (-4488 (((-916 (-560)) $) NIL (|has| (-560) (-633 (-916 (-560)))) ELT) (((-916 (-391)) $) NIL (|has| (-560) (-633 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1052)) ELT) (((-229) $) NIL (|has| (-560) (-1052)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-940))) ELT)) (-4462 (((-888) $) 108 T ELT) (($ (-560)) 51 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 27 T ELT) (($ (-560)) 51 T ELT) (($ (-1209)) NIL (|has| (-560) (-1070 (-1209))) ELT) (((-421 (-560)) $) 25 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-560) (-940))) (|has| (-560) (-147))) ELT)) (-3614 (((-793)) 13 T CONST)) (-3619 (((-560) $) 62 (|has| (-560) (-559)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3889 (($ $) NIL (|has| (-560) (-844)) ELT)) (-3145 (($) 14 T CONST)) (-3151 (($) 17 T CONST)) (-3156 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| (-560) (-930 (-1209))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3051 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3540 (((-114) $ $) 21 T ELT)) (-3171 (((-114) $ $) NIL (|has| (-560) (-872)) ELT)) (-3172 (((-114) $ $) 40 (|has| (-560) (-872)) ELT)) (-4465 (($ $ $) 36 T ELT) (($ (-560) (-560)) 38 T ELT)) (-4353 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-4355 (($ $ $) 28 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ (-560)) NIL T ELT))) -(((-1036 |#1|) (-13 (-1023 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -3504 ((-663 (-560)) $)) (-15 -3503 ((-1187 (-560)) $)) (-15 -3502 ((-663 (-560)) $)) (-15 -3501 ((-663 (-560)) $)) (-15 -3500 ($ (-663 (-560)))) (-15 -3499 ($ (-663 (-560)) (-663 (-560)))))) (-560)) (T -1036)) -((-3616 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) (-3499 (*1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(-13 (-1023 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -3616 ((-421 (-560)) $)) (-15 -3504 ((-663 (-560)) $)) (-15 -3503 ((-1187 (-560)) $)) (-15 -3502 ((-663 (-560)) $)) (-15 -3501 ((-663 (-560)) $)) (-15 -3500 ($ (-663 (-560)))) (-15 -3499 ($ (-663 (-560)) (-663 (-560)))))) -((-3505 (((-51) (-421 (-560)) (-560)) 9 T ELT))) -(((-1037) (-10 -7 (-15 -3505 ((-51) (-421 (-560)) (-560))))) (T -1037)) -((-3505 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51)) (-5 *1 (-1037))))) -(-10 -7 (-15 -3505 ((-51) (-421 (-560)) (-560)))) -((-3624 (((-560)) 21 T ELT)) (-3508 (((-560)) 26 T ELT)) (-3507 (((-1305) (-560)) 24 T ELT)) (-3506 (((-560) (-560)) 27 T ELT) (((-560)) 20 T ELT))) -(((-1038) (-10 -7 (-15 -3506 ((-560))) (-15 -3624 ((-560))) (-15 -3506 ((-560) (-560))) (-15 -3507 ((-1305) (-560))) (-15 -3508 ((-560))))) (T -1038)) -((-3508 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1038)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038)))) (-3624 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038)))) (-3506 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038))))) -(-10 -7 (-15 -3506 ((-560))) (-15 -3624 ((-560))) (-15 -3506 ((-560) (-560))) (-15 -3507 ((-1305) (-560))) (-15 -3508 ((-560)))) -((-4249 (((-419 |#1|) |#1|) 43 T ELT)) (-4248 (((-419 |#1|) |#1|) 41 T ELT))) -(((-1039 |#1|) (-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1|))) (-1275 (-421 (-560)))) (T -1039)) -((-4249 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1275 (-421 (-560)))))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1275 (-421 (-560))))))) -(-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1|))) -((-3511 (((-3 (-421 (-560)) "failed") |#1|) 15 T ELT)) (-3510 (((-114) |#1|) 14 T ELT)) (-3509 (((-421 (-560)) |#1|) 10 T ELT))) -(((-1040 |#1|) (-10 -7 (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|))) (-1070 (-421 (-560)))) (T -1040)) -((-3511 (*1 *2 *3) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1040 *3)) (-4 *3 (-1070 *2)))) (-3510 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1040 *3)) (-4 *3 (-1070 (-421 (-560)))))) (-3509 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1040 *3)) (-4 *3 (-1070 *2))))) -(-10 -7 (-15 -3509 ((-421 (-560)) |#1|)) (-15 -3510 ((-114) |#1|)) (-15 -3511 ((-3 (-421 (-560)) "failed") |#1|))) -((-4304 ((|#2| $ "value" |#2|) 12 T ELT)) (-4316 ((|#2| $ "value") 10 T ELT)) (-3515 (((-114) $ $) 18 T ELT))) -(((-1041 |#1| |#2|) (-10 -8 (-15 -4304 (|#2| |#1| "value" |#2|)) (-15 -3515 ((-114) |#1| |#1|)) (-15 -4316 (|#2| |#1| "value"))) (-1042 |#2|) (-1249)) (T -1041)) -NIL -(-10 -8 (-15 -4304 (|#2| |#1| "value" |#2|)) (-15 -3515 ((-114) |#1| |#1|)) (-15 -4316 (|#2| |#1| "value"))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4240 (($) 7 T CONST)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ "value") 51 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1042 |#1|) (-142) (-1249)) (T -1042)) -((-4028 (*1 *2 *1) (-12 (-4 *3 (-1249)) (-5 *2 (-663 *1)) (-4 *1 (-1042 *3)))) (-3518 (*1 *2 *1) (-12 (-4 *3 (-1249)) (-5 *2 (-663 *1)) (-4 *1 (-1042 *3)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-1249)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1042 *2)) (-4 *2 (-1249)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-663 *3)))) (-3516 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-560)))) (-3515 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4512)) (-4 *1 (-1042 *3)) (-4 *3 (-1249)))) (-4304 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4512)) (-4 *1 (-1042 *2)) (-4 *2 (-1249)))) (-3512 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1042 *2)) (-4 *2 (-1249))))) -(-13 (-503 |t#1|) (-10 -8 (-15 -4028 ((-663 $) $)) (-15 -3518 ((-663 $) $)) (-15 -4033 ((-114) $)) (-15 -3908 (|t#1| $)) (-15 -4316 (|t#1| $ "value")) (-15 -4149 ((-114) $)) (-15 -3517 ((-663 |t#1|) $)) (-15 -3516 ((-560) $ $)) (IF (|has| |t#1| (-1133)) (PROGN (-15 -3515 ((-114) $ $)) (-15 -3514 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4512)) (PROGN (-15 -3513 ($ $ (-663 $))) (-15 -4304 (|t#1| $ "value" |t#1|)) (-15 -3512 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3524 (($ $) 9 T ELT) (($ $ (-949)) 49 T ELT) (($ (-421 (-560))) 13 T ELT) (($ (-560)) 15 T ELT)) (-3687 (((-3 $ "failed") (-1203 $) (-949) (-888)) 24 T ELT) (((-3 $ "failed") (-1203 $) (-949)) 32 T ELT)) (-3498 (($ $ (-560)) 58 T ELT)) (-3614 (((-793)) 18 T ELT)) (-3688 (((-663 $) (-1203 $)) NIL T ELT) (((-663 $) (-1203 (-421 (-560)))) 63 T ELT) (((-663 $) (-1203 (-560))) 68 T ELT) (((-663 $) (-976 $)) 72 T ELT) (((-663 $) (-976 (-421 (-560)))) 76 T ELT) (((-663 $) (-976 (-560))) 80 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 53 T ELT))) -(((-1043 |#1|) (-10 -8 (-15 -3524 (|#1| (-560))) (-15 -3524 (|#1| (-421 (-560)))) (-15 -3524 (|#1| |#1| (-949))) (-15 -3688 ((-663 |#1|) (-976 (-560)))) (-15 -3688 ((-663 |#1|) (-976 (-421 (-560))))) (-15 -3688 ((-663 |#1|) (-976 |#1|))) (-15 -3688 ((-663 |#1|) (-1203 (-560)))) (-15 -3688 ((-663 |#1|) (-1203 (-421 (-560))))) (-15 -3688 ((-663 |#1|) (-1203 |#1|))) (-15 -3687 ((-3 |#1| "failed") (-1203 |#1|) (-949))) (-15 -3687 ((-3 |#1| "failed") (-1203 |#1|) (-949) (-888))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3498 (|#1| |#1| (-560))) (-15 -3524 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3614 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949)))) (-1044)) (T -1043)) -((-3614 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1043 *3)) (-4 *3 (-1044))))) -(-10 -8 (-15 -3524 (|#1| (-560))) (-15 -3524 (|#1| (-421 (-560)))) (-15 -3524 (|#1| |#1| (-949))) (-15 -3688 ((-663 |#1|) (-976 (-560)))) (-15 -3688 ((-663 |#1|) (-976 (-421 (-560))))) (-15 -3688 ((-663 |#1|) (-976 |#1|))) (-15 -3688 ((-663 |#1|) (-1203 (-560)))) (-15 -3688 ((-663 |#1|) (-1203 (-421 (-560))))) (-15 -3688 ((-663 |#1|) (-1203 |#1|))) (-15 -3687 ((-3 |#1| "failed") (-1203 |#1|) (-949))) (-15 -3687 ((-3 |#1| "failed") (-1203 |#1|) (-949) (-888))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3498 (|#1| |#1| (-560))) (-15 -3524 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3614 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 108 T ELT)) (-2287 (($ $) 109 T ELT)) (-2285 (((-114) $) 111 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 128 T ELT)) (-4487 (((-419 $) $) 129 T ELT)) (-3524 (($ $) 92 T ELT) (($ $ (-949)) 78 T ELT) (($ (-421 (-560))) 77 T ELT) (($ (-560)) 76 T ELT)) (-1800 (((-114) $ $) 119 T ELT)) (-4139 (((-560) $) 145 T ELT)) (-4240 (($) 22 T CONST)) (-3687 (((-3 $ "failed") (-1203 $) (-949) (-888)) 86 T ELT) (((-3 $ "failed") (-1203 $) (-949)) 85 T ELT)) (-3661 (((-3 (-560) #1="failed") $) 105 (|has| (-421 (-560)) (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 103 (|has| (-421 (-560)) (-1070 (-421 (-560)))) ELT) (((-3 (-421 (-560)) #1#) $) 100 T ELT)) (-3660 (((-560) $) 104 (|has| (-421 (-560)) (-1070 (-560))) ELT) (((-421 (-560)) $) 102 (|has| (-421 (-560)) (-1070 (-421 (-560)))) ELT) (((-421 (-560)) $) 101 T ELT)) (-3520 (($ $ (-888)) 75 T ELT)) (-3519 (($ $ (-888)) 74 T ELT)) (-3049 (($ $ $) 123 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 122 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 117 T ELT)) (-4239 (((-114) $) 130 T ELT)) (-3690 (((-114) $) 143 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 91 T ELT)) (-3691 (((-114) $) 144 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 126 T ELT)) (-3016 (($ $ $) 137 T ELT)) (-3344 (($ $ $) 138 T ELT)) (-3521 (((-3 (-1203 $) "failed") $) 87 T ELT)) (-3523 (((-3 (-888) "failed") $) 89 T ELT)) (-3522 (((-3 (-1203 $) "failed") $) 88 T ELT)) (-2116 (($ (-663 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 131 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 116 T ELT)) (-3648 (($ (-663 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-4248 (((-419 $) $) 127 T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 124 T ELT)) (-3972 (((-3 $ "failed") $ $) 107 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 118 T ELT)) (-1799 (((-793) $) 120 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 121 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 135 T ELT) (($ $) 106 T ELT) (($ (-421 (-560))) 99 T ELT) (($ (-560)) 98 T ELT) (($ (-421 (-560))) 95 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 110 T ELT)) (-4286 (((-421 (-560)) $ $) 73 T ELT)) (-3688 (((-663 $) (-1203 $)) 84 T ELT) (((-663 $) (-1203 (-421 (-560)))) 83 T ELT) (((-663 $) (-1203 (-560))) 82 T ELT) (((-663 $) (-976 $)) 81 T ELT) (((-663 $) (-976 (-421 (-560)))) 80 T ELT) (((-663 $) (-976 (-560))) 79 T ELT)) (-3889 (($ $) 146 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 139 T ELT)) (-3052 (((-114) $ $) 141 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 140 T ELT)) (-3172 (((-114) $ $) 142 T ELT)) (-4465 (($ $ $) 136 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 132 T ELT) (($ $ (-421 (-560))) 90 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-421 (-560)) $) 134 T ELT) (($ $ (-421 (-560))) 133 T ELT) (($ (-560) $) 97 T ELT) (($ $ (-560)) 96 T ELT) (($ (-421 (-560)) $) 94 T ELT) (($ $ (-421 (-560))) 93 T ELT))) -(((-1044) (-142)) (T -1044)) -((-3524 (*1 *1 *1) (-4 *1 (-1044))) (-3523 (*1 *2 *1) (|partial| -12 (-4 *1 (-1044)) (-5 *2 (-888)))) (-3522 (*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1044)))) (-3521 (*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1044)))) (-3687 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-949)) (-5 *4 (-888)) (-4 *1 (-1044)))) (-3687 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-949)) (-4 *1 (-1044)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-1044)) (-5 *2 (-663 *1)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1203 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1203 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-1044)) (-5 *2 (-663 *1)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-976 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) (-3524 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-949)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1044)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1044)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-888)))) (-3519 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-888)))) (-4286 (*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-421 (-560)))))) -(-13 (-149) (-871) (-175) (-376) (-426 (-421 (-560))) (-38 (-560)) (-38 (-421 (-560))) (-1034) (-10 -8 (-15 -3523 ((-3 (-888) "failed") $)) (-15 -3522 ((-3 (-1203 $) "failed") $)) (-15 -3521 ((-3 (-1203 $) "failed") $)) (-15 -3687 ((-3 $ "failed") (-1203 $) (-949) (-888))) (-15 -3687 ((-3 $ "failed") (-1203 $) (-949))) (-15 -3688 ((-663 $) (-1203 $))) (-15 -3688 ((-663 $) (-1203 (-421 (-560))))) (-15 -3688 ((-663 $) (-1203 (-560)))) (-15 -3688 ((-663 $) (-976 $))) (-15 -3688 ((-663 $) (-976 (-421 (-560))))) (-15 -3688 ((-663 $) (-976 (-560)))) (-15 -3524 ($ $ (-949))) (-15 -3524 ($ $)) (-15 -3524 ($ (-421 (-560)))) (-15 -3524 ($ (-560))) (-15 -3520 ($ $ (-888))) (-15 -3519 ($ $ (-888))) (-15 -4286 ((-421 (-560)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 #2=(-560)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-426 (-421 (-560))) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 #2#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 #2#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 #2#) . T) ((-739 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-871) . T) ((-872) . T) ((-875) . T) ((-951) . T) ((-1034) . T) ((-1070 (-421 (-560))) . T) ((-1070 (-560)) |has| (-421 (-560)) (-1070 (-560))) ((-1083 #1#) . T) ((-1083 #2#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 #2#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3525 (((-2 (|:| |ans| |#2|) (|:| -3625 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -3525 ((-2 (|:| |ans| |#2|) (|:| -3625 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-27) (-435 |#1|))) (T -1045)) -((-3525 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1209)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1235) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1070 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3625 *4) (|:| |sol?| (-114)))) (-5 *1 (-1045 *8 *4))))) -(-10 -7 (-15 -3525 ((-2 (|:| |ans| |#2|) (|:| -3625 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3526 (((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -3526 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1070 (-560)) (-660 (-560))) (-13 (-1235) (-27) (-435 |#1|))) (T -1046)) -((-3526 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1209)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1235) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1070 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-663 *4)) (-5 *1 (-1046 *8 *4))))) -(-10 -7 (-15 -3526 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1209) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -2365 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3529 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3770 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)) 39 T ELT)) (-3527 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3528 (((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|)) 76 T ELT))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -3527 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3528 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -3529 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3770 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1070 (-560))) (-1275 |#1|)) (T -1047)) -((-3529 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1275 *6)) (-4 *6 (-13 (-376) (-149) (-1070 *4))) (-5 *4 (-560)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3770 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1047 *6 *3)))) (-3528 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1047 *4 *5)) (-5 *3 (-421 *5)))) (-3527 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) (|:| -3582 *6))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6))))) -(-10 -7 (-15 -3527 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3528 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -3529 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3770 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) -((-3530 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3531 (((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 34 T ELT))) -(((-1048 |#1| |#2|) (-10 -7 (-15 -3530 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3531 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) (-13 (-376) (-149) (-1070 (-560))) (-1275 |#1|)) (T -1048)) -((-3531 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) (-5 *2 (-663 (-421 *5))) (-5 *1 (-1048 *4 *5)) (-5 *3 (-421 *5)))) (-3530 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -3582 *6))) (-5 *1 (-1048 *5 *6)) (-5 *3 (-421 *6))))) -(-10 -7 (-15 -3530 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3582 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3531 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) -((-3532 (((-1 |#1|) (-663 (-2 (|:| -3908 |#1|) (|:| -1666 (-560))))) 34 T ELT)) (-3589 (((-1 |#1|) (-1129 |#1|)) 42 T ELT)) (-3533 (((-1 |#1|) (-1299 |#1|) (-1299 (-560)) (-560)) 31 T ELT))) -(((-1049 |#1|) (-10 -7 (-15 -3589 ((-1 |#1|) (-1129 |#1|))) (-15 -3532 ((-1 |#1|) (-663 (-2 (|:| -3908 |#1|) (|:| -1666 (-560)))))) (-15 -3533 ((-1 |#1|) (-1299 |#1|) (-1299 (-560)) (-560)))) (-1133)) (T -1049)) -((-3533 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1299 *6)) (-5 *4 (-1299 (-560))) (-5 *5 (-560)) (-4 *6 (-1133)) (-5 *2 (-1 *6)) (-5 *1 (-1049 *6)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3908 *4) (|:| -1666 (-560))))) (-4 *4 (-1133)) (-5 *2 (-1 *4)) (-5 *1 (-1049 *4)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1129 *4)) (-4 *4 (-1133)) (-5 *2 (-1 *4)) (-5 *1 (-1049 *4))))) -(-10 -7 (-15 -3589 ((-1 |#1|) (-1129 |#1|))) (-15 -3532 ((-1 |#1|) (-663 (-2 (|:| -3908 |#1|) (|:| -1666 (-560)))))) (-15 -3533 ((-1 |#1|) (-1299 |#1|) (-1299 (-560)) (-560)))) -((-4288 (((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-1050 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4288 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1275 |#1|) (-1275 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1050)) -((-4288 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1275 *6)) (-4 *4 (-1275 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) (-5 *1 (-1050 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4288 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4109 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1051) (-13 (-1115) (-10 -8 (-15 -4109 ((-1167) $)) (-15 -3737 ((-1167) $))))) (T -1051)) -((-4109 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1051)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1051))))) -(-13 (-1115) (-10 -8 (-15 -4109 ((-1167) $)) (-15 -3737 ((-1167) $)))) -((-4488 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT))) -(((-1052) (-142)) (T -1052)) -NIL -(-13 (-633 (-229)) (-633 (-391))) -(((-633 (-229)) . T) ((-633 (-391)) . T)) -((-3622 (((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) 32 T ELT) (((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560))) 29 T ELT)) (-3536 (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560))) 34 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) 33 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|) 28 T ELT)) (-3535 (((-663 (-421 (-560))) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) 20 T ELT)) (-3534 (((-421 (-560)) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) 17 T ELT))) -(((-1053 |#1|) (-10 -7 (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|)) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3534 ((-421 (-560)) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3535 ((-663 (-421 (-560))) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))))) (-1275 (-560))) (T -1053)) -((-3535 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1053 *4)) (-4 *4 (-1275 (-560))))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) (-5 *2 (-421 (-560))) (-5 *1 (-1053 *4)) (-4 *4 (-1275 (-560))))) (-3622 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))))) (-3622 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))))) (-3536 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *5) (|:| -3625 *5)))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) (-5 *4 (-2 (|:| -3626 *5) (|:| -3625 *5))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) (-5 *4 (-421 (-560))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) (-5 *4 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560)))))) -(-10 -7 (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|)) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3534 ((-421 (-560)) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3535 ((-663 (-421 (-560))) (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))))) -((-3622 (((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) 35 T ELT) (((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560))) 32 T ELT)) (-3536 (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560))) 26 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) 28 T ELT) (((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|) 24 T ELT))) -(((-1054 |#1|) (-10 -7 (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|)) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) (-1275 (-421 (-560)))) (T -1054)) -((-3622 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560)))))) (-3622 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 *4)))) (-3536 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *5) (|:| -3625 *5)))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 *5)) (-5 *4 (-2 (|:| -3626 *5) (|:| -3625 *5))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *4) (|:| -3625 *4)))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560)))) (-5 *4 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560))))))) -(-10 -7 (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1|)) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -3536 ((-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-421 (-560)))) (-15 -3622 ((-3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) "failed") |#1| (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))) (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) -((-4087 (((-663 (-391)) (-976 (-560)) (-391)) 28 T ELT) (((-663 (-391)) (-976 (-421 (-560))) (-391)) 27 T ELT)) (-4485 (((-663 (-663 (-391))) (-663 (-976 (-560))) (-663 (-1209)) (-391)) 37 T ELT))) -(((-1055) (-10 -7 (-15 -4087 ((-663 (-391)) (-976 (-421 (-560))) (-391))) (-15 -4087 ((-663 (-391)) (-976 (-560)) (-391))) (-15 -4485 ((-663 (-663 (-391))) (-663 (-976 (-560))) (-663 (-1209)) (-391))))) (T -1055)) -((-4485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-663 (-1209))) (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1055)) (-5 *5 (-391)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-976 (-560))) (-5 *2 (-663 (-391))) (-5 *1 (-1055)) (-5 *4 (-391)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *2 (-663 (-391))) (-5 *1 (-1055)) (-5 *4 (-391))))) -(-10 -7 (-15 -4087 ((-663 (-391)) (-976 (-421 (-560))) (-391))) (-15 -4087 ((-663 (-391)) (-976 (-560)) (-391))) (-15 -4485 ((-663 (-663 (-391))) (-663 (-976 (-560))) (-663 (-1209)) (-391)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 75 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-3524 (($ $) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) 70 T ELT)) (-4240 (($) NIL T CONST)) (-3687 (((-3 $ #1="failed") (-1203 $) (-949) (-888)) NIL T ELT) (((-3 $ #1#) (-1203 $) (-949)) 55 T ELT)) (-3661 (((-3 (-421 (-560)) #2="failed") $) NIL (|has| (-421 (-560)) (-1070 (-421 (-560)))) ELT) (((-3 (-421 (-560)) #2#) $) NIL T ELT) (((-3 |#1| #2#) $) 116 T ELT) (((-3 (-560) #2#) $) NIL (-4043 (|has| (-421 (-560)) (-1070 (-560))) (|has| |#1| (-1070 (-560)))) ELT)) (-3660 (((-421 (-560)) $) 17 (|has| (-421 (-560)) (-1070 (-421 (-560)))) ELT) (((-421 (-560)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-560) $) NIL (-4043 (|has| (-421 (-560)) (-1070 (-560))) (|has| |#1| (-1070 (-560)))) ELT)) (-3520 (($ $ (-888)) 47 T ELT)) (-3519 (($ $ (-888)) 48 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3686 (((-421 (-560)) $ $) 21 T ELT)) (-3973 (((-3 $ "failed") $) 88 T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-3690 (((-114) $) 66 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL T ELT)) (-3691 (((-114) $) 69 T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-3521 (((-3 (-1203 $) #1#) $) 83 T ELT)) (-3523 (((-3 (-888) #1#) $) 82 T ELT)) (-3522 (((-3 (-1203 $) #1#) $) 80 T ELT)) (-3537 (((-3 (-1093 $ (-1203 $)) "failed") $) 78 T ELT)) (-2116 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 89 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4462 (((-888) $) 87 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) 63 T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-4286 (((-421 (-560)) $ $) 27 T ELT)) (-3688 (((-663 $) (-1203 $)) 61 T ELT) (((-663 $) (-1203 (-421 (-560)))) NIL T ELT) (((-663 $) (-1203 (-560))) NIL T ELT) (((-663 $) (-976 $)) NIL T ELT) (((-663 $) (-976 (-421 (-560)))) NIL T ELT) (((-663 $) (-976 (-560))) NIL T ELT)) (-3538 (($ (-1093 $ (-1203 $)) (-888)) 46 T ELT)) (-3889 (($ $) 22 T ELT)) (-3145 (($) 32 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 76 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 24 T ELT)) (-4465 (($ $ $) 37 T ELT)) (-4353 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-4355 (($ $ $) 112 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ (-560)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1056 |#1|) (-13 (-1044) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -3538 ($ (-1093 $ (-1203 $)) (-888))) (-15 -3537 ((-3 (-1093 $ (-1203 $)) "failed") $)) (-15 -3686 ((-421 (-560)) $ $)))) (-13 (-871) (-376) (-1052))) (T -1056)) -((-3538 (*1 *1 *2 *3) (-12 (-5 *2 (-1093 (-1056 *4) (-1203 (-1056 *4)))) (-5 *3 (-888)) (-5 *1 (-1056 *4)) (-4 *4 (-13 (-871) (-376) (-1052))))) (-3537 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093 (-1056 *3) (-1203 (-1056 *3)))) (-5 *1 (-1056 *3)) (-4 *3 (-13 (-871) (-376) (-1052))))) (-3686 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1056 *3)) (-4 *3 (-13 (-871) (-376) (-1052)))))) -(-13 (-1044) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -3538 ($ (-1093 $ (-1203 $)) (-888))) (-15 -3537 ((-3 (-1093 $ (-1203 $)) "failed") $)) (-15 -3686 ((-421 (-560)) $ $)))) -((-3539 (((-2 (|:| -3770 |#2|) (|:| -2984 (-663 |#1|))) |#2| (-663 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -3539 (|#2| |#2| |#1|)) (-15 -3539 ((-2 (|:| -3770 |#2|) (|:| -2984 (-663 |#1|))) |#2| (-663 |#1|)))) (-376) (-680 |#1|)) (T -1057)) -((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3770 *3) (|:| -2984 (-663 *5)))) (-5 *1 (-1057 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5)))) (-3539 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1057 *3 *2)) (-4 *2 (-680 *3))))) -(-10 -7 (-15 -3539 (|#2| |#2| |#1|)) (-15 -3539 ((-2 (|:| -3770 |#2|) (|:| -2984 (-663 |#1|))) |#2| (-663 |#1|)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3541 ((|#1| $ |#1|) 14 T ELT)) (-4304 ((|#1| $ |#1|) 12 T ELT)) (-3543 (($ |#1|) 10 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4316 ((|#1| $) 11 T ELT)) (-3542 ((|#1| $) 13 T ELT)) (-4462 (((-888) $) 21 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3540 (((-114) $ $) 9 T ELT))) -(((-1058 |#1|) (-13 (-1249) (-10 -8 (-15 -3543 ($ |#1|)) (-15 -4316 (|#1| $)) (-15 -4304 (|#1| $ |#1|)) (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $ |#1|)) (-15 -3540 ((-114) $ $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) (-1249)) (T -1058)) -((-3543 (*1 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) (-4316 (*1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) (-4304 (*1 *2 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) (-3542 (*1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) (-3541 (*1 *2 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) (-3540 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1058 *3)) (-4 *3 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -3543 ($ |#1|)) (-15 -4316 (|#1| $)) (-15 -4304 (|#1| $ |#1|)) (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $ |#1|)) (-15 -3540 ((-114) $ $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-4198 (((-663 $) (-663 |#4|)) 117 T ELT) (((-663 $) (-663 |#4|) (-114)) 118 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 116 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 119 T ELT)) (-3570 (((-663 |#3|) $) NIL T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4204 ((|#4| |#4| $) NIL T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 111 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4226 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3660 (($ (-663 |#4|)) NIL T ELT)) (-4315 (((-3 $ #1#) $) 45 T ELT)) (-4201 ((|#4| |#4| $) 69 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3912 (($ |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) NIL T ELT)) (-3701 (((-114) |#4| $) NIL T ELT)) (-3699 (((-114) |#4| $) NIL T ELT)) (-3702 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3944 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 132 T ELT)) (-3376 (((-663 |#4|) $) 18 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 19 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3401 (((-663 |#3|) $) NIL T ELT)) (-3400 (((-114) |#3| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 109 T ELT)) (-4314 (((-3 |#4| #1#) $) 42 T ELT)) (-3696 (((-663 $) |#4| $) 92 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 102 T ELT) (((-114) |#4| $) 64 T ELT)) (-3742 (((-663 $) |#4| $) 114 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 115 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-3945 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 127 T ELT)) (-3946 (($ |#4| $) 81 T ELT) (($ (-663 |#4|) $) 82 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 78 T ELT)) (-4213 (((-663 |#4|) $) NIL T ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4202 ((|#4| |#4| $) NIL T ELT)) (-4215 (((-114) $ $) NIL T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4203 ((|#4| |#4| $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-3 |#4| #1#) $) 40 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4285 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 94 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 88 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 14 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-2171 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 13 T ELT)) (-4488 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 22 T ELT)) (-3397 (($ $ |#3|) 52 T ELT)) (-3399 (($ $ |#3|) 54 T ELT)) (-4200 (($ $) NIL T ELT)) (-3398 (($ $ |#3|) NIL T ELT)) (-4462 (((-888) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-4194 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-3693 (((-663 $) |#4| $) 91 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) NIL T ELT)) (-3700 (((-114) |#4| $) NIL T ELT)) (-4449 (((-114) |#3| $) 65 T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1059 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3946 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -3945 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -3944 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -1059)) -((-3946 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) (-4 *3 (-1097 *5 *6 *7)))) (-4198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-4198 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3945 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3944 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1059 *5 *6 *7 *8))))) (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-663 *8))))) -(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3946 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -3945 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -3944 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) -((-3544 (((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-976 (-560))))) 67 T ELT)) (-3545 (((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-976 (-560))))) 52 T ELT)) (-3546 (((-663 (-326 (-560))) (-711 (-421 (-976 (-560))))) 45 T ELT)) (-3550 (((-663 (-711 (-326 (-560)))) (-711 (-421 (-976 (-560))))) 85 T ELT)) (-3548 (((-711 (-326 (-560))) (-711 (-326 (-560)))) 38 T ELT)) (-3549 (((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560))))) 74 T ELT)) (-3547 (((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-976 (-560))))) 82 T ELT))) -(((-1060) (-10 -7 (-15 -3544 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-976 (-560)))))) (-15 -3545 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-976 (-560)))))) (-15 -3546 ((-663 (-326 (-560))) (-711 (-421 (-976 (-560)))))) (-15 -3547 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-976 (-560)))))) (-15 -3548 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -3549 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -3550 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-976 (-560)))))))) (T -1060)) -((-3550 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1060)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1060)))) (-3548 (*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1060)))) (-3547 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1060)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-326 (-560)))) (-5 *1 (-1060)))) (-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1060)) (-5 *3 (-326 (-560))))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560)))))))) (-5 *1 (-1060))))) -(-10 -7 (-15 -3544 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-976 (-560)))))) (-15 -3545 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-976 (-560)))))) (-15 -3546 ((-663 (-326 (-560))) (-711 (-421 (-976 (-560)))))) (-15 -3547 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-976 (-560)))))) (-15 -3548 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -3549 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -3550 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-976 (-560))))))) -((-3554 (((-663 (-711 |#1|)) (-663 (-711 |#1|))) 70 T ELT) (((-711 |#1|) (-711 |#1|)) 69 T ELT) (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 68 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 65 T ELT)) (-3553 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949)) 63 T ELT) (((-711 |#1|) (-711 |#1|) (-949)) 62 T ELT)) (-3555 (((-663 (-711 (-560))) (-663 (-663 (-560)))) 81 T ELT) (((-663 (-711 (-560))) (-663 (-932 (-560))) (-560)) 80 T ELT) (((-711 (-560)) (-663 (-560))) 77 T ELT) (((-711 (-560)) (-932 (-560)) (-560)) 75 T ELT)) (-3552 (((-711 (-976 |#1|)) (-793)) 95 T ELT)) (-3551 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949)) 49 (|has| |#1| (-6 (-4513 "*"))) ELT) (((-711 |#1|) (-711 |#1|) (-949)) 47 (|has| |#1| (-6 (-4513 "*"))) ELT))) -(((-1061 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4513 "*"))) (-15 -3551 ((-711 |#1|) (-711 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4513 "*"))) (-15 -3551 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949))) |%noBranch|) (-15 -3552 ((-711 (-976 |#1|)) (-793))) (-15 -3553 ((-711 |#1|) (-711 |#1|) (-949))) (-15 -3553 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949))) (-15 -3554 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3554 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3554 ((-711 |#1|) (-711 |#1|))) (-15 -3554 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3555 ((-711 (-560)) (-932 (-560)) (-560))) (-15 -3555 ((-711 (-560)) (-663 (-560)))) (-15 -3555 ((-663 (-711 (-560))) (-663 (-932 (-560))) (-560))) (-15 -3555 ((-663 (-711 (-560))) (-663 (-663 (-560)))))) (-1081)) (T -1061)) -((-3555 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1061 *4)) (-4 *4 (-1081)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-932 (-560)))) (-5 *4 (-560)) (-5 *2 (-663 (-711 *4))) (-5 *1 (-1061 *5)) (-4 *5 (-1081)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1061 *4)) (-4 *4 (-1081)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-932 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4)) (-5 *1 (-1061 *5)) (-4 *5 (-1081)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) (-3554 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) (-3554 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) (-3553 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-949)) (-4 *4 (-1081)) (-5 *1 (-1061 *4)))) (-3553 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-949)) (-4 *4 (-1081)) (-5 *1 (-1061 *4)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-711 (-976 *4))) (-5 *1 (-1061 *4)) (-4 *4 (-1081)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-949)) (|has| *4 (-6 (-4513 "*"))) (-4 *4 (-1081)) (-5 *1 (-1061 *4)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4513 "*"))) (-4 *4 (-1081)) (-5 *1 (-1061 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4513 "*"))) (-15 -3551 ((-711 |#1|) (-711 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4513 "*"))) (-15 -3551 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949))) |%noBranch|) (-15 -3552 ((-711 (-976 |#1|)) (-793))) (-15 -3553 ((-711 |#1|) (-711 |#1|) (-949))) (-15 -3553 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-949))) (-15 -3554 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3554 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3554 ((-711 |#1|) (-711 |#1|))) (-15 -3554 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3555 ((-711 (-560)) (-932 (-560)) (-560))) (-15 -3555 ((-711 (-560)) (-663 (-560)))) (-15 -3555 ((-663 (-711 (-560))) (-663 (-932 (-560))) (-560))) (-15 -3555 ((-663 (-711 (-560))) (-663 (-663 (-560)))))) -((-3559 (((-711 |#1|) (-663 (-711 |#1|)) (-1299 |#1|)) 69 (|has| |#1| (-319)) ELT)) (-3924 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 (-1299 |#1|))) 109 (|has| |#1| (-376)) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 |#1|)) 116 (|has| |#1| (-376)) ELT)) (-3563 (((-1299 |#1|) (-663 (-1299 |#1|)) (-560)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3562 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-949)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3561 (((-114) (-663 (-711 |#1|))) 102 (|has| |#1| (-376)) ELT) (((-114) (-663 (-711 |#1|)) (-560)) 105 (|has| |#1| (-376)) ELT)) (-3558 (((-1299 (-1299 |#1|)) (-663 (-711 |#1|)) (-1299 |#1|)) 66 (|has| |#1| (-319)) ELT)) (-3557 (((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|)) 46 T ELT)) (-3556 (((-711 |#1|) (-1299 (-1299 |#1|))) 39 T ELT)) (-3560 (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560)) 93 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 92 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560)) 100 (|has| |#1| (-376)) ELT))) -(((-1062 |#1|) (-10 -7 (-15 -3556 ((-711 |#1|) (-1299 (-1299 |#1|)))) (-15 -3557 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3558 ((-1299 (-1299 |#1|)) (-663 (-711 |#1|)) (-1299 |#1|))) (-15 -3559 ((-711 |#1|) (-663 (-711 |#1|)) (-1299 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -3561 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -3561 ((-114) (-663 (-711 |#1|)))) (-15 -3924 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 |#1|))) (-15 -3924 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 (-1299 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-949))) (-15 -3563 ((-1299 |#1|) (-663 (-1299 |#1|)) (-560)))) |%noBranch|) |%noBranch|)) (-1081)) (T -1062)) -((-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1299 *5))) (-5 *4 (-560)) (-5 *2 (-1299 *5)) (-5 *1 (-1062 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) (-5 *3 (-663 (-711 *5))))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) (-5 *3 (-663 (-711 *5))))) (-3562 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1081)) (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1062 *4)) (-5 *3 (-663 (-711 *4))))) (-3562 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1081)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1062 *6)) (-5 *3 (-663 (-711 *6))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-1299 (-1299 *5))) (-4 *5 (-376)) (-4 *5 (-1081)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) (-5 *3 (-663 (-711 *5))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) (-5 *3 (-663 (-711 *5))))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1081)) (-5 *2 (-114)) (-5 *1 (-1062 *4)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376)) (-4 *5 (-1081)) (-5 *2 (-114)) (-5 *1 (-1062 *5)))) (-3560 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5)) (-5 *1 (-1062 *5)) (-4 *5 (-376)) (-4 *5 (-1081)))) (-3560 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-376)) (-4 *4 (-1081)))) (-3560 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560)) (-5 *2 (-711 *6)) (-5 *1 (-1062 *6)) (-4 *6 (-376)) (-4 *6 (-1081)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-1299 *5)) (-4 *5 (-319)) (-4 *5 (-1081)) (-5 *2 (-711 *5)) (-5 *1 (-1062 *5)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1081)) (-5 *2 (-1299 (-1299 *5))) (-5 *1 (-1062 *5)) (-5 *4 (-1299 *5)))) (-3557 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1081)) (-5 *1 (-1062 *4)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1299 (-1299 *4))) (-4 *4 (-1081)) (-5 *2 (-711 *4)) (-5 *1 (-1062 *4))))) -(-10 -7 (-15 -3556 ((-711 |#1|) (-1299 (-1299 |#1|)))) (-15 -3557 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3558 ((-1299 (-1299 |#1|)) (-663 (-711 |#1|)) (-1299 |#1|))) (-15 -3559 ((-711 |#1|) (-663 (-711 |#1|)) (-1299 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3560 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -3561 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -3561 ((-114) (-663 (-711 |#1|)))) (-15 -3924 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 |#1|))) (-15 -3924 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1299 (-1299 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -3562 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-949))) (-15 -3563 ((-1299 |#1|) (-663 (-1299 |#1|)) (-560)))) |%noBranch|) |%noBranch|)) -((-3564 ((|#1| (-949) |#1|) 18 T ELT))) -(((-1063 |#1|) (-10 -7 (-15 -3564 (|#1| (-949) |#1|))) (-13 (-1133) (-10 -8 (-15 -4355 ($ $ $))))) (T -1063)) -((-3564 (*1 *2 *3 *2) (-12 (-5 *3 (-949)) (-5 *1 (-1063 *2)) (-4 *2 (-13 (-1133) (-10 -8 (-15 -4355 ($ $ $)))))))) -(-10 -7 (-15 -3564 (|#1| (-949) |#1|))) -((-3565 ((|#1| |#1| (-949)) 18 T ELT))) -(((-1064 |#1|) (-10 -7 (-15 -3565 (|#1| |#1| (-949)))) (-13 (-1133) (-10 -8 (-15 * ($ $ $))))) (T -1064)) -((-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-949)) (-5 *1 (-1064 *2)) (-4 *2 (-13 (-1133) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3565 (|#1| |#1| (-949)))) -((-4462 ((|#1| (-323)) 11 T ELT) (((-1305) |#1|) 9 T ELT))) -(((-1065 |#1|) (-10 -7 (-15 -4462 ((-1305) |#1|)) (-15 -4462 (|#1| (-323)))) (-1249)) (T -1065)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1065 *2)) (-4 *2 (-1249)))) (-4462 (*1 *2 *3) (-12 (-5 *2 (-1305)) (-5 *1 (-1065 *3)) (-4 *3 (-1249))))) -(-10 -7 (-15 -4462 ((-1305) |#1|)) (-15 -4462 (|#1| (-323)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-4358 (($ |#4|) 25 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3566 ((|#4| $) 27 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 46 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3614 (((-793)) 43 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 23 T CONST)) (-3540 (((-114) $ $) 40 T ELT)) (-4353 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 29 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1066 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4358 ($ |#4|)) (-15 -4462 ($ |#4|)) (-15 -3566 (|#4| $)))) (-376) (-817) (-872) (-980 |#1| |#2| |#3|) (-663 |#4|)) (T -1066)) -((-4358 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *2 (-980 *3 *4 *5)) (-14 *6 (-663 *2)))) (-4462 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *2 (-980 *3 *4 *5)) (-14 *6 (-663 *2)))) (-3566 (*1 *2 *1) (-12 (-4 *2 (-980 *3 *4 *5)) (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-14 *6 (-663 *2))))) -(-13 (-175) (-38 |#1|) (-10 -8 (-15 -4358 ($ |#4|)) (-15 -4462 ($ |#4|)) (-15 -3566 (|#4| $)))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-2427 (((-1305) $ (-1209) (-1209)) NIL (|has| $ (-6 -4512)) ELT)) (-3568 (((-114) (-114)) 43 T ELT)) (-3567 (((-114) (-114)) 42 T ELT)) (-4304 (((-51) $ (-1209) (-51)) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 (-51) #1="failed") (-1209) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 (-51) #1#) (-1209) $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 (((-51) $ (-1209) (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-51) $ (-1209)) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 (((-1209) $) NIL (|has| (-1209) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2430 (((-1209) $) NIL (|has| (-1209) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-2898 (((-663 (-1209)) $) 37 T ELT)) (-2461 (((-114) (-1209) $) NIL T ELT)) (-1400 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL T ELT)) (-2432 (((-663 (-1209)) $) NIL T ELT)) (-2433 (((-114) (-1209) $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-4317 (((-51) $) NIL (|has| (-1209) (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) "failed") (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL T ELT)) (-2428 (($ $ (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2434 (((-663 (-51)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 (((-51) $ (-1209)) 39 T ELT) (((-51) $ (-1209) (-51)) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-4462 (((-888) $) 41 (-4043 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-632 (-888))) (|has| (-51) (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1067) (-13 (-1226 (-1209) (-51)) (-10 -7 (-15 -3568 ((-114) (-114))) (-15 -3567 ((-114) (-114))) (-6 -4511)))) (T -1067)) -((-3568 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1067)))) (-3567 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1067))))) -(-13 (-1226 (-1209) (-51)) (-10 -7 (-15 -3568 ((-114) (-114))) (-15 -3567 ((-114) (-114))) (-6 -4511))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 9 T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1068) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $))))) (T -1068)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1068))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)))) -((-3660 ((|#2| $) 10 T ELT))) -(((-1069 |#1| |#2|) (-10 -8 (-15 -3660 (|#2| |#1|))) (-1070 |#2|) (-1249)) (T -1069)) -NIL -(-10 -8 (-15 -3660 (|#2| |#1|))) -((-3661 (((-3 |#1| "failed") $) 9 T ELT)) (-3660 ((|#1| $) 8 T ELT)) (-4462 (($ |#1|) 6 T ELT))) -(((-1070 |#1|) (-142) (-1249)) (T -1070)) -((-3661 (*1 *2 *1) (|partial| -12 (-4 *1 (-1070 *2)) (-4 *2 (-1249)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1249))))) -(-13 (-635 |t#1|) (-10 -8 (-15 -3661 ((-3 |t#1| "failed") $)) (-15 -3660 (|t#1| $)))) -(((-635 |#1|) . T)) -((-3569 (((-663 (-663 (-305 (-421 (-976 |#2|))))) (-663 (-976 |#2|)) (-663 (-1209))) 38 T ELT))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3569 ((-663 (-663 (-305 (-421 (-976 |#2|))))) (-663 (-976 |#2|)) (-663 (-1209))))) (-571) (-13 (-571) (-1070 |#1|))) (T -1071)) -((-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) (-4 *6 (-13 (-571) (-1070 *5))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *6)))))) (-5 *1 (-1071 *5 *6))))) -(-10 -7 (-15 -3569 ((-663 (-663 (-305 (-421 (-976 |#2|))))) (-663 (-976 |#2|)) (-663 (-1209))))) -((-3570 (((-663 (-1209)) (-421 (-976 |#1|))) 17 T ELT)) (-3572 (((-421 (-1203 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209)) 24 T ELT)) (-3573 (((-421 (-976 |#1|)) (-421 (-1203 (-421 (-976 |#1|)))) (-1209)) 26 T ELT)) (-3571 (((-3 (-1209) "failed") (-421 (-976 |#1|))) 20 T ELT)) (-4284 (((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-305 (-421 (-976 |#1|))))) 32 T ELT) (((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|)))) 33 T ELT) (((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-1209)) (-663 (-421 (-976 |#1|)))) 28 T ELT) (((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|))) 29 T ELT)) (-4462 (((-421 (-976 |#1|)) |#1|) 11 T ELT))) -(((-1072 |#1|) (-10 -7 (-15 -3570 ((-663 (-1209)) (-421 (-976 |#1|)))) (-15 -3571 ((-3 (-1209) "failed") (-421 (-976 |#1|)))) (-15 -3572 ((-421 (-1203 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209))) (-15 -3573 ((-421 (-976 |#1|)) (-421 (-1203 (-421 (-976 |#1|)))) (-1209))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|)))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-1209)) (-663 (-421 (-976 |#1|))))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -4462 ((-421 (-976 |#1|)) |#1|))) (-571)) (T -1072)) -((-4462 (*1 *2 *3) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-1072 *3)) (-4 *3 (-571)))) (-4284 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-976 *4))))) (-5 *2 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *1 (-1072 *4)))) (-4284 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-421 (-976 *4)))) (-5 *2 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *1 (-1072 *4)))) (-4284 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-1209))) (-5 *4 (-663 (-421 (-976 *5)))) (-5 *2 (-421 (-976 *5))) (-4 *5 (-571)) (-5 *1 (-1072 *5)))) (-4284 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-421 (-976 *4))) (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-1072 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1203 (-421 (-976 *5))))) (-5 *4 (-1209)) (-5 *2 (-421 (-976 *5))) (-5 *1 (-1072 *5)) (-4 *5 (-571)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-421 (-1203 (-421 (-976 *5))))) (-5 *1 (-1072 *5)) (-5 *3 (-421 (-976 *5))))) (-3571 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-1209)) (-5 *1 (-1072 *4)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1209))) (-5 *1 (-1072 *4))))) -(-10 -7 (-15 -3570 ((-663 (-1209)) (-421 (-976 |#1|)))) (-15 -3571 ((-3 (-1209) "failed") (-421 (-976 |#1|)))) (-15 -3572 ((-421 (-1203 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209))) (-15 -3573 ((-421 (-976 |#1|)) (-421 (-1203 (-421 (-976 |#1|)))) (-1209))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|)))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-1209)) (-663 (-421 (-976 |#1|))))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-305 (-421 (-976 |#1|))))) (-15 -4284 ((-421 (-976 |#1|)) (-421 (-976 |#1|)) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -4462 ((-421 (-976 |#1|)) |#1|))) -((-3574 (((-391)) 17 T ELT)) (-3589 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3582 (((-1 (-391)) (-793)) 48 T ELT)) (-3575 (((-391)) 37 T ELT)) (-3578 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3576 (((-391)) 29 T ELT)) (-3579 (((-1 (-391)) (-391)) 30 T ELT)) (-3577 (((-391) (-793)) 43 T ELT)) (-3580 (((-1 (-391)) (-793)) 44 T ELT)) (-3581 (((-1 (-391)) (-793) (-793)) 47 T ELT)) (-3890 (((-1 (-391)) (-793) (-793)) 45 T ELT))) -(((-1073) (-10 -7 (-15 -3574 ((-391))) (-15 -3575 ((-391))) (-15 -3576 ((-391))) (-15 -3577 ((-391) (-793))) (-15 -3589 ((-1 (-391)) (-391) (-391))) (-15 -3578 ((-1 (-391)) (-391) (-391))) (-15 -3579 ((-1 (-391)) (-391))) (-15 -3580 ((-1 (-391)) (-793))) (-15 -3890 ((-1 (-391)) (-793) (-793))) (-15 -3581 ((-1 (-391)) (-793) (-793))) (-15 -3582 ((-1 (-391)) (-793))))) (T -1073)) -((-3582 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073)))) (-3581 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073)))) (-3890 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073)))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391)))) (-3578 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1073)))) (-3576 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073)))) (-3575 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073)))) (-3574 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073))))) -(-10 -7 (-15 -3574 ((-391))) (-15 -3575 ((-391))) (-15 -3576 ((-391))) (-15 -3577 ((-391) (-793))) (-15 -3589 ((-1 (-391)) (-391) (-391))) (-15 -3578 ((-1 (-391)) (-391) (-391))) (-15 -3579 ((-1 (-391)) (-391))) (-15 -3580 ((-1 (-391)) (-793))) (-15 -3890 ((-1 (-391)) (-793) (-793))) (-15 -3581 ((-1 (-391)) (-793) (-793))) (-15 -3582 ((-1 (-391)) (-793)))) -((-4248 (((-419 |#1|) |#1|) 33 T ELT))) -(((-1074 |#1|) (-10 -7 (-15 -4248 ((-419 |#1|) |#1|))) (-1275 (-421 (-976 (-560))))) (T -1074)) -((-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1275 (-421 (-976 (-560)))))))) -(-10 -7 (-15 -4248 ((-419 |#1|) |#1|))) -((-3583 (((-421 (-419 (-976 |#1|))) (-421 (-976 |#1|))) 14 T ELT))) -(((-1075 |#1|) (-10 -7 (-15 -3583 ((-421 (-419 (-976 |#1|))) (-421 (-976 |#1|))))) (-319)) (T -1075)) -((-3583 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-319)) (-5 *2 (-421 (-419 (-976 *4)))) (-5 *1 (-1075 *4))))) -(-10 -7 (-15 -3583 ((-421 (-419 (-976 |#1|))) (-421 (-976 |#1|))))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4240 (($) 22 T CONST)) (-3587 ((|#1| $) 28 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3586 ((|#1| $) 27 T ELT)) (-3584 ((|#1|) 25 T CONST)) (-4462 (((-888) $) 13 T ELT)) (-3585 ((|#1| $) 26 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT))) -(((-1076 |#1|) (-142) (-23)) (T -1076)) -((-3587 (*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))) (-3584 (*1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3587 (|t#1| $)) (-15 -3586 (|t#1| $)) (-15 -3585 (|t#1| $)) (-15 -3584 (|t#1|) -4468))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3588 (($) 30 T CONST)) (-4240 (($) 22 T CONST)) (-3587 ((|#1| $) 28 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3586 ((|#1| $) 27 T ELT)) (-3584 ((|#1|) 25 T CONST)) (-4462 (((-888) $) 13 T ELT)) (-3585 ((|#1| $) 26 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT))) -(((-1077 |#1|) (-142) (-23)) (T -1077)) -((-3588 (*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-23))))) -(-13 (-1076 |t#1|) (-10 -8 (-15 -3588 ($) -4468))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-1076 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 (-802 |#1| (-889 |#2|)))))) (-663 (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-4198 (((-663 $) (-663 (-802 |#1| (-889 |#2|)))) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-114)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-114) (-114)) NIL T ELT)) (-3570 (((-663 (-889 |#2|)) $) NIL T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4209 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4204 (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-4291 (((-663 (-2 (|:| |val| (-802 |#1| (-889 |#2|))) (|:| -1755 $))) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ (-889 |#2|)) NIL T ELT)) (-4226 (($ (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 (-802 |#1| (-889 |#2|)) #1="failed") $ (-889 |#2|)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4205 (((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|))) $ (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) (-1 (-114) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-3387 (((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-3388 (((-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-3660 (($ (-663 (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-4315 (((-3 $ #1#) $) NIL T ELT)) (-4201 (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT)) (-3912 (($ (-802 |#1| (-889 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-802 |#1| (-889 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-889 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-4210 (((-114) (-802 |#1| (-889 |#2|)) $ (-1 (-114) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-4199 (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-4358 (((-802 |#1| (-889 |#2|)) (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) $ (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (((-802 |#1| (-889 |#2|)) (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) $ (-802 |#1| (-889 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-802 |#1| (-889 |#2|)) (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $ (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) (-1 (-114) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-4212 (((-2 (|:| -4377 (-663 (-802 |#1| (-889 |#2|)))) (|:| -1917 (-663 (-802 |#1| (-889 |#2|))))) $) NIL T ELT)) (-3701 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3699 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3702 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3376 (((-663 (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3684 (((-889 |#2|) $) NIL T ELT)) (-3093 (((-663 (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-802 |#1| (-889 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT)) (-2174 (($ (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) $) NIL T ELT)) (-3401 (((-663 (-889 |#2|)) $) NIL T ELT)) (-3400 (((-114) (-889 |#2|) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3695 (((-3 (-802 |#1| (-889 |#2|)) (-663 $)) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3694 (((-663 (-2 (|:| |val| (-802 |#1| (-889 |#2|))) (|:| -1755 $))) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-4314 (((-3 (-802 |#1| (-889 |#2|)) #1#) $) NIL T ELT)) (-3696 (((-663 $) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3698 (((-3 (-114) (-663 $)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3742 (((-663 $) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-663 $)) NIL T ELT) (((-663 $) (-802 |#1| (-889 |#2|)) (-663 $)) NIL T ELT)) (-3946 (($ (-802 |#1| (-889 |#2|)) $) NIL T ELT) (($ (-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT)) (-4213 (((-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT)) (-4207 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4202 (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-4215 (((-114) $ $) NIL T ELT)) (-3390 (((-2 (|:| |num| (-802 |#1| (-889 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-889 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-4208 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4203 (((-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-3 (-802 |#1| (-889 |#2|)) #1#) $) NIL T ELT)) (-1480 (((-3 (-802 |#1| (-889 |#2|)) "failed") (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL T ELT)) (-4195 (((-3 $ #1#) $ (-802 |#1| (-889 |#2|))) NIL T ELT)) (-4285 (($ $ (-802 |#1| (-889 |#2|))) NIL T ELT) (((-663 $) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-889 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-663 $)) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-802 |#1| (-889 |#2|))) (-663 (-802 |#1| (-889 |#2|)))) NIL (-12 (|has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|)))) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (($ $ (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|))) NIL (-12 (|has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|)))) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (($ $ (-305 (-802 |#1| (-889 |#2|)))) NIL (-12 (|has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|)))) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (($ $ (-663 (-305 (-802 |#1| (-889 |#2|))))) NIL (-12 (|has| (-802 |#1| (-889 |#2|)) (-321 (-802 |#1| (-889 |#2|)))) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4464 (((-793) $) NIL T ELT)) (-2171 (((-793) (-802 |#1| (-889 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-802 |#1| (-889 |#2|)) (-1133))) ELT) (((-793) (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-802 |#1| (-889 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-3397 (($ $ (-889 |#2|)) NIL T ELT)) (-3399 (($ $ (-889 |#2|)) NIL T ELT)) (-4200 (($ $) NIL T ELT)) (-3398 (($ $ (-889 |#2|)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (((-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT)) (-4194 (((-793) $) NIL (|has| (-889 |#2|) (-381)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 (-802 |#1| (-889 |#2|))))) #1#) (-663 (-802 |#1| (-889 |#2|))) (-1 (-114) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 (-802 |#1| (-889 |#2|))))) #1#) (-663 (-802 |#1| (-889 |#2|))) (-1 (-114) (-802 |#1| (-889 |#2|))) (-1 (-114) (-802 |#1| (-889 |#2|)) (-802 |#1| (-889 |#2|)))) NIL T ELT)) (-4206 (((-114) $ (-1 (-114) (-802 |#1| (-889 |#2|)) (-663 (-802 |#1| (-889 |#2|))))) NIL T ELT)) (-3693 (((-663 $) (-802 |#1| (-889 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-889 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-663 $)) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-802 |#1| (-889 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 (-889 |#2|)) $) NIL T ELT)) (-3700 (((-114) (-802 |#1| (-889 |#2|)) $) NIL T ELT)) (-4449 (((-114) (-889 |#2|) $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1078 |#1| |#2|) (-13 (-1103 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|))) (-10 -8 (-15 -4198 ((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-114) (-114))))) (-466) (-663 (-1209))) (T -1078)) -((-4198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-1078 *5 *6))))) -(-13 (-1103 |#1| (-545 (-889 |#2|)) (-889 |#2|) (-802 |#1| (-889 |#2|))) (-10 -8 (-15 -4198 ((-663 $) (-663 (-802 |#1| (-889 |#2|))) (-114) (-114))))) -((-3589 (((-1 (-560)) (-1121 (-560))) 32 T ELT)) (-3593 (((-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-3591 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-3592 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-3590 (((-1 (-560)) (-560) |RationalNumber|) NIL T ELT))) -(((-1079) (-10 -7 (-15 -3589 ((-1 (-560)) (-1121 (-560)))) (-15 -3590 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -3591 ((-1 (-560)) |RationalNumber|)) (-15 -3592 ((-1 (-560)) |RationalNumber|)) (-15 -3593 ((-560) (-560) (-560) (-560) (-560))))) (T -1079)) -((-3593 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1079)))) (-3592 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079)))) (-3591 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079)) (-5 *3 (-560)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1121 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1079))))) -(-10 -7 (-15 -3589 ((-1 (-560)) (-1121 (-560)))) (-15 -3590 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -3591 ((-1 (-560)) |RationalNumber|)) (-15 -3592 ((-1 (-560)) |RationalNumber|)) (-15 -3593 ((-560) (-560) (-560) (-560) (-560)))) -((-4462 (((-888) $) NIL T ELT) (($ (-560)) 10 T ELT))) -(((-1080 |#1|) (-10 -8 (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-1081)) (T -1080)) -NIL -(-10 -8 (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1081) (-142)) (T -1081)) -((-3614 (*1 *2) (-12 (-4 *1 (-1081)) (-5 *2 (-793))))) -(-13 (-1089) (-748) (-670 $) (-635 (-560)) (-10 -7 (-15 -3614 ((-793)) -4468) (-6 -4508))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3594 (((-421 (-976 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)) 55 T ELT))) -(((-1082 |#1| |#2|) (-10 -7 (-15 -3594 ((-421 (-976 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)))) (-1209) (-376)) (T -1082)) -((-3594 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376)) (-5 *2 (-421 (-976 *6))) (-5 *1 (-1082 *5 *6)) (-14 *5 (-1209))))) -(-10 -7 (-15 -3594 ((-421 (-976 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-1083 |#1|) (-142) (-1144)) (T -1083)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1144))))) -(-13 (-1133) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3609 (((-114) $) 38 T ELT)) (-3611 (((-114) $) 17 T ELT)) (-3603 (((-793) $) 13 T ELT)) (-3602 (((-793) $) 14 T ELT)) (-3610 (((-114) $) 30 T ELT)) (-3608 (((-114) $) 40 T ELT))) -(((-1084 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3602 ((-793) |#1|)) (-15 -3603 ((-793) |#1|)) (-15 -3608 ((-114) |#1|)) (-15 -3609 ((-114) |#1|)) (-15 -3610 ((-114) |#1|)) (-15 -3611 ((-114) |#1|))) (-1085 |#2| |#3| |#4| |#5| |#6|) (-793) (-793) (-1081) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1084)) -NIL -(-10 -8 (-15 -3602 ((-793) |#1|)) (-15 -3603 ((-793) |#1|)) (-15 -3608 ((-114) |#1|)) (-15 -3609 ((-114) |#1|)) (-15 -3610 ((-114) |#1|)) (-15 -3611 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3609 (((-114) $) 61 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3611 (((-114) $) 63 T ELT)) (-4240 (($) 22 T CONST)) (-3598 (($ $) 44 (|has| |#3| (-319)) ELT)) (-3600 ((|#4| $ (-560)) 49 T ELT)) (-3597 (((-793) $) 43 (|has| |#3| (-571)) ELT)) (-3601 ((|#3| $ (-560) (-560)) 51 T ELT)) (-3376 (((-663 |#3|) $) 75 (|has| $ (-6 -4511)) ELT)) (-3596 (((-793) $) 42 (|has| |#3| (-571)) ELT)) (-3595 (((-663 |#5|) $) 41 (|has| |#3| (-571)) ELT)) (-3603 (((-793) $) 55 T ELT)) (-3602 (((-793) $) 54 T ELT)) (-3607 (((-560) $) 59 T ELT)) (-3605 (((-560) $) 57 T ELT)) (-3093 (((-663 |#3|) $) 76 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#3| $) 78 (-12 (|has| |#3| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3606 (((-560) $) 58 T ELT)) (-3604 (((-560) $) 56 T ELT)) (-3612 (($ (-663 (-663 |#3|))) 64 T ELT)) (-2174 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-4108 (((-663 (-663 |#3|)) $) 53 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#3|) $) 73 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#3|) (-663 |#3|)) 82 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-305 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-663 (-305 |#3|))) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT)) (-1340 (((-114) $ $) 65 T ELT)) (-3909 (((-114) $) 68 T ELT)) (-4079 (($) 67 T ELT)) (-4316 ((|#3| $ (-560) (-560)) 52 T ELT) ((|#3| $ (-560) (-560) |#3|) 50 T ELT)) (-3610 (((-114) $) 62 T ELT)) (-2171 (((-793) |#3| $) 77 (-12 (|has| |#3| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#3|) $) 74 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 66 T ELT)) (-3599 ((|#5| $ (-560)) 48 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2173 (((-114) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) 60 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#3|) 45 (|has| |#3| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4473 (((-793) $) 69 (|has| $ (-6 -4511)) ELT))) -(((-1085 |#1| |#2| |#3| |#4| |#5|) (-142) (-793) (-793) (-1081) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1085)) -((-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1081)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5))))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1081)))) (-3601 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1081)))) (-4316 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *2 (-1081)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *6 *2 *7)) (-4 *6 (-1081)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3599 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *6 *7 *2)) (-4 *6 (-1081)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-4474 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3972 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *2 (-1081)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571)))) (-4465 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *2 (-1081)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-663 *7))))) -(-13 (-111 |t#3| |t#3|) (-503 |t#3|) (-10 -8 (-6 -4511) (IF (|has| |t#3| (-175)) (-6 (-739 |t#3|)) |%noBranch|) (-15 -3612 ($ (-663 (-663 |t#3|)))) (-15 -3611 ((-114) $)) (-15 -3610 ((-114) $)) (-15 -3609 ((-114) $)) (-15 -3608 ((-114) $)) (-15 -3607 ((-560) $)) (-15 -3606 ((-560) $)) (-15 -3605 ((-560) $)) (-15 -3604 ((-560) $)) (-15 -3603 ((-793) $)) (-15 -3602 ((-793) $)) (-15 -4108 ((-663 (-663 |t#3|)) $)) (-15 -4316 (|t#3| $ (-560) (-560))) (-15 -3601 (|t#3| $ (-560) (-560))) (-15 -4316 (|t#3| $ (-560) (-560) |t#3|)) (-15 -3600 (|t#4| $ (-560))) (-15 -3599 (|t#5| $ (-560))) (-15 -4474 ($ (-1 |t#3| |t#3|) $)) (-15 -4474 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-571)) (-15 -3972 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -4465 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -3598 ($ $)) |%noBranch|) (IF (|has| |t#3| (-571)) (PROGN (-15 -3597 ((-793) $)) (-15 -3596 ((-793) $)) (-15 -3595 ((-663 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-632 (-888)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ((-503 |#3|) . T) ((-528 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ((-668 (-560)) . T) ((-668 |#3|) . T) ((-670 |#3|) . T) ((-662 |#3|) |has| |#3| (-175)) ((-739 |#3|) |has| |#3| (-175)) ((-1083 |#3|) . T) ((-1088 |#3|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3609 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3611 (((-114) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3600 (((-246 |#2| |#3|) $ (-560)) 36 T ELT)) (-3613 (($ (-711 |#3|)) 45 T ELT)) (-3597 (((-793) $) 49 (|has| |#3| (-571)) ELT)) (-3601 ((|#3| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3596 (((-793) $) 51 (|has| |#3| (-571)) ELT)) (-3595 (((-663 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-571)) ELT)) (-3603 (((-793) $) NIL T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-3612 (($ (-663 (-663 |#3|))) 31 T ELT)) (-2174 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-4108 (((-663 (-663 |#3|)) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#3| $ (-560) (-560)) NIL T ELT) ((|#3| $ (-560) (-560) |#3|) NIL T ELT)) (-4427 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3610 (((-114) $) NIL T ELT)) (-2171 (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT) (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) 66 (|has| |#3| (-633 (-549))) ELT)) (-3599 (((-246 |#1| |#3|) $ (-560)) 40 T ELT)) (-4462 (((-888) $) 19 T ELT) (((-711 |#3|) $) 42 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-3145 (($) 16 T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1086 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1307 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3613 ($ (-711 |#3|))))) (-793) (-793) (-1081)) (T -1086)) -((-3613 (*1 *1 *2) (-12 (-5 *2 (-711 *5)) (-4 *5 (-1081)) (-5 *1 (-1086 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793))))) -(-13 (-1085 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1307 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3613 ($ (-711 |#3|))))) -((-4358 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4474 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-1087 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4474 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4358 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-793) (-793) (-1081) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1085 |#1| |#2| |#3| |#4| |#5|) (-1081) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1085 |#1| |#2| |#7| |#8| |#9|)) (T -1087)) -((-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1081)) (-4 *2 (-1081)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1087 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1085 *5 *6 *7 *8 *9)) (-4 *12 (-1085 *5 *6 *2 *10 *11)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1081)) (-4 *10 (-1081)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1085 *5 *6 *10 *11 *12)) (-5 *1 (-1087 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1085 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) -(-10 -7 (-15 -4474 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4358 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-1088 |#1|) (-142) (-1089)) (T -1088)) -NIL -(-13 (-21) (-1083 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-1083 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1089) (-142)) (T -1089)) -NIL -(-13 (-21) (-1144)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4347 (((-1209) $) 11 T ELT)) (-4252 ((|#1| $) 12 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-3730 (($ (-1209) |#1|) 10 T ELT)) (-4462 (((-888) $) 22 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3540 (((-114) $ $) 17 (|has| |#1| (-1133)) ELT))) -(((-1090 |#1| |#2|) (-13 (-1249) (-10 -8 (-15 -3730 ($ (-1209) |#1|)) (-15 -4347 ((-1209) $)) (-15 -4252 (|#1| $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) (-1126 |#2|) (-1249)) (T -1090)) -((-3730 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-4 *4 (-1249)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1126 *4)))) (-4347 (*1 *2 *1) (-12 (-4 *4 (-1249)) (-5 *2 (-1209)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1126 *4)))) (-4252 (*1 *2 *1) (-12 (-4 *2 (-1126 *3)) (-5 *1 (-1090 *2 *3)) (-4 *3 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -3730 ($ (-1209) |#1|)) (-15 -4347 ((-1209) $)) (-15 -4252 (|#1| $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) -((-4287 (($ $) 17 T ELT)) (-3615 (($ $) 25 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 54 T ELT)) (-3620 (($ $) 27 T ELT)) (-3616 (($ $) 12 T ELT)) (-3618 (($ $) 40 T ELT)) (-4488 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-916 (-391)) $) 36 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 31 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 31 T ELT)) (-3614 (((-793)) 9 T ELT)) (-3619 (($ $) 44 T ELT))) -(((-1091 |#1|) (-10 -8 (-15 -3615 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| |#1|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-1092)) (T -1091)) -((-3614 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1091 *3)) (-4 *3 (-1092))))) -(-10 -8 (-15 -3615 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3283 ((-914 (-391) |#1|) |#1| (-916 (-391)) (-914 (-391) |#1|))) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 -4488 ((-229) |#1|)) (-15 -4488 ((-391) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| |#1|)) (-15 -3614 ((-793))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3617 (((-560) $) 105 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-4287 (($ $) 103 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-3524 (($ $) 113 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4139 (((-560) $) 130 T ELT)) (-4240 (($) 22 T CONST)) (-3615 (($ $) 102 T ELT)) (-3661 (((-3 (-560) #1="failed") $) 118 T ELT) (((-3 (-421 (-560)) #1#) $) 115 T ELT)) (-3660 (((-560) $) 119 T ELT) (((-421 (-560)) $) 116 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-4239 (((-114) $) 86 T ELT)) (-3690 (((-114) $) 128 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 109 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 112 T ELT)) (-3620 (($ $) 108 T ELT)) (-3691 (((-114) $) 129 T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) 65 T ELT)) (-3016 (($ $ $) 122 T ELT)) (-3344 (($ $ $) 123 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-3616 (($ $) 104 T ELT)) (-3618 (($ $) 106 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-4488 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-916 (-391)) $) 110 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ (-560)) 117 T ELT) (($ (-421 (-560))) 114 T ELT)) (-3614 (((-793)) 37 T CONST)) (-3619 (($ $) 107 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3889 (($ $) 131 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3051 (((-114) $ $) 124 T ELT)) (-3052 (((-114) $ $) 126 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 125 T ELT)) (-3172 (((-114) $ $) 127 T ELT)) (-4465 (($ $ $) 80 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT) (($ $ (-421 (-560))) 111 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT))) -(((-1092) (-142)) (T -1092)) -((-3620 (*1 *1 *1) (-4 *1 (-1092))) (-3619 (*1 *1 *1) (-4 *1 (-1092))) (-3618 (*1 *1 *1) (-4 *1 (-1092))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-560)))) (-3616 (*1 *1 *1) (-4 *1 (-1092))) (-4287 (*1 *1 *1) (-4 *1 (-1092))) (-3615 (*1 *1 *1) (-4 *1 (-1092)))) -(-13 (-376) (-871) (-1052) (-1070 (-560)) (-1070 (-421 (-560))) (-1034) (-633 (-916 (-391))) (-912 (-391)) (-149) (-10 -8 (-15 -3620 ($ $)) (-15 -3619 ($ $)) (-15 -3618 ($ $)) (-15 -3617 ((-560) $)) (-15 -3616 ($ $)) (-15 -4287 ($ $)) (-15 -3615 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-916 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-814) . T) ((-816) . T) ((-818) . T) ((-821) . T) ((-871) . T) ((-872) . T) ((-875) . T) ((-912 (-391)) . T) ((-951) . T) ((-1034) . T) ((-1052) . T) ((-1070 (-421 (-560))) . T) ((-1070 (-560)) . T) ((-1083 #1#) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) |#2| $) 26 T ELT)) (-3624 ((|#1| $) 10 T ELT)) (-4139 (((-560) |#2| $) 119 T ELT)) (-3687 (((-3 $ #1="failed") |#2| (-949)) 76 T ELT)) (-3625 ((|#1| $) 31 T ELT)) (-3686 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3622 (($ $) 28 T ELT)) (-3973 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3690 (((-114) |#2| $) NIL T ELT)) (-3691 (((-114) |#2| $) NIL T ELT)) (-3621 (((-114) |#2| $) 27 T ELT)) (-3623 ((|#1| $) 120 T ELT)) (-3626 ((|#1| $) 30 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3689 ((|#2| $) 104 T ELT)) (-4462 (((-888) $) 95 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4286 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3688 (((-663 $) |#2|) 78 T ELT)) (-3540 (((-114) $ $) 99 T ELT))) -(((-1093 |#1| |#2|) (-13 (-1100 |#1| |#2|) (-10 -8 (-15 -3626 (|#1| $)) (-15 -3625 (|#1| $)) (-15 -3624 (|#1| $)) (-15 -3623 (|#1| $)) (-15 -3622 ($ $)) (-15 -3621 ((-114) |#2| $)) (-15 -3686 (|#1| |#2| $ |#1|)))) (-13 (-871) (-376)) (-1275 |#1|)) (T -1093)) -((-3686 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3626 (*1 *2 *1) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3625 (*1 *2 *1) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3624 (*1 *2 *1) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3623 (*1 *2 *1) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3622 (*1 *1 *1) (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) (-3621 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-871) (-376))) (-5 *2 (-114)) (-5 *1 (-1093 *4 *3)) (-4 *3 (-1275 *4))))) -(-13 (-1100 |#1| |#2|) (-10 -8 (-15 -3626 (|#1| $)) (-15 -3625 (|#1| $)) (-15 -3624 (|#1| $)) (-15 -3623 (|#1| $)) (-15 -3622 ($ $)) (-15 -3621 ((-114) |#2| $)) (-15 -3686 (|#1| |#2| $ |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2271 (($ $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2266 (($ $ $ $) NIL T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-4139 (((-560) $) NIL T ELT)) (-2844 (($ $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3627 (($ (-1209)) 10 T ELT) (($ (-560)) 7 T ELT)) (-3661 (((-3 (-560) "failed") $) NIL T ELT)) (-3660 (((-560) $) NIL T ELT)) (-3049 (($ $ $) NIL T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3510 (((-114) $) NIL T ELT)) (-3509 (((-421 (-560)) $) NIL T ELT)) (-3481 (($) NIL T ELT) (($ $) NIL T ELT)) (-3048 (($ $ $) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2264 (($ $ $ $) NIL T ELT)) (-2272 (($ $ $) NIL T ELT)) (-3690 (((-114) $) NIL T ELT)) (-1495 (($ $ $) NIL T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3160 (((-114) $) NIL T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-3691 (((-114) $) NIL T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2265 (($ $ $ $) NIL T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-2268 (($ $) NIL T ELT)) (-4349 (($ $) NIL T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2263 (($ $ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2270 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1493 (($ $) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) NIL T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-560) $) 16 T ELT) (((-549) $) NIL T ELT) (((-916 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1209)) 9 T ELT)) (-4462 (((-888) $) 23 T ELT) (($ (-560)) 6 T ELT) (($ $) NIL T ELT) (($ (-560)) 6 T ELT)) (-3614 (((-793)) NIL T CONST)) (-2273 (((-114) $ $) NIL T ELT)) (-3590 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (($) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-2267 (($ $ $ $) NIL T ELT)) (-3889 (($ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-4353 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT))) -(((-1094) (-13 (-559) (-637 (-1209)) (-10 -8 (-6 -4498) (-6 -4503) (-6 -4499) (-15 -3627 ($ (-1209))) (-15 -3627 ($ (-560)))))) (T -1094)) -((-3627 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1094)))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1094))))) -(-13 (-559) (-637 (-1209)) (-10 -8 (-6 -4498) (-6 -4503) (-6 -4499) (-15 -3627 ($ (-1209))) (-15 -3627 ($ (-560))))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-2427 (((-1305) $ (-1209) (-1209)) NIL (|has| $ (-6 -4512)) ELT)) (-3629 (($) 9 T ELT)) (-4304 (((-51) $ (-1209) (-51)) NIL T ELT)) (-3637 (($ $) 32 T ELT)) (-3640 (($ $) 30 T ELT)) (-3641 (($ $) 29 T ELT)) (-3639 (($ $) 31 T ELT)) (-3636 (($ $) 35 T ELT)) (-3635 (($ $) 36 T ELT)) (-3642 (($ $) 28 T ELT)) (-3638 (($ $) 33 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) 27 (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 (-51) #1="failed") (-1209) $) 43 T ELT)) (-4240 (($) NIL T CONST)) (-3643 (($) 7 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) 53 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 (-51) #1#) (-1209) $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT)) (-3628 (((-3 (-1191) "failed") $ (-1191) (-560)) 72 T ELT)) (-1731 (((-51) $ (-1209) (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-51) $ (-1209)) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 (((-1209) $) NIL (|has| (-1209) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) 38 (|has| $ (-6 -4511)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2430 (((-1209) $) NIL (|has| (-1209) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-2898 (((-663 (-1209)) $) NIL T ELT)) (-2461 (((-114) (-1209) $) NIL T ELT)) (-1400 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) 46 T ELT)) (-2432 (((-663 (-1209)) $) NIL T ELT)) (-2433 (((-114) (-1209) $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-51) (-1133)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT)) (-3632 (((-391) $ (-1209)) 52 T ELT)) (-3631 (((-663 (-1191)) $ (-1191)) 74 T ELT)) (-4317 (((-51) $) NIL (|has| (-1209) (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) "failed") (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL T ELT)) (-2428 (($ $ (-51)) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL (-12 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-321 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT)) (-2434 (((-663 (-51)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 (((-51) $ (-1209)) NIL T ELT) (((-51) $ (-1209) (-51)) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-3630 (($ $ (-1209)) 54 T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-1133))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-51) (-1133))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) 40 T ELT)) (-4318 (($ $ $) 41 T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-632 (-888))) (|has| (-51) (-632 (-888)))) ELT)) (-3634 (($ $ (-1209) (-391)) 50 T ELT)) (-3633 (($ $ (-1209) (-391)) 51 T ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 (-1209)) (|:| -2300 (-51)))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-51) (-102)) (|has| (-2 (|:| -4376 (-1209)) (|:| -2300 (-51))) (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1095) (-13 (-1226 (-1209) (-51)) (-10 -8 (-15 -4318 ($ $ $)) (-15 -3643 ($)) (-15 -3642 ($ $)) (-15 -3641 ($ $)) (-15 -3640 ($ $)) (-15 -3639 ($ $)) (-15 -3638 ($ $)) (-15 -3637 ($ $)) (-15 -3636 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $ (-1209) (-391))) (-15 -3633 ($ $ (-1209) (-391))) (-15 -3632 ((-391) $ (-1209))) (-15 -3631 ((-663 (-1191)) $ (-1191))) (-15 -3630 ($ $ (-1209))) (-15 -3629 ($)) (-15 -3628 ((-3 (-1191) "failed") $ (-1191) (-560))) (-6 -4511)))) (T -1095)) -((-4318 (*1 *1 *1 *1) (-5 *1 (-1095))) (-3643 (*1 *1) (-5 *1 (-1095))) (-3642 (*1 *1 *1) (-5 *1 (-1095))) (-3641 (*1 *1 *1) (-5 *1 (-1095))) (-3640 (*1 *1 *1) (-5 *1 (-1095))) (-3639 (*1 *1 *1) (-5 *1 (-1095))) (-3638 (*1 *1 *1) (-5 *1 (-1095))) (-3637 (*1 *1 *1) (-5 *1 (-1095))) (-3636 (*1 *1 *1) (-5 *1 (-1095))) (-3635 (*1 *1 *1) (-5 *1 (-1095))) (-3634 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-391)) (-5 *1 (-1095)))) (-3633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-391)) (-5 *1 (-1095)))) (-3632 (*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-391)) (-5 *1 (-1095)))) (-3631 (*1 *2 *1 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1095)) (-5 *3 (-1191)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1095)))) (-3629 (*1 *1) (-5 *1 (-1095))) (-3628 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-1095))))) -(-13 (-1226 (-1209) (-51)) (-10 -8 (-15 -4318 ($ $ $)) (-15 -3643 ($)) (-15 -3642 ($ $)) (-15 -3641 ($ $)) (-15 -3640 ($ $)) (-15 -3639 ($ $)) (-15 -3638 ($ $)) (-15 -3637 ($ $)) (-15 -3636 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $ (-1209) (-391))) (-15 -3633 ($ $ (-1209) (-391))) (-15 -3632 ((-391) $ (-1209))) (-15 -3631 ((-663 (-1191)) $ (-1191))) (-15 -3630 ($ $ (-1209))) (-15 -3629 ($)) (-15 -3628 ((-3 (-1191) "failed") $ (-1191) (-560))) (-6 -4511))) -((-4313 (($ $) 46 T ELT)) (-3670 (((-114) $ $) 82 T ELT)) (-3661 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ "failed") (-976 (-421 (-560)))) 247 T ELT) (((-3 $ "failed") (-976 (-560))) 246 T ELT) (((-3 $ "failed") (-976 |#2|)) 249 T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-976 (-421 (-560)))) 235 T ELT) (($ (-976 (-560))) 231 T ELT) (($ (-976 |#2|)) 255 T ELT)) (-4475 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4210 (((-114) $ $) 131 T ELT) (((-114) $ (-663 $)) 135 T ELT)) (-3676 (((-114) $) 60 T ELT)) (-4268 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 125 T ELT)) (-3647 (($ $) 160 T ELT)) (-3658 (($ $) 156 T ELT)) (-3659 (($ $) 155 T ELT)) (-3669 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3668 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4211 (((-114) $ $) 143 T ELT) (((-114) $ (-663 $)) 144 T ELT)) (-3684 ((|#4| $) 32 T ELT)) (-3663 (($ $ $) 128 T ELT)) (-3677 (((-114) $) 59 T ELT)) (-3683 (((-793) $) 35 T ELT)) (-3644 (($ $) 174 T ELT)) (-3645 (($ $) 171 T ELT)) (-3672 (((-663 $) $) 72 T ELT)) (-3675 (($ $) 62 T ELT)) (-3646 (($ $) 167 T ELT)) (-3673 (((-663 $) $) 69 T ELT)) (-3674 (($ $) 64 T ELT)) (-3678 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3662 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-793))) $ $) 130 T ELT)) (-3664 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $) 126 T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $ |#4|) 127 T ELT)) (-3665 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $) 121 T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $ |#4|) 123 T ELT)) (-3667 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3666 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3680 (((-663 $) $) 54 T ELT)) (-4207 (((-114) $ $) 140 T ELT) (((-114) $ (-663 $)) 141 T ELT)) (-4202 (($ $ $) 116 T ELT)) (-3952 (($ $) 37 T ELT)) (-4215 (((-114) $ $) 80 T ELT)) (-4208 (((-114) $ $) 136 T ELT) (((-114) $ (-663 $)) 138 T ELT)) (-4203 (($ $ $) 112 T ELT)) (-3682 (($ $) 41 T ELT)) (-3648 ((|#2| |#2| $) 164 T ELT) (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3656 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3657 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3681 (($ $) 49 T ELT)) (-3679 (($ $) 55 T ELT)) (-4488 (((-916 (-391)) $) NIL T ELT) (((-916 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-976 (-421 (-560)))) 237 T ELT) (($ (-976 (-560))) 233 T ELT) (($ (-976 |#2|)) 248 T ELT) (((-1191) $) 278 T ELT) (((-976 |#2|) $) 184 T ELT)) (-4462 (((-888) $) 29 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-976 |#2|) $) 185 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-3671 (((-3 (-114) "failed") $ $) 79 T ELT))) -(((-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4462 (|#1| |#1|)) (-15 -3648 (|#1| |#1| |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 ((-976 |#2|) |#1|)) (-15 -4488 ((-976 |#2|) |#1|)) (-15 -4488 ((-1191) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3647 (|#1| |#1|)) (-15 -3648 (|#2| |#2| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3658 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -4488 (|#1| (-976 |#2|))) (-15 -3660 (|#1| (-976 |#2|))) (-15 -3661 ((-3 |#1| "failed") (-976 |#2|))) (-15 -4488 (|#1| (-976 (-560)))) (-15 -3660 (|#1| (-976 (-560)))) (-15 -3661 ((-3 |#1| "failed") (-976 (-560)))) (-15 -4488 (|#1| (-976 (-421 (-560))))) (-15 -3660 (|#1| (-976 (-421 (-560))))) (-15 -3661 ((-3 |#1| "failed") (-976 (-421 (-560))))) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -3662 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3987 (-793))) |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4268 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3665 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3665 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3666 (|#1| |#1| |#1| |#4|)) (-15 -3667 (|#1| |#1| |#1| |#4|)) (-15 -3666 (|#1| |#1| |#1|)) (-15 -3667 (|#1| |#1| |#1|)) (-15 -3668 (|#1| |#1| |#1| |#4|)) (-15 -3669 (|#1| |#1| |#1| |#4|)) (-15 -3668 (|#1| |#1| |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -4211 ((-114) |#1| (-663 |#1|))) (-15 -4211 ((-114) |#1| |#1|)) (-15 -4207 ((-114) |#1| (-663 |#1|))) (-15 -4207 ((-114) |#1| |#1|)) (-15 -4208 ((-114) |#1| (-663 |#1|))) (-15 -4208 ((-114) |#1| |#1|)) (-15 -4210 ((-114) |#1| (-663 |#1|))) (-15 -4210 ((-114) |#1| |#1|)) (-15 -3670 ((-114) |#1| |#1|)) (-15 -4215 ((-114) |#1| |#1|)) (-15 -3671 ((-3 (-114) "failed") |#1| |#1|)) (-15 -3672 ((-663 |#1|) |#1|)) (-15 -3673 ((-663 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -3676 ((-114) |#1|)) (-15 -3677 ((-114) |#1|)) (-15 -4475 (|#1| |#1| |#4|)) (-15 -3678 (|#1| |#1| |#4|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 ((-663 |#1|) |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3683 ((-793) |#1|)) (-15 -3684 (|#4| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4462 (|#1| |#4|)) (-15 -3661 ((-3 |#4| #1="failed") |#1|)) (-15 -3660 (|#4| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -4475 (|#1| |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-1097 |#2| |#3| |#4|) (-1081) (-817) (-872)) (T -1096)) -NIL -(-10 -8 (-15 -4462 (|#1| |#1|)) (-15 -3648 (|#1| |#1| |#1|)) (-15 -3648 (|#1| (-663 |#1|))) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 ((-976 |#2|) |#1|)) (-15 -4488 ((-976 |#2|) |#1|)) (-15 -4488 ((-1191) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -3647 (|#1| |#1|)) (-15 -3648 (|#2| |#2| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3658 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -4488 (|#1| (-976 |#2|))) (-15 -3660 (|#1| (-976 |#2|))) (-15 -3661 ((-3 |#1| "failed") (-976 |#2|))) (-15 -4488 (|#1| (-976 (-560)))) (-15 -3660 (|#1| (-976 (-560)))) (-15 -3661 ((-3 |#1| "failed") (-976 (-560)))) (-15 -4488 (|#1| (-976 (-421 (-560))))) (-15 -3660 (|#1| (-976 (-421 (-560))))) (-15 -3661 ((-3 |#1| "failed") (-976 (-421 (-560))))) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4203 (|#1| |#1| |#1|)) (-15 -3662 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3987 (-793))) |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4268 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3664 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3665 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -3389 |#1|)) |#1| |#1| |#4|)) (-15 -3665 ((-2 (|:| -4470 |#1|) (|:| |gap| (-793)) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -3666 (|#1| |#1| |#1| |#4|)) (-15 -3667 (|#1| |#1| |#1| |#4|)) (-15 -3666 (|#1| |#1| |#1|)) (-15 -3667 (|#1| |#1| |#1|)) (-15 -3668 (|#1| |#1| |#1| |#4|)) (-15 -3669 (|#1| |#1| |#1| |#4|)) (-15 -3668 (|#1| |#1| |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -4211 ((-114) |#1| (-663 |#1|))) (-15 -4211 ((-114) |#1| |#1|)) (-15 -4207 ((-114) |#1| (-663 |#1|))) (-15 -4207 ((-114) |#1| |#1|)) (-15 -4208 ((-114) |#1| (-663 |#1|))) (-15 -4208 ((-114) |#1| |#1|)) (-15 -4210 ((-114) |#1| (-663 |#1|))) (-15 -4210 ((-114) |#1| |#1|)) (-15 -3670 ((-114) |#1| |#1|)) (-15 -4215 ((-114) |#1| |#1|)) (-15 -3671 ((-3 (-114) "failed") |#1| |#1|)) (-15 -3672 ((-663 |#1|) |#1|)) (-15 -3673 ((-663 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -3676 ((-114) |#1|)) (-15 -3677 ((-114) |#1|)) (-15 -4475 (|#1| |#1| |#4|)) (-15 -3678 (|#1| |#1| |#4|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 ((-663 |#1|) |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3683 ((-793) |#1|)) (-15 -3684 (|#4| |#1|)) (-15 -4488 ((-549) |#1|)) (-15 -4488 ((-916 (-560)) |#1|)) (-15 -4488 ((-916 (-391)) |#1|)) (-15 -4462 (|#1| |#4|)) (-15 -3661 ((-3 |#4| #1="failed") |#1|)) (-15 -3660 (|#4| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -4475 (|#1| |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 |#3|) $) 120 T ELT)) (-3572 (((-1203 $) $ |#3|) 135 T ELT) (((-1203 |#1|) $) 134 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 97 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 98 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 100 (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) 122 T ELT) (((-793) $ (-663 |#3|)) 121 T ELT)) (-4313 (($ $) 290 T ELT)) (-3670 (((-114) $ $) 276 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4271 (($ $ $) 235 (|has| |#1| (-571)) ELT)) (-3652 (((-663 $) $ $) 230 (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 110 (|has| |#1| (-940)) ELT)) (-4291 (($ $) 108 (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) 107 (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 113 (|has| |#1| (-940)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-421 (-560)) #2#) $) 175 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) 173 (|has| |#1| (-1070 (-560))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-976 (-421 (-560)))) 250 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209)))) ELT) (((-3 $ "failed") (-976 (-560))) 247 (-4043 (-12 (-3045 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1209)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209))))) ELT) (((-3 $ "failed") (-976 |#1|)) 244 (-4043 (-12 (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1209)))) (-12 (-3045 (|has| |#1| (-559))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1209)))) (-12 (-3045 (|has| |#1| (-1023 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209))))) ELT)) (-3660 ((|#1| $) 177 T ELT) (((-421 (-560)) $) 176 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) 174 (|has| |#1| (-1070 (-560))) ELT) ((|#3| $) 151 T ELT) (($ (-976 (-421 (-560)))) 249 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209)))) ELT) (($ (-976 (-560))) 246 (-4043 (-12 (-3045 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1209)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209))))) ELT) (($ (-976 |#1|)) 243 (-4043 (-12 (-3045 (|has| |#1| (-38 (-421 (-560))))) (-3045 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1209)))) (-12 (-3045 (|has| |#1| (-559))) (-3045 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1209)))) (-12 (-3045 (|has| |#1| (-1023 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209))))) ELT)) (-4272 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT) (($ $ $) 231 (|has| |#1| (-571)) ELT)) (-4475 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 146 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 145 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 144 T ELT) (((-711 |#1|) (-711 $)) 143 T ELT)) (-4210 (((-114) $ $) 275 T ELT) (((-114) $ (-663 $)) 274 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3676 (((-114) $) 283 T ELT)) (-4268 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 255 T ELT)) (-3647 (($ $) 224 (|has| |#1| (-466)) ELT)) (-4009 (($ $) 190 (|has| |#1| (-466)) ELT) (($ $ |#3|) 115 (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) 119 T ELT)) (-4239 (((-114) $) 106 (|has| |#1| (-940)) ELT)) (-3658 (($ $) 240 (|has| |#1| (-571)) ELT)) (-3659 (($ $) 241 (|has| |#1| (-571)) ELT)) (-3669 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3668 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1816 (($ $ |#1| |#2| $) 186 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 94 (-12 (|has| |#3| (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 93 (-12 (|has| |#3| (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-2655 (((-114) $) 40 T ELT)) (-2663 (((-793) $) 183 T ELT)) (-4211 (((-114) $ $) 269 T ELT) (((-114) $ (-663 $)) 268 T ELT)) (-3649 (($ $ $ $ $) 226 (|has| |#1| (-571)) ELT)) (-3684 ((|#3| $) 294 T ELT)) (-3573 (($ (-1203 |#1|) |#3|) 127 T ELT) (($ (-1203 $) |#3|) 126 T ELT)) (-3308 (((-663 $) $) 136 T ELT)) (-4453 (((-114) $) 166 T ELT)) (-3380 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-793)) 129 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 128 T ELT)) (-3663 (($ $ $) 254 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#3|) 130 T ELT)) (-3677 (((-114) $) 284 T ELT)) (-3307 ((|#2| $) 184 T ELT) (((-793) $ |#3|) 132 T ELT) (((-663 (-793)) $ (-663 |#3|)) 131 T ELT)) (-3683 (((-793) $) 293 T ELT)) (-1817 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3571 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3644 (($ $) 221 (|has| |#1| (-466)) ELT)) (-3645 (($ $) 222 (|has| |#1| (-466)) ELT)) (-3672 (((-663 $) $) 279 T ELT)) (-3675 (($ $) 282 T ELT)) (-3646 (($ $) 223 (|has| |#1| (-466)) ELT)) (-3673 (((-663 $) $) 280 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 148 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 147 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 142 T ELT) (((-711 |#1|) (-1299 $)) 141 T ELT)) (-3674 (($ $) 281 T ELT)) (-3381 (($ $) 163 T ELT)) (-3678 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-2116 (($ (-663 $)) 104 (|has| |#1| (-466)) ELT) (($ $ $) 103 (|has| |#1| (-466)) ELT)) (-3662 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-793))) $ $) 253 T ELT)) (-3664 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $) 257 T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $ |#3|) 256 T ELT)) (-3665 (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $) 259 T ELT) (((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $ |#3|) 258 T ELT)) (-3667 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3666 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3694 (($ $ $) 229 (|has| |#1| (-571)) ELT)) (-3680 (((-663 $) $) 288 T ELT)) (-3310 (((-3 (-663 $) #3#) $) 124 T ELT)) (-3309 (((-3 (-663 $) #3#) $) 125 T ELT)) (-3311 (((-3 (-2 (|:| |var| |#3|) (|:| -2646 (-793))) #3#) $) 123 T ELT)) (-4207 (((-114) $ $) 271 T ELT) (((-114) $ (-663 $)) 270 T ELT)) (-4202 (($ $ $) 251 T ELT)) (-3952 (($ $) 292 T ELT)) (-4215 (((-114) $ $) 277 T ELT)) (-4208 (((-114) $ $) 273 T ELT) (((-114) $ (-663 $)) 272 T ELT)) (-4203 (($ $ $) 252 T ELT)) (-3682 (($ $) 291 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3653 (((-2 (|:| -3648 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-571)) ELT)) (-3654 (((-2 (|:| -3648 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-571)) ELT)) (-2019 (((-114) $) 180 T ELT)) (-2018 ((|#1| $) 181 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 105 (|has| |#1| (-466)) ELT)) (-3648 ((|#1| |#1| $) 225 (|has| |#1| (-466)) ELT) (($ (-663 $)) 102 (|has| |#1| (-466)) ELT) (($ $ $) 101 (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 112 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 111 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 109 (|has| |#1| (-940)) ELT)) (-3655 (((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-571)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-3656 (($ $ |#1|) 238 (|has| |#1| (-571)) ELT) (($ $ $) 236 (|has| |#1| (-571)) ELT)) (-3657 (($ $ |#1|) 239 (|has| |#1| (-571)) ELT) (($ $ $) 237 (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-663 $) (-663 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-663 |#3|) (-663 $)) 152 T ELT)) (-4273 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#3|) (-663 (-793))) 49 T ELT) (($ $ |#3| (-793)) 48 T ELT) (($ $ (-663 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4464 ((|#2| $) 164 T ELT) (((-793) $ |#3|) 140 T ELT) (((-663 (-793)) $ (-663 |#3|)) 139 T ELT)) (-3681 (($ $) 289 T ELT)) (-3679 (($ $) 287 T ELT)) (-4488 (((-916 (-391)) $) 92 (-12 (|has| |#3| (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) 91 (-12 (|has| |#3| (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) 90 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT) (($ (-976 (-421 (-560)))) 248 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209)))) ELT) (($ (-976 (-560))) 245 (-4043 (-12 (-3045 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1209)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1209))))) ELT) (($ (-976 |#1|)) 242 (|has| |#3| (-633 (-1209))) ELT) (((-1191) $) 220 (-12 (|has| |#1| (-1070 (-560))) (|has| |#3| (-633 (-1209)))) ELT) (((-976 |#1|) $) 219 (|has| |#3| (-633 (-1209))) ELT)) (-3304 ((|#1| $) 189 (|has| |#1| (-466)) ELT) (($ $ |#3|) 116 (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 114 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-976 |#1|) $) 218 (|has| |#3| (-633 (-1209))) ELT) (($ (-421 (-560))) 88 (-4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 95 (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) 182 T ELT)) (-4193 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-793)) 138 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 137 T ELT)) (-3189 (((-713 $) $) 89 (-4043 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1815 (($ $ $ (-793)) 187 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 99 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3671 (((-3 (-114) "failed") $ $) 278 T ELT)) (-3151 (($) 39 T CONST)) (-3650 (($ $ $ $ (-793)) 227 (|has| |#1| (-571)) ELT)) (-3651 (($ $ $ (-793)) 228 (|has| |#1| (-571)) ELT)) (-3156 (($ $ (-663 |#3|) (-663 (-793))) 52 T ELT) (($ $ |#3| (-793)) 51 T ELT) (($ $ (-663 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1097 |#1| |#2| |#3|) (-142) (-1081) (-817) (-872)) (T -1097)) -((-3684 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-793)))) (-3952 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3681 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3680 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1097 *3 *4 *5)))) (-3679 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3678 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-4475 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-3675 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3673 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1097 *3 *4 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1097 *3 *4 *5)))) (-3671 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4215 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-3670 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4210 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4210 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) (-4208 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) (-4207 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4207 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) (-4211 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3668 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3669 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3668 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3667 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3666 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3667 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3666 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) (-3665 (*1 *2 *1 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -3389 *1))) (-4 *1 (-1097 *3 *4 *5)))) (-3665 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -3389 *1))) (-4 *1 (-1097 *4 *5 *3)))) (-3664 (*1 *2 *1 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1097 *3 *4 *5)))) (-3664 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1097 *4 *5 *3)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1097 *3 *4 *5)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3662 (*1 *2 *1 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3987 (-793)))) (-4 *1 (-1097 *3 *4 *5)))) (-4203 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-4202 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) (-3661 (*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)))) (-3661 (*1 *1 *2) (|partial| -4043 (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))))) (-3660 (*1 *1 *2) (-4043 (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))))) (-4488 (*1 *1 *2) (-4043 (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))))) (-3661 (*1 *1 *2) (|partial| -4043 (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-3045 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-559))) (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-1023 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))))) (-3660 (*1 *1 *2) (-4043 (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-3045 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-559))) (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) (-12 (-5 *2 (-976 *3)) (-12 (-3045 (-4 *3 (-1023 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *5 (-633 (-1209))) (-4 *4 (-817)) (-4 *5 (-872)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3658 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3657 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3656 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3657 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3655 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -3648 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1097 *3 *4 *5)))) (-3654 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -3648 *1) (|:| |coef1| *1))) (-4 *1 (-1097 *3 *4 *5)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-2 (|:| -3648 *1) (|:| |coef2| *1))) (-4 *1 (-1097 *3 *4 *5)))) (-4272 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3652 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1097 *3 *4 *5)))) (-3694 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3651 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *3 (-571)))) (-3650 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *3 (-571)))) (-3649 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-571)))) (-3648 (*1 *2 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-3647 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-3646 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-3645 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466)))) (-3644 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-466))))) -(-13 (-980 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3684 (|t#3| $)) (-15 -3683 ((-793) $)) (-15 -3952 ($ $)) (-15 -3682 ($ $)) (-15 -4313 ($ $)) (-15 -3681 ($ $)) (-15 -3680 ((-663 $) $)) (-15 -3679 ($ $)) (-15 -3678 ($ $ |t#3|)) (-15 -4475 ($ $ |t#3|)) (-15 -3677 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -3675 ($ $)) (-15 -3674 ($ $)) (-15 -3673 ((-663 $) $)) (-15 -3672 ((-663 $) $)) (-15 -3671 ((-3 (-114) "failed") $ $)) (-15 -4215 ((-114) $ $)) (-15 -3670 ((-114) $ $)) (-15 -4210 ((-114) $ $)) (-15 -4210 ((-114) $ (-663 $))) (-15 -4208 ((-114) $ $)) (-15 -4208 ((-114) $ (-663 $))) (-15 -4207 ((-114) $ $)) (-15 -4207 ((-114) $ (-663 $))) (-15 -4211 ((-114) $ $)) (-15 -4211 ((-114) $ (-663 $))) (-15 -3669 ($ $ $)) (-15 -3668 ($ $ $)) (-15 -3669 ($ $ $ |t#3|)) (-15 -3668 ($ $ $ |t#3|)) (-15 -3667 ($ $ $)) (-15 -3666 ($ $ $)) (-15 -3667 ($ $ $ |t#3|)) (-15 -3666 ($ $ $ |t#3|)) (-15 -3665 ((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $)) (-15 -3665 ((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -3389 $)) $ $ |t#3|)) (-15 -3664 ((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3664 ((-2 (|:| -4470 $) (|:| |gap| (-793)) (|:| -2198 $) (|:| -3389 $)) $ $ |t#3|)) (-15 -4268 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -3663 ($ $ $)) (-15 -3662 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-793))) $ $)) (-15 -4203 ($ $ $)) (-15 -4202 ($ $ $)) (IF (|has| |t#3| (-633 (-1209))) (PROGN (-6 (-632 (-976 |t#1|))) (-6 (-633 (-976 |t#1|))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -3661 ((-3 $ "failed") (-976 (-421 (-560))))) (-15 -3660 ($ (-976 (-421 (-560))))) (-15 -4488 ($ (-976 (-421 (-560))))) (-15 -3661 ((-3 $ "failed") (-976 (-560)))) (-15 -3660 ($ (-976 (-560)))) (-15 -4488 ($ (-976 (-560)))) (IF (|has| |t#1| (-1023 (-560))) |%noBranch| (PROGN (-15 -3661 ((-3 $ "failed") (-976 |t#1|))) (-15 -3660 ($ (-976 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -3661 ((-3 $ "failed") (-976 (-560)))) (-15 -3660 ($ (-976 (-560)))) (-15 -4488 ($ (-976 (-560)))) (IF (|has| |t#1| (-559)) |%noBranch| (PROGN (-15 -3661 ((-3 $ "failed") (-976 |t#1|))) (-15 -3660 ($ (-976 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) |%noBranch| (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -3661 ((-3 $ "failed") (-976 |t#1|))) (-15 -3660 ($ (-976 |t#1|)))))) (-15 -4488 ($ (-976 |t#1|))) (IF (|has| |t#1| (-1070 (-560))) (-6 (-633 (-1191))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -3659 ($ $)) (-15 -3658 ($ $)) (-15 -3657 ($ $ |t#1|)) (-15 -3656 ($ $ |t#1|)) (-15 -3657 ($ $ $)) (-15 -3656 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -3655 ((-2 (|:| -3648 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3654 ((-2 (|:| -3648 $) (|:| |coef1| $)) $ $)) (-15 -3653 ((-2 (|:| -3648 $) (|:| |coef2| $)) $ $)) (-15 -4272 ($ $ $)) (-15 -3652 ((-663 $) $ $)) (-15 -3694 ($ $ $)) (-15 -3651 ($ $ $ (-793))) (-15 -3650 ($ $ $ $ (-793))) (-15 -3649 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -3648 (|t#1| |t#1| $)) (-15 -3647 ($ $)) (-15 -3646 ($ $)) (-15 -3645 ($ $)) (-15 -3644 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-888)) . T) ((-632 (-976 |#1|)) |has| |#3| (-633 (-1209))) ((-175) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#3| (-633 (-916 (-391))))) ((-633 (-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#3| (-633 (-916 (-560))))) ((-633 (-976 |#1|)) |has| |#3| (-633 (-1209))) ((-633 (-1191)) -12 (|has| |#1| (-1070 (-560))) (|has| |#3| (-633 (-1209)))) ((-302) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-940)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-922 $ |#3|) . T) ((-928 |#3|) . T) ((-930 |#3|) . T) ((-912 (-391)) -12 (|has| |#1| (-912 (-391))) (|has| |#3| (-912 (-391)))) ((-912 (-560)) -12 (|has| |#1| (-912 (-560))) (|has| |#3| (-912 (-560)))) ((-980 |#1| |#2| |#3|) . T) ((-940) |has| |#1| (-940)) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 |#1|) . T) ((-1070 |#3|) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) |has| |#1| (-940))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3685 (((-663 (-1167)) $) 18 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 27 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-1167) $) 20 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1098) (-13 (-1115) (-10 -8 (-15 -3685 ((-663 (-1167)) $)) (-15 -3737 ((-1167) $))))) (T -1098)) -((-3685 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1098)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1098))))) -(-13 (-1115) (-10 -8 (-15 -3685 ((-663 (-1167)) $)) (-15 -3737 ((-1167) $)))) -((-3692 (((-114) |#3| $) 15 T ELT)) (-3687 (((-3 $ "failed") |#3| (-949)) 29 T ELT)) (-3973 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-3690 (((-114) |#3| $) 19 T ELT)) (-3691 (((-114) |#3| $) 17 T ELT))) -(((-1099 |#1| |#2| |#3|) (-10 -8 (-15 -3687 ((-3 |#1| "failed") |#3| (-949))) (-15 -3973 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3690 ((-114) |#3| |#1|)) (-15 -3691 ((-114) |#3| |#1|)) (-15 -3692 ((-114) |#3| |#1|))) (-1100 |#2| |#3|) (-13 (-871) (-376)) (-1275 |#2|)) (T -1099)) -NIL -(-10 -8 (-15 -3687 ((-3 |#1| "failed") |#3| (-949))) (-15 -3973 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3690 ((-114) |#3| |#1|)) (-15 -3691 ((-114) |#3| |#1|)) (-15 -3692 ((-114) |#3| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) |#2| $) 25 T ELT)) (-4139 (((-560) |#2| $) 26 T ELT)) (-3687 (((-3 $ "failed") |#2| (-949)) 19 T ELT)) (-3686 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3973 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3690 (((-114) |#2| $) 23 T ELT)) (-3691 (((-114) |#2| $) 24 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3689 ((|#2| $) 21 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4286 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3688 (((-663 $) |#2|) 20 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-1100 |#1| |#2|) (-142) (-13 (-871) (-376)) (-1275 |t#1|)) (T -1100)) -((-4139 (*1 *2 *3 *1) (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-560)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-114)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-114)))) (-3690 (*1 *2 *3 *1) (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-114)))) (-3973 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-13 (-871) (-376))) (-4 *2 (-1275 *3)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-13 (-871) (-376))) (-4 *2 (-1275 *3)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-663 *1)) (-4 *1 (-1100 *4 *3)))) (-3687 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-871) (-376))) (-4 *1 (-1100 *4 *2)) (-4 *2 (-1275 *4)))) (-4286 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-13 (-871) (-376))) (-4 *3 (-1275 *2)))) (-3686 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-13 (-871) (-376))) (-4 *3 (-1275 *2))))) -(-13 (-1133) (-10 -8 (-15 -4139 ((-560) |t#2| $)) (-15 -3692 ((-114) |t#2| $)) (-15 -3691 ((-114) |t#2| $)) (-15 -3690 ((-114) |t#2| $)) (-15 -3973 ((-3 |t#2| "failed") |t#2| $)) (-15 -3689 (|t#2| $)) (-15 -3688 ((-663 $) |t#2|)) (-15 -3687 ((-3 $ "failed") |t#2| (-949))) (-15 -4286 (|t#1| |t#2| $ |t#1|)) (-15 -3686 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3942 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793)) 114 T ELT)) (-3939 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793)) 63 T ELT)) (-3943 (((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)) 99 T ELT)) (-3937 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-3940 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793)) 65 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114)) 67 T ELT)) (-3941 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 87 T ELT)) (-4488 (((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) 92 T ELT)) (-3938 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-3936 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT))) -(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3936 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3937 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3938 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-114))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3942 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793))) (-15 -4488 ((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3943 ((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1101)) -((-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *4 (-793)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-1305)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1191)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-3942 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -1755 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -1755 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1097 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) (-5 *1 (-1101 *7 *8 *9 *10 *11)))) (-3941 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) (-3941 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) (-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3940 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) (-4 *3 (-1097 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-3939 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3939 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-793)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-793)) (-5 *1 (-1101 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3936 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3937 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3938 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-114))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3942 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793))) (-15 -4488 ((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3943 ((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)))) -((-3701 (((-114) |#5| $) 26 T ELT)) (-3699 (((-114) |#5| $) 29 T ELT)) (-3702 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3742 (((-663 $) |#5| $) NIL T ELT) (((-663 $) (-663 |#5|) $) 94 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 92 T ELT) (((-663 $) |#5| (-663 $)) 95 T ELT)) (-4285 (($ $ |#5|) NIL T ELT) (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 73 T ELT) (((-663 $) (-663 |#5|) $) 75 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 77 T ELT)) (-3693 (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 64 T ELT) (((-663 $) (-663 |#5|) $) 69 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 71 T ELT)) (-3700 (((-114) |#5| $) 32 T ELT))) -(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4285 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4285 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4285 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4285 ((-663 |#1|) |#5| |#1|)) (-15 -3693 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3693 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3693 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3693 ((-663 |#1|) |#5| |#1|)) (-15 -3742 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3742 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3742 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3742 ((-663 |#1|) |#5| |#1|)) (-15 -3699 ((-114) |#5| |#1|)) (-15 -3702 ((-114) |#1|)) (-15 -3700 ((-114) |#5| |#1|)) (-15 -3701 ((-114) |#5| |#1|)) (-15 -3702 ((-114) |#5| |#1|)) (-15 -4285 (|#1| |#1| |#5|))) (-1103 |#2| |#3| |#4| |#5|) (-466) (-817) (-872) (-1097 |#2| |#3| |#4|)) (T -1102)) -NIL -(-10 -8 (-15 -4285 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4285 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4285 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4285 ((-663 |#1|) |#5| |#1|)) (-15 -3693 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3693 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3693 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3693 ((-663 |#1|) |#5| |#1|)) (-15 -3742 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3742 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3742 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3742 ((-663 |#1|) |#5| |#1|)) (-15 -3699 ((-114) |#5| |#1|)) (-15 -3702 ((-114) |#1|)) (-15 -3700 ((-114) |#5| |#1|)) (-15 -3701 ((-114) |#5| |#1|)) (-15 -3702 ((-114) |#5| |#1|)) (-15 -4285 (|#1| |#1| |#5|))) -((-3053 (((-114) $ $) 7 T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) 90 T ELT)) (-4198 (((-663 $) (-663 |#4|)) 91 T ELT) (((-663 $) (-663 |#4|) (-114)) 118 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4204 ((|#4| |#4| $) 97 T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 133 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-4315 (((-3 $ #1#) $) 87 T ELT)) (-4201 ((|#4| |#4| $) 94 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4199 ((|#4| |#4| $) 92 T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) 110 T ELT)) (-3701 (((-114) |#4| $) 143 T ELT)) (-3699 (((-114) |#4| $) 140 T ELT)) (-3702 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) 135 T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 134 T ELT)) (-4314 (((-3 |#4| #1#) $) 88 T ELT)) (-3696 (((-663 $) |#4| $) 136 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) 139 T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3742 (((-663 $) |#4| $) 132 T ELT) (((-663 $) (-663 |#4|) $) 131 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 130 T ELT) (((-663 $) |#4| (-663 $)) 129 T ELT)) (-3946 (($ |#4| $) 124 T ELT) (($ (-663 |#4|) $) 123 T ELT)) (-4213 (((-663 |#4|) $) 112 T ELT)) (-4207 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4202 ((|#4| |#4| $) 95 T ELT)) (-4215 (((-114) $ $) 115 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4203 ((|#4| |#4| $) 96 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-3 |#4| #1#) $) 89 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4285 (($ $ |#4|) 82 T ELT) (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-4464 (((-793) $) 111 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-4200 (($ $) 93 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-4194 (((-793) $) 81 (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 103 T ELT)) (-3693 (((-663 $) |#4| $) 128 T ELT) (((-663 $) |#4| (-663 $)) 127 T ELT) (((-663 $) (-663 |#4|) $) 126 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 125 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) 86 T ELT)) (-3700 (((-114) |#4| $) 142 T ELT)) (-4449 (((-114) |#3| $) 85 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-1103 |#1| |#2| |#3| |#4|) (-142) (-466) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -1103)) -((-3702 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-3701 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-3700 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-3699 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-3698 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-3 (-114) (-663 *1))) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3697 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *1)))) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3697 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-3696 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3695 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-3 *3 (-663 *1))) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3694 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *1)))) (-4 *1 (-1103 *4 *5 *6 *3)))) (-4291 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *1)))) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3742 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3742 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-3742 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) (-3742 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) (-3693 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) (-3693 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) (-3946 (*1 *1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)))) (-4285 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) (-4285 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) (-4285 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-4285 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *5 *6 *7 *8))))) -(-13 (-1244 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3702 ((-114) |t#4| $)) (-15 -3701 ((-114) |t#4| $)) (-15 -3700 ((-114) |t#4| $)) (-15 -3702 ((-114) $)) (-15 -3699 ((-114) |t#4| $)) (-15 -3698 ((-3 (-114) (-663 $)) |t#4| $)) (-15 -3697 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |t#4| $)) (-15 -3697 ((-114) |t#4| $)) (-15 -3696 ((-663 $) |t#4| $)) (-15 -3695 ((-3 |t#4| (-663 $)) |t#4| |t#4| $)) (-15 -3694 ((-663 (-2 (|:| |val| |t#4|) (|:| -1755 $))) |t#4| |t#4| $)) (-15 -4291 ((-663 (-2 (|:| |val| |t#4|) (|:| -1755 $))) |t#4| $)) (-15 -3742 ((-663 $) |t#4| $)) (-15 -3742 ((-663 $) (-663 |t#4|) $)) (-15 -3742 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -3742 ((-663 $) |t#4| (-663 $))) (-15 -3693 ((-663 $) |t#4| $)) (-15 -3693 ((-663 $) |t#4| (-663 $))) (-15 -3693 ((-663 $) (-663 |t#4|) $)) (-15 -3693 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -3946 ($ |t#4| $)) (-15 -3946 ($ (-663 |t#4|) $)) (-15 -4285 ((-663 $) |t#4| $)) (-15 -4285 ((-663 $) |t#4| (-663 $))) (-15 -4285 ((-663 $) (-663 |t#4|) $)) (-15 -4285 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -4198 ((-663 $) (-663 |t#4|) (-114))))) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-1008 |#1| |#2| |#3| |#4|) . T) ((-1133) . T) ((-1244 |#1| |#2| |#3| |#4|) . T) ((-1249) . T)) -((-3709 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|) 86 T ELT)) (-3706 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3708 (((-663 |#5|) |#4| |#5|) 74 T ELT)) (-3707 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3791 (((-1305)) 36 T ELT)) (-3789 (((-1305)) 25 T ELT)) (-3790 (((-1305) (-1191) (-1191) (-1191)) 32 T ELT)) (-3788 (((-1305) (-1191) (-1191) (-1191)) 21 T ELT)) (-3703 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3704 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114)) 117 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3705 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3788 ((-1305) (-1191) (-1191) (-1191))) (-15 -3789 ((-1305))) (-15 -3790 ((-1305) (-1191) (-1191) (-1191))) (-15 -3791 ((-1305))) (-15 -3703 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3704 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3704 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114))) (-15 -3705 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3706 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-114) |#4| |#5|)) (-15 -3707 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3708 ((-663 |#5|) |#4| |#5|)) (-15 -3709 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1104)) -((-3709 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3706 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3705 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *5 (-114)) (-4 *8 (-1097 *6 *7 *4)) (-4 *9 (-1103 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *4 (-872)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -1755 *9)))) (-5 *1 (-1104 *6 *7 *4 *8 *9)))) (-3704 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1104 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3703 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3791 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3790 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3789 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3788 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7))))) -(-10 -7 (-15 -3788 ((-1305) (-1191) (-1191) (-1191))) (-15 -3789 ((-1305))) (-15 -3790 ((-1305) (-1191) (-1191) (-1191))) (-15 -3791 ((-1305))) (-15 -3703 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3704 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3704 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114))) (-15 -3705 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3706 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-114) |#4| |#5|)) (-15 -3707 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3708 ((-663 |#5|) |#4| |#5|)) (-15 -3709 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3822 (((-1250) $) 13 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3710 (((-1167) $) 10 T ELT)) (-4462 (((-888) $) 20 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1105) (-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $))))) (T -1105)) -((-3710 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1105)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-1105))))) -(-13 (-1115) (-10 -8 (-15 -3710 ((-1167) $)) (-15 -3822 ((-1250) $)))) -((-3770 (((-114) $ $) 7 T ELT))) -(((-1106) (-13 (-1249) (-10 -8 (-15 -3770 ((-114) $ $))))) (T -1106)) -((-3770 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1106))))) -(-13 (-1249) (-10 -8 (-15 -3770 ((-114) $ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3713 (($ $ (-663 (-1209)) (-1 (-114) (-663 |#3|))) 34 T ELT)) (-3714 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-663 (-1209))) 21 T ELT)) (-4034 ((|#3| $) 13 T ELT)) (-3661 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3660 (((-305 |#3|) $) NIL T ELT)) (-3711 (((-663 (-1209)) $) 16 T ELT)) (-3712 (((-916 |#1|) $) 11 T ELT)) (-4035 ((|#3| $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-949)) 41 T ELT)) (-4462 (((-888) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 38 T ELT))) -(((-1107 |#1| |#2| |#3|) (-13 (-1133) (-298 |#3| |#3|) (-1070 (-305 |#3|)) (-10 -8 (-15 -3714 ($ |#3| |#3|)) (-15 -3714 ($ |#3| |#3| (-663 (-1209)))) (-15 -3713 ($ $ (-663 (-1209)) (-1 (-114) (-663 |#3|)))) (-15 -3712 ((-916 |#1|) $)) (-15 -4035 (|#3| $)) (-15 -4034 (|#3| $)) (-15 -4316 (|#3| $ |#3| (-949))) (-15 -3711 ((-663 (-1209)) $)))) (-1133) (-13 (-1081) (-912 |#1|) (-633 (-916 |#1|))) (-13 (-435 |#2|) (-912 |#1|) (-633 (-916 |#1|)))) (T -1107)) -((-3714 (*1 *1 *2 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))))) (-3714 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) (-3713 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-1 (-114) (-663 *6))) (-4 *6 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *6)))) (-3712 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 *2))) (-5 *2 (-916 *3)) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-912 *3) (-633 *2))))) (-4035 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))))) (-4034 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))))) (-4316 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) (-3711 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) (-5 *2 (-663 (-1209))) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3))))))) -(-13 (-1133) (-298 |#3| |#3|) (-1070 (-305 |#3|)) (-10 -8 (-15 -3714 ($ |#3| |#3|)) (-15 -3714 ($ |#3| |#3| (-663 (-1209)))) (-15 -3713 ($ $ (-663 (-1209)) (-1 (-114) (-663 |#3|)))) (-15 -3712 ((-916 |#1|) $)) (-15 -4035 (|#3| $)) (-15 -4034 (|#3| $)) (-15 -4316 (|#3| $ |#3| (-949))) (-15 -3711 ((-663 (-1209)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4056 (((-1209) $) 8 T ELT)) (-3746 (((-1191) $) 17 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 11 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 14 T ELT))) -(((-1108 |#1|) (-13 (-1133) (-10 -8 (-15 -4056 ((-1209) $)))) (-1209)) (T -1108)) -((-4056 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1108 *3)) (-14 *3 *2)))) -(-13 (-1133) (-10 -8 (-15 -4056 ((-1209) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3716 (($ (-663 (-1107 |#1| |#2| |#3|))) 14 T ELT)) (-3715 (((-663 (-1107 |#1| |#2| |#3|)) $) 21 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-949)) 27 T ELT)) (-4462 (((-888) $) 17 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 20 T ELT))) -(((-1109 |#1| |#2| |#3|) (-13 (-1133) (-298 |#3| |#3|) (-10 -8 (-15 -3716 ($ (-663 (-1107 |#1| |#2| |#3|)))) (-15 -3715 ((-663 (-1107 |#1| |#2| |#3|)) $)) (-15 -4316 (|#3| $ |#3| (-949))))) (-1133) (-13 (-1081) (-912 |#1|) (-633 (-916 |#1|))) (-13 (-435 |#2|) (-912 |#1|) (-633 (-916 |#1|)))) (T -1109)) -((-3716 (*1 *1 *2) (-12 (-5 *2 (-663 (-1107 *3 *4 *5))) (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) (-5 *1 (-1109 *3 *4 *5)))) (-3715 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) (-5 *2 (-663 (-1107 *3 *4 *5))) (-5 *1 (-1109 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))))) (-4316 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1133)) (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1109 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4))))))) -(-13 (-1133) (-298 |#3| |#3|) (-10 -8 (-15 -3716 ($ (-663 (-1107 |#1| |#2| |#3|)))) (-15 -3715 ((-663 (-1107 |#1| |#2| |#3|)) $)) (-15 -4316 (|#3| $ |#3| (-949))))) -((-3717 (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114)) 88 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|))) 92 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114)) 90 T ELT))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114))) (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-663 (-1209))) (T -1110)) -((-3717 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) (-5 *1 (-1110 *5 *6)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) (-5 *1 (-1110 *4 *5)) (-5 *3 (-663 (-976 *4))) (-14 *5 (-663 (-1209))))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) (-5 *1 (-1110 *5 *6)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209)))))) -(-10 -7 (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114))) (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -3717 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 136 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2004 (((-711 |#1|) (-1299 $)) NIL T ELT) (((-711 |#1|)) 121 T ELT)) (-3836 ((|#1| $) 125 T ELT)) (-1890 (((-1221 (-949) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3624 (((-793)) 43 (|has| |#1| (-381)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-2014 (($ (-1299 |#1|) (-1299 $)) NIL T ELT) (($ (-1299 |#1|)) 46 T ELT)) (-1888 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2003 (((-711 |#1|) $ (-1299 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 108 T ELT)) (-4358 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-421 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3597 (((-949)) 84 T ELT)) (-3481 (($) 47 (|has| |#1| (-381)) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3320 (($) NIL (|has| |#1| (-363)) ELT)) (-1895 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1988 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4288 (((-949) $) NIL (|has| |#1| (-363)) ELT) (((-856 (-949)) $) NIL (|has| |#1| (-363)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3620 ((|#1| $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-363)) ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2238 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2234 (((-949) $) 145 (|has| |#1| (-381)) ELT)) (-3566 ((|#2| $) 62 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3952 (($) NIL (|has| |#1| (-363)) CONST)) (-2645 (($ (-949)) 135 (|has| |#1| (-381)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2654 (($) 127 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1891 (((-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4273 ((|#1| (-1299 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1989 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-4274 (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-2653 (((-711 |#1|) (-1299 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3689 ((|#2|) 81 T ELT)) (-1889 (($) NIL (|has| |#1| (-363)) ELT)) (-3728 (((-1299 |#1|) $ (-1299 $)) 96 T ELT) (((-711 |#1|) (-1299 $) (-1299 $)) NIL T ELT) (((-1299 |#1|) $) 75 T ELT) (((-711 |#1|) (-1299 $)) 92 T ELT)) (-4488 (((-1299 |#1|) $) NIL T ELT) (($ (-1299 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3190 (((-3 (-1299 $) "failed") (-711 $)) NIL (|has| |#1| (-363)) ELT)) (-4462 (((-888) $) 61 T ELT) (($ (-560)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-376)) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-3189 (($ $) NIL (|has| |#1| (-363)) ELT) (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-2852 ((|#2| $) 89 T ELT)) (-3614 (((-793)) 83 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2236 (((-1299 $)) 88 T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3145 (($) 32 T CONST)) (-3151 (($) 19 T CONST)) (-3156 (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-930 (-1209)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-3540 (((-114) $ $) 67 T ELT)) (-4465 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 69 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT))) -(((-1111 |#1| |#2| |#3|) (-746 |#1| |#2|) (-175) (-1275 |#1|) |#2|) (T -1111)) -NIL -(-746 |#1| |#2|) -((-4248 (((-419 |#3|) |#3|) 18 T ELT))) -(((-1112 |#1| |#2| |#3|) (-10 -7 (-15 -4248 ((-419 |#3|) |#3|))) (-1275 (-421 (-560))) (-13 (-376) (-149) (-746 (-421 (-560)) |#1|)) (-1275 |#2|)) (T -1112)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1275 *5))))) -(-10 -7 (-15 -4248 ((-419 |#3|) |#3|))) -((-4248 (((-419 |#3|) |#3|) 19 T ELT))) -(((-1113 |#1| |#2| |#3|) (-10 -7 (-15 -4248 ((-419 |#3|) |#3|))) (-1275 (-421 (-976 (-560)))) (-13 (-376) (-149) (-746 (-421 (-976 (-560))) |#1|)) (-1275 |#2|)) (T -1113)) -((-4248 (*1 *2 *3) (-12 (-4 *4 (-1275 (-421 (-976 (-560))))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-976 (-560))) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1113 *4 *5 *3)) (-4 *3 (-1275 *5))))) -(-10 -7 (-15 -4248 ((-419 |#3|) |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3016 (($ $ $) 16 T ELT)) (-3344 (($ $ $) 17 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3718 (($) 6 T ELT)) (-4488 (((-1209) $) 20 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 15 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 9 T ELT))) -(((-1114) (-13 (-872) (-633 (-1209)) (-10 -8 (-15 -3718 ($))))) (T -1114)) -((-3718 (*1 *1) (-5 *1 (-1114)))) -(-13 (-872) (-633 (-1209)) (-10 -8 (-15 -3718 ($)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-1214)) 20 T ELT) (((-1214) $) 19 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-1115) (-142)) (T -1115)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3500 (((-661 (-558)) $) 73 T ELT)) (-3496 (($ (-661 (-558))) 81 T ELT)) (-3613 (((-558) $) 48 (|has| (-558) (-319)) ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #2="failed") $) 60 T ELT) (((-3 (-1207) #2#) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-3 (-419 (-558)) #2#) $) 57 (|has| (-558) (-1068 (-558))) ELT) (((-3 (-558) #2#) $) 60 (|has| (-558) (-1068 (-558))) ELT)) (-3656 (((-558) $) NIL T ELT) (((-1207) $) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1068 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1068 (-558))) ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3477 (($) NIL (|has| (-558) (-557)) ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3498 (((-661 (-558)) $) 79 T ELT)) (-3686 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (|has| (-558) (-910 (-558))) ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (|has| (-558) (-910 (-391))) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL T ELT)) (-3481 (((-558) $) 45 T ELT)) (-3947 (((-711 $) $) NIL (|has| (-558) (-1182)) ELT)) (-3687 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-558) (-870)) ELT)) (-4470 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL T ELT)) (-3948 (($) NIL (|has| (-558) (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3612 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) 50 T ELT)) (-3499 (((-1185 (-558)) $) 78 T ELT)) (-3495 (($ (-661 (-558)) (-661 (-558))) 82 T ELT)) (-3614 (((-558) $) 64 (|has| (-558) (-557)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| (-558) (-938)) ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4280 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1207)) (-661 (-558))) NIL (|has| (-558) (-526 (-1207) (-558))) ELT) (($ $ (-1207) (-558)) NIL (|has| (-558) (-526 (-1207) (-558))) ELT)) (-1797 (((-791) $) NIL T ELT)) (-4312 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) 15 (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3478 (($ $) NIL T ELT)) (-3480 (((-558) $) 47 T ELT)) (-3497 (((-661 (-558)) $) 80 T ELT)) (-4484 (((-914 (-558)) $) NIL (|has| (-558) (-631 (-914 (-558)))) ELT) (((-914 (-391)) $) NIL (|has| (-558) (-631 (-914 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1050)) ELT) (((-229) $) NIL (|has| (-558) (-1050)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-938))) ELT)) (-4458 (((-886) $) 108 T ELT) (($ (-558)) 51 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 27 T ELT) (($ (-558)) 51 T ELT) (($ (-1207)) NIL (|has| (-558) (-1068 (-1207))) ELT) (((-419 (-558)) $) 25 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-558) (-938))) (|has| (-558) (-147))) ELT)) (-3610 (((-791)) 13 T CONST)) (-3615 (((-558) $) 62 (|has| (-558) (-557)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3885 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3141 (($) 14 T CONST)) (-3147 (($) 17 T CONST)) (-3152 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| (-558) (-928 (-1207))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3047 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3536 (((-114) $ $) 21 T ELT)) (-3167 (((-114) $ $) NIL (|has| (-558) (-870)) ELT)) (-3168 (((-114) $ $) 40 (|has| (-558) (-870)) ELT)) (-4461 (($ $ $) 36 T ELT) (($ (-558) (-558)) 38 T ELT)) (-4349 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-4351 (($ $ $) 28 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ (-558)) NIL T ELT))) +(((-1034 |#1|) (-13 (-1021 (-558)) (-630 (-419 (-558))) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -3500 ((-661 (-558)) $)) (-15 -3499 ((-1185 (-558)) $)) (-15 -3498 ((-661 (-558)) $)) (-15 -3497 ((-661 (-558)) $)) (-15 -3496 ($ (-661 (-558)))) (-15 -3495 ($ (-661 (-558)) (-661 (-558)))))) (-558)) (T -1034)) +((-3612 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3496 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) (-3495 (*1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(-13 (-1021 (-558)) (-630 (-419 (-558))) (-10 -8 (-15 -3612 ((-419 (-558)) $)) (-15 -3500 ((-661 (-558)) $)) (-15 -3499 ((-1185 (-558)) $)) (-15 -3498 ((-661 (-558)) $)) (-15 -3497 ((-661 (-558)) $)) (-15 -3496 ($ (-661 (-558)))) (-15 -3495 ($ (-661 (-558)) (-661 (-558)))))) +((-3501 (((-51) (-419 (-558)) (-558)) 9 T ELT))) +(((-1035) (-10 -7 (-15 -3501 ((-51) (-419 (-558)) (-558))))) (T -1035)) +((-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1035))))) +(-10 -7 (-15 -3501 ((-51) (-419 (-558)) (-558)))) +((-3620 (((-558)) 21 T ELT)) (-3504 (((-558)) 26 T ELT)) (-3503 (((-1303) (-558)) 24 T ELT)) (-3502 (((-558) (-558)) 27 T ELT) (((-558)) 20 T ELT))) +(((-1036) (-10 -7 (-15 -3502 ((-558))) (-15 -3620 ((-558))) (-15 -3502 ((-558) (-558))) (-15 -3503 ((-1303) (-558))) (-15 -3504 ((-558))))) (T -1036)) +((-3504 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1036)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036)))) (-3620 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036)))) (-3502 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036))))) +(-10 -7 (-15 -3502 ((-558))) (-15 -3620 ((-558))) (-15 -3502 ((-558) (-558))) (-15 -3503 ((-1303) (-558))) (-15 -3504 ((-558)))) +((-4245 (((-417 |#1|) |#1|) 43 T ELT)) (-4244 (((-417 |#1|) |#1|) 41 T ELT))) +(((-1037 |#1|) (-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1|))) (-1273 (-419 (-558)))) (T -1037)) +((-4245 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-419 (-558)))))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-419 (-558))))))) +(-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1|))) +((-3507 (((-3 (-419 (-558)) "failed") |#1|) 15 T ELT)) (-3506 (((-114) |#1|) 14 T ELT)) (-3505 (((-419 (-558)) |#1|) 10 T ELT))) +(((-1038 |#1|) (-10 -7 (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|))) (-1068 (-419 (-558)))) (T -1038)) +((-3507 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-419 (-558)))))) (-3505 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) +(-10 -7 (-15 -3505 ((-419 (-558)) |#1|)) (-15 -3506 ((-114) |#1|)) (-15 -3507 ((-3 (-419 (-558)) "failed") |#1|))) +((-4300 ((|#2| $ "value" |#2|) 12 T ELT)) (-4312 ((|#2| $ "value") 10 T ELT)) (-3511 (((-114) $ $) 18 T ELT))) +(((-1039 |#1| |#2|) (-10 -8 (-15 -4300 (|#2| |#1| "value" |#2|)) (-15 -3511 ((-114) |#1| |#1|)) (-15 -4312 (|#2| |#1| "value"))) (-1040 |#2|) (-1247)) (T -1039)) +NIL +(-10 -8 (-15 -4300 (|#2| |#1| "value" |#2|)) (-15 -3511 ((-114) |#1| |#1|)) (-15 -4312 (|#2| |#1| "value"))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4236 (($) 7 T CONST)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ "value") 51 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1040 |#1|) (-142) (-1247)) (T -1040)) +((-4024 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-661 *1)) (-4 *1 (-1040 *3)))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-661 *1)) (-4 *1 (-1040 *3)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-661 *3)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-558)))) (-3511 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-3510 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *1)) (|has| *1 (-6 -4508)) (-4 *1 (-1040 *3)) (-4 *3 (-1247)))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4508)) (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-3508 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -4024 ((-661 $) $)) (-15 -3514 ((-661 $) $)) (-15 -4029 ((-114) $)) (-15 -3904 (|t#1| $)) (-15 -4312 (|t#1| $ "value")) (-15 -4145 ((-114) $)) (-15 -3513 ((-661 |t#1|) $)) (-15 -3512 ((-558) $ $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -3511 ((-114) $ $)) (-15 -3510 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4508)) (PROGN (-15 -3509 ($ $ (-661 $))) (-15 -4300 (|t#1| $ "value" |t#1|)) (-15 -3508 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3520 (($ $) 9 T ELT) (($ $ (-947)) 49 T ELT) (($ (-419 (-558))) 13 T ELT) (($ (-558)) 15 T ELT)) (-3683 (((-3 $ "failed") (-1201 $) (-947) (-886)) 24 T ELT) (((-3 $ "failed") (-1201 $) (-947)) 32 T ELT)) (-3494 (($ $ (-558)) 58 T ELT)) (-3610 (((-791)) 18 T ELT)) (-3684 (((-661 $) (-1201 $)) NIL T ELT) (((-661 $) (-1201 (-419 (-558)))) 63 T ELT) (((-661 $) (-1201 (-558))) 68 T ELT) (((-661 $) (-974 $)) 72 T ELT) (((-661 $) (-974 (-419 (-558)))) 76 T ELT) (((-661 $) (-974 (-558))) 80 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 53 T ELT))) +(((-1041 |#1|) (-10 -8 (-15 -3520 (|#1| (-558))) (-15 -3520 (|#1| (-419 (-558)))) (-15 -3520 (|#1| |#1| (-947))) (-15 -3684 ((-661 |#1|) (-974 (-558)))) (-15 -3684 ((-661 |#1|) (-974 (-419 (-558))))) (-15 -3684 ((-661 |#1|) (-974 |#1|))) (-15 -3684 ((-661 |#1|) (-1201 (-558)))) (-15 -3684 ((-661 |#1|) (-1201 (-419 (-558))))) (-15 -3684 ((-661 |#1|) (-1201 |#1|))) (-15 -3683 ((-3 |#1| "failed") (-1201 |#1|) (-947))) (-15 -3683 ((-3 |#1| "failed") (-1201 |#1|) (-947) (-886))) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3494 (|#1| |#1| (-558))) (-15 -3520 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3610 ((-791))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947)))) (-1042)) (T -1041)) +((-3610 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1041 *3)) (-4 *3 (-1042))))) +(-10 -8 (-15 -3520 (|#1| (-558))) (-15 -3520 (|#1| (-419 (-558)))) (-15 -3520 (|#1| |#1| (-947))) (-15 -3684 ((-661 |#1|) (-974 (-558)))) (-15 -3684 ((-661 |#1|) (-974 (-419 (-558))))) (-15 -3684 ((-661 |#1|) (-974 |#1|))) (-15 -3684 ((-661 |#1|) (-1201 (-558)))) (-15 -3684 ((-661 |#1|) (-1201 (-419 (-558))))) (-15 -3684 ((-661 |#1|) (-1201 |#1|))) (-15 -3683 ((-3 |#1| "failed") (-1201 |#1|) (-947))) (-15 -3683 ((-3 |#1| "failed") (-1201 |#1|) (-947) (-886))) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3494 (|#1| |#1| (-558))) (-15 -3520 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3610 ((-791))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 108 T ELT)) (-2283 (($ $) 109 T ELT)) (-2281 (((-114) $) 111 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 128 T ELT)) (-4483 (((-417 $) $) 129 T ELT)) (-3520 (($ $) 92 T ELT) (($ $ (-947)) 78 T ELT) (($ (-419 (-558))) 77 T ELT) (($ (-558)) 76 T ELT)) (-1798 (((-114) $ $) 119 T ELT)) (-4135 (((-558) $) 145 T ELT)) (-4236 (($) 22 T CONST)) (-3683 (((-3 $ "failed") (-1201 $) (-947) (-886)) 86 T ELT) (((-3 $ "failed") (-1201 $) (-947)) 85 T ELT)) (-3657 (((-3 (-558) #1="failed") $) 105 (|has| (-419 (-558)) (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| (-419 (-558)) (-1068 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) 100 T ELT)) (-3656 (((-558) $) 104 (|has| (-419 (-558)) (-1068 (-558))) ELT) (((-419 (-558)) $) 102 (|has| (-419 (-558)) (-1068 (-419 (-558)))) ELT) (((-419 (-558)) $) 101 T ELT)) (-3516 (($ $ (-886)) 75 T ELT)) (-3515 (($ $ (-886)) 74 T ELT)) (-3045 (($ $ $) 123 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 122 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 117 T ELT)) (-4235 (((-114) $) 130 T ELT)) (-3686 (((-114) $) 143 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 91 T ELT)) (-3687 (((-114) $) 144 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 126 T ELT)) (-3012 (($ $ $) 137 T ELT)) (-3340 (($ $ $) 138 T ELT)) (-3517 (((-3 (-1201 $) "failed") $) 87 T ELT)) (-3519 (((-3 (-886) "failed") $) 89 T ELT)) (-3518 (((-3 (-1201 $) "failed") $) 88 T ELT)) (-2112 (($ (-661 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 131 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 116 T ELT)) (-3644 (($ (-661 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-4244 (((-417 $) $) 127 T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 124 T ELT)) (-3968 (((-3 $ "failed") $ $) 107 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 118 T ELT)) (-1797 (((-791) $) 120 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 121 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 135 T ELT) (($ $) 106 T ELT) (($ (-419 (-558))) 99 T ELT) (($ (-558)) 98 T ELT) (($ (-419 (-558))) 95 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 110 T ELT)) (-4282 (((-419 (-558)) $ $) 73 T ELT)) (-3684 (((-661 $) (-1201 $)) 84 T ELT) (((-661 $) (-1201 (-419 (-558)))) 83 T ELT) (((-661 $) (-1201 (-558))) 82 T ELT) (((-661 $) (-974 $)) 81 T ELT) (((-661 $) (-974 (-419 (-558)))) 80 T ELT) (((-661 $) (-974 (-558))) 79 T ELT)) (-3885 (($ $) 146 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 139 T ELT)) (-3048 (((-114) $ $) 141 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 140 T ELT)) (-3168 (((-114) $ $) 142 T ELT)) (-4461 (($ $ $) 136 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 132 T ELT) (($ $ (-419 (-558))) 90 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 134 T ELT) (($ $ (-419 (-558))) 133 T ELT) (($ (-558) $) 97 T ELT) (($ $ (-558)) 96 T ELT) (($ (-419 (-558)) $) 94 T ELT) (($ $ (-419 (-558))) 93 T ELT))) +(((-1042) (-142)) (T -1042)) +((-3520 (*1 *1 *1) (-4 *1 (-1042))) (-3519 (*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-886)))) (-3518 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1042)))) (-3517 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1042)))) (-3683 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-947)) (-5 *4 (-886)) (-4 *1 (-1042)))) (-3683 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-947)) (-4 *1 (-1042)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1042)) (-5 *2 (-661 *1)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1201 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1201 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-1042)) (-5 *2 (-661 *1)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-974 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-947)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1042)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1042)))) (-3516 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-886)))) (-3515 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-886)))) (-4282 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-419 (-558)))))) +(-13 (-149) (-869) (-175) (-376) (-424 (-419 (-558))) (-38 (-558)) (-38 (-419 (-558))) (-1032) (-10 -8 (-15 -3519 ((-3 (-886) "failed") $)) (-15 -3518 ((-3 (-1201 $) "failed") $)) (-15 -3517 ((-3 (-1201 $) "failed") $)) (-15 -3683 ((-3 $ "failed") (-1201 $) (-947) (-886))) (-15 -3683 ((-3 $ "failed") (-1201 $) (-947))) (-15 -3684 ((-661 $) (-1201 $))) (-15 -3684 ((-661 $) (-1201 (-419 (-558))))) (-15 -3684 ((-661 $) (-1201 (-558)))) (-15 -3684 ((-661 $) (-974 $))) (-15 -3684 ((-661 $) (-974 (-419 (-558))))) (-15 -3684 ((-661 $) (-974 (-558)))) (-15 -3520 ($ $ (-947))) (-15 -3520 ($ $)) (-15 -3520 ($ (-419 (-558)))) (-15 -3520 ($ (-558))) (-15 -3516 ($ $ (-886))) (-15 -3515 ($ $ (-886))) (-15 -4282 ((-419 (-558)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 #2=(-558)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-424 (-419 (-558))) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 #2#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 #2#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 #2#) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-949) . T) ((-1032) . T) ((-1068 (-419 (-558))) . T) ((-1068 (-558)) |has| (-419 (-558)) (-1068 (-558))) ((-1081 #1#) . T) ((-1081 #2#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 #2#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3521 (((-2 (|:| |ans| |#2|) (|:| -3621 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) +(((-1043 |#1| |#2|) (-10 -7 (-15 -3521 ((-2 (|:| |ans| |#2|) (|:| -3621 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-27) (-433 |#1|))) (T -1043)) +((-3521 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-661 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1068 *3) (-658 *3))) (-5 *3 (-558)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3621 *4) (|:| |sol?| (-114)))) (-5 *1 (-1043 *8 *4))))) +(-10 -7 (-15 -3521 ((-2 (|:| |ans| |#2|) (|:| -3621 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3522 (((-3 (-661 |#2|) "failed") (-558) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -3522 ((-3 (-661 |#2|) "failed") (-558) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-149) (-1068 (-558)) (-658 (-558))) (-13 (-1233) (-27) (-433 |#1|))) (T -1044)) +((-3522 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-661 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1068 *3) (-658 *3))) (-5 *3 (-558)) (-5 *2 (-661 *4)) (-5 *1 (-1044 *8 *4))))) +(-10 -7 (-15 -3522 ((-3 (-661 |#2|) "failed") (-558) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2361 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3525 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3766 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)) 39 T ELT)) (-3523 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3524 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|)) 76 T ELT))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -3523 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3524 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|))) (-15 -3525 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3766 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1068 (-558))) (-1273 |#1|)) (T -1045)) +((-3525 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1068 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3766 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1045 *6 *3)))) (-3524 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1045 *4 *5)) (-5 *3 (-419 *5)))) (-3523 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3578 *6))) (-5 *1 (-1045 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3523 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3524 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|))) (-15 -3525 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3766 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) +((-3526 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3527 (((-3 (-661 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34 T ELT))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3526 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3527 ((-3 (-661 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-376) (-149) (-1068 (-558))) (-1273 |#1|)) (T -1046)) +((-3527 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) (-5 *2 (-661 (-419 *5))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-419 *5)))) (-3526 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -3578 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -3526 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3578 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3527 ((-3 (-661 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) +((-3528 (((-1 |#1|) (-661 (-2 (|:| -3904 |#1|) (|:| -1664 (-558))))) 34 T ELT)) (-3585 (((-1 |#1|) (-1127 |#1|)) 42 T ELT)) (-3529 (((-1 |#1|) (-1297 |#1|) (-1297 (-558)) (-558)) 31 T ELT))) +(((-1047 |#1|) (-10 -7 (-15 -3585 ((-1 |#1|) (-1127 |#1|))) (-15 -3528 ((-1 |#1|) (-661 (-2 (|:| -3904 |#1|) (|:| -1664 (-558)))))) (-15 -3529 ((-1 |#1|) (-1297 |#1|) (-1297 (-558)) (-558)))) (-1131)) (T -1047)) +((-3529 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-558))) (-5 *5 (-558)) (-4 *6 (-1131)) (-5 *2 (-1 *6)) (-5 *1 (-1047 *6)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3904 *4) (|:| -1664 (-558))))) (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) +(-10 -7 (-15 -3585 ((-1 |#1|) (-1127 |#1|))) (-15 -3528 ((-1 |#1|) (-661 (-2 (|:| -3904 |#1|) (|:| -1664 (-558)))))) (-15 -3529 ((-1 |#1|) (-1297 |#1|) (-1297 (-558)) (-558)))) +((-4284 (((-791) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4284 ((-791) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1273 |#1|) (-1273 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1048)) +((-4284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-791)) (-5 *1 (-1048 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4284 ((-791) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4105 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1049) (-13 (-1113) (-10 -8 (-15 -4105 ((-1165) $)) (-15 -3733 ((-1165) $))))) (T -1049)) +((-4105 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049))))) +(-13 (-1113) (-10 -8 (-15 -4105 ((-1165) $)) (-15 -3733 ((-1165) $)))) +((-4484 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT))) +(((-1050) (-142)) (T -1050)) +NIL +(-13 (-631 (-229)) (-631 (-391))) +(((-631 (-229)) . T) ((-631 (-391)) . T)) +((-3618 (((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) 32 T ELT) (((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558))) 29 T ELT)) (-3532 (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558))) 34 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558))) 30 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) 33 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|) 28 T ELT)) (-3531 (((-661 (-419 (-558))) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) 20 T ELT)) (-3530 (((-419 (-558)) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) 17 T ELT))) +(((-1051 |#1|) (-10 -7 (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|)) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3530 ((-419 (-558)) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3531 ((-661 (-419 (-558))) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))))) (-1273 (-558))) (T -1051)) +((-3531 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *2 (-661 (-419 (-558)))) (-5 *1 (-1051 *4)) (-4 *4 (-1273 (-558))))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) (-5 *2 (-419 (-558))) (-5 *1 (-1051 *4)) (-4 *4 (-1273 (-558))))) (-3618 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))))) (-3618 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *5) (|:| -3621 *5)))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) (-5 *4 (-2 (|:| -3622 *5) (|:| -3621 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) (-5 *4 (-419 (-558))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) (-5 *4 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) (-3532 (*1 *2 *3) (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558)))))) +(-10 -7 (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|)) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3530 ((-419 (-558)) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3531 ((-661 (-419 (-558))) (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))))) +((-3618 (((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) 35 T ELT) (((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558))) 32 T ELT)) (-3532 (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558))) 30 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558))) 26 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) 28 T ELT) (((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|) 24 T ELT))) +(((-1052 |#1|) (-10 -7 (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|)) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) (-1273 (-419 (-558)))) (T -1052)) +((-3618 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558)))))) (-3618 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 *4)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *5) (|:| -3621 *5)))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -3622 *5) (|:| -3621 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *4) (|:| -3621 *4)))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 *4)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558)))) (-5 *4 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) (-3532 (*1 *2 *3) (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558))))))) +(-10 -7 (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1|)) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3532 ((-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-419 (-558)))) (-15 -3618 ((-3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) "failed") |#1| (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))) (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) +((-4083 (((-661 (-391)) (-974 (-558)) (-391)) 28 T ELT) (((-661 (-391)) (-974 (-419 (-558))) (-391)) 27 T ELT)) (-4481 (((-661 (-661 (-391))) (-661 (-974 (-558))) (-661 (-1207)) (-391)) 37 T ELT))) +(((-1053) (-10 -7 (-15 -4083 ((-661 (-391)) (-974 (-419 (-558))) (-391))) (-15 -4083 ((-661 (-391)) (-974 (-558)) (-391))) (-15 -4481 ((-661 (-661 (-391))) (-661 (-974 (-558))) (-661 (-1207)) (-391))))) (T -1053)) +((-4481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-661 (-1207))) (-5 *2 (-661 (-661 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-974 (-558))) (-5 *2 (-661 (-391))) (-5 *1 (-1053)) (-5 *4 (-391)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *2 (-661 (-391))) (-5 *1 (-1053)) (-5 *4 (-391))))) +(-10 -7 (-15 -4083 ((-661 (-391)) (-974 (-419 (-558))) (-391))) (-15 -4083 ((-661 (-391)) (-974 (-558)) (-391))) (-15 -4481 ((-661 (-661 (-391))) (-661 (-974 (-558))) (-661 (-1207)) (-391)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 75 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-3520 (($ $) NIL T ELT) (($ $ (-947)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) 70 T ELT)) (-4236 (($) NIL T CONST)) (-3683 (((-3 $ #1="failed") (-1201 $) (-947) (-886)) NIL T ELT) (((-3 $ #1#) (-1201 $) (-947)) 55 T ELT)) (-3657 (((-3 (-419 (-558)) #2="failed") $) NIL (|has| (-419 (-558)) (-1068 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #2#) $) NIL T ELT) (((-3 |#1| #2#) $) 116 T ELT) (((-3 (-558) #2#) $) NIL (-4039 (|has| (-419 (-558)) (-1068 (-558))) (|has| |#1| (-1068 (-558)))) ELT)) (-3656 (((-419 (-558)) $) 17 (|has| (-419 (-558)) (-1068 (-419 (-558)))) ELT) (((-419 (-558)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-558) $) NIL (-4039 (|has| (-419 (-558)) (-1068 (-558))) (|has| |#1| (-1068 (-558)))) ELT)) (-3516 (($ $ (-886)) 47 T ELT)) (-3515 (($ $ (-886)) 48 T ELT)) (-3045 (($ $ $) NIL T ELT)) (-3682 (((-419 (-558)) $ $) 21 T ELT)) (-3969 (((-3 $ "failed") $) 88 T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-3686 (((-114) $) 66 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL T ELT)) (-3687 (((-114) $) 69 T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-3517 (((-3 (-1201 $) #1#) $) 83 T ELT)) (-3519 (((-3 (-886) #1#) $) 82 T ELT)) (-3518 (((-3 (-1201 $) #1#) $) 80 T ELT)) (-3533 (((-3 (-1091 $ (-1201 $)) "failed") $) 78 T ELT)) (-2112 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 89 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4458 (((-886) $) 87 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) 63 T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-4282 (((-419 (-558)) $ $) 27 T ELT)) (-3684 (((-661 $) (-1201 $)) 61 T ELT) (((-661 $) (-1201 (-419 (-558)))) NIL T ELT) (((-661 $) (-1201 (-558))) NIL T ELT) (((-661 $) (-974 $)) NIL T ELT) (((-661 $) (-974 (-419 (-558)))) NIL T ELT) (((-661 $) (-974 (-558))) NIL T ELT)) (-3534 (($ (-1091 $ (-1201 $)) (-886)) 46 T ELT)) (-3885 (($ $) 22 T ELT)) (-3141 (($) 32 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 76 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 24 T ELT)) (-4461 (($ $ $) 37 T ELT)) (-4349 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-4351 (($ $ $) 112 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ (-558)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1054 |#1|) (-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -3534 ($ (-1091 $ (-1201 $)) (-886))) (-15 -3533 ((-3 (-1091 $ (-1201 $)) "failed") $)) (-15 -3682 ((-419 (-558)) $ $)))) (-13 (-869) (-376) (-1050))) (T -1054)) +((-3534 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 (-1054 *4) (-1201 (-1054 *4)))) (-5 *3 (-886)) (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-376) (-1050))))) (-3533 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1201 (-1054 *3)))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-376) (-1050))))) (-3682 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-376) (-1050)))))) +(-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -3534 ($ (-1091 $ (-1201 $)) (-886))) (-15 -3533 ((-3 (-1091 $ (-1201 $)) "failed") $)) (-15 -3682 ((-419 (-558)) $ $)))) +((-3535 (((-2 (|:| -3766 |#2|) (|:| -2980 (-661 |#1|))) |#2| (-661 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-1055 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| |#2| |#1|)) (-15 -3535 ((-2 (|:| -3766 |#2|) (|:| -2980 (-661 |#1|))) |#2| (-661 |#1|)))) (-376) (-678 |#1|)) (T -1055)) +((-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3766 *3) (|:| -2980 (-661 *5)))) (-5 *1 (-1055 *5 *3)) (-5 *4 (-661 *5)) (-4 *3 (-678 *5)))) (-3535 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-678 *3))))) +(-10 -7 (-15 -3535 (|#2| |#2| |#1|)) (-15 -3535 ((-2 (|:| -3766 |#2|) (|:| -2980 (-661 |#1|))) |#2| (-661 |#1|)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3537 ((|#1| $ |#1|) 14 T ELT)) (-4300 ((|#1| $ |#1|) 12 T ELT)) (-3539 (($ |#1|) 10 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4312 ((|#1| $) 11 T ELT)) (-3538 ((|#1| $) 13 T ELT)) (-4458 (((-886) $) 21 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3536 (((-114) $ $) 9 T ELT))) +(((-1056 |#1|) (-13 (-1247) (-10 -8 (-15 -3539 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -4300 (|#1| $ |#1|)) (-15 -3538 (|#1| $)) (-15 -3537 (|#1| $ |#1|)) (-15 -3536 ((-114) $ $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1247)) (T -1056)) +((-3539 (*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-4312 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-4300 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-3538 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-3537 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-3536 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3539 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -4300 (|#1| $ |#1|)) (-15 -3538 (|#1| $)) (-15 -3537 (|#1| $ |#1|)) (-15 -3536 ((-114) $ $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4194 (((-661 $) (-661 |#4|)) 117 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT) (((-661 $) (-661 |#4|) (-114) (-114)) 116 T ELT) (((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114)) 119 T ELT)) (-3566 (((-661 |#3|) $) NIL T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4200 ((|#4| |#4| $) NIL T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 111 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4222 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) NIL T ELT)) (-3656 (($ (-661 |#4|)) NIL T ELT)) (-4311 (((-3 $ #1#) $) 45 T ELT)) (-4197 ((|#4| |#4| $) 69 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3908 (($ |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4195 ((|#4| |#4| $) NIL T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) NIL T ELT)) (-3697 (((-114) |#4| $) NIL T ELT)) (-3695 (((-114) |#4| $) NIL T ELT)) (-3698 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3940 (((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114)) 132 T ELT)) (-3372 (((-661 |#4|) $) 18 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 19 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3397 (((-661 |#3|) $) NIL T ELT)) (-3396 (((-114) |#3| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) NIL T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 109 T ELT)) (-4310 (((-3 |#4| #1#) $) 42 T ELT)) (-3692 (((-661 $) |#4| $) 92 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) NIL T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 102 T ELT) (((-114) |#4| $) 64 T ELT)) (-3738 (((-661 $) |#4| $) 114 T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 115 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT)) (-3941 (((-661 $) (-661 |#4|) (-114) (-114) (-114)) 127 T ELT)) (-3942 (($ |#4| $) 81 T ELT) (($ (-661 |#4|) $) 82 T ELT) (((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 78 T ELT)) (-4209 (((-661 |#4|) $) NIL T ELT)) (-4203 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4198 ((|#4| |#4| $) NIL T ELT)) (-4211 (((-114) $ $) NIL T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-3 |#4| #1#) $) 40 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4281 (($ $ |#4|) NIL T ELT) (((-661 $) |#4| $) 94 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 88 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 14 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-2167 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 13 T ELT)) (-4484 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 22 T ELT)) (-3393 (($ $ |#3|) 52 T ELT)) (-3395 (($ $ |#3|) 54 T ELT)) (-4196 (($ $) NIL T ELT)) (-3394 (($ $ |#3|) NIL T ELT)) (-4458 (((-886) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4190 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-3689 (((-661 $) |#4| $) 91 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) NIL T ELT)) (-3696 (((-114) |#4| $) NIL T ELT)) (-4445 (((-114) |#3| $) 65 T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1057 |#1| |#2| |#3| |#4|) (-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3941 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3940 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -1057)) +((-3942 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-4194 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-4194 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-3941 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-3940 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1057 *5 *6 *7 *8))))) (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) +(-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3941 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3940 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) +((-3540 (((-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558))))))) (-709 (-419 (-974 (-558))))) 67 T ELT)) (-3541 (((-661 (-709 (-326 (-558)))) (-326 (-558)) (-709 (-419 (-974 (-558))))) 52 T ELT)) (-3542 (((-661 (-326 (-558))) (-709 (-419 (-974 (-558))))) 45 T ELT)) (-3546 (((-661 (-709 (-326 (-558)))) (-709 (-419 (-974 (-558))))) 85 T ELT)) (-3544 (((-709 (-326 (-558))) (-709 (-326 (-558)))) 38 T ELT)) (-3545 (((-661 (-709 (-326 (-558)))) (-661 (-709 (-326 (-558))))) 74 T ELT)) (-3543 (((-3 (-709 (-326 (-558))) "failed") (-709 (-419 (-974 (-558))))) 82 T ELT))) +(((-1058) (-10 -7 (-15 -3540 ((-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558))))))) (-709 (-419 (-974 (-558)))))) (-15 -3541 ((-661 (-709 (-326 (-558)))) (-326 (-558)) (-709 (-419 (-974 (-558)))))) (-15 -3542 ((-661 (-326 (-558))) (-709 (-419 (-974 (-558)))))) (-15 -3543 ((-3 (-709 (-326 (-558))) "failed") (-709 (-419 (-974 (-558)))))) (-15 -3544 ((-709 (-326 (-558))) (-709 (-326 (-558))))) (-15 -3545 ((-661 (-709 (-326 (-558)))) (-661 (-709 (-326 (-558)))))) (-15 -3546 ((-661 (-709 (-326 (-558)))) (-709 (-419 (-974 (-558)))))))) (T -1058)) +((-3546 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1058)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1058)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1058)))) (-3543 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1058)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-326 (-558)))) (-5 *1 (-1058)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1058)) (-5 *3 (-326 (-558))))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558)))))))) (-5 *1 (-1058))))) +(-10 -7 (-15 -3540 ((-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558))))))) (-709 (-419 (-974 (-558)))))) (-15 -3541 ((-661 (-709 (-326 (-558)))) (-326 (-558)) (-709 (-419 (-974 (-558)))))) (-15 -3542 ((-661 (-326 (-558))) (-709 (-419 (-974 (-558)))))) (-15 -3543 ((-3 (-709 (-326 (-558))) "failed") (-709 (-419 (-974 (-558)))))) (-15 -3544 ((-709 (-326 (-558))) (-709 (-326 (-558))))) (-15 -3545 ((-661 (-709 (-326 (-558)))) (-661 (-709 (-326 (-558)))))) (-15 -3546 ((-661 (-709 (-326 (-558)))) (-709 (-419 (-974 (-558))))))) +((-3550 (((-661 (-709 |#1|)) (-661 (-709 |#1|))) 70 T ELT) (((-709 |#1|) (-709 |#1|)) 69 T ELT) (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-661 (-709 |#1|))) 68 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 65 T ELT)) (-3549 (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947)) 63 T ELT) (((-709 |#1|) (-709 |#1|) (-947)) 62 T ELT)) (-3551 (((-661 (-709 (-558))) (-661 (-661 (-558)))) 81 T ELT) (((-661 (-709 (-558))) (-661 (-930 (-558))) (-558)) 80 T ELT) (((-709 (-558)) (-661 (-558))) 77 T ELT) (((-709 (-558)) (-930 (-558)) (-558)) 75 T ELT)) (-3548 (((-709 (-974 |#1|)) (-791)) 95 T ELT)) (-3547 (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947)) 49 (|has| |#1| (-6 (-4509 "*"))) ELT) (((-709 |#1|) (-709 |#1|) (-947)) 47 (|has| |#1| (-6 (-4509 "*"))) ELT))) +(((-1059 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4509 "*"))) (-15 -3547 ((-709 |#1|) (-709 |#1|) (-947))) |%noBranch|) (IF (|has| |#1| (-6 (-4509 "*"))) (-15 -3547 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947))) |%noBranch|) (-15 -3548 ((-709 (-974 |#1|)) (-791))) (-15 -3549 ((-709 |#1|) (-709 |#1|) (-947))) (-15 -3549 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947))) (-15 -3550 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -3550 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3550 ((-709 |#1|) (-709 |#1|))) (-15 -3550 ((-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3551 ((-709 (-558)) (-930 (-558)) (-558))) (-15 -3551 ((-709 (-558)) (-661 (-558)))) (-15 -3551 ((-661 (-709 (-558))) (-661 (-930 (-558))) (-558))) (-15 -3551 ((-661 (-709 (-558))) (-661 (-661 (-558)))))) (-1079)) (T -1059)) +((-3551 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-558)))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1059 *4)) (-4 *4 (-1079)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-930 (-558)))) (-5 *4 (-558)) (-5 *2 (-661 (-709 *4))) (-5 *1 (-1059 *5)) (-4 *5 (-1079)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1059 *4)) (-4 *4 (-1079)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-930 (-558))) (-5 *4 (-558)) (-5 *2 (-709 *4)) (-5 *1 (-1059 *5)) (-4 *5 (-1079)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) (-3549 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-947)) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) (-3549 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-947)) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-709 (-974 *4))) (-5 *1 (-1059 *4)) (-4 *4 (-1079)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-947)) (|has| *4 (-6 (-4509 "*"))) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-947)) (|has| *4 (-6 (-4509 "*"))) (-4 *4 (-1079)) (-5 *1 (-1059 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4509 "*"))) (-15 -3547 ((-709 |#1|) (-709 |#1|) (-947))) |%noBranch|) (IF (|has| |#1| (-6 (-4509 "*"))) (-15 -3547 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947))) |%noBranch|) (-15 -3548 ((-709 (-974 |#1|)) (-791))) (-15 -3549 ((-709 |#1|) (-709 |#1|) (-947))) (-15 -3549 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-947))) (-15 -3550 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -3550 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3550 ((-709 |#1|) (-709 |#1|))) (-15 -3550 ((-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3551 ((-709 (-558)) (-930 (-558)) (-558))) (-15 -3551 ((-709 (-558)) (-661 (-558)))) (-15 -3551 ((-661 (-709 (-558))) (-661 (-930 (-558))) (-558))) (-15 -3551 ((-661 (-709 (-558))) (-661 (-661 (-558)))))) +((-3555 (((-709 |#1|) (-661 (-709 |#1|)) (-1297 |#1|)) 69 (|has| |#1| (-319)) ELT)) (-3920 (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 (-1297 |#1|))) 109 (|has| |#1| (-376)) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 |#1|)) 116 (|has| |#1| (-376)) ELT)) (-3559 (((-1297 |#1|) (-661 (-1297 |#1|)) (-558)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3558 (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-947)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114) (-558) (-558)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3557 (((-114) (-661 (-709 |#1|))) 102 (|has| |#1| (-376)) ELT) (((-114) (-661 (-709 |#1|)) (-558)) 105 (|has| |#1| (-376)) ELT)) (-3554 (((-1297 (-1297 |#1|)) (-661 (-709 |#1|)) (-1297 |#1|)) 66 (|has| |#1| (-319)) ELT)) (-3553 (((-709 |#1|) (-661 (-709 |#1|)) (-709 |#1|)) 46 T ELT)) (-3552 (((-709 |#1|) (-1297 (-1297 |#1|))) 39 T ELT)) (-3556 (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-558)) 93 (|has| |#1| (-376)) ELT) (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|))) 92 (|has| |#1| (-376)) ELT) (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-114) (-558)) 100 (|has| |#1| (-376)) ELT))) +(((-1060 |#1|) (-10 -7 (-15 -3552 ((-709 |#1|) (-1297 (-1297 |#1|)))) (-15 -3553 ((-709 |#1|) (-661 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3554 ((-1297 (-1297 |#1|)) (-661 (-709 |#1|)) (-1297 |#1|))) (-15 -3555 ((-709 |#1|) (-661 (-709 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-114) (-558))) (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-558))) (-15 -3557 ((-114) (-661 (-709 |#1|)) (-558))) (-15 -3557 ((-114) (-661 (-709 |#1|)))) (-15 -3920 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 |#1|))) (-15 -3920 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114) (-558) (-558))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-947))) (-15 -3559 ((-1297 |#1|) (-661 (-1297 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) (-1079)) (T -1060)) +((-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1297 *5))) (-5 *4 (-558)) (-5 *2 (-1297 *5)) (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-661 (-709 *5))))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-661 (-709 *5))))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1079)) (-5 *2 (-661 (-661 (-709 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-661 (-709 *4))))) (-3558 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-558)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1079)) (-5 *2 (-661 (-661 (-709 *6)))) (-5 *1 (-1060 *6)) (-5 *3 (-661 (-709 *6))))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1079)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-661 (-709 *5))))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-661 (-709 *5))))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-4 *4 (-1079)) (-5 *2 (-114)) (-5 *1 (-1060 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1079)) (-5 *2 (-114)) (-5 *1 (-1060 *5)))) (-3556 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-5 *2 (-709 *5)) (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-1079)))) (-3556 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-376)) (-4 *4 (-1079)))) (-3556 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-661 (-709 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-709 *6)) (-5 *1 (-1060 *6)) (-4 *6 (-376)) (-4 *6 (-1079)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-319)) (-4 *5 (-1079)) (-5 *2 (-709 *5)) (-5 *1 (-1060 *5)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-4 *5 (-319)) (-4 *5 (-1079)) (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1060 *5)) (-5 *4 (-1297 *5)))) (-3553 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-4 *4 (-1079)) (-5 *1 (-1060 *4)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-709 *4)) (-5 *1 (-1060 *4))))) +(-10 -7 (-15 -3552 ((-709 |#1|) (-1297 (-1297 |#1|)))) (-15 -3553 ((-709 |#1|) (-661 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3554 ((-1297 (-1297 |#1|)) (-661 (-709 |#1|)) (-1297 |#1|))) (-15 -3555 ((-709 |#1|) (-661 (-709 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-114) (-558))) (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3556 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-558))) (-15 -3557 ((-114) (-661 (-709 |#1|)) (-558))) (-15 -3557 ((-114) (-661 (-709 |#1|)))) (-15 -3920 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 |#1|))) (-15 -3920 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114) (-558) (-558))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114))) (-15 -3558 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-947))) (-15 -3559 ((-1297 |#1|) (-661 (-1297 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) +((-3560 ((|#1| (-947) |#1|) 18 T ELT))) +(((-1061 |#1|) (-10 -7 (-15 -3560 (|#1| (-947) |#1|))) (-13 (-1131) (-10 -8 (-15 -4351 ($ $ $))))) (T -1061)) +((-3560 (*1 *2 *3 *2) (-12 (-5 *3 (-947)) (-5 *1 (-1061 *2)) (-4 *2 (-13 (-1131) (-10 -8 (-15 -4351 ($ $ $)))))))) +(-10 -7 (-15 -3560 (|#1| (-947) |#1|))) +((-3561 ((|#1| |#1| (-947)) 18 T ELT))) +(((-1062 |#1|) (-10 -7 (-15 -3561 (|#1| |#1| (-947)))) (-13 (-1131) (-10 -8 (-15 * ($ $ $))))) (T -1062)) +((-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-947)) (-5 *1 (-1062 *2)) (-4 *2 (-13 (-1131) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3561 (|#1| |#1| (-947)))) +((-4458 ((|#1| (-323)) 11 T ELT) (((-1303) |#1|) 9 T ELT))) +(((-1063 |#1|) (-10 -7 (-15 -4458 ((-1303) |#1|)) (-15 -4458 (|#1| (-323)))) (-1247)) (T -1063)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) (-4458 (*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1063 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -4458 ((-1303) |#1|)) (-15 -4458 (|#1| (-323)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-4354 (($ |#4|) 25 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3562 ((|#4| $) 27 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 46 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3610 (((-791)) 43 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 23 T CONST)) (-3536 (((-114) $ $) 40 T ELT)) (-4349 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 29 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4354 ($ |#4|)) (-15 -4458 ($ |#4|)) (-15 -3562 (|#4| $)))) (-376) (-815) (-870) (-978 |#1| |#2| |#3|) (-661 |#4|)) (T -1064)) +((-4354 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-661 *2)))) (-4458 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-661 *2)))) (-3562 (*1 *2 *1) (-12 (-4 *2 (-978 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-14 *6 (-661 *2))))) +(-13 (-175) (-38 |#1|) (-10 -8 (-15 -4354 ($ |#4|)) (-15 -4458 ($ |#4|)) (-15 -3562 (|#4| $)))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-2423 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4508)) ELT)) (-3564 (((-114) (-114)) 43 T ELT)) (-3563 (((-114) (-114)) 42 T ELT)) (-4300 (((-51) $ (-1207) (-51)) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 (-51) #1="failed") (-1207) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 (-51) #1#) (-1207) $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-51) $ (-1207)) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 (((-1207) $) NIL (|has| (-1207) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2426 (((-1207) $) NIL (|has| (-1207) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-2894 (((-661 (-1207)) $) 37 T ELT)) (-2457 (((-114) (-1207) $) NIL T ELT)) (-1398 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL T ELT)) (-2428 (((-661 (-1207)) $) NIL T ELT)) (-2429 (((-114) (-1207) $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-4313 (((-51) $) NIL (|has| (-1207) (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) "failed") (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL T ELT)) (-2424 (($ $ (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2430 (((-661 (-51)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 (((-51) $ (-1207)) 39 T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-4458 (((-886) $) 41 (-4039 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-630 (-886))) (|has| (-51) (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1065) (-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -3564 ((-114) (-114))) (-15 -3563 ((-114) (-114))) (-6 -4507)))) (T -1065)) +((-3564 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1065)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1065))))) +(-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -3564 ((-114) (-114))) (-15 -3563 ((-114) (-114))) (-6 -4507))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 9 T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1066) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $))))) (T -1066)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)))) +((-3656 ((|#2| $) 10 T ELT))) +(((-1067 |#1| |#2|) (-10 -8 (-15 -3656 (|#2| |#1|))) (-1068 |#2|) (-1247)) (T -1067)) +NIL +(-10 -8 (-15 -3656 (|#2| |#1|))) +((-3657 (((-3 |#1| "failed") $) 9 T ELT)) (-3656 ((|#1| $) 8 T ELT)) (-4458 (($ |#1|) 6 T ELT))) +(((-1068 |#1|) (-142) (-1247)) (T -1068)) +((-3657 (*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247))))) +(-13 (-633 |t#1|) (-10 -8 (-15 -3657 ((-3 |t#1| "failed") $)) (-15 -3656 (|t#1| $)))) +(((-633 |#1|) . T)) +((-3565 (((-661 (-661 (-305 (-419 (-974 |#2|))))) (-661 (-974 |#2|)) (-661 (-1207))) 38 T ELT))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -3565 ((-661 (-661 (-305 (-419 (-974 |#2|))))) (-661 (-974 |#2|)) (-661 (-1207))))) (-569) (-13 (-569) (-1068 |#1|))) (T -1069)) +((-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *6)))))) (-5 *1 (-1069 *5 *6))))) +(-10 -7 (-15 -3565 ((-661 (-661 (-305 (-419 (-974 |#2|))))) (-661 (-974 |#2|)) (-661 (-1207))))) +((-3566 (((-661 (-1207)) (-419 (-974 |#1|))) 17 T ELT)) (-3568 (((-419 (-1201 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207)) 24 T ELT)) (-3569 (((-419 (-974 |#1|)) (-419 (-1201 (-419 (-974 |#1|)))) (-1207)) 26 T ELT)) (-3567 (((-3 (-1207) "failed") (-419 (-974 |#1|))) 20 T ELT)) (-4280 (((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-305 (-419 (-974 |#1|))))) 32 T ELT) (((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|)))) 33 T ELT) (((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-1207)) (-661 (-419 (-974 |#1|)))) 28 T ELT) (((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|))) 29 T ELT)) (-4458 (((-419 (-974 |#1|)) |#1|) 11 T ELT))) +(((-1070 |#1|) (-10 -7 (-15 -3566 ((-661 (-1207)) (-419 (-974 |#1|)))) (-15 -3567 ((-3 (-1207) "failed") (-419 (-974 |#1|)))) (-15 -3568 ((-419 (-1201 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207))) (-15 -3569 ((-419 (-974 |#1|)) (-419 (-1201 (-419 (-974 |#1|)))) (-1207))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|)))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-1207)) (-661 (-419 (-974 |#1|))))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -4458 ((-419 (-974 |#1|)) |#1|))) (-569)) (T -1070)) +((-4458 (*1 *2 *3) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-569)))) (-4280 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-305 (-419 (-974 *4))))) (-5 *2 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *1 (-1070 *4)))) (-4280 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-419 (-974 *4)))) (-5 *2 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *1 (-1070 *4)))) (-4280 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-1207))) (-5 *4 (-661 (-419 (-974 *5)))) (-5 *2 (-419 (-974 *5))) (-4 *5 (-569)) (-5 *1 (-1070 *5)))) (-4280 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-974 *4))) (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-1070 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1201 (-419 (-974 *5))))) (-5 *4 (-1207)) (-5 *2 (-419 (-974 *5))) (-5 *1 (-1070 *5)) (-4 *5 (-569)))) (-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-419 (-1201 (-419 (-974 *5))))) (-5 *1 (-1070 *5)) (-5 *3 (-419 (-974 *5))))) (-3567 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-1207)) (-5 *1 (-1070 *4)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-1207))) (-5 *1 (-1070 *4))))) +(-10 -7 (-15 -3566 ((-661 (-1207)) (-419 (-974 |#1|)))) (-15 -3567 ((-3 (-1207) "failed") (-419 (-974 |#1|)))) (-15 -3568 ((-419 (-1201 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207))) (-15 -3569 ((-419 (-974 |#1|)) (-419 (-1201 (-419 (-974 |#1|)))) (-1207))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|)))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-1207)) (-661 (-419 (-974 |#1|))))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-305 (-419 (-974 |#1|))))) (-15 -4280 ((-419 (-974 |#1|)) (-419 (-974 |#1|)) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -4458 ((-419 (-974 |#1|)) |#1|))) +((-3570 (((-391)) 17 T ELT)) (-3585 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3578 (((-1 (-391)) (-791)) 48 T ELT)) (-3571 (((-391)) 37 T ELT)) (-3574 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3572 (((-391)) 29 T ELT)) (-3575 (((-1 (-391)) (-391)) 30 T ELT)) (-3573 (((-391) (-791)) 43 T ELT)) (-3576 (((-1 (-391)) (-791)) 44 T ELT)) (-3577 (((-1 (-391)) (-791) (-791)) 47 T ELT)) (-3886 (((-1 (-391)) (-791) (-791)) 45 T ELT))) +(((-1071) (-10 -7 (-15 -3570 ((-391))) (-15 -3571 ((-391))) (-15 -3572 ((-391))) (-15 -3573 ((-391) (-791))) (-15 -3585 ((-1 (-391)) (-391) (-391))) (-15 -3574 ((-1 (-391)) (-391) (-391))) (-15 -3575 ((-1 (-391)) (-391))) (-15 -3576 ((-1 (-391)) (-791))) (-15 -3886 ((-1 (-391)) (-791) (-791))) (-15 -3577 ((-1 (-391)) (-791) (-791))) (-15 -3578 ((-1 (-391)) (-791))))) (T -1071)) +((-3578 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071)))) (-3577 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071)))) (-3886 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071)))) (-3575 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391)))) (-3574 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391)))) (-3585 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-391)) (-5 *1 (-1071)))) (-3572 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071)))) (-3571 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071)))) (-3570 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071))))) +(-10 -7 (-15 -3570 ((-391))) (-15 -3571 ((-391))) (-15 -3572 ((-391))) (-15 -3573 ((-391) (-791))) (-15 -3585 ((-1 (-391)) (-391) (-391))) (-15 -3574 ((-1 (-391)) (-391) (-391))) (-15 -3575 ((-1 (-391)) (-391))) (-15 -3576 ((-1 (-391)) (-791))) (-15 -3886 ((-1 (-391)) (-791) (-791))) (-15 -3577 ((-1 (-391)) (-791) (-791))) (-15 -3578 ((-1 (-391)) (-791)))) +((-4244 (((-417 |#1|) |#1|) 33 T ELT))) +(((-1072 |#1|) (-10 -7 (-15 -4244 ((-417 |#1|) |#1|))) (-1273 (-419 (-974 (-558))))) (T -1072)) +((-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-1273 (-419 (-974 (-558)))))))) +(-10 -7 (-15 -4244 ((-417 |#1|) |#1|))) +((-3579 (((-419 (-417 (-974 |#1|))) (-419 (-974 |#1|))) 14 T ELT))) +(((-1073 |#1|) (-10 -7 (-15 -3579 ((-419 (-417 (-974 |#1|))) (-419 (-974 |#1|))))) (-319)) (T -1073)) +((-3579 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-974 *4)))) (-5 *1 (-1073 *4))))) +(-10 -7 (-15 -3579 ((-419 (-417 (-974 |#1|))) (-419 (-974 |#1|))))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4236 (($) 22 T CONST)) (-3583 ((|#1| $) 28 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3582 ((|#1| $) 27 T ELT)) (-3580 ((|#1|) 25 T CONST)) (-4458 (((-886) $) 13 T ELT)) (-3581 ((|#1| $) 26 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT))) +(((-1074 |#1|) (-142) (-23)) (T -1074)) +((-3583 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-3580 (*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3583 (|t#1| $)) (-15 -3582 (|t#1| $)) (-15 -3581 (|t#1| $)) (-15 -3580 (|t#1|) -4464))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3584 (($) 30 T CONST)) (-4236 (($) 22 T CONST)) (-3583 ((|#1| $) 28 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3582 ((|#1| $) 27 T ELT)) (-3580 ((|#1|) 25 T CONST)) (-4458 (((-886) $) 13 T ELT)) (-3581 ((|#1| $) 26 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT))) +(((-1075 |#1|) (-142) (-23)) (T -1075)) +((-3584 (*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(-13 (-1074 |t#1|) (-10 -8 (-15 -3584 ($) -4464))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-1074 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 (-800 |#1| (-887 |#2|)))))) (-661 (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-4194 (((-661 $) (-661 (-800 |#1| (-887 |#2|)))) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-114)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-114) (-114)) NIL T ELT)) (-3566 (((-661 (-887 |#2|)) $) NIL T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4205 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4200 (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-4287 (((-661 (-2 (|:| |val| (-800 |#1| (-887 |#2|))) (|:| -1753 $))) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ (-887 |#2|)) NIL T ELT)) (-4222 (($ (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 (-800 |#1| (-887 |#2|)) #1="failed") $ (-887 |#2|)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|))) $ (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) (-1 (-114) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-3383 (((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-3656 (($ (-661 (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-4311 (((-3 $ #1#) $) NIL T ELT)) (-4197 (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT)) (-3908 (($ (-800 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-800 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-800 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4206 (((-114) (-800 |#1| (-887 |#2|)) $ (-1 (-114) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-4195 (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-4354 (((-800 |#1| (-887 |#2|)) (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) $ (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (((-800 |#1| (-887 |#2|)) (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) $ (-800 |#1| (-887 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-800 |#1| (-887 |#2|)) (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $ (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) (-1 (-114) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-4208 (((-2 (|:| -4373 (-661 (-800 |#1| (-887 |#2|)))) (|:| -1915 (-661 (-800 |#1| (-887 |#2|))))) $) NIL T ELT)) (-3697 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3695 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3698 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3372 (((-661 (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3680 (((-887 |#2|) $) NIL T ELT)) (-3089 (((-661 (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-800 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT)) (-2170 (($ (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) $) NIL T ELT)) (-3397 (((-661 (-887 |#2|)) $) NIL T ELT)) (-3396 (((-114) (-887 |#2|) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3691 (((-3 (-800 |#1| (-887 |#2|)) (-661 $)) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3690 (((-661 (-2 (|:| |val| (-800 |#1| (-887 |#2|))) (|:| -1753 $))) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-4310 (((-3 (-800 |#1| (-887 |#2|)) #1#) $) NIL T ELT)) (-3692 (((-661 $) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3694 (((-3 (-114) (-661 $)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3738 (((-661 $) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-661 $)) NIL T ELT) (((-661 $) (-800 |#1| (-887 |#2|)) (-661 $)) NIL T ELT)) (-3942 (($ (-800 |#1| (-887 |#2|)) $) NIL T ELT) (($ (-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT)) (-4209 (((-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT)) (-4203 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4198 (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-4211 (((-114) $ $) NIL T ELT)) (-3386 (((-2 (|:| |num| (-800 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-800 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4204 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4199 (((-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-3 (-800 |#1| (-887 |#2|)) #1#) $) NIL T ELT)) (-1478 (((-3 (-800 |#1| (-887 |#2|)) "failed") (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL T ELT)) (-4191 (((-3 $ #1#) $ (-800 |#1| (-887 |#2|))) NIL T ELT)) (-4281 (($ $ (-800 |#1| (-887 |#2|))) NIL T ELT) (((-661 $) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-661 $) (-800 |#1| (-887 |#2|)) (-661 $)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-661 $)) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-800 |#1| (-887 |#2|))) (-661 (-800 |#1| (-887 |#2|)))) NIL (-12 (|has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|)))) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (($ $ (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|))) NIL (-12 (|has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|)))) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (($ $ (-305 (-800 |#1| (-887 |#2|)))) NIL (-12 (|has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|)))) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (($ $ (-661 (-305 (-800 |#1| (-887 |#2|))))) NIL (-12 (|has| (-800 |#1| (-887 |#2|)) (-321 (-800 |#1| (-887 |#2|)))) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4460 (((-791) $) NIL T ELT)) (-2167 (((-791) (-800 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-800 |#1| (-887 |#2|)) (-1131))) ELT) (((-791) (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-800 |#1| (-887 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-3393 (($ $ (-887 |#2|)) NIL T ELT)) (-3395 (($ $ (-887 |#2|)) NIL T ELT)) (-4196 (($ $) NIL T ELT)) (-3394 (($ $ (-887 |#2|)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (((-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT)) (-4190 (((-791) $) NIL (|has| (-887 |#2|) (-381)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 (-800 |#1| (-887 |#2|))))) #1#) (-661 (-800 |#1| (-887 |#2|))) (-1 (-114) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 (-800 |#1| (-887 |#2|))))) #1#) (-661 (-800 |#1| (-887 |#2|))) (-1 (-114) (-800 |#1| (-887 |#2|))) (-1 (-114) (-800 |#1| (-887 |#2|)) (-800 |#1| (-887 |#2|)))) NIL T ELT)) (-4202 (((-114) $ (-1 (-114) (-800 |#1| (-887 |#2|)) (-661 (-800 |#1| (-887 |#2|))))) NIL T ELT)) (-3689 (((-661 $) (-800 |#1| (-887 |#2|)) $) NIL T ELT) (((-661 $) (-800 |#1| (-887 |#2|)) (-661 $)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-661 $)) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-800 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 (-887 |#2|)) $) NIL T ELT)) (-3696 (((-114) (-800 |#1| (-887 |#2|)) $) NIL T ELT)) (-4445 (((-114) (-887 |#2|) $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1076 |#1| |#2|) (-13 (-1101 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|))) (-10 -8 (-15 -4194 ((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-114) (-114))))) (-464) (-661 (-1207))) (T -1076)) +((-4194 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-1076 *5 *6))))) +(-13 (-1101 |#1| (-543 (-887 |#2|)) (-887 |#2|) (-800 |#1| (-887 |#2|))) (-10 -8 (-15 -4194 ((-661 $) (-661 (-800 |#1| (-887 |#2|))) (-114) (-114))))) +((-3585 (((-1 (-558)) (-1119 (-558))) 32 T ELT)) (-3589 (((-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-3587 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3588 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3586 (((-1 (-558)) (-558) |RationalNumber|) NIL T ELT))) +(((-1077) (-10 -7 (-15 -3585 ((-1 (-558)) (-1119 (-558)))) (-15 -3586 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -3587 ((-1 (-558)) |RationalNumber|)) (-15 -3588 ((-1 (-558)) |RationalNumber|)) (-15 -3589 ((-558) (-558) (-558) (-558) (-558))))) (T -1077)) +((-3589 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1077)))) (-3588 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077)))) (-3587 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077)) (-5 *3 (-558)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1119 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1077))))) +(-10 -7 (-15 -3585 ((-1 (-558)) (-1119 (-558)))) (-15 -3586 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -3587 ((-1 (-558)) |RationalNumber|)) (-15 -3588 ((-1 (-558)) |RationalNumber|)) (-15 -3589 ((-558) (-558) (-558) (-558) (-558)))) +((-4458 (((-886) $) NIL T ELT) (($ (-558)) 10 T ELT))) +(((-1078 |#1|) (-10 -8 (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-1079)) (T -1078)) +NIL +(-10 -8 (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1079) (-142)) (T -1079)) +((-3610 (*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-791))))) +(-13 (-1087) (-746) (-668 $) (-633 (-558)) (-10 -7 (-15 -3610 ((-791)) -4464) (-6 -4504))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3590 (((-419 (-974 |#2|)) (-661 |#2|) (-661 |#2|) (-791) (-791)) 55 T ELT))) +(((-1080 |#1| |#2|) (-10 -7 (-15 -3590 ((-419 (-974 |#2|)) (-661 |#2|) (-661 |#2|) (-791) (-791)))) (-1207) (-376)) (T -1080)) +((-3590 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-791)) (-4 *6 (-376)) (-5 *2 (-419 (-974 *6))) (-5 *1 (-1080 *5 *6)) (-14 *5 (-1207))))) +(-10 -7 (-15 -3590 ((-419 (-974 |#2|)) (-661 |#2|) (-661 |#2|) (-791) (-791)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-1081 |#1|) (-142) (-1142)) (T -1081)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3605 (((-114) $) 38 T ELT)) (-3607 (((-114) $) 17 T ELT)) (-3599 (((-791) $) 13 T ELT)) (-3598 (((-791) $) 14 T ELT)) (-3606 (((-114) $) 30 T ELT)) (-3604 (((-114) $) 40 T ELT))) +(((-1082 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3598 ((-791) |#1|)) (-15 -3599 ((-791) |#1|)) (-15 -3604 ((-114) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 -3607 ((-114) |#1|))) (-1083 |#2| |#3| |#4| |#5| |#6|) (-791) (-791) (-1079) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1082)) +NIL +(-10 -8 (-15 -3598 ((-791) |#1|)) (-15 -3599 ((-791) |#1|)) (-15 -3604 ((-114) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 -3607 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3605 (((-114) $) 61 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3607 (((-114) $) 63 T ELT)) (-4236 (($) 22 T CONST)) (-3594 (($ $) 44 (|has| |#3| (-319)) ELT)) (-3596 ((|#4| $ (-558)) 49 T ELT)) (-3593 (((-791) $) 43 (|has| |#3| (-569)) ELT)) (-3597 ((|#3| $ (-558) (-558)) 51 T ELT)) (-3372 (((-661 |#3|) $) 75 (|has| $ (-6 -4507)) ELT)) (-3592 (((-791) $) 42 (|has| |#3| (-569)) ELT)) (-3591 (((-661 |#5|) $) 41 (|has| |#3| (-569)) ELT)) (-3599 (((-791) $) 55 T ELT)) (-3598 (((-791) $) 54 T ELT)) (-3603 (((-558) $) 59 T ELT)) (-3601 (((-558) $) 57 T ELT)) (-3089 (((-661 |#3|) $) 76 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#3| $) 78 (-12 (|has| |#3| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3602 (((-558) $) 58 T ELT)) (-3600 (((-558) $) 56 T ELT)) (-3608 (($ (-661 (-661 |#3|))) 64 T ELT)) (-2170 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-4104 (((-661 (-661 |#3|)) $) 53 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#3|) $) 73 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#3|) (-661 |#3|)) 82 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-305 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-661 (-305 |#3|))) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-1338 (((-114) $ $) 65 T ELT)) (-3905 (((-114) $) 68 T ELT)) (-4075 (($) 67 T ELT)) (-4312 ((|#3| $ (-558) (-558)) 52 T ELT) ((|#3| $ (-558) (-558) |#3|) 50 T ELT)) (-3606 (((-114) $) 62 T ELT)) (-2167 (((-791) |#3| $) 77 (-12 (|has| |#3| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#3|) $) 74 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 66 T ELT)) (-3595 ((|#5| $ (-558)) 48 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2169 (((-114) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) 60 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#3|) 45 (|has| |#3| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4469 (((-791) $) 69 (|has| $ (-6 -4507)) ELT))) +(((-1083 |#1| |#2| |#3| |#4| |#5|) (-142) (-791) (-791) (-1079) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1083)) +((-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *5))) (-4 *5 (-1079)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-791)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-791)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-661 (-661 *5))))) (-4312 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1079)))) (-3597 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1079)))) (-4312 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3596 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3595 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-4470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3968 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-569)))) (-4461 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-661 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4507) (IF (|has| |t#3| (-175)) (-6 (-737 |t#3|)) |%noBranch|) (-15 -3608 ($ (-661 (-661 |t#3|)))) (-15 -3607 ((-114) $)) (-15 -3606 ((-114) $)) (-15 -3605 ((-114) $)) (-15 -3604 ((-114) $)) (-15 -3603 ((-558) $)) (-15 -3602 ((-558) $)) (-15 -3601 ((-558) $)) (-15 -3600 ((-558) $)) (-15 -3599 ((-791) $)) (-15 -3598 ((-791) $)) (-15 -4104 ((-661 (-661 |t#3|)) $)) (-15 -4312 (|t#3| $ (-558) (-558))) (-15 -3597 (|t#3| $ (-558) (-558))) (-15 -4312 (|t#3| $ (-558) (-558) |t#3|)) (-15 -3596 (|t#4| $ (-558))) (-15 -3595 (|t#5| $ (-558))) (-15 -4470 ($ (-1 |t#3| |t#3|) $)) (-15 -4470 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3968 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -4461 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -3594 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -3593 ((-791) $)) (-15 -3592 ((-791) $)) (-15 -3591 ((-661 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-630 (-886)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ((-666 (-558)) . T) ((-666 |#3|) . T) ((-668 |#3|) . T) ((-660 |#3|) |has| |#3| (-175)) ((-737 |#3|) |has| |#3| (-175)) ((-1081 |#3|) . T) ((-1086 |#3|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3607 (((-114) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3596 (((-246 |#2| |#3|) $ (-558)) 36 T ELT)) (-3609 (($ (-709 |#3|)) 45 T ELT)) (-3593 (((-791) $) 49 (|has| |#3| (-569)) ELT)) (-3597 ((|#3| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3592 (((-791) $) 51 (|has| |#3| (-569)) ELT)) (-3591 (((-661 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-3599 (((-791) $) NIL T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-3608 (($ (-661 (-661 |#3|))) 31 T ELT)) (-2170 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-4104 (((-661 (-661 |#3|)) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#3| $ (-558) (-558)) NIL T ELT) ((|#3| $ (-558) (-558) |#3|) NIL T ELT)) (-4423 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3606 (((-114) $) NIL T ELT)) (-2167 (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT) (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) 66 (|has| |#3| (-631 (-547))) ELT)) (-3595 (((-246 |#1| |#3|) $ (-558)) 40 T ELT)) (-4458 (((-886) $) 19 T ELT) (((-709 |#3|) $) 42 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3141 (($) 16 T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1084 |#1| |#2| |#3|) (-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-630 (-709 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (-15 -3609 ($ (-709 |#3|))))) (-791) (-791) (-1079)) (T -1084)) +((-3609 (*1 *1 *2) (-12 (-5 *2 (-709 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791))))) +(-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-630 (-709 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (-15 -3609 ($ (-709 |#3|))))) +((-4354 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4470 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-1085 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4470 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4354 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-791) (-791) (-1079) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1083 |#1| |#2| |#3| |#4| |#5|) (-1079) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1083 |#1| |#2| |#7| |#8| |#9|)) (T -1085)) +((-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) (-14 *5 (-791)) (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) (-14 *5 (-791)) (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1083 *5 *6 *10 *11 *12)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) +(-10 -7 (-15 -4470 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4354 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-1086 |#1|) (-142) (-1087)) (T -1086)) +NIL +(-13 (-21) (-1081 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-1081 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1087) (-142)) (T -1087)) +NIL +(-13 (-21) (-1142)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4343 (((-1207) $) 11 T ELT)) (-4248 ((|#1| $) 12 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-3726 (($ (-1207) |#1|) 10 T ELT)) (-4458 (((-886) $) 22 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3536 (((-114) $ $) 17 (|has| |#1| (-1131)) ELT))) +(((-1088 |#1| |#2|) (-13 (-1247) (-10 -8 (-15 -3726 ($ (-1207) |#1|)) (-15 -4343 ((-1207) $)) (-15 -4248 (|#1| $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1124 |#2|) (-1247)) (T -1088)) +((-3726 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1124 *4)))) (-4343 (*1 *2 *1) (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1124 *4)))) (-4248 (*1 *2 *1) (-12 (-4 *2 (-1124 *3)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3726 ($ (-1207) |#1|)) (-15 -4343 ((-1207) $)) (-15 -4248 (|#1| $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-4283 (($ $) 17 T ELT)) (-3611 (($ $) 25 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 54 T ELT)) (-3616 (($ $) 27 T ELT)) (-3612 (($ $) 12 T ELT)) (-3614 (($ $) 40 T ELT)) (-4484 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-914 (-391)) $) 36 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 31 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 31 T ELT)) (-3610 (((-791)) 9 T ELT)) (-3615 (($ $) 44 T ELT))) +(((-1089 |#1|) (-10 -8 (-15 -3611 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| |#1|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-1090)) (T -1089)) +((-3610 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) +(-10 -8 (-15 -3611 (|#1| |#1|)) (-15 -4283 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3279 ((-912 (-391) |#1|) |#1| (-914 (-391)) (-912 (-391) |#1|))) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 -4484 ((-229) |#1|)) (-15 -4484 ((-391) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| |#1|)) (-15 -3610 ((-791))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3613 (((-558) $) 105 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-4283 (($ $) 103 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-3520 (($ $) 113 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4135 (((-558) $) 130 T ELT)) (-4236 (($) 22 T CONST)) (-3611 (($ $) 102 T ELT)) (-3657 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3656 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-4235 (((-114) $) 86 T ELT)) (-3686 (((-114) $) 128 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 109 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 112 T ELT)) (-3616 (($ $) 108 T ELT)) (-3687 (((-114) $) 129 T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-3012 (($ $ $) 122 T ELT)) (-3340 (($ $ $) 123 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3612 (($ $) 104 T ELT)) (-3614 (($ $) 106 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-4484 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-914 (-391)) $) 110 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3610 (((-791)) 37 T CONST)) (-3615 (($ $) 107 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3885 (($ $) 131 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3047 (((-114) $ $) 124 T ELT)) (-3048 (((-114) $ $) 126 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 125 T ELT)) (-3168 (((-114) $ $) 127 T ELT)) (-4461 (($ $ $) 80 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +(((-1090) (-142)) (T -1090)) +((-3616 (*1 *1 *1) (-4 *1 (-1090))) (-3615 (*1 *1 *1) (-4 *1 (-1090))) (-3614 (*1 *1 *1) (-4 *1 (-1090))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-558)))) (-3612 (*1 *1 *1) (-4 *1 (-1090))) (-4283 (*1 *1 *1) (-4 *1 (-1090))) (-3611 (*1 *1 *1) (-4 *1 (-1090)))) +(-13 (-376) (-869) (-1050) (-1068 (-558)) (-1068 (-419 (-558))) (-1032) (-631 (-914 (-391))) (-910 (-391)) (-149) (-10 -8 (-15 -3616 ($ $)) (-15 -3615 ($ $)) (-15 -3614 ($ $)) (-15 -3613 ((-558) $)) (-15 -3612 ($ $)) (-15 -4283 ($ $)) (-15 -3611 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-914 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-949) . T) ((-1032) . T) ((-1050) . T) ((-1068 (-419 (-558))) . T) ((-1068 (-558)) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) |#2| $) 26 T ELT)) (-3620 ((|#1| $) 10 T ELT)) (-4135 (((-558) |#2| $) 119 T ELT)) (-3683 (((-3 $ #1="failed") |#2| (-947)) 76 T ELT)) (-3621 ((|#1| $) 31 T ELT)) (-3682 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3618 (($ $) 28 T ELT)) (-3969 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3686 (((-114) |#2| $) NIL T ELT)) (-3687 (((-114) |#2| $) NIL T ELT)) (-3617 (((-114) |#2| $) 27 T ELT)) (-3619 ((|#1| $) 120 T ELT)) (-3622 ((|#1| $) 30 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3685 ((|#2| $) 104 T ELT)) (-4458 (((-886) $) 95 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4282 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3684 (((-661 $) |#2|) 78 T ELT)) (-3536 (((-114) $ $) 99 T ELT))) +(((-1091 |#1| |#2|) (-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3622 (|#1| $)) (-15 -3621 (|#1| $)) (-15 -3620 (|#1| $)) (-15 -3619 (|#1| $)) (-15 -3618 ($ $)) (-15 -3617 ((-114) |#2| $)) (-15 -3682 (|#1| |#2| $ |#1|)))) (-13 (-869) (-376)) (-1273 |#1|)) (T -1091)) +((-3682 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3622 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3621 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3620 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3619 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3618 (*1 *1 *1) (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3617 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-869) (-376))) (-5 *2 (-114)) (-5 *1 (-1091 *4 *3)) (-4 *3 (-1273 *4))))) +(-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3622 (|#1| $)) (-15 -3621 (|#1| $)) (-15 -3620 (|#1| $)) (-15 -3619 (|#1| $)) (-15 -3618 ($ $)) (-15 -3617 ((-114) |#2| $)) (-15 -3682 (|#1| |#2| $ |#1|)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2267 (($ $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2262 (($ $ $ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-4135 (((-558) $) NIL T ELT)) (-2840 (($ $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3623 (($ (-1207)) 10 T ELT) (($ (-558)) 7 T ELT)) (-3657 (((-3 (-558) "failed") $) NIL T ELT)) (-3656 (((-558) $) NIL T ELT)) (-3045 (($ $ $) NIL T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL T ELT)) (-3506 (((-114) $) NIL T ELT)) (-3505 (((-419 (-558)) $) NIL T ELT)) (-3477 (($) NIL T ELT) (($ $) NIL T ELT)) (-3044 (($ $ $) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2260 (($ $ $ $) NIL T ELT)) (-2268 (($ $ $) NIL T ELT)) (-3686 (((-114) $) NIL T ELT)) (-1493 (($ $ $) NIL T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3156 (((-114) $) NIL T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-3687 (((-114) $) NIL T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2261 (($ $ $ $) NIL T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-2264 (($ $) NIL T ELT)) (-4345 (($ $) NIL T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2259 (($ $ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2266 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1491 (($ $) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) NIL T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2265 (($ $) NIL T ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-558) $) 16 T ELT) (((-547) $) NIL T ELT) (((-914 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1207)) 9 T ELT)) (-4458 (((-886) $) 23 T ELT) (($ (-558)) 6 T ELT) (($ $) NIL T ELT) (($ (-558)) 6 T ELT)) (-3610 (((-791)) NIL T CONST)) (-2269 (((-114) $ $) NIL T ELT)) (-3586 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (($) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-2263 (($ $ $ $) NIL T ELT)) (-3885 (($ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-4349 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT))) +(((-1092) (-13 (-557) (-635 (-1207)) (-10 -8 (-6 -4494) (-6 -4499) (-6 -4495) (-15 -3623 ($ (-1207))) (-15 -3623 ($ (-558)))))) (T -1092)) +((-3623 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1092)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1092))))) +(-13 (-557) (-635 (-1207)) (-10 -8 (-6 -4494) (-6 -4499) (-6 -4495) (-15 -3623 ($ (-1207))) (-15 -3623 ($ (-558))))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-2423 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4508)) ELT)) (-3625 (($) 9 T ELT)) (-4300 (((-51) $ (-1207) (-51)) NIL T ELT)) (-3633 (($ $) 32 T ELT)) (-3636 (($ $) 30 T ELT)) (-3637 (($ $) 29 T ELT)) (-3635 (($ $) 31 T ELT)) (-3632 (($ $) 35 T ELT)) (-3631 (($ $) 36 T ELT)) (-3638 (($ $) 28 T ELT)) (-3634 (($ $) 33 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) 27 (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 (-51) #1="failed") (-1207) $) 43 T ELT)) (-4236 (($) NIL T CONST)) (-3639 (($) 7 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) 53 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 (-51) #1#) (-1207) $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT)) (-3624 (((-3 (-1189) "failed") $ (-1189) (-558)) 72 T ELT)) (-1729 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-51) $ (-1207)) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 (((-1207) $) NIL (|has| (-1207) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) 38 (|has| $ (-6 -4507)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2426 (((-1207) $) NIL (|has| (-1207) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-2894 (((-661 (-1207)) $) NIL T ELT)) (-2457 (((-114) (-1207) $) NIL T ELT)) (-1398 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) 46 T ELT)) (-2428 (((-661 (-1207)) $) NIL T ELT)) (-2429 (((-114) (-1207) $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-51) (-1131)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT)) (-3628 (((-391) $ (-1207)) 52 T ELT)) (-3627 (((-661 (-1189)) $ (-1189)) 74 T ELT)) (-4313 (((-51) $) NIL (|has| (-1207) (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) "failed") (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL T ELT)) (-2424 (($ $ (-51)) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL (-12 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-321 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT)) (-2430 (((-661 (-51)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 (((-51) $ (-1207)) NIL T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-3626 (($ $ (-1207)) 54 T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-1131))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-51) (-1131))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) 40 T ELT)) (-4314 (($ $ $) 41 T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-630 (-886))) (|has| (-51) (-630 (-886)))) ELT)) (-3630 (($ $ (-1207) (-391)) 50 T ELT)) (-3629 (($ $ (-1207) (-391)) 51 T ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 (-1207)) (|:| -2296 (-51)))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-51) (-102)) (|has| (-2 (|:| -4372 (-1207)) (|:| -2296 (-51))) (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1093) (-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -4314 ($ $ $)) (-15 -3639 ($)) (-15 -3638 ($ $)) (-15 -3637 ($ $)) (-15 -3636 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $)) (-15 -3632 ($ $)) (-15 -3631 ($ $)) (-15 -3630 ($ $ (-1207) (-391))) (-15 -3629 ($ $ (-1207) (-391))) (-15 -3628 ((-391) $ (-1207))) (-15 -3627 ((-661 (-1189)) $ (-1189))) (-15 -3626 ($ $ (-1207))) (-15 -3625 ($)) (-15 -3624 ((-3 (-1189) "failed") $ (-1189) (-558))) (-6 -4507)))) (T -1093)) +((-4314 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3639 (*1 *1) (-5 *1 (-1093))) (-3638 (*1 *1 *1) (-5 *1 (-1093))) (-3637 (*1 *1 *1) (-5 *1 (-1093))) (-3636 (*1 *1 *1) (-5 *1 (-1093))) (-3635 (*1 *1 *1) (-5 *1 (-1093))) (-3634 (*1 *1 *1) (-5 *1 (-1093))) (-3633 (*1 *1 *1) (-5 *1 (-1093))) (-3632 (*1 *1 *1) (-5 *1 (-1093))) (-3631 (*1 *1 *1) (-5 *1 (-1093))) (-3630 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-3628 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1093)))) (-3627 (*1 *2 *1 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1093)) (-5 *3 (-1189)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))) (-3625 (*1 *1) (-5 *1 (-1093))) (-3624 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-1093))))) +(-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -4314 ($ $ $)) (-15 -3639 ($)) (-15 -3638 ($ $)) (-15 -3637 ($ $)) (-15 -3636 ($ $)) (-15 -3635 ($ $)) (-15 -3634 ($ $)) (-15 -3633 ($ $)) (-15 -3632 ($ $)) (-15 -3631 ($ $)) (-15 -3630 ($ $ (-1207) (-391))) (-15 -3629 ($ $ (-1207) (-391))) (-15 -3628 ((-391) $ (-1207))) (-15 -3627 ((-661 (-1189)) $ (-1189))) (-15 -3626 ($ $ (-1207))) (-15 -3625 ($)) (-15 -3624 ((-3 (-1189) "failed") $ (-1189) (-558))) (-6 -4507))) +((-4309 (($ $) 46 T ELT)) (-3666 (((-114) $ $) 82 T ELT)) (-3657 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ "failed") (-974 (-419 (-558)))) 247 T ELT) (((-3 $ "failed") (-974 (-558))) 246 T ELT) (((-3 $ "failed") (-974 |#2|)) 249 T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-974 (-419 (-558)))) 235 T ELT) (($ (-974 (-558))) 231 T ELT) (($ (-974 |#2|)) 255 T ELT)) (-4471 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4206 (((-114) $ $) 131 T ELT) (((-114) $ (-661 $)) 135 T ELT)) (-3672 (((-114) $) 60 T ELT)) (-4264 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 125 T ELT)) (-3643 (($ $) 160 T ELT)) (-3654 (($ $) 156 T ELT)) (-3655 (($ $) 155 T ELT)) (-3665 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3664 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4207 (((-114) $ $) 143 T ELT) (((-114) $ (-661 $)) 144 T ELT)) (-3680 ((|#4| $) 32 T ELT)) (-3659 (($ $ $) 128 T ELT)) (-3673 (((-114) $) 59 T ELT)) (-3679 (((-791) $) 35 T ELT)) (-3640 (($ $) 174 T ELT)) (-3641 (($ $) 171 T ELT)) (-3668 (((-661 $) $) 72 T ELT)) (-3671 (($ $) 62 T ELT)) (-3642 (($ $) 167 T ELT)) (-3669 (((-661 $) $) 69 T ELT)) (-3670 (($ $) 64 T ELT)) (-3674 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3658 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3983 (-791))) $ $) 130 T ELT)) (-3660 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $) 126 T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $ |#4|) 127 T ELT)) (-3661 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $) 121 T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $ |#4|) 123 T ELT)) (-3663 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3662 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3676 (((-661 $) $) 54 T ELT)) (-4203 (((-114) $ $) 140 T ELT) (((-114) $ (-661 $)) 141 T ELT)) (-4198 (($ $ $) 116 T ELT)) (-3948 (($ $) 37 T ELT)) (-4211 (((-114) $ $) 80 T ELT)) (-4204 (((-114) $ $) 136 T ELT) (((-114) $ (-661 $)) 138 T ELT)) (-4199 (($ $ $) 112 T ELT)) (-3678 (($ $) 41 T ELT)) (-3644 ((|#2| |#2| $) 164 T ELT) (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3652 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3653 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3677 (($ $) 49 T ELT)) (-3675 (($ $) 55 T ELT)) (-4484 (((-914 (-391)) $) NIL T ELT) (((-914 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (($ (-974 (-419 (-558)))) 237 T ELT) (($ (-974 (-558))) 233 T ELT) (($ (-974 |#2|)) 248 T ELT) (((-1189) $) 278 T ELT) (((-974 |#2|) $) 184 T ELT)) (-4458 (((-886) $) 29 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-974 |#2|) $) 185 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3667 (((-3 (-114) "failed") $ $) 79 T ELT))) +(((-1094 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4458 (|#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 ((-974 |#2|) |#1|)) (-15 -4484 ((-974 |#2|) |#1|)) (-15 -4484 ((-1189) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3644 (|#2| |#2| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3653 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -4484 (|#1| (-974 |#2|))) (-15 -3656 (|#1| (-974 |#2|))) (-15 -3657 ((-3 |#1| "failed") (-974 |#2|))) (-15 -4484 (|#1| (-974 (-558)))) (-15 -3656 (|#1| (-974 (-558)))) (-15 -3657 ((-3 |#1| "failed") (-974 (-558)))) (-15 -4484 (|#1| (-974 (-419 (-558))))) (-15 -3656 (|#1| (-974 (-419 (-558))))) (-15 -3657 ((-3 |#1| "failed") (-974 (-419 (-558))))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -3658 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3983 (-791))) |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -4264 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3661 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3661 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1| |#4|)) (-15 -3663 (|#1| |#1| |#1| |#4|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#4|)) (-15 -3665 (|#1| |#1| |#1| |#4|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| |#1|)) (-15 -4207 ((-114) |#1| (-661 |#1|))) (-15 -4207 ((-114) |#1| |#1|)) (-15 -4203 ((-114) |#1| (-661 |#1|))) (-15 -4203 ((-114) |#1| |#1|)) (-15 -4204 ((-114) |#1| (-661 |#1|))) (-15 -4204 ((-114) |#1| |#1|)) (-15 -4206 ((-114) |#1| (-661 |#1|))) (-15 -4206 ((-114) |#1| |#1|)) (-15 -3666 ((-114) |#1| |#1|)) (-15 -4211 ((-114) |#1| |#1|)) (-15 -3667 ((-3 (-114) "failed") |#1| |#1|)) (-15 -3668 ((-661 |#1|) |#1|)) (-15 -3669 ((-661 |#1|) |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3672 ((-114) |#1|)) (-15 -3673 ((-114) |#1|)) (-15 -4471 (|#1| |#1| |#4|)) (-15 -3674 (|#1| |#1| |#4|)) (-15 -3675 (|#1| |#1|)) (-15 -3676 ((-661 |#1|) |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3679 ((-791) |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4458 (|#1| |#4|)) (-15 -3657 ((-3 |#4| #1="failed") |#1|)) (-15 -3656 (|#4| |#1|)) (-15 -3674 (|#2| |#1|)) (-15 -4471 (|#1| |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-1095 |#2| |#3| |#4|) (-1079) (-815) (-870)) (T -1094)) +NIL +(-10 -8 (-15 -4458 (|#1| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| (-661 |#1|))) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 ((-974 |#2|) |#1|)) (-15 -4484 ((-974 |#2|) |#1|)) (-15 -4484 ((-1189) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3644 (|#2| |#2| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3653 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -4484 (|#1| (-974 |#2|))) (-15 -3656 (|#1| (-974 |#2|))) (-15 -3657 ((-3 |#1| "failed") (-974 |#2|))) (-15 -4484 (|#1| (-974 (-558)))) (-15 -3656 (|#1| (-974 (-558)))) (-15 -3657 ((-3 |#1| "failed") (-974 (-558)))) (-15 -4484 (|#1| (-974 (-419 (-558))))) (-15 -3656 (|#1| (-974 (-419 (-558))))) (-15 -3657 ((-3 |#1| "failed") (-974 (-419 (-558))))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -3658 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3983 (-791))) |#1| |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -4264 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3660 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3661 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -3385 |#1|)) |#1| |#1| |#4|)) (-15 -3661 ((-2 (|:| -4466 |#1|) (|:| |gap| (-791)) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1| |#4|)) (-15 -3663 (|#1| |#1| |#1| |#4|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#4|)) (-15 -3665 (|#1| |#1| |#1| |#4|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| |#1|)) (-15 -4207 ((-114) |#1| (-661 |#1|))) (-15 -4207 ((-114) |#1| |#1|)) (-15 -4203 ((-114) |#1| (-661 |#1|))) (-15 -4203 ((-114) |#1| |#1|)) (-15 -4204 ((-114) |#1| (-661 |#1|))) (-15 -4204 ((-114) |#1| |#1|)) (-15 -4206 ((-114) |#1| (-661 |#1|))) (-15 -4206 ((-114) |#1| |#1|)) (-15 -3666 ((-114) |#1| |#1|)) (-15 -4211 ((-114) |#1| |#1|)) (-15 -3667 ((-3 (-114) "failed") |#1| |#1|)) (-15 -3668 ((-661 |#1|) |#1|)) (-15 -3669 ((-661 |#1|) |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3672 ((-114) |#1|)) (-15 -3673 ((-114) |#1|)) (-15 -4471 (|#1| |#1| |#4|)) (-15 -3674 (|#1| |#1| |#4|)) (-15 -3675 (|#1| |#1|)) (-15 -3676 ((-661 |#1|) |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3679 ((-791) |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -4484 ((-547) |#1|)) (-15 -4484 ((-914 (-558)) |#1|)) (-15 -4484 ((-914 (-391)) |#1|)) (-15 -4458 (|#1| |#4|)) (-15 -3657 ((-3 |#4| #1="failed") |#1|)) (-15 -3656 (|#4| |#1|)) (-15 -3674 (|#2| |#1|)) (-15 -4471 (|#1| |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 |#3|) $) 120 T ELT)) (-3568 (((-1201 $) $ |#3|) 135 T ELT) (((-1201 |#1|) $) 134 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-4309 (($ $) 290 T ELT)) (-3666 (((-114) $ $) 276 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4267 (($ $ $) 235 (|has| |#1| (-569)) ELT)) (-3648 (((-661 $) $ $) 230 (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 110 (|has| |#1| (-938)) ELT)) (-4287 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 113 (|has| |#1| (-938)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1068 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-974 (-419 (-558)))) 250 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207)))) ELT) (((-3 $ "failed") (-974 (-558))) 247 (-4039 (-12 (-3041 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1207)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207))))) ELT) (((-3 $ "failed") (-974 |#1|)) 244 (-4039 (-12 (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-38 (-558)))) (|has| |#3| (-631 (-1207)))) (-12 (-3041 (|has| |#1| (-557))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1207)))) (-12 (-3041 (|has| |#1| (-1021 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207))))) ELT)) (-3656 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1068 (-558))) ELT) ((|#3| $) 151 T ELT) (($ (-974 (-419 (-558)))) 249 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207)))) ELT) (($ (-974 (-558))) 246 (-4039 (-12 (-3041 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1207)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207))))) ELT) (($ (-974 |#1|)) 243 (-4039 (-12 (-3041 (|has| |#1| (-38 (-419 (-558))))) (-3041 (|has| |#1| (-38 (-558)))) (|has| |#3| (-631 (-1207)))) (-12 (-3041 (|has| |#1| (-557))) (-3041 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1207)))) (-12 (-3041 (|has| |#1| (-1021 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207))))) ELT)) (-4268 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT) (($ $ $) 231 (|has| |#1| (-569)) ELT)) (-4471 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-4206 (((-114) $ $) 275 T ELT) (((-114) $ (-661 $)) 274 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3672 (((-114) $) 283 T ELT)) (-4264 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 255 T ELT)) (-3643 (($ $) 224 (|has| |#1| (-464)) ELT)) (-4005 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) 119 T ELT)) (-4235 (((-114) $) 106 (|has| |#1| (-938)) ELT)) (-3654 (($ $) 240 (|has| |#1| (-569)) ELT)) (-3655 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3665 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3664 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1814 (($ $ |#1| |#2| $) 186 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 94 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 93 (-12 (|has| |#3| (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-2651 (((-114) $) 40 T ELT)) (-2659 (((-791) $) 183 T ELT)) (-4207 (((-114) $ $) 269 T ELT) (((-114) $ (-661 $)) 268 T ELT)) (-3645 (($ $ $ $ $) 226 (|has| |#1| (-569)) ELT)) (-3680 ((|#3| $) 294 T ELT)) (-3569 (($ (-1201 |#1|) |#3|) 127 T ELT) (($ (-1201 $) |#3|) 126 T ELT)) (-3304 (((-661 $) $) 136 T ELT)) (-4449 (((-114) $) 166 T ELT)) (-3376 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-3659 (($ $ $) 254 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#3|) 130 T ELT)) (-3673 (((-114) $) 284 T ELT)) (-3303 ((|#2| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-3679 (((-791) $) 293 T ELT)) (-1815 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3567 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3640 (($ $) 221 (|has| |#1| (-464)) ELT)) (-3641 (($ $) 222 (|has| |#1| (-464)) ELT)) (-3668 (((-661 $) $) 279 T ELT)) (-3671 (($ $) 282 T ELT)) (-3642 (($ $) 223 (|has| |#1| (-464)) ELT)) (-3669 (((-661 $) $) 280 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 142 T ELT) (((-709 |#1|) (-1297 $)) 141 T ELT)) (-3670 (($ $) 281 T ELT)) (-3377 (($ $) 163 T ELT)) (-3674 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-2112 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3658 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3983 (-791))) $ $) 253 T ELT)) (-3660 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $) 257 T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $ |#3|) 256 T ELT)) (-3661 (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $) 259 T ELT) (((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $ |#3|) 258 T ELT)) (-3663 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3662 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3690 (($ $ $) 229 (|has| |#1| (-569)) ELT)) (-3676 (((-661 $) $) 288 T ELT)) (-3306 (((-3 (-661 $) #3#) $) 124 T ELT)) (-3305 (((-3 (-661 $) #3#) $) 125 T ELT)) (-3307 (((-3 (-2 (|:| |var| |#3|) (|:| -2642 (-791))) #3#) $) 123 T ELT)) (-4203 (((-114) $ $) 271 T ELT) (((-114) $ (-661 $)) 270 T ELT)) (-4198 (($ $ $) 251 T ELT)) (-3948 (($ $) 292 T ELT)) (-4211 (((-114) $ $) 277 T ELT)) (-4204 (((-114) $ $) 273 T ELT) (((-114) $ (-661 $)) 272 T ELT)) (-4199 (($ $ $) 252 T ELT)) (-3678 (($ $) 291 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3649 (((-2 (|:| -3644 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-569)) ELT)) (-3650 (((-2 (|:| -3644 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-569)) ELT)) (-2015 (((-114) $) 180 T ELT)) (-2014 ((|#1| $) 181 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 105 (|has| |#1| (-464)) ELT)) (-3644 ((|#1| |#1| $) 225 (|has| |#1| (-464)) ELT) (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 112 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 111 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 109 (|has| |#1| (-938)) ELT)) (-3651 (((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-569)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3652 (($ $ |#1|) 238 (|has| |#1| (-569)) ELT) (($ $ $) 236 (|has| |#1| (-569)) ELT)) (-3653 (($ $ |#1|) 239 (|has| |#1| (-569)) ELT) (($ $ $) 237 (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT)) (-4269 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4460 ((|#2| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT)) (-3677 (($ $) 289 T ELT)) (-3675 (($ $) 287 T ELT)) (-4484 (((-914 (-391)) $) 92 (-12 (|has| |#3| (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) 91 (-12 (|has| |#3| (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT) (($ (-974 (-419 (-558)))) 248 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207)))) ELT) (($ (-974 (-558))) 245 (-4039 (-12 (-3041 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1207)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1207))))) ELT) (($ (-974 |#1|)) 242 (|has| |#3| (-631 (-1207))) ELT) (((-1189) $) 220 (-12 (|has| |#1| (-1068 (-558))) (|has| |#3| (-631 (-1207)))) ELT) (((-974 |#1|) $) 219 (|has| |#3| (-631 (-1207))) ELT)) (-3300 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 114 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-974 |#1|) $) 218 (|has| |#3| (-631 (-1207))) ELT) (($ (-419 (-558))) 88 (-4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) 182 T ELT)) (-4189 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3185 (((-711 $) $) 89 (-4039 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1813 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3667 (((-3 (-114) "failed") $ $) 278 T ELT)) (-3147 (($) 39 T CONST)) (-3646 (($ $ $ $ (-791)) 227 (|has| |#1| (-569)) ELT)) (-3647 (($ $ $ (-791)) 228 (|has| |#1| (-569)) ELT)) (-3152 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1095 |#1| |#2| |#3|) (-142) (-1079) (-815) (-870)) (T -1095)) +((-3680 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-791)))) (-3948 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3677 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3676 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3675 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3674 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-4471 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3669 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3668 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3667 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4211 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-3666 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4206 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) (-4204 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4204 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4203 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) (-4207 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) (-4207 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) (-3665 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3664 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3665 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3664 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3663 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3662 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) (-3661 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -3385 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3661 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -3385 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-3660 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3660 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3659 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3658 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3983 (-791)))) (-4 *1 (-1095 *3 *4 *5)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) (-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)))) (-3657 (*1 *1 *2) (|partial| -4039 (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))))) (-3656 (*1 *1 *2) (-4039 (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))))) (-4484 (*1 *1 *2) (-4039 (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))))) (-3657 (*1 *1 *2) (|partial| -4039 (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-3041 (-4 *3 (-38 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-557))) (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-1021 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))))) (-3656 (*1 *1 *2) (-4039 (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-3041 (-4 *3 (-38 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-557))) (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) (-12 (-5 *2 (-974 *3)) (-12 (-3041 (-4 *3 (-1021 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-974 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *5 (-631 (-1207))) (-4 *4 (-815)) (-4 *5 (-870)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3653 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3652 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3653 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3651 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3644 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3650 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3644 *1) (|:| |coef1| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3649 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3644 *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3648 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3690 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3647 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *3 (-569)))) (-3646 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *3 (-569)))) (-3645 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3644 (*1 *2 *2 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-3643 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-3642 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464)))) (-3640 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-464))))) +(-13 (-978 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3680 (|t#3| $)) (-15 -3679 ((-791) $)) (-15 -3948 ($ $)) (-15 -3678 ($ $)) (-15 -4309 ($ $)) (-15 -3677 ($ $)) (-15 -3676 ((-661 $) $)) (-15 -3675 ($ $)) (-15 -3674 ($ $ |t#3|)) (-15 -4471 ($ $ |t#3|)) (-15 -3673 ((-114) $)) (-15 -3672 ((-114) $)) (-15 -3671 ($ $)) (-15 -3670 ($ $)) (-15 -3669 ((-661 $) $)) (-15 -3668 ((-661 $) $)) (-15 -3667 ((-3 (-114) "failed") $ $)) (-15 -4211 ((-114) $ $)) (-15 -3666 ((-114) $ $)) (-15 -4206 ((-114) $ $)) (-15 -4206 ((-114) $ (-661 $))) (-15 -4204 ((-114) $ $)) (-15 -4204 ((-114) $ (-661 $))) (-15 -4203 ((-114) $ $)) (-15 -4203 ((-114) $ (-661 $))) (-15 -4207 ((-114) $ $)) (-15 -4207 ((-114) $ (-661 $))) (-15 -3665 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -3665 ($ $ $ |t#3|)) (-15 -3664 ($ $ $ |t#3|)) (-15 -3663 ($ $ $)) (-15 -3662 ($ $ $)) (-15 -3663 ($ $ $ |t#3|)) (-15 -3662 ($ $ $ |t#3|)) (-15 -3661 ((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $)) (-15 -3661 ((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -3385 $)) $ $ |t#3|)) (-15 -3660 ((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3660 ((-2 (|:| -4466 $) (|:| |gap| (-791)) (|:| -2194 $) (|:| -3385 $)) $ $ |t#3|)) (-15 -4264 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -3659 ($ $ $)) (-15 -3658 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3983 (-791))) $ $)) (-15 -4199 ($ $ $)) (-15 -4198 ($ $ $)) (IF (|has| |t#3| (-631 (-1207))) (PROGN (-6 (-630 (-974 |t#1|))) (-6 (-631 (-974 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -3657 ((-3 $ "failed") (-974 (-419 (-558))))) (-15 -3656 ($ (-974 (-419 (-558))))) (-15 -4484 ($ (-974 (-419 (-558))))) (-15 -3657 ((-3 $ "failed") (-974 (-558)))) (-15 -3656 ($ (-974 (-558)))) (-15 -4484 ($ (-974 (-558)))) (IF (|has| |t#1| (-1021 (-558))) |%noBranch| (PROGN (-15 -3657 ((-3 $ "failed") (-974 |t#1|))) (-15 -3656 ($ (-974 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3657 ((-3 $ "failed") (-974 (-558)))) (-15 -3656 ($ (-974 (-558)))) (-15 -4484 ($ (-974 (-558)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -3657 ((-3 $ "failed") (-974 |t#1|))) (-15 -3656 ($ (-974 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3657 ((-3 $ "failed") (-974 |t#1|))) (-15 -3656 ($ (-974 |t#1|)))))) (-15 -4484 ($ (-974 |t#1|))) (IF (|has| |t#1| (-1068 (-558))) (-6 (-631 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3655 ($ $)) (-15 -3654 ($ $)) (-15 -3653 ($ $ |t#1|)) (-15 -3652 ($ $ |t#1|)) (-15 -3653 ($ $ $)) (-15 -3652 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -3651 ((-2 (|:| -3644 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3650 ((-2 (|:| -3644 $) (|:| |coef1| $)) $ $)) (-15 -3649 ((-2 (|:| -3644 $) (|:| |coef2| $)) $ $)) (-15 -4268 ($ $ $)) (-15 -3648 ((-661 $) $ $)) (-15 -3690 ($ $ $)) (-15 -3647 ($ $ $ (-791))) (-15 -3646 ($ $ $ $ (-791))) (-15 -3645 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3644 (|t#1| |t#1| $)) (-15 -3643 ($ $)) (-15 -3642 ($ $)) (-15 -3641 ($ $)) (-15 -3640 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#3|) . T) ((-633 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-886)) . T) ((-630 (-974 |#1|)) |has| |#3| (-631 (-1207))) ((-175) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#3| (-631 (-914 (-391))))) ((-631 (-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#3| (-631 (-914 (-558))))) ((-631 (-974 |#1|)) |has| |#3| (-631 (-1207))) ((-631 (-1189)) -12 (|has| |#1| (-1068 (-558))) (|has| |#3| (-631 (-1207)))) ((-302) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-938)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 #2=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 #2#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-558)) -12 (|has| |#1| (-910 (-558))) (|has| |#3| (-910 (-558)))) ((-978 |#1| |#2| |#3|) . T) ((-938) |has| |#1| (-938)) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) |has| |#1| (-938))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3681 (((-661 (-1165)) $) 18 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-1165) $) 20 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1096) (-13 (-1113) (-10 -8 (-15 -3681 ((-661 (-1165)) $)) (-15 -3733 ((-1165) $))))) (T -1096)) +((-3681 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1096)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096))))) +(-13 (-1113) (-10 -8 (-15 -3681 ((-661 (-1165)) $)) (-15 -3733 ((-1165) $)))) +((-3688 (((-114) |#3| $) 15 T ELT)) (-3683 (((-3 $ "failed") |#3| (-947)) 29 T ELT)) (-3969 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-3686 (((-114) |#3| $) 19 T ELT)) (-3687 (((-114) |#3| $) 17 T ELT))) +(((-1097 |#1| |#2| |#3|) (-10 -8 (-15 -3683 ((-3 |#1| "failed") |#3| (-947))) (-15 -3969 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3686 ((-114) |#3| |#1|)) (-15 -3687 ((-114) |#3| |#1|)) (-15 -3688 ((-114) |#3| |#1|))) (-1098 |#2| |#3|) (-13 (-869) (-376)) (-1273 |#2|)) (T -1097)) +NIL +(-10 -8 (-15 -3683 ((-3 |#1| "failed") |#3| (-947))) (-15 -3969 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3686 ((-114) |#3| |#1|)) (-15 -3687 ((-114) |#3| |#1|)) (-15 -3688 ((-114) |#3| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) |#2| $) 25 T ELT)) (-4135 (((-558) |#2| $) 26 T ELT)) (-3683 (((-3 $ "failed") |#2| (-947)) 19 T ELT)) (-3682 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3969 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3686 (((-114) |#2| $) 23 T ELT)) (-3687 (((-114) |#2| $) 24 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3685 ((|#2| $) 21 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4282 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3684 (((-661 $) |#2|) 20 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1098 |#1| |#2|) (-142) (-13 (-869) (-376)) (-1273 |t#1|)) (T -1098)) +((-4135 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-558)))) (-3688 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-3687 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-3686 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-3969 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-376))) (-4 *2 (-1273 *3)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-376))) (-4 *2 (-1273 *3)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-661 *1)) (-4 *1 (-1098 *4 *3)))) (-3683 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-947)) (-4 *4 (-13 (-869) (-376))) (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4)))) (-4282 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-376))) (-4 *3 (-1273 *2)))) (-3682 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-376))) (-4 *3 (-1273 *2))))) +(-13 (-1131) (-10 -8 (-15 -4135 ((-558) |t#2| $)) (-15 -3688 ((-114) |t#2| $)) (-15 -3687 ((-114) |t#2| $)) (-15 -3686 ((-114) |t#2| $)) (-15 -3969 ((-3 |t#2| "failed") |t#2| $)) (-15 -3685 (|t#2| $)) (-15 -3684 ((-661 $) |t#2|)) (-15 -3683 ((-3 $ "failed") |t#2| (-947))) (-15 -4282 (|t#1| |t#2| $ |t#1|)) (-15 -3682 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3938 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791)) 114 T ELT)) (-3935 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791)) 63 T ELT)) (-3939 (((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)) 99 T ELT)) (-3933 (((-791) (-661 |#4|) (-661 |#5|)) 30 T ELT)) (-3936 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791)) 65 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114)) 67 T ELT)) (-3937 (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114)) 87 T ELT)) (-4484 (((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) 92 T ELT)) (-3934 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-3932 (((-791) (-661 |#4|) (-661 |#5|)) 21 T ELT))) +(((-1099 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3932 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3933 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3934 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-114))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3938 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791))) (-15 -4484 ((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3939 ((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1099)) +((-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *4 (-791)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-1303)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1189)) (-5 *1 (-1099 *4 *5 *6 *7 *8)))) (-3938 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-661 *11)) (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1753 *11)))))) (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1753 *11)))) (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) (-5 *1 (-1099 *7 *8 *9 *10 *11)))) (-3937 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3937 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3936 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3935 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3934 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-791)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-791)) (-5 *1 (-1099 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3932 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3933 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3934 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-114))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3938 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791))) (-15 -4484 ((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3939 ((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)))) +((-3697 (((-114) |#5| $) 26 T ELT)) (-3695 (((-114) |#5| $) 29 T ELT)) (-3698 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3738 (((-661 $) |#5| $) NIL T ELT) (((-661 $) (-661 |#5|) $) 94 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 92 T ELT) (((-661 $) |#5| (-661 $)) 95 T ELT)) (-4281 (($ $ |#5|) NIL T ELT) (((-661 $) |#5| $) NIL T ELT) (((-661 $) |#5| (-661 $)) 73 T ELT) (((-661 $) (-661 |#5|) $) 75 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 77 T ELT)) (-3689 (((-661 $) |#5| $) NIL T ELT) (((-661 $) |#5| (-661 $)) 64 T ELT) (((-661 $) (-661 |#5|) $) 69 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 71 T ELT)) (-3696 (((-114) |#5| $) 32 T ELT))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4281 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -4281 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -4281 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -4281 ((-661 |#1|) |#5| |#1|)) (-15 -3689 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3689 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3689 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3689 ((-661 |#1|) |#5| |#1|)) (-15 -3738 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3738 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3738 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3738 ((-661 |#1|) |#5| |#1|)) (-15 -3695 ((-114) |#5| |#1|)) (-15 -3698 ((-114) |#1|)) (-15 -3696 ((-114) |#5| |#1|)) (-15 -3697 ((-114) |#5| |#1|)) (-15 -3698 ((-114) |#5| |#1|)) (-15 -4281 (|#1| |#1| |#5|))) (-1101 |#2| |#3| |#4| |#5|) (-464) (-815) (-870) (-1095 |#2| |#3| |#4|)) (T -1100)) +NIL +(-10 -8 (-15 -4281 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -4281 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -4281 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -4281 ((-661 |#1|) |#5| |#1|)) (-15 -3689 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3689 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3689 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3689 ((-661 |#1|) |#5| |#1|)) (-15 -3738 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3738 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3738 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3738 ((-661 |#1|) |#5| |#1|)) (-15 -3695 ((-114) |#5| |#1|)) (-15 -3698 ((-114) |#1|)) (-15 -3696 ((-114) |#5| |#1|)) (-15 -3697 ((-114) |#5| |#1|)) (-15 -3698 ((-114) |#5| |#1|)) (-15 -4281 (|#1| |#1| |#5|))) +((-3049 (((-114) $ $) 7 T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4194 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4200 ((|#4| |#4| $) 97 T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 133 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-4311 (((-3 $ #1#) $) 87 T ELT)) (-4197 ((|#4| |#4| $) 94 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4195 ((|#4| |#4| $) 92 T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) 110 T ELT)) (-3697 (((-114) |#4| $) 143 T ELT)) (-3695 (((-114) |#4| $) 140 T ELT)) (-3698 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 134 T ELT)) (-4310 (((-3 |#4| #1#) $) 88 T ELT)) (-3692 (((-661 $) |#4| $) 136 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3738 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3942 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4209 (((-661 |#4|) $) 112 T ELT)) (-4203 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4198 ((|#4| |#4| $) 95 T ELT)) (-4211 (((-114) $ $) 115 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4199 ((|#4| |#4| $) 96 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-3 |#4| #1#) $) 89 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4281 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-4460 (((-791) $) 111 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-4196 (($ $) 93 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4190 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3689 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) 86 T ELT)) (-3696 (((-114) |#4| $) 142 T ELT)) (-4445 (((-114) |#3| $) 85 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-1101 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1101)) +((-3698 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-3697 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 (-114) (-661 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3691 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 *3 (-661 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3690 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4287 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3738 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3738 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-3738 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-3738 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-3689 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3689 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-3689 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-3942 (*1 *1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3942 (*1 *1 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) (-4281 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4281 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-4281 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-4281 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *5 *6 *7 *8))))) +(-13 (-1242 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3698 ((-114) |t#4| $)) (-15 -3697 ((-114) |t#4| $)) (-15 -3696 ((-114) |t#4| $)) (-15 -3698 ((-114) $)) (-15 -3695 ((-114) |t#4| $)) (-15 -3694 ((-3 (-114) (-661 $)) |t#4| $)) (-15 -3693 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |t#4| $)) (-15 -3693 ((-114) |t#4| $)) (-15 -3692 ((-661 $) |t#4| $)) (-15 -3691 ((-3 |t#4| (-661 $)) |t#4| |t#4| $)) (-15 -3690 ((-661 (-2 (|:| |val| |t#4|) (|:| -1753 $))) |t#4| |t#4| $)) (-15 -4287 ((-661 (-2 (|:| |val| |t#4|) (|:| -1753 $))) |t#4| $)) (-15 -3738 ((-661 $) |t#4| $)) (-15 -3738 ((-661 $) (-661 |t#4|) $)) (-15 -3738 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -3738 ((-661 $) |t#4| (-661 $))) (-15 -3689 ((-661 $) |t#4| $)) (-15 -3689 ((-661 $) |t#4| (-661 $))) (-15 -3689 ((-661 $) (-661 |t#4|) $)) (-15 -3689 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -3942 ($ |t#4| $)) (-15 -3942 ($ (-661 |t#4|) $)) (-15 -4281 ((-661 $) |t#4| $)) (-15 -4281 ((-661 $) |t#4| (-661 $))) (-15 -4281 ((-661 $) (-661 |t#4|) $)) (-15 -4281 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -4194 ((-661 $) (-661 |t#4|) (-114))))) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-3705 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|) 86 T ELT)) (-3702 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3704 (((-661 |#5|) |#4| |#5|) 74 T ELT)) (-3703 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3787 (((-1303)) 36 T ELT)) (-3785 (((-1303)) 25 T ELT)) (-3786 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-3784 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)) (-3699 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3700 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114)) 117 T ELT) (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3701 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-1303) (-1189) (-1189) (-1189))) (-15 -3785 ((-1303))) (-15 -3786 ((-1303) (-1189) (-1189) (-1189))) (-15 -3787 ((-1303))) (-15 -3699 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3700 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3700 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114))) (-15 -3701 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3702 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3703 ((-114) |#4| |#5|)) (-15 -3703 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3704 ((-661 |#5|) |#4| |#5|)) (-15 -3705 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1102)) +((-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3704 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3703 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3703 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3702 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3701 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3700 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *5 (-114)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *4 (-870)) (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1753 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-3700 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3787 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3786 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3785 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3784 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -3784 ((-1303) (-1189) (-1189) (-1189))) (-15 -3785 ((-1303))) (-15 -3786 ((-1303) (-1189) (-1189) (-1189))) (-15 -3787 ((-1303))) (-15 -3699 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3700 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3700 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114))) (-15 -3701 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3702 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3703 ((-114) |#4| |#5|)) (-15 -3703 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3704 ((-661 |#5|) |#4| |#5|)) (-15 -3705 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3818 (((-1248) $) 13 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3706 (((-1165) $) 10 T ELT)) (-4458 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1103) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $))))) (T -1103)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1103))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -3818 ((-1248) $)))) +((-3766 (((-114) $ $) 7 T ELT))) +(((-1104) (-13 (-1247) (-10 -8 (-15 -3766 ((-114) $ $))))) (T -1104)) +((-3766 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1104))))) +(-13 (-1247) (-10 -8 (-15 -3766 ((-114) $ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3709 (($ $ (-661 (-1207)) (-1 (-114) (-661 |#3|))) 34 T ELT)) (-3710 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-661 (-1207))) 21 T ELT)) (-4030 ((|#3| $) 13 T ELT)) (-3657 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3656 (((-305 |#3|) $) NIL T ELT)) (-3707 (((-661 (-1207)) $) 16 T ELT)) (-3708 (((-914 |#1|) $) 11 T ELT)) (-4031 ((|#3| $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-947)) 41 T ELT)) (-4458 (((-886) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 38 T ELT))) +(((-1105 |#1| |#2| |#3|) (-13 (-1131) (-298 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -3710 ($ |#3| |#3|)) (-15 -3710 ($ |#3| |#3| (-661 (-1207)))) (-15 -3709 ($ $ (-661 (-1207)) (-1 (-114) (-661 |#3|)))) (-15 -3708 ((-914 |#1|) $)) (-15 -4031 (|#3| $)) (-15 -4030 (|#3| $)) (-15 -4312 (|#3| $ |#3| (-947))) (-15 -3707 ((-661 (-1207)) $)))) (-1131) (-13 (-1079) (-910 |#1|) (-631 (-914 |#1|))) (-13 (-433 |#2|) (-910 |#1|) (-631 (-914 |#1|)))) (T -1105)) +((-3710 (*1 *1 *2 *2) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) (-5 *1 (-1105 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))))) (-3710 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) (-3709 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-1 (-114) (-661 *6))) (-4 *6 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *6)))) (-3708 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 *2))) (-5 *2 (-914 *3)) (-5 *1 (-1105 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-910 *3) (-631 *2))))) (-4031 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) (-5 *1 (-1105 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) (-5 *1 (-1105 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))))) (-4312 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-947)) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) (-3707 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) (-5 *2 (-661 (-1207))) (-5 *1 (-1105 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3))))))) +(-13 (-1131) (-298 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -3710 ($ |#3| |#3|)) (-15 -3710 ($ |#3| |#3| (-661 (-1207)))) (-15 -3709 ($ $ (-661 (-1207)) (-1 (-114) (-661 |#3|)))) (-15 -3708 ((-914 |#1|) $)) (-15 -4031 (|#3| $)) (-15 -4030 (|#3| $)) (-15 -4312 (|#3| $ |#3| (-947))) (-15 -3707 ((-661 (-1207)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4052 (((-1207) $) 8 T ELT)) (-3742 (((-1189) $) 17 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 11 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 14 T ELT))) +(((-1106 |#1|) (-13 (-1131) (-10 -8 (-15 -4052 ((-1207) $)))) (-1207)) (T -1106)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1106 *3)) (-14 *3 *2)))) +(-13 (-1131) (-10 -8 (-15 -4052 ((-1207) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3712 (($ (-661 (-1105 |#1| |#2| |#3|))) 14 T ELT)) (-3711 (((-661 (-1105 |#1| |#2| |#3|)) $) 21 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-947)) 27 T ELT)) (-4458 (((-886) $) 17 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 20 T ELT))) +(((-1107 |#1| |#2| |#3|) (-13 (-1131) (-298 |#3| |#3|) (-10 -8 (-15 -3712 ($ (-661 (-1105 |#1| |#2| |#3|)))) (-15 -3711 ((-661 (-1105 |#1| |#2| |#3|)) $)) (-15 -4312 (|#3| $ |#3| (-947))))) (-1131) (-13 (-1079) (-910 |#1|) (-631 (-914 |#1|))) (-13 (-433 |#2|) (-910 |#1|) (-631 (-914 |#1|)))) (T -1107)) +((-3712 (*1 *1 *2) (-12 (-5 *2 (-661 (-1105 *3 *4 *5))) (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) (-5 *1 (-1107 *3 *4 *5)))) (-3711 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) (-5 *2 (-661 (-1105 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))))) (-4312 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-947)) (-4 *4 (-1131)) (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4))))))) +(-13 (-1131) (-298 |#3| |#3|) (-10 -8 (-15 -3712 ($ (-661 (-1105 |#1| |#2| |#3|)))) (-15 -3711 ((-661 (-1105 |#1| |#2| |#3|)) $)) (-15 -4312 (|#3| $ |#3| (-947))))) +((-3713 (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114)) 88 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|))) 92 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114)) 90 T ELT))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114))) (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-661 (-1207))) (T -1108)) +((-3713 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-661 (-974 *4))) (-14 *5 (-661 (-1207))))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207)))))) +(-10 -7 (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114))) (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -3713 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 136 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2000 (((-709 |#1|) (-1297 $)) NIL T ELT) (((-709 |#1|)) 121 T ELT)) (-3832 ((|#1| $) 125 T ELT)) (-1888 (((-1219 (-947) (-791)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3620 (((-791)) 43 (|has| |#1| (-381)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2010 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) 46 T ELT)) (-1886 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1999 (((-709 |#1|) $ (-1297 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 113 T ELT) (((-709 |#1|) (-709 $)) 108 T ELT)) (-4354 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3593 (((-947)) 84 T ELT)) (-3477 (($) 47 (|has| |#1| (-381)) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-3316 (($) NIL (|has| |#1| (-363)) ELT)) (-1893 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1984 (($ $ (-791)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4284 (((-947) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-947)) $) NIL (|has| |#1| (-363)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3616 ((|#1| $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-363)) ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-2234 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2230 (((-947) $) 145 (|has| |#1| (-381)) ELT)) (-3562 ((|#2| $) 62 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3948 (($) NIL (|has| |#1| (-363)) CONST)) (-2641 (($ (-947)) 135 (|has| |#1| (-381)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2650 (($) 127 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1889 (((-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4269 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1985 (((-791) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-4270 (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL (|has| |#1| (-376)) ELT)) (-2649 (((-709 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3685 ((|#2|) 81 T ELT)) (-1887 (($) NIL (|has| |#1| (-363)) ELT)) (-3724 (((-1297 |#1|) $ (-1297 $)) 96 T ELT) (((-709 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 75 T ELT) (((-709 |#1|) (-1297 $)) 92 T ELT)) (-4484 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3186 (((-3 (-1297 $) "failed") (-709 $)) NIL (|has| |#1| (-363)) ELT)) (-4458 (((-886) $) 61 T ELT) (($ (-558)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-376)) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-3185 (($ $) NIL (|has| |#1| (-363)) ELT) (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-2848 ((|#2| $) 89 T ELT)) (-3610 (((-791)) 83 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2232 (((-1297 $)) 88 T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (($) 32 T CONST)) (-3147 (($) 19 T CONST)) (-3152 (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-928 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL (|has| |#1| (-376)) ELT)) (-3536 (((-114) $ $) 67 T ELT)) (-4461 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 69 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) +(((-1109 |#1| |#2| |#3|) (-744 |#1| |#2|) (-175) (-1273 |#1|) |#2|) (T -1109)) +NIL +(-744 |#1| |#2|) +((-4244 (((-417 |#3|) |#3|) 18 T ELT))) +(((-1110 |#1| |#2| |#3|) (-10 -7 (-15 -4244 ((-417 |#3|) |#3|))) (-1273 (-419 (-558))) (-13 (-376) (-149) (-744 (-419 (-558)) |#1|)) (-1273 |#2|)) (T -1110)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-13 (-376) (-149) (-744 (-419 (-558)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1110 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -4244 ((-417 |#3|) |#3|))) +((-4244 (((-417 |#3|) |#3|) 19 T ELT))) +(((-1111 |#1| |#2| |#3|) (-10 -7 (-15 -4244 ((-417 |#3|) |#3|))) (-1273 (-419 (-974 (-558)))) (-13 (-376) (-149) (-744 (-419 (-974 (-558))) |#1|)) (-1273 |#2|)) (T -1111)) +((-4244 (*1 *2 *3) (-12 (-4 *4 (-1273 (-419 (-974 (-558))))) (-4 *5 (-13 (-376) (-149) (-744 (-419 (-974 (-558))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -4244 ((-417 |#3|) |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3012 (($ $ $) 16 T ELT)) (-3340 (($ $ $) 17 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3714 (($) 6 T ELT)) (-4484 (((-1207) $) 20 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 15 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 9 T ELT))) +(((-1112) (-13 (-870) (-631 (-1207)) (-10 -8 (-15 -3714 ($))))) (T -1112)) +((-3714 (*1 *1) (-5 *1 (-1112)))) +(-13 (-870) (-631 (-1207)) (-10 -8 (-15 -3714 ($)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-1212)) 20 T ELT) (((-1212) $) 19 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1113) (-142)) (T -1113)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-635 #1=(-1214)) . T) ((-632 (-888)) . T) ((-632 #1#) . T) ((-504 #1#) . T) ((-1133) . T) ((-1249) . T)) -((-3721 ((|#1| |#1| (-1 (-560) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3719 (((-1305)) 21 T ELT)) (-3720 (((-663 |#1|)) 13 T ELT))) -(((-1116 |#1|) (-10 -7 (-15 -3719 ((-1305))) (-15 -3720 ((-663 |#1|))) (-15 -3721 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3721 (|#1| |#1| (-1 (-560) |#1| |#1|)))) (-134)) (T -1116)) -((-3721 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1116 *2)))) (-3721 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1116 *2)))) (-3720 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1116 *3)) (-4 *3 (-134)))) (-3719 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1116 *3)) (-4 *3 (-134))))) -(-10 -7 (-15 -3719 ((-1305))) (-15 -3720 ((-663 |#1|))) (-15 -3721 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3721 (|#1| |#1| (-1 (-560) |#1| |#1|)))) -((-3724 (($ (-109) $) 20 T ELT)) (-3725 (((-713 (-109)) (-520) $) 19 T ELT)) (-4079 (($) 7 T ELT)) (-3723 (($) 21 T ELT)) (-3722 (($) 22 T ELT)) (-3726 (((-663 (-178)) $) 10 T ELT)) (-4462 (((-888) $) 25 T ELT))) -(((-1117) (-13 (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -3726 ((-663 (-178)) $)) (-15 -3725 ((-713 (-109)) (-520) $)) (-15 -3724 ($ (-109) $)) (-15 -3723 ($)) (-15 -3722 ($))))) (T -1117)) -((-4079 (*1 *1) (-5 *1 (-1117))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1117)))) (-3725 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1117)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1117)))) (-3723 (*1 *1) (-5 *1 (-1117))) (-3722 (*1 *1) (-5 *1 (-1117)))) -(-13 (-632 (-888)) (-10 -8 (-15 -4079 ($)) (-15 -3726 ((-663 (-178)) $)) (-15 -3725 ((-713 (-109)) (-520) $)) (-15 -3724 ($ (-109) $)) (-15 -3723 ($)) (-15 -3722 ($)))) -((-3727 (((-1299 (-711 |#1|)) (-663 (-711 |#1|))) 45 T ELT) (((-1299 (-711 (-976 |#1|))) (-663 (-1209)) (-711 (-976 |#1|))) 75 T ELT) (((-1299 (-711 (-421 (-976 |#1|)))) (-663 (-1209)) (-711 (-421 (-976 |#1|)))) 92 T ELT)) (-3728 (((-1299 |#1|) (-711 |#1|) (-663 (-711 |#1|))) 39 T ELT))) -(((-1118 |#1|) (-10 -7 (-15 -3727 ((-1299 (-711 (-421 (-976 |#1|)))) (-663 (-1209)) (-711 (-421 (-976 |#1|))))) (-15 -3727 ((-1299 (-711 (-976 |#1|))) (-663 (-1209)) (-711 (-976 |#1|)))) (-15 -3727 ((-1299 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3728 ((-1299 |#1|) (-711 |#1|) (-663 (-711 |#1|))))) (-376)) (T -1118)) -((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-1299 *5)) (-5 *1 (-1118 *5)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-5 *2 (-1299 (-711 *4))) (-5 *1 (-1118 *4)))) (-3727 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1209))) (-4 *5 (-376)) (-5 *2 (-1299 (-711 (-976 *5)))) (-5 *1 (-1118 *5)) (-5 *4 (-711 (-976 *5))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1209))) (-4 *5 (-376)) (-5 *2 (-1299 (-711 (-421 (-976 *5))))) (-5 *1 (-1118 *5)) (-5 *4 (-711 (-421 (-976 *5))))))) -(-10 -7 (-15 -3727 ((-1299 (-711 (-421 (-976 |#1|)))) (-663 (-1209)) (-711 (-421 (-976 |#1|))))) (-15 -3727 ((-1299 (-711 (-976 |#1|))) (-663 (-1209)) (-711 (-976 |#1|)))) (-15 -3727 ((-1299 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3728 ((-1299 |#1|) (-711 |#1|) (-663 (-711 |#1|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1632 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1209)) NIL T ELT)) (-1666 (((-793) $) NIL T ELT) (((-793) $ (-1209)) NIL T ELT)) (-3570 (((-663 (-1120 (-1209))) $) NIL T ELT)) (-3572 (((-1203 $) $ (-1120 (-1209))) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1120 (-1209)))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-1628 (($ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1120 (-1209)) #2#) $) NIL T ELT) (((-3 (-1209) #2#) $) NIL T ELT) (((-3 (-1157 |#1| (-1209)) #2#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-1120 (-1209)) $) NIL T ELT) (((-1209) $) NIL T ELT) (((-1157 |#1| (-1209)) $) NIL T ELT)) (-4272 (($ $ $ (-1120 (-1209))) NIL (|has| |#1| (-175)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1120 (-1209))) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-545 (-1120 (-1209))) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1120 (-1209)) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1120 (-1209)) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ (-1209)) NIL T ELT) (((-793) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3573 (($ (-1203 |#1|) (-1120 (-1209))) NIL T ELT) (($ (-1203 $) (-1120 (-1209))) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-545 (-1120 (-1209)))) NIL T ELT) (($ $ (-1120 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-1120 (-1209))) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1120 (-1209))) NIL T ELT)) (-3307 (((-545 (-1120 (-1209))) $) NIL T ELT) (((-793) $ (-1120 (-1209))) NIL T ELT) (((-663 (-793)) $ (-663 (-1120 (-1209)))) NIL T ELT)) (-1817 (($ (-1 (-545 (-1120 (-1209))) (-545 (-1120 (-1209)))) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1667 (((-1 $ (-793)) (-1209)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3571 (((-3 (-1120 (-1209)) #3="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-1630 (((-1120 (-1209)) $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1631 (((-114) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1120 (-1209))) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-1629 (($ $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1120 (-1209)) |#1|) NIL T ELT) (($ $ (-663 (-1120 (-1209))) (-663 |#1|)) NIL T ELT) (($ $ (-1120 (-1209)) $) NIL T ELT) (($ $ (-663 (-1120 (-1209))) (-663 $)) NIL T ELT) (($ $ (-1209) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1209)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1209)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4273 (($ $ (-1120 (-1209))) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1120 (-1209))) (-663 (-793))) NIL T ELT) (($ $ (-1120 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-1120 (-1209)))) NIL T ELT) (($ $ (-1120 (-1209))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-1633 (((-663 (-1209)) $) NIL T ELT)) (-4464 (((-545 (-1120 (-1209))) $) NIL T ELT) (((-793) $ (-1120 (-1209))) NIL T ELT) (((-663 (-793)) $ (-663 (-1120 (-1209)))) NIL T ELT) (((-793) $ (-1209)) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1120 (-1209)) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1120 (-1209)) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1120 (-1209)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1120 (-1209))) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1120 (-1209))) NIL T ELT) (($ (-1209)) NIL T ELT) (($ (-1157 |#1| (-1209))) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-545 (-1120 (-1209)))) NIL T ELT) (($ $ (-1120 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-1120 (-1209))) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-1120 (-1209))) (-663 (-793))) NIL T ELT) (($ $ (-1120 (-1209)) (-793)) NIL T ELT) (($ $ (-663 (-1120 (-1209)))) NIL T ELT) (($ $ (-1120 (-1209))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1119 |#1|) (-13 (-262 |#1| (-1209) (-1120 (-1209)) (-545 (-1120 (-1209)))) (-1070 (-1157 |#1| (-1209)))) (-1081)) (T -1119)) -NIL -(-13 (-262 |#1| (-1209) (-1120 (-1209)) (-545 (-1120 (-1209)))) (-1070 (-1157 |#1| (-1209)))) -((-3053 (((-114) $ $) NIL T ELT)) (-1666 (((-793) $) NIL T ELT)) (-4347 ((|#1| $) 10 T ELT)) (-3661 (((-3 |#1| "failed") $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT)) (-4288 (((-793) $) 11 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-1667 (($ |#1| (-793)) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4274 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3156 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 16 T ELT))) -(((-1120 |#1|) (-277 |#1|) (-872)) (T -1120)) +(((-93) . T) ((-102) . T) ((-633 #1=(-1212)) . T) ((-630 (-886)) . T) ((-630 #1#) . T) ((-502 #1#) . T) ((-1131) . T) ((-1247) . T)) +((-3717 ((|#1| |#1| (-1 (-558) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3715 (((-1303)) 21 T ELT)) (-3716 (((-661 |#1|)) 13 T ELT))) +(((-1114 |#1|) (-10 -7 (-15 -3715 ((-1303))) (-15 -3716 ((-661 |#1|))) (-15 -3717 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3717 (|#1| |#1| (-1 (-558) |#1| |#1|)))) (-134)) (T -1114)) +((-3717 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1114 *2)))) (-3717 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1114 *2)))) (-3716 (*1 *2) (-12 (-5 *2 (-661 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-134)))) (-3715 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1114 *3)) (-4 *3 (-134))))) +(-10 -7 (-15 -3715 ((-1303))) (-15 -3716 ((-661 |#1|))) (-15 -3717 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3717 (|#1| |#1| (-1 (-558) |#1| |#1|)))) +((-3720 (($ (-109) $) 20 T ELT)) (-3721 (((-711 (-109)) (-518) $) 19 T ELT)) (-4075 (($) 7 T ELT)) (-3719 (($) 21 T ELT)) (-3718 (($) 22 T ELT)) (-3722 (((-661 (-178)) $) 10 T ELT)) (-4458 (((-886) $) 25 T ELT))) +(((-1115) (-13 (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -3722 ((-661 (-178)) $)) (-15 -3721 ((-711 (-109)) (-518) $)) (-15 -3720 ($ (-109) $)) (-15 -3719 ($)) (-15 -3718 ($))))) (T -1115)) +((-4075 (*1 *1) (-5 *1 (-1115))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-661 (-178))) (-5 *1 (-1115)))) (-3721 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-1115)))) (-3720 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115)))) (-3719 (*1 *1) (-5 *1 (-1115))) (-3718 (*1 *1) (-5 *1 (-1115)))) +(-13 (-630 (-886)) (-10 -8 (-15 -4075 ($)) (-15 -3722 ((-661 (-178)) $)) (-15 -3721 ((-711 (-109)) (-518) $)) (-15 -3720 ($ (-109) $)) (-15 -3719 ($)) (-15 -3718 ($)))) +((-3723 (((-1297 (-709 |#1|)) (-661 (-709 |#1|))) 45 T ELT) (((-1297 (-709 (-974 |#1|))) (-661 (-1207)) (-709 (-974 |#1|))) 75 T ELT) (((-1297 (-709 (-419 (-974 |#1|)))) (-661 (-1207)) (-709 (-419 (-974 |#1|)))) 92 T ELT)) (-3724 (((-1297 |#1|) (-709 |#1|) (-661 (-709 |#1|))) 39 T ELT))) +(((-1116 |#1|) (-10 -7 (-15 -3723 ((-1297 (-709 (-419 (-974 |#1|)))) (-661 (-1207)) (-709 (-419 (-974 |#1|))))) (-15 -3723 ((-1297 (-709 (-974 |#1|))) (-661 (-1207)) (-709 (-974 |#1|)))) (-15 -3723 ((-1297 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3724 ((-1297 |#1|) (-709 |#1|) (-661 (-709 |#1|))))) (-376)) (T -1116)) +((-3724 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-709 *5))) (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-5 *2 (-1297 (-709 *4))) (-5 *1 (-1116 *4)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-709 (-974 *5)))) (-5 *1 (-1116 *5)) (-5 *4 (-709 (-974 *5))))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-709 (-419 (-974 *5))))) (-5 *1 (-1116 *5)) (-5 *4 (-709 (-419 (-974 *5))))))) +(-10 -7 (-15 -3723 ((-1297 (-709 (-419 (-974 |#1|)))) (-661 (-1207)) (-709 (-419 (-974 |#1|))))) (-15 -3723 ((-1297 (-709 (-974 |#1|))) (-661 (-1207)) (-709 (-974 |#1|)))) (-15 -3723 ((-1297 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3724 ((-1297 |#1|) (-709 |#1|) (-661 (-709 |#1|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1630 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ (-1207)) NIL T ELT)) (-1664 (((-791) $) NIL T ELT) (((-791) $ (-1207)) NIL T ELT)) (-3566 (((-661 (-1118 (-1207))) $) NIL T ELT)) (-3568 (((-1201 $) $ (-1118 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1118 (-1207)))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-1626 (($ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1118 (-1207)) #2#) $) NIL T ELT) (((-3 (-1207) #2#) $) NIL T ELT) (((-3 (-1155 |#1| (-1207)) #2#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-1118 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1155 |#1| (-1207)) $) NIL T ELT)) (-4268 (($ $ $ (-1118 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1118 (-1207))) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-543 (-1118 (-1207))) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1118 (-1207)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1118 (-1207)) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ (-1207)) NIL T ELT) (((-791) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3569 (($ (-1201 |#1|) (-1118 (-1207))) NIL T ELT) (($ (-1201 $) (-1118 (-1207))) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-543 (-1118 (-1207)))) NIL T ELT) (($ $ (-1118 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-1118 (-1207))) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1118 (-1207))) NIL T ELT)) (-3303 (((-543 (-1118 (-1207))) $) NIL T ELT) (((-791) $ (-1118 (-1207))) NIL T ELT) (((-661 (-791)) $ (-661 (-1118 (-1207)))) NIL T ELT)) (-1815 (($ (-1 (-543 (-1118 (-1207))) (-543 (-1118 (-1207)))) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1665 (((-1 $ (-791)) (-1207)) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3567 (((-3 (-1118 (-1207)) #3="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-1628 (((-1118 (-1207)) $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1629 (((-114) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1118 (-1207))) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-1627 (($ $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1118 (-1207)) |#1|) NIL T ELT) (($ $ (-661 (-1118 (-1207))) (-661 |#1|)) NIL T ELT) (($ $ (-1118 (-1207)) $) NIL T ELT) (($ $ (-661 (-1118 (-1207))) (-661 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1207)) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1207)) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4269 (($ $ (-1118 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1118 (-1207))) (-661 (-791))) NIL T ELT) (($ $ (-1118 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-1118 (-1207)))) NIL T ELT) (($ $ (-1118 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1631 (((-661 (-1207)) $) NIL T ELT)) (-4460 (((-543 (-1118 (-1207))) $) NIL T ELT) (((-791) $ (-1118 (-1207))) NIL T ELT) (((-661 (-791)) $ (-661 (-1118 (-1207)))) NIL T ELT) (((-791) $ (-1207)) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1118 (-1207)) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1118 (-1207)) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1118 (-1207)) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1118 (-1207))) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1118 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1155 |#1| (-1207))) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-543 (-1118 (-1207)))) NIL T ELT) (($ $ (-1118 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-1118 (-1207))) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-1118 (-1207))) (-661 (-791))) NIL T ELT) (($ $ (-1118 (-1207)) (-791)) NIL T ELT) (($ $ (-661 (-1118 (-1207)))) NIL T ELT) (($ $ (-1118 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1117 |#1|) (-13 (-262 |#1| (-1207) (-1118 (-1207)) (-543 (-1118 (-1207)))) (-1068 (-1155 |#1| (-1207)))) (-1079)) (T -1117)) +NIL +(-13 (-262 |#1| (-1207) (-1118 (-1207)) (-543 (-1118 (-1207)))) (-1068 (-1155 |#1| (-1207)))) +((-3049 (((-114) $ $) NIL T ELT)) (-1664 (((-791) $) NIL T ELT)) (-4343 ((|#1| $) 10 T ELT)) (-3657 (((-3 |#1| "failed") $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT)) (-4284 (((-791) $) 11 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-1665 (($ |#1| (-791)) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4270 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3152 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 16 T ELT))) +(((-1118 |#1|) (-277 |#1|) (-870)) (T -1118)) NIL (-277 |#1|) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4252 (($ |#1| |#1|) 16 T ELT)) (-4474 (((-663 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-871)) ELT)) (-3733 ((|#1| $) 12 T ELT)) (-3735 ((|#1| $) 11 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3731 (((-560) $) 15 T ELT)) (-3732 ((|#1| $) 14 T ELT)) (-3734 ((|#1| $) 13 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4479 (((-663 |#1|) $) 42 (|has| |#1| (-871)) ELT) (((-663 |#1|) (-663 $)) 41 (|has| |#1| (-871)) ELT)) (-4488 (($ |#1|) 29 T ELT)) (-4462 (((-888) $) 28 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4253 (($ |#1| |#1|) 10 T ELT)) (-3736 (($ $ (-560)) 17 T ELT)) (-3540 (((-114) $ $) 22 (|has| |#1| (-1133)) ELT))) -(((-1121 |#1|) (-13 (-1126 |#1|) (-10 -7 (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-1127 |#1| (-663 |#1|))) |%noBranch|))) (-1249)) (T -1121)) -NIL -(-13 (-1126 |#1|) (-10 -7 (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-1127 |#1| (-663 |#1|))) |%noBranch|))) -((-4474 (((-663 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 27 (|has| |#1| (-871)) ELT) (((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 14 T ELT))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -4474 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-871)) (-15 -4474 ((-663 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |%noBranch|)) (-1249) (-1249)) (T -1122)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-871)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-663 *6)) (-5 *1 (-1122 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1121 *6)) (-5 *1 (-1122 *5 *6))))) -(-10 -7 (-15 -4474 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-871)) (-15 -4474 ((-663 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 16 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3729 (((-663 (-1167)) $) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1123) (-13 (-1115) (-10 -8 (-15 -3729 ((-663 (-1167)) $))))) (T -1123)) -((-3729 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1123))))) -(-13 (-1115) (-10 -8 (-15 -3729 ((-663 (-1167)) $)))) -((-3053 (((-114) $ $) NIL (|has| (-1121 |#1|) (-1133)) ELT)) (-4347 (((-1209) $) NIL T ELT)) (-4252 (((-1121 |#1|) $) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| (-1121 |#1|) (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| (-1121 |#1|) (-1133)) ELT)) (-3730 (($ (-1209) (-1121 |#1|)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| (-1121 |#1|) (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| (-1121 |#1|) (-1133)) ELT)) (-3540 (((-114) $ $) NIL (|has| (-1121 |#1|) (-1133)) ELT))) -(((-1124 |#1|) (-13 (-1249) (-10 -8 (-15 -3730 ($ (-1209) (-1121 |#1|))) (-15 -4347 ((-1209) $)) (-15 -4252 ((-1121 |#1|) $)) (IF (|has| (-1121 |#1|) (-1133)) (-6 (-1133)) |%noBranch|))) (-1249)) (T -1124)) -((-3730 (*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1121 *4)) (-4 *4 (-1249)) (-5 *1 (-1124 *4)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1124 *3)) (-4 *3 (-1249)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1249))))) -(-13 (-1249) (-10 -8 (-15 -3730 ($ (-1209) (-1121 |#1|))) (-15 -4347 ((-1209) $)) (-15 -4252 ((-1121 |#1|) $)) (IF (|has| (-1121 |#1|) (-1133)) (-6 (-1133)) |%noBranch|))) -((-4474 (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 19 T ELT))) -(((-1125 |#1| |#2|) (-10 -7 (-15 -4474 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)))) (-1249) (-1249)) (T -1125)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1124 *6)) (-5 *1 (-1125 *5 *6))))) -(-10 -7 (-15 -4474 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)))) -((-4252 (($ |#1| |#1|) 8 T ELT)) (-3733 ((|#1| $) 11 T ELT)) (-3735 ((|#1| $) 13 T ELT)) (-3731 (((-560) $) 9 T ELT)) (-3732 ((|#1| $) 10 T ELT)) (-3734 ((|#1| $) 12 T ELT)) (-4488 (($ |#1|) 6 T ELT)) (-4253 (($ |#1| |#1|) 15 T ELT)) (-3736 (($ $ (-560)) 14 T ELT))) -(((-1126 |#1|) (-142) (-1249)) (T -1126)) -((-4253 (*1 *1 *2 *2) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1126 *3)) (-4 *3 (-1249)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1249)) (-5 *2 (-560)))) (-4252 (*1 *1 *2 *2) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249))))) -(-13 (-637 |t#1|) (-10 -8 (-15 -4253 ($ |t#1| |t#1|)) (-15 -3736 ($ $ (-560))) (-15 -3735 (|t#1| $)) (-15 -3734 (|t#1| $)) (-15 -3733 (|t#1| $)) (-15 -3732 (|t#1| $)) (-15 -3731 ((-560) $)) (-15 -4252 ($ |t#1| |t#1|)))) -(((-637 |#1|) . T)) -((-4252 (($ |#1| |#1|) 8 T ELT)) (-4474 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3733 ((|#1| $) 11 T ELT)) (-3735 ((|#1| $) 13 T ELT)) (-3731 (((-560) $) 9 T ELT)) (-3732 ((|#1| $) 10 T ELT)) (-3734 ((|#1| $) 12 T ELT)) (-4479 ((|#2| (-663 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4488 (($ |#1|) 6 T ELT)) (-4253 (($ |#1| |#1|) 15 T ELT)) (-3736 (($ $ (-560)) 14 T ELT))) -(((-1127 |#1| |#2|) (-142) (-871) (-1182 |t#1|)) (T -1127)) -((-4479 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1127 *4 *2)) (-4 *4 (-871)) (-4 *2 (-1182 *4)))) (-4479 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1182 *3)))) (-4474 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1127 *4 *2)) (-4 *4 (-871)) (-4 *2 (-1182 *4))))) -(-13 (-1126 |t#1|) (-10 -8 (-15 -4479 (|t#2| (-663 $))) (-15 -4479 (|t#2| $)) (-15 -4474 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-637 |#1|) . T) ((-1126 |#1|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4314 (((-1167) $) 12 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 18 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-3737 (((-663 (-1167)) $) 10 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1128) (-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $)) (-15 -4314 ((-1167) $))))) (T -1128)) -((-3737 (*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1128)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1128))))) -(-13 (-1115) (-10 -8 (-15 -3737 ((-663 (-1167)) $)) (-15 -4314 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2024 (($) NIL (|has| |#1| (-381)) ELT)) (-3738 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3740 (($ $ $) 80 T ELT)) (-3739 (((-114) $ $) 82 T ELT)) (-3624 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3743 (($ (-663 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1725 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3911 (($ |#1| $) 74 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4511)) ELT)) (-3481 (($) NIL (|has| |#1| (-381)) ELT)) (-3376 (((-663 |#1|) $) 19 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) NIL T ELT)) (-3016 ((|#1| $) 55 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3344 ((|#1| $) 53 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2234 (((-949) $) NIL (|has| |#1| (-381)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3742 (($ $ $) 78 T ELT)) (-1400 ((|#1| $) 25 T ELT)) (-4123 (($ |#1| $) 69 T ELT)) (-2645 (($ (-949)) NIL (|has| |#1| (-381)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-1401 ((|#1| $) 27 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 21 T ELT)) (-4079 (($) 11 T ELT)) (-3741 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1610 (($) NIL T ELT) (($ (-663 |#1|)) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 16 T ELT)) (-4488 (((-549) $) 50 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 62 T ELT)) (-2025 (($ $) NIL (|has| |#1| (-381)) ELT)) (-4462 (((-888) $) NIL T ELT)) (-2026 (((-793) $) NIL T ELT)) (-3744 (($ (-663 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-1402 (($ (-663 |#1|)) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 52 T ELT)) (-4473 (((-793) $) 10 (|has| $ (-6 -4511)) ELT))) -(((-1129 |#1|) (-440 |#1|) (-1133)) (T -1129)) -NIL -(-440 |#1|) -((-3738 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3740 (($ $ $) 10 T ELT)) (-3741 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1130 |#1| |#2|) (-10 -8 (-15 -3738 (|#1| |#2| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3740 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#2|)) (-15 -3741 (|#1| |#1| |#1|))) (-1131 |#2|) (-1133)) (T -1130)) -NIL -(-10 -8 (-15 -3738 (|#1| |#2| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3740 (|#1| |#1| |#1|)) (-15 -3741 (|#1| |#1| |#2|)) (-15 -3741 (|#1| |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3738 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3740 (($ $ $) 24 T ELT)) (-3739 (((-114) $ $) 23 T ELT)) (-3743 (($) 29 T ELT) (($ (-663 |#1|)) 28 T ELT)) (-4226 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 37 T CONST)) (-1479 (($ $) 60 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 59 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3376 (((-663 |#1|) $) 44 (|has| $ (-6 -4511)) ELT)) (-3745 (((-114) $ $) 32 T ELT)) (-3093 (((-663 |#1|) $) 45 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3742 (($ $ $) 27 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#1|) (-663 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 33 T ELT)) (-3909 (((-114) $) 36 T ELT)) (-4079 (($) 35 T ELT)) (-3741 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2171 (((-793) |#1| $) 46 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 34 T ELT)) (-4488 (((-549) $) 61 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 52 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-3744 (($) 31 T ELT) (($ (-663 |#1|)) 30 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 38 (|has| $ (-6 -4511)) ELT))) -(((-1131 |#1|) (-142) (-1133)) (T -1131)) -((-3745 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-3744 (*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3744 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-1131 *3)))) (-3743 (*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-1131 *3)))) (-3742 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3741 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3741 (*1 *1 *1 *2) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3740 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1133)) (-5 *2 (-114)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3738 (*1 *1 *1 *2) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) (-3738 (*1 *1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(-13 (-1133) (-153 |t#1|) (-10 -8 (-6 -4501) (-15 -3745 ((-114) $ $)) (-15 -3744 ($)) (-15 -3744 ($ (-663 |t#1|))) (-15 -3743 ($)) (-15 -3743 ($ (-663 |t#1|))) (-15 -3742 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3741 ($ $ |t#1|)) (-15 -3740 ($ $ $)) (-15 -3739 ((-114) $ $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ $ |t#1|)) (-15 -3738 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-632 (-888)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) . T) ((-1249) . T)) -((-3746 (((-1191) $) 10 T ELT)) (-3747 (((-1152) $) 8 T ELT))) -(((-1132 |#1|) (-10 -8 (-15 -3746 ((-1191) |#1|)) (-15 -3747 ((-1152) |#1|))) (-1133)) (T -1132)) -NIL -(-10 -8 (-15 -3746 ((-1191) |#1|)) (-15 -3747 ((-1152) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-1133) (-142)) (T -1133)) -((-3747 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-1152)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-1191))))) -(-13 (-102) (-632 (-888)) (-10 -8 (-15 -3747 ((-1152) $)) (-15 -3746 ((-1191) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) 36 T ELT)) (-3751 (($ (-663 (-949))) 70 T ELT)) (-3753 (((-3 $ #1="failed") $ (-949) (-949)) 81 T ELT)) (-3481 (($) 40 T ELT)) (-3749 (((-114) (-949) $) 42 T ELT)) (-2234 (((-949) $) 64 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 39 T ELT)) (-3754 (((-3 $ #1#) $ (-949)) 77 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3750 (((-1299 $)) 47 T ELT)) (-3752 (((-663 (-949)) $) 27 T ELT)) (-3748 (((-793) $ (-949) (-949)) 78 T ELT)) (-4462 (((-888) $) 32 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 24 T ELT))) -(((-1134 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3754 ((-3 $ #1="failed") $ (-949))) (-15 -3753 ((-3 $ #1#) $ (-949) (-949))) (-15 -3752 ((-663 (-949)) $)) (-15 -3751 ($ (-663 (-949)))) (-15 -3750 ((-1299 $))) (-15 -3749 ((-114) (-949) $)) (-15 -3748 ((-793) $ (-949) (-949))))) (-949) (-949)) (T -1134)) -((-3754 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1134 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3753 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1134 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3750 (*1 *2) (-12 (-5 *2 (-1299 (-1134 *3 *4))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3749 (*1 *2 *3 *1) (-12 (-5 *3 (-949)) (-5 *2 (-114)) (-5 *1 (-1134 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-793)) (-5 *1 (-1134 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-381) (-10 -8 (-15 -3754 ((-3 $ #1="failed") $ (-949))) (-15 -3753 ((-3 $ #1#) $ (-949) (-949))) (-15 -3752 ((-663 (-949)) $)) (-15 -3751 ($ (-663 (-949)))) (-15 -3750 ((-1299 $))) (-15 -3749 ((-114) (-949) $)) (-15 -3748 ((-793) $ (-949) (-949))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3764 (((-114) $) NIL T ELT)) (-3760 (((-1209) $) NIL T ELT)) (-3765 (((-114) $) NIL T ELT)) (-4049 (((-1191) $) NIL T ELT)) (-3767 (((-114) $) NIL T ELT)) (-3769 (((-114) $) NIL T ELT)) (-3766 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3763 (((-114) $) NIL T ELT)) (-3759 (((-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3762 (((-114) $) NIL T ELT)) (-3758 (((-229) $) NIL T ELT)) (-3757 (((-888) $) NIL T ELT)) (-3770 (((-114) $ $) NIL T ELT)) (-4316 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-3761 (((-663 $) $) NIL T ELT)) (-4488 (($ (-1191)) NIL T ELT) (($ (-1209)) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-888)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-3755 (($ $) NIL T ELT)) (-3756 (($ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3768 (((-114) $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-560) $) NIL T ELT))) -(((-1135) (-1136 (-1191) (-1209) (-560) (-229) (-888))) (T -1135)) -NIL -(-1136 (-1191) (-1209) (-560) (-229) (-888)) -((-3053 (((-114) $ $) 7 T ELT)) (-3764 (((-114) $) 36 T ELT)) (-3760 ((|#2| $) 31 T ELT)) (-3765 (((-114) $) 37 T ELT)) (-4049 ((|#1| $) 32 T ELT)) (-3767 (((-114) $) 39 T ELT)) (-3769 (((-114) $) 41 T ELT)) (-3766 (((-114) $) 38 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3763 (((-114) $) 35 T ELT)) (-3759 ((|#3| $) 30 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3762 (((-114) $) 34 T ELT)) (-3758 ((|#4| $) 29 T ELT)) (-3757 ((|#5| $) 28 T ELT)) (-3770 (((-114) $ $) 42 T ELT)) (-4316 (($ $ (-560)) 44 T ELT) (($ $ (-663 (-560))) 43 T ELT)) (-3761 (((-663 $) $) 33 T ELT)) (-4488 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-663 $)) 45 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-3755 (($ $) 26 T ELT)) (-3756 (($ $) 27 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3768 (((-114) $) 40 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-560) $) 25 T ELT))) -(((-1136 |#1| |#2| |#3| |#4| |#5|) (-142) (-1133) (-1133) (-1133) (-1133) (-1133)) (T -1136)) -((-3770 (*1 *2 *1 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114)))) (-3761 (*1 *2 *1) (-12 (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-1136 *3 *4 *5 *6 *7)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *2 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *2 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *2)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) (-3756 (*1 *1 *1) (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *2 (-1133)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)))) (-3755 (*1 *1 *1) (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *2 (-1133)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)))) (-4473 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-560))))) -(-13 (-1133) (-637 |t#1|) (-637 |t#2|) (-637 |t#3|) (-637 |t#4|) (-637 |t#4|) (-637 |t#5|) (-637 (-663 $)) (-298 (-560) $) (-298 (-663 (-560)) $) (-10 -8 (-15 -3770 ((-114) $ $)) (-15 -3769 ((-114) $)) (-15 -3768 ((-114) $)) (-15 -3767 ((-114) $)) (-15 -3766 ((-114) $)) (-15 -3765 ((-114) $)) (-15 -3764 ((-114) $)) (-15 -3763 ((-114) $)) (-15 -3762 ((-114) $)) (-15 -3761 ((-663 $) $)) (-15 -4049 (|t#1| $)) (-15 -3760 (|t#2| $)) (-15 -3759 (|t#3| $)) (-15 -3758 (|t#4| $)) (-15 -3757 (|t#5| $)) (-15 -3756 ($ $)) (-15 -3755 ($ $)) (-15 -4473 ((-560) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-637 (-663 $)) . T) ((-637 |#1|) . T) ((-637 |#2|) . T) ((-637 |#3|) . T) ((-637 |#4|) . T) ((-637 |#5|) . T) ((-298 (-560) $) . T) ((-298 (-663 (-560)) $) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3764 (((-114) $) 45 T ELT)) (-3760 ((|#2| $) 48 T ELT)) (-3765 (((-114) $) 20 T ELT)) (-4049 ((|#1| $) 21 T ELT)) (-3767 (((-114) $) 42 T ELT)) (-3769 (((-114) $) 14 T ELT)) (-3766 (((-114) $) 44 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3763 (((-114) $) 46 T ELT)) (-3759 ((|#3| $) 50 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3762 (((-114) $) 47 T ELT)) (-3758 ((|#4| $) 49 T ELT)) (-3757 ((|#5| $) 51 T ELT)) (-3770 (((-114) $ $) 41 T ELT)) (-4316 (($ $ (-560)) 62 T ELT) (($ $ (-663 (-560))) 64 T ELT)) (-3761 (((-663 $) $) 27 T ELT)) (-4488 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-663 $)) 52 T ELT)) (-4462 (((-888) $) 28 T ELT)) (-3755 (($ $) 26 T ELT)) (-3756 (($ $) 58 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3768 (((-114) $) 23 T ELT)) (-3540 (((-114) $ $) 40 T ELT)) (-4473 (((-560) $) 60 T ELT))) -(((-1137 |#1| |#2| |#3| |#4| |#5|) (-1136 |#1| |#2| |#3| |#4| |#5|) (-1133) (-1133) (-1133) (-1133) (-1133)) (T -1137)) -NIL -(-1136 |#1| |#2| |#3| |#4| |#5|) -((-3886 (((-1305) $) 22 T ELT)) (-3771 (($ (-1209) (-448) |#2|) 11 T ELT)) (-4462 (((-888) $) 16 T ELT))) -(((-1138 |#1| |#2|) (-13 (-410) (-10 -8 (-15 -3771 ($ (-1209) (-448) |#2|)))) (-1133) (-435 |#1|)) (T -1138)) -((-3771 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1209)) (-5 *3 (-448)) (-4 *5 (-1133)) (-5 *1 (-1138 *5 *4)) (-4 *4 (-435 *5))))) -(-13 (-410) (-10 -8 (-15 -3771 ($ (-1209) (-448) |#2|)))) -((-3774 (((-114) |#5| |#5|) 44 T ELT)) (-3777 (((-114) |#5| |#5|) 59 T ELT)) (-3782 (((-114) |#5| (-663 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3778 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3784 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) 70 T ELT)) (-3773 (((-1305)) 32 T ELT)) (-3772 (((-1305) (-1191) (-1191) (-1191)) 28 T ELT)) (-3783 (((-663 |#5|) (-663 |#5|)) 101 T ELT)) (-3785 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) 93 T ELT)) (-3786 (((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 123 T ELT)) (-3776 (((-114) |#5| |#5|) 53 T ELT)) (-3781 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3779 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-3780 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-4215 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-3787 (((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-3775 (((-663 |#5|) (-663 |#5|)) 49 T ELT))) -(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-1305) (-1191) (-1191) (-1191))) (-15 -3773 ((-1305))) (-15 -3774 ((-114) |#5| |#5|)) (-15 -3775 ((-663 |#5|) (-663 |#5|))) (-15 -3776 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3778 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3779 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3780 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4215 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3781 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3782 ((-114) |#5| |#5|)) (-15 -3782 ((-114) |#5| (-663 |#5|))) (-15 -3783 ((-663 |#5|) (-663 |#5|))) (-15 -3784 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3785 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-15 -3786 ((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3787 ((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139)) -((-3787 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1139 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1103 *6 *7 *8 *9)))) (-3786 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1103 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1139 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -1755 *7)))) (-4 *6 (-1097 *3 *4 *5)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1139 *3 *4 *5 *6 *7)))) (-3784 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *1 (-1139 *3 *4 *5 *6 *7)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1139 *5 *6 *7 *8 *3)))) (-3782 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3781 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-4215 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3780 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3779 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3778 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3776 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *1 (-1139 *3 *4 *5 *6 *7)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) (-3773 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3772 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7))))) -(-10 -7 (-15 -3772 ((-1305) (-1191) (-1191) (-1191))) (-15 -3773 ((-1305))) (-15 -3774 ((-114) |#5| |#5|)) (-15 -3775 ((-663 |#5|) (-663 |#5|))) (-15 -3776 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3778 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3779 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3780 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4215 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3781 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3782 ((-114) |#5| |#5|)) (-15 -3782 ((-114) |#5| (-663 |#5|))) (-15 -3783 ((-663 |#5|) (-663 |#5|))) (-15 -3784 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3785 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-15 -3786 ((-663 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3787 ((-3 (-2 (|:| -3770 (-663 |#4|)) (|:| -1755 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) -((-3802 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|) 106 T ELT)) (-3792 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3795 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3797 (((-663 |#5|) |#4| |#5|) 122 T ELT)) (-3799 (((-663 |#5|) |#4| |#5|) 129 T ELT)) (-3801 (((-663 |#5|) |#4| |#5|) 130 T ELT)) (-3796 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|) 107 T ELT)) (-3798 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|) 128 T ELT)) (-3800 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3793 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114)) 91 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3794 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3791 (((-1305)) 36 T ELT)) (-3789 (((-1305)) 25 T ELT)) (-3790 (((-1305) (-1191) (-1191) (-1191)) 32 T ELT)) (-3788 (((-1305) (-1191) (-1191) (-1191)) 21 T ELT))) -(((-1140 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3788 ((-1305) (-1191) (-1191) (-1191))) (-15 -3789 ((-1305))) (-15 -3790 ((-1305) (-1191) (-1191) (-1191))) (-15 -3791 ((-1305))) (-15 -3792 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3793 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3793 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114))) (-15 -3794 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3795 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3800 ((-114) |#4| |#5|)) (-15 -3796 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3797 ((-663 |#5|) |#4| |#5|)) (-15 -3798 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3799 ((-663 |#5|) |#4| |#5|)) (-15 -3800 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3801 ((-663 |#5|) |#4| |#5|)) (-15 -3802 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1140)) -((-3802 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3801 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3800 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3799 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3798 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3796 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3800 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3795 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3794 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *5 (-114)) (-4 *8 (-1097 *6 *7 *4)) (-4 *9 (-1103 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *4 (-872)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -1755 *9)))) (-5 *1 (-1140 *6 *7 *4 *8 *9)))) (-3793 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1140 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3792 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3791 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1140 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3790 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1140 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7)))) (-3789 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-1305)) (-5 *1 (-1140 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) (-3788 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1140 *4 *5 *6 *7 *8)) (-4 *8 (-1103 *4 *5 *6 *7))))) -(-10 -7 (-15 -3788 ((-1305) (-1191) (-1191) (-1191))) (-15 -3789 ((-1305))) (-15 -3790 ((-1305) (-1191) (-1191) (-1191))) (-15 -3791 ((-1305))) (-15 -3792 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3793 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3793 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) |#3| (-114))) (-15 -3794 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3795 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#4| |#5|)) (-15 -3800 ((-114) |#4| |#5|)) (-15 -3796 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3797 ((-663 |#5|) |#4| |#5|)) (-15 -3798 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3799 ((-663 |#5|) |#4| |#5|)) (-15 -3800 ((-663 (-2 (|:| |val| (-114)) (|:| -1755 |#5|))) |#4| |#5|)) (-15 -3801 ((-663 |#5|) |#4| |#5|)) (-15 -3802 ((-663 (-2 (|:| |val| |#4|) (|:| -1755 |#5|))) |#4| |#5|))) -((-3053 (((-114) $ $) 7 T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) 90 T ELT)) (-4198 (((-663 $) (-663 |#4|)) 91 T ELT) (((-663 $) (-663 |#4|) (-114)) 118 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4204 ((|#4| |#4| $) 97 T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 133 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-4315 (((-3 $ #1#) $) 87 T ELT)) (-4201 ((|#4| |#4| $) 94 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4199 ((|#4| |#4| $) 92 T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) 110 T ELT)) (-3701 (((-114) |#4| $) 143 T ELT)) (-3699 (((-114) |#4| $) 140 T ELT)) (-3702 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) 135 T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 134 T ELT)) (-4314 (((-3 |#4| #1#) $) 88 T ELT)) (-3696 (((-663 $) |#4| $) 136 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) 139 T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3742 (((-663 $) |#4| $) 132 T ELT) (((-663 $) (-663 |#4|) $) 131 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 130 T ELT) (((-663 $) |#4| (-663 $)) 129 T ELT)) (-3946 (($ |#4| $) 124 T ELT) (($ (-663 |#4|) $) 123 T ELT)) (-4213 (((-663 |#4|) $) 112 T ELT)) (-4207 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4202 ((|#4| |#4| $) 95 T ELT)) (-4215 (((-114) $ $) 115 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4203 ((|#4| |#4| $) 96 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-3 |#4| #1#) $) 89 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4285 (($ $ |#4|) 82 T ELT) (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-4464 (((-793) $) 111 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-4200 (($ $) 93 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-4194 (((-793) $) 81 (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 103 T ELT)) (-3693 (((-663 $) |#4| $) 128 T ELT) (((-663 $) |#4| (-663 $)) 127 T ELT) (((-663 $) (-663 |#4|) $) 126 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 125 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) 86 T ELT)) (-3700 (((-114) |#4| $) 142 T ELT)) (-4449 (((-114) |#3| $) 85 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-1141 |#1| |#2| |#3| |#4|) (-142) (-466) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -1141)) -NIL -(-13 (-1103 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-1008 |#1| |#2| |#3| |#4|) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1133) . T) ((-1244 |#1| |#2| |#3| |#4|) . T) ((-1249) . T)) -((-3813 (((-663 (-560)) (-560) (-560) (-560)) 40 T ELT)) (-3812 (((-663 (-560)) (-560) (-560) (-560)) 30 T ELT)) (-3811 (((-663 (-560)) (-560) (-560) (-560)) 35 T ELT)) (-3810 (((-560) (-560) (-560)) 22 T ELT)) (-3809 (((-1299 (-560)) (-663 (-560)) (-1299 (-560)) (-560)) 79 T ELT) (((-1299 (-560)) (-1299 (-560)) (-1299 (-560)) (-560)) 74 T ELT)) (-3808 (((-663 (-560)) (-663 (-949)) (-663 (-560)) (-114)) 56 T ELT)) (-3807 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 78 T ELT)) (-3806 (((-711 (-560)) (-663 (-949)) (-663 (-560))) 61 T ELT)) (-3805 (((-663 (-711 (-560))) (-663 (-949))) 67 T ELT)) (-3804 (((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 82 T ELT)) (-3803 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560))) 92 T ELT))) -(((-1142) (-10 -7 (-15 -3803 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -3804 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3805 ((-663 (-711 (-560))) (-663 (-949)))) (-15 -3806 ((-711 (-560)) (-663 (-949)) (-663 (-560)))) (-15 -3807 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3808 ((-663 (-560)) (-663 (-949)) (-663 (-560)) (-114))) (-15 -3809 ((-1299 (-560)) (-1299 (-560)) (-1299 (-560)) (-560))) (-15 -3809 ((-1299 (-560)) (-663 (-560)) (-1299 (-560)) (-560))) (-15 -3810 ((-560) (-560) (-560))) (-15 -3811 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3812 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3813 ((-663 (-560)) (-560) (-560) (-560))))) (T -1142)) -((-3813 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560)))) (-3812 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560)))) (-3811 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1142)))) (-3809 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1299 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560)) (-5 *1 (-1142)))) (-3809 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1299 (-560))) (-5 *3 (-560)) (-5 *1 (-1142)))) (-3808 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-949))) (-5 *4 (-114)) (-5 *1 (-1142)))) (-3807 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1142)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-949))) (-5 *4 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1142)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1142)))) (-3804 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1142)))) (-3803 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1142))))) -(-10 -7 (-15 -3803 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -3804 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3805 ((-663 (-711 (-560))) (-663 (-949)))) (-15 -3806 ((-711 (-560)) (-663 (-949)) (-663 (-560)))) (-15 -3807 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3808 ((-663 (-560)) (-663 (-949)) (-663 (-560)) (-114))) (-15 -3809 ((-1299 (-560)) (-1299 (-560)) (-1299 (-560)) (-560))) (-15 -3809 ((-1299 (-560)) (-663 (-560)) (-1299 (-560)) (-560))) (-15 -3810 ((-560) (-560) (-560))) (-15 -3811 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3812 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3813 ((-663 (-560)) (-560) (-560) (-560)))) -((** (($ $ (-949)) 10 T ELT))) -(((-1143 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949)))) (-1144)) (T -1143)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-949)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (** (($ $ (-949)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1144) (-142)) (T -1144)) -((* (*1 *1 *1 *1) (-4 *1 (-1144))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-949))))) -(-13 (-1133) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-949))))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3692 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-4223 (($ (-949)) NIL (|has| |#3| (-1081)) ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-2887 (($ $ $) NIL (|has| |#3| (-817)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3624 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-4304 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1133)) ELT)) (-3660 (((-560) $) NIL (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT) ((|#3| $) NIL (|has| |#3| (-1133)) ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 $) (-1299 $)) NIL (|has| |#3| (-1081)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1081)) ELT)) (-3973 (((-3 $ "failed") $) NIL (|has| |#3| (-1081)) ELT)) (-3481 (($) NIL (|has| |#3| (-381)) ELT)) (-1731 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#3| $ (-560)) 12 T ELT)) (-3690 (((-114) $) NIL (|has| |#3| (-817)) ELT)) (-3376 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL (|has| |#3| (-1081)) ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#3| (-872)) ELT)) (-3093 (((-663 |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#3| (-872)) ELT)) (-2174 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2234 (((-949) $) NIL (|has| |#3| (-381)) ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1081))) ELT) (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-1299 $) $) NIL (|has| |#3| (-1081)) ELT) (((-711 |#3|) (-1299 $)) NIL (|has| |#3| (-1081)) ELT)) (-3746 (((-1191) $) NIL (|has| |#3| (-1133)) ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-2645 (($ (-949)) NIL (|has| |#3| (-381)) ELT)) (-3747 (((-1152) $) NIL (|has| |#3| (-1133)) ELT)) (-4317 ((|#3| $) NIL (|has| (-560) (-872)) ELT)) (-2428 (($ $ |#3|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-2434 (((-663 |#3|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) NIL T ELT)) (-4352 ((|#3| $ $) NIL (|has| |#3| (-1081)) ELT)) (-1612 (($ (-1299 |#3|)) NIL T ELT)) (-4427 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4274 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#3| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4462 (((-1299 |#3|) $) NIL T ELT) (($ (-560)) NIL (-4043 (-12 (|has| |#3| (-1070 (-560))) (|has| |#3| (-1133))) (|has| |#3| (-1081))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1070 (-421 (-560)))) (|has| |#3| (-1133))) ELT) (($ |#3|) NIL (|has| |#3| (-1133)) ELT) (((-888) $) NIL (|has| |#3| (-632 (-888))) ELT)) (-3614 (((-793)) NIL (|has| |#3| (-1081)) CONST)) (-1389 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3145 (($) NIL (|has| |#3| (-23)) CONST)) (-3151 (($) NIL (|has| |#3| (-1081)) CONST)) (-3156 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1081))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1209)) NIL (-12 (|has| |#3| (-930 (-1209))) (|has| |#3| (-1081))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1081)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#3| (-872)) ELT)) (-3172 (((-114) $ $) 24 (|has| |#3| (-872)) ELT)) (-4465 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4353 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1081)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1081)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1081)) ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ (-560) $) NIL (|has| |#3| (-21)) ELT) (($ (-793) $) NIL (|has| |#3| (-23)) ELT) (($ (-949) $) NIL (|has| |#3| (-25)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1145 |#1| |#2| |#3|) (-245 |#1| |#3|) (-793) (-793) (-817)) (T -1145)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4248 (($ |#1| |#1|) 16 T ELT)) (-4470 (((-661 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-869)) ELT)) (-3729 ((|#1| $) 12 T ELT)) (-3731 ((|#1| $) 11 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3727 (((-558) $) 15 T ELT)) (-3728 ((|#1| $) 14 T ELT)) (-3730 ((|#1| $) 13 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4475 (((-661 |#1|) $) 42 (|has| |#1| (-869)) ELT) (((-661 |#1|) (-661 $)) 41 (|has| |#1| (-869)) ELT)) (-4484 (($ |#1|) 29 T ELT)) (-4458 (((-886) $) 28 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4249 (($ |#1| |#1|) 10 T ELT)) (-3732 (($ $ (-558)) 17 T ELT)) (-3536 (((-114) $ $) 22 (|has| |#1| (-1131)) ELT))) +(((-1119 |#1|) (-13 (-1124 |#1|) (-10 -7 (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-661 |#1|))) |%noBranch|))) (-1247)) (T -1119)) +NIL +(-13 (-1124 |#1|) (-10 -7 (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-661 |#1|))) |%noBranch|))) +((-4470 (((-661 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 27 (|has| |#1| (-869)) ELT) (((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 14 T ELT))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -4470 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-869)) (-15 -4470 ((-661 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1120)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-661 *6)) (-5 *1 (-1120 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1119 *6)) (-5 *1 (-1120 *5 *6))))) +(-10 -7 (-15 -4470 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-869)) (-15 -4470 ((-661 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3725 (((-661 (-1165)) $) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1121) (-13 (-1113) (-10 -8 (-15 -3725 ((-661 (-1165)) $))))) (T -1121)) +((-3725 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1121))))) +(-13 (-1113) (-10 -8 (-15 -3725 ((-661 (-1165)) $)))) +((-3049 (((-114) $ $) NIL (|has| (-1119 |#1|) (-1131)) ELT)) (-4343 (((-1207) $) NIL T ELT)) (-4248 (((-1119 |#1|) $) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| (-1119 |#1|) (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| (-1119 |#1|) (-1131)) ELT)) (-3726 (($ (-1207) (-1119 |#1|)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| (-1119 |#1|) (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| (-1119 |#1|) (-1131)) ELT)) (-3536 (((-114) $ $) NIL (|has| (-1119 |#1|) (-1131)) ELT))) +(((-1122 |#1|) (-13 (-1247) (-10 -8 (-15 -3726 ($ (-1207) (-1119 |#1|))) (-15 -4343 ((-1207) $)) (-15 -4248 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1131)) (-6 (-1131)) |%noBranch|))) (-1247)) (T -1122)) +((-3726 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1119 *4)) (-4 *4 (-1247)) (-5 *1 (-1122 *4)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3726 ($ (-1207) (-1119 |#1|))) (-15 -4343 ((-1207) $)) (-15 -4248 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1131)) (-6 (-1131)) |%noBranch|))) +((-4470 (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 19 T ELT))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -4470 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) (-1247) (-1247)) (T -1123)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1122 *6)) (-5 *1 (-1123 *5 *6))))) +(-10 -7 (-15 -4470 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) +((-4248 (($ |#1| |#1|) 8 T ELT)) (-3729 ((|#1| $) 11 T ELT)) (-3731 ((|#1| $) 13 T ELT)) (-3727 (((-558) $) 9 T ELT)) (-3728 ((|#1| $) 10 T ELT)) (-3730 ((|#1| $) 12 T ELT)) (-4484 (($ |#1|) 6 T ELT)) (-4249 (($ |#1| |#1|) 15 T ELT)) (-3732 (($ $ (-558)) 14 T ELT))) +(((-1124 |#1|) (-142) (-1247)) (T -1124)) +((-4249 (*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) (-3732 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1124 *3)) (-4 *3 (-1247)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1247)) (-5 *2 (-558)))) (-4248 (*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247))))) +(-13 (-635 |t#1|) (-10 -8 (-15 -4249 ($ |t#1| |t#1|)) (-15 -3732 ($ $ (-558))) (-15 -3731 (|t#1| $)) (-15 -3730 (|t#1| $)) (-15 -3729 (|t#1| $)) (-15 -3728 (|t#1| $)) (-15 -3727 ((-558) $)) (-15 -4248 ($ |t#1| |t#1|)))) +(((-635 |#1|) . T)) +((-4248 (($ |#1| |#1|) 8 T ELT)) (-4470 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3729 ((|#1| $) 11 T ELT)) (-3731 ((|#1| $) 13 T ELT)) (-3727 (((-558) $) 9 T ELT)) (-3728 ((|#1| $) 10 T ELT)) (-3730 ((|#1| $) 12 T ELT)) (-4475 ((|#2| (-661 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4484 (($ |#1|) 6 T ELT)) (-4249 (($ |#1| |#1|) 15 T ELT)) (-3732 (($ $ (-558)) 14 T ELT))) +(((-1125 |#1| |#2|) (-142) (-869) (-1180 |t#1|)) (T -1125)) +((-4475 (*1 *2 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1180 *4)))) (-4475 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1180 *3)))) (-4470 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1180 *4))))) +(-13 (-1124 |t#1|) (-10 -8 (-15 -4475 (|t#2| (-661 $))) (-15 -4475 (|t#2| $)) (-15 -4470 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-635 |#1|) . T) ((-1124 |#1|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4310 (((-1165) $) 12 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3733 (((-661 (-1165)) $) 10 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1126) (-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $)) (-15 -4310 ((-1165) $))))) (T -1126)) +((-3733 (*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1126)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126))))) +(-13 (-1113) (-10 -8 (-15 -3733 ((-661 (-1165)) $)) (-15 -4310 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2020 (($) NIL (|has| |#1| (-381)) ELT)) (-3734 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3736 (($ $ $) 80 T ELT)) (-3735 (((-114) $ $) 82 T ELT)) (-3620 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-3739 (($ (-661 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1723 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3907 (($ |#1| $) 74 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4507)) ELT)) (-3477 (($) NIL (|has| |#1| (-381)) ELT)) (-3372 (((-661 |#1|) $) 19 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) NIL T ELT)) (-3012 ((|#1| $) 55 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3340 ((|#1| $) 53 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2230 (((-947) $) NIL (|has| |#1| (-381)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3738 (($ $ $) 78 T ELT)) (-1398 ((|#1| $) 25 T ELT)) (-4119 (($ |#1| $) 69 T ELT)) (-2641 (($ (-947)) NIL (|has| |#1| (-381)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-1399 ((|#1| $) 27 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 21 T ELT)) (-4075 (($) 11 T ELT)) (-3737 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1608 (($) NIL T ELT) (($ (-661 |#1|)) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 16 T ELT)) (-4484 (((-547) $) 50 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 62 T ELT)) (-2021 (($ $) NIL (|has| |#1| (-381)) ELT)) (-4458 (((-886) $) NIL T ELT)) (-2022 (((-791) $) NIL T ELT)) (-3740 (($ (-661 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-1400 (($ (-661 |#1|)) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 52 T ELT)) (-4469 (((-791) $) 10 (|has| $ (-6 -4507)) ELT))) +(((-1127 |#1|) (-438 |#1|) (-1131)) (T -1127)) +NIL +(-438 |#1|) +((-3734 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3736 (($ $ $) 10 T ELT)) (-3737 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1128 |#1| |#2|) (-10 -8 (-15 -3734 (|#1| |#2| |#1|)) (-15 -3734 (|#1| |#1| |#2|)) (-15 -3734 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#2|)) (-15 -3737 (|#1| |#1| |#1|))) (-1129 |#2|) (-1131)) (T -1128)) +NIL +(-10 -8 (-15 -3734 (|#1| |#2| |#1|)) (-15 -3734 (|#1| |#1| |#2|)) (-15 -3734 (|#1| |#1| |#1|)) (-15 -3736 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#2|)) (-15 -3737 (|#1| |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3734 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3736 (($ $ $) 24 T ELT)) (-3735 (((-114) $ $) 23 T ELT)) (-3739 (($) 29 T ELT) (($ (-661 |#1|)) 28 T ELT)) (-4222 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 37 T CONST)) (-1477 (($ $) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3372 (((-661 |#1|) $) 44 (|has| $ (-6 -4507)) ELT)) (-3741 (((-114) $ $) 32 T ELT)) (-3089 (((-661 |#1|) $) 45 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3738 (($ $ $) 27 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#1|) (-661 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 33 T ELT)) (-3905 (((-114) $) 36 T ELT)) (-4075 (($) 35 T ELT)) (-3737 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2167 (((-791) |#1| $) 46 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 34 T ELT)) (-4484 (((-547) $) 61 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 52 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-3740 (($) 31 T ELT) (($ (-661 |#1|)) 30 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 38 (|has| $ (-6 -4507)) ELT))) +(((-1129 |#1|) (-142) (-1131)) (T -1129)) +((-3741 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-3740 (*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) (-3739 (*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3737 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3736 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3735 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-114)))) (-3734 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3734 (*1 *1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(-13 (-1131) (-153 |t#1|) (-10 -8 (-6 -4497) (-15 -3741 ((-114) $ $)) (-15 -3740 ($)) (-15 -3740 ($ (-661 |t#1|))) (-15 -3739 ($)) (-15 -3739 ($ (-661 |t#1|))) (-15 -3738 ($ $ $)) (-15 -3737 ($ $ $)) (-15 -3737 ($ $ |t#1|)) (-15 -3736 ($ $ $)) (-15 -3735 ((-114) $ $)) (-15 -3734 ($ $ $)) (-15 -3734 ($ $ |t#1|)) (-15 -3734 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-630 (-886)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) . T) ((-1247) . T)) +((-3742 (((-1189) $) 10 T ELT)) (-3743 (((-1150) $) 8 T ELT))) +(((-1130 |#1|) (-10 -8 (-15 -3742 ((-1189) |#1|)) (-15 -3743 ((-1150) |#1|))) (-1131)) (T -1130)) +NIL +(-10 -8 (-15 -3742 ((-1189) |#1|)) (-15 -3743 ((-1150) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1131) (-142)) (T -1131)) +((-3743 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1150)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1189))))) +(-13 (-102) (-630 (-886)) (-10 -8 (-15 -3743 ((-1150) $)) (-15 -3742 ((-1189) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) 36 T ELT)) (-3747 (($ (-661 (-947))) 70 T ELT)) (-3749 (((-3 $ #1="failed") $ (-947) (-947)) 81 T ELT)) (-3477 (($) 40 T ELT)) (-3745 (((-114) (-947) $) 42 T ELT)) (-2230 (((-947) $) 64 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 39 T ELT)) (-3750 (((-3 $ #1#) $ (-947)) 77 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3746 (((-1297 $)) 47 T ELT)) (-3748 (((-661 (-947)) $) 27 T ELT)) (-3744 (((-791) $ (-947) (-947)) 78 T ELT)) (-4458 (((-886) $) 32 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 24 T ELT))) +(((-1132 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3750 ((-3 $ #1="failed") $ (-947))) (-15 -3749 ((-3 $ #1#) $ (-947) (-947))) (-15 -3748 ((-661 (-947)) $)) (-15 -3747 ($ (-661 (-947)))) (-15 -3746 ((-1297 $))) (-15 -3745 ((-114) (-947) $)) (-15 -3744 ((-791) $ (-947) (-947))))) (-947) (-947)) (T -1132)) +((-3750 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-947)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3749 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-947)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) (-3746 (*1 *2) (-12 (-5 *2 (-1297 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) (-3745 (*1 *2 *3 *1) (-12 (-5 *3 (-947)) (-5 *2 (-114)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-791)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-381) (-10 -8 (-15 -3750 ((-3 $ #1="failed") $ (-947))) (-15 -3749 ((-3 $ #1#) $ (-947) (-947))) (-15 -3748 ((-661 (-947)) $)) (-15 -3747 ($ (-661 (-947)))) (-15 -3746 ((-1297 $))) (-15 -3745 ((-114) (-947) $)) (-15 -3744 ((-791) $ (-947) (-947))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3760 (((-114) $) NIL T ELT)) (-3756 (((-1207) $) NIL T ELT)) (-3761 (((-114) $) NIL T ELT)) (-4045 (((-1189) $) NIL T ELT)) (-3763 (((-114) $) NIL T ELT)) (-3765 (((-114) $) NIL T ELT)) (-3762 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3759 (((-114) $) NIL T ELT)) (-3755 (((-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3758 (((-114) $) NIL T ELT)) (-3754 (((-229) $) NIL T ELT)) (-3753 (((-886) $) NIL T ELT)) (-3766 (((-114) $ $) NIL T ELT)) (-4312 (($ $ (-558)) NIL T ELT) (($ $ (-661 (-558))) NIL T ELT)) (-3757 (((-661 $) $) NIL T ELT)) (-4484 (($ (-1189)) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-886)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3752 (($ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3764 (((-114) $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-558) $) NIL T ELT))) +(((-1133) (-1134 (-1189) (-1207) (-558) (-229) (-886))) (T -1133)) +NIL +(-1134 (-1189) (-1207) (-558) (-229) (-886)) +((-3049 (((-114) $ $) 7 T ELT)) (-3760 (((-114) $) 36 T ELT)) (-3756 ((|#2| $) 31 T ELT)) (-3761 (((-114) $) 37 T ELT)) (-4045 ((|#1| $) 32 T ELT)) (-3763 (((-114) $) 39 T ELT)) (-3765 (((-114) $) 41 T ELT)) (-3762 (((-114) $) 38 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3759 (((-114) $) 35 T ELT)) (-3755 ((|#3| $) 30 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3758 (((-114) $) 34 T ELT)) (-3754 ((|#4| $) 29 T ELT)) (-3753 ((|#5| $) 28 T ELT)) (-3766 (((-114) $ $) 42 T ELT)) (-4312 (($ $ (-558)) 44 T ELT) (($ $ (-661 (-558))) 43 T ELT)) (-3757 (((-661 $) $) 33 T ELT)) (-4484 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-661 $)) 45 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-3751 (($ $) 26 T ELT)) (-3752 (($ $) 27 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3764 (((-114) $) 40 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-558) $) 25 T ELT))) +(((-1134 |#1| |#2| |#3| |#4| |#5|) (-142) (-1131) (-1131) (-1131) (-1131) (-1131)) (T -1134)) +((-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-1134 *3 *4 *5 *6 *7)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *2 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *2)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3752 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-3751 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-4469 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-558))))) +(-13 (-1131) (-635 |t#1|) (-635 |t#2|) (-635 |t#3|) (-635 |t#4|) (-635 |t#4|) (-635 |t#5|) (-635 (-661 $)) (-298 (-558) $) (-298 (-661 (-558)) $) (-10 -8 (-15 -3766 ((-114) $ $)) (-15 -3765 ((-114) $)) (-15 -3764 ((-114) $)) (-15 -3763 ((-114) $)) (-15 -3762 ((-114) $)) (-15 -3761 ((-114) $)) (-15 -3760 ((-114) $)) (-15 -3759 ((-114) $)) (-15 -3758 ((-114) $)) (-15 -3757 ((-661 $) $)) (-15 -4045 (|t#1| $)) (-15 -3756 (|t#2| $)) (-15 -3755 (|t#3| $)) (-15 -3754 (|t#4| $)) (-15 -3753 (|t#5| $)) (-15 -3752 ($ $)) (-15 -3751 ($ $)) (-15 -4469 ((-558) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-635 (-661 $)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 |#4|) . T) ((-635 |#5|) . T) ((-298 (-558) $) . T) ((-298 (-661 (-558)) $) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3760 (((-114) $) 45 T ELT)) (-3756 ((|#2| $) 48 T ELT)) (-3761 (((-114) $) 20 T ELT)) (-4045 ((|#1| $) 21 T ELT)) (-3763 (((-114) $) 42 T ELT)) (-3765 (((-114) $) 14 T ELT)) (-3762 (((-114) $) 44 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3759 (((-114) $) 46 T ELT)) (-3755 ((|#3| $) 50 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3758 (((-114) $) 47 T ELT)) (-3754 ((|#4| $) 49 T ELT)) (-3753 ((|#5| $) 51 T ELT)) (-3766 (((-114) $ $) 41 T ELT)) (-4312 (($ $ (-558)) 62 T ELT) (($ $ (-661 (-558))) 64 T ELT)) (-3757 (((-661 $) $) 27 T ELT)) (-4484 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-661 $)) 52 T ELT)) (-4458 (((-886) $) 28 T ELT)) (-3751 (($ $) 26 T ELT)) (-3752 (($ $) 58 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3764 (((-114) $) 23 T ELT)) (-3536 (((-114) $ $) 40 T ELT)) (-4469 (((-558) $) 60 T ELT))) +(((-1135 |#1| |#2| |#3| |#4| |#5|) (-1134 |#1| |#2| |#3| |#4| |#5|) (-1131) (-1131) (-1131) (-1131) (-1131)) (T -1135)) +NIL +(-1134 |#1| |#2| |#3| |#4| |#5|) +((-3882 (((-1303) $) 22 T ELT)) (-3767 (($ (-1207) (-446) |#2|) 11 T ELT)) (-4458 (((-886) $) 16 T ELT))) +(((-1136 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -3767 ($ (-1207) (-446) |#2|)))) (-1131) (-433 |#1|)) (T -1136)) +((-3767 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-446)) (-4 *5 (-1131)) (-5 *1 (-1136 *5 *4)) (-4 *4 (-433 *5))))) +(-13 (-408) (-10 -8 (-15 -3767 ($ (-1207) (-446) |#2|)))) +((-3770 (((-114) |#5| |#5|) 44 T ELT)) (-3773 (((-114) |#5| |#5|) 59 T ELT)) (-3778 (((-114) |#5| (-661 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3774 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3780 (((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) 70 T ELT)) (-3769 (((-1303)) 32 T ELT)) (-3768 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-3779 (((-661 |#5|) (-661 |#5|)) 101 T ELT)) (-3781 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) 93 T ELT)) (-3782 (((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114)) 123 T ELT)) (-3772 (((-114) |#5| |#5|) 53 T ELT)) (-3777 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3775 (((-114) (-661 |#4|) (-661 |#4|)) 64 T ELT)) (-3776 (((-114) (-661 |#4|) (-661 |#4|)) 66 T ELT)) (-4211 (((-114) (-661 |#4|) (-661 |#4|)) 67 T ELT)) (-3783 (((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-3771 (((-661 |#5|) (-661 |#5|)) 49 T ELT))) +(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-1303) (-1189) (-1189) (-1189))) (-15 -3769 ((-1303))) (-15 -3770 ((-114) |#5| |#5|)) (-15 -3771 ((-661 |#5|) (-661 |#5|))) (-15 -3772 ((-114) |#5| |#5|)) (-15 -3773 ((-114) |#5| |#5|)) (-15 -3774 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3775 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3776 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4211 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3777 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3778 ((-114) |#5| |#5|)) (-15 -3778 ((-114) |#5| (-661 |#5|))) (-15 -3779 ((-661 |#5|) (-661 |#5|))) (-15 -3780 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3781 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-15 -3782 ((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3783 ((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1137)) +((-3783 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *4) (|:| |ineq| (-661 *9)))) (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-3782 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *10) (|:| |ineq| (-661 *9))))) (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1753 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3780 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1137 *5 *6 *7 *8 *3)))) (-3778 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3775 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3774 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3773 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3772 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3769 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3768 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -3768 ((-1303) (-1189) (-1189) (-1189))) (-15 -3769 ((-1303))) (-15 -3770 ((-114) |#5| |#5|)) (-15 -3771 ((-661 |#5|) (-661 |#5|))) (-15 -3772 ((-114) |#5| |#5|)) (-15 -3773 ((-114) |#5| |#5|)) (-15 -3774 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3775 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3776 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4211 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3777 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3778 ((-114) |#5| |#5|)) (-15 -3778 ((-114) |#5| (-661 |#5|))) (-15 -3779 ((-661 |#5|) (-661 |#5|))) (-15 -3780 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3781 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-15 -3782 ((-661 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3783 ((-3 (-2 (|:| -3766 (-661 |#4|)) (|:| -1753 |#5|) (|:| |ineq| (-661 |#4|))) "failed") (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) +((-3798 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|) 106 T ELT)) (-3788 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3791 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3793 (((-661 |#5|) |#4| |#5|) 122 T ELT)) (-3795 (((-661 |#5|) |#4| |#5|) 129 T ELT)) (-3797 (((-661 |#5|) |#4| |#5|) 130 T ELT)) (-3792 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|) 107 T ELT)) (-3794 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|) 128 T ELT)) (-3796 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3789 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114)) 91 T ELT) (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3790 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3787 (((-1303)) 36 T ELT)) (-3785 (((-1303)) 25 T ELT)) (-3786 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-3784 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT))) +(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-1303) (-1189) (-1189) (-1189))) (-15 -3785 ((-1303))) (-15 -3786 ((-1303) (-1189) (-1189) (-1189))) (-15 -3787 ((-1303))) (-15 -3788 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3789 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3789 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114))) (-15 -3790 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3791 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3796 ((-114) |#4| |#5|)) (-15 -3792 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3793 ((-661 |#5|) |#4| |#5|)) (-15 -3794 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3795 ((-661 |#5|) |#4| |#5|)) (-15 -3796 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3797 ((-661 |#5|) |#4| |#5|)) (-15 -3798 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1138)) +((-3798 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3796 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3795 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3796 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3791 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3790 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *5 (-114)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *4 (-870)) (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1753 *9)))) (-5 *1 (-1138 *6 *7 *4 *8 *9)))) (-3789 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3788 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3787 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3786 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3785 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3784 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -3784 ((-1303) (-1189) (-1189) (-1189))) (-15 -3785 ((-1303))) (-15 -3786 ((-1303) (-1189) (-1189) (-1189))) (-15 -3787 ((-1303))) (-15 -3788 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3789 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3789 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) |#3| (-114))) (-15 -3790 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3791 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#4| |#5|)) (-15 -3796 ((-114) |#4| |#5|)) (-15 -3792 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3793 ((-661 |#5|) |#4| |#5|)) (-15 -3794 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3795 ((-661 |#5|) |#4| |#5|)) (-15 -3796 ((-661 (-2 (|:| |val| (-114)) (|:| -1753 |#5|))) |#4| |#5|)) (-15 -3797 ((-661 |#5|) |#4| |#5|)) (-15 -3798 ((-661 (-2 (|:| |val| |#4|) (|:| -1753 |#5|))) |#4| |#5|))) +((-3049 (((-114) $ $) 7 T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4194 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4200 ((|#4| |#4| $) 97 T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 133 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-4311 (((-3 $ #1#) $) 87 T ELT)) (-4197 ((|#4| |#4| $) 94 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4195 ((|#4| |#4| $) 92 T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) 110 T ELT)) (-3697 (((-114) |#4| $) 143 T ELT)) (-3695 (((-114) |#4| $) 140 T ELT)) (-3698 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 134 T ELT)) (-4310 (((-3 |#4| #1#) $) 88 T ELT)) (-3692 (((-661 $) |#4| $) 136 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3738 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3942 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4209 (((-661 |#4|) $) 112 T ELT)) (-4203 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4198 ((|#4| |#4| $) 95 T ELT)) (-4211 (((-114) $ $) 115 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4199 ((|#4| |#4| $) 96 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-3 |#4| #1#) $) 89 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4281 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-4460 (((-791) $) 111 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-4196 (($ $) 93 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4190 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3689 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) 86 T ELT)) (-3696 (((-114) |#4| $) 142 T ELT)) (-4445 (((-114) |#3| $) 85 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-1139 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1139)) +NIL +(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-3809 (((-661 (-558)) (-558) (-558) (-558)) 40 T ELT)) (-3808 (((-661 (-558)) (-558) (-558) (-558)) 30 T ELT)) (-3807 (((-661 (-558)) (-558) (-558) (-558)) 35 T ELT)) (-3806 (((-558) (-558) (-558)) 22 T ELT)) (-3805 (((-1297 (-558)) (-661 (-558)) (-1297 (-558)) (-558)) 79 T ELT) (((-1297 (-558)) (-1297 (-558)) (-1297 (-558)) (-558)) 74 T ELT)) (-3804 (((-661 (-558)) (-661 (-947)) (-661 (-558)) (-114)) 56 T ELT)) (-3803 (((-709 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558))) 78 T ELT)) (-3802 (((-709 (-558)) (-661 (-947)) (-661 (-558))) 61 T ELT)) (-3801 (((-661 (-709 (-558))) (-661 (-947))) 67 T ELT)) (-3800 (((-661 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558))) 82 T ELT)) (-3799 (((-709 (-558)) (-661 (-558)) (-661 (-558)) (-661 (-558))) 92 T ELT))) +(((-1140) (-10 -7 (-15 -3799 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-661 (-558)))) (-15 -3800 ((-661 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3801 ((-661 (-709 (-558))) (-661 (-947)))) (-15 -3802 ((-709 (-558)) (-661 (-947)) (-661 (-558)))) (-15 -3803 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3804 ((-661 (-558)) (-661 (-947)) (-661 (-558)) (-114))) (-15 -3805 ((-1297 (-558)) (-1297 (-558)) (-1297 (-558)) (-558))) (-15 -3805 ((-1297 (-558)) (-661 (-558)) (-1297 (-558)) (-558))) (-15 -3806 ((-558) (-558) (-558))) (-15 -3807 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3808 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3809 ((-661 (-558)) (-558) (-558) (-558))))) (T -1140)) +((-3809 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558)))) (-3808 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558)))) (-3807 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1140)))) (-3805 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1297 (-558))) (-5 *3 (-661 (-558))) (-5 *4 (-558)) (-5 *1 (-1140)))) (-3805 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-558))) (-5 *3 (-558)) (-5 *1 (-1140)))) (-3804 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-661 (-558))) (-5 *3 (-661 (-947))) (-5 *4 (-114)) (-5 *1 (-1140)))) (-3803 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-709 (-558))) (-5 *3 (-661 (-558))) (-5 *1 (-1140)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-947))) (-5 *4 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1140)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1140)))) (-3800 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *3 (-709 (-558))) (-5 *1 (-1140)))) (-3799 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1140))))) +(-10 -7 (-15 -3799 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-661 (-558)))) (-15 -3800 ((-661 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3801 ((-661 (-709 (-558))) (-661 (-947)))) (-15 -3802 ((-709 (-558)) (-661 (-947)) (-661 (-558)))) (-15 -3803 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3804 ((-661 (-558)) (-661 (-947)) (-661 (-558)) (-114))) (-15 -3805 ((-1297 (-558)) (-1297 (-558)) (-1297 (-558)) (-558))) (-15 -3805 ((-1297 (-558)) (-661 (-558)) (-1297 (-558)) (-558))) (-15 -3806 ((-558) (-558) (-558))) (-15 -3807 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3808 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3809 ((-661 (-558)) (-558) (-558) (-558)))) +((** (($ $ (-947)) 10 T ELT))) +(((-1141 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-947)))) (-1142)) (T -1141)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-947)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (** (($ $ (-947)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1142) (-142)) (T -1142)) +((* (*1 *1 *1 *1) (-4 *1 (-1142))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-947))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-947))))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3688 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-4219 (($ (-947)) NIL (|has| |#3| (-1079)) ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-2883 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3620 (((-791)) NIL (|has| |#3| (-381)) ELT)) (-4300 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1131)) ELT)) (-3656 (((-558) $) NIL (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT) ((|#3| $) NIL (|has| |#3| (-1131)) ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-709 |#3|) (-709 $)) NIL (|has| |#3| (-1079)) ELT)) (-3969 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-3477 (($) NIL (|has| |#3| (-381)) ELT)) (-1729 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#3| $ (-558)) 12 T ELT)) (-3686 (((-114) $) NIL (|has| |#3| (-815)) ELT)) (-3372 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL (|has| |#3| (-1079)) ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-3089 (((-661 |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-2170 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2230 (((-947) $) NIL (|has| |#3| (-381)) ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-709 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT)) (-3742 (((-1189) $) NIL (|has| |#3| (-1131)) ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-2641 (($ (-947)) NIL (|has| |#3| (-381)) ELT)) (-3743 (((-1150) $) NIL (|has| |#3| (-1131)) ELT)) (-4313 ((|#3| $) NIL (|has| (-558) (-870)) ELT)) (-2424 (($ $ |#3|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-2430 (((-661 |#3|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) NIL T ELT)) (-4348 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-1610 (($ (-1297 |#3|)) NIL T ELT)) (-4423 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4270 (($ $ (-791)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#3| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4458 (((-1297 |#3|) $) NIL T ELT) (($ (-558)) NIL (-4039 (-12 (|has| |#3| (-1068 (-558))) (|has| |#3| (-1131))) (|has| |#3| (-1079))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1068 (-419 (-558)))) (|has| |#3| (-1131))) ELT) (($ |#3|) NIL (|has| |#3| (-1131)) ELT) (((-886) $) NIL (|has| |#3| (-630 (-886))) ELT)) (-3610 (((-791)) NIL (|has| |#3| (-1079)) CONST)) (-1387 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3141 (($) NIL (|has| |#3| (-23)) CONST)) (-3147 (($) NIL (|has| |#3| (-1079)) CONST)) (-3152 (($ $ (-791)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-928 (-1207))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1079)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#3| (-870)) ELT)) (-3168 (((-114) $ $) 24 (|has| |#3| (-870)) ELT)) (-4461 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4349 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-947)) NIL (|has| |#3| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1079)) ELT) (($ $ |#3|) NIL (|has| |#3| (-746)) ELT) (($ |#3| $) NIL (|has| |#3| (-746)) ELT) (($ (-558) $) NIL (|has| |#3| (-21)) ELT) (($ (-791) $) NIL (|has| |#3| (-23)) ELT) (($ (-947) $) NIL (|has| |#3| (-25)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1143 |#1| |#2| |#3|) (-245 |#1| |#3|) (-791) (-791) (-815)) (T -1143)) NIL (-245 |#1| |#3|) -((-3814 (((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|)) 50 T ELT)) (-3820 (((-560) (-1268 |#2| |#1|)) 96 (|has| |#1| (-466)) ELT)) (-3818 (((-560) (-1268 |#2| |#1|)) 79 T ELT)) (-3815 (((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|)) 58 T ELT)) (-3819 (((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|)) 95 (|has| |#1| (-466)) ELT)) (-3816 (((-663 |#1|) (-1268 |#2| |#1|) (-1268 |#2| |#1|)) 61 T ELT)) (-3817 (((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|)) 78 T ELT))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -3814 ((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3815 ((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3816 ((-663 |#1|) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3817 ((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3818 ((-560) (-1268 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3819 ((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3820 ((-560) (-1268 |#2| |#1|)))) |%noBranch|)) (-844) (-1209)) (T -1146)) -((-3820 (*1 *2 *3) (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-466)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) (-5 *1 (-1146 *4 *5)))) (-3819 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-466)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) (-5 *1 (-1146 *4 *5)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) (-5 *1 (-1146 *4 *5)))) (-3817 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) (-5 *1 (-1146 *4 *5)))) (-3816 (*1 *2 *3 *3) (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 *4)) (-5 *1 (-1146 *4 *5)))) (-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 (-1268 *5 *4))) (-5 *1 (-1146 *4 *5)) (-5 *3 (-1268 *5 *4)))) (-3814 (*1 *2 *3 *3) (-12 (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 (-1268 *5 *4))) (-5 *1 (-1146 *4 *5)) (-5 *3 (-1268 *5 *4))))) -(-10 -7 (-15 -3814 ((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3815 ((-663 (-1268 |#2| |#1|)) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3816 ((-663 |#1|) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3817 ((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3818 ((-560) (-1268 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3819 ((-560) (-1268 |#2| |#1|) (-1268 |#2| |#1|))) (-15 -3820 ((-560) (-1268 |#2| |#1|)))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3822 (((-1214) $) 12 T ELT)) (-3821 (((-663 (-1214)) $) 14 T ELT)) (-3823 (($ (-663 (-1214)) (-1214)) 10 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 29 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 17 T ELT))) -(((-1147) (-13 (-1133) (-10 -8 (-15 -3823 ($ (-663 (-1214)) (-1214))) (-15 -3822 ((-1214) $)) (-15 -3821 ((-663 (-1214)) $))))) (T -1147)) -((-3823 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1214))) (-5 *3 (-1214)) (-5 *1 (-1147)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-1147)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1147))))) -(-13 (-1133) (-10 -8 (-15 -3823 ($ (-663 (-1214)) (-1214))) (-15 -3822 ((-1214) $)) (-15 -3821 ((-663 (-1214)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3824 (($ (-520) (-1147)) 13 T ELT)) (-3823 (((-1147) $) 19 T ELT)) (-4056 (((-520) $) 16 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 26 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1148) (-13 (-1115) (-10 -8 (-15 -3824 ($ (-520) (-1147))) (-15 -4056 ((-520) $)) (-15 -3823 ((-1147) $))))) (T -1148)) -((-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1147)) (-5 *1 (-1148)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1148)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1148))))) -(-13 (-1115) (-10 -8 (-15 -3824 ($ (-520) (-1147))) (-15 -4056 ((-520) $)) (-15 -3823 ((-1147) $)))) -((-4139 (((-3 (-560) #1="failed") |#2| (-1209) |#2| (-1191)) 19 T ELT) (((-3 (-560) #1#) |#2| (-1209) (-866 |#2|)) 17 T ELT) (((-3 (-560) #1#) |#2|) 60 T ELT))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -4139 ((-3 (-560) #1="failed") |#2|)) (-15 -4139 ((-3 (-560) #1#) |#2| (-1209) (-866 |#2|))) (-15 -4139 ((-3 (-560) #1#) |#2| (-1209) |#2| (-1191)))) (-13 (-571) (-1070 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1235) (-435 |#1|))) (T -1149)) -((-4139 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-1191)) (-4 *6 (-13 (-571) (-1070 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1149 *6 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))))) (-4139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-866 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) (-4 *6 (-13 (-571) (-1070 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1149 *6 *3)))) (-4139 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1070 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4)))))) -(-10 -7 (-15 -4139 ((-3 (-560) #1="failed") |#2|)) (-15 -4139 ((-3 (-560) #1#) |#2| (-1209) (-866 |#2|))) (-15 -4139 ((-3 (-560) #1#) |#2| (-1209) |#2| (-1191)))) -((-4139 (((-3 (-560) #1="failed") (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|)) (-1191)) 38 T ELT) (((-3 (-560) #1#) (-421 (-976 |#1|)) (-1209) (-866 (-421 (-976 |#1|)))) 33 T ELT) (((-3 (-560) #1#) (-421 (-976 |#1|))) 14 T ELT))) -(((-1150 |#1|) (-10 -7 (-15 -4139 ((-3 (-560) #1="failed") (-421 (-976 |#1|)))) (-15 -4139 ((-3 (-560) #1#) (-421 (-976 |#1|)) (-1209) (-866 (-421 (-976 |#1|))))) (-15 -4139 ((-3 (-560) #1#) (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|)) (-1191)))) (-466)) (T -1150)) -((-4139 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-421 (-976 *6))) (-5 *4 (-1209)) (-5 *5 (-1191)) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1150 *6)))) (-4139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-866 (-421 (-976 *6)))) (-5 *3 (-421 (-976 *6))) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1150 *6)))) (-4139 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-466)) (-5 *2 (-560)) (-5 *1 (-1150 *4))))) -(-10 -7 (-15 -4139 ((-3 (-560) #1="failed") (-421 (-976 |#1|)))) (-15 -4139 ((-3 (-560) #1#) (-421 (-976 |#1|)) (-1209) (-866 (-421 (-976 |#1|))))) (-15 -4139 ((-3 (-560) #1#) (-421 (-976 |#1|)) (-1209) (-421 (-976 |#1|)) (-1191)))) -((-4165 (((-326 (-560)) (-48)) 12 T ELT))) -(((-1151) (-10 -7 (-15 -4165 ((-326 (-560)) (-48))))) (T -1151)) -((-4165 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1151))))) -(-10 -7 (-15 -4165 ((-326 (-560)) (-48)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) 41 T ELT)) (-3692 (((-114) $) 70 T ELT)) (-3828 (($ $ $) 50 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 96 T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2271 (($ $ $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-2266 (($ $ $ $) 80 T ELT)) (-4291 (($ $) NIL T ELT)) (-4487 (((-419 $) $) NIL T ELT)) (-1800 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) 81 T ELT)) (-4139 (((-560) $) NIL T ELT)) (-2844 (($ $ $) 77 T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) "failed") $) NIL T ELT)) (-3660 (((-560) $) NIL T ELT)) (-3049 (($ $ $) 63 T ELT)) (-2507 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 90 T ELT) (((-711 (-560)) (-711 $)) 29 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3511 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3510 (((-114) $) NIL T ELT)) (-3509 (((-421 (-560)) $) NIL T ELT)) (-3481 (($) 94 T ELT) (($ $) 93 T ELT)) (-3048 (($ $ $) 62 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL T ELT)) (-4239 (((-114) $) NIL T ELT)) (-2264 (($ $ $ $) NIL T ELT)) (-2272 (($ $ $) 91 T ELT)) (-3690 (((-114) $) 97 T ELT)) (-1495 (($ $ $) NIL T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL T ELT)) (-3046 (($ $ $) 49 T ELT)) (-2655 (((-114) $) 71 T ELT)) (-3160 (((-114) $) 68 T ELT)) (-3045 (($ $) 42 T ELT)) (-3951 (((-713 $) $) NIL T ELT)) (-3691 (((-114) $) 7 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL T ELT)) (-2265 (($ $ $ $) 78 T ELT)) (-3016 (($ $ $) 73 T ELT) (($) 39 T CONST)) (-3344 (($ $ $) 72 T ELT) (($) 38 T CONST)) (-2268 (($ $) NIL T ELT)) (-2234 (((-949) $) 86 T ELT)) (-4349 (($ $) 76 T ELT)) (-2508 (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL T ELT) (((-711 (-560)) (-1299 $)) NIL T ELT)) (-2116 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2263 (($ $ $) NIL T ELT)) (-3952 (($) NIL T CONST)) (-2645 (($ (-949)) 85 T ELT)) (-2270 (($ $) 55 T ELT)) (-3747 (((-1152) $) 75 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-3648 (($ $ $) 66 T ELT) (($ (-663 $)) NIL T ELT)) (-1493 (($ $) NIL T ELT)) (-4248 (((-419 $) $) NIL T ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL T ELT)) (-3161 (((-114) $) 69 T ELT)) (-1799 (((-793) $) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 65 T ELT)) (-4274 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2269 (($ $) 56 T ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-560) $) 14 T ELT) (((-549) $) NIL T ELT) (((-916 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-4462 (((-888) $) 32 T ELT) (($ (-560)) 92 T ELT) (($ $) NIL T ELT) (($ (-560)) 92 T ELT)) (-3614 (((-793)) NIL T CONST)) (-2273 (((-114) $ $) NIL T ELT)) (-3590 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3181 (($) 37 T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3047 (($ $ $) 47 T ELT)) (-2267 (($ $ $ $) 79 T ELT)) (-3889 (($ $) 67 T ELT)) (-2538 (($ $ $) 44 T ELT)) (-3145 (($) 35 T CONST)) (-3825 (($ $ $) 48 T ELT)) (-3151 (($) 36 T CONST)) (-2982 (((-1191) $) 23 T ELT) (((-1191) $ (-114)) 24 T ELT) (((-1305) (-847) $) 25 T ELT) (((-1305) (-847) $ (-114)) 26 T ELT)) (-3827 (($ $) 45 T ELT)) (-3156 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3826 (($ $ $) 46 T ELT)) (-3051 (((-114) $ $) 54 T ELT)) (-3052 (((-114) $ $) 52 T ELT)) (-3540 (((-114) $ $) 40 T ELT)) (-3171 (((-114) $ $) 53 T ELT)) (-3172 (((-114) $ $) 51 T ELT)) (-2539 (($ $ $) 43 T ELT)) (-4353 (($ $) 13 T ELT) (($ $ $) 58 T ELT)) (-4355 (($ $ $) 57 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 61 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 34 T ELT) (($ $ $) 59 T ELT) (($ (-560) $) 34 T ELT))) -(((-1152) (-13 (-559) (-868) (-113) (-845) (-10 -8 (-6 -4498) (-6 -4503) (-6 -4499) (-15 -3828 ($ $ $)) (-15 -3827 ($ $)) (-15 -3826 ($ $ $)) (-15 -3825 ($ $ $))))) (T -1152)) -((-3828 (*1 *1 *1 *1) (-5 *1 (-1152))) (-3827 (*1 *1 *1) (-5 *1 (-1152))) (-3826 (*1 *1 *1 *1) (-5 *1 (-1152))) (-3825 (*1 *1 *1 *1) (-5 *1 (-1152)))) -(-13 (-559) (-868) (-113) (-845) (-10 -8 (-6 -4498) (-6 -4503) (-6 -4499) (-15 -3828 ($ $ $)) (-15 -3827 ($ $)) (-15 -3826 ($ $ $)) (-15 -3825 ($ $ $)))) +((-3810 (((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 50 T ELT)) (-3816 (((-558) (-1266 |#2| |#1|)) 96 (|has| |#1| (-464)) ELT)) (-3814 (((-558) (-1266 |#2| |#1|)) 79 T ELT)) (-3811 (((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 58 T ELT)) (-3815 (((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 95 (|has| |#1| (-464)) ELT)) (-3812 (((-661 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 61 T ELT)) (-3813 (((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 78 T ELT))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -3810 ((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3811 ((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3812 ((-661 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3813 ((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3814 ((-558) (-1266 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3815 ((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3816 ((-558) (-1266 |#2| |#1|)))) |%noBranch|)) (-842) (-1207)) (T -1144)) +((-3816 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) (-5 *1 (-1144 *4 *5)))) (-3815 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) (-5 *1 (-1144 *4 *5)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) (-5 *1 (-1144 *4 *5)))) (-3813 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) (-5 *1 (-1144 *4 *5)))) (-3812 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 *4)) (-5 *1 (-1144 *4 *5)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 (-1266 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1266 *5 *4)))) (-3810 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 (-1266 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1266 *5 *4))))) +(-10 -7 (-15 -3810 ((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3811 ((-661 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3812 ((-661 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3813 ((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3814 ((-558) (-1266 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3815 ((-558) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3816 ((-558) (-1266 |#2| |#1|)))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3818 (((-1212) $) 12 T ELT)) (-3817 (((-661 (-1212)) $) 14 T ELT)) (-3819 (($ (-661 (-1212)) (-1212)) 10 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 29 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 17 T ELT))) +(((-1145) (-13 (-1131) (-10 -8 (-15 -3819 ($ (-661 (-1212)) (-1212))) (-15 -3818 ((-1212) $)) (-15 -3817 ((-661 (-1212)) $))))) (T -1145)) +((-3819 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1145)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1145)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1145))))) +(-13 (-1131) (-10 -8 (-15 -3819 ($ (-661 (-1212)) (-1212))) (-15 -3818 ((-1212) $)) (-15 -3817 ((-661 (-1212)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3820 (($ (-518) (-1145)) 13 T ELT)) (-3819 (((-1145) $) 19 T ELT)) (-4052 (((-518) $) 16 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 26 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1146) (-13 (-1113) (-10 -8 (-15 -3820 ($ (-518) (-1145))) (-15 -4052 ((-518) $)) (-15 -3819 ((-1145) $))))) (T -1146)) +((-3820 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1145)) (-5 *1 (-1146)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1146)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1146))))) +(-13 (-1113) (-10 -8 (-15 -3820 ($ (-518) (-1145))) (-15 -4052 ((-518) $)) (-15 -3819 ((-1145) $)))) +((-4135 (((-3 (-558) #1="failed") |#2| (-1207) |#2| (-1189)) 19 T ELT) (((-3 (-558) #1#) |#2| (-1207) (-864 |#2|)) 17 T ELT) (((-3 (-558) #1#) |#2|) 60 T ELT))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -4135 ((-3 (-558) #1="failed") |#2|)) (-15 -4135 ((-3 (-558) #1#) |#2| (-1207) (-864 |#2|))) (-15 -4135 ((-3 (-558) #1#) |#2| (-1207) |#2| (-1189)))) (-13 (-569) (-1068 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1233) (-433 |#1|))) (T -1147)) +((-4135 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-13 (-569) (-1068 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1147 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))))) (-4135 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) (-4 *6 (-13 (-569) (-1068 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1147 *6 *3)))) (-4135 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4)))))) +(-10 -7 (-15 -4135 ((-3 (-558) #1="failed") |#2|)) (-15 -4135 ((-3 (-558) #1#) |#2| (-1207) (-864 |#2|))) (-15 -4135 ((-3 (-558) #1#) |#2| (-1207) |#2| (-1189)))) +((-4135 (((-3 (-558) #1="failed") (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|)) (-1189)) 38 T ELT) (((-3 (-558) #1#) (-419 (-974 |#1|)) (-1207) (-864 (-419 (-974 |#1|)))) 33 T ELT) (((-3 (-558) #1#) (-419 (-974 |#1|))) 14 T ELT))) +(((-1148 |#1|) (-10 -7 (-15 -4135 ((-3 (-558) #1="failed") (-419 (-974 |#1|)))) (-15 -4135 ((-3 (-558) #1#) (-419 (-974 |#1|)) (-1207) (-864 (-419 (-974 |#1|))))) (-15 -4135 ((-3 (-558) #1#) (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|)) (-1189)))) (-464)) (T -1148)) +((-4135 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-974 *6))) (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1148 *6)))) (-4135 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-419 (-974 *6)))) (-5 *3 (-419 (-974 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1148 *6)))) (-4135 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-464)) (-5 *2 (-558)) (-5 *1 (-1148 *4))))) +(-10 -7 (-15 -4135 ((-3 (-558) #1="failed") (-419 (-974 |#1|)))) (-15 -4135 ((-3 (-558) #1#) (-419 (-974 |#1|)) (-1207) (-864 (-419 (-974 |#1|))))) (-15 -4135 ((-3 (-558) #1#) (-419 (-974 |#1|)) (-1207) (-419 (-974 |#1|)) (-1189)))) +((-4161 (((-326 (-558)) (-48)) 12 T ELT))) +(((-1149) (-10 -7 (-15 -4161 ((-326 (-558)) (-48))))) (T -1149)) +((-4161 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1149))))) +(-10 -7 (-15 -4161 ((-326 (-558)) (-48)))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) 41 T ELT)) (-3688 (((-114) $) 70 T ELT)) (-3824 (($ $ $) 50 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 96 T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-2267 (($ $ $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-2262 (($ $ $ $) 80 T ELT)) (-4287 (($ $) NIL T ELT)) (-4483 (((-417 $) $) NIL T ELT)) (-1798 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) 81 T ELT)) (-4135 (((-558) $) NIL T ELT)) (-2840 (($ $ $) 77 T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) "failed") $) NIL T ELT)) (-3656 (((-558) $) NIL T ELT)) (-3045 (($ $ $) 63 T ELT)) (-2503 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 90 T ELT) (((-709 (-558)) (-709 $)) 29 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3507 (((-3 (-419 (-558)) "failed") $) NIL T ELT)) (-3506 (((-114) $) NIL T ELT)) (-3505 (((-419 (-558)) $) NIL T ELT)) (-3477 (($) 94 T ELT) (($ $) 93 T ELT)) (-3044 (($ $ $) 62 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL T ELT)) (-4235 (((-114) $) NIL T ELT)) (-2260 (($ $ $ $) NIL T ELT)) (-2268 (($ $ $) 91 T ELT)) (-3686 (((-114) $) 97 T ELT)) (-1493 (($ $ $) NIL T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL T ELT)) (-3042 (($ $ $) 49 T ELT)) (-2651 (((-114) $) 71 T ELT)) (-3156 (((-114) $) 68 T ELT)) (-3041 (($ $) 42 T ELT)) (-3947 (((-711 $) $) NIL T ELT)) (-3687 (((-114) $) 7 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL T ELT)) (-2261 (($ $ $ $) 78 T ELT)) (-3012 (($ $ $) 73 T ELT) (($) 39 T CONST)) (-3340 (($ $ $) 72 T ELT) (($) 38 T CONST)) (-2264 (($ $) NIL T ELT)) (-2230 (((-947) $) 86 T ELT)) (-4345 (($ $) 76 T ELT)) (-2504 (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL T ELT) (((-709 (-558)) (-1297 $)) NIL T ELT)) (-2112 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2259 (($ $ $) NIL T ELT)) (-3948 (($) NIL T CONST)) (-2641 (($ (-947)) 85 T ELT)) (-2266 (($ $) 55 T ELT)) (-3743 (((-1150) $) 75 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-3644 (($ $ $) 66 T ELT) (($ (-661 $)) NIL T ELT)) (-1491 (($ $) NIL T ELT)) (-4244 (((-417 $) $) NIL T ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3157 (((-114) $) 69 T ELT)) (-1797 (((-791) $) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 65 T ELT)) (-4270 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2265 (($ $) 56 T ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-558) $) 14 T ELT) (((-547) $) NIL T ELT) (((-914 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-4458 (((-886) $) 32 T ELT) (($ (-558)) 92 T ELT) (($ $) NIL T ELT) (($ (-558)) 92 T ELT)) (-3610 (((-791)) NIL T CONST)) (-2269 (((-114) $ $) NIL T ELT)) (-3586 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3177 (($) 37 T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3043 (($ $ $) 47 T ELT)) (-2263 (($ $ $ $) 79 T ELT)) (-3885 (($ $) 67 T ELT)) (-2534 (($ $ $) 44 T ELT)) (-3141 (($) 35 T CONST)) (-3821 (($ $ $) 48 T ELT)) (-3147 (($) 36 T CONST)) (-2978 (((-1189) $) 23 T ELT) (((-1189) $ (-114)) 24 T ELT) (((-1303) (-845) $) 25 T ELT) (((-1303) (-845) $ (-114)) 26 T ELT)) (-3823 (($ $) 45 T ELT)) (-3152 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3822 (($ $ $) 46 T ELT)) (-3047 (((-114) $ $) 54 T ELT)) (-3048 (((-114) $ $) 52 T ELT)) (-3536 (((-114) $ $) 40 T ELT)) (-3167 (((-114) $ $) 53 T ELT)) (-3168 (((-114) $ $) 51 T ELT)) (-2535 (($ $ $) 43 T ELT)) (-4349 (($ $) 13 T ELT) (($ $ $) 58 T ELT)) (-4351 (($ $ $) 57 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 61 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 34 T ELT) (($ $ $) 59 T ELT) (($ (-558) $) 34 T ELT))) +(((-1150) (-13 (-557) (-866) (-113) (-843) (-10 -8 (-6 -4494) (-6 -4499) (-6 -4495) (-15 -3824 ($ $ $)) (-15 -3823 ($ $)) (-15 -3822 ($ $ $)) (-15 -3821 ($ $ $))))) (T -1150)) +((-3824 (*1 *1 *1 *1) (-5 *1 (-1150))) (-3823 (*1 *1 *1) (-5 *1 (-1150))) (-3822 (*1 *1 *1 *1) (-5 *1 (-1150))) (-3821 (*1 *1 *1 *1) (-5 *1 (-1150)))) +(-13 (-557) (-866) (-113) (-843) (-10 -8 (-6 -4494) (-6 -4499) (-6 -4495) (-15 -3824 ($ $ $)) (-15 -3823 ($ $)) (-15 -3822 ($ $ $)) (-15 -3821 ($ $ $)))) ((|Integer|) (|%ismall?| |#1|)) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3830 ((|#1| $) 48 T ELT)) (-4240 (($) 7 T CONST)) (-3832 ((|#1| |#1| $) 50 T ELT)) (-3831 ((|#1| $) 49 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 43 T ELT)) (-4123 (($ |#1| $) 44 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 45 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-3829 (((-793) $) 47 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) 46 T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1153 |#1|) (-142) (-1249)) (T -1153)) -((-3832 (*1 *2 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1249)) (-5 *2 (-793))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4511) (-15 -3832 (|t#1| |t#1| $)) (-15 -3831 (|t#1| $)) (-15 -3830 (|t#1| $)) (-15 -3829 ((-793) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3836 ((|#3| $) 87 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3660 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL T ELT) (((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 $) (-1299 $)) 84 T ELT) (((-711 |#3|) (-711 $)) 76 T ELT)) (-4274 (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-3835 ((|#3| $) 89 T ELT)) (-3837 ((|#4| $) 43 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 24 T ELT) (($ $ (-560)) 95 T ELT))) -(((-1154 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3835 (|#3| |#1|)) (-15 -3836 (|#3| |#1|)) (-15 -3837 (|#4| |#1|)) (-15 -2507 ((-711 |#3|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -4462 (|#1| |#3|)) (-15 -3661 ((-3 |#3| #1="failed") |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949))) (-15 -4462 ((-888) |#1|))) (-1155 |#2| |#3| |#4| |#5|) (-793) (-1081) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1154)) -NIL -(-10 -8 (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3835 (|#3| |#1|)) (-15 -3836 (|#3| |#1|)) (-15 -3837 (|#4| |#1|)) (-15 -2507 ((-711 |#3|) (-711 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 |#3|)) (|:| |vec| (-1299 |#3|))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 |#1|) (-1299 |#1|))) (-15 -2507 ((-711 (-560)) (-711 |#1|))) (-15 -4462 (|#1| |#3|)) (-15 -3661 ((-3 |#3| #1="failed") |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4274 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3836 ((|#2| $) 87 T ELT)) (-3609 (((-114) $) 128 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3611 (((-114) $) 126 T ELT)) (-3839 (($ |#2|) 90 T ELT)) (-4240 (($) 22 T CONST)) (-3598 (($ $) 145 (|has| |#2| (-319)) ELT)) (-3600 ((|#3| $ (-560)) 140 T ELT)) (-3661 (((-3 (-560) #1="failed") $) 106 (|has| |#2| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) 103 (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3660 (((-560) $) 105 (|has| |#2| (-1070 (-560))) ELT) (((-421 (-560)) $) 102 (|has| |#2| (-1070 (-421 (-560)))) ELT) ((|#2| $) 101 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 96 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 95 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 94 T ELT) (((-711 |#2|) (-711 $)) 93 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3597 (((-793) $) 146 (|has| |#2| (-571)) ELT)) (-3601 ((|#2| $ (-560) (-560)) 138 T ELT)) (-3376 (((-663 |#2|) $) 114 (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-3596 (((-793) $) 147 (|has| |#2| (-571)) ELT)) (-3595 (((-663 |#4|) $) 148 (|has| |#2| (-571)) ELT)) (-3603 (((-793) $) 134 T ELT)) (-3602 (((-793) $) 135 T ELT)) (-3833 ((|#2| $) 82 (|has| |#2| (-6 (-4513 #2="*"))) ELT)) (-3607 (((-560) $) 130 T ELT)) (-3605 (((-560) $) 132 T ELT)) (-3093 (((-663 |#2|) $) 113 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) 111 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3606 (((-560) $) 131 T ELT)) (-3604 (((-560) $) 133 T ELT)) (-3612 (($ (-663 (-663 |#2|))) 125 T ELT)) (-2174 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-4108 (((-663 (-663 |#2|)) $) 136 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 98 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 97 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) 92 T ELT) (((-711 |#2|) (-1299 $)) 91 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-4104 (((-3 $ "failed") $) 81 (|has| |#2| (-376)) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3972 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) 116 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) 110 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) 109 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 107 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) 124 T ELT)) (-3909 (((-114) $) 121 T ELT)) (-4079 (($) 122 T ELT)) (-4316 ((|#2| $ (-560) (-560) |#2|) 139 T ELT) ((|#2| $ (-560) (-560)) 137 T ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-239)) ELT) (($ $ (-793)) 50 (|has| |#2| (-239)) ELT) (($ $ (-1209)) 60 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 58 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 57 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 56 (|has| |#2| (-930 (-1209))) ELT)) (-3835 ((|#2| $) 86 T ELT)) (-3838 (($ (-663 |#2|)) 89 T ELT)) (-3610 (((-114) $) 127 T ELT)) (-3837 ((|#3| $) 88 T ELT)) (-3834 ((|#2| $) 83 (|has| |#2| (-6 (-4513 #2#))) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) 115 (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) 112 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 123 T ELT)) (-3599 ((|#4| $ (-560)) 141 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 104 (|has| |#2| (-1070 (-421 (-560)))) ELT) (($ |#2|) 99 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) 117 (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) 129 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-239)) ELT) (($ $ (-793)) 49 (|has| |#2| (-239)) ELT) (($ $ (-1209)) 59 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 55 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 54 (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 53 (|has| |#2| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#2|) 144 (|has| |#2| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 80 (|has| |#2| (-376)) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4473 (((-793) $) 120 (|has| $ (-6 -4511)) ELT))) -(((-1155 |#1| |#2| |#3| |#4|) (-142) (-793) (-1081) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1155)) -((-3839 (*1 *1 *2) (-12 (-4 *2 (-1081)) (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1081)) (-4 *1 (-1155 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4 *2 *5)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1081)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1081)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1155 *3 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1155 *3 *4 *2 *5)) (-4 *4 (-1081)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4513 #1="*"))) (-4 *2 (-1081)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4513 #1#))) (-4 *2 (-1081)))) (-4104 (*1 *1 *1) (|partial| -12 (-4 *1 (-1155 *2 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) -(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1085 |t#1| |t#1| |t#2| |t#3| |t#4|) (-426 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (-15 -3839 ($ |t#2|)) (-15 -3838 ($ (-663 |t#2|))) (-15 -3837 (|t#3| $)) (-15 -3836 (|t#2| $)) (-15 -3835 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4513 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3834 (|t#2| $)) (-15 -3833 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -4104 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4513 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 #2=(-421 (-560))) |has| |#2| (-1070 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#2|) . T) ((-632 (-888)) . T) ((-236 $) -4043 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -4043 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-390 |#2|) . T) ((-426 |#2|) . T) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 #3=(-560)) |has| |#2| (-660 (-560))) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-6 (-4513 #1#)))) ((-660 #3#) |has| |#2| (-660 (-560))) ((-660 |#2|) . T) ((-739 |#2|) -4043 (|has| |#2| (-175)) (|has| |#2| (-6 (-4513 #1#)))) ((-748) . T) ((-922 $ #4=(-1209)) -4043 (|has| |#2| (-930 (-1209))) (|has| |#2| (-928 (-1209)))) ((-928 (-1209)) |has| |#2| (-928 (-1209))) ((-930 #4#) -4043 (|has| |#2| (-930 (-1209))) (|has| |#2| (-928 (-1209)))) ((-1085 |#1| |#1| |#2| |#3| |#4|) . T) ((-1070 #2#) |has| |#2| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#2| (-1070 (-560))) ((-1070 |#2|) . T) ((-1083 |#2|) . T) ((-1088 |#2|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3842 ((|#4| |#4|) 81 T ELT)) (-3840 ((|#4| |#4|) 76 T ELT)) (-3844 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2236 (-663 |#3|))) |#4| |#3|) 91 T ELT)) (-3843 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3841 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3840 (|#4| |#4|)) (-15 -3841 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3842 (|#4| |#4|)) (-15 -3843 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3844 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2236 (-663 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1156)) -((-3844 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2236 (-663 *4)))) (-5 *1 (-1156 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1156 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1156 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1156 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1156 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -3840 (|#4| |#4|)) (-15 -3841 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3842 (|#4| |#4|)) (-15 -3843 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3844 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2236 (-663 |#3|))) |#4| |#3|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 18 T ELT)) (-3570 (((-663 |#2|) $) 174 T ELT)) (-3572 (((-1203 $) $ |#2|) 60 T ELT) (((-1203 |#1|) $) 49 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 116 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 118 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 120 (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) 214 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) 167 T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3660 ((|#1| $) 165 T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) ((|#2| $) NIL T ELT)) (-4272 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4475 (($ $) 218 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) 90 T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| |#1| (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| |#1| (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-2655 (((-114) $) 20 T ELT)) (-2663 (((-793) $) 30 T ELT)) (-3573 (($ (-1203 |#1|) |#2|) 54 T ELT) (($ (-1203 $) |#2|) 71 T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) 38 T ELT)) (-3380 (($ |#1| (-545 |#2|)) 78 T ELT) (($ $ |#2| (-793)) 58 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ |#2|) NIL T ELT)) (-3307 (((-545 |#2|) $) 205 T ELT) (((-793) $ |#2|) 206 T ELT) (((-663 (-793)) $ (-663 |#2|)) 207 T ELT)) (-1817 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3571 (((-3 |#2| #3="failed") $) 177 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) 217 T ELT)) (-3678 ((|#1| $) 43 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3310 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #3#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| |#2|) (|:| -2646 (-793))) #3#) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) 39 T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 148 (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) 153 (|has| |#1| (-466)) ELT) (($ $ $) 138 (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-940)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-571)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-663 |#2|) (-663 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-663 |#2|) (-663 $)) 194 T ELT)) (-4273 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4464 (((-545 |#2|) $) 201 T ELT) (((-793) $ |#2|) 196 T ELT) (((-663 (-793)) $ (-663 |#2|)) 199 T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| |#1| (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#1| $) 134 (|has| |#1| (-466)) ELT) (($ $ |#2|) 137 (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4462 (((-888) $) 159 T ELT) (($ (-560)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-4333 (((-663 |#1|) $) 162 T ELT)) (-4193 ((|#1| $ (-545 |#2|)) 80 T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 87 T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) 123 (|has| |#1| (-571)) ELT)) (-3145 (($) 12 T CONST)) (-3151 (($) 14 T CONST)) (-3156 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3540 (((-114) $ $) 106 T ELT)) (-4465 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-4355 (($ $ $) 55 T ELT)) (** (($ $ (-949)) 110 T ELT) (($ $ (-793)) 109 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1157 |#1| |#2|) (-980 |#1| (-545 |#2|) |#2|) (-1081) (-872)) (T -1157)) -NIL -(-980 |#1| (-545 |#2|) |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 |#2|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3998 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4000 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4330 (((-976 |#1|) $ (-793)) NIL T ELT) (((-976 |#1|) $ (-793) (-793)) NIL T ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $ |#2|) NIL T ELT) (((-793) $ |#2| (-793)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ $ (-663 |#2|) (-663 (-545 |#2|))) NIL T ELT) (($ $ |#2| (-545 |#2|)) NIL T ELT) (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 63 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4328 (($ $ |#2|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4192 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4285 (($ $ (-793)) 16 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4459 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (($ $ |#2| $) 106 T ELT) (($ $ (-663 |#2|) (-663 $)) 99 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-4274 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4464 (((-545 |#2|) $) NIL T ELT)) (-3845 (((-1 (-1187 |#3|) |#3|) (-663 |#2|) (-663 (-1187 |#3|))) 87 T ELT)) (-4001 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 18 T ELT)) (-4462 (((-888) $) 198 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4193 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) ((|#3| $ (-793)) 43 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4007 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 52 T CONST)) (-3151 (($) 62 T CONST)) (-3156 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 66 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) 117 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 115 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1158 |#1| |#2| |#3|) (-13 (-762 |#1| |#2|) (-10 -8 (-15 -4193 (|#3| $ (-793))) (-15 -4462 ($ |#2|)) (-15 -4462 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3845 ((-1 (-1187 |#3|) |#3|) (-663 |#2|) (-663 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $ |#2| |#1|)) (-15 -4192 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1081) (-872) (-980 |#1| (-545 |#2|) |#2|)) (T -1158)) -((-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-980 *4 (-545 *5) *5)) (-5 *1 (-1158 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-872)))) (-4462 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-4 *2 (-872)) (-5 *1 (-1158 *3 *2 *4)) (-4 *4 (-980 *3 (-545 *2) *2)))) (-4462 (*1 *1 *2) (-12 (-4 *3 (-1081)) (-4 *4 (-872)) (-5 *1 (-1158 *3 *4 *2)) (-4 *2 (-980 *3 (-545 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1081)) (-4 *4 (-872)) (-5 *1 (-1158 *3 *4 *2)) (-4 *2 (-980 *3 (-545 *4) *4)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1187 *7))) (-4 *6 (-872)) (-4 *7 (-980 *5 (-545 *6) *6)) (-4 *5 (-1081)) (-5 *2 (-1 (-1187 *7) *7)) (-5 *1 (-1158 *5 *6 *7)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-4 *2 (-872)) (-5 *1 (-1158 *3 *2 *4)) (-4 *4 (-980 *3 (-545 *2) *2)))) (-4192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1158 *4 *3 *5))) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1081)) (-4 *3 (-872)) (-5 *1 (-1158 *4 *3 *5)) (-4 *5 (-980 *4 (-545 *3) *3))))) -(-13 (-762 |#1| |#2|) (-10 -8 (-15 -4193 (|#3| $ (-793))) (-15 -4462 ($ |#2|)) (-15 -4462 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3845 ((-1 (-1187 |#3|) |#3|) (-663 |#2|) (-663 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $ |#2| |#1|)) (-15 -4192 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3053 (((-114) $ $) 7 T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) 90 T ELT)) (-4198 (((-663 $) (-663 |#4|)) 91 T ELT) (((-663 $) (-663 |#4|) (-114)) 118 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4204 ((|#4| |#4| $) 97 T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 133 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-4315 (((-3 $ #1#) $) 87 T ELT)) (-4201 ((|#4| |#4| $) 94 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4199 ((|#4| |#4| $) 92 T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) 110 T ELT)) (-3701 (((-114) |#4| $) 143 T ELT)) (-3699 (((-114) |#4| $) 140 T ELT)) (-3702 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) 135 T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 134 T ELT)) (-4314 (((-3 |#4| #1#) $) 88 T ELT)) (-3696 (((-663 $) |#4| $) 136 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) 139 T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3742 (((-663 $) |#4| $) 132 T ELT) (((-663 $) (-663 |#4|) $) 131 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 130 T ELT) (((-663 $) |#4| (-663 $)) 129 T ELT)) (-3946 (($ |#4| $) 124 T ELT) (($ (-663 |#4|) $) 123 T ELT)) (-4213 (((-663 |#4|) $) 112 T ELT)) (-4207 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4202 ((|#4| |#4| $) 95 T ELT)) (-4215 (((-114) $ $) 115 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4203 ((|#4| |#4| $) 96 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-3 |#4| #1#) $) 89 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4285 (($ $ |#4|) 82 T ELT) (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-4464 (((-793) $) 111 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-4200 (($ $) 93 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-4194 (((-793) $) 81 (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 103 T ELT)) (-3693 (((-663 $) |#4| $) 128 T ELT) (((-663 $) |#4| (-663 $)) 127 T ELT) (((-663 $) (-663 |#4|) $) 126 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 125 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) 86 T ELT)) (-3700 (((-114) |#4| $) 142 T ELT)) (-4449 (((-114) |#3| $) 85 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-1159 |#1| |#2| |#3| |#4|) (-142) (-466) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -1159)) -NIL -(-13 (-1141 |t#1| |t#2| |t#3| |t#4|) (-806 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-806 |#1| |#2| |#3| |#4|) . T) ((-1008 |#1| |#2| |#3| |#4|) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1133) . T) ((-1141 |#1| |#2| |#3| |#4|) . T) ((-1244 |#1| |#2| |#3| |#4|) . T) ((-1249) . T)) -((-4087 (((-663 |#2|) |#1|) 15 T ELT)) (-3851 (((-663 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-663 |#2|) |#1|) 61 T ELT)) (-3849 (((-663 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-663 |#2|) |#1|) 59 T ELT)) (-3846 ((|#2| |#1|) 54 T ELT)) (-3847 (((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3848 (((-663 |#2|) |#2| |#2|) 42 T ELT) (((-663 |#2|) |#1|) 58 T ELT)) (-3850 (((-663 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-663 |#2|) |#1|) 60 T ELT)) (-3855 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3853 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3852 ((|#2| |#2| |#2|) 50 T ELT)) (-3854 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1160 |#1| |#2|) (-10 -7 (-15 -4087 ((-663 |#2|) |#1|)) (-15 -3846 (|#2| |#1|)) (-15 -3847 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3848 ((-663 |#2|) |#1|)) (-15 -3849 ((-663 |#2|) |#1|)) (-15 -3850 ((-663 |#2|) |#1|)) (-15 -3851 ((-663 |#2|) |#1|)) (-15 -3848 ((-663 |#2|) |#2| |#2|)) (-15 -3849 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -3850 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3851 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3852 (|#2| |#2| |#2|)) (-15 -3853 (|#2| |#2| |#2| |#2|)) (-15 -3854 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3855 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1275 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (T -1160)) -((-3855 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2)))) (-3854 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2)))) (-3853 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2)))) (-3852 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2)))) (-3851 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3)))) (-3850 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3)))) (-3849 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3)))) (-3848 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) (-3849 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-2 (|:| |solns| (-663 *5)) (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1160 *3 *5)) (-4 *3 (-1275 *5)))) (-3846 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -4087 ((-663 |#2|) |#1|)) (-15 -3846 (|#2| |#1|)) (-15 -3847 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3848 ((-663 |#2|) |#1|)) (-15 -3849 ((-663 |#2|) |#1|)) (-15 -3850 ((-663 |#2|) |#1|)) (-15 -3851 ((-663 |#2|) |#1|)) (-15 -3848 ((-663 |#2|) |#2| |#2|)) (-15 -3849 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -3850 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3851 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3852 (|#2| |#2| |#2|)) (-15 -3853 (|#2| |#2| |#2| |#2|)) (-15 -3854 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3855 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3856 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|))))) 118 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209))) 117 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|)))) 115 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|))) (-663 (-1209))) 113 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|)))) 97 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|))) (-1209)) 98 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|))) 92 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|)) (-1209)) 82 T ELT)) (-3857 (((-663 (-663 (-326 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209))) 111 T ELT) (((-663 (-326 |#1|)) (-421 (-976 |#1|)) (-1209)) 54 T ELT)) (-3858 (((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-976 |#1|)) (-1209)) 122 T ELT) (((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209)) 121 T ELT))) -(((-1161 |#1|) (-10 -7 (-15 -3856 ((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|)))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|))))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|))))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209)))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -3857 ((-663 (-326 |#1|)) (-421 (-976 |#1|)) (-1209))) (-15 -3857 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3858 ((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -3858 ((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-976 |#1|)) (-1209)))) (-13 (-319) (-149))) (T -1161)) -((-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1198 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1161 *5)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-976 *5)))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1198 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1161 *5)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5)))) (-5 *1 (-1161 *5)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-326 *5))) (-5 *1 (-1161 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-976 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1161 *4)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-976 *5))))) (-5 *4 (-663 (-1209))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1161 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-976 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1161 *4)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1161 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-305 (-421 (-976 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1161 *4)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-976 *5)))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1161 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1161 *4)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1161 *5))))) -(-10 -7 (-15 -3856 ((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|)) (-1209))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-421 (-976 |#1|)))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -3856 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-976 |#1|))))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-976 |#1|))))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209)))) (-15 -3856 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -3857 ((-663 (-326 |#1|)) (-421 (-976 |#1|)) (-1209))) (-15 -3857 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -3858 ((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -3858 ((-1198 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-976 |#1|)) (-1209)))) -((-3860 (((-421 (-1203 (-326 |#1|))) (-1299 (-326 |#1|)) (-421 (-1203 (-326 |#1|))) (-560)) 36 T ELT)) (-3859 (((-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|)))) 48 T ELT))) -(((-1162 |#1|) (-10 -7 (-15 -3859 ((-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))))) (-15 -3860 ((-421 (-1203 (-326 |#1|))) (-1299 (-326 |#1|)) (-421 (-1203 (-326 |#1|))) (-560)))) (-571)) (T -1162)) -((-3860 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-421 (-1203 (-326 *5)))) (-5 *3 (-1299 (-326 *5))) (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1162 *5)))) (-3859 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-421 (-1203 (-326 *3)))) (-4 *3 (-571)) (-5 *1 (-1162 *3))))) -(-10 -7 (-15 -3859 ((-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))) (-421 (-1203 (-326 |#1|))))) (-15 -3860 ((-421 (-1203 (-326 |#1|))) (-1299 (-326 |#1|)) (-421 (-1203 (-326 |#1|))) (-560)))) -((-4087 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1209))) 244 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1209)) 23 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1209)) 29 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT))) -(((-1163 |#1|) (-10 -7 (-15 -4087 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1209))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1209))) (-15 -4087 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1209))))) (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (T -1163)) -((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1209))) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1163 *5)) (-5 *3 (-663 (-305 (-326 *5)))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1163 *5)) (-5 *3 (-326 *5)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1163 *5)) (-5 *3 (-305 (-326 *5))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-305 (-326 *4))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -4087 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1209))) (-15 -4087 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1209))) (-15 -4087 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1209))))) -((-3862 ((|#2| |#2|) 28 (|has| |#1| (-872)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3861 ((|#2| |#2|) 27 (|has| |#1| (-872)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT))) -(((-1164 |#1| |#2|) (-10 -7 (-15 -3861 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3862 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-872)) (PROGN (-15 -3861 (|#2| |#2|)) (-15 -3862 (|#2| |#2|))) |%noBranch|)) (-1249) (-13 (-618 (-560) |#1|) (-10 -7 (-6 -4511) (-6 -4512)))) (T -1164)) -((-3862 (*1 *2 *2) (-12 (-4 *3 (-872)) (-4 *3 (-1249)) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4511) (-6 -4512)))))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-872)) (-4 *3 (-1249)) (-5 *1 (-1164 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4511) (-6 -4512)))))) (-3862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-1164 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4511) (-6 -4512)))))) (-3861 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-1164 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4511) (-6 -4512))))))) -(-10 -7 (-15 -3861 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3862 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-872)) (PROGN (-15 -3861 (|#2| |#2|)) (-15 -3862 (|#2| |#2|))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-4404 (((-1197 3 |#1|) $) 141 T ELT)) (-3872 (((-114) $) 101 T ELT)) (-3873 (($ $ (-663 (-973 |#1|))) 44 T ELT) (($ $ (-663 (-663 |#1|))) 104 T ELT) (($ (-663 (-973 |#1|))) 103 T ELT) (((-663 (-973 |#1|)) $) 102 T ELT)) (-3878 (((-114) $) 72 T ELT)) (-4222 (($ $ (-973 |#1|)) 76 T ELT) (($ $ (-663 |#1|)) 81 T ELT) (($ $ (-793)) 83 T ELT) (($ (-973 |#1|)) 77 T ELT) (((-973 |#1|) $) 75 T ELT)) (-3864 (((-2 (|:| -4366 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 139 T ELT)) (-3882 (((-793) $) 53 T ELT)) (-3883 (((-793) $) 52 T ELT)) (-4403 (($ $ (-793) (-973 |#1|)) 67 T ELT)) (-3870 (((-114) $) 111 T ELT)) (-3871 (($ $ (-663 (-663 (-973 |#1|))) (-663 (-174)) (-174)) 118 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 120 T ELT) (($ $ (-663 (-663 (-973 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 127 T ELT) (($ (-663 (-663 (-973 |#1|)))) 116 T ELT) (($ (-663 (-663 (-973 |#1|))) (-114) (-114)) 117 T ELT) (((-663 (-663 (-973 |#1|))) $) 114 T ELT)) (-4024 (($ (-663 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3865 (((-663 (-174)) $) 133 T ELT)) (-3869 (((-663 (-973 |#1|)) $) 130 T ELT)) (-3866 (((-663 (-663 (-174))) $) 132 T ELT)) (-3867 (((-663 (-663 (-663 (-973 |#1|)))) $) NIL T ELT)) (-3868 (((-663 (-663 (-663 (-793)))) $) 131 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3879 (((-793) $ (-663 (-973 |#1|))) 65 T ELT)) (-3876 (((-114) $) 84 T ELT)) (-3877 (($ $ (-663 (-973 |#1|))) 86 T ELT) (($ $ (-663 (-663 |#1|))) 92 T ELT) (($ (-663 (-973 |#1|))) 87 T ELT) (((-663 (-973 |#1|)) $) 85 T ELT)) (-3884 (($) 48 T ELT) (($ (-1197 3 |#1|)) 49 T ELT)) (-3906 (($ $) 63 T ELT)) (-3880 (((-663 $) $) 62 T ELT)) (-4270 (($ (-663 $)) 59 T ELT)) (-3881 (((-663 $) $) 61 T ELT)) (-4462 (((-888) $) 146 T ELT)) (-3874 (((-114) $) 94 T ELT)) (-3875 (($ $ (-663 (-973 |#1|))) 96 T ELT) (($ $ (-663 (-663 |#1|))) 99 T ELT) (($ (-663 (-973 |#1|))) 97 T ELT) (((-663 (-973 |#1|)) $) 95 T ELT)) (-3863 (($ $) 140 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1165 |#1|) (-1166 |#1|) (-1081)) (T -1165)) -NIL -(-1166 |#1|) -((-3053 (((-114) $ $) 7 T ELT)) (-4404 (((-1197 3 |#1|) $) 17 T ELT)) (-3872 (((-114) $) 33 T ELT)) (-3873 (($ $ (-663 (-973 |#1|))) 37 T ELT) (($ $ (-663 (-663 |#1|))) 36 T ELT) (($ (-663 (-973 |#1|))) 35 T ELT) (((-663 (-973 |#1|)) $) 34 T ELT)) (-3878 (((-114) $) 48 T ELT)) (-4222 (($ $ (-973 |#1|)) 53 T ELT) (($ $ (-663 |#1|)) 52 T ELT) (($ $ (-793)) 51 T ELT) (($ (-973 |#1|)) 50 T ELT) (((-973 |#1|) $) 49 T ELT)) (-3864 (((-2 (|:| -4366 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 19 T ELT)) (-3882 (((-793) $) 62 T ELT)) (-3883 (((-793) $) 63 T ELT)) (-4403 (($ $ (-793) (-973 |#1|)) 54 T ELT)) (-3870 (((-114) $) 25 T ELT)) (-3871 (($ $ (-663 (-663 (-973 |#1|))) (-663 (-174)) (-174)) 32 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 31 T ELT) (($ $ (-663 (-663 (-973 |#1|))) (-114) (-114)) 30 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 29 T ELT) (($ (-663 (-663 (-973 |#1|)))) 28 T ELT) (($ (-663 (-663 (-973 |#1|))) (-114) (-114)) 27 T ELT) (((-663 (-663 (-973 |#1|))) $) 26 T ELT)) (-4024 (($ (-663 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3865 (((-663 (-174)) $) 20 T ELT)) (-3869 (((-663 (-973 |#1|)) $) 24 T ELT)) (-3866 (((-663 (-663 (-174))) $) 21 T ELT)) (-3867 (((-663 (-663 (-663 (-973 |#1|)))) $) 22 T ELT)) (-3868 (((-663 (-663 (-663 (-793)))) $) 23 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3879 (((-793) $ (-663 (-973 |#1|))) 55 T ELT)) (-3876 (((-114) $) 43 T ELT)) (-3877 (($ $ (-663 (-973 |#1|))) 47 T ELT) (($ $ (-663 (-663 |#1|))) 46 T ELT) (($ (-663 (-973 |#1|))) 45 T ELT) (((-663 (-973 |#1|)) $) 44 T ELT)) (-3884 (($) 65 T ELT) (($ (-1197 3 |#1|)) 64 T ELT)) (-3906 (($ $) 56 T ELT)) (-3880 (((-663 $) $) 57 T ELT)) (-4270 (($ (-663 $)) 59 T ELT)) (-3881 (((-663 $) $) 58 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-3874 (((-114) $) 38 T ELT)) (-3875 (($ $ (-663 (-973 |#1|))) 42 T ELT) (($ $ (-663 (-663 |#1|))) 41 T ELT) (($ (-663 (-973 |#1|))) 40 T ELT) (((-663 (-973 |#1|)) $) 39 T ELT)) (-3863 (($ $) 18 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-1166 |#1|) (-142) (-1081)) (T -1166)) -((-4462 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-888)))) (-3884 (*1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1197 3 *3)) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-4024 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) (-4270 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3881 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)))) (-3880 (*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-973 *4))) (-4 *1 (-1166 *4)) (-4 *4 (-1081)) (-5 *2 (-793)))) (-4403 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-973 *4)) (-4 *1 (-1166 *4)) (-4 *4 (-1081)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-973 *3)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-973 *3)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114)))) (-3871 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-973 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1166 *5)) (-4 *5 (-1081)))) (-3871 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1166 *5)) (-4 *5 (-1081)))) (-3871 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-973 *4)))) (-5 *3 (-114)) (-4 *1 (-1166 *4)) (-4 *4 (-1081)))) (-3871 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114)) (-4 *1 (-1166 *4)) (-4 *4 (-1081)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-973 *3)))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) (-3871 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-973 *4)))) (-5 *3 (-114)) (-4 *4 (-1081)) (-4 *1 (-1166 *4)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-973 *3)))))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-663 (-793))))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-663 (-973 *3))))))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-174)))))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-174))))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -4366 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793)))))) (-3863 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-1197 3 *3))))) -(-13 (-1133) (-10 -8 (-15 -3884 ($)) (-15 -3884 ($ (-1197 3 |t#1|))) (-15 -3883 ((-793) $)) (-15 -3882 ((-793) $)) (-15 -4024 ($ (-663 $))) (-15 -4024 ($ $ $)) (-15 -4270 ($ (-663 $))) (-15 -3881 ((-663 $) $)) (-15 -3880 ((-663 $) $)) (-15 -3906 ($ $)) (-15 -3879 ((-793) $ (-663 (-973 |t#1|)))) (-15 -4403 ($ $ (-793) (-973 |t#1|))) (-15 -4222 ($ $ (-973 |t#1|))) (-15 -4222 ($ $ (-663 |t#1|))) (-15 -4222 ($ $ (-793))) (-15 -4222 ($ (-973 |t#1|))) (-15 -4222 ((-973 |t#1|) $)) (-15 -3878 ((-114) $)) (-15 -3877 ($ $ (-663 (-973 |t#1|)))) (-15 -3877 ($ $ (-663 (-663 |t#1|)))) (-15 -3877 ($ (-663 (-973 |t#1|)))) (-15 -3877 ((-663 (-973 |t#1|)) $)) (-15 -3876 ((-114) $)) (-15 -3875 ($ $ (-663 (-973 |t#1|)))) (-15 -3875 ($ $ (-663 (-663 |t#1|)))) (-15 -3875 ($ (-663 (-973 |t#1|)))) (-15 -3875 ((-663 (-973 |t#1|)) $)) (-15 -3874 ((-114) $)) (-15 -3873 ($ $ (-663 (-973 |t#1|)))) (-15 -3873 ($ $ (-663 (-663 |t#1|)))) (-15 -3873 ($ (-663 (-973 |t#1|)))) (-15 -3873 ((-663 (-973 |t#1|)) $)) (-15 -3872 ((-114) $)) (-15 -3871 ($ $ (-663 (-663 (-973 |t#1|))) (-663 (-174)) (-174))) (-15 -3871 ($ $ (-663 (-663 (-663 |t#1|))) (-663 (-174)) (-174))) (-15 -3871 ($ $ (-663 (-663 (-973 |t#1|))) (-114) (-114))) (-15 -3871 ($ $ (-663 (-663 (-663 |t#1|))) (-114) (-114))) (-15 -3871 ($ (-663 (-663 (-973 |t#1|))))) (-15 -3871 ($ (-663 (-663 (-973 |t#1|))) (-114) (-114))) (-15 -3871 ((-663 (-663 (-973 |t#1|))) $)) (-15 -3870 ((-114) $)) (-15 -3869 ((-663 (-973 |t#1|)) $)) (-15 -3868 ((-663 (-663 (-663 (-793)))) $)) (-15 -3867 ((-663 (-663 (-663 (-973 |t#1|)))) $)) (-15 -3866 ((-663 (-663 (-174))) $)) (-15 -3865 ((-663 (-174)) $)) (-15 -3864 ((-2 (|:| -4366 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $)) (-15 -3863 ($ $)) (-15 -4404 ((-1197 3 |t#1|) $)) (-15 -4462 ((-888) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 184 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) 7 T ELT)) (-4080 (((-114) $ (|[\|\|]| (-538))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-698))) 27 T ELT) (((-114) $ (|[\|\|]| (-1310))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-619))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1148))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-703))) 55 T ELT) (((-114) $ (|[\|\|]| (-531))) 59 T ELT) (((-114) $ (|[\|\|]| (-1098))) 63 T ELT) (((-114) $ (|[\|\|]| (-1311))) 67 T ELT) (((-114) $ (|[\|\|]| (-539))) 71 T ELT) (((-114) $ (|[\|\|]| (-1185))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-693))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1068))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-1002))) 99 T ELT) (((-114) $ (|[\|\|]| (-1105))) 103 T ELT) (((-114) $ (|[\|\|]| (-1123))) 107 T ELT) (((-114) $ (|[\|\|]| (-1128))) 111 T ELT) (((-114) $ (|[\|\|]| (-645))) 115 T ELT) (((-114) $ (|[\|\|]| (-1199))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-492))) 131 T ELT) (((-114) $ (|[\|\|]| (-606))) 135 T ELT) (((-114) $ (|[\|\|]| (-520))) 139 T ELT) (((-114) $ (|[\|\|]| (-1191))) 143 T ELT) (((-114) $ (|[\|\|]| (-560))) 147 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4086 (((-538) $) 20 T ELT) (((-222) $) 24 T ELT) (((-698) $) 28 T ELT) (((-1310) $) 32 T ELT) (((-140) $) 36 T ELT) (((-619) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1148) $) 48 T ELT) (((-96) $) 52 T ELT) (((-703) $) 56 T ELT) (((-531) $) 60 T ELT) (((-1098) $) 64 T ELT) (((-1311) $) 68 T ELT) (((-539) $) 72 T ELT) (((-1185) $) 76 T ELT) (((-156) $) 80 T ELT) (((-693) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1068) $) 92 T ELT) (((-183) $) 96 T ELT) (((-1002) $) 100 T ELT) (((-1105) $) 104 T ELT) (((-1123) $) 108 T ELT) (((-1128) $) 112 T ELT) (((-645) $) 116 T ELT) (((-1199) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-492) $) 132 T ELT) (((-606) $) 136 T ELT) (((-520) $) 140 T ELT) (((-1191) $) 144 T ELT) (((-560) $) 148 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1167) (-1169)) (T -1167)) -NIL -(-1169) -((-3885 (((-663 (-1214)) (-1191)) 9 T ELT))) -(((-1168) (-10 -7 (-15 -3885 ((-663 (-1214)) (-1191))))) (T -1168)) -((-3885 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-1214))) (-5 *1 (-1168))))) -(-10 -7 (-15 -3885 ((-663 (-1214)) (-1191)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-1214)) 20 T ELT) (((-1214) $) 19 T ELT)) (-4080 (((-114) $ (|[\|\|]| (-538))) 88 T ELT) (((-114) $ (|[\|\|]| (-222))) 86 T ELT) (((-114) $ (|[\|\|]| (-698))) 84 T ELT) (((-114) $ (|[\|\|]| (-1310))) 82 T ELT) (((-114) $ (|[\|\|]| (-140))) 80 T ELT) (((-114) $ (|[\|\|]| (-619))) 78 T ELT) (((-114) $ (|[\|\|]| (-135))) 76 T ELT) (((-114) $ (|[\|\|]| (-1148))) 74 T ELT) (((-114) $ (|[\|\|]| (-96))) 72 T ELT) (((-114) $ (|[\|\|]| (-703))) 70 T ELT) (((-114) $ (|[\|\|]| (-531))) 68 T ELT) (((-114) $ (|[\|\|]| (-1098))) 66 T ELT) (((-114) $ (|[\|\|]| (-1311))) 64 T ELT) (((-114) $ (|[\|\|]| (-539))) 62 T ELT) (((-114) $ (|[\|\|]| (-1185))) 60 T ELT) (((-114) $ (|[\|\|]| (-156))) 58 T ELT) (((-114) $ (|[\|\|]| (-693))) 56 T ELT) (((-114) $ (|[\|\|]| (-324))) 54 T ELT) (((-114) $ (|[\|\|]| (-1068))) 52 T ELT) (((-114) $ (|[\|\|]| (-183))) 50 T ELT) (((-114) $ (|[\|\|]| (-1002))) 48 T ELT) (((-114) $ (|[\|\|]| (-1105))) 46 T ELT) (((-114) $ (|[\|\|]| (-1123))) 44 T ELT) (((-114) $ (|[\|\|]| (-1128))) 42 T ELT) (((-114) $ (|[\|\|]| (-645))) 40 T ELT) (((-114) $ (|[\|\|]| (-1199))) 38 T ELT) (((-114) $ (|[\|\|]| (-158))) 36 T ELT) (((-114) $ (|[\|\|]| (-139))) 34 T ELT) (((-114) $ (|[\|\|]| (-492))) 32 T ELT) (((-114) $ (|[\|\|]| (-606))) 30 T ELT) (((-114) $ (|[\|\|]| (-520))) 28 T ELT) (((-114) $ (|[\|\|]| (-1191))) 26 T ELT) (((-114) $ (|[\|\|]| (-560))) 24 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4086 (((-538) $) 87 T ELT) (((-222) $) 85 T ELT) (((-698) $) 83 T ELT) (((-1310) $) 81 T ELT) (((-140) $) 79 T ELT) (((-619) $) 77 T ELT) (((-135) $) 75 T ELT) (((-1148) $) 73 T ELT) (((-96) $) 71 T ELT) (((-703) $) 69 T ELT) (((-531) $) 67 T ELT) (((-1098) $) 65 T ELT) (((-1311) $) 63 T ELT) (((-539) $) 61 T ELT) (((-1185) $) 59 T ELT) (((-156) $) 57 T ELT) (((-693) $) 55 T ELT) (((-324) $) 53 T ELT) (((-1068) $) 51 T ELT) (((-183) $) 49 T ELT) (((-1002) $) 47 T ELT) (((-1105) $) 45 T ELT) (((-1123) $) 43 T ELT) (((-1128) $) 41 T ELT) (((-645) $) 39 T ELT) (((-1199) $) 37 T ELT) (((-158) $) 35 T ELT) (((-139) $) 33 T ELT) (((-492) $) 31 T ELT) (((-606) $) 29 T ELT) (((-520) $) 27 T ELT) (((-1191) $) 25 T ELT) (((-560) $) 23 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3826 ((|#1| $) 48 T ELT)) (-4236 (($) 7 T CONST)) (-3828 ((|#1| |#1| $) 50 T ELT)) (-3827 ((|#1| $) 49 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 43 T ELT)) (-4119 (($ |#1| $) 44 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 45 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-3825 (((-791) $) 47 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) 46 T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1151 |#1|) (-142) (-1247)) (T -1151)) +((-3828 (*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-791))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4507) (-15 -3828 (|t#1| |t#1| $)) (-15 -3827 (|t#1| $)) (-15 -3826 (|t#1| $)) (-15 -3825 ((-791) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3832 ((|#3| $) 87 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3656 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 $) (-1297 $)) 84 T ELT) (((-709 |#3|) (-709 $)) 76 T ELT)) (-4270 (($ $ (-1 |#3| |#3|) (-791)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-3831 ((|#3| $) 89 T ELT)) (-3833 ((|#4| $) 43 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 24 T ELT) (($ $ (-558)) 95 T ELT))) +(((-1152 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3831 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -3833 (|#4| |#1|)) (-15 -2503 ((-709 |#3|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -4458 (|#1| |#3|)) (-15 -3657 ((-3 |#3| #1="failed") |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947))) (-15 -4458 ((-886) |#1|))) (-1153 |#2| |#3| |#4| |#5|) (-791) (-1079) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1152)) +NIL +(-10 -8 (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3831 (|#3| |#1|)) (-15 -3832 (|#3| |#1|)) (-15 -3833 (|#4| |#1|)) (-15 -2503 ((-709 |#3|) (-709 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 |#3|)) (|:| |vec| (-1297 |#3|))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 |#1|) (-1297 |#1|))) (-15 -2503 ((-709 (-558)) (-709 |#1|))) (-15 -4458 (|#1| |#3|)) (-15 -3657 ((-3 |#3| #1="failed") |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4270 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3832 ((|#2| $) 87 T ELT)) (-3605 (((-114) $) 128 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3607 (((-114) $) 126 T ELT)) (-3835 (($ |#2|) 90 T ELT)) (-4236 (($) 22 T CONST)) (-3594 (($ $) 145 (|has| |#2| (-319)) ELT)) (-3596 ((|#3| $ (-558)) 140 T ELT)) (-3657 (((-3 (-558) #1="failed") $) 106 (|has| |#2| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3656 (((-558) $) 105 (|has| |#2| (-1068 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#2| (-1068 (-419 (-558)))) ELT) ((|#2| $) 101 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 96 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 95 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 94 T ELT) (((-709 |#2|) (-709 $)) 93 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3593 (((-791) $) 146 (|has| |#2| (-569)) ELT)) (-3597 ((|#2| $ (-558) (-558)) 138 T ELT)) (-3372 (((-661 |#2|) $) 114 (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-3592 (((-791) $) 147 (|has| |#2| (-569)) ELT)) (-3591 (((-661 |#4|) $) 148 (|has| |#2| (-569)) ELT)) (-3599 (((-791) $) 134 T ELT)) (-3598 (((-791) $) 135 T ELT)) (-3829 ((|#2| $) 82 (|has| |#2| (-6 (-4509 #2="*"))) ELT)) (-3603 (((-558) $) 130 T ELT)) (-3601 (((-558) $) 132 T ELT)) (-3089 (((-661 |#2|) $) 113 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) 111 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3602 (((-558) $) 131 T ELT)) (-3600 (((-558) $) 133 T ELT)) (-3608 (($ (-661 (-661 |#2|))) 125 T ELT)) (-2170 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-4104 (((-661 (-661 |#2|)) $) 136 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 98 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 97 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 92 T ELT) (((-709 |#2|) (-1297 $)) 91 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-4100 (((-3 $ "failed") $) 81 (|has| |#2| (-376)) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3968 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) 116 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) 110 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) 109 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 107 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) 124 T ELT)) (-3905 (((-114) $) 121 T ELT)) (-4075 (($) 122 T ELT)) (-4312 ((|#2| $ (-558) (-558) |#2|) 139 T ELT) ((|#2| $ (-558) (-558)) 137 T ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-239)) ELT) (($ $ (-791)) 50 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 60 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 58 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 57 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 56 (|has| |#2| (-928 (-1207))) ELT)) (-3831 ((|#2| $) 86 T ELT)) (-3834 (($ (-661 |#2|)) 89 T ELT)) (-3606 (((-114) $) 127 T ELT)) (-3833 ((|#3| $) 88 T ELT)) (-3830 ((|#2| $) 83 (|has| |#2| (-6 (-4509 #2#))) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) 115 (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) 112 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 123 T ELT)) (-3595 ((|#4| $ (-558)) 141 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 104 (|has| |#2| (-1068 (-419 (-558)))) ELT) (($ |#2|) 99 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) 117 (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) 129 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-239)) ELT) (($ $ (-791)) 49 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 59 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 55 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 54 (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 53 (|has| |#2| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#2|) 144 (|has| |#2| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 80 (|has| |#2| (-376)) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4469 (((-791) $) 120 (|has| $ (-6 -4507)) ELT))) +(((-1153 |#1| |#2| |#3| |#4|) (-142) (-791) (-1079) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1153)) +((-3835 (*1 *1 *2) (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-661 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1079)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1079)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4509 #1="*"))) (-4 *2 (-1079)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4509 #1#))) (-4 *2 (-1079)))) (-4100 (*1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) +(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1083 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-737 |t#2|)) |%noBranch|) (-15 -3835 ($ |t#2|)) (-15 -3834 ($ (-661 |t#2|))) (-15 -3833 (|t#3| $)) (-15 -3832 (|t#2| $)) (-15 -3831 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4509 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3830 (|t#2| $)) (-15 -3829 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -4100 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4509 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 #2=(-419 (-558))) |has| |#2| (-1068 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#2|) . T) ((-630 (-886)) . T) ((-236 $) -4039 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -4039 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-390 |#2|) . T) ((-424 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 #3=(-558)) |has| |#2| (-658 (-558))) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-6 (-4509 #1#)))) ((-658 #3#) |has| |#2| (-658 (-558))) ((-658 |#2|) . T) ((-737 |#2|) -4039 (|has| |#2| (-175)) (|has| |#2| (-6 (-4509 #1#)))) ((-746) . T) ((-920 $ #4=(-1207)) -4039 (|has| |#2| (-928 (-1207))) (|has| |#2| (-926 (-1207)))) ((-926 (-1207)) |has| |#2| (-926 (-1207))) ((-928 #4#) -4039 (|has| |#2| (-928 (-1207))) (|has| |#2| (-926 (-1207)))) ((-1083 |#1| |#1| |#2| |#3| |#4|) . T) ((-1068 #2#) |has| |#2| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#2| (-1068 (-558))) ((-1068 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3838 ((|#4| |#4|) 81 T ELT)) (-3836 ((|#4| |#4|) 76 T ELT)) (-3840 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2232 (-661 |#3|))) |#4| |#3|) 91 T ELT)) (-3839 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3837 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3836 (|#4| |#4|)) (-15 -3837 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3838 (|#4| |#4|)) (-15 -3839 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3840 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2232 (-661 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -1154)) +((-3840 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2232 (-661 *4)))) (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3837 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) +(-10 -7 (-15 -3836 (|#4| |#4|)) (-15 -3837 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3838 (|#4| |#4|)) (-15 -3839 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3840 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2232 (-661 |#3|))) |#4| |#3|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 18 T ELT)) (-3566 (((-661 |#2|) $) 174 T ELT)) (-3568 (((-1201 $) $ |#2|) 60 T ELT) (((-1201 |#1|) $) 49 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 118 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 120 (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 |#2|)) 214 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) 167 T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 |#2| #2#) $) NIL T ELT)) (-3656 ((|#1| $) 165 T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) ((|#2| $) NIL T ELT)) (-4268 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4471 (($ $) 218 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) 90 T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| |#1| (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-2651 (((-114) $) 20 T ELT)) (-2659 (((-791) $) 30 T ELT)) (-3569 (($ (-1201 |#1|) |#2|) 54 T ELT) (($ (-1201 $) |#2|) 71 T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) 38 T ELT)) (-3376 (($ |#1| (-543 |#2|)) 78 T ELT) (($ $ |#2| (-791)) 58 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ |#2|) NIL T ELT)) (-3303 (((-543 |#2|) $) 205 T ELT) (((-791) $ |#2|) 206 T ELT) (((-661 (-791)) $ (-661 |#2|)) 207 T ELT)) (-1815 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3567 (((-3 |#2| #3="failed") $) 177 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) 217 T ELT)) (-3674 ((|#1| $) 43 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3306 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #3#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| |#2|) (|:| -2642 (-791))) #3#) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) 39 T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 148 (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) 153 (|has| |#1| (-464)) ELT) (($ $ $) 138 (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-938)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-569)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-661 |#2|) (-661 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-661 |#2|) (-661 $)) 194 T ELT)) (-4269 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4460 (((-543 |#2|) $) 201 T ELT) (((-791) $ |#2|) 196 T ELT) (((-661 (-791)) $ (-661 |#2|)) 199 T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| |#1| (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| |#1| (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#1| $) 134 (|has| |#1| (-464)) ELT) (($ $ |#2|) 137 (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4458 (((-886) $) 159 T ELT) (($ (-558)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-4329 (((-661 |#1|) $) 162 T ELT)) (-4189 ((|#1| $ (-543 |#2|)) 80 T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 87 T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) 123 (|has| |#1| (-569)) ELT)) (-3141 (($) 12 T CONST)) (-3147 (($) 14 T CONST)) (-3152 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3536 (((-114) $ $) 106 T ELT)) (-4461 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-4351 (($ $ $) 55 T ELT)) (** (($ $ (-947)) 110 T ELT) (($ $ (-791)) 109 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1155 |#1| |#2|) (-978 |#1| (-543 |#2|) |#2|) (-1079) (-870)) (T -1155)) +NIL +(-978 |#1| (-543 |#2|) |#2|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 |#2|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3996 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4326 (((-974 |#1|) $ (-791)) NIL T ELT) (((-974 |#1|) $ (-791) (-791)) NIL T ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $ |#2|) NIL T ELT) (((-791) $ |#2| (-791)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ $ (-661 |#2|) (-661 (-543 |#2|))) NIL T ELT) (($ $ |#2| (-543 |#2|)) NIL T ELT) (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 63 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4324 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4188 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4281 (($ $ (-791)) 16 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4455 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (($ $ |#2| $) 106 T ELT) (($ $ (-661 |#2|) (-661 $)) 99 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT)) (-4270 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4460 (((-543 |#2|) $) NIL T ELT)) (-3841 (((-1 (-1185 |#3|) |#3|) (-661 |#2|) (-661 (-1185 |#3|))) 87 T ELT)) (-3997 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 18 T ELT)) (-4458 (((-886) $) 198 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4189 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) ((|#3| $ (-791)) 43 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 136 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4003 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 52 T CONST)) (-3147 (($) 62 T CONST)) (-3152 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 66 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 115 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1156 |#1| |#2| |#3|) (-13 (-760 |#1| |#2|) (-10 -8 (-15 -4189 (|#3| $ (-791))) (-15 -4458 ($ |#2|)) (-15 -4458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3841 ((-1 (-1185 |#3|) |#3|) (-661 |#2|) (-661 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $ |#2| |#1|)) (-15 -4188 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1079) (-870) (-978 |#1| (-543 |#2|) |#2|)) (T -1156)) +((-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *2 (-978 *4 (-543 *5) *5)) (-5 *1 (-1156 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-4458 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-978 *3 (-543 *2) *2)))) (-4458 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-978 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-978 *3 (-543 *4) *4)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1185 *7))) (-4 *6 (-870)) (-4 *7 (-978 *5 (-543 *6) *6)) (-4 *5 (-1079)) (-5 *2 (-1 (-1185 *7) *7)) (-5 *1 (-1156 *5 *6 *7)))) (-4324 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-978 *3 (-543 *2) *2)))) (-4188 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) (-4 *5 (-978 *4 (-543 *3) *3))))) +(-13 (-760 |#1| |#2|) (-10 -8 (-15 -4189 (|#3| $ (-791))) (-15 -4458 ($ |#2|)) (-15 -4458 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3841 ((-1 (-1185 |#3|) |#3|) (-661 |#2|) (-661 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $ |#2| |#1|)) (-15 -4188 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3049 (((-114) $ $) 7 T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4194 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4200 ((|#4| |#4| $) 97 T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 133 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-4311 (((-3 $ #1#) $) 87 T ELT)) (-4197 ((|#4| |#4| $) 94 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4195 ((|#4| |#4| $) 92 T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) 110 T ELT)) (-3697 (((-114) |#4| $) 143 T ELT)) (-3695 (((-114) |#4| $) 140 T ELT)) (-3698 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 134 T ELT)) (-4310 (((-3 |#4| #1#) $) 88 T ELT)) (-3692 (((-661 $) |#4| $) 136 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3738 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3942 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4209 (((-661 |#4|) $) 112 T ELT)) (-4203 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4198 ((|#4| |#4| $) 95 T ELT)) (-4211 (((-114) $ $) 115 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4199 ((|#4| |#4| $) 96 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-3 |#4| #1#) $) 89 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4281 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-4460 (((-791) $) 111 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-4196 (($ $) 93 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4190 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3689 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) 86 T ELT)) (-3696 (((-114) |#4| $) 142 T ELT)) (-4445 (((-114) |#3| $) 85 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-1157 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1157)) +NIL +(-13 (-1139 |t#1| |t#2| |t#3| |t#4|) (-804 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-804 |#1| |#2| |#3| |#4|) . T) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1139 |#1| |#2| |#3| |#4|) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-4083 (((-661 |#2|) |#1|) 15 T ELT)) (-3847 (((-661 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-661 |#2|) |#1|) 61 T ELT)) (-3845 (((-661 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-661 |#2|) |#1|) 59 T ELT)) (-3842 ((|#2| |#1|) 54 T ELT)) (-3843 (((-2 (|:| |solns| (-661 |#2|)) (|:| |maps| (-661 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3844 (((-661 |#2|) |#2| |#2|) 42 T ELT) (((-661 |#2|) |#1|) 58 T ELT)) (-3846 (((-661 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-661 |#2|) |#1|) 60 T ELT)) (-3851 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3849 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3848 ((|#2| |#2| |#2|) 50 T ELT)) (-3850 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1158 |#1| |#2|) (-10 -7 (-15 -4083 ((-661 |#2|) |#1|)) (-15 -3842 (|#2| |#1|)) (-15 -3843 ((-2 (|:| |solns| (-661 |#2|)) (|:| |maps| (-661 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3844 ((-661 |#2|) |#1|)) (-15 -3845 ((-661 |#2|) |#1|)) (-15 -3846 ((-661 |#2|) |#1|)) (-15 -3847 ((-661 |#2|) |#1|)) (-15 -3844 ((-661 |#2|) |#2| |#2|)) (-15 -3845 ((-661 |#2|) |#2| |#2| |#2|)) (-15 -3846 ((-661 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3847 ((-661 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3848 (|#2| |#2| |#2|)) (-15 -3849 (|#2| |#2| |#2| |#2|)) (-15 -3850 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3851 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1273 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (T -1158)) +((-3851 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3850 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3849 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3848 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3847 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3846 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3845 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3844 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3847 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-2 (|:| |solns| (-661 *5)) (|:| |maps| (-661 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5)))) (-3842 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4083 ((-661 |#2|) |#1|)) (-15 -3842 (|#2| |#1|)) (-15 -3843 ((-2 (|:| |solns| (-661 |#2|)) (|:| |maps| (-661 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3844 ((-661 |#2|) |#1|)) (-15 -3845 ((-661 |#2|) |#1|)) (-15 -3846 ((-661 |#2|) |#1|)) (-15 -3847 ((-661 |#2|) |#1|)) (-15 -3844 ((-661 |#2|) |#2| |#2|)) (-15 -3845 ((-661 |#2|) |#2| |#2| |#2|)) (-15 -3846 ((-661 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3847 ((-661 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3848 (|#2| |#2| |#2|)) (-15 -3849 (|#2| |#2| |#2| |#2|)) (-15 -3850 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3851 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3852 (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|))))) 118 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207))) 117 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|)))) 115 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|))) (-661 (-1207))) 113 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|)))) 97 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|))) (-1207)) 98 T ELT) (((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|))) 92 T ELT) (((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|)) (-1207)) 82 T ELT)) (-3853 (((-661 (-661 (-326 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207))) 111 T ELT) (((-661 (-326 |#1|)) (-419 (-974 |#1|)) (-1207)) 54 T ELT)) (-3854 (((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-419 (-974 |#1|)) (-1207)) 122 T ELT) (((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207)) 121 T ELT))) +(((-1159 |#1|) (-10 -7 (-15 -3852 ((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|)))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|))))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|))))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207)))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -3853 ((-661 (-326 |#1|)) (-419 (-974 |#1|)) (-1207))) (-15 -3853 ((-661 (-661 (-326 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3854 ((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -3854 ((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-419 (-974 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -1159)) +((-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) (-5 *1 (-1159 *5)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-974 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) (-5 *1 (-1159 *5)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-326 *5)))) (-5 *1 (-1159 *5)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-326 *5))) (-5 *1 (-1159 *5)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-661 (-305 (-419 (-974 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1159 *4)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-974 *5))))) (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1159 *5)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-661 (-419 (-974 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1159 *4)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1159 *5)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-305 (-419 (-974 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1159 *4)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-974 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1159 *5)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1159 *4)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1159 *5))))) +(-10 -7 (-15 -3852 ((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|)) (-1207))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-419 (-974 |#1|)))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -3852 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-974 |#1|))))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-974 |#1|))))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207)))) (-15 -3852 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -3853 ((-661 (-326 |#1|)) (-419 (-974 |#1|)) (-1207))) (-15 -3853 ((-661 (-661 (-326 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -3854 ((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -3854 ((-1196 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-419 (-974 |#1|)) (-1207)))) +((-3856 (((-419 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-419 (-1201 (-326 |#1|))) (-558)) 36 T ELT)) (-3855 (((-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|)))) 48 T ELT))) +(((-1160 |#1|) (-10 -7 (-15 -3855 ((-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))))) (-15 -3856 ((-419 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-419 (-1201 (-326 |#1|))) (-558)))) (-569)) (T -1160)) +((-3856 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5))) (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1160 *5)))) (-3855 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1201 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1160 *3))))) +(-10 -7 (-15 -3855 ((-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))) (-419 (-1201 (-326 |#1|))))) (-15 -3856 ((-419 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-419 (-1201 (-326 |#1|))) (-558)))) +((-4083 (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-326 |#1|))) (-661 (-1207))) 244 T ELT) (((-661 (-305 (-326 |#1|))) (-326 |#1|) (-1207)) 23 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207)) 29 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-661 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT))) +(((-1161 |#1|) (-10 -7 (-15 -4083 ((-661 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -4083 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-326 |#1|))) (-661 (-1207))))) (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (T -1161)) +((-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1161 *5)) (-5 *3 (-661 (-305 (-326 *5)))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-326 *5)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-305 (-326 *5))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-305 (-326 *4))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-326 *4))))) +(-10 -7 (-15 -4083 ((-661 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -4083 ((-661 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -4083 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-326 |#1|))) (-661 (-1207))))) +((-3858 ((|#2| |#2|) 28 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3857 ((|#2| |#2|) 27 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -3857 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3858 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|))) |%noBranch|)) (-1247) (-13 (-616 (-558) |#1|) (-10 -7 (-6 -4507) (-6 -4508)))) (T -1162)) +((-3858 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4507) (-6 -4508)))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4507) (-6 -4508)))))) (-3858 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4507) (-6 -4508)))))) (-3857 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4507) (-6 -4508))))))) +(-10 -7 (-15 -3857 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3858 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3857 (|#2| |#2|)) (-15 -3858 (|#2| |#2|))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-4400 (((-1195 3 |#1|) $) 141 T ELT)) (-3868 (((-114) $) 101 T ELT)) (-3869 (($ $ (-661 (-971 |#1|))) 44 T ELT) (($ $ (-661 (-661 |#1|))) 104 T ELT) (($ (-661 (-971 |#1|))) 103 T ELT) (((-661 (-971 |#1|)) $) 102 T ELT)) (-3874 (((-114) $) 72 T ELT)) (-4218 (($ $ (-971 |#1|)) 76 T ELT) (($ $ (-661 |#1|)) 81 T ELT) (($ $ (-791)) 83 T ELT) (($ (-971 |#1|)) 77 T ELT) (((-971 |#1|) $) 75 T ELT)) (-3860 (((-2 (|:| -4362 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $) 139 T ELT)) (-3878 (((-791) $) 53 T ELT)) (-3879 (((-791) $) 52 T ELT)) (-4399 (($ $ (-791) (-971 |#1|)) 67 T ELT)) (-3866 (((-114) $) 111 T ELT)) (-3867 (($ $ (-661 (-661 (-971 |#1|))) (-661 (-174)) (-174)) 118 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-661 (-174)) (-174)) 120 T ELT) (($ $ (-661 (-661 (-971 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-114) (-114)) 127 T ELT) (($ (-661 (-661 (-971 |#1|)))) 116 T ELT) (($ (-661 (-661 (-971 |#1|))) (-114) (-114)) 117 T ELT) (((-661 (-661 (-971 |#1|))) $) 114 T ELT)) (-4020 (($ (-661 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3861 (((-661 (-174)) $) 133 T ELT)) (-3865 (((-661 (-971 |#1|)) $) 130 T ELT)) (-3862 (((-661 (-661 (-174))) $) 132 T ELT)) (-3863 (((-661 (-661 (-661 (-971 |#1|)))) $) NIL T ELT)) (-3864 (((-661 (-661 (-661 (-791)))) $) 131 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3875 (((-791) $ (-661 (-971 |#1|))) 65 T ELT)) (-3872 (((-114) $) 84 T ELT)) (-3873 (($ $ (-661 (-971 |#1|))) 86 T ELT) (($ $ (-661 (-661 |#1|))) 92 T ELT) (($ (-661 (-971 |#1|))) 87 T ELT) (((-661 (-971 |#1|)) $) 85 T ELT)) (-3880 (($) 48 T ELT) (($ (-1195 3 |#1|)) 49 T ELT)) (-3902 (($ $) 63 T ELT)) (-3876 (((-661 $) $) 62 T ELT)) (-4266 (($ (-661 $)) 59 T ELT)) (-3877 (((-661 $) $) 61 T ELT)) (-4458 (((-886) $) 146 T ELT)) (-3870 (((-114) $) 94 T ELT)) (-3871 (($ $ (-661 (-971 |#1|))) 96 T ELT) (($ $ (-661 (-661 |#1|))) 99 T ELT) (($ (-661 (-971 |#1|))) 97 T ELT) (((-661 (-971 |#1|)) $) 95 T ELT)) (-3859 (($ $) 140 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1163 |#1|) (-1164 |#1|) (-1079)) (T -1163)) +NIL +(-1164 |#1|) +((-3049 (((-114) $ $) 7 T ELT)) (-4400 (((-1195 3 |#1|) $) 17 T ELT)) (-3868 (((-114) $) 33 T ELT)) (-3869 (($ $ (-661 (-971 |#1|))) 37 T ELT) (($ $ (-661 (-661 |#1|))) 36 T ELT) (($ (-661 (-971 |#1|))) 35 T ELT) (((-661 (-971 |#1|)) $) 34 T ELT)) (-3874 (((-114) $) 48 T ELT)) (-4218 (($ $ (-971 |#1|)) 53 T ELT) (($ $ (-661 |#1|)) 52 T ELT) (($ $ (-791)) 51 T ELT) (($ (-971 |#1|)) 50 T ELT) (((-971 |#1|) $) 49 T ELT)) (-3860 (((-2 (|:| -4362 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $) 19 T ELT)) (-3878 (((-791) $) 62 T ELT)) (-3879 (((-791) $) 63 T ELT)) (-4399 (($ $ (-791) (-971 |#1|)) 54 T ELT)) (-3866 (((-114) $) 25 T ELT)) (-3867 (($ $ (-661 (-661 (-971 |#1|))) (-661 (-174)) (-174)) 32 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-661 (-174)) (-174)) 31 T ELT) (($ $ (-661 (-661 (-971 |#1|))) (-114) (-114)) 30 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-114) (-114)) 29 T ELT) (($ (-661 (-661 (-971 |#1|)))) 28 T ELT) (($ (-661 (-661 (-971 |#1|))) (-114) (-114)) 27 T ELT) (((-661 (-661 (-971 |#1|))) $) 26 T ELT)) (-4020 (($ (-661 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3861 (((-661 (-174)) $) 20 T ELT)) (-3865 (((-661 (-971 |#1|)) $) 24 T ELT)) (-3862 (((-661 (-661 (-174))) $) 21 T ELT)) (-3863 (((-661 (-661 (-661 (-971 |#1|)))) $) 22 T ELT)) (-3864 (((-661 (-661 (-661 (-791)))) $) 23 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3875 (((-791) $ (-661 (-971 |#1|))) 55 T ELT)) (-3872 (((-114) $) 43 T ELT)) (-3873 (($ $ (-661 (-971 |#1|))) 47 T ELT) (($ $ (-661 (-661 |#1|))) 46 T ELT) (($ (-661 (-971 |#1|))) 45 T ELT) (((-661 (-971 |#1|)) $) 44 T ELT)) (-3880 (($) 65 T ELT) (($ (-1195 3 |#1|)) 64 T ELT)) (-3902 (($ $) 56 T ELT)) (-3876 (((-661 $) $) 57 T ELT)) (-4266 (($ (-661 $)) 59 T ELT)) (-3877 (((-661 $) $) 58 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-3870 (((-114) $) 38 T ELT)) (-3871 (($ $ (-661 (-971 |#1|))) 42 T ELT) (($ $ (-661 (-661 |#1|))) 41 T ELT) (($ (-661 (-971 |#1|))) 40 T ELT) (((-661 (-971 |#1|)) $) 39 T ELT)) (-3859 (($ $) 18 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1164 |#1|) (-142) (-1079)) (T -1164)) +((-4458 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-886)))) (-3880 (*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3877 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)))) (-3876 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) (-5 *2 (-791)))) (-4399 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4218 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114)))) (-3867 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-661 (-971 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-3867 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-3867 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-971 *4)))) (-5 *3 (-114)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-3867 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-114)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-971 *3)))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3867 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-971 *4)))) (-5 *3 (-114)) (-4 *4 (-1079)) (-4 *1 (-1164 *4)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-971 *3)))))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-661 (-791))))))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-661 (-971 *3))))))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-174)))))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-174))))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -4362 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791)))))) (-3859 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1195 3 *3))))) +(-13 (-1131) (-10 -8 (-15 -3880 ($)) (-15 -3880 ($ (-1195 3 |t#1|))) (-15 -3879 ((-791) $)) (-15 -3878 ((-791) $)) (-15 -4020 ($ (-661 $))) (-15 -4020 ($ $ $)) (-15 -4266 ($ (-661 $))) (-15 -3877 ((-661 $) $)) (-15 -3876 ((-661 $) $)) (-15 -3902 ($ $)) (-15 -3875 ((-791) $ (-661 (-971 |t#1|)))) (-15 -4399 ($ $ (-791) (-971 |t#1|))) (-15 -4218 ($ $ (-971 |t#1|))) (-15 -4218 ($ $ (-661 |t#1|))) (-15 -4218 ($ $ (-791))) (-15 -4218 ($ (-971 |t#1|))) (-15 -4218 ((-971 |t#1|) $)) (-15 -3874 ((-114) $)) (-15 -3873 ($ $ (-661 (-971 |t#1|)))) (-15 -3873 ($ $ (-661 (-661 |t#1|)))) (-15 -3873 ($ (-661 (-971 |t#1|)))) (-15 -3873 ((-661 (-971 |t#1|)) $)) (-15 -3872 ((-114) $)) (-15 -3871 ($ $ (-661 (-971 |t#1|)))) (-15 -3871 ($ $ (-661 (-661 |t#1|)))) (-15 -3871 ($ (-661 (-971 |t#1|)))) (-15 -3871 ((-661 (-971 |t#1|)) $)) (-15 -3870 ((-114) $)) (-15 -3869 ($ $ (-661 (-971 |t#1|)))) (-15 -3869 ($ $ (-661 (-661 |t#1|)))) (-15 -3869 ($ (-661 (-971 |t#1|)))) (-15 -3869 ((-661 (-971 |t#1|)) $)) (-15 -3868 ((-114) $)) (-15 -3867 ($ $ (-661 (-661 (-971 |t#1|))) (-661 (-174)) (-174))) (-15 -3867 ($ $ (-661 (-661 (-661 |t#1|))) (-661 (-174)) (-174))) (-15 -3867 ($ $ (-661 (-661 (-971 |t#1|))) (-114) (-114))) (-15 -3867 ($ $ (-661 (-661 (-661 |t#1|))) (-114) (-114))) (-15 -3867 ($ (-661 (-661 (-971 |t#1|))))) (-15 -3867 ($ (-661 (-661 (-971 |t#1|))) (-114) (-114))) (-15 -3867 ((-661 (-661 (-971 |t#1|))) $)) (-15 -3866 ((-114) $)) (-15 -3865 ((-661 (-971 |t#1|)) $)) (-15 -3864 ((-661 (-661 (-661 (-791)))) $)) (-15 -3863 ((-661 (-661 (-661 (-971 |t#1|)))) $)) (-15 -3862 ((-661 (-661 (-174))) $)) (-15 -3861 ((-661 (-174)) $)) (-15 -3860 ((-2 (|:| -4362 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $)) (-15 -3859 ($ $)) (-15 -4400 ((-1195 3 |t#1|) $)) (-15 -4458 ((-886) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 184 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) 7 T ELT)) (-4076 (((-114) $ (|[\|\|]| (-536))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-696))) 27 T ELT) (((-114) $ (|[\|\|]| (-1308))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-617))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1146))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-701))) 55 T ELT) (((-114) $ (|[\|\|]| (-529))) 59 T ELT) (((-114) $ (|[\|\|]| (-1096))) 63 T ELT) (((-114) $ (|[\|\|]| (-1309))) 67 T ELT) (((-114) $ (|[\|\|]| (-537))) 71 T ELT) (((-114) $ (|[\|\|]| (-1183))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-691))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1066))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-1000))) 99 T ELT) (((-114) $ (|[\|\|]| (-1103))) 103 T ELT) (((-114) $ (|[\|\|]| (-1121))) 107 T ELT) (((-114) $ (|[\|\|]| (-1126))) 111 T ELT) (((-114) $ (|[\|\|]| (-643))) 115 T ELT) (((-114) $ (|[\|\|]| (-1197))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-490))) 131 T ELT) (((-114) $ (|[\|\|]| (-604))) 135 T ELT) (((-114) $ (|[\|\|]| (-518))) 139 T ELT) (((-114) $ (|[\|\|]| (-1189))) 143 T ELT) (((-114) $ (|[\|\|]| (-558))) 147 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4082 (((-536) $) 20 T ELT) (((-222) $) 24 T ELT) (((-696) $) 28 T ELT) (((-1308) $) 32 T ELT) (((-140) $) 36 T ELT) (((-617) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1146) $) 48 T ELT) (((-96) $) 52 T ELT) (((-701) $) 56 T ELT) (((-529) $) 60 T ELT) (((-1096) $) 64 T ELT) (((-1309) $) 68 T ELT) (((-537) $) 72 T ELT) (((-1183) $) 76 T ELT) (((-156) $) 80 T ELT) (((-691) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1066) $) 92 T ELT) (((-183) $) 96 T ELT) (((-1000) $) 100 T ELT) (((-1103) $) 104 T ELT) (((-1121) $) 108 T ELT) (((-1126) $) 112 T ELT) (((-643) $) 116 T ELT) (((-1197) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-490) $) 132 T ELT) (((-604) $) 136 T ELT) (((-518) $) 140 T ELT) (((-1189) $) 144 T ELT) (((-558) $) 148 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1165) (-1167)) (T -1165)) +NIL +(-1167) +((-3881 (((-661 (-1212)) (-1189)) 9 T ELT))) +(((-1166) (-10 -7 (-15 -3881 ((-661 (-1212)) (-1189))))) (T -1166)) +((-3881 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-1212))) (-5 *1 (-1166))))) +(-10 -7 (-15 -3881 ((-661 (-1212)) (-1189)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-1212)) 20 T ELT) (((-1212) $) 19 T ELT)) (-4076 (((-114) $ (|[\|\|]| (-536))) 88 T ELT) (((-114) $ (|[\|\|]| (-222))) 86 T ELT) (((-114) $ (|[\|\|]| (-696))) 84 T ELT) (((-114) $ (|[\|\|]| (-1308))) 82 T ELT) (((-114) $ (|[\|\|]| (-140))) 80 T ELT) (((-114) $ (|[\|\|]| (-617))) 78 T ELT) (((-114) $ (|[\|\|]| (-135))) 76 T ELT) (((-114) $ (|[\|\|]| (-1146))) 74 T ELT) (((-114) $ (|[\|\|]| (-96))) 72 T ELT) (((-114) $ (|[\|\|]| (-701))) 70 T ELT) (((-114) $ (|[\|\|]| (-529))) 68 T ELT) (((-114) $ (|[\|\|]| (-1096))) 66 T ELT) (((-114) $ (|[\|\|]| (-1309))) 64 T ELT) (((-114) $ (|[\|\|]| (-537))) 62 T ELT) (((-114) $ (|[\|\|]| (-1183))) 60 T ELT) (((-114) $ (|[\|\|]| (-156))) 58 T ELT) (((-114) $ (|[\|\|]| (-691))) 56 T ELT) (((-114) $ (|[\|\|]| (-324))) 54 T ELT) (((-114) $ (|[\|\|]| (-1066))) 52 T ELT) (((-114) $ (|[\|\|]| (-183))) 50 T ELT) (((-114) $ (|[\|\|]| (-1000))) 48 T ELT) (((-114) $ (|[\|\|]| (-1103))) 46 T ELT) (((-114) $ (|[\|\|]| (-1121))) 44 T ELT) (((-114) $ (|[\|\|]| (-1126))) 42 T ELT) (((-114) $ (|[\|\|]| (-643))) 40 T ELT) (((-114) $ (|[\|\|]| (-1197))) 38 T ELT) (((-114) $ (|[\|\|]| (-158))) 36 T ELT) (((-114) $ (|[\|\|]| (-139))) 34 T ELT) (((-114) $ (|[\|\|]| (-490))) 32 T ELT) (((-114) $ (|[\|\|]| (-604))) 30 T ELT) (((-114) $ (|[\|\|]| (-518))) 28 T ELT) (((-114) $ (|[\|\|]| (-1189))) 26 T ELT) (((-114) $ (|[\|\|]| (-558))) 24 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4082 (((-536) $) 87 T ELT) (((-222) $) 85 T ELT) (((-696) $) 83 T ELT) (((-1308) $) 81 T ELT) (((-140) $) 79 T ELT) (((-617) $) 77 T ELT) (((-135) $) 75 T ELT) (((-1146) $) 73 T ELT) (((-96) $) 71 T ELT) (((-701) $) 69 T ELT) (((-529) $) 67 T ELT) (((-1096) $) 65 T ELT) (((-1309) $) 63 T ELT) (((-537) $) 61 T ELT) (((-1183) $) 59 T ELT) (((-156) $) 57 T ELT) (((-691) $) 55 T ELT) (((-324) $) 53 T ELT) (((-1066) $) 51 T ELT) (((-183) $) 49 T ELT) (((-1000) $) 47 T ELT) (((-1103) $) 45 T ELT) (((-1121) $) 43 T ELT) (((-1126) $) 41 T ELT) (((-643) $) 39 T ELT) (((-1197) $) 37 T ELT) (((-158) $) 35 T ELT) (((-139) $) 33 T ELT) (((-490) $) 31 T ELT) (((-604) $) 29 T ELT) (((-518) $) 27 T ELT) (((-1189) $) 25 T ELT) (((-558) $) 23 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1167) (-142)) (T -1167)) +((-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-536)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-222)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-696))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-696)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-140)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-617)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-135)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1146))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1146)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-701))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-701)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-529)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1309)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1183)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-156)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-691)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-324)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-183)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1121)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-643))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-643)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1197)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-158)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-490)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-604)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-518)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1189)))) (-4076 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-558))))) +(-13 (-1113) (-1293) (-10 -8 (-15 -4076 ((-114) $ (|[\|\|]| (-536)))) (-15 -4082 ((-536) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-222)))) (-15 -4082 ((-222) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-696)))) (-15 -4082 ((-696) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1308)))) (-15 -4082 ((-1308) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-140)))) (-15 -4082 ((-140) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-617)))) (-15 -4082 ((-617) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-135)))) (-15 -4082 ((-135) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1146)))) (-15 -4082 ((-1146) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-96)))) (-15 -4082 ((-96) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-701)))) (-15 -4082 ((-701) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-529)))) (-15 -4082 ((-529) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1096)))) (-15 -4082 ((-1096) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1309)))) (-15 -4082 ((-1309) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-537)))) (-15 -4082 ((-537) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1183)))) (-15 -4082 ((-1183) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-156)))) (-15 -4082 ((-156) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-691)))) (-15 -4082 ((-691) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-324)))) (-15 -4082 ((-324) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1066)))) (-15 -4082 ((-1066) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-183)))) (-15 -4082 ((-183) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1000)))) (-15 -4082 ((-1000) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1103)))) (-15 -4082 ((-1103) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1121)))) (-15 -4082 ((-1121) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1126)))) (-15 -4082 ((-1126) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-643)))) (-15 -4082 ((-643) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1197)))) (-15 -4082 ((-1197) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-158)))) (-15 -4082 ((-158) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-139)))) (-15 -4082 ((-139) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-490)))) (-15 -4082 ((-490) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-604)))) (-15 -4082 ((-604) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-518)))) (-15 -4082 ((-518) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4082 ((-1189) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-558)))) (-15 -4082 ((-558) $)))) +(((-93) . T) ((-102) . T) ((-633 #1=(-1212)) . T) ((-630 (-886)) . T) ((-630 #1#) . T) ((-502 #1#) . T) ((-1131) . T) ((-1113) . T) ((-1247) . T) ((-1293) . T)) +((-3884 (((-1303) (-661 (-886))) 22 T ELT) (((-1303) (-886)) 21 T ELT)) (-3883 (((-1303) (-661 (-886))) 20 T ELT) (((-1303) (-886)) 19 T ELT)) (-3882 (((-1303) (-661 (-886))) 18 T ELT) (((-1303) (-886)) 10 T ELT) (((-1303) (-1189) (-886)) 16 T ELT))) +(((-1168) (-10 -7 (-15 -3882 ((-1303) (-1189) (-886))) (-15 -3882 ((-1303) (-886))) (-15 -3883 ((-1303) (-886))) (-15 -3884 ((-1303) (-886))) (-15 -3882 ((-1303) (-661 (-886)))) (-15 -3883 ((-1303) (-661 (-886)))) (-15 -3884 ((-1303) (-661 (-886)))))) (T -1168)) +((-3884 (*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168))))) +(-10 -7 (-15 -3882 ((-1303) (-1189) (-886))) (-15 -3882 ((-1303) (-886))) (-15 -3883 ((-1303) (-886))) (-15 -3884 ((-1303) (-886))) (-15 -3882 ((-1303) (-661 (-886)))) (-15 -3883 ((-1303) (-661 (-886)))) (-15 -3884 ((-1303) (-661 (-886))))) +((-3888 (($ $ $) 10 T ELT)) (-3887 (($ $) 9 T ELT)) (-3891 (($ $ $) 13 T ELT)) (-3893 (($ $ $) 15 T ELT)) (-3890 (($ $ $) 12 T ELT)) (-3892 (($ $ $) 14 T ELT)) (-3895 (($ $) 17 T ELT)) (-3894 (($ $) 16 T ELT)) (-3885 (($ $) 6 T ELT)) (-3889 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3886 (($ $ $) 8 T ELT))) (((-1169) (-142)) (T -1169)) -((-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-538)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-222)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-698)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1310))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1310)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-140)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-619)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-135)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1148)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-96)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-703)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-531)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1098)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1311))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1311)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-539)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1185)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-156)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-693)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-324)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1068)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-183)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1002)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1105)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1123)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1128)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-645)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1199))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1199)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-158)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-139)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-492)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-606)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-520)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1191)))) (-4080 (*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-560))))) -(-13 (-1115) (-1295) (-10 -8 (-15 -4080 ((-114) $ (|[\|\|]| (-538)))) (-15 -4086 ((-538) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-222)))) (-15 -4086 ((-222) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-698)))) (-15 -4086 ((-698) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1310)))) (-15 -4086 ((-1310) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-140)))) (-15 -4086 ((-140) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-619)))) (-15 -4086 ((-619) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-135)))) (-15 -4086 ((-135) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1148)))) (-15 -4086 ((-1148) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-96)))) (-15 -4086 ((-96) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-703)))) (-15 -4086 ((-703) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-531)))) (-15 -4086 ((-531) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1098)))) (-15 -4086 ((-1098) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1311)))) (-15 -4086 ((-1311) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-539)))) (-15 -4086 ((-539) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1185)))) (-15 -4086 ((-1185) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-156)))) (-15 -4086 ((-156) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-693)))) (-15 -4086 ((-693) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-324)))) (-15 -4086 ((-324) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1068)))) (-15 -4086 ((-1068) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-183)))) (-15 -4086 ((-183) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1002)))) (-15 -4086 ((-1002) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1105)))) (-15 -4086 ((-1105) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1123)))) (-15 -4086 ((-1123) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1128)))) (-15 -4086 ((-1128) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-645)))) (-15 -4086 ((-645) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1199)))) (-15 -4086 ((-1199) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-158)))) (-15 -4086 ((-158) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-139)))) (-15 -4086 ((-139) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-492)))) (-15 -4086 ((-492) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-606)))) (-15 -4086 ((-606) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-520)))) (-15 -4086 ((-520) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-1191)))) (-15 -4086 ((-1191) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-560)))) (-15 -4086 ((-560) $)))) -(((-93) . T) ((-102) . T) ((-635 #1=(-1214)) . T) ((-632 (-888)) . T) ((-632 #1#) . T) ((-504 #1#) . T) ((-1133) . T) ((-1115) . T) ((-1249) . T) ((-1295) . T)) -((-3888 (((-1305) (-663 (-888))) 22 T ELT) (((-1305) (-888)) 21 T ELT)) (-3887 (((-1305) (-663 (-888))) 20 T ELT) (((-1305) (-888)) 19 T ELT)) (-3886 (((-1305) (-663 (-888))) 18 T ELT) (((-1305) (-888)) 10 T ELT) (((-1305) (-1191) (-888)) 16 T ELT))) -(((-1170) (-10 -7 (-15 -3886 ((-1305) (-1191) (-888))) (-15 -3886 ((-1305) (-888))) (-15 -3887 ((-1305) (-888))) (-15 -3888 ((-1305) (-888))) (-15 -3886 ((-1305) (-663 (-888)))) (-15 -3887 ((-1305) (-663 (-888)))) (-15 -3888 ((-1305) (-663 (-888)))))) (T -1170)) -((-3888 (*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-1191)) (-5 *4 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170))))) -(-10 -7 (-15 -3886 ((-1305) (-1191) (-888))) (-15 -3886 ((-1305) (-888))) (-15 -3887 ((-1305) (-888))) (-15 -3888 ((-1305) (-888))) (-15 -3886 ((-1305) (-663 (-888)))) (-15 -3887 ((-1305) (-663 (-888)))) (-15 -3888 ((-1305) (-663 (-888))))) -((-3892 (($ $ $) 10 T ELT)) (-3891 (($ $) 9 T ELT)) (-3895 (($ $ $) 13 T ELT)) (-3897 (($ $ $) 15 T ELT)) (-3894 (($ $ $) 12 T ELT)) (-3896 (($ $ $) 14 T ELT)) (-3899 (($ $) 17 T ELT)) (-3898 (($ $) 16 T ELT)) (-3889 (($ $) 6 T ELT)) (-3893 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3890 (($ $ $) 8 T ELT))) -(((-1171) (-142)) (T -1171)) -((-3899 (*1 *1 *1) (-4 *1 (-1171))) (-3898 (*1 *1 *1) (-4 *1 (-1171))) (-3897 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3896 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3895 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3894 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3893 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3892 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3891 (*1 *1 *1) (-4 *1 (-1171))) (-3890 (*1 *1 *1 *1) (-4 *1 (-1171))) (-3893 (*1 *1 *1) (-4 *1 (-1171))) (-3889 (*1 *1 *1) (-4 *1 (-1171)))) -(-13 (-10 -8 (-15 -3889 ($ $)) (-15 -3893 ($ $)) (-15 -3890 ($ $ $)) (-15 -3891 ($ $)) (-15 -3892 ($ $ $)) (-15 -3893 ($ $ $)) (-15 -3894 ($ $ $)) (-15 -3895 ($ $ $)) (-15 -3896 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -3898 ($ $)) (-15 -3899 ($ $)))) -((-3053 (((-114) $ $) 44 T ELT)) (-3908 ((|#1| $) 17 T ELT)) (-3900 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3907 (((-114) $) 19 T ELT)) (-3905 (($ $ |#1|) 30 T ELT)) (-3903 (($ $ (-114)) 32 T ELT)) (-3902 (($ $) 33 T ELT)) (-3904 (($ $ |#2|) 31 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3901 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3909 (((-114) $) 16 T ELT)) (-4079 (($) 13 T ELT)) (-3906 (($ $) 29 T ELT)) (-4036 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1755 |#2|))) 23 T ELT) (((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|)))) 26 T ELT) (((-663 $) |#1| (-663 |#2|)) 28 T ELT)) (-4438 ((|#2| $) 18 T ELT)) (-4462 (((-888) $) 53 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 42 T ELT))) -(((-1172 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -4079 ($)) (-15 -3909 ((-114) $)) (-15 -3908 (|#1| $)) (-15 -4438 (|#2| $)) (-15 -3907 ((-114) $)) (-15 -4036 ($ |#1| |#2| (-114))) (-15 -4036 ($ |#1| |#2|)) (-15 -4036 ($ (-2 (|:| |val| |#1|) (|:| -1755 |#2|)))) (-15 -4036 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|))))) (-15 -4036 ((-663 $) |#1| (-663 |#2|))) (-15 -3906 ($ $)) (-15 -3905 ($ $ |#1|)) (-15 -3904 ($ $ |#2|)) (-15 -3903 ($ $ (-114))) (-15 -3902 ($ $)) (-15 -3901 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3900 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1133) (-34)) (-13 (-1133) (-34))) (T -1172)) -((-4079 (*1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))))) (-3908 (*1 *2 *1) (-12 (-4 *2 (-13 (-1133) (-34))) (-5 *1 (-1172 *2 *3)) (-4 *3 (-13 (-1133) (-34))))) (-4438 (*1 *2 *1) (-12 (-4 *2 (-13 (-1133) (-34))) (-5 *1 (-1172 *3 *2)) (-4 *3 (-13 (-1133) (-34))))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))))) (-4036 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-4036 (*1 *1 *2 *3) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1755 *4))) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1172 *3 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -1755 *5)))) (-4 *4 (-13 (-1133) (-34))) (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-663 (-1172 *4 *5))) (-5 *1 (-1172 *4 *5)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-663 (-1172 *3 *5))) (-5 *1 (-1172 *3 *5)) (-4 *3 (-13 (-1133) (-34))))) (-3906 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-3905 (*1 *1 *1 *2) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-3904 (*1 *1 *1 *2) (-12 (-5 *1 (-1172 *3 *2)) (-4 *3 (-13 (-1133) (-34))) (-4 *2 (-13 (-1133) (-34))))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-3901 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1133) (-34))) (-4 *6 (-13 (-1133) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *5 *6)))) (-3900 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *4 *5)) (-4 *4 (-13 (-1133) (-34)))))) -(-13 (-1133) (-10 -8 (-15 -4079 ($)) (-15 -3909 ((-114) $)) (-15 -3908 (|#1| $)) (-15 -4438 (|#2| $)) (-15 -3907 ((-114) $)) (-15 -4036 ($ |#1| |#2| (-114))) (-15 -4036 ($ |#1| |#2|)) (-15 -4036 ($ (-2 (|:| |val| |#1|) (|:| -1755 |#2|)))) (-15 -4036 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|))))) (-15 -4036 ((-663 $) |#1| (-663 |#2|))) (-15 -3906 ($ $)) (-15 -3905 ($ $ |#1|)) (-15 -3904 ($ $ |#2|)) (-15 -3903 ($ $ (-114))) (-15 -3902 ($ $)) (-15 -3901 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3900 ((-114) $ $ (-1 (-114) |#2| |#2|))))) -((-3053 (((-114) $ $) NIL (|has| (-1172 |#1| |#2|) (-102)) ELT)) (-3908 (((-1172 |#1| |#2|) $) 27 T ELT)) (-3917 (($ $) 91 T ELT)) (-3913 (((-114) (-1172 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-3910 (($ $ $ (-663 (-1172 |#1| |#2|))) 108 T ELT) (($ $ $ (-663 (-1172 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3512 (((-1172 |#1| |#2|) $ (-1172 |#1| |#2|)) 46 (|has| $ (-6 -4512)) ELT)) (-4304 (((-1172 |#1| |#2|) $ #1="value" (-1172 |#1| |#2|)) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 44 (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3915 (((-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|))) $) 95 T ELT)) (-3911 (($ (-1172 |#1| |#2|) $) 42 T ELT)) (-3912 (($ (-1172 |#1| |#2|) $) 34 T ELT)) (-3376 (((-663 (-1172 |#1| |#2|)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3914 (((-114) (-1172 |#1| |#2|) $) 97 T ELT)) (-3514 (((-114) $ $) NIL (|has| (-1172 |#1| |#2|) (-1133)) ELT)) (-3093 (((-663 (-1172 |#1| |#2|)) $) 58 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-1172 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-1172 |#1| |#2|) (-1133))) ELT)) (-2174 (($ (-1 (-1172 |#1| |#2|) (-1172 |#1| |#2|)) $) 50 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-1172 |#1| |#2|) (-1172 |#1| |#2|)) $) 49 T ELT)) (-3517 (((-663 (-1172 |#1| |#2|)) $) 56 T ELT)) (-4033 (((-114) $) 45 T ELT)) (-3746 (((-1191) $) NIL (|has| (-1172 |#1| |#2|) (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| (-1172 |#1| |#2|) (-1133)) ELT)) (-3918 (((-3 $ "failed") $) 89 T ELT)) (-2172 (((-114) (-1 (-114) (-1172 |#1| |#2|)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-1172 |#1| |#2|)))) NIL (-12 (|has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|))) (|has| (-1172 |#1| |#2|) (-1133))) ELT) (($ $ (-305 (-1172 |#1| |#2|))) NIL (-12 (|has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|))) (|has| (-1172 |#1| |#2|) (-1133))) ELT) (($ $ (-1172 |#1| |#2|) (-1172 |#1| |#2|)) NIL (-12 (|has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|))) (|has| (-1172 |#1| |#2|) (-1133))) ELT) (($ $ (-663 (-1172 |#1| |#2|)) (-663 (-1172 |#1| |#2|))) NIL (-12 (|has| (-1172 |#1| |#2|) (-321 (-1172 |#1| |#2|))) (|has| (-1172 |#1| |#2|) (-1133))) ELT)) (-1340 (((-114) $ $) 53 T ELT)) (-3909 (((-114) $) 24 T ELT)) (-4079 (($) 26 T ELT)) (-4316 (((-1172 |#1| |#2|) $ #1#) NIL T ELT)) (-3516 (((-560) $ $) NIL T ELT)) (-4149 (((-114) $) 47 T ELT)) (-2171 (((-793) (-1 (-114) (-1172 |#1| |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-1172 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-1172 |#1| |#2|) (-1133))) ELT)) (-3906 (($ $) 52 T ELT)) (-4036 (($ (-1172 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-663 $)) 13 T ELT) (($ |#1| |#2| (-663 (-1172 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-663 |#2|)) 18 T ELT)) (-3916 (((-663 |#2|) $) 96 T ELT)) (-4462 (((-888) $) 87 (|has| (-1172 |#1| |#2|) (-632 (-888))) ELT)) (-4028 (((-663 $) $) 31 T ELT)) (-3515 (((-114) $ $) NIL (|has| (-1172 |#1| |#2|) (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| (-1172 |#1| |#2|) (-102)) ELT)) (-2173 (((-114) (-1 (-114) (-1172 |#1| |#2|)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 70 (|has| (-1172 |#1| |#2|) (-102)) ELT)) (-4473 (((-793) $) 64 (|has| $ (-6 -4511)) ELT))) -(((-1173 |#1| |#2|) (-13 (-1042 (-1172 |#1| |#2|)) (-10 -8 (-6 -4512) (-6 -4511) (-15 -3918 ((-3 $ "failed") $)) (-15 -3917 ($ $)) (-15 -4036 ($ (-1172 |#1| |#2|))) (-15 -4036 ($ |#1| |#2| (-663 $))) (-15 -4036 ($ |#1| |#2| (-663 (-1172 |#1| |#2|)))) (-15 -4036 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -3916 ((-663 |#2|) $)) (-15 -3915 ((-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|))) $)) (-15 -3914 ((-114) (-1172 |#1| |#2|) $)) (-15 -3913 ((-114) (-1172 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3912 ($ (-1172 |#1| |#2|) $)) (-15 -3911 ($ (-1172 |#1| |#2|) $)) (-15 -3910 ($ $ $ (-663 (-1172 |#1| |#2|)))) (-15 -3910 ($ $ $ (-663 (-1172 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1133) (-34)) (-13 (-1133) (-34))) (T -1173)) -((-3918 (*1 *1 *1) (|partial| -12 (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-3917 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4)))) (-4036 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1173 *2 *3))) (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) (-4036 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1172 *2 *3))) (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))) (-5 *1 (-1173 *2 *3)))) (-4036 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1133) (-34))) (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1173 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))))) (-3914 (*1 *2 *3 *1) (-12 (-5 *3 (-1172 *4 *5)) (-4 *4 (-13 (-1133) (-34))) (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-114)) (-5 *1 (-1173 *4 *5)))) (-3913 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1172 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1133) (-34))) (-4 *6 (-13 (-1133) (-34))) (-5 *2 (-114)) (-5 *1 (-1173 *5 *6)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4)))) (-3911 (*1 *1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4)))) (-3910 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-663 (-1172 *3 *4))) (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4)))) (-3910 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1172 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1133) (-34))) (-4 *5 (-13 (-1133) (-34))) (-5 *1 (-1173 *4 *5))))) -(-13 (-1042 (-1172 |#1| |#2|)) (-10 -8 (-6 -4512) (-6 -4511) (-15 -3918 ((-3 $ "failed") $)) (-15 -3917 ($ $)) (-15 -4036 ($ (-1172 |#1| |#2|))) (-15 -4036 ($ |#1| |#2| (-663 $))) (-15 -4036 ($ |#1| |#2| (-663 (-1172 |#1| |#2|)))) (-15 -4036 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -3916 ((-663 |#2|) $)) (-15 -3915 ((-663 (-2 (|:| |val| |#1|) (|:| -1755 |#2|))) $)) (-15 -3914 ((-114) (-1172 |#1| |#2|) $)) (-15 -3913 ((-114) (-1172 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3912 ($ (-1172 |#1| |#2|) $)) (-15 -3911 ($ (-1172 |#1| |#2|) $)) (-15 -3910 ($ $ $ (-663 (-1172 |#1| |#2|)))) (-15 -3910 ($ $ $ (-663 (-1172 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3920 (($ $) NIL T ELT)) (-3836 ((|#2| $) NIL T ELT)) (-3609 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3919 (($ (-711 |#2|)) 56 T ELT)) (-3611 (((-114) $) NIL T ELT)) (-3839 (($ |#2|) 14 T ELT)) (-4240 (($) NIL T CONST)) (-3598 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3600 (((-246 |#1| |#2|) $ (-560)) 42 T ELT)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) 83 T ELT)) (-3597 (((-793) $) 71 (|has| |#2| (-571)) ELT)) (-3601 ((|#2| $ (-560) (-560)) NIL T ELT)) (-3376 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-3596 (((-793) $) 73 (|has| |#2| (-571)) ELT)) (-3595 (((-663 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-571)) ELT)) (-3603 (((-793) $) NIL T ELT)) (-4130 (($ |#2|) 25 T ELT)) (-3602 (((-793) $) NIL T ELT)) (-3833 ((|#2| $) 67 (|has| |#2| (-6 (-4513 #2="*"))) ELT)) (-3607 (((-560) $) NIL T ELT)) (-3605 (((-560) $) NIL T ELT)) (-3093 (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3606 (((-560) $) NIL T ELT)) (-3604 (((-560) $) NIL T ELT)) (-3612 (($ (-663 (-663 |#2|))) 37 T ELT)) (-2174 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4108 (((-663 (-663 |#2|)) $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4104 (((-3 $ "failed") $) 80 (|has| |#2| (-376)) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2172 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) NIL T ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3835 ((|#2| $) NIL T ELT)) (-3838 (($ (-663 |#2|)) 50 T ELT)) (-3610 (((-114) $) NIL T ELT)) (-3837 (((-246 |#1| |#2|) $) NIL T ELT)) (-3834 ((|#2| $) 65 (|has| |#2| (-6 (-4513 #2#))) ELT)) (-2171 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) 90 (|has| |#2| (-633 (-549))) ELT)) (-3599 (((-246 |#1| |#2|) $ (-560)) 44 T ELT)) (-4462 (((-888) $) 47 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) 52 T ELT)) (-3614 (((-793)) 23 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3608 (((-114) $) NIL T ELT)) (-3145 (($) 16 T CONST)) (-3151 (($) 21 T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 63 T ELT) (($ $ (-560)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1174 |#1| |#2|) (-13 (-1155 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4130 ($ |#2|)) (-15 -3920 ($ $)) (-15 -3919 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4513 "*"))) (-6 -4500) |%noBranch|) (IF (|has| |#2| (-6 (-4513 "*"))) (IF (|has| |#2| (-6 -4508)) (-6 -4508) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-793) (-1081)) (T -1174)) -((-4130 (*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1081)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1081)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-711 *4)) (-4 *4 (-1081)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-793))))) -(-13 (-1155 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4130 ($ |#2|)) (-15 -3920 ($ $)) (-15 -3919 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4513 "*"))) (-6 -4500) |%noBranch|) (IF (|has| |#2| (-6 (-4513 "*"))) (IF (|has| |#2| (-6 -4508)) (-6 -4508) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) -((-3933 (($ $) 19 T ELT)) (-3923 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3931 (((-114) $ $) 24 T ELT)) (-3935 (($ $) 17 T ELT)) (-4316 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) (($ $ $) 31 T ELT)) (-4462 (($ (-146)) 29 T ELT) (((-888) $) NIL T ELT))) -(((-1175 |#1|) (-10 -8 (-15 -4462 ((-888) |#1|)) (-15 -4316 (|#1| |#1| |#1|)) (-15 -3923 (|#1| |#1| (-143))) (-15 -3923 (|#1| |#1| (-146))) (-15 -4462 (|#1| (-146))) (-15 -3931 ((-114) |#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4316 ((-146) |#1| (-560))) (-15 -4316 ((-146) |#1| (-560) (-146)))) (-1176)) (T -1175)) -NIL -(-10 -8 (-15 -4462 ((-888) |#1|)) (-15 -4316 (|#1| |#1| |#1|)) (-15 -3923 (|#1| |#1| (-143))) (-15 -3923 (|#1| |#1| (-146))) (-15 -4462 (|#1| (-146))) (-15 -3931 ((-114) |#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4316 ((-146) |#1| (-560))) (-15 -4316 ((-146) |#1| (-560) (-146)))) -((-3053 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-3932 (($ $) 129 T ELT)) (-3933 (($ $) 130 T ELT)) (-3923 (($ $ (-146)) 117 T ELT) (($ $ (-143)) 116 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-3930 (((-114) $ $) 127 T ELT)) (-3929 (((-114) $ $ (-560)) 126 T ELT)) (-3924 (((-663 $) $ (-146)) 119 T ELT) (((-663 $) $ (-143)) 118 T ELT)) (-1947 (((-114) (-1 (-114) (-146) (-146)) $) 107 T ELT) (((-114) $) 101 (|has| (-146) (-872)) ELT)) (-1945 (($ (-1 (-114) (-146) (-146)) $) 98 (|has| $ (-6 -4512)) ELT) (($ $) 97 (-12 (|has| (-146) (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) (-146) (-146)) $) 108 T ELT) (($ $) 102 (|has| (-146) (-872)) ELT)) (-4304 (((-146) $ (-560) (-146)) 56 (|has| $ (-6 -4512)) ELT) (((-146) $ (-1266 (-560)) (-146)) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-146)) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-3921 (($ $ (-146)) 113 T ELT) (($ $ (-143)) 112 T ELT)) (-2524 (($ $) 99 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 109 T ELT)) (-3926 (($ $ (-1266 (-560)) $) 123 T ELT)) (-1479 (($ $) 84 (-12 (|has| (-146) (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ (-146) $) 83 (-12 (|has| (-146) (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) (-146)) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 82 (-12 (|has| (-146) (-1133)) (|has| $ (-6 -4511))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 79 (|has| $ (-6 -4511)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 (((-146) $ (-560) (-146)) 57 (|has| $ (-6 -4512)) ELT)) (-3601 (((-146) $ (-560)) 55 T ELT)) (-3931 (((-114) $ $) 128 T ELT)) (-3925 (((-560) (-1 (-114) (-146)) $) 106 T ELT) (((-560) (-146) $) 105 (|has| (-146) (-1133)) ELT) (((-560) (-146) $ (-560)) 104 (|has| (-146) (-1133)) ELT) (((-560) $ $ (-560)) 122 T ELT) (((-560) (-143) $ (-560)) 121 T ELT)) (-3376 (((-663 (-146)) $) 30 (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) (-146)) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 91 (|has| (-146) (-872)) ELT)) (-4024 (($ (-1 (-114) (-146) (-146)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-146) (-872)) ELT)) (-3093 (((-663 (-146)) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-146) $) 27 (-12 (|has| (-146) (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 92 (|has| (-146) (-872)) ELT)) (-3927 (((-114) $ $ (-146)) 124 T ELT)) (-3928 (((-793) $ $ (-146)) 125 T ELT)) (-2174 (($ (-1 (-146) (-146)) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-146) (-146)) $) 35 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 69 T ELT)) (-3934 (($ $) 131 T ELT)) (-3935 (($ $) 132 T ELT)) (-3922 (($ $ (-146)) 115 T ELT) (($ $ (-143)) 114 T ELT)) (-3746 (((-1191) $) 22 (|has| (-146) (-1133)) ELT)) (-2531 (($ (-146) $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| (-146) (-1133)) ELT)) (-4317 (((-146) $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 77 T ELT)) (-2428 (($ $ (-146)) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-146)))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-305 (-146))) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-146) (-146)) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-663 (-146)) (-663 (-146))) 23 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) (-146) $) 49 (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-2434 (((-663 (-146)) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 (((-146) $ (-560) (-146)) 54 T ELT) (((-146) $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT) (($ $ $) 111 T ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-2171 (((-793) (-1 (-114) (-146)) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) (-146) $) 28 (-12 (|has| (-146) (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 100 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| (-146) (-633 (-549))) ELT)) (-4036 (($ (-663 (-146))) 76 T ELT)) (-4318 (($ $ (-146)) 73 T ELT) (($ (-146) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (($ (-146)) 120 T ELT) (((-888) $) 17 (|has| (-146) (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2173 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 93 (|has| (-146) (-872)) ELT)) (-3052 (((-114) $ $) 95 (|has| (-146) (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| (-146) (-102)) ELT)) (-3171 (((-114) $ $) 94 (|has| (-146) (-872)) ELT)) (-3172 (((-114) $ $) 96 (|has| (-146) (-872)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1176) (-142)) (T -1176)) -((-3935 (*1 *1 *1) (-4 *1 (-1176))) (-3934 (*1 *1 *1) (-4 *1 (-1176))) (-3933 (*1 *1 *1) (-4 *1 (-1176))) (-3932 (*1 *1 *1) (-4 *1 (-1176))) (-3931 (*1 *2 *1 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-114)))) (-3930 (*1 *2 *1 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-114)))) (-3929 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-560)) (-5 *2 (-114)))) (-3928 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-146)) (-5 *2 (-793)))) (-3927 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-146)) (-5 *2 (-114)))) (-3926 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-1266 (-560))))) (-3925 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-560)))) (-3925 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-560)) (-5 *3 (-143)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1176)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1176)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1176)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146)))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) (-4316 (*1 *1 *1 *1) (-4 *1 (-1176)))) -(-13 (-19 (-146)) (-10 -8 (-15 -3935 ($ $)) (-15 -3934 ($ $)) (-15 -3933 ($ $)) (-15 -3932 ($ $)) (-15 -3931 ((-114) $ $)) (-15 -3930 ((-114) $ $)) (-15 -3929 ((-114) $ $ (-560))) (-15 -3928 ((-793) $ $ (-146))) (-15 -3927 ((-114) $ $ (-146))) (-15 -3926 ($ $ (-1266 (-560)) $)) (-15 -3925 ((-560) $ $ (-560))) (-15 -3925 ((-560) (-143) $ (-560))) (-15 -4462 ($ (-146))) (-15 -3924 ((-663 $) $ (-146))) (-15 -3924 ((-663 $) $ (-143))) (-15 -3923 ($ $ (-146))) (-15 -3923 ($ $ (-143))) (-15 -3922 ($ $ (-146))) (-15 -3922 ($ $ (-143))) (-15 -3921 ($ $ (-146))) (-15 -3921 ($ $ (-143))) (-15 -4316 ($ $ $)))) -(((-34) . T) ((-102) -4043 (|has| (-146) (-1133)) (|has| (-146) (-872)) (|has| (-146) (-102))) ((-632 (-888)) -4043 (|has| (-146) (-1133)) (|has| (-146) (-872)) (|has| (-146) (-632 (-888)))) ((-153 #1=(-146)) . T) ((-633 (-549)) |has| (-146) (-633 (-549))) ((-298 #2=(-560) #1#) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #2# #1#) . T) ((-321 #1#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ((-385 #1#) . T) ((-503 #1#) . T) ((-618 #2# #1#) . T) ((-528 #1# #1#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ((-673 #1#) . T) ((-19 #1#) . T) ((-872) |has| (-146) (-872)) ((-875) |has| (-146) (-872)) ((-1133) -4043 (|has| (-146) (-1133)) (|has| (-146) (-872))) ((-1249) . T)) -((-3942 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793)) 112 T ELT)) (-3939 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793)) 61 T ELT)) (-3943 (((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)) 97 T ELT)) (-3937 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-3940 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793)) 63 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114)) 65 T ELT)) (-3941 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 85 T ELT)) (-4488 (((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) 90 T ELT)) (-3938 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|) 60 T ELT)) (-3936 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT))) -(((-1177 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3936 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3937 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3938 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3942 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793))) (-15 -4488 ((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3943 ((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|) (-1141 |#1| |#2| |#3| |#4|)) (T -1177)) -((-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *4 (-793)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-1305)) (-5 *1 (-1177 *5 *6 *7 *8 *9)))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1141 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1191)) (-5 *1 (-1177 *4 *5 *6 *7 *8)))) (-3942 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -1755 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -1755 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1097 *7 *8 *9)) (-4 *11 (-1141 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) (-5 *1 (-1177 *7 *8 *9 *10 *11)))) (-3941 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1177 *5 *6 *7 *8 *9)))) (-3941 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1177 *5 *6 *7 *8 *9)))) (-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3)))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *6 *7 *8 *3 *4)) (-4 *4 (-1141 *6 *7 *8 *3)))) (-3940 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) (-4 *3 (-1097 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *7 *8 *9 *3 *4)) (-4 *4 (-1141 *7 *8 *9 *3)))) (-3939 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3)))) (-3939 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *6 *7 *8 *3 *4)) (-4 *4 (-1141 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-793)) (-5 *1 (-1177 *5 *6 *7 *8 *9)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-793)) (-5 *1 (-1177 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3936 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3937 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -3938 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3939 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5| (-793))) (-15 -3940 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) |#4| |#5|)) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3941 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3942 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))))) (-793))) (-15 -4488 ((-1191) (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|)))) (-15 -3943 ((-1305) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -1755 |#5|))) (-793)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-4198 (((-663 $) (-663 |#4|)) 121 T ELT) (((-663 $) (-663 |#4|) (-114)) 122 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 120 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 123 T ELT)) (-3570 (((-663 |#3|) $) NIL T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4204 ((|#4| |#4| $) NIL T ELT)) (-4291 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| $) 94 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4226 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3660 (($ (-663 |#4|)) NIL T ELT)) (-4315 (((-3 $ #1#) $) 45 T ELT)) (-4201 ((|#4| |#4| $) 76 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3912 (($ |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) NIL T ELT)) (-3701 (((-114) |#4| $) NIL T ELT)) (-3699 (((-114) |#4| $) NIL T ELT)) (-3702 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3944 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 136 T ELT)) (-3376 (((-663 |#4|) $) 18 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 19 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3401 (((-663 |#3|) $) NIL T ELT)) (-3400 (((-114) |#3| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3695 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-3694 (((-663 (-2 (|:| |val| |#4|) (|:| -1755 $))) |#4| |#4| $) 114 T ELT)) (-4314 (((-3 |#4| #1#) $) 42 T ELT)) (-3696 (((-663 $) |#4| $) 99 T ELT)) (-3698 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-3697 (((-663 (-2 (|:| |val| (-114)) (|:| -1755 $))) |#4| $) 109 T ELT) (((-114) |#4| $) 65 T ELT)) (-3742 (((-663 $) |#4| $) 118 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-3945 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 131 T ELT)) (-3946 (($ |#4| $) 85 T ELT) (($ (-663 |#4|) $) 86 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 84 T ELT)) (-4213 (((-663 |#4|) $) NIL T ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4202 ((|#4| |#4| $) NIL T ELT)) (-4215 (((-114) $ $) NIL T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4203 ((|#4| |#4| $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-3 |#4| #1#) $) 40 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4195 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4285 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 101 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 96 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 17 T ELT)) (-4079 (($) 14 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-2171 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 13 T ELT)) (-4488 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 22 T ELT)) (-3397 (($ $ |#3|) 52 T ELT)) (-3399 (($ $ |#3|) 54 T ELT)) (-4200 (($ $) NIL T ELT)) (-3398 (($ $ |#3|) NIL T ELT)) (-4462 (((-888) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-4194 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-3693 (((-663 $) |#4| $) 66 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) NIL T ELT)) (-3700 (((-114) |#4| $) NIL T ELT)) (-4449 (((-114) |#3| $) 72 T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1178 |#1| |#2| |#3| |#4|) (-13 (-1141 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3946 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -3945 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -3944 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -1178)) -((-3946 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *3))) (-5 *1 (-1178 *5 *6 *7 *3)) (-4 *3 (-1097 *5 *6 *7)))) (-4198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) (-5 *1 (-1178 *5 *6 *7 *8)))) (-4198 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) (-5 *1 (-1178 *5 *6 *7 *8)))) (-3945 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) (-5 *1 (-1178 *5 *6 *7 *8)))) (-3944 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1178 *5 *6 *7 *8))))) (-5 *1 (-1178 *5 *6 *7 *8)) (-5 *3 (-663 *8))))) -(-13 (-1141 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3946 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -4198 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -3945 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -3944 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 31 T ELT)) (-2655 (((-114) $) 29 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 28 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-793)) 30 T ELT) (($ $ (-949)) 27 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1179) (-142)) (T -1179)) -NIL -(-13 (-23) (-748)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-888)) . T) ((-748) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3830 ((|#1| $) 37 T ELT)) (-3947 (($ (-663 |#1|)) 45 T ELT)) (-4240 (($) NIL T CONST)) (-3832 ((|#1| |#1| $) 40 T ELT)) (-3831 ((|#1| $) 35 T ELT)) (-3376 (((-663 |#1|) $) 18 (|has| $ (-6 -4511)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-1400 ((|#1| $) 38 T ELT)) (-4123 (($ |#1| $) 41 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-1401 ((|#1| $) 36 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 32 T ELT)) (-4079 (($) 43 T ELT)) (-3829 (((-793) $) 30 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 27 T ELT)) (-4462 (((-888) $) 14 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1402 (($ (-663 |#1|)) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 31 (|has| $ (-6 -4511)) ELT))) -(((-1180 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -3947 ($ (-663 |#1|))))) (-1249)) (T -1180)) -((-3947 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1180 *3))))) -(-13 (-1153 |#1|) (-10 -8 (-15 -3947 ($ (-663 |#1|))))) -((-4304 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1266 (-560)) |#2|) 53 T ELT) ((|#2| $ (-560) |#2|) 50 T ELT)) (-3949 (((-114) $) 12 T ELT)) (-2174 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4317 ((|#2| $) NIL T ELT) (($ $ (-793)) 17 T ELT)) (-2428 (($ $ |#2|) 49 T ELT)) (-3950 (((-114) $) 11 T ELT)) (-4316 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1266 (-560))) 36 T ELT) ((|#2| $ (-560)) 25 T ELT) ((|#2| $ (-560) |#2|) NIL T ELT)) (-4307 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-4318 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-663 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1181 |#1| |#2|) (-10 -8 (-15 -3949 ((-114) |#1|)) (-15 -3950 ((-114) |#1|)) (-15 -4304 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -2428 (|#1| |#1| |#2|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4318 (|#1| |#1| |#2|)) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4304 (|#2| |#1| (-1266 (-560)) |#2|)) (-15 -4304 (|#2| |#1| #1="last" |#2|)) (-15 -4304 (|#1| |#1| #2="rest" |#1|)) (-15 -4304 (|#2| |#1| #3="first" |#2|)) (-15 -4307 (|#1| |#1| |#2|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -4316 (|#1| |#1| #2#)) (-15 -4317 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| #3#)) (-15 -4317 (|#2| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4304 (|#2| |#1| #4="value" |#2|)) (-15 -4316 (|#2| |#1| #4#)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|))) (-1182 |#2|) (-1249)) (T -1181)) -NIL -(-10 -8 (-15 -3949 ((-114) |#1|)) (-15 -3950 ((-114) |#1|)) (-15 -4304 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560) |#2|)) (-15 -4316 (|#2| |#1| (-560))) (-15 -2428 (|#1| |#1| |#2|)) (-15 -4316 (|#1| |#1| (-1266 (-560)))) (-15 -4318 (|#1| |#1| |#2|)) (-15 -4318 (|#1| (-663 |#1|))) (-15 -4304 (|#2| |#1| (-1266 (-560)) |#2|)) (-15 -4304 (|#2| |#1| #1="last" |#2|)) (-15 -4304 (|#1| |#1| #2="rest" |#1|)) (-15 -4304 (|#2| |#1| #3="first" |#2|)) (-15 -4307 (|#1| |#1| |#2|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -4316 (|#1| |#1| #2#)) (-15 -4317 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| #3#)) (-15 -4317 (|#2| |#1|)) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#1|)) (-15 -4304 (|#2| |#1| #4="value" |#2|)) (-15 -4316 (|#2| |#1| #4#)) (-15 -2174 (|#1| (-1 |#2| |#2|) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-4311 ((|#1| $) 71 T ELT)) (-4313 (($ $) 73 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 107 (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 58 (|has| $ (-6 -4512)) ELT)) (-3948 (((-114) $ (-793)) 90 T ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 62 (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) 60 (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 127 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) 96 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4511)) ELT)) (-4312 ((|#1| $) 72 T ELT)) (-4240 (($) 7 T CONST)) (-4315 (($ $) 79 T ELT) (($ $ (-793)) 77 T ELT)) (-1479 (($ $) 109 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4511)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1731 ((|#1| $ (-560) |#1|) 95 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 97 T ELT)) (-3949 (((-114) $) 93 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) 119 T ELT)) (-4235 (((-114) $ (-793)) 91 T ELT)) (-2429 (((-560) $) 105 (|has| (-560) (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 104 (|has| (-560) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4232 (((-114) $ (-793)) 92 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) 76 T ELT) (($ $ (-793)) 74 T ELT)) (-2531 (($ $ $ (-560)) 126 T ELT) (($ |#1| $ (-560)) 125 T ELT)) (-2432 (((-663 (-560)) $) 102 T ELT)) (-2433 (((-114) (-560) $) 101 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 82 T ELT) (($ $ (-793)) 80 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2428 (($ $ |#1|) 106 (|has| $ (-6 -4512)) ELT)) (-3950 (((-114) $) 94 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 100 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1266 (-560))) 118 T ELT) ((|#1| $ (-560)) 99 T ELT) ((|#1| $ (-560) |#1|) 98 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-2532 (($ $ (-1266 (-560))) 124 T ELT) (($ $ (-560)) 123 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-4308 (($ $) 68 T ELT)) (-4306 (($ $) 65 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) 69 T ELT)) (-4310 (($ $) 70 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 108 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 117 T ELT)) (-4307 (($ $ $) 67 (|has| $ (-6 -4512)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4512)) ELT)) (-4318 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-663 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1182 |#1|) (-142) (-1249)) (T -1182)) -((-3950 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114))))) -(-13 (-1288 |t#1|) (-673 |t#1|) (-10 -8 (-15 -3950 ((-114) $)) (-15 -3949 ((-114) $)) (-15 -4232 ((-114) $ (-793))) (-15 -4235 ((-114) $ (-793))) (-15 -3948 ((-114) $ (-793))))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T) ((-1288 |#1|) . T)) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) NIL T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1183 |#1| |#2| |#3|) (-1226 |#1| |#2|) (-1133) (-1133) |#2|) (T -1183)) -NIL -(-1226 |#1| |#2|) -((-3053 (((-114) $ $) 7 T ELT)) (-3951 (((-713 $) $) 17 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3952 (($) 18 T CONST)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3540 (((-114) $ $) 8 T ELT))) -(((-1184) (-142)) (T -1184)) -((-3952 (*1 *1) (-4 *1 (-1184))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-1184))))) -(-13 (-1133) (-10 -8 (-15 -3952 ($) -4468) (-15 -3951 ((-713 $) $)))) -(((-102) . T) ((-632 (-888)) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3954 (((-713 (-1167)) $) 27 T ELT)) (-3953 (((-1167) $) 15 T ELT)) (-3955 (((-1167) $) 17 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3956 (((-520) $) 13 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 37 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1185) (-13 (-1115) (-10 -8 (-15 -3956 ((-520) $)) (-15 -3955 ((-1167) $)) (-15 -3954 ((-713 (-1167)) $)) (-15 -3953 ((-1167) $))))) (T -1185)) -((-3956 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1185)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-713 (-1167))) (-5 *1 (-1185)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185))))) -(-13 (-1115) (-10 -8 (-15 -3956 ((-520) $)) (-15 -3955 ((-1167) $)) (-15 -3954 ((-713 (-1167)) $)) (-15 -3953 ((-1167) $)))) -((-3959 (((-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (-3957 (((-1187 |#1|) (-1187 |#1|)) 13 T ELT)) (-3960 (((-1187 |#1|) (-1187 |#1|) (-560) (-560)) 20 T ELT)) (-3958 (((-1187 |#1|) (-1187 |#1|)) 15 T ELT))) -(((-1186 |#1|) (-10 -7 (-15 -3957 ((-1187 |#1|) (-1187 |#1|))) (-15 -3958 ((-1187 |#1|) (-1187 |#1|))) (-15 -3959 ((-1187 |#1|) (-1187 |#1|))) (-15 -3960 ((-1187 |#1|) (-1187 |#1|) (-560) (-560)))) (-13 (-571) (-149))) (T -1186)) -((-3960 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1186 *4)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3))))) -(-10 -7 (-15 -3957 ((-1187 |#1|) (-1187 |#1|))) (-15 -3958 ((-1187 |#1|) (-1187 |#1|))) (-15 -3959 ((-1187 |#1|) (-1187 |#1|))) (-15 -3960 ((-1187 |#1|) (-1187 |#1|) (-560) (-560)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) NIL T ELT)) (-4311 ((|#1| $) NIL T ELT)) (-4313 (($ $) 62 T ELT)) (-2427 (((-1305) $ (-560) (-560)) 95 (|has| $ (-6 -4512)) ELT)) (-4301 (($ $ (-560)) 124 (|has| $ (-6 -4512)) ELT)) (-3948 (((-114) $ (-793)) NIL T ELT)) (-3965 (((-888) $) 51 (|has| |#1| (-1133)) ELT)) (-3964 (((-114)) 50 (|has| |#1| (-1133)) ELT)) (-3512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 111 (|has| $ (-6 -4512)) ELT) (($ $ (-560) $) 138 T ELT)) (-4302 ((|#1| $ |#1|) 121 (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 116 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4512)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4512)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 108 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-560) |#1|) 74 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-4312 ((|#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-2550 (($ $) 11 T ELT)) (-4315 (($ $) 35 T ELT) (($ $ (-793)) 107 T ELT)) (-3970 (((-114) (-663 |#1|) $) 130 (|has| |#1| (-1133)) ELT)) (-3971 (($ (-663 |#1|)) 126 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) 76 T ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3949 (((-114) $) NIL T ELT)) (-3376 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3966 (((-1305) (-560) $) 136 (|has| |#1| (-1133)) ELT)) (-2549 (((-793) $) 133 T ELT)) (-3518 (((-663 $) $) NIL T ELT)) (-3514 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-4235 (((-114) $ (-793)) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-4232 (((-114) $ (-793)) NIL T ELT)) (-3517 (((-663 |#1|) $) NIL T ELT)) (-4033 (((-114) $) NIL T ELT)) (-2552 (($ $) 109 T ELT)) (-2553 (((-114) $) 10 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2531 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) 92 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-3963 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2551 ((|#1| $) 7 T ELT)) (-4317 ((|#1| $) 34 T ELT) (($ $ (-793)) 60 T ELT)) (-3969 (((-2 (|:| |cycle?| (-114)) (|:| -3080 (-793)) (|:| |period| (-793))) (-793) $) 29 T ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3962 (($ (-1 (-114) |#1|) $) 142 T ELT)) (-3961 (($ (-1 (-114) |#1|) $) 143 T ELT)) (-2428 (($ $ |#1|) 87 (|has| $ (-6 -4512)) ELT)) (-4285 (($ $ (-560)) 40 T ELT)) (-3950 (((-114) $) 90 T ELT)) (-2554 (((-114) $) 9 T ELT)) (-2555 (((-114) $) 132 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 25 T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) 14 T ELT)) (-4079 (($) 55 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) ((|#1| $ (-560)) 72 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-3516 (((-560) $ $) 59 T ELT)) (-2532 (($ $ (-1266 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-3968 (($ (-1 $)) 58 T ELT)) (-4149 (((-114) $) 88 T ELT)) (-4308 (($ $) 89 T ELT)) (-4306 (($ $) 112 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) NIL T ELT)) (-4310 (($ $) NIL T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 54 T ELT)) (-4488 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 70 T ELT)) (-3967 (($ |#1| $) 110 T ELT)) (-4307 (($ $ $) 114 (|has| $ (-6 -4512)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4512)) ELT)) (-4318 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-663 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3378 (($ $) 61 T ELT)) (-4462 (($ (-663 |#1|)) 125 T ELT) (((-888) $) 52 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) NIL T ELT)) (-3515 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 128 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1187 |#1|) (-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4512) (-15 -3971 ($ (-663 |#1|))) (IF (|has| |#1| (-1133)) (-15 -3970 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -3969 ((-2 (|:| |cycle?| (-114)) (|:| -3080 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -3968 ($ (-1 $))) (-15 -3967 ($ |#1| $)) (IF (|has| |#1| (-1133)) (PROGN (-15 -3966 ((-1305) (-560) $)) (-15 -3965 ((-888) $)) (-15 -3964 ((-114)))) |%noBranch|) (-15 -4303 ($ $ (-560) $)) (-15 -3963 ($ (-1 |#1|))) (-15 -3963 ($ (-1 |#1| |#1|) |#1|)) (-15 -3962 ($ (-1 (-114) |#1|) $)) (-15 -3961 ($ (-1 (-114) |#1|) $)))) (-1249)) (T -1187)) -((-3971 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3)))) (-3970 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-4 *4 (-1249)) (-5 *2 (-114)) (-5 *1 (-1187 *4)))) (-3969 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -3080 (-793)) (|:| |period| (-793)))) (-5 *1 (-1187 *4)) (-4 *4 (-1249)) (-5 *3 (-793)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1249)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1249)))) (-3966 (*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1187 *4)) (-4 *4 (-1133)) (-4 *4 (-1249)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1187 *3)) (-4 *3 (-1133)) (-4 *3 (-1249)))) (-3964 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1187 *3)) (-4 *3 (-1133)) (-4 *3 (-1249)))) (-4303 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1187 *3)) (-4 *3 (-1249)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3)))) (-3962 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3)))) (-3961 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3))))) -(-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4512) (-15 -3971 ($ (-663 |#1|))) (IF (|has| |#1| (-1133)) (-15 -3970 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -3969 ((-2 (|:| |cycle?| (-114)) (|:| -3080 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -3968 ($ (-1 $))) (-15 -3967 ($ |#1| $)) (IF (|has| |#1| (-1133)) (PROGN (-15 -3966 ((-1305) (-560) $)) (-15 -3965 ((-888) $)) (-15 -3964 ((-114)))) |%noBranch|) (-15 -4303 ($ $ (-560) $)) (-15 -3963 ($ (-1 |#1|))) (-15 -3963 ($ (-1 |#1| |#1|) |#1|)) (-15 -3962 ($ (-1 (-114) |#1|) $)) (-15 -3961 ($ (-1 (-114) |#1|) $)))) -((-4318 (((-1187 |#1|) (-1187 (-1187 |#1|))) 15 T ELT))) -(((-1188 |#1|) (-10 -7 (-15 -4318 ((-1187 |#1|) (-1187 (-1187 |#1|))))) (-1249)) (T -1188)) -((-4318 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1188 *4)) (-4 *4 (-1249))))) -(-10 -7 (-15 -4318 ((-1187 |#1|) (-1187 (-1187 |#1|))))) -((-4357 (((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 25 T ELT)) (-4358 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 26 T ELT)) (-4474 (((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|)) 16 T ELT))) -(((-1189 |#1| |#2|) (-10 -7 (-15 -4474 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -4357 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -4358 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) (-1249) (-1249)) (T -1189)) -((-4358 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-1189 *5 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1249)) (-4 *3 (-1249)) (-5 *2 (-1187 *3)) (-5 *1 (-1189 *6 *3)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1187 *6)) (-5 *1 (-1189 *5 *6))))) -(-10 -7 (-15 -4474 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -4357 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -4358 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) -((-4474 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)) 21 T ELT))) -(((-1190 |#1| |#2| |#3|) (-10 -7 (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) (-1249) (-1249) (-1249)) (T -1190)) -((-4474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) (-5 *1 (-1190 *6 *7 *8))))) -(-10 -7 (-15 -4474 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) -((-3053 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3932 (($ $) NIL T ELT)) (-3933 (($ $) NIL T ELT)) (-3923 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3930 (((-114) $ $) NIL T ELT)) (-3929 (((-114) $ $ (-560)) NIL T ELT)) (-4049 (($ (-560)) 8 T ELT) (($ (-229)) 10 T ELT)) (-3924 (((-663 $) $ (-146)) NIL T ELT) (((-663 $) $ (-143)) NIL T ELT)) (-1947 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-872)) ELT)) (-1945 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| (-146) (-872))) ELT)) (-3396 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-872)) ELT)) (-4304 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4512)) ELT) (((-146) $ (-1266 (-560)) (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-3921 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-3926 (($ $ (-1266 (-560)) $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-3912 (($ (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4511)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-3601 (((-146) $ (-560)) NIL T ELT)) (-3931 (((-114) $ $) NIL T ELT)) (-3925 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1133)) ELT) (((-560) (-146) $ (-560)) NIL (|has| (-146) (-1133)) ELT) (((-560) $ $ (-560)) NIL T ELT) (((-560) (-143) $ (-560)) NIL T ELT)) (-3376 (((-663 (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4130 (($ (-793) (-146)) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-4024 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-3093 (((-663 (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-2430 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| (-146) (-872)) ELT)) (-3927 (((-114) $ $ (-146)) NIL T ELT)) (-3928 (((-793) $ $ (-146)) NIL T ELT)) (-2174 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3934 (($ $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3922 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3746 (((-1191) $) NIL (|has| (-146) (-1133)) ELT)) (-2531 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| (-146) (-1133)) ELT)) (-4317 (((-146) $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2428 (($ $ (-146)) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-2434 (((-663 (-146)) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT) (($ $ $) NIL T ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-146) (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-4036 (($ (-663 (-146))) NIL T ELT)) (-4318 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (($ (-146)) NIL T ELT) (((-888) $) NIL (|has| (-146) (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2173 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4511)) ELT)) (-2982 (((-1191) $) 21 T ELT) (((-1191) $ (-114)) 23 T ELT) (((-1305) (-847) $) 24 T ELT) (((-1305) (-847) $ (-114)) 25 T ELT)) (-3051 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| (-146) (-872)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1191) (-13 (-1176) (-845) (-10 -8 (-15 -4049 ($ (-560))) (-15 -4049 ($ (-229)))))) (T -1191)) -((-4049 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1191)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1191))))) -(-13 (-1176) (-845) (-10 -8 (-15 -4049 ($ (-560))) (-15 -4049 ($ (-229))))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-2427 (((-1305) $ (-1191) (-1191)) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ (-1191) |#1|) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#1| #1="failed") (-1191) $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#1| #1#) (-1191) $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-1191) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-1191)) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-1191) $) NIL (|has| (-1191) (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133)) (|has| |#1| (-1133))) ELT)) (-2898 (((-663 (-1191)) $) NIL T ELT)) (-2461 (((-114) (-1191) $) NIL T ELT)) (-1400 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-2432 (((-663 (-1191)) $) NIL T ELT)) (-2433 (((-114) (-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133)) (|has| |#1| (-1133))) ELT)) (-4317 ((|#1| $) NIL (|has| (-1191) (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) "failed") (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-321 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-1191)) NIL T ELT) ((|#1| $ (-1191) |#1|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-1133))) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-632 (-888))) (|has| |#1| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 (-1191)) (|:| -2300 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1192 |#1|) (-13 (-1226 (-1191) |#1|) (-10 -7 (-6 -4511))) (-1133)) (T -1192)) -NIL -(-13 (-1226 (-1191) |#1|) (-10 -7 (-6 -4511))) -((-4321 (((-1187 |#1|) (-1187 |#1|)) 83 T ELT)) (-3973 (((-3 (-1187 |#1|) "failed") (-1187 |#1|)) 39 T ELT)) (-3984 (((-1187 |#1|) (-421 (-560)) (-1187 |#1|)) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3987 (((-1187 |#1|) |#1| (-1187 |#1|)) 137 (|has| |#1| (-376)) ELT)) (-4324 (((-1187 |#1|) (-1187 |#1|)) 97 T ELT)) (-3975 (((-1187 (-560)) (-560)) 63 T ELT)) (-3983 (((-1187 |#1|) (-1187 (-1187 |#1|))) 117 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4320 (((-1187 |#1|) (-560) (-560) (-1187 |#1|)) 103 T ELT)) (-4454 (((-1187 |#1|) |#1| (-560)) 51 T ELT)) (-3977 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-3985 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 135 (|has| |#1| (-376)) ELT)) (-3982 (((-1187 |#1|) |#1| (-1 (-1187 |#1|))) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3986 (((-1187 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1187 |#1|))) 136 (|has| |#1| (-376)) ELT)) (-4325 (((-1187 |#1|) (-1187 |#1|)) 96 T ELT)) (-4326 (((-1187 |#1|) (-1187 |#1|)) 82 T ELT)) (-4319 (((-1187 |#1|) (-560) (-560) (-1187 |#1|)) 104 T ELT)) (-4328 (((-1187 |#1|) |#1| (-1187 |#1|)) 113 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3974 (((-1187 (-560)) (-560)) 62 T ELT)) (-3976 (((-1187 |#1|) |#1|) 65 T ELT)) (-4322 (((-1187 |#1|) (-1187 |#1|) (-560) (-560)) 100 T ELT)) (-3979 (((-1187 |#1|) (-1 |#1| (-560)) (-1187 |#1|)) 72 T ELT)) (-3972 (((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-4323 (((-1187 |#1|) (-1187 |#1|)) 98 T ELT)) (-4284 (((-1187 |#1|) (-1187 |#1|) |#1|) 77 T ELT)) (-3978 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-3980 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 78 T ELT)) (-4462 (((-1187 |#1|) |#1|) 73 T ELT)) (-3981 (((-1187 |#1|) (-1187 (-1187 |#1|))) 88 T ELT)) (-4465 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-4353 (((-1187 |#1|) (-1187 |#1|)) 21 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 23 T ELT)) (-4355 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (* (((-1187 |#1|) (-1187 |#1|) |#1|) 29 T ELT) (((-1187 |#1|) |#1| (-1187 |#1|)) 26 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 27 T ELT))) -(((-1193 |#1|) (-10 -7 (-15 -4355 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4353 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4353 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3972 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -4465 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3973 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -4454 ((-1187 |#1|) |#1| (-560))) (-15 -3974 ((-1187 (-560)) (-560))) (-15 -3975 ((-1187 (-560)) (-560))) (-15 -3976 ((-1187 |#1|) |#1|)) (-15 -3977 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3978 ((-1187 |#1|) (-1187 |#1|))) (-15 -3979 ((-1187 |#1|) (-1 |#1| (-560)) (-1187 |#1|))) (-15 -4462 ((-1187 |#1|) |#1|)) (-15 -4284 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3980 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4326 ((-1187 |#1|) (-1187 |#1|))) (-15 -4321 ((-1187 |#1|) (-1187 |#1|))) (-15 -3981 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -4325 ((-1187 |#1|) (-1187 |#1|))) (-15 -4324 ((-1187 |#1|) (-1187 |#1|))) (-15 -4323 ((-1187 |#1|) (-1187 |#1|))) (-15 -4322 ((-1187 |#1|) (-1187 |#1|) (-560) (-560))) (-15 -4320 ((-1187 |#1|) (-560) (-560) (-1187 |#1|))) (-15 -4319 ((-1187 |#1|) (-560) (-560) (-1187 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -3982 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -3983 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -3984 ((-1187 |#1|) (-421 (-560)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3985 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3986 ((-1187 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1187 |#1|)))) (-15 -3987 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) (-1081)) (T -1193)) -((-3987 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-376)) (-4 *4 (-1081)) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4)))) (-3985 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3984 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1081)) (-5 *3 (-421 (-560))) (-5 *1 (-1193 *4)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1081)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)))) (-4328 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4319 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) (-4320 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) (-4322 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4)) (-4 *4 (-1081)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4284 (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4462 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081)))) (-3979 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3977 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3976 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081)))) (-3975 (*1 *2 *3) (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1193 *4)) (-4 *4 (-1081)) (-5 *3 (-560)))) (-3974 (*1 *2 *3) (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1193 *4)) (-4 *4 (-1081)) (-5 *3 (-560)))) (-4454 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081)))) (-3973 (*1 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4465 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-3972 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4353 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) (-4355 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) -(-10 -7 (-15 -4355 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4353 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4353 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3972 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -4465 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3973 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -4454 ((-1187 |#1|) |#1| (-560))) (-15 -3974 ((-1187 (-560)) (-560))) (-15 -3975 ((-1187 (-560)) (-560))) (-15 -3976 ((-1187 |#1|) |#1|)) (-15 -3977 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3978 ((-1187 |#1|) (-1187 |#1|))) (-15 -3979 ((-1187 |#1|) (-1 |#1| (-560)) (-1187 |#1|))) (-15 -4462 ((-1187 |#1|) |#1|)) (-15 -4284 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3980 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4326 ((-1187 |#1|) (-1187 |#1|))) (-15 -4321 ((-1187 |#1|) (-1187 |#1|))) (-15 -3981 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -4325 ((-1187 |#1|) (-1187 |#1|))) (-15 -4324 ((-1187 |#1|) (-1187 |#1|))) (-15 -4323 ((-1187 |#1|) (-1187 |#1|))) (-15 -4322 ((-1187 |#1|) (-1187 |#1|) (-560) (-560))) (-15 -4320 ((-1187 |#1|) (-560) (-560) (-1187 |#1|))) (-15 -4319 ((-1187 |#1|) (-560) (-560) (-1187 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -3982 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -3983 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -3984 ((-1187 |#1|) (-421 (-560)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3985 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3986 ((-1187 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1187 |#1|)))) (-15 -3987 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) -((-3998 (((-1187 |#1|) (-1187 |#1|)) 102 T ELT)) (-4155 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-3989 (((-2 (|:| -3996 (-1187 |#1|)) (|:| -3997 (-1187 |#1|))) (-1187 |#1|)) 98 T ELT)) (-3996 (((-1187 |#1|) (-1187 |#1|)) 99 T ELT)) (-3988 (((-2 (|:| -4154 (-1187 |#1|)) (|:| -4150 (-1187 |#1|))) (-1187 |#1|)) 54 T ELT)) (-4154 (((-1187 |#1|) (-1187 |#1|)) 55 T ELT)) (-4000 (((-1187 |#1|) (-1187 |#1|)) 104 T ELT)) (-4153 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-4458 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-4459 (((-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-4001 (((-1187 |#1|) (-1187 |#1|)) 105 T ELT)) (-4152 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-3999 (((-1187 |#1|) (-1187 |#1|)) 103 T ELT)) (-4151 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-3997 (((-1187 |#1|) (-1187 |#1|)) 100 T ELT)) (-4150 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-4004 (((-1187 |#1|) (-1187 |#1|)) 113 T ELT)) (-3992 (((-1187 |#1|) (-1187 |#1|)) 88 T ELT)) (-4002 (((-1187 |#1|) (-1187 |#1|)) 107 T ELT)) (-3990 (((-1187 |#1|) (-1187 |#1|)) 84 T ELT)) (-4006 (((-1187 |#1|) (-1187 |#1|)) 117 T ELT)) (-3994 (((-1187 |#1|) (-1187 |#1|)) 92 T ELT)) (-4007 (((-1187 |#1|) (-1187 |#1|)) 119 T ELT)) (-3995 (((-1187 |#1|) (-1187 |#1|)) 94 T ELT)) (-4005 (((-1187 |#1|) (-1187 |#1|)) 115 T ELT)) (-3993 (((-1187 |#1|) (-1187 |#1|)) 90 T ELT)) (-4003 (((-1187 |#1|) (-1187 |#1|)) 109 T ELT)) (-3991 (((-1187 |#1|) (-1187 |#1|)) 86 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 41 T ELT))) -(((-1194 |#1|) (-10 -7 (-15 -4459 ((-1187 |#1|) (-1187 |#1|))) (-15 -4458 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3988 ((-2 (|:| -4154 (-1187 |#1|)) (|:| -4150 (-1187 |#1|))) (-1187 |#1|))) (-15 -4154 ((-1187 |#1|) (-1187 |#1|))) (-15 -4150 ((-1187 |#1|) (-1187 |#1|))) (-15 -4155 ((-1187 |#1|) (-1187 |#1|))) (-15 -4151 ((-1187 |#1|) (-1187 |#1|))) (-15 -4153 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3990 ((-1187 |#1|) (-1187 |#1|))) (-15 -3991 ((-1187 |#1|) (-1187 |#1|))) (-15 -3992 ((-1187 |#1|) (-1187 |#1|))) (-15 -3993 ((-1187 |#1|) (-1187 |#1|))) (-15 -3994 ((-1187 |#1|) (-1187 |#1|))) (-15 -3995 ((-1187 |#1|) (-1187 |#1|))) (-15 -3989 ((-2 (|:| -3996 (-1187 |#1|)) (|:| -3997 (-1187 |#1|))) (-1187 |#1|))) (-15 -3996 ((-1187 |#1|) (-1187 |#1|))) (-15 -3997 ((-1187 |#1|) (-1187 |#1|))) (-15 -3998 ((-1187 |#1|) (-1187 |#1|))) (-15 -3999 ((-1187 |#1|) (-1187 |#1|))) (-15 -4000 ((-1187 |#1|) (-1187 |#1|))) (-15 -4001 ((-1187 |#1|) (-1187 |#1|))) (-15 -4002 ((-1187 |#1|) (-1187 |#1|))) (-15 -4003 ((-1187 |#1|) (-1187 |#1|))) (-15 -4004 ((-1187 |#1|) (-1187 |#1|))) (-15 -4005 ((-1187 |#1|) (-1187 |#1|))) (-15 -4006 ((-1187 |#1|) (-1187 |#1|))) (-15 -4007 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-421 (-560)))) (T -1194)) -((-4007 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3989 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -3996 (-1187 *4)) (|:| -3997 (-1187 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1187 *4)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-3988 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -4154 (-1187 *4)) (|:| -4150 (-1187 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1187 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4458 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) (-4459 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3))))) -(-10 -7 (-15 -4459 ((-1187 |#1|) (-1187 |#1|))) (-15 -4458 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3988 ((-2 (|:| -4154 (-1187 |#1|)) (|:| -4150 (-1187 |#1|))) (-1187 |#1|))) (-15 -4154 ((-1187 |#1|) (-1187 |#1|))) (-15 -4150 ((-1187 |#1|) (-1187 |#1|))) (-15 -4155 ((-1187 |#1|) (-1187 |#1|))) (-15 -4151 ((-1187 |#1|) (-1187 |#1|))) (-15 -4153 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3990 ((-1187 |#1|) (-1187 |#1|))) (-15 -3991 ((-1187 |#1|) (-1187 |#1|))) (-15 -3992 ((-1187 |#1|) (-1187 |#1|))) (-15 -3993 ((-1187 |#1|) (-1187 |#1|))) (-15 -3994 ((-1187 |#1|) (-1187 |#1|))) (-15 -3995 ((-1187 |#1|) (-1187 |#1|))) (-15 -3989 ((-2 (|:| -3996 (-1187 |#1|)) (|:| -3997 (-1187 |#1|))) (-1187 |#1|))) (-15 -3996 ((-1187 |#1|) (-1187 |#1|))) (-15 -3997 ((-1187 |#1|) (-1187 |#1|))) (-15 -3998 ((-1187 |#1|) (-1187 |#1|))) (-15 -3999 ((-1187 |#1|) (-1187 |#1|))) (-15 -4000 ((-1187 |#1|) (-1187 |#1|))) (-15 -4001 ((-1187 |#1|) (-1187 |#1|))) (-15 -4002 ((-1187 |#1|) (-1187 |#1|))) (-15 -4003 ((-1187 |#1|) (-1187 |#1|))) (-15 -4004 ((-1187 |#1|) (-1187 |#1|))) (-15 -4005 ((-1187 |#1|) (-1187 |#1|))) (-15 -4006 ((-1187 |#1|) (-1187 |#1|))) (-15 -4007 ((-1187 |#1|) (-1187 |#1|)))) -((-3998 (((-1187 |#1|) (-1187 |#1|)) 60 T ELT)) (-4155 (((-1187 |#1|) (-1187 |#1|)) 42 T ELT)) (-3996 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-4154 (((-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-4000 (((-1187 |#1|) (-1187 |#1|)) 63 T ELT)) (-4153 (((-1187 |#1|) (-1187 |#1|)) 45 T ELT)) (-4458 (((-1187 |#1|) (-1187 |#1|)) 34 T ELT)) (-4459 (((-1187 |#1|) (-1187 |#1|)) 29 T ELT)) (-4001 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-4152 (((-1187 |#1|) (-1187 |#1|)) 46 T ELT)) (-3999 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-4151 (((-1187 |#1|) (-1187 |#1|)) 43 T ELT)) (-3997 (((-1187 |#1|) (-1187 |#1|)) 58 T ELT)) (-4150 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-4004 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-3992 (((-1187 |#1|) (-1187 |#1|)) 50 T ELT)) (-4002 (((-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-3990 (((-1187 |#1|) (-1187 |#1|)) 48 T ELT)) (-4006 (((-1187 |#1|) (-1187 |#1|)) 71 T ELT)) (-3994 (((-1187 |#1|) (-1187 |#1|)) 53 T ELT)) (-4007 (((-1187 |#1|) (-1187 |#1|)) 72 T ELT)) (-3995 (((-1187 |#1|) (-1187 |#1|)) 54 T ELT)) (-4005 (((-1187 |#1|) (-1187 |#1|)) 70 T ELT)) (-3993 (((-1187 |#1|) (-1187 |#1|)) 52 T ELT)) (-4003 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-3991 (((-1187 |#1|) (-1187 |#1|)) 51 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 36 T ELT))) -(((-1195 |#1|) (-10 -7 (-15 -4459 ((-1187 |#1|) (-1187 |#1|))) (-15 -4458 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4154 ((-1187 |#1|) (-1187 |#1|))) (-15 -4150 ((-1187 |#1|) (-1187 |#1|))) (-15 -4155 ((-1187 |#1|) (-1187 |#1|))) (-15 -4151 ((-1187 |#1|) (-1187 |#1|))) (-15 -4153 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3990 ((-1187 |#1|) (-1187 |#1|))) (-15 -3991 ((-1187 |#1|) (-1187 |#1|))) (-15 -3992 ((-1187 |#1|) (-1187 |#1|))) (-15 -3993 ((-1187 |#1|) (-1187 |#1|))) (-15 -3994 ((-1187 |#1|) (-1187 |#1|))) (-15 -3995 ((-1187 |#1|) (-1187 |#1|))) (-15 -3996 ((-1187 |#1|) (-1187 |#1|))) (-15 -3997 ((-1187 |#1|) (-1187 |#1|))) (-15 -3998 ((-1187 |#1|) (-1187 |#1|))) (-15 -3999 ((-1187 |#1|) (-1187 |#1|))) (-15 -4000 ((-1187 |#1|) (-1187 |#1|))) (-15 -4001 ((-1187 |#1|) (-1187 |#1|))) (-15 -4002 ((-1187 |#1|) (-1187 |#1|))) (-15 -4003 ((-1187 |#1|) (-1187 |#1|))) (-15 -4004 ((-1187 |#1|) (-1187 |#1|))) (-15 -4005 ((-1187 |#1|) (-1187 |#1|))) (-15 -4006 ((-1187 |#1|) (-1187 |#1|))) (-15 -4007 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-421 (-560)))) (T -1195)) -((-4007 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4458 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) (-4459 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) -(-10 -7 (-15 -4459 ((-1187 |#1|) (-1187 |#1|))) (-15 -4458 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4154 ((-1187 |#1|) (-1187 |#1|))) (-15 -4150 ((-1187 |#1|) (-1187 |#1|))) (-15 -4155 ((-1187 |#1|) (-1187 |#1|))) (-15 -4151 ((-1187 |#1|) (-1187 |#1|))) (-15 -4153 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3990 ((-1187 |#1|) (-1187 |#1|))) (-15 -3991 ((-1187 |#1|) (-1187 |#1|))) (-15 -3992 ((-1187 |#1|) (-1187 |#1|))) (-15 -3993 ((-1187 |#1|) (-1187 |#1|))) (-15 -3994 ((-1187 |#1|) (-1187 |#1|))) (-15 -3995 ((-1187 |#1|) (-1187 |#1|))) (-15 -3996 ((-1187 |#1|) (-1187 |#1|))) (-15 -3997 ((-1187 |#1|) (-1187 |#1|))) (-15 -3998 ((-1187 |#1|) (-1187 |#1|))) (-15 -3999 ((-1187 |#1|) (-1187 |#1|))) (-15 -4000 ((-1187 |#1|) (-1187 |#1|))) (-15 -4001 ((-1187 |#1|) (-1187 |#1|))) (-15 -4002 ((-1187 |#1|) (-1187 |#1|))) (-15 -4003 ((-1187 |#1|) (-1187 |#1|))) (-15 -4004 ((-1187 |#1|) (-1187 |#1|))) (-15 -4005 ((-1187 |#1|) (-1187 |#1|))) (-15 -4006 ((-1187 |#1|) (-1187 |#1|))) (-15 -4007 ((-1187 |#1|) (-1187 |#1|)))) -((-4008 (((-988 |#2|) |#2| |#2|) 51 T ELT)) (-4009 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -4008 ((-988 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4009 (|#2| |#2| |#1|)) |%noBranch|)) (-571) (-1275 |#1|)) (T -1196)) -((-4009 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1196 *3 *2)) (-4 *2 (-1275 *3)))) (-4008 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-988 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -4008 ((-988 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4009 (|#2| |#2| |#1|)) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-4017 (($ $ (-663 (-793))) 79 T ELT)) (-4404 (($) 33 T ELT)) (-4026 (($ $) 51 T ELT)) (-4267 (((-663 $) $) 60 T ELT)) (-4032 (((-114) $) 19 T ELT)) (-4010 (((-663 (-973 |#2|)) $) 86 T ELT)) (-4011 (($ $) 80 T ELT)) (-4027 (((-793) $) 47 T ELT)) (-4130 (($) 32 T ELT)) (-4020 (($ $ (-663 (-793)) (-973 |#2|)) 72 T ELT) (($ $ (-663 (-793)) (-793)) 73 T ELT) (($ $ (-793) (-973 |#2|)) 75 T ELT)) (-4024 (($ $ $) 57 T ELT) (($ (-663 $)) 59 T ELT)) (-4012 (((-793) $) 87 T ELT)) (-4033 (((-114) $) 15 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4031 (((-114) $) 22 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4013 (((-174) $) 85 T ELT)) (-4016 (((-973 |#2|) $) 81 T ELT)) (-4015 (((-793) $) 82 T ELT)) (-4014 (((-114) $) 84 T ELT)) (-4018 (($ $ (-663 (-793)) (-174)) 78 T ELT)) (-4025 (($ $) 52 T ELT)) (-4462 (((-888) $) 99 T ELT)) (-4019 (($ $ (-663 (-793)) (-114)) 77 T ELT)) (-4028 (((-663 $) $) 11 T ELT)) (-4029 (($ $ (-793)) 46 T ELT)) (-4030 (($ $) 43 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4021 (($ $ $ (-973 |#2|) (-793)) 68 T ELT)) (-4022 (($ $ (-973 |#2|)) 67 T ELT)) (-4023 (($ $ (-663 (-793)) (-973 |#2|)) 66 T ELT) (($ $ (-663 (-793)) (-793)) 70 T ELT) (((-793) $ (-973 |#2|)) 71 T ELT)) (-3540 (((-114) $ $) 92 T ELT))) -(((-1197 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -4033 ((-114) $)) (-15 -4032 ((-114) $)) (-15 -4031 ((-114) $)) (-15 -4130 ($)) (-15 -4404 ($)) (-15 -4030 ($ $)) (-15 -4029 ($ $ (-793))) (-15 -4028 ((-663 $) $)) (-15 -4027 ((-793) $)) (-15 -4026 ($ $)) (-15 -4025 ($ $)) (-15 -4024 ($ $ $)) (-15 -4024 ($ (-663 $))) (-15 -4267 ((-663 $) $)) (-15 -4023 ($ $ (-663 (-793)) (-973 |#2|))) (-15 -4022 ($ $ (-973 |#2|))) (-15 -4021 ($ $ $ (-973 |#2|) (-793))) (-15 -4020 ($ $ (-663 (-793)) (-973 |#2|))) (-15 -4023 ($ $ (-663 (-793)) (-793))) (-15 -4020 ($ $ (-663 (-793)) (-793))) (-15 -4023 ((-793) $ (-973 |#2|))) (-15 -4020 ($ $ (-793) (-973 |#2|))) (-15 -4019 ($ $ (-663 (-793)) (-114))) (-15 -4018 ($ $ (-663 (-793)) (-174))) (-15 -4017 ($ $ (-663 (-793)))) (-15 -4016 ((-973 |#2|) $)) (-15 -4015 ((-793) $)) (-15 -4014 ((-114) $)) (-15 -4013 ((-174) $)) (-15 -4012 ((-793) $)) (-15 -4011 ($ $)) (-15 -4010 ((-663 (-973 |#2|)) $)))) (-949) (-1081)) (T -1197)) -((-4033 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4130 (*1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4404 (*1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4030 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4025 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4024 (*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-973 *4)) (-4 *4 (-1081)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)))) (-4021 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-973 *5)) (-5 *3 (-793)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)))) (-4023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1081)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1081)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *2 (-793)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1081)))) (-4018 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1197 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1081)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-973 *4)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081)))) (-4011 (*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-663 (-973 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(-13 (-1133) (-10 -8 (-15 -4033 ((-114) $)) (-15 -4032 ((-114) $)) (-15 -4031 ((-114) $)) (-15 -4130 ($)) (-15 -4404 ($)) (-15 -4030 ($ $)) (-15 -4029 ($ $ (-793))) (-15 -4028 ((-663 $) $)) (-15 -4027 ((-793) $)) (-15 -4026 ($ $)) (-15 -4025 ($ $)) (-15 -4024 ($ $ $)) (-15 -4024 ($ (-663 $))) (-15 -4267 ((-663 $) $)) (-15 -4023 ($ $ (-663 (-793)) (-973 |#2|))) (-15 -4022 ($ $ (-973 |#2|))) (-15 -4021 ($ $ $ (-973 |#2|) (-793))) (-15 -4020 ($ $ (-663 (-793)) (-973 |#2|))) (-15 -4023 ($ $ (-663 (-793)) (-793))) (-15 -4020 ($ $ (-663 (-793)) (-793))) (-15 -4023 ((-793) $ (-973 |#2|))) (-15 -4020 ($ $ (-793) (-973 |#2|))) (-15 -4019 ($ $ (-663 (-793)) (-114))) (-15 -4018 ($ $ (-663 (-793)) (-174))) (-15 -4017 ($ $ (-663 (-793)))) (-15 -4016 ((-973 |#2|) $)) (-15 -4015 ((-793) $)) (-15 -4014 ((-114) $)) (-15 -4013 ((-174) $)) (-15 -4012 ((-793) $)) (-15 -4011 ($ $)) (-15 -4010 ((-663 (-973 |#2|)) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4034 ((|#2| $) 11 T ELT)) (-4035 ((|#1| $) 10 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4036 (($ |#1| |#2|) 9 T ELT)) (-4462 (((-888) $) 16 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1198 |#1| |#2|) (-13 (-1133) (-10 -8 (-15 -4036 ($ |#1| |#2|)) (-15 -4035 (|#1| $)) (-15 -4034 (|#2| $)))) (-1133) (-1133)) (T -1198)) -((-4036 (*1 *1 *2 *3) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-4035 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-1133)))) (-4034 (*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-1133))))) -(-13 (-1133) (-10 -8 (-15 -4036 ($ |#1| |#2|)) (-15 -4035 (|#1| $)) (-15 -4034 (|#2| $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4037 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1199) (-13 (-1115) (-10 -8 (-15 -4037 ((-1167) $))))) (T -1199)) -((-4037 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1199))))) -(-13 (-1115) (-10 -8 (-15 -4037 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-1207 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 11 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2287 (($ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2285 (((-114) $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4287 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) 75 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-4247 (((-1207 |#1| |#2| |#3|) $) 42 T ELT)) (-4244 (((-3 (-1207 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-4245 (((-1207 |#1| |#2| |#3|) $) 33 T ELT)) (-3998 (($ $) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4139 (((-560) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-1207 |#1| |#2| |#3|) #2="failed") $) 34 T ELT) (((-3 (-1209) #2#) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) #2#) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT)) (-3660 (((-1207 |#1| |#2| |#3|) $) 140 T ELT) (((-1209) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT)) (-4246 (($ $) 37 T ELT) (($ (-560) $) 38 T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-1207 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-1207 |#1| |#2| |#3|))) (|:| |vec| (-1299 (-1207 |#1| |#2| |#3|)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3973 (((-3 $ "failed") $) 54 T ELT)) (-4243 (((-421 (-976 |#1|)) $ (-560)) 74 (|has| |#1| (-571)) ELT) (((-421 (-976 |#1|)) $ (-560) (-560)) 76 (|has| |#1| (-571)) ELT)) (-3481 (($) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3690 (((-114) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-3379 (((-114) $) 28 T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-912 (-391))) (|has| |#1| (-376))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-912 (-560))) (|has| |#1| (-376))) ELT)) (-4288 (((-560) $) NIL T ELT) (((-560) $ (-560)) 26 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3485 (((-1207 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3951 (((-713 $) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1184)) (|has| |#1| (-376))) ELT)) (-3691 (((-114) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-4293 (($ $ (-949)) NIL T ELT)) (-4331 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-560)) 19 T ELT) (($ $ (-1114) (-560)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-560))) NIL T ELT)) (-3016 (($ $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3344 (($ $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4458 (($ $) 81 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2508 (((-711 (-1207 |#1| |#2| |#3|)) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-1207 |#1| |#2| |#3|))) (|:| |vec| (-1299 (-1207 |#1| |#2| |#3|)))) (-1299 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ (-560) (-1207 |#1| |#2| |#3|)) 36 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) 79 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 80 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1184)) (|has| |#1| (-376))) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3616 (($ $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3618 (((-1207 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-560)) 158 T ELT)) (-3972 (((-3 $ "failed") $ $) 55 (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) 82 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1209) (-1207 |#1| |#2| |#3|)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-528 (-1209) (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1209)) (-663 (-1207 |#1| |#2| |#3|))) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-528 (-1209) (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1207 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1207 |#1| |#2| |#3|))) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207 |#1| |#2| |#3|)) (-663 (-1207 |#1| |#2| |#3|))) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-321 (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-560)) NIL T ELT) (($ $ $) 61 (|has| (-560) (-1144)) ELT) (($ $ (-1207 |#1| |#2| |#3|)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-298 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1296 |#2|)) 57 T ELT) (($ $) 56 (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3484 (((-1207 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-4464 (((-560) $) 43 T ELT)) (-4001 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 118 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 114 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4488 (((-549) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-376))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-633 (-916 (-391)))) (|has| |#1| (-376))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-633 (-916 (-560)))) (|has| |#1| (-376))) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) 162 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1207 |#1| |#2| |#3|)) 30 T ELT) (($ (-1296 |#2|)) 25 T ELT) (($ (-1209)) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (($ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-4193 ((|#1| $ (-560)) 77 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 12 T ELT)) (-3619 (((-1207 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4002 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 110 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3889 (($ $) NIL (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 16 T CONST)) (-3156 (($ $ (-1 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1296 |#2|)) NIL T ELT) (($ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3051 (((-114) $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3052 (((-114) $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3172 (((-114) $ $) NIL (-4043 (-12 (|has| (-1207 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1207 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1207 |#1| |#2| |#3|) (-1207 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 23 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 60 T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1207 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1207 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1200 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1207 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1200)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1200 *3 *4 *5)) (-4 *3 (-1081)) (-14 *5 *3))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1200 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1263 |#1| (-1207 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-4038 ((|#2| |#2| (-1124 |#2|)) 26 T ELT) ((|#2| |#2| (-1209)) 28 T ELT))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -4038 (|#2| |#2| (-1209))) (-15 -4038 (|#2| |#2| (-1124 |#2|)))) (-13 (-571) (-1070 (-560)) (-660 (-560))) (-13 (-435 |#1|) (-162) (-27) (-1235))) (T -1201)) -((-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1235))) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1201 *4 *2)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1235)))))) -(-10 -7 (-15 -4038 (|#2| |#2| (-1209))) (-15 -4038 (|#2| |#2| (-1124 |#2|)))) -((-4038 (((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1124 (-421 (-976 |#1|)))) 31 T ELT) (((-421 (-976 |#1|)) (-976 |#1|) (-1124 (-976 |#1|))) 44 T ELT) (((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1209)) 33 T ELT) (((-421 (-976 |#1|)) (-976 |#1|) (-1209)) 36 T ELT))) -(((-1202 |#1|) (-10 -7 (-15 -4038 ((-421 (-976 |#1|)) (-976 |#1|) (-1209))) (-15 -4038 ((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1209))) (-15 -4038 ((-421 (-976 |#1|)) (-976 |#1|) (-1124 (-976 |#1|)))) (-15 -4038 ((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1124 (-421 (-976 |#1|)))))) (-13 (-571) (-1070 (-560)))) (T -1202)) -((-4038 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1202 *5)))) (-4038 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-976 *5))) (-5 *3 (-976 *5)) (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-421 *3)) (-5 *1 (-1202 *5)))) (-4038 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-3 (-421 (-976 *5)) (-326 *5))) (-5 *1 (-1202 *5)) (-5 *3 (-421 (-976 *5))))) (-4038 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-421 (-976 *5))) (-5 *1 (-1202 *5)) (-5 *3 (-976 *5))))) -(-10 -7 (-15 -4038 ((-421 (-976 |#1|)) (-976 |#1|) (-1209))) (-15 -4038 ((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1209))) (-15 -4038 ((-421 (-976 |#1|)) (-976 |#1|) (-1124 (-976 |#1|)))) (-15 -4038 ((-3 (-421 (-976 |#1|)) (-326 |#1|)) (-421 (-976 |#1|)) (-1124 (-421 (-976 |#1|)))))) -((-3053 (((-114) $ $) 172 T ELT)) (-3692 (((-114) $) 43 T ELT)) (-4283 (((-1299 |#1|) $ (-793)) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4281 (($ (-1203 |#1|)) NIL T ELT)) (-3572 (((-1203 $) $ (-1114)) 82 T ELT) (((-1203 |#1|) $) 71 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) 165 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1114))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4271 (($ $ $) 159 (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 96 (|has| |#1| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 116 (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4277 (($ $ (-793)) 61 T ELT)) (-4276 (($ $ (-793)) 63 T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1114) #2#) $) NIL T ELT)) (-3660 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-1114) $) NIL T ELT)) (-4272 (($ $ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 161 (|has| |#1| (-175)) ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) 80 T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4275 (($ $ $) 132 T ELT)) (-4269 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4268 (((-2 (|:| -4470 |#1|) (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4009 (($ $) 166 (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-793) $) 69 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1114) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1114) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4039 (((-888) $ (-888)) 149 T ELT)) (-4288 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-2655 (((-114) $) 48 T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#1| (-1184)) ELT)) (-3573 (($ (-1203 |#1|) (-1114)) 73 T ELT) (($ (-1203 $) (-1114)) 90 T ELT)) (-4293 (($ $ (-793)) 51 T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) 88 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1114)) NIL T ELT) (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 154 T ELT)) (-3307 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-1817 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4282 (((-1203 |#1|) $) NIL T ELT)) (-3571 (((-3 (-1114) #4="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) NIL T ELT) (((-711 |#1|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) 76 T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) 60 T ELT)) (-3310 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1114)) (|:| -2646 (-793))) #4#) $) NIL T ELT)) (-4328 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (|has| |#1| (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) 50 T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 104 (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 168 (|has| |#1| (-466)) ELT)) (-4254 (($ $ (-793) |#1| $) 124 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 102 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 101 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 109 (|has| |#1| (-940)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 164 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 125 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1114) |#1|) NIL T ELT) (($ $ (-663 (-1114)) (-663 |#1|)) NIL T ELT) (($ $ (-1114) $) NIL T ELT) (($ $ (-663 (-1114)) (-663 $)) NIL T ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-4280 (((-3 $ #5="failed") $ (-793)) 54 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-1114)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 157 (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-4464 (((-793) $) 78 T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1114) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) 163 (|has| |#1| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4270 (((-3 $ #5#) $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) #5#) (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-4462 (((-888) $) 150 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1114)) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) 41 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 17 T CONST)) (-3151 (($) 19 T CONST)) (-3156 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#1| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 121 T ELT)) (-4465 (($ $ |#1|) 174 (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 91 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-793)) 12 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1203 |#1|) (-13 (-1275 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-888))) (-15 -4254 ($ $ (-793) |#1| $)))) (-1081)) (T -1203)) -((-4039 (*1 *2 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1203 *3)) (-4 *3 (-1081)))) (-4254 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1203 *3)) (-4 *3 (-1081))))) -(-13 (-1275 |#1|) (-10 -8 (-15 -4039 ((-888) $ (-888))) (-15 -4254 ($ $ (-793) |#1| $)))) -((-4474 (((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)) 13 T ELT))) -(((-1204 |#1| |#2|) (-10 -7 (-15 -4474 ((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)))) (-1081) (-1081)) (T -1204)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-5 *2 (-1203 *6)) (-5 *1 (-1204 *5 *6))))) -(-10 -7 (-15 -4474 ((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)))) -((-4487 (((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))) 51 T ELT)) (-4248 (((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))) 52 T ELT))) -(((-1205 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4248 ((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|)))) (-15 -4487 ((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))))) (-817) (-872) (-466) (-980 |#3| |#1| |#2|)) (T -1205)) -((-4487 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-466)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-419 (-1203 (-421 *7)))) (-5 *1 (-1205 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-466)) (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-419 (-1203 (-421 *7)))) (-5 *1 (-1205 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7)))))) -(-10 -7 (-15 -4248 ((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|)))) (-15 -4487 ((-419 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 11 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-1200 |#1| |#2| |#3|) #1="failed") $) 33 T ELT) (((-3 (-1207 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3660 (((-1200 |#1| |#2| |#3|) $) NIL T ELT) (((-1207 |#1| |#2| |#3|) $) NIL T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4297 (((-421 (-560)) $) 59 T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4298 (($ (-421 (-560)) (-1200 |#1| |#2| |#3|)) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-421 (-560))) 20 T ELT) (($ $ (-1114) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4296 (((-1200 |#1| |#2| |#3|) $) 41 T ELT)) (-4294 (((-3 (-1200 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4295 (((-1200 |#1| |#2| |#3|) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) 38 T ELT)) (-4464 (((-421 (-560)) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) 62 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1200 |#1| |#2| |#3|)) 30 T ELT) (($ (-1207 |#1| |#2| |#3|)) 31 T ELT) (($ (-1296 |#2|)) 26 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 22 T CONST)) (-3151 (($) 16 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 24 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1206 |#1| |#2| |#3|) (-13 (-1284 |#1| (-1200 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-1070 (-1207 |#1| |#2| |#3|)) (-635 (-1296 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1206)) -((-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1206 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1284 |#1| (-1200 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-1070 (-1207 |#1| |#2| |#3|)) (-635 (-1296 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 129 T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 119 T ELT)) (-4327 (((-1268 |#2| |#1|) $ (-793)) 69 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-793)) 85 T ELT) (($ $ (-793) (-793)) 82 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 105 T ELT)) (-3998 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1187 |#1|)) 113 T ELT)) (-4000 (($ $) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 25 T ELT)) (-4332 (($ $) 28 T ELT)) (-4330 (((-976 |#1|) $ (-793)) 81 T ELT) (((-976 |#1|) $ (-793) (-793)) 83 T ELT)) (-3379 (((-114) $) 124 T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $) 126 T ELT) (((-793) $ (-793)) 128 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) NIL T ELT)) (-4331 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) 13 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4328 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4285 (($ $ (-793)) 15 T ELT)) (-3972 (((-3 $ "failed") $ $) 26 (|has| |#1| (-571)) ELT)) (-4459 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-4316 ((|#1| $ (-793)) 122 T ELT) (($ $ $) 132 (|has| (-793) (-1144)) ELT)) (-4274 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1296 |#2|)) 31 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-4001 (($ $) 179 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) 206 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1268 |#2| |#1|)) 55 T ELT) (($ (-1296 |#2|)) 36 T ELT)) (-4333 (((-1187 |#1|) $) 101 T ELT)) (-4193 ((|#1| $ (-793)) 121 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 58 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-793)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 17 T CONST)) (-3151 (($) 20 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1296 |#2|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-4355 (($ $ $) 35 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1207 |#1| |#2| |#3|) (-13 (-1292 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1268 |#2| |#1|))) (-15 -4327 ((-1268 |#2| |#1|) $ (-793))) (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1207)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1268 *4 *3)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) (-5 *1 (-1207 *3 *4 *5)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1268 *5 *4)) (-5 *1 (-1207 *4 *5 *6)) (-4 *4 (-1081)) (-14 *5 (-1209)) (-14 *6 *4))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-1081)) (-14 *5 *3))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1292 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1268 |#2| |#1|))) (-15 -4327 ((-1268 |#2| |#1|) $ (-793))) (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-4462 (((-888) $) 33 T ELT) (($ (-1209)) 35 T ELT)) (-4043 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-4040 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-4047 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-4045 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-4046 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-4044 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-4042 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) -(((-1208) (-13 (-632 (-888)) (-10 -8 (-15 -4462 ($ (-1209))) (-15 -4047 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4046 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4045 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4044 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4043 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4042 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ $))))) (T -1208)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1208)))) (-4047 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4046 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4045 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4044 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4043 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4042 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) (-5 *1 (-1208)))) (-4040 (*1 *1 *1) (-5 *1 (-1208)))) -(-13 (-632 (-888)) (-10 -8 (-15 -4462 ($ (-1209))) (-15 -4047 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4046 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4045 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4044 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4043 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4042 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4051 (($ $ (-663 (-888))) 62 T ELT)) (-4052 (($ $ (-663 (-888))) 60 T ELT)) (-4049 (((-1191) $) 101 T ELT)) (-4054 (((-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888)))) $) 108 T ELT)) (-4055 (((-114) $) 23 T ELT)) (-4053 (($ $ (-663 (-663 (-888)))) 59 T ELT) (($ $ (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888))))) 99 T ELT)) (-4240 (($) 163 T CONST)) (-4057 (((-1305)) 135 T ELT)) (-3283 (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 69 T ELT) (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 76 T ELT)) (-4130 (($) 122 T ELT) (($ $) 131 T ELT)) (-4056 (($ $) 100 T ELT)) (-3016 (($ $ $) NIL T ELT)) (-3344 (($ $ $) NIL T ELT)) (-4048 (((-663 $) $) 136 T ELT)) (-3746 (((-1191) $) 114 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4316 (($ $ (-663 (-888))) 61 T ELT)) (-4488 (((-549) $) 48 T ELT) (((-1209) $) 49 T ELT) (((-916 (-560)) $) 80 T ELT) (((-916 (-391)) $) 78 T ELT)) (-4462 (((-888) $) 55 T ELT) (($ (-1191)) 50 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4050 (($ $ (-663 (-888))) 63 T ELT)) (-2982 (((-1191) $) 34 T ELT) (((-1191) $ (-114)) 35 T ELT) (((-1305) (-847) $) 36 T ELT) (((-1305) (-847) $ (-114)) 37 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 51 T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) 52 T ELT))) -(((-1209) (-13 (-872) (-633 (-549)) (-845) (-633 (-1209)) (-635 (-1191)) (-633 (-916 (-560))) (-633 (-916 (-391))) (-912 (-560)) (-912 (-391)) (-10 -8 (-15 -4130 ($)) (-15 -4130 ($ $)) (-15 -4057 ((-1305))) (-15 -4056 ($ $)) (-15 -4055 ((-114) $)) (-15 -4054 ((-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888)))) $)) (-15 -4053 ($ $ (-663 (-663 (-888))))) (-15 -4053 ($ $ (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888)))))) (-15 -4052 ($ $ (-663 (-888)))) (-15 -4051 ($ $ (-663 (-888)))) (-15 -4050 ($ $ (-663 (-888)))) (-15 -4316 ($ $ (-663 (-888)))) (-15 -4049 ((-1191) $)) (-15 -4048 ((-663 $) $)) (-15 -4240 ($) -4468)))) (T -1209)) -((-4130 (*1 *1) (-5 *1 (-1209))) (-4130 (*1 *1 *1) (-5 *1 (-1209))) (-4057 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1209)))) (-4056 (*1 *1 *1) (-5 *1 (-1209))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1209)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888))))) (-5 *1 (-1209)))) (-4053 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-888)))) (-5 *1 (-1209)))) (-4053 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888))))) (-5 *1 (-1209)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209)))) (-4051 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1209)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1209)))) (-4240 (*1 *1) (-5 *1 (-1209)))) -(-13 (-872) (-633 (-549)) (-845) (-633 (-1209)) (-635 (-1191)) (-633 (-916 (-560))) (-633 (-916 (-391))) (-912 (-560)) (-912 (-391)) (-10 -8 (-15 -4130 ($)) (-15 -4130 ($ $)) (-15 -4057 ((-1305))) (-15 -4056 ($ $)) (-15 -4055 ((-114) $)) (-15 -4054 ((-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888)))) $)) (-15 -4053 ($ $ (-663 (-663 (-888))))) (-15 -4053 ($ $ (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) (|:| |args| (-663 (-888)))))) (-15 -4052 ($ $ (-663 (-888)))) (-15 -4051 ($ $ (-663 (-888)))) (-15 -4050 ($ $ (-663 (-888)))) (-15 -4316 ($ $ (-663 (-888)))) (-15 -4049 ((-1191) $)) (-15 -4048 ((-663 $) $)) (-15 -4240 ($) -4468))) -((-4058 (((-1299 |#1|) |#1| (-949)) 18 T ELT) (((-1299 |#1|) (-663 |#1|)) 25 T ELT))) -(((-1210 |#1|) (-10 -7 (-15 -4058 ((-1299 |#1|) (-663 |#1|))) (-15 -4058 ((-1299 |#1|) |#1| (-949)))) (-1081)) (T -1210)) -((-4058 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1299 *3)) (-5 *1 (-1210 *3)) (-4 *3 (-1081)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1081)) (-5 *2 (-1299 *4)) (-5 *1 (-1210 *4))))) -(-10 -7 (-15 -4058 ((-1299 |#1|) (-663 |#1|))) (-15 -4058 ((-1299 |#1|) |#1| (-949)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3660 (((-560) $) NIL (|has| |#1| (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1070 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4009 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1816 (($ $ |#1| (-1003) $) NIL T ELT)) (-2655 (((-114) $) 17 T ELT)) (-2663 (((-793) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-1003)) NIL T ELT)) (-3307 (((-1003) $) NIL T ELT)) (-1817 (($ (-1 (-1003) (-1003)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#1| $) NIL T ELT)) (-4254 (($ $ (-1003) |#1| $) NIL (-12 (|has| (-1003) (-133)) (|has| |#1| (-571))) ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-4464 (((-1003) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1070 (-421 (-560))))) ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-1003)) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3145 (($) 10 T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 21 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1211 |#1|) (-13 (-338 |#1| (-1003)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| (-1003) (-133)) (-15 -4254 ($ $ (-1003) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) (-1081)) (T -1211)) -((-4254 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1003)) (-4 *2 (-133)) (-5 *1 (-1211 *3)) (-4 *3 (-571)) (-4 *3 (-1081))))) -(-13 (-338 |#1| #1=(-1003)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| #1# (-133)) (-15 -4254 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) -((-4059 (((-1213) (-1209) $) 25 T ELT)) (-4069 (($) 29 T ELT)) (-4061 (((-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) (-1209) $) 22 T ELT)) (-4063 (((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1#)) $) 41 T ELT) (((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) 42 T ELT) (((-1305) (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) 43 T ELT)) (-4071 (((-1305) (-1209)) 58 T ELT)) (-4062 (((-1305) (-1209) $) 55 T ELT) (((-1305) (-1209)) 56 T ELT) (((-1305)) 57 T ELT)) (-4067 (((-1305) (-1209)) 37 T ELT)) (-4065 (((-1209)) 36 T ELT)) (-4079 (($) 34 T ELT)) (-4078 (((-450) (-1209) (-450) (-1209) $) 45 T ELT) (((-450) (-663 (-1209)) (-450) (-1209) $) 49 T ELT) (((-450) (-1209) (-450)) 46 T ELT) (((-450) (-1209) (-450) (-1209)) 50 T ELT)) (-4066 (((-1209)) 35 T ELT)) (-4462 (((-888) $) 28 T ELT)) (-4068 (((-1305)) 30 T ELT) (((-1305) (-1209)) 33 T ELT)) (-4060 (((-663 (-1209)) (-1209) $) 24 T ELT)) (-4064 (((-1305) (-1209) (-663 (-1209)) $) 38 T ELT) (((-1305) (-1209) (-663 (-1209))) 39 T ELT) (((-1305) (-663 (-1209))) 40 T ELT))) -(((-1212) (-13 (-632 (-888)) (-10 -8 (-15 -4069 ($)) (-15 -4068 ((-1305))) (-15 -4068 ((-1305) (-1209))) (-15 -4078 ((-450) (-1209) (-450) (-1209) $)) (-15 -4078 ((-450) (-663 (-1209)) (-450) (-1209) $)) (-15 -4078 ((-450) (-1209) (-450))) (-15 -4078 ((-450) (-1209) (-450) (-1209))) (-15 -4067 ((-1305) (-1209))) (-15 -4066 ((-1209))) (-15 -4065 ((-1209))) (-15 -4064 ((-1305) (-1209) (-663 (-1209)) $)) (-15 -4064 ((-1305) (-1209) (-663 (-1209)))) (-15 -4064 ((-1305) (-663 (-1209)))) (-15 -4063 ((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) $)) (-15 -4063 ((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1#)))) (-15 -4063 ((-1305) (-3 (|:| |fst| (-448)) (|:| -4426 #1#)))) (-15 -4062 ((-1305) (-1209) $)) (-15 -4062 ((-1305) (-1209))) (-15 -4062 ((-1305))) (-15 -4071 ((-1305) (-1209))) (-15 -4079 ($)) (-15 -4061 ((-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-1209) $)) (-15 -4060 ((-663 (-1209)) (-1209) $)) (-15 -4059 ((-1213) (-1209) $))))) (T -1212)) -((-4069 (*1 *1) (-5 *1 (-1212))) (-4068 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4078 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) (-4078 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1209))) (-5 *4 (-1209)) (-5 *1 (-1212)))) (-4078 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) (-4078 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4066 (*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1212)))) (-4065 (*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1212)))) (-4064 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4063 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1209)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4062 (*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4062 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) (-4079 (*1 *1) (-5 *1 (-1212))) (-4061 (*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *1 (-1212)))) (-4060 (*1 *2 *3 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1212)) (-5 *3 (-1209)))) (-4059 (*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-1213)) (-5 *1 (-1212))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4069 ($)) (-15 -4068 ((-1305))) (-15 -4068 ((-1305) (-1209))) (-15 -4078 ((-450) (-1209) (-450) (-1209) $)) (-15 -4078 ((-450) (-663 (-1209)) (-450) (-1209) $)) (-15 -4078 ((-450) (-1209) (-450))) (-15 -4078 ((-450) (-1209) (-450) (-1209))) (-15 -4067 ((-1305) (-1209))) (-15 -4066 ((-1209))) (-15 -4065 ((-1209))) (-15 -4064 ((-1305) (-1209) (-663 (-1209)) $)) (-15 -4064 ((-1305) (-1209) (-663 (-1209)))) (-15 -4064 ((-1305) (-663 (-1209)))) (-15 -4063 ((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1="void")) $)) (-15 -4063 ((-1305) (-1209) (-3 (|:| |fst| (-448)) (|:| -4426 #1#)))) (-15 -4063 ((-1305) (-3 (|:| |fst| (-448)) (|:| -4426 #1#)))) (-15 -4062 ((-1305) (-1209) $)) (-15 -4062 ((-1305) (-1209))) (-15 -4062 ((-1305))) (-15 -4071 ((-1305) (-1209))) (-15 -4079 ($)) (-15 -4061 ((-3 (|:| |fst| (-448)) (|:| -4426 #1#)) (-1209) $)) (-15 -4060 ((-663 (-1209)) (-1209) $)) (-15 -4059 ((-1213) (-1209) $)))) -((-4073 (((-663 (-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560))))))))) $) 66 T ELT)) (-4075 (((-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560)))))))) (-448) $) 47 T ELT)) (-4070 (($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-450))))) 17 T ELT)) (-4071 (((-1305) $) 73 T ELT)) (-4076 (((-663 (-1209)) $) 22 T ELT)) (-4072 (((-1135) $) 60 T ELT)) (-4077 (((-450) (-1209) $) 27 T ELT)) (-4074 (((-663 (-1209)) $) 30 T ELT)) (-4079 (($) 19 T ELT)) (-4078 (((-450) (-663 (-1209)) (-450) $) 25 T ELT) (((-450) (-1209) (-450) $) 24 T ELT)) (-4462 (((-888) $) 9 T ELT) (((-1221 (-1209) (-450)) $) 13 T ELT))) -(((-1213) (-13 (-632 (-888)) (-10 -8 (-15 -4462 ((-1221 (-1209) (-450)) $)) (-15 -4079 ($)) (-15 -4078 ((-450) (-663 (-1209)) (-450) $)) (-15 -4078 ((-450) (-1209) (-450) $)) (-15 -4077 ((-450) (-1209) $)) (-15 -4076 ((-663 (-1209)) $)) (-15 -4075 ((-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560)))))))) (-448) $)) (-15 -4074 ((-663 (-1209)) $)) (-15 -4073 ((-663 (-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560))))))))) $)) (-15 -4072 ((-1135) $)) (-15 -4071 ((-1305) $)) (-15 -4070 ($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-450))))))))) (T -1213)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-1221 (-1209) (-450))) (-5 *1 (-1213)))) (-4079 (*1 *1) (-5 *1 (-1213))) (-4078 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1209))) (-5 *1 (-1213)))) (-4078 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1213)))) (-4077 (*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-450)) (-5 *1 (-1213)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1213)))) (-4075 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560))))))))) (-5 *1 (-1213)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1213)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560)))))))))) (-5 *1 (-1213)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1213)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1213)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-450))))) (-5 *1 (-1213))))) -(-13 (-632 (-888)) (-10 -8 (-15 -4462 ((-1221 (-1209) (-450)) $)) (-15 -4079 ($)) (-15 -4078 ((-450) (-663 (-1209)) (-450) $)) (-15 -4078 ((-450) (-1209) (-450) $)) (-15 -4077 ((-450) (-1209) $)) (-15 -4076 ((-663 (-1209)) $)) (-15 -4075 ((-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560)))))))) (-448) $)) (-15 -4074 ((-663 (-1209)) $)) (-15 -4073 ((-663 (-663 (-3 (|:| -4056 (-1209)) (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560))))))))) $)) (-15 -4072 ((-1135) $)) (-15 -4071 ((-1305) $)) (-15 -4070 ($ (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-450)))))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3661 (((-3 (-560) #1="failed") $) 29 T ELT) (((-3 (-229) #1#) $) 35 T ELT) (((-3 (-520) #1#) $) 43 T ELT) (((-3 (-1191) #1#) $) 47 T ELT)) (-3660 (((-560) $) 30 T ELT) (((-229) $) 36 T ELT) (((-520) $) 40 T ELT) (((-1191) $) 48 T ELT)) (-4084 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4083 (((-3 (-560) (-229) (-520) (-1191) $) $) 56 T ELT)) (-4082 (((-663 $) $) 58 T ELT)) (-4488 (((-1135) $) 24 T ELT) (($ (-1135)) 25 T ELT)) (-4081 (((-114) $) 57 T ELT)) (-4462 (((-888) $) 23 T ELT) (($ (-560)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-520)) 38 T ELT) (($ (-1191)) 44 T ELT) (((-549) $) 60 T ELT) (((-560) $) 31 T ELT) (((-229) $) 37 T ELT) (((-520) $) 41 T ELT) (((-1191) $) 49 T ELT)) (-4080 (((-114) $ (|[\|\|]| (-560))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-520))) 19 T ELT) (((-114) $ (|[\|\|]| (-1191))) 16 T ELT)) (-4085 (($ (-520) (-663 $)) 51 T ELT) (($ $ (-663 $)) 52 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4086 (((-560) $) 27 T ELT) (((-229) $) 33 T ELT) (((-520) $) 39 T ELT) (((-1191) $) 45 T ELT)) (-3540 (((-114) $ $) 7 T ELT))) -(((-1214) (-13 (-1295) (-1133) (-1070 (-560)) (-1070 (-229)) (-1070 (-520)) (-1070 (-1191)) (-632 (-549)) (-10 -8 (-15 -4488 ((-1135) $)) (-15 -4488 ($ (-1135))) (-15 -4462 ((-560) $)) (-15 -4086 ((-560) $)) (-15 -4462 ((-229) $)) (-15 -4086 ((-229) $)) (-15 -4462 ((-520) $)) (-15 -4086 ((-520) $)) (-15 -4462 ((-1191) $)) (-15 -4086 ((-1191) $)) (-15 -4085 ($ (-520) (-663 $))) (-15 -4085 ($ $ (-663 $))) (-15 -4084 ((-114) $)) (-15 -4083 ((-3 (-560) (-229) (-520) (-1191) $) $)) (-15 -4082 ((-663 $) $)) (-15 -4081 ((-114) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-560)))) (-15 -4080 ((-114) $ (|[\|\|]| (-229)))) (-15 -4080 ((-114) $ (|[\|\|]| (-520)))) (-15 -4080 ((-114) $ (|[\|\|]| (-1191))))))) (T -1214)) -((-4488 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214)))) (-4488 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1214)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1214)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1214)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1214)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1214)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1214)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1214)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1214)))) (-4085 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1214))) (-5 *1 (-1214)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1214)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1214)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1191) (-1214))) (-5 *1 (-1214)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1214)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1214)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1214)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1214)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1214)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)) (-5 *1 (-1214))))) -(-13 (-1295) (-1133) (-1070 (-560)) (-1070 (-229)) (-1070 (-520)) (-1070 (-1191)) (-632 (-549)) (-10 -8 (-15 -4488 ((-1135) $)) (-15 -4488 ($ (-1135))) (-15 -4462 ((-560) $)) (-15 -4086 ((-560) $)) (-15 -4462 ((-229) $)) (-15 -4086 ((-229) $)) (-15 -4462 ((-520) $)) (-15 -4086 ((-520) $)) (-15 -4462 ((-1191) $)) (-15 -4086 ((-1191) $)) (-15 -4085 ($ (-520) (-663 $))) (-15 -4085 ($ $ (-663 $))) (-15 -4084 ((-114) $)) (-15 -4083 ((-3 (-560) (-229) (-520) (-1191) $) $)) (-15 -4082 ((-663 $) $)) (-15 -4081 ((-114) $)) (-15 -4080 ((-114) $ (|[\|\|]| (-560)))) (-15 -4080 ((-114) $ (|[\|\|]| (-229)))) (-15 -4080 ((-114) $ (|[\|\|]| (-520)))) (-15 -4080 ((-114) $ (|[\|\|]| (-1191)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3624 (((-793)) 21 T ELT)) (-4240 (($) 10 T CONST)) (-3481 (($) 25 T ELT)) (-3016 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3344 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2234 (((-949) $) 23 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) 22 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT))) -(((-1215 |#1|) (-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) (-949)) (T -1215)) -((-4240 (*1 *1) (-12 (-5 *1 (-1215 *2)) (-14 *2 (-949))))) -(-13 (-868) (-10 -8 (-15 -4240 ($) -4468))) +((-3895 (*1 *1 *1) (-4 *1 (-1169))) (-3894 (*1 *1 *1) (-4 *1 (-1169))) (-3893 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3892 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3891 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3890 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3889 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3888 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3887 (*1 *1 *1) (-4 *1 (-1169))) (-3886 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3889 (*1 *1 *1) (-4 *1 (-1169))) (-3885 (*1 *1 *1) (-4 *1 (-1169)))) +(-13 (-10 -8 (-15 -3885 ($ $)) (-15 -3889 ($ $)) (-15 -3886 ($ $ $)) (-15 -3887 ($ $)) (-15 -3888 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3890 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3892 ($ $ $)) (-15 -3893 ($ $ $)) (-15 -3894 ($ $)) (-15 -3895 ($ $)))) +((-3049 (((-114) $ $) 44 T ELT)) (-3904 ((|#1| $) 17 T ELT)) (-3896 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3903 (((-114) $) 19 T ELT)) (-3901 (($ $ |#1|) 30 T ELT)) (-3899 (($ $ (-114)) 32 T ELT)) (-3898 (($ $) 33 T ELT)) (-3900 (($ $ |#2|) 31 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3897 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3905 (((-114) $) 16 T ELT)) (-4075 (($) 13 T ELT)) (-3902 (($ $) 29 T ELT)) (-4032 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1753 |#2|))) 23 T ELT) (((-661 $) (-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|)))) 26 T ELT) (((-661 $) |#1| (-661 |#2|)) 28 T ELT)) (-4434 ((|#2| $) 18 T ELT)) (-4458 (((-886) $) 53 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 42 T ELT))) +(((-1170 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -4075 ($)) (-15 -3905 ((-114) $)) (-15 -3904 (|#1| $)) (-15 -4434 (|#2| $)) (-15 -3903 ((-114) $)) (-15 -4032 ($ |#1| |#2| (-114))) (-15 -4032 ($ |#1| |#2|)) (-15 -4032 ($ (-2 (|:| |val| |#1|) (|:| -1753 |#2|)))) (-15 -4032 ((-661 $) (-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|))))) (-15 -4032 ((-661 $) |#1| (-661 |#2|))) (-15 -3902 ($ $)) (-15 -3901 ($ $ |#1|)) (-15 -3900 ($ $ |#2|)) (-15 -3899 ($ $ (-114))) (-15 -3898 ($ $)) (-15 -3897 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3896 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1131) (-34)) (-13 (-1131) (-34))) (T -1170)) +((-4075 (*1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-3904 (*1 *2 *1) (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1170 *2 *3)) (-4 *3 (-13 (-1131) (-34))))) (-4434 (*1 *2 *1) (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1131) (-34))))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-4032 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-4032 (*1 *1 *2 *3) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1753 *4))) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1170 *3 *4)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |val| *4) (|:| -1753 *5)))) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-661 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *5)) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-661 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) (-4 *3 (-13 (-1131) (-34))))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3901 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3900 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1131) (-34))) (-4 *2 (-13 (-1131) (-34))))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3897 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-114)) (-5 *1 (-1170 *5 *6)))) (-3896 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-114)) (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1131) (-34)))))) +(-13 (-1131) (-10 -8 (-15 -4075 ($)) (-15 -3905 ((-114) $)) (-15 -3904 (|#1| $)) (-15 -4434 (|#2| $)) (-15 -3903 ((-114) $)) (-15 -4032 ($ |#1| |#2| (-114))) (-15 -4032 ($ |#1| |#2|)) (-15 -4032 ($ (-2 (|:| |val| |#1|) (|:| -1753 |#2|)))) (-15 -4032 ((-661 $) (-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|))))) (-15 -4032 ((-661 $) |#1| (-661 |#2|))) (-15 -3902 ($ $)) (-15 -3901 ($ $ |#1|)) (-15 -3900 ($ $ |#2|)) (-15 -3899 ($ $ (-114))) (-15 -3898 ($ $)) (-15 -3897 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3896 ((-114) $ $ (-1 (-114) |#2| |#2|))))) +((-3049 (((-114) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-3904 (((-1170 |#1| |#2|) $) 27 T ELT)) (-3913 (($ $) 91 T ELT)) (-3909 (((-114) (-1170 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-3906 (($ $ $ (-661 (-1170 |#1| |#2|))) 108 T ELT) (($ $ $ (-661 (-1170 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3508 (((-1170 |#1| |#2|) $ (-1170 |#1| |#2|)) 46 (|has| $ (-6 -4508)) ELT)) (-4300 (((-1170 |#1| |#2|) $ #1="value" (-1170 |#1| |#2|)) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 44 (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3911 (((-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|))) $) 95 T ELT)) (-3907 (($ (-1170 |#1| |#2|) $) 42 T ELT)) (-3908 (($ (-1170 |#1| |#2|) $) 34 T ELT)) (-3372 (((-661 (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3910 (((-114) (-1170 |#1| |#2|) $) 97 T ELT)) (-3510 (((-114) $ $) NIL (|has| (-1170 |#1| |#2|) (-1131)) ELT)) (-3089 (((-661 (-1170 |#1| |#2|)) $) 58 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-1170 |#1| |#2|) (-1131))) ELT)) (-2170 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 50 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 49 T ELT)) (-3513 (((-661 (-1170 |#1| |#2|)) $) 56 T ELT)) (-4029 (((-114) $) 45 T ELT)) (-3742 (((-1189) $) NIL (|has| (-1170 |#1| |#2|) (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| (-1170 |#1| |#2|) (-1131)) ELT)) (-3914 (((-3 $ "failed") $) 89 T ELT)) (-2168 (((-114) (-1 (-114) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-1170 |#1| |#2|)))) NIL (-12 (|has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1131))) ELT) (($ $ (-305 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1131))) ELT) (($ $ (-1170 |#1| |#2|) (-1170 |#1| |#2|)) NIL (-12 (|has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1131))) ELT) (($ $ (-661 (-1170 |#1| |#2|)) (-661 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-321 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1131))) ELT)) (-1338 (((-114) $ $) 53 T ELT)) (-3905 (((-114) $) 24 T ELT)) (-4075 (($) 26 T ELT)) (-4312 (((-1170 |#1| |#2|) $ #1#) NIL T ELT)) (-3512 (((-558) $ $) NIL T ELT)) (-4145 (((-114) $) 47 T ELT)) (-2167 (((-791) (-1 (-114) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-1170 |#1| |#2|) (-1131))) ELT)) (-3902 (($ $) 52 T ELT)) (-4032 (($ (-1170 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-661 $)) 13 T ELT) (($ |#1| |#2| (-661 (-1170 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-661 |#2|)) 18 T ELT)) (-3912 (((-661 |#2|) $) 96 T ELT)) (-4458 (((-886) $) 87 (|has| (-1170 |#1| |#2|) (-630 (-886))) ELT)) (-4024 (((-661 $) $) 31 T ELT)) (-3511 (((-114) $ $) NIL (|has| (-1170 |#1| |#2|) (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-2169 (((-114) (-1 (-114) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 70 (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-4469 (((-791) $) 64 (|has| $ (-6 -4507)) ELT))) +(((-1171 |#1| |#2|) (-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4508) (-6 -4507) (-15 -3914 ((-3 $ "failed") $)) (-15 -3913 ($ $)) (-15 -4032 ($ (-1170 |#1| |#2|))) (-15 -4032 ($ |#1| |#2| (-661 $))) (-15 -4032 ($ |#1| |#2| (-661 (-1170 |#1| |#2|)))) (-15 -4032 ($ |#1| |#2| |#1| (-661 |#2|))) (-15 -3912 ((-661 |#2|) $)) (-15 -3911 ((-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|))) $)) (-15 -3910 ((-114) (-1170 |#1| |#2|) $)) (-15 -3909 ((-114) (-1170 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3908 ($ (-1170 |#1| |#2|) $)) (-15 -3907 ($ (-1170 |#1| |#2|) $)) (-15 -3906 ($ $ $ (-661 (-1170 |#1| |#2|)))) (-15 -3906 ($ $ $ (-661 (-1170 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1131) (-34)) (-13 (-1131) (-34))) (T -1171)) +((-3914 (*1 *1 *1) (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3913 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) (-4032 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-661 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-4032 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-661 (-1170 *2 *3))) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)))) (-4032 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-661 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-3910 (*1 *2 *3 *1) (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *4 *5)))) (-3909 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *5 *6)))) (-3908 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) (-3907 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) (-3906 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-661 (-1170 *3 *4))) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) (-3906 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1170 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *1 (-1171 *4 *5))))) +(-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4508) (-6 -4507) (-15 -3914 ((-3 $ "failed") $)) (-15 -3913 ($ $)) (-15 -4032 ($ (-1170 |#1| |#2|))) (-15 -4032 ($ |#1| |#2| (-661 $))) (-15 -4032 ($ |#1| |#2| (-661 (-1170 |#1| |#2|)))) (-15 -4032 ($ |#1| |#2| |#1| (-661 |#2|))) (-15 -3912 ((-661 |#2|) $)) (-15 -3911 ((-661 (-2 (|:| |val| |#1|) (|:| -1753 |#2|))) $)) (-15 -3910 ((-114) (-1170 |#1| |#2|) $)) (-15 -3909 ((-114) (-1170 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3908 ($ (-1170 |#1| |#2|) $)) (-15 -3907 ($ (-1170 |#1| |#2|) $)) (-15 -3906 ($ $ $ (-661 (-1170 |#1| |#2|)))) (-15 -3906 ($ $ $ (-661 (-1170 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3916 (($ $) NIL T ELT)) (-3832 ((|#2| $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3915 (($ (-709 |#2|)) 56 T ELT)) (-3607 (((-114) $) NIL T ELT)) (-3835 (($ |#2|) 14 T ELT)) (-4236 (($) NIL T CONST)) (-3594 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3596 (((-246 |#1| |#2|) $ (-558)) 42 T ELT)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) 83 T ELT)) (-3593 (((-791) $) 71 (|has| |#2| (-569)) ELT)) (-3597 ((|#2| $ (-558) (-558)) NIL T ELT)) (-3372 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-3592 (((-791) $) 73 (|has| |#2| (-569)) ELT)) (-3591 (((-661 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-3599 (((-791) $) NIL T ELT)) (-4126 (($ |#2|) 25 T ELT)) (-3598 (((-791) $) NIL T ELT)) (-3829 ((|#2| $) 67 (|has| |#2| (-6 (-4509 #2="*"))) ELT)) (-3603 (((-558) $) NIL T ELT)) (-3601 (((-558) $) NIL T ELT)) (-3089 (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3602 (((-558) $) NIL T ELT)) (-3600 (((-558) $) NIL T ELT)) (-3608 (($ (-661 (-661 |#2|))) 37 T ELT)) (-2170 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4104 (((-661 (-661 |#2|)) $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4100 (((-3 $ "failed") $) 80 (|has| |#2| (-376)) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2168 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) NIL T ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3831 ((|#2| $) NIL T ELT)) (-3834 (($ (-661 |#2|)) 50 T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3833 (((-246 |#1| |#2|) $) NIL T ELT)) (-3830 ((|#2| $) 65 (|has| |#2| (-6 (-4509 #2#))) ELT)) (-2167 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) 90 (|has| |#2| (-631 (-547))) ELT)) (-3595 (((-246 |#1| |#2|) $ (-558)) 44 T ELT)) (-4458 (((-886) $) 47 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-709 |#2|) $) 52 T ELT)) (-3610 (((-791)) 23 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3141 (($) 16 T CONST)) (-3147 (($) 21 T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 63 T ELT) (($ $ (-558)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1172 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-10 -8 (-15 -4126 ($ |#2|)) (-15 -3916 ($ $)) (-15 -3915 ($ (-709 |#2|))) (IF (|has| |#2| (-6 (-4509 "*"))) (-6 -4496) |%noBranch|) (IF (|has| |#2| (-6 (-4509 "*"))) (IF (|has| |#2| (-6 -4504)) (-6 -4504) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) (-791) (-1079)) (T -1172)) +((-4126 (*1 *1 *2) (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-791)) (-4 *2 (-1079)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-791)) (-4 *3 (-1079)))) (-3915 (*1 *1 *2) (-12 (-5 *2 (-709 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) (-14 *3 (-791))))) +(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-10 -8 (-15 -4126 ($ |#2|)) (-15 -3916 ($ $)) (-15 -3915 ($ (-709 |#2|))) (IF (|has| |#2| (-6 (-4509 "*"))) (-6 -4496) |%noBranch|) (IF (|has| |#2| (-6 (-4509 "*"))) (IF (|has| |#2| (-6 -4504)) (-6 -4504) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) +((-3929 (($ $) 19 T ELT)) (-3919 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3927 (((-114) $ $) 24 T ELT)) (-3931 (($ $) 17 T ELT)) (-4312 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) (($ $ $) 31 T ELT)) (-4458 (($ (-146)) 29 T ELT) (((-886) $) NIL T ELT))) +(((-1173 |#1|) (-10 -8 (-15 -4458 ((-886) |#1|)) (-15 -4312 (|#1| |#1| |#1|)) (-15 -3919 (|#1| |#1| (-143))) (-15 -3919 (|#1| |#1| (-146))) (-15 -4458 (|#1| (-146))) (-15 -3927 ((-114) |#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4312 ((-146) |#1| (-558))) (-15 -4312 ((-146) |#1| (-558) (-146)))) (-1174)) (T -1173)) +NIL +(-10 -8 (-15 -4458 ((-886) |#1|)) (-15 -4312 (|#1| |#1| |#1|)) (-15 -3919 (|#1| |#1| (-143))) (-15 -3919 (|#1| |#1| (-146))) (-15 -4458 (|#1| (-146))) (-15 -3927 ((-114) |#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4312 ((-146) |#1| (-558))) (-15 -4312 ((-146) |#1| (-558) (-146)))) +((-3049 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-3928 (($ $) 129 T ELT)) (-3929 (($ $) 130 T ELT)) (-3919 (($ $ (-146)) 117 T ELT) (($ $ (-143)) 116 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-3926 (((-114) $ $) 127 T ELT)) (-3925 (((-114) $ $ (-558)) 126 T ELT)) (-3920 (((-661 $) $ (-146)) 119 T ELT) (((-661 $) $ (-143)) 118 T ELT)) (-1945 (((-114) (-1 (-114) (-146) (-146)) $) 107 T ELT) (((-114) $) 101 (|has| (-146) (-870)) ELT)) (-1943 (($ (-1 (-114) (-146) (-146)) $) 98 (|has| $ (-6 -4508)) ELT) (($ $) 97 (-12 (|has| (-146) (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) (-146) (-146)) $) 108 T ELT) (($ $) 102 (|has| (-146) (-870)) ELT)) (-4300 (((-146) $ (-558) (-146)) 56 (|has| $ (-6 -4508)) ELT) (((-146) $ (-1264 (-558)) (-146)) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-146)) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-3917 (($ $ (-146)) 113 T ELT) (($ $ (-143)) 112 T ELT)) (-2520 (($ $) 99 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 109 T ELT)) (-3922 (($ $ (-1264 (-558)) $) 123 T ELT)) (-1477 (($ $) 84 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ (-146) $) 83 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) (-146)) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 82 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4507))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 79 (|has| $ (-6 -4507)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 (((-146) $ (-558) (-146)) 57 (|has| $ (-6 -4508)) ELT)) (-3597 (((-146) $ (-558)) 55 T ELT)) (-3927 (((-114) $ $) 128 T ELT)) (-3921 (((-558) (-1 (-114) (-146)) $) 106 T ELT) (((-558) (-146) $) 105 (|has| (-146) (-1131)) ELT) (((-558) (-146) $ (-558)) 104 (|has| (-146) (-1131)) ELT) (((-558) $ $ (-558)) 122 T ELT) (((-558) (-143) $ (-558)) 121 T ELT)) (-3372 (((-661 (-146)) $) 30 (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) (-146)) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 91 (|has| (-146) (-870)) ELT)) (-4020 (($ (-1 (-114) (-146) (-146)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-146) (-870)) ELT)) (-3089 (((-661 (-146)) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-146) $) 27 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 92 (|has| (-146) (-870)) ELT)) (-3923 (((-114) $ $ (-146)) 124 T ELT)) (-3924 (((-791) $ $ (-146)) 125 T ELT)) (-2170 (($ (-1 (-146) (-146)) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-146) (-146)) $) 35 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 69 T ELT)) (-3930 (($ $) 131 T ELT)) (-3931 (($ $) 132 T ELT)) (-3918 (($ $ (-146)) 115 T ELT) (($ $ (-143)) 114 T ELT)) (-3742 (((-1189) $) 22 (|has| (-146) (-1131)) ELT)) (-2527 (($ (-146) $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| (-146) (-1131)) ELT)) (-4313 (((-146) $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 77 T ELT)) (-2424 (($ $ (-146)) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-146)))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-305 (-146))) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-661 (-146)) (-661 (-146))) 23 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) (-146) $) 49 (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-2430 (((-661 (-146)) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 (((-146) $ (-558) (-146)) 54 T ELT) (((-146) $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT) (($ $ $) 111 T ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-2167 (((-791) (-1 (-114) (-146)) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) (-146) $) 28 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 100 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| (-146) (-631 (-547))) ELT)) (-4032 (($ (-661 (-146))) 76 T ELT)) (-4314 (($ $ (-146)) 73 T ELT) (($ (-146) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (($ (-146)) 120 T ELT) (((-886) $) 17 (|has| (-146) (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2169 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 93 (|has| (-146) (-870)) ELT)) (-3048 (((-114) $ $) 95 (|has| (-146) (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| (-146) (-102)) ELT)) (-3167 (((-114) $ $) 94 (|has| (-146) (-870)) ELT)) (-3168 (((-114) $ $) 96 (|has| (-146) (-870)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1174) (-142)) (T -1174)) +((-3931 (*1 *1 *1) (-4 *1 (-1174))) (-3930 (*1 *1 *1) (-4 *1 (-1174))) (-3929 (*1 *1 *1) (-4 *1 (-1174))) (-3928 (*1 *1 *1) (-4 *1 (-1174))) (-3927 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-114)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-114)))) (-3925 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-558)) (-5 *2 (-114)))) (-3924 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-146)) (-5 *2 (-791)))) (-3923 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-146)) (-5 *2 (-114)))) (-3922 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-558))))) (-3921 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-558)))) (-3921 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-558)) (-5 *3 (-143)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1174)))) (-3920 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-661 *1)) (-4 *1 (-1174)))) (-3920 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-661 *1)) (-4 *1 (-1174)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) (-3918 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146)))) (-3918 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) (-3917 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146)))) (-3917 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) (-4312 (*1 *1 *1 *1) (-4 *1 (-1174)))) +(-13 (-19 (-146)) (-10 -8 (-15 -3931 ($ $)) (-15 -3930 ($ $)) (-15 -3929 ($ $)) (-15 -3928 ($ $)) (-15 -3927 ((-114) $ $)) (-15 -3926 ((-114) $ $)) (-15 -3925 ((-114) $ $ (-558))) (-15 -3924 ((-791) $ $ (-146))) (-15 -3923 ((-114) $ $ (-146))) (-15 -3922 ($ $ (-1264 (-558)) $)) (-15 -3921 ((-558) $ $ (-558))) (-15 -3921 ((-558) (-143) $ (-558))) (-15 -4458 ($ (-146))) (-15 -3920 ((-661 $) $ (-146))) (-15 -3920 ((-661 $) $ (-143))) (-15 -3919 ($ $ (-146))) (-15 -3919 ($ $ (-143))) (-15 -3918 ($ $ (-146))) (-15 -3918 ($ $ (-143))) (-15 -3917 ($ $ (-146))) (-15 -3917 ($ $ (-143))) (-15 -4312 ($ $ $)))) +(((-34) . T) ((-102) -4039 (|has| (-146) (-1131)) (|has| (-146) (-870)) (|has| (-146) (-102))) ((-630 (-886)) -4039 (|has| (-146) (-1131)) (|has| (-146) (-870)) (|has| (-146) (-630 (-886)))) ((-153 #1=(-146)) . T) ((-631 (-547)) |has| (-146) (-631 (-547))) ((-298 #2=(-558) #1#) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #2# #1#) . T) ((-321 #1#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ((-385 #1#) . T) ((-501 #1#) . T) ((-616 #2# #1#) . T) ((-526 #1# #1#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ((-671 #1#) . T) ((-19 #1#) . T) ((-870) |has| (-146) (-870)) ((-873) |has| (-146) (-870)) ((-1131) -4039 (|has| (-146) (-1131)) (|has| (-146) (-870))) ((-1247) . T)) +((-3938 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791)) 112 T ELT)) (-3935 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791)) 61 T ELT)) (-3939 (((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)) 97 T ELT)) (-3933 (((-791) (-661 |#4|) (-661 |#5|)) 30 T ELT)) (-3936 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791)) 63 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114)) 65 T ELT)) (-3937 (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114)) 85 T ELT)) (-4484 (((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) 90 T ELT)) (-3934 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|) 60 T ELT)) (-3932 (((-791) (-661 |#4|) (-661 |#5|)) 21 T ELT))) +(((-1175 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3932 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3933 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3934 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3938 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791))) (-15 -4484 ((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3939 ((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -1175)) +((-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *4 (-791)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-1303)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1189)) (-5 *1 (-1175 *4 *5 *6 *7 *8)))) (-3938 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-661 *11)) (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1753 *11)))))) (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1753 *11)))) (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) (-5 *1 (-1175 *7 *8 *9 *10 *11)))) (-3937 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3937 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-3936 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3935 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-3934 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-791)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-791)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3932 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3933 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3934 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3935 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5| (-791))) (-15 -3936 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) |#4| |#5|)) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3937 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3938 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))))) (-791))) (-15 -4484 ((-1189) (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|)))) (-15 -3939 ((-1303) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1753 |#5|))) (-791)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4194 (((-661 $) (-661 |#4|)) 121 T ELT) (((-661 $) (-661 |#4|) (-114)) 122 T ELT) (((-661 $) (-661 |#4|) (-114) (-114)) 120 T ELT) (((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114)) 123 T ELT)) (-3566 (((-661 |#3|) $) NIL T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4200 ((|#4| |#4| $) NIL T ELT)) (-4287 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| $) 94 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4222 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) NIL T ELT)) (-3656 (($ (-661 |#4|)) NIL T ELT)) (-4311 (((-3 $ #1#) $) 45 T ELT)) (-4197 ((|#4| |#4| $) 76 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3908 (($ |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4195 ((|#4| |#4| $) NIL T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) NIL T ELT)) (-3697 (((-114) |#4| $) NIL T ELT)) (-3695 (((-114) |#4| $) NIL T ELT)) (-3698 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3940 (((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114)) 136 T ELT)) (-3372 (((-661 |#4|) $) 18 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 19 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3397 (((-661 |#3|) $) NIL T ELT)) (-3396 (((-114) |#3| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3691 (((-3 |#4| (-661 $)) |#4| |#4| $) NIL T ELT)) (-3690 (((-661 (-2 (|:| |val| |#4|) (|:| -1753 $))) |#4| |#4| $) 114 T ELT)) (-4310 (((-3 |#4| #1#) $) 42 T ELT)) (-3692 (((-661 $) |#4| $) 99 T ELT)) (-3694 (((-3 (-114) (-661 $)) |#4| $) NIL T ELT)) (-3693 (((-661 (-2 (|:| |val| (-114)) (|:| -1753 $))) |#4| $) 109 T ELT) (((-114) |#4| $) 65 T ELT)) (-3738 (((-661 $) |#4| $) 118 T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT)) (-3941 (((-661 $) (-661 |#4|) (-114) (-114) (-114)) 131 T ELT)) (-3942 (($ |#4| $) 85 T ELT) (($ (-661 |#4|) $) 86 T ELT) (((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 84 T ELT)) (-4209 (((-661 |#4|) $) NIL T ELT)) (-4203 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4198 ((|#4| |#4| $) NIL T ELT)) (-4211 (((-114) $ $) NIL T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-3 |#4| #1#) $) 40 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4191 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4281 (($ $ |#4|) NIL T ELT) (((-661 $) |#4| $) 101 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 96 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 17 T ELT)) (-4075 (($) 14 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-2167 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 13 T ELT)) (-4484 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 22 T ELT)) (-3393 (($ $ |#3|) 52 T ELT)) (-3395 (($ $ |#3|) 54 T ELT)) (-4196 (($ $) NIL T ELT)) (-3394 (($ $ |#3|) NIL T ELT)) (-4458 (((-886) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4190 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-3689 (((-661 $) |#4| $) 66 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) NIL T ELT)) (-3696 (((-114) |#4| $) NIL T ELT)) (-4445 (((-114) |#3| $) 72 T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1176 |#1| |#2| |#3| |#4|) (-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3941 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3940 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) (-464) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -1176)) +((-3942 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-4194 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-4194 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-3941 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-3940 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1176 *5 *6 *7 *8))))) (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) +(-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4194 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3941 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3940 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 31 T ELT)) (-2651 (((-114) $) 29 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 28 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-791)) 30 T ELT) (($ $ (-947)) 27 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1177) (-142)) (T -1177)) +NIL +(-13 (-23) (-746)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-886)) . T) ((-746) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3826 ((|#1| $) 37 T ELT)) (-3943 (($ (-661 |#1|)) 45 T ELT)) (-4236 (($) NIL T CONST)) (-3828 ((|#1| |#1| $) 40 T ELT)) (-3827 ((|#1| $) 35 T ELT)) (-3372 (((-661 |#1|) $) 18 (|has| $ (-6 -4507)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-1398 ((|#1| $) 38 T ELT)) (-4119 (($ |#1| $) 41 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-1399 ((|#1| $) 36 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 32 T ELT)) (-4075 (($) 43 T ELT)) (-3825 (((-791) $) 30 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 27 T ELT)) (-4458 (((-886) $) 14 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1400 (($ (-661 |#1|)) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 31 (|has| $ (-6 -4507)) ELT))) +(((-1178 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -3943 ($ (-661 |#1|))))) (-1247)) (T -1178)) +((-3943 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3))))) +(-13 (-1151 |#1|) (-10 -8 (-15 -3943 ($ (-661 |#1|))))) +((-4300 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1264 (-558)) |#2|) 53 T ELT) ((|#2| $ (-558) |#2|) 50 T ELT)) (-3945 (((-114) $) 12 T ELT)) (-2170 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4313 ((|#2| $) NIL T ELT) (($ $ (-791)) 17 T ELT)) (-2424 (($ $ |#2|) 49 T ELT)) (-3946 (((-114) $) 11 T ELT)) (-4312 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1264 (-558))) 36 T ELT) ((|#2| $ (-558)) 25 T ELT) ((|#2| $ (-558) |#2|) NIL T ELT)) (-4303 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-4314 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-661 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1179 |#1| |#2|) (-10 -8 (-15 -3945 ((-114) |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -4300 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -2424 (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4314 (|#1| |#1| |#2|)) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4300 (|#2| |#1| (-1264 (-558)) |#2|)) (-15 -4300 (|#2| |#1| #1="last" |#2|)) (-15 -4300 (|#1| |#1| #2="rest" |#1|)) (-15 -4300 (|#2| |#1| #3="first" |#2|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -4312 (|#1| |#1| #2#)) (-15 -4313 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| #3#)) (-15 -4313 (|#2| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4300 (|#2| |#1| #4="value" |#2|)) (-15 -4312 (|#2| |#1| #4#)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|))) (-1180 |#2|) (-1247)) (T -1179)) +NIL +(-10 -8 (-15 -3945 ((-114) |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -4300 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558) |#2|)) (-15 -4312 (|#2| |#1| (-558))) (-15 -2424 (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#1| (-1264 (-558)))) (-15 -4314 (|#1| |#1| |#2|)) (-15 -4314 (|#1| (-661 |#1|))) (-15 -4300 (|#2| |#1| (-1264 (-558)) |#2|)) (-15 -4300 (|#2| |#1| #1="last" |#2|)) (-15 -4300 (|#1| |#1| #2="rest" |#1|)) (-15 -4300 (|#2| |#1| #3="first" |#2|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 -4303 (|#1| |#1| |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -4312 (|#1| |#1| #2#)) (-15 -4313 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| #3#)) (-15 -4313 (|#2| |#1|)) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4300 (|#2| |#1| #4="value" |#2|)) (-15 -4312 (|#2| |#1| #4#)) (-15 -2170 (|#1| (-1 |#2| |#2|) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-4307 ((|#1| $) 71 T ELT)) (-4309 (($ $) 73 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 107 (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 58 (|has| $ (-6 -4508)) ELT)) (-3944 (((-114) $ (-791)) 90 T ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 62 (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) 60 (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 127 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4507)) ELT)) (-4308 ((|#1| $) 72 T ELT)) (-4236 (($) 7 T CONST)) (-4311 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-1477 (($ $) 109 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4507)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1729 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 97 T ELT)) (-3945 (((-114) $) 93 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) 119 T ELT)) (-4231 (((-114) $ (-791)) 91 T ELT)) (-2425 (((-558) $) 105 (|has| (-558) (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 104 (|has| (-558) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4228 (((-114) $ (-791)) 92 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-2527 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2428 (((-661 (-558)) $) 102 T ELT)) (-2429 (((-114) (-558) $) 101 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2424 (($ $ |#1|) 106 (|has| $ (-6 -4508)) ELT)) (-3946 (((-114) $) 94 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 100 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1264 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-2528 (($ $ (-1264 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-4304 (($ $) 68 T ELT)) (-4302 (($ $) 65 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) 69 T ELT)) (-4306 (($ $) 70 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 117 T ELT)) (-4303 (($ $ $) 67 (|has| $ (-6 -4508)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4508)) ELT)) (-4314 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1180 |#1|) (-142) (-1247)) (T -1180)) +((-3946 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3944 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114))))) +(-13 (-1286 |t#1|) (-671 |t#1|) (-10 -8 (-15 -3946 ((-114) $)) (-15 -3945 ((-114) $)) (-15 -4228 ((-114) $ (-791))) (-15 -4231 ((-114) $ (-791))) (-15 -3944 ((-114) $ (-791))))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T) ((-1286 |#1|) . T)) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) NIL T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1181 |#1| |#2| |#3|) (-1224 |#1| |#2|) (-1131) (-1131) |#2|) (T -1181)) +NIL +(-1224 |#1| |#2|) +((-3049 (((-114) $ $) 7 T ELT)) (-3947 (((-711 $) $) 17 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3948 (($) 18 T CONST)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3536 (((-114) $ $) 8 T ELT))) +(((-1182) (-142)) (T -1182)) +((-3948 (*1 *1) (-4 *1 (-1182))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-1182))))) +(-13 (-1131) (-10 -8 (-15 -3948 ($) -4464) (-15 -3947 ((-711 $) $)))) +(((-102) . T) ((-630 (-886)) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3950 (((-711 (-1165)) $) 27 T ELT)) (-3949 (((-1165) $) 15 T ELT)) (-3951 (((-1165) $) 17 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3952 (((-518) $) 13 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 37 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1183) (-13 (-1113) (-10 -8 (-15 -3952 ((-518) $)) (-15 -3951 ((-1165) $)) (-15 -3950 ((-711 (-1165)) $)) (-15 -3949 ((-1165) $))))) (T -1183)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1183)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-711 (-1165))) (-5 *1 (-1183)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183))))) +(-13 (-1113) (-10 -8 (-15 -3952 ((-518) $)) (-15 -3951 ((-1165) $)) (-15 -3950 ((-711 (-1165)) $)) (-15 -3949 ((-1165) $)))) +((-3955 (((-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (-3953 (((-1185 |#1|) (-1185 |#1|)) 13 T ELT)) (-3956 (((-1185 |#1|) (-1185 |#1|) (-558) (-558)) 20 T ELT)) (-3954 (((-1185 |#1|) (-1185 |#1|)) 15 T ELT))) +(((-1184 |#1|) (-10 -7 (-15 -3953 ((-1185 |#1|) (-1185 |#1|))) (-15 -3954 ((-1185 |#1|) (-1185 |#1|))) (-15 -3955 ((-1185 |#1|) (-1185 |#1|))) (-15 -3956 ((-1185 |#1|) (-1185 |#1|) (-558) (-558)))) (-13 (-569) (-149))) (T -1184)) +((-3956 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1184 *4)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3))))) +(-10 -7 (-15 -3953 ((-1185 |#1|) (-1185 |#1|))) (-15 -3954 ((-1185 |#1|) (-1185 |#1|))) (-15 -3955 ((-1185 |#1|) (-1185 |#1|))) (-15 -3956 ((-1185 |#1|) (-1185 |#1|) (-558) (-558)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) NIL T ELT)) (-4307 ((|#1| $) NIL T ELT)) (-4309 (($ $) 62 T ELT)) (-2423 (((-1303) $ (-558) (-558)) 95 (|has| $ (-6 -4508)) ELT)) (-4297 (($ $ (-558)) 124 (|has| $ (-6 -4508)) ELT)) (-3944 (((-114) $ (-791)) NIL T ELT)) (-3961 (((-886) $) 51 (|has| |#1| (-1131)) ELT)) (-3960 (((-114)) 50 (|has| |#1| (-1131)) ELT)) (-3508 ((|#1| $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 111 (|has| $ (-6 -4508)) ELT) (($ $ (-558) $) 138 T ELT)) (-4298 ((|#1| $ |#1|) 121 (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 116 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4508)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4508)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 108 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-558) |#1|) 74 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-4308 ((|#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-2546 (($ $) 11 T ELT)) (-4311 (($ $) 35 T ELT) (($ $ (-791)) 107 T ELT)) (-3966 (((-114) (-661 |#1|) $) 130 (|has| |#1| (-1131)) ELT)) (-3967 (($ (-661 |#1|)) 126 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) 76 T ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3945 (((-114) $) NIL T ELT)) (-3372 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3962 (((-1303) (-558) $) 136 (|has| |#1| (-1131)) ELT)) (-2545 (((-791) $) 133 T ELT)) (-3514 (((-661 $) $) NIL T ELT)) (-3510 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-4231 (((-114) $ (-791)) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-4228 (((-114) $ (-791)) NIL T ELT)) (-3513 (((-661 |#1|) $) NIL T ELT)) (-4029 (((-114) $) NIL T ELT)) (-2548 (($ $) 109 T ELT)) (-2549 (((-114) $) 10 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2527 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) 92 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-3959 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2547 ((|#1| $) 7 T ELT)) (-4313 ((|#1| $) 34 T ELT) (($ $ (-791)) 60 T ELT)) (-3965 (((-2 (|:| |cycle?| (-114)) (|:| -3076 (-791)) (|:| |period| (-791))) (-791) $) 29 T ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3958 (($ (-1 (-114) |#1|) $) 142 T ELT)) (-3957 (($ (-1 (-114) |#1|) $) 143 T ELT)) (-2424 (($ $ |#1|) 87 (|has| $ (-6 -4508)) ELT)) (-4281 (($ $ (-558)) 40 T ELT)) (-3946 (((-114) $) 90 T ELT)) (-2550 (((-114) $) 9 T ELT)) (-2551 (((-114) $) 132 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 25 T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) 14 T ELT)) (-4075 (($) 55 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) ((|#1| $ (-558)) 72 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3512 (((-558) $ $) 59 T ELT)) (-2528 (($ $ (-1264 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-3964 (($ (-1 $)) 58 T ELT)) (-4145 (((-114) $) 88 T ELT)) (-4304 (($ $) 89 T ELT)) (-4302 (($ $) 112 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) NIL T ELT)) (-4306 (($ $) NIL T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 54 T ELT)) (-4484 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 70 T ELT)) (-3963 (($ |#1| $) 110 T ELT)) (-4303 (($ $ $) 114 (|has| $ (-6 -4508)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4508)) ELT)) (-4314 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-661 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3374 (($ $) 61 T ELT)) (-4458 (($ (-661 |#1|)) 125 T ELT) (((-886) $) 52 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) NIL T ELT)) (-3511 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 128 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1185 |#1|) (-13 (-694 |#1|) (-633 (-661 |#1|)) (-10 -8 (-6 -4508) (-15 -3967 ($ (-661 |#1|))) (IF (|has| |#1| (-1131)) (-15 -3966 ((-114) (-661 |#1|) $)) |%noBranch|) (-15 -3965 ((-2 (|:| |cycle?| (-114)) (|:| -3076 (-791)) (|:| |period| (-791))) (-791) $)) (-15 -3964 ($ (-1 $))) (-15 -3963 ($ |#1| $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -3962 ((-1303) (-558) $)) (-15 -3961 ((-886) $)) (-15 -3960 ((-114)))) |%noBranch|) (-15 -4299 ($ $ (-558) $)) (-15 -3959 ($ (-1 |#1|))) (-15 -3959 ($ (-1 |#1| |#1|) |#1|)) (-15 -3958 ($ (-1 (-114) |#1|) $)) (-15 -3957 ($ (-1 (-114) |#1|) $)))) (-1247)) (T -1185)) +((-3967 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3966 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-4 *4 (-1247)) (-5 *2 (-114)) (-5 *1 (-1185 *4)))) (-3965 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -3076 (-791)) (|:| |period| (-791)))) (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-791)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-3963 (*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247)))) (-3962 (*1 *2 *3 *1) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1185 *4)) (-4 *4 (-1131)) (-4 *4 (-1247)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1185 *3)) (-4 *3 (-1131)) (-4 *3 (-1247)))) (-3960 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1131)) (-4 *3 (-1247)))) (-4299 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))) +(-13 (-694 |#1|) (-633 (-661 |#1|)) (-10 -8 (-6 -4508) (-15 -3967 ($ (-661 |#1|))) (IF (|has| |#1| (-1131)) (-15 -3966 ((-114) (-661 |#1|) $)) |%noBranch|) (-15 -3965 ((-2 (|:| |cycle?| (-114)) (|:| -3076 (-791)) (|:| |period| (-791))) (-791) $)) (-15 -3964 ($ (-1 $))) (-15 -3963 ($ |#1| $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -3962 ((-1303) (-558) $)) (-15 -3961 ((-886) $)) (-15 -3960 ((-114)))) |%noBranch|) (-15 -4299 ($ $ (-558) $)) (-15 -3959 ($ (-1 |#1|))) (-15 -3959 ($ (-1 |#1| |#1|) |#1|)) (-15 -3958 ($ (-1 (-114) |#1|) $)) (-15 -3957 ($ (-1 (-114) |#1|) $)))) +((-4314 (((-1185 |#1|) (-1185 (-1185 |#1|))) 15 T ELT))) +(((-1186 |#1|) (-10 -7 (-15 -4314 ((-1185 |#1|) (-1185 (-1185 |#1|))))) (-1247)) (T -1186)) +((-4314 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -4314 ((-1185 |#1|) (-1185 (-1185 |#1|))))) +((-4353 (((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 25 T ELT)) (-4354 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 26 T ELT)) (-4470 (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 16 T ELT))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -4470 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -4353 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -4354 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)))) (-1247) (-1247)) (T -1187)) +((-4354 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1187 *5 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6))))) +(-10 -7 (-15 -4470 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -4353 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -4354 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)))) +((-4470 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)) 21 T ELT))) +(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -1188)) +((-4470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-1188 *6 *7 *8))))) +(-10 -7 (-15 -4470 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)))) +((-3049 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3928 (($ $) NIL T ELT)) (-3929 (($ $) NIL T ELT)) (-3919 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3926 (((-114) $ $) NIL T ELT)) (-3925 (((-114) $ $ (-558)) NIL T ELT)) (-4045 (($ (-558)) 8 T ELT) (($ (-229)) 10 T ELT)) (-3920 (((-661 $) $ (-146)) NIL T ELT) (((-661 $) $ (-143)) NIL T ELT)) (-1945 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-870)) ELT)) (-1943 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-870))) ELT)) (-3392 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-870)) ELT)) (-4300 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) $ (-1264 (-558)) (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-3917 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-3922 (($ $ (-1264 (-558)) $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-3908 (($ (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4507)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-3597 (((-146) $ (-558)) NIL T ELT)) (-3927 (((-114) $ $) NIL T ELT)) (-3921 (((-558) (-1 (-114) (-146)) $) NIL T ELT) (((-558) (-146) $) NIL (|has| (-146) (-1131)) ELT) (((-558) (-146) $ (-558)) NIL (|has| (-146) (-1131)) ELT) (((-558) $ $ (-558)) NIL T ELT) (((-558) (-143) $ (-558)) NIL T ELT)) (-3372 (((-661 (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4126 (($ (-791) (-146)) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-4020 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-3089 (((-661 (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-2426 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| (-146) (-870)) ELT)) (-3923 (((-114) $ $ (-146)) NIL T ELT)) (-3924 (((-791) $ $ (-146)) NIL T ELT)) (-2170 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3930 (($ $) NIL T ELT)) (-3931 (($ $) NIL T ELT)) (-3918 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3742 (((-1189) $) NIL (|has| (-146) (-1131)) ELT)) (-2527 (($ (-146) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| (-146) (-1131)) ELT)) (-4313 (((-146) $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2424 (($ $ (-146)) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-2430 (((-661 (-146)) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT) (($ $ $) NIL T ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-146) (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT)) (-4032 (($ (-661 (-146))) NIL T ELT)) (-4314 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (($ (-146)) NIL T ELT) (((-886) $) NIL (|has| (-146) (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2169 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4507)) ELT)) (-2978 (((-1189) $) 21 T ELT) (((-1189) $ (-114)) 23 T ELT) (((-1303) (-845) $) 24 T ELT) (((-1303) (-845) $ (-114)) 25 T ELT)) (-3047 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| (-146) (-870)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1189) (-13 (-1174) (-843) (-10 -8 (-15 -4045 ($ (-558))) (-15 -4045 ($ (-229)))))) (T -1189)) +((-4045 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1189)))) (-4045 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189))))) +(-13 (-1174) (-843) (-10 -8 (-15 -4045 ($ (-558))) (-15 -4045 ($ (-229))))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-2423 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ (-1189) |#1|) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#1| #1="failed") (-1189) $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#1| #1#) (-1189) $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-1189)) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-1189) $) NIL (|has| (-1189) (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131)) (|has| |#1| (-1131))) ELT)) (-2894 (((-661 (-1189)) $) NIL T ELT)) (-2457 (((-114) (-1189) $) NIL T ELT)) (-1398 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-2428 (((-661 (-1189)) $) NIL T ELT)) (-2429 (((-114) (-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131)) (|has| |#1| (-1131))) ELT)) (-4313 ((|#1| $) NIL (|has| (-1189) (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) "failed") (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL (-12 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-321 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-1189)) NIL T ELT) ((|#1| $ (-1189) |#1|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-1131))) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-630 (-886))) (|has| |#1| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 (-1189)) (|:| -2296 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1190 |#1|) (-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4507))) (-1131)) (T -1190)) +NIL +(-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4507))) +((-4317 (((-1185 |#1|) (-1185 |#1|)) 83 T ELT)) (-3969 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 39 T ELT)) (-3980 (((-1185 |#1|) (-419 (-558)) (-1185 |#1|)) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3983 (((-1185 |#1|) |#1| (-1185 |#1|)) 137 (|has| |#1| (-376)) ELT)) (-4320 (((-1185 |#1|) (-1185 |#1|)) 97 T ELT)) (-3971 (((-1185 (-558)) (-558)) 63 T ELT)) (-3979 (((-1185 |#1|) (-1185 (-1185 |#1|))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4316 (((-1185 |#1|) (-558) (-558) (-1185 |#1|)) 103 T ELT)) (-4450 (((-1185 |#1|) |#1| (-558)) 51 T ELT)) (-3973 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-3981 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 135 (|has| |#1| (-376)) ELT)) (-3978 (((-1185 |#1|) |#1| (-1 (-1185 |#1|))) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3982 (((-1185 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1185 |#1|))) 136 (|has| |#1| (-376)) ELT)) (-4321 (((-1185 |#1|) (-1185 |#1|)) 96 T ELT)) (-4322 (((-1185 |#1|) (-1185 |#1|)) 82 T ELT)) (-4315 (((-1185 |#1|) (-558) (-558) (-1185 |#1|)) 104 T ELT)) (-4324 (((-1185 |#1|) |#1| (-1185 |#1|)) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3970 (((-1185 (-558)) (-558)) 62 T ELT)) (-3972 (((-1185 |#1|) |#1|) 65 T ELT)) (-4318 (((-1185 |#1|) (-1185 |#1|) (-558) (-558)) 100 T ELT)) (-3975 (((-1185 |#1|) (-1 |#1| (-558)) (-1185 |#1|)) 72 T ELT)) (-3968 (((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-4319 (((-1185 |#1|) (-1185 |#1|)) 98 T ELT)) (-4280 (((-1185 |#1|) (-1185 |#1|) |#1|) 77 T ELT)) (-3974 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-3976 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 78 T ELT)) (-4458 (((-1185 |#1|) |#1|) 73 T ELT)) (-3977 (((-1185 |#1|) (-1185 (-1185 |#1|))) 88 T ELT)) (-4461 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-4349 (((-1185 |#1|) (-1185 |#1|)) 21 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 23 T ELT)) (-4351 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (* (((-1185 |#1|) (-1185 |#1|) |#1|) 29 T ELT) (((-1185 |#1|) |#1| (-1185 |#1|)) 26 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 27 T ELT))) +(((-1191 |#1|) (-10 -7 (-15 -4351 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4349 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4349 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3968 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -4461 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3969 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -4450 ((-1185 |#1|) |#1| (-558))) (-15 -3970 ((-1185 (-558)) (-558))) (-15 -3971 ((-1185 (-558)) (-558))) (-15 -3972 ((-1185 |#1|) |#1|)) (-15 -3973 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3974 ((-1185 |#1|) (-1185 |#1|))) (-15 -3975 ((-1185 |#1|) (-1 |#1| (-558)) (-1185 |#1|))) (-15 -4458 ((-1185 |#1|) |#1|)) (-15 -4280 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3976 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4322 ((-1185 |#1|) (-1185 |#1|))) (-15 -4317 ((-1185 |#1|) (-1185 |#1|))) (-15 -3977 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -4321 ((-1185 |#1|) (-1185 |#1|))) (-15 -4320 ((-1185 |#1|) (-1185 |#1|))) (-15 -4319 ((-1185 |#1|) (-1185 |#1|))) (-15 -4318 ((-1185 |#1|) (-1185 |#1|) (-558) (-558))) (-15 -4316 ((-1185 |#1|) (-558) (-558) (-1185 |#1|))) (-15 -4315 ((-1185 |#1|) (-558) (-558) (-1185 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -3978 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -3979 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3980 ((-1185 |#1|) (-419 (-558)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3981 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3982 ((-1185 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1185 |#1|)))) (-15 -3983 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|)) (-1079)) (T -1191)) +((-3983 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376)) (-4 *4 (-1079)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)))) (-3981 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) (-5 *3 (-419 (-558))) (-5 *1 (-1191 *4)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1079)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1185 *3))) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)))) (-4324 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4315 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) (-4316 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) (-4318 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1079)))) (-4317 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3976 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4280 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4458 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079)))) (-3975 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3973 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1191 *4)) (-4 *4 (-1079)) (-5 *3 (-558)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1191 *4)) (-4 *4 (-1079)) (-5 *3 (-558)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079)))) (-3969 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4461 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-3968 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) (-4351 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) +(-10 -7 (-15 -4351 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4349 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4349 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3968 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -4461 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3969 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -4450 ((-1185 |#1|) |#1| (-558))) (-15 -3970 ((-1185 (-558)) (-558))) (-15 -3971 ((-1185 (-558)) (-558))) (-15 -3972 ((-1185 |#1|) |#1|)) (-15 -3973 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3974 ((-1185 |#1|) (-1185 |#1|))) (-15 -3975 ((-1185 |#1|) (-1 |#1| (-558)) (-1185 |#1|))) (-15 -4458 ((-1185 |#1|) |#1|)) (-15 -4280 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3976 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4322 ((-1185 |#1|) (-1185 |#1|))) (-15 -4317 ((-1185 |#1|) (-1185 |#1|))) (-15 -3977 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -4321 ((-1185 |#1|) (-1185 |#1|))) (-15 -4320 ((-1185 |#1|) (-1185 |#1|))) (-15 -4319 ((-1185 |#1|) (-1185 |#1|))) (-15 -4318 ((-1185 |#1|) (-1185 |#1|) (-558) (-558))) (-15 -4316 ((-1185 |#1|) (-558) (-558) (-1185 |#1|))) (-15 -4315 ((-1185 |#1|) (-558) (-558) (-1185 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -3978 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -3979 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3980 ((-1185 |#1|) (-419 (-558)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3981 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3982 ((-1185 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1185 |#1|)))) (-15 -3983 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|)) +((-3994 (((-1185 |#1|) (-1185 |#1|)) 102 T ELT)) (-4151 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-3985 (((-2 (|:| -3992 (-1185 |#1|)) (|:| -3993 (-1185 |#1|))) (-1185 |#1|)) 98 T ELT)) (-3992 (((-1185 |#1|) (-1185 |#1|)) 99 T ELT)) (-3984 (((-2 (|:| -4150 (-1185 |#1|)) (|:| -4146 (-1185 |#1|))) (-1185 |#1|)) 54 T ELT)) (-4150 (((-1185 |#1|) (-1185 |#1|)) 55 T ELT)) (-3996 (((-1185 |#1|) (-1185 |#1|)) 104 T ELT)) (-4149 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-4454 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-4455 (((-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-3997 (((-1185 |#1|) (-1185 |#1|)) 105 T ELT)) (-4148 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-3995 (((-1185 |#1|) (-1185 |#1|)) 103 T ELT)) (-4147 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-3993 (((-1185 |#1|) (-1185 |#1|)) 100 T ELT)) (-4146 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-4000 (((-1185 |#1|) (-1185 |#1|)) 113 T ELT)) (-3988 (((-1185 |#1|) (-1185 |#1|)) 88 T ELT)) (-3998 (((-1185 |#1|) (-1185 |#1|)) 107 T ELT)) (-3986 (((-1185 |#1|) (-1185 |#1|)) 84 T ELT)) (-4002 (((-1185 |#1|) (-1185 |#1|)) 117 T ELT)) (-3990 (((-1185 |#1|) (-1185 |#1|)) 92 T ELT)) (-4003 (((-1185 |#1|) (-1185 |#1|)) 119 T ELT)) (-3991 (((-1185 |#1|) (-1185 |#1|)) 94 T ELT)) (-4001 (((-1185 |#1|) (-1185 |#1|)) 115 T ELT)) (-3989 (((-1185 |#1|) (-1185 |#1|)) 90 T ELT)) (-3999 (((-1185 |#1|) (-1185 |#1|)) 109 T ELT)) (-3987 (((-1185 |#1|) (-1185 |#1|)) 86 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 41 T ELT))) +(((-1192 |#1|) (-10 -7 (-15 -4455 ((-1185 |#1|) (-1185 |#1|))) (-15 -4454 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3984 ((-2 (|:| -4150 (-1185 |#1|)) (|:| -4146 (-1185 |#1|))) (-1185 |#1|))) (-15 -4150 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|))) (-15 -4151 ((-1185 |#1|) (-1185 |#1|))) (-15 -4147 ((-1185 |#1|) (-1185 |#1|))) (-15 -4149 ((-1185 |#1|) (-1185 |#1|))) (-15 -4148 ((-1185 |#1|) (-1185 |#1|))) (-15 -3986 ((-1185 |#1|) (-1185 |#1|))) (-15 -3987 ((-1185 |#1|) (-1185 |#1|))) (-15 -3988 ((-1185 |#1|) (-1185 |#1|))) (-15 -3989 ((-1185 |#1|) (-1185 |#1|))) (-15 -3990 ((-1185 |#1|) (-1185 |#1|))) (-15 -3991 ((-1185 |#1|) (-1185 |#1|))) (-15 -3985 ((-2 (|:| -3992 (-1185 |#1|)) (|:| -3993 (-1185 |#1|))) (-1185 |#1|))) (-15 -3992 ((-1185 |#1|) (-1185 |#1|))) (-15 -3993 ((-1185 |#1|) (-1185 |#1|))) (-15 -3994 ((-1185 |#1|) (-1185 |#1|))) (-15 -3995 ((-1185 |#1|) (-1185 |#1|))) (-15 -3996 ((-1185 |#1|) (-1185 |#1|))) (-15 -3997 ((-1185 |#1|) (-1185 |#1|))) (-15 -3998 ((-1185 |#1|) (-1185 |#1|))) (-15 -3999 ((-1185 |#1|) (-1185 |#1|))) (-15 -4000 ((-1185 |#1|) (-1185 |#1|))) (-15 -4001 ((-1185 |#1|) (-1185 |#1|))) (-15 -4002 ((-1185 |#1|) (-1185 |#1|))) (-15 -4003 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-419 (-558)))) (T -1192)) +((-4003 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -3992 (-1185 *4)) (|:| -3993 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4146 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -4150 (-1185 *4)) (|:| -4146 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4454 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) (-4455 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3))))) +(-10 -7 (-15 -4455 ((-1185 |#1|) (-1185 |#1|))) (-15 -4454 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3984 ((-2 (|:| -4150 (-1185 |#1|)) (|:| -4146 (-1185 |#1|))) (-1185 |#1|))) (-15 -4150 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|))) (-15 -4151 ((-1185 |#1|) (-1185 |#1|))) (-15 -4147 ((-1185 |#1|) (-1185 |#1|))) (-15 -4149 ((-1185 |#1|) (-1185 |#1|))) (-15 -4148 ((-1185 |#1|) (-1185 |#1|))) (-15 -3986 ((-1185 |#1|) (-1185 |#1|))) (-15 -3987 ((-1185 |#1|) (-1185 |#1|))) (-15 -3988 ((-1185 |#1|) (-1185 |#1|))) (-15 -3989 ((-1185 |#1|) (-1185 |#1|))) (-15 -3990 ((-1185 |#1|) (-1185 |#1|))) (-15 -3991 ((-1185 |#1|) (-1185 |#1|))) (-15 -3985 ((-2 (|:| -3992 (-1185 |#1|)) (|:| -3993 (-1185 |#1|))) (-1185 |#1|))) (-15 -3992 ((-1185 |#1|) (-1185 |#1|))) (-15 -3993 ((-1185 |#1|) (-1185 |#1|))) (-15 -3994 ((-1185 |#1|) (-1185 |#1|))) (-15 -3995 ((-1185 |#1|) (-1185 |#1|))) (-15 -3996 ((-1185 |#1|) (-1185 |#1|))) (-15 -3997 ((-1185 |#1|) (-1185 |#1|))) (-15 -3998 ((-1185 |#1|) (-1185 |#1|))) (-15 -3999 ((-1185 |#1|) (-1185 |#1|))) (-15 -4000 ((-1185 |#1|) (-1185 |#1|))) (-15 -4001 ((-1185 |#1|) (-1185 |#1|))) (-15 -4002 ((-1185 |#1|) (-1185 |#1|))) (-15 -4003 ((-1185 |#1|) (-1185 |#1|)))) +((-3994 (((-1185 |#1|) (-1185 |#1|)) 60 T ELT)) (-4151 (((-1185 |#1|) (-1185 |#1|)) 42 T ELT)) (-3992 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-4150 (((-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-3996 (((-1185 |#1|) (-1185 |#1|)) 63 T ELT)) (-4149 (((-1185 |#1|) (-1185 |#1|)) 45 T ELT)) (-4454 (((-1185 |#1|) (-1185 |#1|)) 34 T ELT)) (-4455 (((-1185 |#1|) (-1185 |#1|)) 29 T ELT)) (-3997 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-4148 (((-1185 |#1|) (-1185 |#1|)) 46 T ELT)) (-3995 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-4147 (((-1185 |#1|) (-1185 |#1|)) 43 T ELT)) (-3993 (((-1185 |#1|) (-1185 |#1|)) 58 T ELT)) (-4146 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-4000 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-3988 (((-1185 |#1|) (-1185 |#1|)) 50 T ELT)) (-3998 (((-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-3986 (((-1185 |#1|) (-1185 |#1|)) 48 T ELT)) (-4002 (((-1185 |#1|) (-1185 |#1|)) 71 T ELT)) (-3990 (((-1185 |#1|) (-1185 |#1|)) 53 T ELT)) (-4003 (((-1185 |#1|) (-1185 |#1|)) 72 T ELT)) (-3991 (((-1185 |#1|) (-1185 |#1|)) 54 T ELT)) (-4001 (((-1185 |#1|) (-1185 |#1|)) 70 T ELT)) (-3989 (((-1185 |#1|) (-1185 |#1|)) 52 T ELT)) (-3999 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-3987 (((-1185 |#1|) (-1185 |#1|)) 51 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 36 T ELT))) +(((-1193 |#1|) (-10 -7 (-15 -4455 ((-1185 |#1|) (-1185 |#1|))) (-15 -4454 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4150 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|))) (-15 -4151 ((-1185 |#1|) (-1185 |#1|))) (-15 -4147 ((-1185 |#1|) (-1185 |#1|))) (-15 -4149 ((-1185 |#1|) (-1185 |#1|))) (-15 -4148 ((-1185 |#1|) (-1185 |#1|))) (-15 -3986 ((-1185 |#1|) (-1185 |#1|))) (-15 -3987 ((-1185 |#1|) (-1185 |#1|))) (-15 -3988 ((-1185 |#1|) (-1185 |#1|))) (-15 -3989 ((-1185 |#1|) (-1185 |#1|))) (-15 -3990 ((-1185 |#1|) (-1185 |#1|))) (-15 -3991 ((-1185 |#1|) (-1185 |#1|))) (-15 -3992 ((-1185 |#1|) (-1185 |#1|))) (-15 -3993 ((-1185 |#1|) (-1185 |#1|))) (-15 -3994 ((-1185 |#1|) (-1185 |#1|))) (-15 -3995 ((-1185 |#1|) (-1185 |#1|))) (-15 -3996 ((-1185 |#1|) (-1185 |#1|))) (-15 -3997 ((-1185 |#1|) (-1185 |#1|))) (-15 -3998 ((-1185 |#1|) (-1185 |#1|))) (-15 -3999 ((-1185 |#1|) (-1185 |#1|))) (-15 -4000 ((-1185 |#1|) (-1185 |#1|))) (-15 -4001 ((-1185 |#1|) (-1185 |#1|))) (-15 -4002 ((-1185 |#1|) (-1185 |#1|))) (-15 -4003 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-419 (-558)))) (T -1193)) +((-4003 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4146 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4454 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) (-4455 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) +(-10 -7 (-15 -4455 ((-1185 |#1|) (-1185 |#1|))) (-15 -4454 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -4150 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|))) (-15 -4151 ((-1185 |#1|) (-1185 |#1|))) (-15 -4147 ((-1185 |#1|) (-1185 |#1|))) (-15 -4149 ((-1185 |#1|) (-1185 |#1|))) (-15 -4148 ((-1185 |#1|) (-1185 |#1|))) (-15 -3986 ((-1185 |#1|) (-1185 |#1|))) (-15 -3987 ((-1185 |#1|) (-1185 |#1|))) (-15 -3988 ((-1185 |#1|) (-1185 |#1|))) (-15 -3989 ((-1185 |#1|) (-1185 |#1|))) (-15 -3990 ((-1185 |#1|) (-1185 |#1|))) (-15 -3991 ((-1185 |#1|) (-1185 |#1|))) (-15 -3992 ((-1185 |#1|) (-1185 |#1|))) (-15 -3993 ((-1185 |#1|) (-1185 |#1|))) (-15 -3994 ((-1185 |#1|) (-1185 |#1|))) (-15 -3995 ((-1185 |#1|) (-1185 |#1|))) (-15 -3996 ((-1185 |#1|) (-1185 |#1|))) (-15 -3997 ((-1185 |#1|) (-1185 |#1|))) (-15 -3998 ((-1185 |#1|) (-1185 |#1|))) (-15 -3999 ((-1185 |#1|) (-1185 |#1|))) (-15 -4000 ((-1185 |#1|) (-1185 |#1|))) (-15 -4001 ((-1185 |#1|) (-1185 |#1|))) (-15 -4002 ((-1185 |#1|) (-1185 |#1|))) (-15 -4003 ((-1185 |#1|) (-1185 |#1|)))) +((-4004 (((-986 |#2|) |#2| |#2|) 51 T ELT)) (-4005 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) +(((-1194 |#1| |#2|) (-10 -7 (-15 -4004 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4005 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1273 |#1|)) (T -1194)) +((-4005 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1194 *3 *2)) (-4 *2 (-1273 *3)))) (-4004 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4004 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4005 (|#2| |#2| |#1|)) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-4013 (($ $ (-661 (-791))) 79 T ELT)) (-4400 (($) 33 T ELT)) (-4022 (($ $) 51 T ELT)) (-4263 (((-661 $) $) 60 T ELT)) (-4028 (((-114) $) 19 T ELT)) (-4006 (((-661 (-971 |#2|)) $) 86 T ELT)) (-4007 (($ $) 80 T ELT)) (-4023 (((-791) $) 47 T ELT)) (-4126 (($) 32 T ELT)) (-4016 (($ $ (-661 (-791)) (-971 |#2|)) 72 T ELT) (($ $ (-661 (-791)) (-791)) 73 T ELT) (($ $ (-791) (-971 |#2|)) 75 T ELT)) (-4020 (($ $ $) 57 T ELT) (($ (-661 $)) 59 T ELT)) (-4008 (((-791) $) 87 T ELT)) (-4029 (((-114) $) 15 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4027 (((-114) $) 22 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4009 (((-174) $) 85 T ELT)) (-4012 (((-971 |#2|) $) 81 T ELT)) (-4011 (((-791) $) 82 T ELT)) (-4010 (((-114) $) 84 T ELT)) (-4014 (($ $ (-661 (-791)) (-174)) 78 T ELT)) (-4021 (($ $) 52 T ELT)) (-4458 (((-886) $) 99 T ELT)) (-4015 (($ $ (-661 (-791)) (-114)) 77 T ELT)) (-4024 (((-661 $) $) 11 T ELT)) (-4025 (($ $ (-791)) 46 T ELT)) (-4026 (($ $) 43 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4017 (($ $ $ (-971 |#2|) (-791)) 68 T ELT)) (-4018 (($ $ (-971 |#2|)) 67 T ELT)) (-4019 (($ $ (-661 (-791)) (-971 |#2|)) 66 T ELT) (($ $ (-661 (-791)) (-791)) 70 T ELT) (((-791) $ (-971 |#2|)) 71 T ELT)) (-3536 (((-114) $ $) 92 T ELT))) +(((-1195 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -4029 ((-114) $)) (-15 -4028 ((-114) $)) (-15 -4027 ((-114) $)) (-15 -4126 ($)) (-15 -4400 ($)) (-15 -4026 ($ $)) (-15 -4025 ($ $ (-791))) (-15 -4024 ((-661 $) $)) (-15 -4023 ((-791) $)) (-15 -4022 ($ $)) (-15 -4021 ($ $)) (-15 -4020 ($ $ $)) (-15 -4020 ($ (-661 $))) (-15 -4263 ((-661 $) $)) (-15 -4019 ($ $ (-661 (-791)) (-971 |#2|))) (-15 -4018 ($ $ (-971 |#2|))) (-15 -4017 ($ $ $ (-971 |#2|) (-791))) (-15 -4016 ($ $ (-661 (-791)) (-971 |#2|))) (-15 -4019 ($ $ (-661 (-791)) (-791))) (-15 -4016 ($ $ (-661 (-791)) (-791))) (-15 -4019 ((-791) $ (-971 |#2|))) (-15 -4016 ($ $ (-791) (-971 |#2|))) (-15 -4015 ($ $ (-661 (-791)) (-114))) (-15 -4014 ($ $ (-661 (-791)) (-174))) (-15 -4013 ($ $ (-661 (-791)))) (-15 -4012 ((-971 |#2|) $)) (-15 -4011 ((-791) $)) (-15 -4010 ((-114) $)) (-15 -4009 ((-174) $)) (-15 -4008 ((-791) $)) (-15 -4007 ($ $)) (-15 -4006 ((-661 (-971 |#2|)) $)))) (-947) (-1079)) (T -1195)) +((-4029 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4126 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4400 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4025 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4022 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4021 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4020 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)))) (-4017 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-971 *5)) (-5 *3 (-791)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)))) (-4016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)) (-4 *5 (-1079)))) (-4016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)) (-4 *5 (-1079)))) (-4019 (*1 *2 *1 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-791)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)))) (-4016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)))) (-4015 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)) (-4 *5 (-1079)))) (-4014 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-947)) (-4 *5 (-1079)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-971 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079)))) (-4007 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-661 (-971 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(-13 (-1131) (-10 -8 (-15 -4029 ((-114) $)) (-15 -4028 ((-114) $)) (-15 -4027 ((-114) $)) (-15 -4126 ($)) (-15 -4400 ($)) (-15 -4026 ($ $)) (-15 -4025 ($ $ (-791))) (-15 -4024 ((-661 $) $)) (-15 -4023 ((-791) $)) (-15 -4022 ($ $)) (-15 -4021 ($ $)) (-15 -4020 ($ $ $)) (-15 -4020 ($ (-661 $))) (-15 -4263 ((-661 $) $)) (-15 -4019 ($ $ (-661 (-791)) (-971 |#2|))) (-15 -4018 ($ $ (-971 |#2|))) (-15 -4017 ($ $ $ (-971 |#2|) (-791))) (-15 -4016 ($ $ (-661 (-791)) (-971 |#2|))) (-15 -4019 ($ $ (-661 (-791)) (-791))) (-15 -4016 ($ $ (-661 (-791)) (-791))) (-15 -4019 ((-791) $ (-971 |#2|))) (-15 -4016 ($ $ (-791) (-971 |#2|))) (-15 -4015 ($ $ (-661 (-791)) (-114))) (-15 -4014 ($ $ (-661 (-791)) (-174))) (-15 -4013 ($ $ (-661 (-791)))) (-15 -4012 ((-971 |#2|) $)) (-15 -4011 ((-791) $)) (-15 -4010 ((-114) $)) (-15 -4009 ((-174) $)) (-15 -4008 ((-791) $)) (-15 -4007 ($ $)) (-15 -4006 ((-661 (-971 |#2|)) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4030 ((|#2| $) 11 T ELT)) (-4031 ((|#1| $) 10 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4032 (($ |#1| |#2|) 9 T ELT)) (-4458 (((-886) $) 16 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1196 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -4032 ($ |#1| |#2|)) (-15 -4031 (|#1| $)) (-15 -4030 (|#2| $)))) (-1131) (-1131)) (T -1196)) +((-4032 (*1 *1 *2 *3) (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4031 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1131)))) (-4030 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -4032 ($ |#1| |#2|)) (-15 -4031 (|#1| $)) (-15 -4030 (|#2| $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4033 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1197) (-13 (-1113) (-10 -8 (-15 -4033 ((-1165) $))))) (T -1197)) +((-4033 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1197))))) +(-13 (-1113) (-10 -8 (-15 -4033 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 11 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2283 (($ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2281 (((-114) $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4283 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) 75 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4243 (((-1205 |#1| |#2| |#3|) $) 42 T ELT)) (-4240 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-4241 (((-1205 |#1| |#2| |#3|) $) 33 T ELT)) (-3994 (($ $) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4135 (((-558) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-1205 |#1| |#2| |#3|) #2="failed") $) 34 T ELT) (((-3 (-1207) #2#) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #2#) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT)) (-3656 (((-1205 |#1| |#2| |#3|) $) 140 T ELT) (((-1207) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT)) (-4242 (($ $) 37 T ELT) (($ (-558) $) 38 T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-1205 |#1| |#2| |#3|)) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3969 (((-3 $ "failed") $) 54 T ELT)) (-4239 (((-419 (-974 |#1|)) $ (-558)) 74 (|has| |#1| (-569)) ELT) (((-419 (-974 |#1|)) $ (-558) (-558)) 76 (|has| |#1| (-569)) ELT)) (-3477 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3686 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3375 (((-114) $) 28 T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-376))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-910 (-558))) (|has| |#1| (-376))) ELT)) (-4284 (((-558) $) NIL T ELT) (((-558) $ (-558)) 26 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3481 (((-1205 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3947 (((-711 $) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-3687 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4289 (($ $ (-947)) NIL T ELT)) (-4327 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-558)) 19 T ELT) (($ $ (-1112) (-558)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-558))) NIL T ELT)) (-3012 (($ $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3340 (($ $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4454 (($ $) 81 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2504 (((-709 (-1205 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4291 (($ (-558) (-1205 |#1| |#2| |#3|)) 36 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) 79 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 80 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3612 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3614 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-558)) 158 T ELT)) (-3968 (((-3 $ "failed") $ $) 55 (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) 82 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1207) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-526 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1207)) (-661 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-526 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 (-1205 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1205 |#1| |#2| |#3|)) (-661 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-558)) NIL T ELT) (($ $ $) 61 (|has| (-558) (-1142)) ELT) (($ $ (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 57 T ELT) (($ $) 56 (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3480 (((-1205 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-4460 (((-558) $) 43 T ELT)) (-3997 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 118 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4484 (((-547) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-631 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-376))) ELT) (((-914 (-391)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-631 (-914 (-391)))) (|has| |#1| (-376))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-631 (-914 (-558)))) (|has| |#1| (-376))) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) 162 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1205 |#1| |#2| |#3|)) 30 T ELT) (($ (-1294 |#2|)) 25 T ELT) (($ (-1207)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4189 ((|#1| $ (-558)) 77 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 12 T ELT)) (-3615 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3998 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3885 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 16 T CONST)) (-3152 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3047 (((-114) $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3048 (((-114) $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3168 (((-114) $ $) NIL (-4039 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 23 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 60 T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1205 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1198 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1198)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-4034 ((|#2| |#2| (-1122 |#2|)) 26 T ELT) ((|#2| |#2| (-1207)) 28 T ELT))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -4034 (|#2| |#2| (-1207))) (-15 -4034 (|#2| |#2| (-1122 |#2|)))) (-13 (-569) (-1068 (-558)) (-658 (-558))) (-13 (-433 |#1|) (-162) (-27) (-1233))) (T -1199)) +((-4034 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1233))) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1199 *4 *2)))) (-4034 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1233)))))) +(-10 -7 (-15 -4034 (|#2| |#2| (-1207))) (-15 -4034 (|#2| |#2| (-1122 |#2|)))) +((-4034 (((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1122 (-419 (-974 |#1|)))) 31 T ELT) (((-419 (-974 |#1|)) (-974 |#1|) (-1122 (-974 |#1|))) 44 T ELT) (((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1207)) 33 T ELT) (((-419 (-974 |#1|)) (-974 |#1|) (-1207)) 36 T ELT))) +(((-1200 |#1|) (-10 -7 (-15 -4034 ((-419 (-974 |#1|)) (-974 |#1|) (-1207))) (-15 -4034 ((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1207))) (-15 -4034 ((-419 (-974 |#1|)) (-974 |#1|) (-1122 (-974 |#1|)))) (-15 -4034 ((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1122 (-419 (-974 |#1|)))))) (-13 (-569) (-1068 (-558)))) (T -1200)) +((-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1200 *5)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-974 *5))) (-5 *3 (-974 *5)) (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1200 *5)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-3 (-419 (-974 *5)) (-326 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-419 (-974 *5))))) (-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-419 (-974 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-974 *5))))) +(-10 -7 (-15 -4034 ((-419 (-974 |#1|)) (-974 |#1|) (-1207))) (-15 -4034 ((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1207))) (-15 -4034 ((-419 (-974 |#1|)) (-974 |#1|) (-1122 (-974 |#1|)))) (-15 -4034 ((-3 (-419 (-974 |#1|)) (-326 |#1|)) (-419 (-974 |#1|)) (-1122 (-419 (-974 |#1|)))))) +((-3049 (((-114) $ $) 172 T ELT)) (-3688 (((-114) $) 43 T ELT)) (-4279 (((-1297 |#1|) $ (-791)) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4277 (($ (-1201 |#1|)) NIL T ELT)) (-3568 (((-1201 $) $ (-1112)) 82 T ELT) (((-1201 |#1|) $) 71 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) 165 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1112))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4267 (($ $ $) 159 (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 96 (|has| |#1| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 116 (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-791)) 61 T ELT)) (-4272 (($ $ (-791)) 63 T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#1| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1112) #2#) $) NIL T ELT)) (-3656 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-1112) $) NIL T ELT)) (-4268 (($ $ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 161 (|has| |#1| (-175)) ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) 80 T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4271 (($ $ $) 132 T ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4264 (((-2 (|:| -4466 |#1|) (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4005 (($ $) 166 (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-791) $) 69 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1112) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4035 (((-886) $ (-886)) 149 T ELT)) (-4284 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2651 (((-114) $) 48 T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#1| (-1182)) ELT)) (-3569 (($ (-1201 |#1|) (-1112)) 73 T ELT) (($ (-1201 $) (-1112)) 90 T ELT)) (-4289 (($ $ (-791)) 51 T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) 88 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 154 T ELT)) (-3303 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-1815 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4278 (((-1201 |#1|) $) NIL T ELT)) (-3567 (((-3 (-1112) #4="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-709 |#1|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) 76 T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) 60 T ELT)) (-3306 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1112)) (|:| -2642 (-791))) #4#) $) NIL T ELT)) (-4324 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (|has| |#1| (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) 50 T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 104 (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 168 (|has| |#1| (-464)) ELT)) (-4250 (($ $ (-791) |#1| $) 124 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 102 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 101 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 109 (|has| |#1| (-938)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 164 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 125 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-661 (-1112)) (-661 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-661 (-1112)) (-661 $)) NIL T ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4276 (((-3 $ #5="failed") $ (-791)) 54 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4269 (($ $ (-1112)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 157 (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-4460 (((-791) $) 78 T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1112) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) 163 (|has| |#1| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4266 (((-3 $ #5#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #5#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4458 (((-886) $) 150 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1112)) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) 41 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 17 T CONST)) (-3147 (($) 19 T CONST)) (-3152 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#1| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 121 T ELT)) (-4461 (($ $ |#1|) 174 (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 91 T ELT)) (** (($ $ (-947)) 14 T ELT) (($ $ (-791)) 12 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1201 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-886))) (-15 -4250 ($ $ (-791) |#1| $)))) (-1079)) (T -1201)) +((-4035 (*1 *2 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1201 *3)) (-4 *3 (-1079)))) (-4250 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1201 *3)) (-4 *3 (-1079))))) +(-13 (-1273 |#1|) (-10 -8 (-15 -4035 ((-886) $ (-886))) (-15 -4250 ($ $ (-791) |#1| $)))) +((-4470 (((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)) 13 T ELT))) +(((-1202 |#1| |#2|) (-10 -7 (-15 -4470 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)))) (-1079) (-1079)) (T -1202)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6))))) +(-10 -7 (-15 -4470 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)))) +((-4483 (((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|))) 51 T ELT)) (-4244 (((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|))) 52 T ELT))) +(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|)))) (-15 -4483 ((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|))))) (-815) (-870) (-464) (-978 |#3| |#1| |#2|)) (T -1203)) +((-4483 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-464)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-417 (-1201 (-419 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-419 *7))))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-464)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-417 (-1201 (-419 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-419 *7)))))) +(-10 -7 (-15 -4244 ((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|)))) (-15 -4483 ((-417 (-1201 (-419 |#4|))) (-1201 (-419 |#4|))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 11 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-1198 |#1| |#2| |#3|) #1="failed") $) 33 T ELT) (((-3 (-1205 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3656 (((-1198 |#1| |#2| |#3|) $) NIL T ELT) (((-1205 |#1| |#2| |#3|) $) NIL T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4293 (((-419 (-558)) $) 59 T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4294 (($ (-419 (-558)) (-1198 |#1| |#2| |#3|)) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-419 (-558))) 20 T ELT) (($ $ (-1112) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4292 (((-1198 |#1| |#2| |#3|) $) 41 T ELT)) (-4290 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4291 (((-1198 |#1| |#2| |#3|) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-4460 (((-419 (-558)) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) 62 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1198 |#1| |#2| |#3|)) 30 T ELT) (($ (-1205 |#1| |#2| |#3|)) 31 T ELT) (($ (-1294 |#2|)) 26 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 22 T CONST)) (-3147 (($) 16 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 24 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1204 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-1068 (-1205 |#1| |#2| |#3|)) (-633 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1204)) +((-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-1068 (-1205 |#1| |#2| |#3|)) (-633 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 129 T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 119 T ELT)) (-4323 (((-1266 |#2| |#1|) $ (-791)) 69 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-791)) 85 T ELT) (($ $ (-791) (-791)) 82 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 105 T ELT)) (-3994 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1185 |#1|)) 113 T ELT)) (-3996 (($ $) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 25 T ELT)) (-4328 (($ $) 28 T ELT)) (-4326 (((-974 |#1|) $ (-791)) 81 T ELT) (((-974 |#1|) $ (-791) (-791)) 83 T ELT)) (-3375 (((-114) $) 124 T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $) 126 T ELT) (((-791) $ (-791)) 128 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) NIL T ELT)) (-4327 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) 13 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) 135 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4324 (($ $) 133 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4281 (($ $ (-791)) 15 T ELT)) (-3968 (((-3 $ "failed") $ $) 26 (|has| |#1| (-569)) ELT)) (-4455 (($ $) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4312 ((|#1| $ (-791)) 122 T ELT) (($ $ $) 132 (|has| (-791) (-1142)) ELT)) (-4270 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1294 |#2|)) 31 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-3997 (($ $) 179 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) 206 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 55 T ELT) (($ (-1294 |#2|)) 36 T ELT)) (-4329 (((-1185 |#1|) $) 101 T ELT)) (-4189 ((|#1| $ (-791)) 121 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 58 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-791)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 17 T CONST)) (-3147 (($) 20 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-4351 (($ $ $) 35 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1205 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1266 |#2| |#1|))) (-15 -4323 ((-1266 |#2| |#1|) $ (-791))) (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1205)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1207)) (-14 *6 *4))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1290 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1266 |#2| |#1|))) (-15 -4323 ((-1266 |#2| |#1|) $ (-791))) (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-4458 (((-886) $) 33 T ELT) (($ (-1207)) 35 T ELT)) (-4039 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-4036 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-4043 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-4041 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-4042 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-4040 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-4038 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) +(((-1206) (-13 (-630 (-886)) (-10 -8 (-15 -4458 ($ (-1207))) (-15 -4043 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4042 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4041 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4039 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4038 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4036 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4036 ($ $))))) (T -1206)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) (-4043 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4042 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4041 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4040 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4039 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4038 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4036 (*1 *1 *1) (-5 *1 (-1206)))) +(-13 (-630 (-886)) (-10 -8 (-15 -4458 ($ (-1207))) (-15 -4043 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4042 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4041 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4040 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4039 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4038 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4036 ($ (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4036 ($ $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4047 (($ $ (-661 (-886))) 62 T ELT)) (-4048 (($ $ (-661 (-886))) 60 T ELT)) (-4045 (((-1189) $) 101 T ELT)) (-4050 (((-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886)))) $) 108 T ELT)) (-4051 (((-114) $) 23 T ELT)) (-4049 (($ $ (-661 (-661 (-886)))) 59 T ELT) (($ $ (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886))))) 99 T ELT)) (-4236 (($) 163 T CONST)) (-4053 (((-1303)) 135 T ELT)) (-3279 (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 69 T ELT) (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 76 T ELT)) (-4126 (($) 122 T ELT) (($ $) 131 T ELT)) (-4052 (($ $) 100 T ELT)) (-3012 (($ $ $) NIL T ELT)) (-3340 (($ $ $) NIL T ELT)) (-4044 (((-661 $) $) 136 T ELT)) (-3742 (((-1189) $) 114 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4312 (($ $ (-661 (-886))) 61 T ELT)) (-4484 (((-547) $) 48 T ELT) (((-1207) $) 49 T ELT) (((-914 (-558)) $) 80 T ELT) (((-914 (-391)) $) 78 T ELT)) (-4458 (((-886) $) 55 T ELT) (($ (-1189)) 50 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4046 (($ $ (-661 (-886))) 63 T ELT)) (-2978 (((-1189) $) 34 T ELT) (((-1189) $ (-114)) 35 T ELT) (((-1303) (-845) $) 36 T ELT) (((-1303) (-845) $ (-114)) 37 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 51 T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) 52 T ELT))) +(((-1207) (-13 (-870) (-631 (-547)) (-843) (-631 (-1207)) (-633 (-1189)) (-631 (-914 (-558))) (-631 (-914 (-391))) (-910 (-558)) (-910 (-391)) (-10 -8 (-15 -4126 ($)) (-15 -4126 ($ $)) (-15 -4053 ((-1303))) (-15 -4052 ($ $)) (-15 -4051 ((-114) $)) (-15 -4050 ((-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886)))) $)) (-15 -4049 ($ $ (-661 (-661 (-886))))) (-15 -4049 ($ $ (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886)))))) (-15 -4048 ($ $ (-661 (-886)))) (-15 -4047 ($ $ (-661 (-886)))) (-15 -4046 ($ $ (-661 (-886)))) (-15 -4312 ($ $ (-661 (-886)))) (-15 -4045 ((-1189) $)) (-15 -4044 ((-661 $) $)) (-15 -4236 ($) -4464)))) (T -1207)) +((-4126 (*1 *1) (-5 *1 (-1207))) (-4126 (*1 *1 *1) (-5 *1 (-1207))) (-4053 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))) (-4052 (*1 *1 *1) (-5 *1 (-1207))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886))))) (-5 *1 (-1207)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 (-886)))) (-5 *1 (-1207)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886))))) (-5 *1 (-1207)))) (-4048 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1207)))) (-4236 (*1 *1) (-5 *1 (-1207)))) +(-13 (-870) (-631 (-547)) (-843) (-631 (-1207)) (-633 (-1189)) (-631 (-914 (-558))) (-631 (-914 (-391))) (-910 (-558)) (-910 (-391)) (-10 -8 (-15 -4126 ($)) (-15 -4126 ($ $)) (-15 -4053 ((-1303))) (-15 -4052 ($ $)) (-15 -4051 ((-114) $)) (-15 -4050 ((-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886)))) $)) (-15 -4049 ($ $ (-661 (-661 (-886))))) (-15 -4049 ($ $ (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) (|:| |args| (-661 (-886)))))) (-15 -4048 ($ $ (-661 (-886)))) (-15 -4047 ($ $ (-661 (-886)))) (-15 -4046 ($ $ (-661 (-886)))) (-15 -4312 ($ $ (-661 (-886)))) (-15 -4045 ((-1189) $)) (-15 -4044 ((-661 $) $)) (-15 -4236 ($) -4464))) +((-4054 (((-1297 |#1|) |#1| (-947)) 18 T ELT) (((-1297 |#1|) (-661 |#1|)) 25 T ELT))) +(((-1208 |#1|) (-10 -7 (-15 -4054 ((-1297 |#1|) (-661 |#1|))) (-15 -4054 ((-1297 |#1|) |#1| (-947)))) (-1079)) (T -1208)) +((-4054 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1079)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) (-5 *1 (-1208 *4))))) +(-10 -7 (-15 -4054 ((-1297 |#1|) (-661 |#1|))) (-15 -4054 ((-1297 |#1|) |#1| (-947)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3656 (((-558) $) NIL (|has| |#1| (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1068 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4005 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1814 (($ $ |#1| (-1001) $) NIL T ELT)) (-2651 (((-114) $) 17 T ELT)) (-2659 (((-791) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-1001)) NIL T ELT)) (-3303 (((-1001) $) NIL T ELT)) (-1815 (($ (-1 (-1001) (-1001)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#1| $) NIL T ELT)) (-4250 (($ $ (-1001) |#1| $) NIL (-12 (|has| (-1001) (-133)) (|has| |#1| (-569))) ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4460 (((-1001) $) NIL T ELT)) (-3300 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1068 (-419 (-558))))) ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-1001)) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (($) 10 T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 21 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1209 |#1|) (-13 (-338 |#1| (-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-1001) (-133)) (-15 -4250 ($ $ (-1001) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) (-1079)) (T -1209)) +((-4250 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1001)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(-13 (-338 |#1| #1=(-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| #1# (-133)) (-15 -4250 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) +((-4055 (((-1211) (-1207) $) 25 T ELT)) (-4065 (($) 29 T ELT)) (-4057 (((-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) (-1207) $) 22 T ELT)) (-4059 (((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1#)) $) 41 T ELT) (((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) 42 T ELT) (((-1303) (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) 43 T ELT)) (-4067 (((-1303) (-1207)) 58 T ELT)) (-4058 (((-1303) (-1207) $) 55 T ELT) (((-1303) (-1207)) 56 T ELT) (((-1303)) 57 T ELT)) (-4063 (((-1303) (-1207)) 37 T ELT)) (-4061 (((-1207)) 36 T ELT)) (-4075 (($) 34 T ELT)) (-4074 (((-448) (-1207) (-448) (-1207) $) 45 T ELT) (((-448) (-661 (-1207)) (-448) (-1207) $) 49 T ELT) (((-448) (-1207) (-448)) 46 T ELT) (((-448) (-1207) (-448) (-1207)) 50 T ELT)) (-4062 (((-1207)) 35 T ELT)) (-4458 (((-886) $) 28 T ELT)) (-4064 (((-1303)) 30 T ELT) (((-1303) (-1207)) 33 T ELT)) (-4056 (((-661 (-1207)) (-1207) $) 24 T ELT)) (-4060 (((-1303) (-1207) (-661 (-1207)) $) 38 T ELT) (((-1303) (-1207) (-661 (-1207))) 39 T ELT) (((-1303) (-661 (-1207))) 40 T ELT))) +(((-1210) (-13 (-630 (-886)) (-10 -8 (-15 -4065 ($)) (-15 -4064 ((-1303))) (-15 -4064 ((-1303) (-1207))) (-15 -4074 ((-448) (-1207) (-448) (-1207) $)) (-15 -4074 ((-448) (-661 (-1207)) (-448) (-1207) $)) (-15 -4074 ((-448) (-1207) (-448))) (-15 -4074 ((-448) (-1207) (-448) (-1207))) (-15 -4063 ((-1303) (-1207))) (-15 -4062 ((-1207))) (-15 -4061 ((-1207))) (-15 -4060 ((-1303) (-1207) (-661 (-1207)) $)) (-15 -4060 ((-1303) (-1207) (-661 (-1207)))) (-15 -4060 ((-1303) (-661 (-1207)))) (-15 -4059 ((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) $)) (-15 -4059 ((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1#)))) (-15 -4059 ((-1303) (-3 (|:| |fst| (-446)) (|:| -4422 #1#)))) (-15 -4058 ((-1303) (-1207) $)) (-15 -4058 ((-1303) (-1207))) (-15 -4058 ((-1303))) (-15 -4067 ((-1303) (-1207))) (-15 -4075 ($)) (-15 -4057 ((-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-1207) $)) (-15 -4056 ((-661 (-1207)) (-1207) $)) (-15 -4055 ((-1211) (-1207) $))))) (T -1210)) +((-4065 (*1 *1) (-5 *1 (-1210))) (-4064 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4074 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4074 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1207))) (-5 *4 (-1207)) (-5 *1 (-1210)))) (-4074 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4074 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4062 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-4061 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-4060 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4059 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4058 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4058 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4075 (*1 *1) (-5 *1 (-1210))) (-4057 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *1 (-1210)))) (-4056 (*1 *2 *3 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))) (-4055 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4065 ($)) (-15 -4064 ((-1303))) (-15 -4064 ((-1303) (-1207))) (-15 -4074 ((-448) (-1207) (-448) (-1207) $)) (-15 -4074 ((-448) (-661 (-1207)) (-448) (-1207) $)) (-15 -4074 ((-448) (-1207) (-448))) (-15 -4074 ((-448) (-1207) (-448) (-1207))) (-15 -4063 ((-1303) (-1207))) (-15 -4062 ((-1207))) (-15 -4061 ((-1207))) (-15 -4060 ((-1303) (-1207) (-661 (-1207)) $)) (-15 -4060 ((-1303) (-1207) (-661 (-1207)))) (-15 -4060 ((-1303) (-661 (-1207)))) (-15 -4059 ((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1="void")) $)) (-15 -4059 ((-1303) (-1207) (-3 (|:| |fst| (-446)) (|:| -4422 #1#)))) (-15 -4059 ((-1303) (-3 (|:| |fst| (-446)) (|:| -4422 #1#)))) (-15 -4058 ((-1303) (-1207) $)) (-15 -4058 ((-1303) (-1207))) (-15 -4058 ((-1303))) (-15 -4067 ((-1303) (-1207))) (-15 -4075 ($)) (-15 -4057 ((-3 (|:| |fst| (-446)) (|:| -4422 #1#)) (-1207) $)) (-15 -4056 ((-661 (-1207)) (-1207) $)) (-15 -4055 ((-1211) (-1207) $)))) +((-4069 (((-661 (-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558))))))))) $) 66 T ELT)) (-4071 (((-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558)))))))) (-446) $) 47 T ELT)) (-4066 (($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-448))))) 17 T ELT)) (-4067 (((-1303) $) 73 T ELT)) (-4072 (((-661 (-1207)) $) 22 T ELT)) (-4068 (((-1133) $) 60 T ELT)) (-4073 (((-448) (-1207) $) 27 T ELT)) (-4070 (((-661 (-1207)) $) 30 T ELT)) (-4075 (($) 19 T ELT)) (-4074 (((-448) (-661 (-1207)) (-448) $) 25 T ELT) (((-448) (-1207) (-448) $) 24 T ELT)) (-4458 (((-886) $) 9 T ELT) (((-1219 (-1207) (-448)) $) 13 T ELT))) +(((-1211) (-13 (-630 (-886)) (-10 -8 (-15 -4458 ((-1219 (-1207) (-448)) $)) (-15 -4075 ($)) (-15 -4074 ((-448) (-661 (-1207)) (-448) $)) (-15 -4074 ((-448) (-1207) (-448) $)) (-15 -4073 ((-448) (-1207) $)) (-15 -4072 ((-661 (-1207)) $)) (-15 -4071 ((-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558)))))))) (-446) $)) (-15 -4070 ((-661 (-1207)) $)) (-15 -4069 ((-661 (-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558))))))))) $)) (-15 -4068 ((-1133) $)) (-15 -4067 ((-1303) $)) (-15 -4066 ($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-448))))))))) (T -1211)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-448))) (-5 *1 (-1211)))) (-4075 (*1 *1) (-5 *1 (-1211))) (-4074 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1207))) (-5 *1 (-1211)))) (-4074 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1211)))) (-4073 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-448)) (-5 *1 (-1211)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1211)))) (-4071 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558))))))))) (-5 *1 (-1211)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1211)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558)))))))))) (-5 *1 (-1211)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1211)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-448))))) (-5 *1 (-1211))))) +(-13 (-630 (-886)) (-10 -8 (-15 -4458 ((-1219 (-1207) (-448)) $)) (-15 -4075 ($)) (-15 -4074 ((-448) (-661 (-1207)) (-448) $)) (-15 -4074 ((-448) (-1207) (-448) $)) (-15 -4073 ((-448) (-1207) $)) (-15 -4072 ((-661 (-1207)) $)) (-15 -4071 ((-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558)))))))) (-446) $)) (-15 -4070 ((-661 (-1207)) $)) (-15 -4069 ((-661 (-661 (-3 (|:| -4052 (-1207)) (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558))))))))) $)) (-15 -4068 ((-1133) $)) (-15 -4067 ((-1303) $)) (-15 -4066 ($ (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-448)))))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3657 (((-3 (-558) #1="failed") $) 29 T ELT) (((-3 (-229) #1#) $) 35 T ELT) (((-3 (-518) #1#) $) 43 T ELT) (((-3 (-1189) #1#) $) 47 T ELT)) (-3656 (((-558) $) 30 T ELT) (((-229) $) 36 T ELT) (((-518) $) 40 T ELT) (((-1189) $) 48 T ELT)) (-4080 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4079 (((-3 (-558) (-229) (-518) (-1189) $) $) 56 T ELT)) (-4078 (((-661 $) $) 58 T ELT)) (-4484 (((-1133) $) 24 T ELT) (($ (-1133)) 25 T ELT)) (-4077 (((-114) $) 57 T ELT)) (-4458 (((-886) $) 23 T ELT) (($ (-558)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-518)) 38 T ELT) (($ (-1189)) 44 T ELT) (((-547) $) 60 T ELT) (((-558) $) 31 T ELT) (((-229) $) 37 T ELT) (((-518) $) 41 T ELT) (((-1189) $) 49 T ELT)) (-4076 (((-114) $ (|[\|\|]| (-558))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-518))) 19 T ELT) (((-114) $ (|[\|\|]| (-1189))) 16 T ELT)) (-4081 (($ (-518) (-661 $)) 51 T ELT) (($ $ (-661 $)) 52 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4082 (((-558) $) 27 T ELT) (((-229) $) 33 T ELT) (((-518) $) 39 T ELT) (((-1189) $) 45 T ELT)) (-3536 (((-114) $ $) 7 T ELT))) +(((-1212) (-13 (-1293) (-1131) (-1068 (-558)) (-1068 (-229)) (-1068 (-518)) (-1068 (-1189)) (-630 (-547)) (-10 -8 (-15 -4484 ((-1133) $)) (-15 -4484 ($ (-1133))) (-15 -4458 ((-558) $)) (-15 -4082 ((-558) $)) (-15 -4458 ((-229) $)) (-15 -4082 ((-229) $)) (-15 -4458 ((-518) $)) (-15 -4082 ((-518) $)) (-15 -4458 ((-1189) $)) (-15 -4082 ((-1189) $)) (-15 -4081 ($ (-518) (-661 $))) (-15 -4081 ($ $ (-661 $))) (-15 -4080 ((-114) $)) (-15 -4079 ((-3 (-558) (-229) (-518) (-1189) $) $)) (-15 -4078 ((-661 $) $)) (-15 -4077 ((-114) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-558)))) (-15 -4076 ((-114) $ (|[\|\|]| (-229)))) (-15 -4076 ((-114) $ (|[\|\|]| (-518)))) (-15 -4076 ((-114) $ (|[\|\|]| (-1189))))))) (T -1212)) +((-4484 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1212)))) (-4484 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-1212)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1212)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1212)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1212)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1212)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-1212))) (-5 *1 (-1212)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1212)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1189) (-1212))) (-5 *1 (-1212)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1212)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-4076 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212))))) +(-13 (-1293) (-1131) (-1068 (-558)) (-1068 (-229)) (-1068 (-518)) (-1068 (-1189)) (-630 (-547)) (-10 -8 (-15 -4484 ((-1133) $)) (-15 -4484 ($ (-1133))) (-15 -4458 ((-558) $)) (-15 -4082 ((-558) $)) (-15 -4458 ((-229) $)) (-15 -4082 ((-229) $)) (-15 -4458 ((-518) $)) (-15 -4082 ((-518) $)) (-15 -4458 ((-1189) $)) (-15 -4082 ((-1189) $)) (-15 -4081 ($ (-518) (-661 $))) (-15 -4081 ($ $ (-661 $))) (-15 -4080 ((-114) $)) (-15 -4079 ((-3 (-558) (-229) (-518) (-1189) $) $)) (-15 -4078 ((-661 $) $)) (-15 -4077 ((-114) $)) (-15 -4076 ((-114) $ (|[\|\|]| (-558)))) (-15 -4076 ((-114) $ (|[\|\|]| (-229)))) (-15 -4076 ((-114) $ (|[\|\|]| (-518)))) (-15 -4076 ((-114) $ (|[\|\|]| (-1189)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3620 (((-791)) 21 T ELT)) (-4236 (($) 10 T CONST)) (-3477 (($) 25 T ELT)) (-3012 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3340 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2230 (((-947) $) 23 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) 22 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT))) +(((-1213 |#1|) (-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) (-947)) (T -1213)) +((-4236 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-947))))) +(-13 (-866) (-10 -8 (-15 -4236 ($) -4464))) ((|Integer|) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) 24 T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) 18 T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-3344 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-4241 (($ $ $) 20 T ELT)) (-4242 (($ $ $) 19 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) 22 T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) 21 T ELT))) -(((-1216 |#1|) (-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) (-949)) (T -1216)) -((-4242 (*1 *1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949)))) (-4241 (*1 *1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949)))) (-4240 (*1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949))))) -(-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) 24 T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) 18 T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-3340 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-4237 (($ $ $) 20 T ELT)) (-4238 (($ $ $) 19 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) 22 T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) 21 T ELT))) +(((-1214 |#1|) (-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) (-947)) (T -1214)) +((-4238 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947)))) (-4237 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947)))) (-4236 (*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947))))) +(-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 9 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 7 T ELT))) -(((-1217) (-1133)) (T -1217)) -NIL -(-1133) -((-4088 (((-663 (-663 (-976 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209))) 69 T ELT)) (-4087 (((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|)))) 81 T ELT) (((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|))) 77 T ELT) (((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209)) 82 T ELT) (((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209)) 76 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|))))) 107 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|)))) 106 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209))) 108 T ELT) (((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|))) (-663 (-1209))) 105 T ELT))) -(((-1218 |#1|) (-10 -7 (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|))))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|)))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|))))) (-15 -4088 ((-663 (-663 (-976 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209))))) (-571)) (T -1218)) -((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-976 *5)))) (-5 *1 (-1218 *5)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *4))))) (-5 *1 (-1218 *4)) (-5 *3 (-305 (-421 (-976 *4)))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *4))))) (-5 *1 (-1218 *4)) (-5 *3 (-421 (-976 *4))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *5))))) (-5 *1 (-1218 *5)) (-5 *3 (-305 (-421 (-976 *5)))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *5))))) (-5 *1 (-1218 *5)) (-5 *3 (-421 (-976 *5))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-1218 *4)) (-5 *3 (-663 (-305 (-421 (-976 *4))))))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-976 *4)))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-1218 *4)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1209))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-1218 *5)) (-5 *3 (-663 (-305 (-421 (-976 *5))))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-1218 *5))))) -(-10 -7 (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|))) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|)))) (-663 (-1209)))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-421 (-976 |#1|))))) (-15 -4087 ((-663 (-663 (-305 (-421 (-976 |#1|))))) (-663 (-305 (-421 (-976 |#1|)))))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|)) (-1209))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|))) (-1209))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-421 (-976 |#1|)))) (-15 -4087 ((-663 (-305 (-421 (-976 |#1|)))) (-305 (-421 (-976 |#1|))))) (-15 -4088 ((-663 (-663 (-976 |#1|))) (-663 (-421 (-976 |#1|))) (-663 (-1209))))) -((-4093 (((-1191)) 7 T ELT)) (-4090 (((-1191)) 11 T CONST)) (-4089 (((-1305) (-1191)) 13 T ELT)) (-4092 (((-1191)) 8 T CONST)) (-4091 (((-132)) 10 T CONST))) -(((-1219) (-13 (-1249) (-10 -7 (-15 -4093 ((-1191))) (-15 -4092 ((-1191)) -4468) (-15 -4091 ((-132)) -4468) (-15 -4090 ((-1191)) -4468) (-15 -4089 ((-1305) (-1191)))))) (T -1219)) -((-4093 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219)))) (-4092 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219)))) (-4091 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1219)))) (-4090 (*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1219))))) -(-13 (-1249) (-10 -7 (-15 -4093 ((-1191))) (-15 -4092 ((-1191)) -4468) (-15 -4091 ((-132)) -4468) (-15 -4090 ((-1191)) -4468) (-15 -4089 ((-1305) (-1191))))) -((-4097 (((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 56 T ELT)) (-4100 (((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|))) 38 T ELT)) (-4101 (((-1222 (-663 |#1|)) (-663 |#1|)) 49 T ELT)) (-4103 (((-663 (-663 |#1|)) (-663 |#1|)) 45 T ELT)) (-4106 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))) 53 T ELT)) (-4105 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|)))) 52 T ELT)) (-4102 (((-663 (-663 |#1|)) (-663 (-663 |#1|))) 43 T ELT)) (-4104 (((-663 |#1|) (-663 |#1|)) 46 T ELT)) (-4096 (((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 32 T ELT)) (-4095 (((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 29 T ELT)) (-4094 (((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|))) 24 T ELT)) (-4098 (((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 58 T ELT)) (-4099 (((-663 (-663 |#1|)) (-1222 (-663 |#1|))) 60 T ELT))) -(((-1220 |#1|) (-10 -7 (-15 -4094 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -4095 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -4096 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -4097 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -4098 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -4099 ((-663 (-663 |#1|)) (-1222 (-663 |#1|)))) (-15 -4100 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -4101 ((-1222 (-663 |#1|)) (-663 |#1|))) (-15 -4102 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -4103 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -4104 ((-663 |#1|) (-663 |#1|))) (-15 -4105 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -4106 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))))) (-872)) (T -1220)) -((-4106 (*1 *2 *3) (-12 (-4 *4 (-872)) (-5 *2 (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4)))) (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4)))))) (-5 *1 (-1220 *4)) (-5 *3 (-663 (-663 (-663 *4)))))) (-4105 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-872)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5) (|:| |f4| (-663 *5)))) (-5 *1 (-1220 *6)) (-5 *4 (-663 *5)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-1220 *3)))) (-4103 (*1 *2 *3) (-12 (-4 *4 (-872)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1220 *4)) (-5 *3 (-663 *4)))) (-4102 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-872)) (-5 *1 (-1220 *3)))) (-4101 (*1 *2 *3) (-12 (-4 *4 (-872)) (-5 *2 (-1222 (-663 *4))) (-5 *1 (-1220 *4)) (-5 *3 (-663 *4)))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-872)) (-5 *2 (-663 (-663 (-663 *4)))) (-5 *1 (-1220 *4)) (-5 *3 (-663 (-663 *4))))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-1222 (-663 *4))) (-4 *4 (-872)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1220 *4)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1220 *4)) (-4 *4 (-872)))) (-4097 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-4 *4 (-872)) (-5 *1 (-1220 *4)))) (-4096 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-872)) (-5 *1 (-1220 *4)))) (-4095 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-663 *5)) (-4 *5 (-872)) (-5 *1 (-1220 *5)))) (-4094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-872)) (-5 *4 (-663 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4)))) (-5 *1 (-1220 *6)) (-5 *5 (-663 *4))))) -(-10 -7 (-15 -4094 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -4095 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -4096 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -4097 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -4098 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -4099 ((-663 (-663 |#1|)) (-1222 (-663 |#1|)))) (-15 -4100 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -4101 ((-1222 (-663 |#1|)) (-663 |#1|))) (-15 -4102 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -4103 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -4104 ((-663 |#1|) (-663 |#1|))) (-15 -4105 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -4106 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))))) -((-3053 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4113 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2427 (((-1305) $ |#1| |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2430 ((|#1| $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-2898 (((-663 |#1|) $) NIL T ELT)) (-2461 (((-114) |#1| $) NIL T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2432 (((-663 |#1|) $) NIL T ELT)) (-2433 (((-114) |#1| $) NIL T ELT)) (-3747 (((-1152) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ELT)) (-4317 ((|#2| $) NIL (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL T ELT)) (-2428 (($ $ |#2|) NIL (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1610 (($) NIL T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) NIL (-12 (|has| $ (-6 -4511)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-4462 (((-888) $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-632 (-888)))) ELT)) (-1389 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) NIL T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) NIL (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) NIL (-4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1221 |#1| |#2|) (-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) (-1133) (-1133)) (T -1221)) -NIL -(-13 (-1226 |#1| |#2|) (-10 -7 (-6 -4511))) -((-4107 (($ (-663 (-663 |#1|))) 10 T ELT)) (-4108 (((-663 (-663 |#1|)) $) 11 T ELT)) (-4462 (((-888) $) 33 T ELT))) -(((-1222 |#1|) (-10 -8 (-15 -4107 ($ (-663 (-663 |#1|)))) (-15 -4108 ((-663 (-663 |#1|)) $)) (-15 -4462 ((-888) $))) (-1133)) (T -1222)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1222 *3)) (-4 *3 (-1133)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1133)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-1222 *3))))) -(-10 -8 (-15 -4107 ($ (-663 (-663 |#1|)))) (-15 -4108 ((-663 (-663 |#1|)) $)) (-15 -4462 ((-888) $))) -((-3053 (((-114) $ $) NIL T ELT)) (-4109 (($ |#1| (-55)) 10 T ELT)) (-4056 ((|#1| $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3118 (((-114) $ |#1|) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3003 (((-55) $) 14 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1223 |#1|) (-13 (-860 |#1|) (-10 -8 (-15 -4109 ($ |#1| (-55))))) (-1133)) (T -1223)) -((-4109 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1223 *2)) (-4 *2 (-1133))))) -(-13 (-860 |#1|) (-10 -8 (-15 -4109 ($ |#1| (-55))))) -((-4110 ((|#1| (-663 |#1|)) 46 T ELT)) (-4112 ((|#1| |#1| (-560)) 24 T ELT)) (-4111 (((-1203 |#1|) |#1| (-949)) 20 T ELT))) -(((-1224 |#1|) (-10 -7 (-15 -4110 (|#1| (-663 |#1|))) (-15 -4111 ((-1203 |#1|) |#1| (-949))) (-15 -4112 (|#1| |#1| (-560)))) (-376)) (T -1224)) -((-4112 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1224 *2)) (-4 *2 (-376)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1203 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-376)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1224 *2)) (-4 *2 (-376))))) -(-10 -7 (-15 -4110 (|#1| (-663 |#1|))) (-15 -4111 ((-1203 |#1|) |#1| (-949))) (-15 -4112 (|#1| |#1| (-560)))) -((-4113 (($) 10 T ELT) (($ (-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)))) 14 T ELT)) (-3911 (($ (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) 39 T ELT) (((-663 |#3|) $) 41 T ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1400 (((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) 60 T ELT)) (-4123 (($ (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) 16 T ELT)) (-2432 (((-663 |#2|) $) 19 T ELT)) (-2433 (((-114) |#2| $) 65 T ELT)) (-1480 (((-3 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) "failed") (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) 64 T ELT)) (-1401 (((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) 69 T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-2434 (((-663 |#3|) $) 43 T ELT)) (-4316 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) NIL T ELT) (((-793) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) $) NIL T ELT) (((-793) |#3| $) NIL T ELT) (((-793) (-1 (-114) |#3|) $) 79 T ELT)) (-4462 (((-888) $) 27 T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-3540 (((-114) $ $) 51 T ELT))) -(((-1225 |#1| |#2| |#3|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4474 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4113 (|#1| (-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))))) (-15 -4113 (|#1|)) (-15 -4474 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2174 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -3376 ((-663 |#3|) |#1|)) (-15 -2171 ((-793) |#3| |#1|)) (-15 -4316 (|#3| |#1| |#2| |#3|)) (-15 -4316 (|#3| |#1| |#2|)) (-15 -2434 ((-663 |#3|) |#1|)) (-15 -2433 ((-114) |#2| |#1|)) (-15 -2432 ((-663 |#2|) |#1|)) (-15 -3911 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3911 (|#1| (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -3911 (|#1| (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -1480 ((-3 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) "failed") (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -1400 ((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -4123 (|#1| (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -1401 ((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -2171 ((-793) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -3376 ((-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2171 ((-793) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2172 ((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2173 ((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2174 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -4474 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|))) (-1226 |#2| |#3|) (-1133) (-1133)) (T -1225)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4462 ((-888) |#1|)) (-15 -4474 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4113 (|#1| (-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))))) (-15 -4113 (|#1|)) (-15 -4474 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2174 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2173 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2172 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2171 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -3376 ((-663 |#3|) |#1|)) (-15 -2171 ((-793) |#3| |#1|)) (-15 -4316 (|#3| |#1| |#2| |#3|)) (-15 -4316 (|#3| |#1| |#2|)) (-15 -2434 ((-663 |#3|) |#1|)) (-15 -2433 ((-114) |#2| |#1|)) (-15 -2432 ((-663 |#2|) |#1|)) (-15 -3911 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3911 (|#1| (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -3911 (|#1| (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -1480 ((-3 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) "failed") (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -1400 ((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -4123 (|#1| (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -1401 ((-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -2171 ((-793) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) |#1|)) (-15 -3376 ((-663 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2171 ((-793) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2172 ((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2173 ((-114) (-1 (-114) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -2174 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|)) (-15 -4474 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2300 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2300 |#3|))) |#1|))) -((-3053 (((-114) $ $) 19 (-4043 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-4113 (($) 77 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 76 T ELT)) (-2427 (((-1305) $ |#1| |#1|) 104 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1725 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 49 (|has| $ (-6 -4511)) ELT)) (-4226 (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 59 (|has| $ (-6 -4511)) ELT)) (-2460 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-4240 (($) 7 T CONST)) (-1479 (($ $) 62 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT)) (-3911 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 51 (|has| $ (-6 -4511)) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 50 (|has| $ (-6 -4511)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3912 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 58 (|has| $ (-6 -4511)) ELT)) (-4358 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 60 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 57 (|has| $ (-6 -4511)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 56 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#2| $ |#1|) 93 T ELT)) (-3376 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 30 (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) 84 (|has| $ (-6 -4511)) ELT)) (-2429 ((|#1| $) 101 (|has| |#1| (-872)) ELT)) (-3093 (((-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 29 (|has| $ (-6 -4511)) ELT) (((-663 |#2|) $) 85 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 ((|#1| $) 100 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 34 (|has| $ (-6 -4512)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3746 (((-1191) $) 22 (-4043 (|has| |#2| (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-2898 (((-663 |#1|) $) 67 T ELT)) (-2461 (((-114) |#1| $) 68 T ELT)) (-1400 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 43 T ELT)) (-4123 (($ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 44 T ELT)) (-2432 (((-663 |#1|) $) 98 T ELT)) (-2433 (((-114) |#1| $) 97 T ELT)) (-3747 (((-1152) $) 21 (-4043 (|has| |#2| (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT)) (-4317 ((|#2| $) 102 (|has| |#1| (-872)) ELT)) (-1480 (((-3 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) "failed") (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 55 T ELT)) (-2428 (($ $ |#2|) 103 (|has| $ (-6 -4512)) ELT)) (-1401 (((-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 45 T ELT)) (-2172 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 32 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 23 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT) (($ $ (-663 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4511)) (|has| |#2| (-1133))) ELT)) (-2434 (((-663 |#2|) $) 96 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1610 (($) 53 T ELT) (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 52 T ELT)) (-2171 (((-793) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) |#2| $) 86 (-12 (|has| |#2| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 63 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ELT)) (-4036 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 54 T ELT)) (-4462 (((-888) $) 17 (-4043 (|has| |#2| (-632 (-888))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888)))) ELT)) (-1389 (((-114) $ $) 20 (-4043 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-1402 (($ (-663 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) 46 T ELT)) (-2173 (((-114) (-1 (-114) (-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) $) 33 (|has| $ (-6 -4511)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (-4043 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102))) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1226 |#1| |#2|) (-142) (-1133) (-1133)) (T -1226)) -((-4304 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) (-4113 (*1 *1) (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -4376 *3) (|:| -2300 *4)))) (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *1 (-1226 *3 *4)))) (-4474 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) -(-13 (-629 |t#1| |t#2|) (-618 |t#1| |t#2|) (-10 -8 (-15 -4304 (|t#2| $ |t#1| |t#2|)) (-15 -4113 ($)) (-15 -4113 ($ (-663 (-2 (|:| -4376 |t#1|) (|:| -2300 |t#2|))))) (-15 -4474 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4376 |#1|) (|:| -2300 |#2|))) . T) ((-102) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-102)) (|has| |#2| (-1133)) (|has| |#2| (-102))) ((-632 (-888)) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-632 (-888))) (|has| |#2| (-1133)) (|has| |#2| (-632 (-888)))) ((-153 #1#) . T) ((-633 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-633 (-549))) ((-233 #1#) . T) ((-242 #1#) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-503 #1#) . T) ((-503 |#2|) . T) ((-618 |#1| |#2|) . T) ((-528 #1# #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-321 (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1133))) ((-629 |#1| |#2|) . T) ((-1133) -4043 (|has| (-2 (|:| -4376 |#1|) (|:| -2300 |#2|)) (-1133)) (|has| |#2| (-1133))) ((-1249) . T)) -((-4119 (((-114)) 29 T ELT)) (-4116 (((-1305) (-1191)) 31 T ELT)) (-4120 (((-114)) 41 T ELT)) (-4117 (((-1305)) 39 T ELT)) (-4115 (((-1305) (-1191) (-1191)) 30 T ELT)) (-4121 (((-114)) 42 T ELT)) (-4123 (((-1305) |#1| |#2|) 53 T ELT)) (-4114 (((-1305)) 26 T ELT)) (-4122 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4118 (((-1305)) 40 T ELT))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -4114 ((-1305))) (-15 -4115 ((-1305) (-1191) (-1191))) (-15 -4116 ((-1305) (-1191))) (-15 -4117 ((-1305))) (-15 -4118 ((-1305))) (-15 -4119 ((-114))) (-15 -4120 ((-114))) (-15 -4121 ((-114))) (-15 -4122 ((-3 |#2| "failed") |#1|)) (-15 -4123 ((-1305) |#1| |#2|))) (-1133) (-1133)) (T -1227)) -((-4123 (*1 *2 *3 *4) (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4122 (*1 *2 *3) (|partial| -12 (-4 *2 (-1133)) (-5 *1 (-1227 *3 *2)) (-4 *3 (-1133)))) (-4121 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4120 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4119 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4118 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4117 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1227 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)))) (-4115 (*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1227 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)))) (-4114 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) -(-10 -7 (-15 -4114 ((-1305))) (-15 -4115 ((-1305) (-1191) (-1191))) (-15 -4116 ((-1305) (-1191))) (-15 -4117 ((-1305))) (-15 -4118 ((-1305))) (-15 -4119 ((-114))) (-15 -4120 ((-114))) (-15 -4121 ((-114))) (-15 -4122 ((-3 |#2| "failed") |#1|)) (-15 -4123 ((-1305) |#1| |#2|))) -((-4125 (((-1191) (-1191)) 22 T ELT)) (-4124 (((-51) (-1191)) 25 T ELT))) -(((-1228) (-10 -7 (-15 -4124 ((-51) (-1191))) (-15 -4125 ((-1191) (-1191))))) (T -1228)) -((-4125 (*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1228)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-1228))))) -(-10 -7 (-15 -4124 ((-51) (-1191))) (-15 -4125 ((-1191) (-1191)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4131 (((-663 (-1191)) $) 39 T ELT)) (-4127 (((-663 (-1191)) $ (-663 (-1191))) 42 T ELT)) (-4126 (((-663 (-1191)) $ (-663 (-1191))) 41 T ELT)) (-4128 (((-663 (-1191)) $ (-663 (-1191))) 43 T ELT)) (-4129 (((-663 (-1191)) $) 38 T ELT)) (-4130 (($) 28 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4132 (((-663 (-1191)) $) 40 T ELT)) (-4133 (((-1305) $ (-560)) 35 T ELT) (((-1305) $) 36 T ELT)) (-4488 (($ (-888) (-560)) 33 T ELT) (($ (-888) (-560) (-888)) NIL T ELT)) (-4462 (((-888) $) 49 T ELT) (($ (-888)) 32 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1229) (-13 (-1133) (-635 (-888)) (-10 -8 (-15 -4488 ($ (-888) (-560))) (-15 -4488 ($ (-888) (-560) (-888))) (-15 -4133 ((-1305) $ (-560))) (-15 -4133 ((-1305) $)) (-15 -4132 ((-663 (-1191)) $)) (-15 -4131 ((-663 (-1191)) $)) (-15 -4130 ($)) (-15 -4129 ((-663 (-1191)) $)) (-15 -4128 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4127 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4126 ((-663 (-1191)) $ (-663 (-1191))))))) (T -1229)) -((-4488 (*1 *1 *2 *3) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-1229)))) (-4488 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-1229)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1229)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1229)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229)))) (-4130 (*1 *1) (-5 *1 (-1229))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229)))) (-4127 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229)))) (-4126 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(-13 (-1133) (-635 (-888)) (-10 -8 (-15 -4488 ($ (-888) (-560))) (-15 -4488 ($ (-888) (-560) (-888))) (-15 -4133 ((-1305) $ (-560))) (-15 -4133 ((-1305) $)) (-15 -4132 ((-663 (-1191)) $)) (-15 -4131 ((-663 (-1191)) $)) (-15 -4130 ($)) (-15 -4129 ((-663 (-1191)) $)) (-15 -4128 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4127 ((-663 (-1191)) $ (-663 (-1191)))) (-15 -4126 ((-663 (-1191)) $ (-663 (-1191)))))) -((-4462 (((-1229) |#1|) 11 T ELT))) -(((-1230 |#1|) (-10 -7 (-15 -4462 ((-1229) |#1|))) (-1133)) (T -1230)) -((-4462 (*1 *2 *3) (-12 (-5 *2 (-1229)) (-5 *1 (-1230 *3)) (-4 *3 (-1133))))) -(-10 -7 (-15 -4462 ((-1229) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-4138 (((-1191) $ (-1191)) 21 T ELT) (((-1191) $) 20 T ELT)) (-1912 (((-1191) $ (-1191)) 19 T ELT)) (-1916 (($ $ (-1191)) NIL T ELT)) (-4136 (((-3 (-1191) "failed") $) 11 T ELT)) (-4137 (((-1191) $) 8 T ELT)) (-4135 (((-3 (-1191) "failed") $) 12 T ELT)) (-1913 (((-1191) $) 9 T ELT)) (-1917 (($ (-402)) NIL T ELT) (($ (-402) (-1191)) NIL T ELT)) (-4056 (((-402) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-1914 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4134 (((-114) $) 25 T ELT)) (-4462 (((-888) $) NIL T ELT)) (-1915 (($ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1231) (-13 (-378 (-402) (-1191)) (-10 -8 (-15 -4138 ((-1191) $ (-1191))) (-15 -4138 ((-1191) $)) (-15 -4137 ((-1191) $)) (-15 -4136 ((-3 (-1191) "failed") $)) (-15 -4135 ((-3 (-1191) "failed") $)) (-15 -4134 ((-114) $))))) (T -1231)) -((-4138 (*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1231)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1231)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1231)))) (-4136 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191)) (-5 *1 (-1231)))) (-4135 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191)) (-5 *1 (-1231)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1231))))) -(-13 (-378 (-402) (-1191)) (-10 -8 (-15 -4138 ((-1191) $ (-1191))) (-15 -4138 ((-1191) $)) (-15 -4137 ((-1191) $)) (-15 -4136 ((-3 (-1191) "failed") $)) (-15 -4135 ((-3 (-1191) "failed") $)) (-15 -4134 ((-114) $)))) -((-4139 (((-3 (-560) "failed") |#1|) 19 T ELT)) (-4140 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-4141 (((-560) (-1191)) 33 T ELT))) -(((-1232 |#1|) (-10 -7 (-15 -4139 ((-3 (-560) "failed") |#1|)) (-15 -4140 ((-3 (-560) "failed") |#1|)) (-15 -4141 ((-560) (-1191)))) (-1081)) (T -1232)) -((-4141 (*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-560)) (-5 *1 (-1232 *4)) (-4 *4 (-1081)))) (-4140 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1232 *3)) (-4 *3 (-1081)))) (-4139 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1232 *3)) (-4 *3 (-1081))))) -(-10 -7 (-15 -4139 ((-3 (-560) "failed") |#1|)) (-15 -4140 ((-3 (-560) "failed") |#1|)) (-15 -4141 ((-560) (-1191)))) -((-4142 (((-1165 (-229))) 9 T ELT))) -(((-1233) (-10 -7 (-15 -4142 ((-1165 (-229)))))) (T -1233)) -((-4142 (*1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1233))))) -(-10 -7 (-15 -4142 ((-1165 (-229))))) -((-4143 (($) 12 T ELT)) (-4004 (($ $) 36 T ELT)) (-4002 (($ $) 34 T ELT)) (-3990 (($ $) 26 T ELT)) (-4006 (($ $) 18 T ELT)) (-4007 (($ $) 16 T ELT)) (-4005 (($ $) 20 T ELT)) (-3993 (($ $) 31 T ELT)) (-4003 (($ $) 35 T ELT)) (-3991 (($ $) 30 T ELT))) -(((-1234 |#1|) (-10 -8 (-15 -4143 (|#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3991 (|#1| |#1|))) (-1235)) (T -1234)) -NIL -(-10 -8 (-15 -4143 (|#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3991 (|#1| |#1|))) -((-3998 (($ $) 26 T ELT)) (-4155 (($ $) 11 T ELT)) (-3996 (($ $) 27 T ELT)) (-4154 (($ $) 10 T ELT)) (-4000 (($ $) 28 T ELT)) (-4153 (($ $) 9 T ELT)) (-4143 (($) 16 T ELT)) (-4458 (($ $) 19 T ELT)) (-4459 (($ $) 18 T ELT)) (-4001 (($ $) 29 T ELT)) (-4152 (($ $) 8 T ELT)) (-3999 (($ $) 30 T ELT)) (-4151 (($ $) 7 T ELT)) (-3997 (($ $) 31 T ELT)) (-4150 (($ $) 6 T ELT)) (-4004 (($ $) 20 T ELT)) (-3992 (($ $) 32 T ELT)) (-4002 (($ $) 21 T ELT)) (-3990 (($ $) 33 T ELT)) (-4006 (($ $) 22 T ELT)) (-3994 (($ $) 34 T ELT)) (-4007 (($ $) 23 T ELT)) (-3995 (($ $) 35 T ELT)) (-4005 (($ $) 24 T ELT)) (-3993 (($ $) 36 T ELT)) (-4003 (($ $) 25 T ELT)) (-3991 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1235) (-142)) (T -1235)) -((-4143 (*1 *1) (-4 *1 (-1235)))) -(-13 (-1238) (-95) (-507) (-35) (-296) (-10 -8 (-15 -4143 ($)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-1238) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 19 T ELT)) (-4148 (($ |#1| (-663 $)) 28 T ELT) (($ (-663 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3512 ((|#1| $ |#1|) 14 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 13 (|has| $ (-6 -4512)) ELT)) (-4240 (($) NIL T CONST)) (-3376 (((-663 |#1|) $) 70 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 59 T ELT)) (-3514 (((-114) $ $) 50 (|has| |#1| (-1133)) ELT)) (-3093 (((-663 |#1|) $) 71 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 69 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3517 (((-663 |#1|) $) 55 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 67 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 102 T ELT)) (-3909 (((-114) $) 9 T ELT)) (-4079 (($) 10 T ELT)) (-4316 ((|#1| $ #1#) NIL T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4144 (((-663 $) $) 84 T ELT)) (-4145 (((-114) $ $) 105 T ELT)) (-4146 (((-663 $) $) 100 T ELT)) (-4147 (($ $) 101 T ELT)) (-4149 (((-114) $) 77 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 17 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3906 (($ $) 83 T ELT)) (-4462 (((-888) $) 86 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 12 T ELT)) (-3515 (((-114) $ $) 39 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 66 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 81 (|has| $ (-6 -4511)) ELT))) -(((-1236 |#1|) (-13 (-1042 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -4148 ($ |#1| (-663 $))) (-15 -4148 ($ (-663 |#1|))) (-15 -4148 ($ |#1|)) (-15 -4149 ((-114) $)) (-15 -4147 ($ $)) (-15 -4146 ((-663 $) $)) (-15 -4145 ((-114) $ $)) (-15 -4144 ((-663 $) $)))) (-1133)) (T -1236)) -((-4149 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1236 *3)) (-4 *3 (-1133)))) (-4148 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1236 *2))) (-5 *1 (-1236 *2)) (-4 *2 (-1133)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-1236 *3)))) (-4148 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1133)))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1133)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-663 (-1236 *3))) (-5 *1 (-1236 *3)) (-4 *3 (-1133)))) (-4145 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1236 *3)) (-4 *3 (-1133)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-663 (-1236 *3))) (-5 *1 (-1236 *3)) (-4 *3 (-1133))))) -(-13 (-1042 |#1|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -4148 ($ |#1| (-663 $))) (-15 -4148 ($ (-663 |#1|))) (-15 -4148 ($ |#1|)) (-15 -4149 ((-114) $)) (-15 -4147 ($ $)) (-15 -4146 ((-663 $) $)) (-15 -4145 ((-114) $ $)) (-15 -4144 ((-663 $) $)))) -((-4155 (($ $) 15 T ELT)) (-4153 (($ $) 12 T ELT)) (-4152 (($ $) 10 T ELT)) (-4151 (($ $) 17 T ELT))) -(((-1237 |#1|) (-10 -8 (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1|))) (-1238)) (T -1237)) -NIL -(-10 -8 (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1|))) -((-4155 (($ $) 11 T ELT)) (-4154 (($ $) 10 T ELT)) (-4153 (($ $) 9 T ELT)) (-4152 (($ $) 8 T ELT)) (-4151 (($ $) 7 T ELT)) (-4150 (($ $) 6 T ELT))) -(((-1238) (-142)) (T -1238)) -((-4155 (*1 *1 *1) (-4 *1 (-1238))) (-4154 (*1 *1 *1) (-4 *1 (-1238))) (-4153 (*1 *1 *1) (-4 *1 (-1238))) (-4152 (*1 *1 *1) (-4 *1 (-1238))) (-4151 (*1 *1 *1) (-4 *1 (-1238))) (-4150 (*1 *1 *1) (-4 *1 (-1238)))) -(-13 (-10 -8 (-15 -4150 ($ $)) (-15 -4151 ($ $)) (-15 -4152 ($ $)) (-15 -4153 ($ $)) (-15 -4154 ($ $)) (-15 -4155 ($ $)))) -((-4158 ((|#2| |#2|) 95 T ELT)) (-4161 (((-114) |#2|) 29 T ELT)) (-4159 ((|#2| |#2|) 33 T ELT)) (-4160 ((|#2| |#2|) 35 T ELT)) (-4156 ((|#2| |#2| (-1209)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-4162 (((-171 |#2|) |#2|) 31 T ELT)) (-4157 ((|#2| |#2| (-1209)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1239 |#1| |#2|) (-10 -7 (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1209))) (-15 -4157 (|#2| |#2|)) (-15 -4157 (|#2| |#2| (-1209))) (-15 -4158 (|#2| |#2|)) (-15 -4159 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4161 ((-114) |#2|)) (-15 -4162 ((-171 |#2|) |#2|))) (-13 (-466) (-1070 (-560)) (-660 (-560))) (-13 (-27) (-1235) (-435 |#1|))) (T -1239)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-171 *3)) (-5 *1 (-1239 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1239 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3))))) (-4159 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3))))) (-4158 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3))))) (-4157 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-4157 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3))))) (-4156 (*1 *2 *2 *3) (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *3)))))) -(-10 -7 (-15 -4156 (|#2| |#2|)) (-15 -4156 (|#2| |#2| (-1209))) (-15 -4157 (|#2| |#2|)) (-15 -4157 (|#2| |#2| (-1209))) (-15 -4158 (|#2| |#2|)) (-15 -4159 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (-15 -4161 ((-114) |#2|)) (-15 -4162 ((-171 |#2|) |#2|))) -((-4163 ((|#4| |#4| |#1|) 31 T ELT)) (-4164 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1240 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4163 (|#4| |#4| |#1|)) (-15 -4164 (|#4| |#4| |#1|))) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1240)) -((-4164 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1240 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4163 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1240 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -4163 (|#4| |#4| |#1|)) (-15 -4164 (|#4| |#4| |#1|))) -((-4182 ((|#2| |#2|) 148 T ELT)) (-4184 ((|#2| |#2|) 145 T ELT)) (-4181 ((|#2| |#2|) 136 T ELT)) (-4183 ((|#2| |#2|) 133 T ELT)) (-4180 ((|#2| |#2|) 141 T ELT)) (-4179 ((|#2| |#2|) 129 T ELT)) (-4168 ((|#2| |#2|) 44 T ELT)) (-4167 ((|#2| |#2|) 105 T ELT)) (-4165 ((|#2| |#2|) 88 T ELT)) (-4178 ((|#2| |#2|) 143 T ELT)) (-4177 ((|#2| |#2|) 131 T ELT)) (-4190 ((|#2| |#2|) 153 T ELT)) (-4188 ((|#2| |#2|) 151 T ELT)) (-4189 ((|#2| |#2|) 152 T ELT)) (-4187 ((|#2| |#2|) 150 T ELT)) (-4166 ((|#2| |#2|) 163 T ELT)) (-4191 ((|#2| |#2|) 30 (-12 (|has| |#2| (-633 (-916 |#1|))) (|has| |#2| (-912 |#1|)) (|has| |#1| (-633 (-916 |#1|))) (|has| |#1| (-912 |#1|))) ELT)) (-4169 ((|#2| |#2|) 89 T ELT)) (-4170 ((|#2| |#2|) 154 T ELT)) (-4479 ((|#2| |#2|) 155 T ELT)) (-4176 ((|#2| |#2|) 142 T ELT)) (-4175 ((|#2| |#2|) 130 T ELT)) (-4174 ((|#2| |#2|) 149 T ELT)) (-4186 ((|#2| |#2|) 147 T ELT)) (-4173 ((|#2| |#2|) 137 T ELT)) (-4185 ((|#2| |#2|) 135 T ELT)) (-4172 ((|#2| |#2|) 139 T ELT)) (-4171 ((|#2| |#2|) 127 T ELT))) -(((-1241 |#1| |#2|) (-10 -7 (-15 -4479 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4189 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (IF (|has| |#1| (-912 |#1|)) (IF (|has| |#1| (-633 (-916 |#1|))) (IF (|has| |#2| (-633 (-916 |#1|))) (IF (|has| |#2| (-912 |#1|)) (-15 -4191 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-466) (-13 (-435 |#1|) (-1235))) (T -1241)) -((-4191 (*1 *2 *2) (-12 (-4 *3 (-633 (-916 *3))) (-4 *3 (-912 *3)) (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-633 (-916 *3))) (-4 *2 (-912 *3)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4189 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4187 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4180 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4178 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) (-4479 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) -(-10 -7 (-15 -4479 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4189 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (IF (|has| |#1| (-912 |#1|)) (IF (|has| |#1| (-633 (-916 |#1|))) (IF (|has| |#2| (-633 (-916 |#1|))) (IF (|has| |#2| (-912 |#1|)) (-15 -4191 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1209)) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4330 (((-976 |#1|) $ (-793)) 17 T ELT) (((-976 |#1|) $ (-793) (-793)) NIL T ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $ (-1209)) NIL T ELT) (((-793) $ (-1209) (-793)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ $ (-663 (-1209)) (-663 (-545 (-1209)))) NIL T ELT) (($ $ (-1209) (-545 (-1209))) NIL T ELT) (($ |#1| (-545 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4328 (($ $ (-1209)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4192 (($ (-1 $) (-1209) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4285 (($ $ (-793)) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (($ $ (-1209) $) NIL T ELT) (($ $ (-663 (-1209)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-4274 (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT)) (-4464 (((-545 (-1209)) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-1209)) NIL T ELT) (($ (-976 |#1|)) NIL T ELT)) (-4193 ((|#1| $ (-545 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (((-976 |#1|) $ (-793)) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3156 (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1242 |#1|) (-13 (-762 |#1| (-1209)) (-10 -8 (-15 -4193 ((-976 |#1|) $ (-793))) (-15 -4462 ($ (-1209))) (-15 -4462 ($ (-976 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $ (-1209) |#1|)) (-15 -4192 ($ (-1 $) (-1209) |#1|))) |%noBranch|))) (-1081)) (T -1242)) -((-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-976 *4)) (-5 *1 (-1242 *4)) (-4 *4 (-1081)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1242 *3)) (-4 *3 (-1081)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1081)) (-5 *1 (-1242 *3)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *1 (-1242 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)))) (-4192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1242 *4))) (-5 *3 (-1209)) (-5 *1 (-1242 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1081))))) -(-13 (-762 |#1| (-1209)) (-10 -8 (-15 -4193 ((-976 |#1|) $ (-793))) (-15 -4462 ($ (-1209))) (-15 -4462 ($ (-976 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $ (-1209) |#1|)) (-15 -4192 ($ (-1 $) (-1209) |#1|))) |%noBranch|))) -((-4209 (((-114) |#5| $) 68 T ELT) (((-114) $) 109 T ELT)) (-4204 ((|#5| |#5| $) 83 T ELT)) (-4226 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 126 T ELT)) (-4205 (((-663 |#5|) (-663 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3661 (((-3 $ "failed") (-663 |#5|)) 134 T ELT)) (-4315 (((-3 $ "failed") $) 119 T ELT)) (-4201 ((|#5| |#5| $) 101 T ELT)) (-4210 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-4199 ((|#5| |#5| $) 105 T ELT)) (-4358 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#5|)) (|:| -1917 (-663 |#5|))) $) 63 T ELT)) (-4211 (((-114) |#5| $) 66 T ELT) (((-114) $) 110 T ELT)) (-3684 ((|#4| $) 115 T ELT)) (-4314 (((-3 |#5| "failed") $) 117 T ELT)) (-4213 (((-663 |#5|) $) 55 T ELT)) (-4207 (((-114) |#5| $) 75 T ELT) (((-114) $) 114 T ELT)) (-4202 ((|#5| |#5| $) 89 T ELT)) (-4215 (((-114) $ $) 29 T ELT)) (-4208 (((-114) |#5| $) 71 T ELT) (((-114) $) 112 T ELT)) (-4203 ((|#5| |#5| $) 86 T ELT)) (-4317 (((-3 |#5| "failed") $) 116 T ELT)) (-4285 (($ $ |#5|) 135 T ELT)) (-4464 (((-793) $) 60 T ELT)) (-4036 (($ (-663 |#5|)) 132 T ELT)) (-3397 (($ $ |#4|) 130 T ELT)) (-3399 (($ $ |#4|) 128 T ELT)) (-4200 (($ $) 127 T ELT)) (-4462 (((-888) $) NIL T ELT) (((-663 |#5|) $) 120 T ELT)) (-4194 (((-793) $) 139 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4206 (((-114) $ (-1 (-114) |#5| (-663 |#5|))) 107 T ELT)) (-4196 (((-663 |#4|) $) 122 T ELT)) (-4449 (((-114) |#4| $) 125 T ELT)) (-3540 (((-114) $ $) 20 T ELT))) -(((-1243 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4194 ((-793) |#1|)) (-15 -4285 (|#1| |#1| |#5|)) (-15 -4226 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4449 ((-114) |#4| |#1|)) (-15 -4196 ((-663 |#4|) |#1|)) (-15 -4315 ((-3 |#1| "failed") |#1|)) (-15 -4314 ((-3 |#5| "failed") |#1|)) (-15 -4317 ((-3 |#5| "failed") |#1|)) (-15 -4199 (|#5| |#5| |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#5| |#5| |#1|)) (-15 -4202 (|#5| |#5| |#1|)) (-15 -4203 (|#5| |#5| |#1|)) (-15 -4204 (|#5| |#5| |#1|)) (-15 -4205 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4358 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4207 ((-114) |#1|)) (-15 -4208 ((-114) |#1|)) (-15 -4209 ((-114) |#1|)) (-15 -4206 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -4207 ((-114) |#5| |#1|)) (-15 -4208 ((-114) |#5| |#1|)) (-15 -4209 ((-114) |#5| |#1|)) (-15 -4210 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4211 ((-114) |#1|)) (-15 -4211 ((-114) |#5| |#1|)) (-15 -4212 ((-2 (|:| -4377 (-663 |#5|)) (|:| -1917 (-663 |#5|))) |#1|)) (-15 -4464 ((-793) |#1|)) (-15 -4213 ((-663 |#5|) |#1|)) (-15 -4214 ((-3 (-2 (|:| |bas| |#1|) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4214 ((-3 (-2 (|:| |bas| |#1|) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4215 ((-114) |#1| |#1|)) (-15 -3397 (|#1| |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3684 (|#4| |#1|)) (-15 -3661 ((-3 |#1| "failed") (-663 |#5|))) (-15 -4462 ((-663 |#5|) |#1|)) (-15 -4036 (|#1| (-663 |#5|))) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4226 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) (-1244 |#2| |#3| |#4| |#5|) (-571) (-817) (-872) (-1097 |#2| |#3| |#4|)) (T -1243)) -NIL -(-10 -8 (-15 -4194 ((-793) |#1|)) (-15 -4285 (|#1| |#1| |#5|)) (-15 -4226 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4449 ((-114) |#4| |#1|)) (-15 -4196 ((-663 |#4|) |#1|)) (-15 -4315 ((-3 |#1| "failed") |#1|)) (-15 -4314 ((-3 |#5| "failed") |#1|)) (-15 -4317 ((-3 |#5| "failed") |#1|)) (-15 -4199 (|#5| |#5| |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#5| |#5| |#1|)) (-15 -4202 (|#5| |#5| |#1|)) (-15 -4203 (|#5| |#5| |#1|)) (-15 -4204 (|#5| |#5| |#1|)) (-15 -4205 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4358 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4207 ((-114) |#1|)) (-15 -4208 ((-114) |#1|)) (-15 -4209 ((-114) |#1|)) (-15 -4206 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -4207 ((-114) |#5| |#1|)) (-15 -4208 ((-114) |#5| |#1|)) (-15 -4209 ((-114) |#5| |#1|)) (-15 -4210 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4211 ((-114) |#1|)) (-15 -4211 ((-114) |#5| |#1|)) (-15 -4212 ((-2 (|:| -4377 (-663 |#5|)) (|:| -1917 (-663 |#5|))) |#1|)) (-15 -4464 ((-793) |#1|)) (-15 -4213 ((-663 |#5|) |#1|)) (-15 -4214 ((-3 (-2 (|:| |bas| |#1|) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4214 ((-3 (-2 (|:| |bas| |#1|) (|:| -3830 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4215 ((-114) |#1| |#1|)) (-15 -3397 (|#1| |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3684 (|#4| |#1|)) (-15 -3661 ((-3 |#1| "failed") (-663 |#5|))) (-15 -4462 ((-663 |#5|) |#1|)) (-15 -4036 (|#1| (-663 |#5|))) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4226 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4358 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4462 ((-888) |#1|)) (-15 -3540 ((-114) |#1| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) 90 T ELT)) (-4198 (((-663 $) (-663 |#4|)) 91 T ELT)) (-3570 (((-663 |#3|) $) 37 T ELT)) (-3395 (((-114) $) 30 T ELT)) (-3386 (((-114) $) 21 (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4204 ((|#4| |#4| $) 97 T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4226 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4511)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-4240 (($) 46 T CONST)) (-3391 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) 28 (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) 27 (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 22 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) 23 (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) 40 T ELT)) (-3660 (($ (-663 |#4|)) 39 T ELT)) (-4315 (((-3 $ "failed") $) 87 T ELT)) (-4201 ((|#4| |#4| $) 94 T ELT)) (-1479 (($ $) 69 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#4| $) 68 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4199 ((|#4| |#4| $) 92 T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) 110 T ELT)) (-3376 (((-663 |#4|) $) 53 (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3684 ((|#3| $) 38 T ELT)) (-3093 (((-663 |#4|) $) 54 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3401 (((-663 |#3|) $) 36 T ELT)) (-3400 (((-114) |#3| $) 35 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-4314 (((-3 |#4| "failed") $) 88 T ELT)) (-4213 (((-663 |#4|) $) 112 T ELT)) (-4207 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4202 ((|#4| |#4| $) 95 T ELT)) (-4215 (((-114) $ $) 115 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4203 ((|#4| |#4| $) 96 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4317 (((-3 |#4| "failed") $) 89 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4195 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-4285 (($ $ |#4|) 82 T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) 42 T ELT)) (-3909 (((-114) $) 45 T ELT)) (-4079 (($) 44 T ELT)) (-4464 (((-793) $) 111 T ELT)) (-2171 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1133)) (|has| $ (-6 -4511))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) 43 T ELT)) (-4488 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) 61 T ELT)) (-3397 (($ $ |#3|) 32 T ELT)) (-3399 (($ $ |#3|) 34 T ELT)) (-4200 (($ $) 93 T ELT)) (-3398 (($ $ |#3|) 33 T ELT)) (-4462 (((-888) $) 13 T ELT) (((-663 |#4|) $) 41 T ELT)) (-4194 (((-793) $) 81 (|has| |#3| (-381)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 103 T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) 86 T ELT)) (-4449 (((-114) |#3| $) 85 T ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4473 (((-793) $) 47 (|has| $ (-6 -4511)) ELT))) -(((-1244 |#1| |#2| |#3| |#4|) (-142) (-571) (-817) (-872) (-1097 |t#1| |t#2| |t#3|)) (T -1244)) -((-4215 (*1 *2 *1 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-4214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3830 (-663 *8)))) (-5 *3 (-663 *8)) (-4 *1 (-1244 *5 *6 *7 *8)))) (-4214 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) (-4 *8 (-872)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3830 (-663 *9)))) (-5 *3 (-663 *9)) (-4 *1 (-1244 *6 *7 *8 *9)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *6)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-793)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-2 (|:| -4377 (-663 *6)) (|:| -1917 (-663 *6)))))) (-4211 (*1 *2 *3 *1) (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-4210 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1244 *5 *6 *7 *3)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-114)))) (-4209 (*1 *2 *3 *1) (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-4208 (*1 *2 *3 *1) (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-4207 (*1 *2 *3 *1) (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1244 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) (-4358 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1244 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *2 (-1097 *5 *6 *7)))) (-4205 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1244 *5 *6 *7 *8)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)))) (-4204 (*1 *2 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4203 (*1 *2 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4202 (*1 *2 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4201 (*1 *2 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4200 (*1 *1 *1) (-12 (-4 *1 (-1244 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-1097 *2 *3 *4)))) (-4199 (*1 *2 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1244 *4 *5 *6 *7)))) (-4197 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| -4377 *1) (|:| -1917 (-663 *7))))) (-5 *3 (-663 *7)) (-4 *1 (-1244 *4 *5 *6 *7)))) (-4317 (*1 *2 *1) (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4314 (*1 *2 *1) (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4315 (*1 *1 *1) (|partial| -12 (-4 *1 (-1244 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-1097 *2 *3 *4)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5)))) (-4449 (*1 *2 *3 *1) (-12 (-4 *1 (-1244 *4 *5 *3 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *3 (-872)) (-4 *6 (-1097 *4 *5 *3)) (-5 *2 (-114)))) (-4226 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1244 *4 *5 *3 *2)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *3 (-872)) (-4 *2 (-1097 *4 *5 *3)))) (-4195 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4285 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-793))))) -(-13 (-1008 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4511) (-6 -4512) (-15 -4215 ((-114) $ $)) (-15 -4214 ((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4214 ((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4213 ((-663 |t#4|) $)) (-15 -4464 ((-793) $)) (-15 -4212 ((-2 (|:| -4377 (-663 |t#4|)) (|:| -1917 (-663 |t#4|))) $)) (-15 -4211 ((-114) |t#4| $)) (-15 -4211 ((-114) $)) (-15 -4210 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -4209 ((-114) |t#4| $)) (-15 -4208 ((-114) |t#4| $)) (-15 -4207 ((-114) |t#4| $)) (-15 -4206 ((-114) $ (-1 (-114) |t#4| (-663 |t#4|)))) (-15 -4209 ((-114) $)) (-15 -4208 ((-114) $)) (-15 -4207 ((-114) $)) (-15 -4358 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4205 ((-663 |t#4|) (-663 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4204 (|t#4| |t#4| $)) (-15 -4203 (|t#4| |t#4| $)) (-15 -4202 (|t#4| |t#4| $)) (-15 -4201 (|t#4| |t#4| $)) (-15 -4200 ($ $)) (-15 -4199 (|t#4| |t#4| $)) (-15 -4198 ((-663 $) (-663 |t#4|))) (-15 -4197 ((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |t#4|)))) (-663 |t#4|))) (-15 -4317 ((-3 |t#4| "failed") $)) (-15 -4314 ((-3 |t#4| "failed") $)) (-15 -4315 ((-3 $ "failed") $)) (-15 -4196 ((-663 |t#3|) $)) (-15 -4449 ((-114) |t#3| $)) (-15 -4226 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4195 ((-3 $ "failed") $ |t#4|)) (-15 -4285 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -4194 ((-793) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-888)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ((-1008 |#1| |#2| |#3| |#4|) . T) ((-1133) . T) ((-1249) . T)) -((-4221 (($ |#1| (-663 (-663 (-973 (-229)))) (-114)) 19 T ELT)) (-4220 (((-114) $ (-114)) 18 T ELT)) (-4219 (((-114) $) 17 T ELT)) (-4217 (((-663 (-663 (-973 (-229)))) $) 13 T ELT)) (-4216 ((|#1| $) 8 T ELT)) (-4218 (((-114) $) 15 T ELT))) -(((-1245 |#1|) (-10 -8 (-15 -4216 (|#1| $)) (-15 -4217 ((-663 (-663 (-973 (-229)))) $)) (-15 -4218 ((-114) $)) (-15 -4219 ((-114) $)) (-15 -4220 ((-114) $ (-114))) (-15 -4221 ($ |#1| (-663 (-663 (-973 (-229)))) (-114)))) (-1006)) (T -1245)) -((-4221 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-114)) (-5 *1 (-1245 *2)) (-4 *2 (-1006)))) (-4220 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-1245 *3)) (-4 *3 (-1006)))) (-4216 (*1 *2 *1) (-12 (-5 *1 (-1245 *2)) (-4 *2 (-1006))))) -(-10 -8 (-15 -4216 (|#1| $)) (-15 -4217 ((-663 (-663 (-973 (-229)))) $)) (-15 -4218 ((-114) $)) (-15 -4219 ((-114) $)) (-15 -4220 ((-114) $ (-114))) (-15 -4221 ($ |#1| (-663 (-663 (-973 (-229)))) (-114)))) -((-4223 (((-973 (-229)) (-973 (-229))) 31 T ELT)) (-4222 (((-973 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4225 (((-663 (-973 (-229))) (-973 (-229)) (-973 (-229)) (-973 (-229)) (-229) (-663 (-663 (-229)))) 57 T ELT)) (-4352 (((-229) (-973 (-229)) (-973 (-229))) 27 T ELT)) (-4350 (((-973 (-229)) (-973 (-229)) (-973 (-229))) 28 T ELT)) (-4224 (((-663 (-663 (-229))) (-560)) 45 T ELT)) (-4353 (((-973 (-229)) (-973 (-229)) (-973 (-229))) 26 T ELT)) (-4355 (((-973 (-229)) (-973 (-229)) (-973 (-229))) 24 T ELT)) (* (((-973 (-229)) (-229) (-973 (-229))) 22 T ELT))) -(((-1246) (-10 -7 (-15 -4222 ((-973 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-973 (-229)) (-229) (-973 (-229)))) (-15 -4355 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4353 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4352 ((-229) (-973 (-229)) (-973 (-229)))) (-15 -4350 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4223 ((-973 (-229)) (-973 (-229)))) (-15 -4224 ((-663 (-663 (-229))) (-560))) (-15 -4225 ((-663 (-973 (-229))) (-973 (-229)) (-973 (-229)) (-973 (-229)) (-229) (-663 (-663 (-229))))))) (T -1246)) -((-4225 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 (-973 *4))) (-5 *1 (-1246)) (-5 *3 (-973 *4)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1246)))) (-4223 (*1 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) (-4350 (*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) (-4352 (*1 *2 *3 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-229)) (-5 *1 (-1246)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) (-4355 (*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-973 (-229))) (-5 *3 (-229)) (-5 *1 (-1246)))) (-4222 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)) (-5 *3 (-229))))) -(-10 -7 (-15 -4222 ((-973 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-973 (-229)) (-229) (-973 (-229)))) (-15 -4355 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4353 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4352 ((-229) (-973 (-229)) (-973 (-229)))) (-15 -4350 ((-973 (-229)) (-973 (-229)) (-973 (-229)))) (-15 -4223 ((-973 (-229)) (-973 (-229)))) (-15 -4224 ((-663 (-663 (-229))) (-560))) (-15 -4225 ((-663 (-973 (-229))) (-973 (-229)) (-973 (-229)) (-973 (-229)) (-229) (-663 (-663 (-229)))))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4226 ((|#1| $ (-793)) 18 T ELT)) (-4349 (((-793) $) 13 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4462 (((-988 |#1|) $) 12 T ELT) (($ (-988 |#1|)) 11 T ELT) (((-888) $) 29 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-3540 (((-114) $ $) 22 (|has| |#1| (-1133)) ELT))) -(((-1247 |#1|) (-13 (-504 (-988 |#1|)) (-10 -8 (-15 -4226 (|#1| $ (-793))) (-15 -4349 ((-793) $)) (IF (|has| |#1| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) (-1249)) (T -1247)) -((-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-1247 *2)) (-4 *2 (-1249)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1247 *3)) (-4 *3 (-1249))))) -(-13 (-504 (-988 |#1|)) (-10 -8 (-15 -4226 (|#1| $ (-793))) (-15 -4349 ((-793) $)) (IF (|has| |#1| (-632 (-888))) (-6 (-632 (-888))) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|))) -((-4229 (((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-560)) 92 T ELT)) (-4227 (((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|))) 84 T ELT)) (-4228 (((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|))) 68 T ELT))) -(((-1248 |#1|) (-10 -7 (-15 -4227 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4228 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4229 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-560)))) (-363)) (T -1248)) -((-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1203 (-1203 *5)))) (-5 *1 (-1248 *5)) (-5 *3 (-1203 (-1203 *5))))) (-4228 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1203 (-1203 *4)))) (-5 *1 (-1248 *4)) (-5 *3 (-1203 (-1203 *4))))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1203 (-1203 *4)))) (-5 *1 (-1248 *4)) (-5 *3 (-1203 (-1203 *4)))))) -(-10 -7 (-15 -4227 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4228 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4229 ((-419 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-560)))) -NIL -(((-1249) (-142)) (T -1249)) -NIL -(-13 (-10 -7 (-6 -2515))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 9 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1250) (-1115)) (T -1250)) -NIL -(-1115) -((-4233 (((-114)) 18 T ELT)) (-4230 (((-1305) (-663 |#1|) (-663 |#1|)) 22 T ELT) (((-1305) (-663 |#1|)) 23 T ELT)) (-4235 (((-114) |#1| |#1|) 37 (|has| |#1| (-872)) ELT)) (-4232 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-4234 ((|#1| (-663 |#1|)) 38 (|has| |#1| (-872)) ELT) ((|#1| (-663 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4231 (((-2 (|:| -3733 (-663 |#1|)) (|:| -3732 (-663 |#1|)))) 20 T ELT))) -(((-1251 |#1|) (-10 -7 (-15 -4230 ((-1305) (-663 |#1|))) (-15 -4230 ((-1305) (-663 |#1|) (-663 |#1|))) (-15 -4231 ((-2 (|:| -3733 (-663 |#1|)) (|:| -3732 (-663 |#1|))))) (-15 -4232 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4232 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4234 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4233 ((-114))) (IF (|has| |#1| (-872)) (PROGN (-15 -4234 (|#1| (-663 |#1|))) (-15 -4235 ((-114) |#1| |#1|))) |%noBranch|)) (-1133)) (T -1251)) -((-4235 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-872)) (-4 *3 (-1133)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-872)) (-5 *1 (-1251 *2)))) (-4233 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-1133)))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1251 *2)) (-4 *2 (-1133)))) (-4232 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1133)) (-5 *2 (-114)) (-5 *1 (-1251 *3)))) (-4232 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-1133)))) (-4231 (*1 *2) (-12 (-5 *2 (-2 (|:| -3733 (-663 *3)) (|:| -3732 (-663 *3)))) (-5 *1 (-1251 *3)) (-4 *3 (-1133)))) (-4230 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-5 *2 (-1305)) (-5 *1 (-1251 *4)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-5 *2 (-1305)) (-5 *1 (-1251 *4))))) -(-10 -7 (-15 -4230 ((-1305) (-663 |#1|))) (-15 -4230 ((-1305) (-663 |#1|) (-663 |#1|))) (-15 -4231 ((-2 (|:| -3733 (-663 |#1|)) (|:| -3732 (-663 |#1|))))) (-15 -4232 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4232 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4234 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4233 ((-114))) (IF (|has| |#1| (-872)) (PROGN (-15 -4234 (|#1| (-663 |#1|))) (-15 -4235 ((-114) |#1| |#1|))) |%noBranch|)) -((-4236 (((-1305) (-663 (-1209)) (-663 (-1209))) 14 T ELT) (((-1305) (-663 (-1209))) 12 T ELT)) (-4238 (((-1305)) 16 T ELT)) (-4237 (((-2 (|:| -3732 (-663 (-1209))) (|:| -3733 (-663 (-1209))))) 20 T ELT))) -(((-1252) (-10 -7 (-15 -4236 ((-1305) (-663 (-1209)))) (-15 -4236 ((-1305) (-663 (-1209)) (-663 (-1209)))) (-15 -4237 ((-2 (|:| -3732 (-663 (-1209))) (|:| -3733 (-663 (-1209)))))) (-15 -4238 ((-1305))))) (T -1252)) -((-4238 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1252)))) (-4237 (*1 *2) (-12 (-5 *2 (-2 (|:| -3732 (-663 (-1209))) (|:| -3733 (-663 (-1209))))) (-5 *1 (-1252)))) (-4236 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1252)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1252))))) -(-10 -7 (-15 -4236 ((-1305) (-663 (-1209)))) (-15 -4236 ((-1305) (-663 (-1209)) (-663 (-1209)))) (-15 -4237 ((-2 (|:| -3732 (-663 (-1209))) (|:| -3733 (-663 (-1209)))))) (-15 -4238 ((-1305)))) -((-4291 (($ $) 17 T ELT)) (-4239 (((-114) $) 27 T ELT))) -(((-1253 |#1|) (-10 -8 (-15 -4291 (|#1| |#1|)) (-15 -4239 ((-114) |#1|))) (-1254)) (T -1253)) -NIL -(-10 -8 (-15 -4291 (|#1| |#1|)) (-15 -4239 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 63 T ELT)) (-4487 (((-419 $) $) 64 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4239 (((-114) $) 65 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-4248 (((-419 $) $) 62 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1254) (-142)) (T -1254)) -((-4239 (*1 *2 *1) (-12 (-4 *1 (-1254)) (-5 *2 (-114)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1254)))) (-4291 (*1 *1 *1) (-4 *1 (-1254))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1254))))) -(-13 (-466) (-10 -8 (-15 -4239 ((-114) $)) (-15 -4487 ((-419 $) $)) (-15 -4291 ($ $)) (-15 -4248 ((-419 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1083 $) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-4241 (($ $ $) NIL T ELT)) (-4242 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-1255) (-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468)))) (T -1255)) -((-4242 (*1 *1 *1 *1) (-5 *1 (-1255))) (-4241 (*1 *1 *1 *1) (-5 *1 (-1255))) (-4240 (*1 *1) (-5 *1 (-1255)))) -(-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 9 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 7 T ELT))) +(((-1215) (-1131)) (T -1215)) +NIL +(-1131) +((-4084 (((-661 (-661 (-974 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207))) 69 T ELT)) (-4083 (((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|)))) 81 T ELT) (((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|))) 77 T ELT) (((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207)) 82 T ELT) (((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207)) 76 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|))))) 107 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|)))) 106 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207))) 108 T ELT) (((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|))) (-661 (-1207))) 105 T ELT))) +(((-1216 |#1|) (-10 -7 (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|))))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|)))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|))))) (-15 -4084 ((-661 (-661 (-974 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207))))) (-569)) (T -1216)) +((-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-974 *5)))) (-5 *1 (-1216 *5)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-305 (-419 (-974 *4)))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-419 (-974 *4))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-305 (-419 (-974 *5)))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-419 (-974 *5))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-1216 *4)) (-5 *3 (-661 (-305 (-419 (-974 *4))))))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-661 (-419 (-974 *4)))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-1216 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1207))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-1216 *5)) (-5 *3 (-661 (-305 (-419 (-974 *5))))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-1216 *5))))) +(-10 -7 (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|))) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|)))) (-661 (-1207)))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-419 (-974 |#1|))))) (-15 -4083 ((-661 (-661 (-305 (-419 (-974 |#1|))))) (-661 (-305 (-419 (-974 |#1|)))))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|)) (-1207))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|))) (-1207))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-419 (-974 |#1|)))) (-15 -4083 ((-661 (-305 (-419 (-974 |#1|)))) (-305 (-419 (-974 |#1|))))) (-15 -4084 ((-661 (-661 (-974 |#1|))) (-661 (-419 (-974 |#1|))) (-661 (-1207))))) +((-4089 (((-1189)) 7 T ELT)) (-4086 (((-1189)) 11 T CONST)) (-4085 (((-1303) (-1189)) 13 T ELT)) (-4088 (((-1189)) 8 T CONST)) (-4087 (((-132)) 10 T CONST))) +(((-1217) (-13 (-1247) (-10 -7 (-15 -4089 ((-1189))) (-15 -4088 ((-1189)) -4464) (-15 -4087 ((-132)) -4464) (-15 -4086 ((-1189)) -4464) (-15 -4085 ((-1303) (-1189)))))) (T -1217)) +((-4089 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-4088 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-4087 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))) (-4086 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217))))) +(-13 (-1247) (-10 -7 (-15 -4089 ((-1189))) (-15 -4088 ((-1189)) -4464) (-15 -4087 ((-132)) -4464) (-15 -4086 ((-1189)) -4464) (-15 -4085 ((-1303) (-1189))))) +((-4093 (((-661 (-661 |#1|)) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|)))) 56 T ELT)) (-4096 (((-661 (-661 (-661 |#1|))) (-661 (-661 |#1|))) 38 T ELT)) (-4097 (((-1220 (-661 |#1|)) (-661 |#1|)) 49 T ELT)) (-4099 (((-661 (-661 |#1|)) (-661 |#1|)) 45 T ELT)) (-4102 (((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 (-661 (-661 |#1|)))) 53 T ELT)) (-4101 (((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 |#1|) (-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|)))) 52 T ELT)) (-4098 (((-661 (-661 |#1|)) (-661 (-661 |#1|))) 43 T ELT)) (-4100 (((-661 |#1|) (-661 |#1|)) 46 T ELT)) (-4092 (((-661 (-661 (-661 |#1|))) (-661 |#1|) (-661 (-661 (-661 |#1|)))) 32 T ELT)) (-4091 (((-661 (-661 (-661 |#1|))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 (-661 |#1|)))) 29 T ELT)) (-4090 (((-2 (|:| |fs| (-114)) (|:| |sd| (-661 |#1|)) (|:| |td| (-661 (-661 |#1|)))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 |#1|))) 24 T ELT)) (-4094 (((-661 (-661 |#1|)) (-661 (-661 (-661 |#1|)))) 58 T ELT)) (-4095 (((-661 (-661 |#1|)) (-1220 (-661 |#1|))) 60 T ELT))) +(((-1218 |#1|) (-10 -7 (-15 -4090 ((-2 (|:| |fs| (-114)) (|:| |sd| (-661 |#1|)) (|:| |td| (-661 (-661 |#1|)))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 |#1|)))) (-15 -4091 ((-661 (-661 (-661 |#1|))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4092 ((-661 (-661 (-661 |#1|))) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4093 ((-661 (-661 |#1|)) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4094 ((-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4095 ((-661 (-661 |#1|)) (-1220 (-661 |#1|)))) (-15 -4096 ((-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)))) (-15 -4097 ((-1220 (-661 |#1|)) (-661 |#1|))) (-15 -4098 ((-661 (-661 |#1|)) (-661 (-661 |#1|)))) (-15 -4099 ((-661 (-661 |#1|)) (-661 |#1|))) (-15 -4100 ((-661 |#1|) (-661 |#1|))) (-15 -4101 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 |#1|) (-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))))) (-15 -4102 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 (-661 (-661 |#1|)))))) (-870)) (T -1218)) +((-4102 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-2 (|:| |f1| (-661 *4)) (|:| |f2| (-661 (-661 (-661 *4)))) (|:| |f3| (-661 (-661 *4))) (|:| |f4| (-661 (-661 (-661 *4)))))) (-5 *1 (-1218 *4)) (-5 *3 (-661 (-661 (-661 *4)))))) (-4101 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-870)) (-5 *3 (-661 *6)) (-5 *5 (-661 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-661 *5)) (|:| |f3| *5) (|:| |f4| (-661 *5)))) (-5 *1 (-1218 *6)) (-5 *4 (-661 *5)))) (-4100 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-1218 *3)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-661 *4)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-870)) (-5 *1 (-1218 *3)))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-1220 (-661 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-661 *4)))) (-4096 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-661 (-661 (-661 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-661 (-661 *4))))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-1220 (-661 *4))) (-4 *4 (-870)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1218 *4)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1218 *4)) (-4 *4 (-870)))) (-4093 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-4 *4 (-870)) (-5 *1 (-1218 *4)))) (-4092 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-661 *4)) (-4 *4 (-870)) (-5 *1 (-1218 *4)))) (-4091 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-661 *5)) (-4 *5 (-870)) (-5 *1 (-1218 *5)))) (-4090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-870)) (-5 *4 (-661 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-661 *4)))) (-5 *1 (-1218 *6)) (-5 *5 (-661 *4))))) +(-10 -7 (-15 -4090 ((-2 (|:| |fs| (-114)) (|:| |sd| (-661 |#1|)) (|:| |td| (-661 (-661 |#1|)))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 |#1|)))) (-15 -4091 ((-661 (-661 (-661 |#1|))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4092 ((-661 (-661 (-661 |#1|))) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4093 ((-661 (-661 |#1|)) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4094 ((-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4095 ((-661 (-661 |#1|)) (-1220 (-661 |#1|)))) (-15 -4096 ((-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)))) (-15 -4097 ((-1220 (-661 |#1|)) (-661 |#1|))) (-15 -4098 ((-661 (-661 |#1|)) (-661 (-661 |#1|)))) (-15 -4099 ((-661 (-661 |#1|)) (-661 |#1|))) (-15 -4100 ((-661 |#1|) (-661 |#1|))) (-15 -4101 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 |#1|) (-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))))) (-15 -4102 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 (-661 (-661 |#1|)))))) +((-3049 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4109 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2423 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2426 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2894 (((-661 |#1|) $) NIL T ELT)) (-2457 (((-114) |#1| $) NIL T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2428 (((-661 |#1|) $) NIL T ELT)) (-2429 (((-114) |#1| $) NIL T ELT)) (-3743 (((-1150) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL T ELT)) (-2424 (($ $ |#2|) NIL (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1608 (($) NIL T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) NIL (-12 (|has| $ (-6 -4507)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-4458 (((-886) $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-630 (-886)))) ELT)) (-1387 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) NIL T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) NIL (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) NIL (-4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1219 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) (-1131) (-1131)) (T -1219)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4507))) +((-4103 (($ (-661 (-661 |#1|))) 10 T ELT)) (-4104 (((-661 (-661 |#1|)) $) 11 T ELT)) (-4458 (((-886) $) 33 T ELT))) +(((-1220 |#1|) (-10 -8 (-15 -4103 ($ (-661 (-661 |#1|)))) (-15 -4104 ((-661 (-661 |#1|)) $)) (-15 -4458 ((-886) $))) (-1131)) (T -1220)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1220 *3)) (-4 *3 (-1131)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1131)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-1220 *3))))) +(-10 -8 (-15 -4103 ($ (-661 (-661 |#1|)))) (-15 -4104 ((-661 (-661 |#1|)) $)) (-15 -4458 ((-886) $))) +((-3049 (((-114) $ $) NIL T ELT)) (-4105 (($ |#1| (-55)) 10 T ELT)) (-4052 ((|#1| $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3114 (((-114) $ |#1|) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2999 (((-55) $) 14 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1221 |#1|) (-13 (-858 |#1|) (-10 -8 (-15 -4105 ($ |#1| (-55))))) (-1131)) (T -1221)) +((-4105 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1131))))) +(-13 (-858 |#1|) (-10 -8 (-15 -4105 ($ |#1| (-55))))) +((-4106 ((|#1| (-661 |#1|)) 46 T ELT)) (-4108 ((|#1| |#1| (-558)) 24 T ELT)) (-4107 (((-1201 |#1|) |#1| (-947)) 20 T ELT))) +(((-1222 |#1|) (-10 -7 (-15 -4106 (|#1| (-661 |#1|))) (-15 -4107 ((-1201 |#1|) |#1| (-947))) (-15 -4108 (|#1| |#1| (-558)))) (-376)) (T -1222)) +((-4108 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-376)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) +(-10 -7 (-15 -4106 (|#1| (-661 |#1|))) (-15 -4107 ((-1201 |#1|) |#1| (-947))) (-15 -4108 (|#1| |#1| (-558)))) +((-4109 (($) 10 T ELT) (($ (-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)))) 14 T ELT)) (-3907 (($ (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) 39 T ELT) (((-661 |#3|) $) 41 T ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1398 (((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) 60 T ELT)) (-4119 (($ (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) 16 T ELT)) (-2428 (((-661 |#2|) $) 19 T ELT)) (-2429 (((-114) |#2| $) 65 T ELT)) (-1478 (((-3 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) "failed") (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) 64 T ELT)) (-1399 (((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) 69 T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-2430 (((-661 |#3|) $) 43 T ELT)) (-4312 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) NIL T ELT) (((-791) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) $) NIL T ELT) (((-791) |#3| $) NIL T ELT) (((-791) (-1 (-114) |#3|) $) 79 T ELT)) (-4458 (((-886) $) 27 T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-3536 (((-114) $ $) 51 T ELT))) +(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4470 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4109 (|#1| (-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))))) (-15 -4109 (|#1|)) (-15 -4470 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#3|) |#1|)) (-15 -3372 ((-661 |#3|) |#1|)) (-15 -2167 ((-791) |#3| |#1|)) (-15 -4312 (|#3| |#1| |#2| |#3|)) (-15 -4312 (|#3| |#1| |#2|)) (-15 -2430 ((-661 |#3|) |#1|)) (-15 -2429 ((-114) |#2| |#1|)) (-15 -2428 ((-661 |#2|) |#1|)) (-15 -3907 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3907 (|#1| (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -3907 (|#1| (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -1478 ((-3 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) "failed") (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -1398 ((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -4119 (|#1| (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -1399 ((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -2167 ((-791) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -3372 ((-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2167 ((-791) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2168 ((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2169 ((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2170 (|#1| (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -4470 (|#1| (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|))) (-1224 |#2| |#3|) (-1131) (-1131)) (T -1223)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4458 ((-886) |#1|)) (-15 -4470 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4109 (|#1| (-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))))) (-15 -4109 (|#1|)) (-15 -4470 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2170 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2169 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2168 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2167 ((-791) (-1 (-114) |#3|) |#1|)) (-15 -3372 ((-661 |#3|) |#1|)) (-15 -2167 ((-791) |#3| |#1|)) (-15 -4312 (|#3| |#1| |#2| |#3|)) (-15 -4312 (|#3| |#1| |#2|)) (-15 -2430 ((-661 |#3|) |#1|)) (-15 -2429 ((-114) |#2| |#1|)) (-15 -2428 ((-661 |#2|) |#1|)) (-15 -3907 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3907 (|#1| (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -3907 (|#1| (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -1478 ((-3 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) "failed") (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -1398 ((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -4119 (|#1| (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -1399 ((-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -2167 ((-791) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) |#1|)) (-15 -3372 ((-661 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2167 ((-791) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2168 ((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2169 ((-114) (-1 (-114) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -2170 (|#1| (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|)) (-15 -4470 (|#1| (-1 (-2 (|:| -4372 |#2|) (|:| -2296 |#3|)) (-2 (|:| -4372 |#2|) (|:| -2296 |#3|))) |#1|))) +((-3049 (((-114) $ $) 19 (-4039 (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-4109 (($) 77 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 76 T ELT)) (-2423 (((-1303) $ |#1| |#1|) 104 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1723 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 49 (|has| $ (-6 -4507)) ELT)) (-4222 (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 59 (|has| $ (-6 -4507)) ELT)) (-2456 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-4236 (($) 7 T CONST)) (-1477 (($ $) 62 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT)) (-3907 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 51 (|has| $ (-6 -4507)) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 50 (|has| $ (-6 -4507)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3908 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 58 (|has| $ (-6 -4507)) ELT)) (-4354 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 60 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 57 (|has| $ (-6 -4507)) ELT) (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 56 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#2| $ |#1|) 93 T ELT)) (-3372 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 30 (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) 84 (|has| $ (-6 -4507)) ELT)) (-2425 ((|#1| $) 101 (|has| |#1| (-870)) ELT)) (-3089 (((-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 29 (|has| $ (-6 -4507)) ELT) (((-661 |#2|) $) 85 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 ((|#1| $) 100 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3742 (((-1189) $) 22 (-4039 (|has| |#2| (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-2894 (((-661 |#1|) $) 67 T ELT)) (-2457 (((-114) |#1| $) 68 T ELT)) (-1398 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 43 T ELT)) (-4119 (($ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 44 T ELT)) (-2428 (((-661 |#1|) $) 98 T ELT)) (-2429 (((-114) |#1| $) 97 T ELT)) (-3743 (((-1150) $) 21 (-4039 (|has| |#2| (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT)) (-4313 ((|#2| $) 102 (|has| |#1| (-870)) ELT)) (-1478 (((-3 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) "failed") (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 55 T ELT)) (-2424 (($ $ |#2|) 103 (|has| $ (-6 -4508)) ELT)) (-1399 (((-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 45 T ELT)) (-2168 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 32 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))))) 26 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-305 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 25 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) 24 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 23 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-661 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4507)) (|has| |#2| (-1131))) ELT)) (-2430 (((-661 |#2|) $) 96 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1608 (($) 53 T ELT) (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 52 T ELT)) (-2167 (((-791) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) |#2| $) 86 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 63 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ELT)) (-4032 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 54 T ELT)) (-4458 (((-886) $) 17 (-4039 (|has| |#2| (-630 (-886))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886)))) ELT)) (-1387 (((-114) $ $) 20 (-4039 (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-1400 (($ (-661 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) 46 T ELT)) (-2169 (((-114) (-1 (-114) (-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) $) 33 (|has| $ (-6 -4507)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (-4039 (|has| |#2| (-102)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102))) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1224 |#1| |#2|) (-142) (-1131) (-1131)) (T -1224)) +((-4300 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-4109 (*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4372 *3) (|:| -2296 *4)))) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *1 (-1224 *3 *4)))) (-4470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-13 (-627 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -4300 (|t#2| $ |t#1| |t#2|)) (-15 -4109 ($)) (-15 -4109 ($ (-661 (-2 (|:| -4372 |t#1|) (|:| -2296 |t#2|))))) (-15 -4470 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4372 |#1|) (|:| -2296 |#2|))) . T) ((-102) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-102)) (|has| |#2| (-1131)) (|has| |#2| (-102))) ((-630 (-886)) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-630 (-886))) (|has| |#2| (-1131)) (|has| |#2| (-630 (-886)))) ((-153 #1#) . T) ((-631 (-547)) |has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-631 (-547))) ((-233 #1#) . T) ((-242 #1#) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 #1#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-321 (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)))) (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-627 |#1| |#2|) . T) ((-1131) -4039 (|has| (-2 (|:| -4372 |#1|) (|:| -2296 |#2|)) (-1131)) (|has| |#2| (-1131))) ((-1247) . T)) +((-4115 (((-114)) 29 T ELT)) (-4112 (((-1303) (-1189)) 31 T ELT)) (-4116 (((-114)) 41 T ELT)) (-4113 (((-1303)) 39 T ELT)) (-4111 (((-1303) (-1189) (-1189)) 30 T ELT)) (-4117 (((-114)) 42 T ELT)) (-4119 (((-1303) |#1| |#2|) 53 T ELT)) (-4110 (((-1303)) 26 T ELT)) (-4118 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4114 (((-1303)) 40 T ELT))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -4110 ((-1303))) (-15 -4111 ((-1303) (-1189) (-1189))) (-15 -4112 ((-1303) (-1189))) (-15 -4113 ((-1303))) (-15 -4114 ((-1303))) (-15 -4115 ((-114))) (-15 -4116 ((-114))) (-15 -4117 ((-114))) (-15 -4118 ((-3 |#2| "failed") |#1|)) (-15 -4119 ((-1303) |#1| |#2|))) (-1131) (-1131)) (T -1225)) +((-4119 (*1 *2 *3 *4) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4118 (*1 *2 *3) (|partial| -12 (-4 *2 (-1131)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1131)))) (-4117 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4116 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4115 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4114 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4113 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)))) (-4111 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)))) (-4110 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-10 -7 (-15 -4110 ((-1303))) (-15 -4111 ((-1303) (-1189) (-1189))) (-15 -4112 ((-1303) (-1189))) (-15 -4113 ((-1303))) (-15 -4114 ((-1303))) (-15 -4115 ((-114))) (-15 -4116 ((-114))) (-15 -4117 ((-114))) (-15 -4118 ((-3 |#2| "failed") |#1|)) (-15 -4119 ((-1303) |#1| |#2|))) +((-4121 (((-1189) (-1189)) 22 T ELT)) (-4120 (((-51) (-1189)) 25 T ELT))) +(((-1226) (-10 -7 (-15 -4120 ((-51) (-1189))) (-15 -4121 ((-1189) (-1189))))) (T -1226)) +((-4121 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226))))) +(-10 -7 (-15 -4120 ((-51) (-1189))) (-15 -4121 ((-1189) (-1189)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4127 (((-661 (-1189)) $) 39 T ELT)) (-4123 (((-661 (-1189)) $ (-661 (-1189))) 42 T ELT)) (-4122 (((-661 (-1189)) $ (-661 (-1189))) 41 T ELT)) (-4124 (((-661 (-1189)) $ (-661 (-1189))) 43 T ELT)) (-4125 (((-661 (-1189)) $) 38 T ELT)) (-4126 (($) 28 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4128 (((-661 (-1189)) $) 40 T ELT)) (-4129 (((-1303) $ (-558)) 35 T ELT) (((-1303) $) 36 T ELT)) (-4484 (($ (-886) (-558)) 33 T ELT) (($ (-886) (-558) (-886)) NIL T ELT)) (-4458 (((-886) $) 49 T ELT) (($ (-886)) 32 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1227) (-13 (-1131) (-633 (-886)) (-10 -8 (-15 -4484 ($ (-886) (-558))) (-15 -4484 ($ (-886) (-558) (-886))) (-15 -4129 ((-1303) $ (-558))) (-15 -4129 ((-1303) $)) (-15 -4128 ((-661 (-1189)) $)) (-15 -4127 ((-661 (-1189)) $)) (-15 -4126 ($)) (-15 -4125 ((-661 (-1189)) $)) (-15 -4124 ((-661 (-1189)) $ (-661 (-1189)))) (-15 -4123 ((-661 (-1189)) $ (-661 (-1189)))) (-15 -4122 ((-661 (-1189)) $ (-661 (-1189))))))) (T -1227)) +((-4484 (*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-558)) (-5 *1 (-1227)))) (-4484 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-558)) (-5 *1 (-1227)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1227)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227)))) (-4126 (*1 *1) (-5 *1 (-1227))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227)))) (-4124 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227)))) (-4123 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227)))) (-4122 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(-13 (-1131) (-633 (-886)) (-10 -8 (-15 -4484 ($ (-886) (-558))) (-15 -4484 ($ (-886) (-558) (-886))) (-15 -4129 ((-1303) $ (-558))) (-15 -4129 ((-1303) $)) (-15 -4128 ((-661 (-1189)) $)) (-15 -4127 ((-661 (-1189)) $)) (-15 -4126 ($)) (-15 -4125 ((-661 (-1189)) $)) (-15 -4124 ((-661 (-1189)) $ (-661 (-1189)))) (-15 -4123 ((-661 (-1189)) $ (-661 (-1189)))) (-15 -4122 ((-661 (-1189)) $ (-661 (-1189)))))) +((-4458 (((-1227) |#1|) 11 T ELT))) +(((-1228 |#1|) (-10 -7 (-15 -4458 ((-1227) |#1|))) (-1131)) (T -1228)) +((-4458 (*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1131))))) +(-10 -7 (-15 -4458 ((-1227) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-4134 (((-1189) $ (-1189)) 21 T ELT) (((-1189) $) 20 T ELT)) (-1910 (((-1189) $ (-1189)) 19 T ELT)) (-1914 (($ $ (-1189)) NIL T ELT)) (-4132 (((-3 (-1189) "failed") $) 11 T ELT)) (-4133 (((-1189) $) 8 T ELT)) (-4131 (((-3 (-1189) "failed") $) 12 T ELT)) (-1911 (((-1189) $) 9 T ELT)) (-1915 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4052 (((-402) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-1912 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4130 (((-114) $) 25 T ELT)) (-4458 (((-886) $) NIL T ELT)) (-1913 (($ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1229) (-13 (-378 (-402) (-1189)) (-10 -8 (-15 -4134 ((-1189) $ (-1189))) (-15 -4134 ((-1189) $)) (-15 -4133 ((-1189) $)) (-15 -4132 ((-3 (-1189) "failed") $)) (-15 -4131 ((-3 (-1189) "failed") $)) (-15 -4130 ((-114) $))))) (T -1229)) +((-4134 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4132 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4131 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229))))) +(-13 (-378 (-402) (-1189)) (-10 -8 (-15 -4134 ((-1189) $ (-1189))) (-15 -4134 ((-1189) $)) (-15 -4133 ((-1189) $)) (-15 -4132 ((-3 (-1189) "failed") $)) (-15 -4131 ((-3 (-1189) "failed") $)) (-15 -4130 ((-114) $)))) +((-4135 (((-3 (-558) "failed") |#1|) 19 T ELT)) (-4136 (((-3 (-558) "failed") |#1|) 14 T ELT)) (-4137 (((-558) (-1189)) 33 T ELT))) +(((-1230 |#1|) (-10 -7 (-15 -4135 ((-3 (-558) "failed") |#1|)) (-15 -4136 ((-3 (-558) "failed") |#1|)) (-15 -4137 ((-558) (-1189)))) (-1079)) (T -1230)) +((-4137 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-558)) (-5 *1 (-1230 *4)) (-4 *4 (-1079)))) (-4136 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1230 *3)) (-4 *3 (-1079)))) (-4135 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1230 *3)) (-4 *3 (-1079))))) +(-10 -7 (-15 -4135 ((-3 (-558) "failed") |#1|)) (-15 -4136 ((-3 (-558) "failed") |#1|)) (-15 -4137 ((-558) (-1189)))) +((-4138 (((-1163 (-229))) 9 T ELT))) +(((-1231) (-10 -7 (-15 -4138 ((-1163 (-229)))))) (T -1231)) +((-4138 (*1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1231))))) +(-10 -7 (-15 -4138 ((-1163 (-229))))) +((-4139 (($) 12 T ELT)) (-4000 (($ $) 36 T ELT)) (-3998 (($ $) 34 T ELT)) (-3986 (($ $) 26 T ELT)) (-4002 (($ $) 18 T ELT)) (-4003 (($ $) 16 T ELT)) (-4001 (($ $) 20 T ELT)) (-3989 (($ $) 31 T ELT)) (-3999 (($ $) 35 T ELT)) (-3987 (($ $) 30 T ELT))) +(((-1232 |#1|) (-10 -8 (-15 -4139 (|#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3987 (|#1| |#1|))) (-1233)) (T -1232)) +NIL +(-10 -8 (-15 -4139 (|#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3987 (|#1| |#1|))) +((-3994 (($ $) 26 T ELT)) (-4151 (($ $) 11 T ELT)) (-3992 (($ $) 27 T ELT)) (-4150 (($ $) 10 T ELT)) (-3996 (($ $) 28 T ELT)) (-4149 (($ $) 9 T ELT)) (-4139 (($) 16 T ELT)) (-4454 (($ $) 19 T ELT)) (-4455 (($ $) 18 T ELT)) (-3997 (($ $) 29 T ELT)) (-4148 (($ $) 8 T ELT)) (-3995 (($ $) 30 T ELT)) (-4147 (($ $) 7 T ELT)) (-3993 (($ $) 31 T ELT)) (-4146 (($ $) 6 T ELT)) (-4000 (($ $) 20 T ELT)) (-3988 (($ $) 32 T ELT)) (-3998 (($ $) 21 T ELT)) (-3986 (($ $) 33 T ELT)) (-4002 (($ $) 22 T ELT)) (-3990 (($ $) 34 T ELT)) (-4003 (($ $) 23 T ELT)) (-3991 (($ $) 35 T ELT)) (-4001 (($ $) 24 T ELT)) (-3989 (($ $) 36 T ELT)) (-3999 (($ $) 25 T ELT)) (-3987 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1233) (-142)) (T -1233)) +((-4139 (*1 *1) (-4 *1 (-1233)))) +(-13 (-1236) (-95) (-505) (-35) (-296) (-10 -8 (-15 -4139 ($)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-1236) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 19 T ELT)) (-4144 (($ |#1| (-661 $)) 28 T ELT) (($ (-661 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3508 ((|#1| $ |#1|) 14 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 13 (|has| $ (-6 -4508)) ELT)) (-4236 (($) NIL T CONST)) (-3372 (((-661 |#1|) $) 70 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 59 T ELT)) (-3510 (((-114) $ $) 50 (|has| |#1| (-1131)) ELT)) (-3089 (((-661 |#1|) $) 71 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 69 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3513 (((-661 |#1|) $) 55 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 67 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 102 T ELT)) (-3905 (((-114) $) 9 T ELT)) (-4075 (($) 10 T ELT)) (-4312 ((|#1| $ #1#) NIL T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4140 (((-661 $) $) 84 T ELT)) (-4141 (((-114) $ $) 105 T ELT)) (-4142 (((-661 $) $) 100 T ELT)) (-4143 (($ $) 101 T ELT)) (-4145 (((-114) $) 77 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 17 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3902 (($ $) 83 T ELT)) (-4458 (((-886) $) 86 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 12 T ELT)) (-3511 (((-114) $ $) 39 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 66 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 81 (|has| $ (-6 -4507)) ELT))) +(((-1234 |#1|) (-13 (-1040 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -4144 ($ |#1| (-661 $))) (-15 -4144 ($ (-661 |#1|))) (-15 -4144 ($ |#1|)) (-15 -4145 ((-114) $)) (-15 -4143 ($ $)) (-15 -4142 ((-661 $) $)) (-15 -4141 ((-114) $ $)) (-15 -4140 ((-661 $) $)))) (-1131)) (T -1234)) +((-4145 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-4144 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-1234 *3)))) (-4144 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-4143 (*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-661 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-4141 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-661 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(-13 (-1040 |#1|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -4144 ($ |#1| (-661 $))) (-15 -4144 ($ (-661 |#1|))) (-15 -4144 ($ |#1|)) (-15 -4145 ((-114) $)) (-15 -4143 ($ $)) (-15 -4142 ((-661 $) $)) (-15 -4141 ((-114) $ $)) (-15 -4140 ((-661 $) $)))) +((-4151 (($ $) 15 T ELT)) (-4149 (($ $) 12 T ELT)) (-4148 (($ $) 10 T ELT)) (-4147 (($ $) 17 T ELT))) +(((-1235 |#1|) (-10 -8 (-15 -4147 (|#1| |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) (-1236)) (T -1235)) +NIL +(-10 -8 (-15 -4147 (|#1| |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) +((-4151 (($ $) 11 T ELT)) (-4150 (($ $) 10 T ELT)) (-4149 (($ $) 9 T ELT)) (-4148 (($ $) 8 T ELT)) (-4147 (($ $) 7 T ELT)) (-4146 (($ $) 6 T ELT))) +(((-1236) (-142)) (T -1236)) +((-4151 (*1 *1 *1) (-4 *1 (-1236))) (-4150 (*1 *1 *1) (-4 *1 (-1236))) (-4149 (*1 *1 *1) (-4 *1 (-1236))) (-4148 (*1 *1 *1) (-4 *1 (-1236))) (-4147 (*1 *1 *1) (-4 *1 (-1236))) (-4146 (*1 *1 *1) (-4 *1 (-1236)))) +(-13 (-10 -8 (-15 -4146 ($ $)) (-15 -4147 ($ $)) (-15 -4148 ($ $)) (-15 -4149 ($ $)) (-15 -4150 ($ $)) (-15 -4151 ($ $)))) +((-4154 ((|#2| |#2|) 95 T ELT)) (-4157 (((-114) |#2|) 29 T ELT)) (-4155 ((|#2| |#2|) 33 T ELT)) (-4156 ((|#2| |#2|) 35 T ELT)) (-4152 ((|#2| |#2| (-1207)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-4158 (((-171 |#2|) |#2|) 31 T ELT)) (-4153 ((|#2| |#2| (-1207)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1237 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| |#2|)) (-15 -4152 (|#2| |#2| (-1207))) (-15 -4153 (|#2| |#2|)) (-15 -4153 (|#2| |#2| (-1207))) (-15 -4154 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -4157 ((-114) |#2|)) (-15 -4158 ((-171 |#2|) |#2|))) (-13 (-464) (-1068 (-558)) (-658 (-558))) (-13 (-27) (-1233) (-433 |#1|))) (T -1237)) +((-4158 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-171 *3)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3))))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3))))) (-4153 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3))))) (-4152 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *3)))))) +(-10 -7 (-15 -4152 (|#2| |#2|)) (-15 -4152 (|#2| |#2| (-1207))) (-15 -4153 (|#2| |#2|)) (-15 -4153 (|#2| |#2| (-1207))) (-15 -4154 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -4157 ((-114) |#2|)) (-15 -4158 ((-171 |#2|) |#2|))) +((-4159 ((|#4| |#4| |#1|) 31 T ELT)) (-4160 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4159 (|#4| |#4| |#1|)) (-15 -4160 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -1238)) +((-4160 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-4159 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) +(-10 -7 (-15 -4159 (|#4| |#4| |#1|)) (-15 -4160 (|#4| |#4| |#1|))) +((-4178 ((|#2| |#2|) 148 T ELT)) (-4180 ((|#2| |#2|) 145 T ELT)) (-4177 ((|#2| |#2|) 136 T ELT)) (-4179 ((|#2| |#2|) 133 T ELT)) (-4176 ((|#2| |#2|) 141 T ELT)) (-4175 ((|#2| |#2|) 129 T ELT)) (-4164 ((|#2| |#2|) 44 T ELT)) (-4163 ((|#2| |#2|) 105 T ELT)) (-4161 ((|#2| |#2|) 88 T ELT)) (-4174 ((|#2| |#2|) 143 T ELT)) (-4173 ((|#2| |#2|) 131 T ELT)) (-4186 ((|#2| |#2|) 153 T ELT)) (-4184 ((|#2| |#2|) 151 T ELT)) (-4185 ((|#2| |#2|) 152 T ELT)) (-4183 ((|#2| |#2|) 150 T ELT)) (-4162 ((|#2| |#2|) 163 T ELT)) (-4187 ((|#2| |#2|) 30 (-12 (|has| |#2| (-631 (-914 |#1|))) (|has| |#2| (-910 |#1|)) (|has| |#1| (-631 (-914 |#1|))) (|has| |#1| (-910 |#1|))) ELT)) (-4165 ((|#2| |#2|) 89 T ELT)) (-4166 ((|#2| |#2|) 154 T ELT)) (-4475 ((|#2| |#2|) 155 T ELT)) (-4172 ((|#2| |#2|) 142 T ELT)) (-4171 ((|#2| |#2|) 130 T ELT)) (-4170 ((|#2| |#2|) 149 T ELT)) (-4182 ((|#2| |#2|) 147 T ELT)) (-4169 ((|#2| |#2|) 137 T ELT)) (-4181 ((|#2| |#2|) 135 T ELT)) (-4168 ((|#2| |#2|) 139 T ELT)) (-4167 ((|#2| |#2|) 127 T ELT))) +(((-1239 |#1| |#2|) (-10 -7 (-15 -4475 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4163 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-631 (-914 |#1|))) (IF (|has| |#2| (-631 (-914 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -4187 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-433 |#1|) (-1233))) (T -1239)) +((-4187 (*1 *2 *2) (-12 (-4 *3 (-631 (-914 *3))) (-4 *3 (-910 *3)) (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-631 (-914 *3))) (-4 *2 (-910 *3)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4184 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4180 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4178 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4163 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) (-4475 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) +(-10 -7 (-15 -4475 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4163 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4167 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4172 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4178 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4184 (|#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-631 (-914 |#1|))) (IF (|has| |#2| (-631 (-914 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -4187 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1207)) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4326 (((-974 |#1|) $ (-791)) 17 T ELT) (((-974 |#1|) $ (-791) (-791)) NIL T ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $ (-1207)) NIL T ELT) (((-791) $ (-1207) (-791)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ $ (-661 (-1207)) (-661 (-543 (-1207)))) NIL T ELT) (($ $ (-1207) (-543 (-1207))) NIL T ELT) (($ |#1| (-543 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4324 (($ $ (-1207)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4188 (($ (-1 $) (-1207) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4281 (($ $ (-791)) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (($ $ (-1207) $) NIL T ELT) (($ $ (-661 (-1207)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT)) (-4270 (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-4460 (((-543 (-1207)) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-1207)) NIL T ELT) (($ (-974 |#1|)) NIL T ELT)) (-4189 ((|#1| $ (-543 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (((-974 |#1|) $ (-791)) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3152 (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1240 |#1|) (-13 (-760 |#1| (-1207)) (-10 -8 (-15 -4189 ((-974 |#1|) $ (-791))) (-15 -4458 ($ (-1207))) (-15 -4458 ($ (-974 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $ (-1207) |#1|)) (-15 -4188 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) (-1079)) (T -1240)) +((-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-974 *4)) (-5 *1 (-1240 *4)) (-4 *4 (-1079)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1079)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-974 *3)) (-4 *3 (-1079)) (-5 *1 (-1240 *3)))) (-4324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)))) (-4188 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1079))))) +(-13 (-760 |#1| (-1207)) (-10 -8 (-15 -4189 ((-974 |#1|) $ (-791))) (-15 -4458 ($ (-1207))) (-15 -4458 ($ (-974 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $ (-1207) |#1|)) (-15 -4188 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) +((-4205 (((-114) |#5| $) 68 T ELT) (((-114) $) 109 T ELT)) (-4200 ((|#5| |#5| $) 83 T ELT)) (-4222 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 126 T ELT)) (-4201 (((-661 |#5|) (-661 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3657 (((-3 $ "failed") (-661 |#5|)) 134 T ELT)) (-4311 (((-3 $ "failed") $) 119 T ELT)) (-4197 ((|#5| |#5| $) 101 T ELT)) (-4206 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-4195 ((|#5| |#5| $) 105 T ELT)) (-4354 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#5|)) (|:| -1915 (-661 |#5|))) $) 63 T ELT)) (-4207 (((-114) |#5| $) 66 T ELT) (((-114) $) 110 T ELT)) (-3680 ((|#4| $) 115 T ELT)) (-4310 (((-3 |#5| "failed") $) 117 T ELT)) (-4209 (((-661 |#5|) $) 55 T ELT)) (-4203 (((-114) |#5| $) 75 T ELT) (((-114) $) 114 T ELT)) (-4198 ((|#5| |#5| $) 89 T ELT)) (-4211 (((-114) $ $) 29 T ELT)) (-4204 (((-114) |#5| $) 71 T ELT) (((-114) $) 112 T ELT)) (-4199 ((|#5| |#5| $) 86 T ELT)) (-4313 (((-3 |#5| "failed") $) 116 T ELT)) (-4281 (($ $ |#5|) 135 T ELT)) (-4460 (((-791) $) 60 T ELT)) (-4032 (($ (-661 |#5|)) 132 T ELT)) (-3393 (($ $ |#4|) 130 T ELT)) (-3395 (($ $ |#4|) 128 T ELT)) (-4196 (($ $) 127 T ELT)) (-4458 (((-886) $) NIL T ELT) (((-661 |#5|) $) 120 T ELT)) (-4190 (((-791) $) 139 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4202 (((-114) $ (-1 (-114) |#5| (-661 |#5|))) 107 T ELT)) (-4192 (((-661 |#4|) $) 122 T ELT)) (-4445 (((-114) |#4| $) 125 T ELT)) (-3536 (((-114) $ $) 20 T ELT))) +(((-1241 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4190 ((-791) |#1|)) (-15 -4281 (|#1| |#1| |#5|)) (-15 -4222 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4445 ((-114) |#4| |#1|)) (-15 -4192 ((-661 |#4|) |#1|)) (-15 -4311 ((-3 |#1| "failed") |#1|)) (-15 -4310 ((-3 |#5| "failed") |#1|)) (-15 -4313 ((-3 |#5| "failed") |#1|)) (-15 -4195 (|#5| |#5| |#1|)) (-15 -4196 (|#1| |#1|)) (-15 -4197 (|#5| |#5| |#1|)) (-15 -4198 (|#5| |#5| |#1|)) (-15 -4199 (|#5| |#5| |#1|)) (-15 -4200 (|#5| |#5| |#1|)) (-15 -4201 ((-661 |#5|) (-661 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4354 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4203 ((-114) |#1|)) (-15 -4204 ((-114) |#1|)) (-15 -4205 ((-114) |#1|)) (-15 -4202 ((-114) |#1| (-1 (-114) |#5| (-661 |#5|)))) (-15 -4203 ((-114) |#5| |#1|)) (-15 -4204 ((-114) |#5| |#1|)) (-15 -4205 ((-114) |#5| |#1|)) (-15 -4206 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4207 ((-114) |#1|)) (-15 -4207 ((-114) |#5| |#1|)) (-15 -4208 ((-2 (|:| -4373 (-661 |#5|)) (|:| -1915 (-661 |#5|))) |#1|)) (-15 -4460 ((-791) |#1|)) (-15 -4209 ((-661 |#5|) |#1|)) (-15 -4210 ((-3 (-2 (|:| |bas| |#1|) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4210 ((-3 (-2 (|:| |bas| |#1|) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4211 ((-114) |#1| |#1|)) (-15 -3393 (|#1| |#1| |#4|)) (-15 -3395 (|#1| |#1| |#4|)) (-15 -3680 (|#4| |#1|)) (-15 -3657 ((-3 |#1| "failed") (-661 |#5|))) (-15 -4458 ((-661 |#5|) |#1|)) (-15 -4032 (|#1| (-661 |#5|))) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4222 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) (-1242 |#2| |#3| |#4| |#5|) (-569) (-815) (-870) (-1095 |#2| |#3| |#4|)) (T -1241)) +NIL +(-10 -8 (-15 -4190 ((-791) |#1|)) (-15 -4281 (|#1| |#1| |#5|)) (-15 -4222 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4445 ((-114) |#4| |#1|)) (-15 -4192 ((-661 |#4|) |#1|)) (-15 -4311 ((-3 |#1| "failed") |#1|)) (-15 -4310 ((-3 |#5| "failed") |#1|)) (-15 -4313 ((-3 |#5| "failed") |#1|)) (-15 -4195 (|#5| |#5| |#1|)) (-15 -4196 (|#1| |#1|)) (-15 -4197 (|#5| |#5| |#1|)) (-15 -4198 (|#5| |#5| |#1|)) (-15 -4199 (|#5| |#5| |#1|)) (-15 -4200 (|#5| |#5| |#1|)) (-15 -4201 ((-661 |#5|) (-661 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4354 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4203 ((-114) |#1|)) (-15 -4204 ((-114) |#1|)) (-15 -4205 ((-114) |#1|)) (-15 -4202 ((-114) |#1| (-1 (-114) |#5| (-661 |#5|)))) (-15 -4203 ((-114) |#5| |#1|)) (-15 -4204 ((-114) |#5| |#1|)) (-15 -4205 ((-114) |#5| |#1|)) (-15 -4206 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4207 ((-114) |#1|)) (-15 -4207 ((-114) |#5| |#1|)) (-15 -4208 ((-2 (|:| -4373 (-661 |#5|)) (|:| -1915 (-661 |#5|))) |#1|)) (-15 -4460 ((-791) |#1|)) (-15 -4209 ((-661 |#5|) |#1|)) (-15 -4210 ((-3 (-2 (|:| |bas| |#1|) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4210 ((-3 (-2 (|:| |bas| |#1|) (|:| -3826 (-661 |#5|))) "failed") (-661 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4211 ((-114) |#1| |#1|)) (-15 -3393 (|#1| |#1| |#4|)) (-15 -3395 (|#1| |#1| |#4|)) (-15 -3680 (|#4| |#1|)) (-15 -3657 ((-3 |#1| "failed") (-661 |#5|))) (-15 -4458 ((-661 |#5|) |#1|)) (-15 -4032 (|#1| (-661 |#5|))) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4222 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4354 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4458 ((-886) |#1|)) (-15 -3536 ((-114) |#1| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4194 (((-661 $) (-661 |#4|)) 91 T ELT)) (-3566 (((-661 |#3|) $) 37 T ELT)) (-3391 (((-114) $) 30 T ELT)) (-3382 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4200 ((|#4| |#4| $) 97 T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4222 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4507)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-4236 (($) 46 T CONST)) (-3387 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3656 (($ (-661 |#4|)) 39 T ELT)) (-4311 (((-3 $ "failed") $) 87 T ELT)) (-4197 ((|#4| |#4| $) 94 T ELT)) (-1477 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4195 ((|#4| |#4| $) 92 T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) 110 T ELT)) (-3372 (((-661 |#4|) $) 53 (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3680 ((|#3| $) 38 T ELT)) (-3089 (((-661 |#4|) $) 54 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3397 (((-661 |#3|) $) 36 T ELT)) (-3396 (((-114) |#3| $) 35 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-4310 (((-3 |#4| "failed") $) 88 T ELT)) (-4209 (((-661 |#4|) $) 112 T ELT)) (-4203 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4198 ((|#4| |#4| $) 95 T ELT)) (-4211 (((-114) $ $) 115 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4199 ((|#4| |#4| $) 96 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4313 (((-3 |#4| "failed") $) 89 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4191 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-4281 (($ $ |#4|) 82 T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) 42 T ELT)) (-3905 (((-114) $) 45 T ELT)) (-4075 (($) 44 T ELT)) (-4460 (((-791) $) 111 T ELT)) (-2167 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4507))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) 43 T ELT)) (-4484 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) 61 T ELT)) (-3393 (($ $ |#3|) 32 T ELT)) (-3395 (($ $ |#3|) 34 T ELT)) (-4196 (($ $) 93 T ELT)) (-3394 (($ $ |#3|) 33 T ELT)) (-4458 (((-886) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4190 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) "failed") (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) "failed") (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) 86 T ELT)) (-4445 (((-114) |#3| $) 85 T ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4469 (((-791) $) 47 (|has| $ (-6 -4507)) ELT))) +(((-1242 |#1| |#2| |#3| |#4|) (-142) (-569) (-815) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1242)) +((-4211 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-4210 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3826 (-661 *8)))) (-5 *3 (-661 *8)) (-4 *1 (-1242 *5 *6 *7 *8)))) (-4210 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3826 (-661 *9)))) (-5 *3 (-661 *9)) (-4 *1 (-1242 *6 *7 *8 *9)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *6)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-791)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-2 (|:| -4373 (-661 *6)) (|:| -1915 (-661 *6)))))) (-4207 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-4206 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-114)))) (-4205 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-4204 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-4203 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-661 *7))) (-4 *1 (-1242 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) (-4354 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *2 (-1095 *5 *6 *7)))) (-4201 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)))) (-4200 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4199 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4198 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4197 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4196 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-4195 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-4193 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| -4373 *1) (|:| -1915 (-661 *7))))) (-5 *3 (-661 *7)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-4313 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4310 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4311 (*1 *1 *1) (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5)))) (-4445 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-114)))) (-4222 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) (-4191 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4281 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-791))))) +(-13 (-1006 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4507) (-6 -4508) (-15 -4211 ((-114) $ $)) (-15 -4210 ((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |t#4|))) "failed") (-661 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4210 ((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |t#4|))) "failed") (-661 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4209 ((-661 |t#4|) $)) (-15 -4460 ((-791) $)) (-15 -4208 ((-2 (|:| -4373 (-661 |t#4|)) (|:| -1915 (-661 |t#4|))) $)) (-15 -4207 ((-114) |t#4| $)) (-15 -4207 ((-114) $)) (-15 -4206 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -4205 ((-114) |t#4| $)) (-15 -4204 ((-114) |t#4| $)) (-15 -4203 ((-114) |t#4| $)) (-15 -4202 ((-114) $ (-1 (-114) |t#4| (-661 |t#4|)))) (-15 -4205 ((-114) $)) (-15 -4204 ((-114) $)) (-15 -4203 ((-114) $)) (-15 -4354 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4201 ((-661 |t#4|) (-661 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4200 (|t#4| |t#4| $)) (-15 -4199 (|t#4| |t#4| $)) (-15 -4198 (|t#4| |t#4| $)) (-15 -4197 (|t#4| |t#4| $)) (-15 -4196 ($ $)) (-15 -4195 (|t#4| |t#4| $)) (-15 -4194 ((-661 $) (-661 |t#4|))) (-15 -4193 ((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |t#4|)))) (-661 |t#4|))) (-15 -4313 ((-3 |t#4| "failed") $)) (-15 -4310 ((-3 |t#4| "failed") $)) (-15 -4311 ((-3 $ "failed") $)) (-15 -4192 ((-661 |t#3|) $)) (-15 -4445 ((-114) |t#3| $)) (-15 -4222 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4191 ((-3 $ "failed") $ |t#4|)) (-15 -4281 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -4190 ((-791) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-886)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1247) . T)) +((-4217 (($ |#1| (-661 (-661 (-971 (-229)))) (-114)) 19 T ELT)) (-4216 (((-114) $ (-114)) 18 T ELT)) (-4215 (((-114) $) 17 T ELT)) (-4213 (((-661 (-661 (-971 (-229)))) $) 13 T ELT)) (-4212 ((|#1| $) 8 T ELT)) (-4214 (((-114) $) 15 T ELT))) +(((-1243 |#1|) (-10 -8 (-15 -4212 (|#1| $)) (-15 -4213 ((-661 (-661 (-971 (-229)))) $)) (-15 -4214 ((-114) $)) (-15 -4215 ((-114) $)) (-15 -4216 ((-114) $ (-114))) (-15 -4217 ($ |#1| (-661 (-661 (-971 (-229)))) (-114)))) (-1004)) (T -1243)) +((-4217 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-114)) (-5 *1 (-1243 *2)) (-4 *2 (-1004)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-1243 *3)) (-4 *3 (-1004)))) (-4212 (*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1004))))) +(-10 -8 (-15 -4212 (|#1| $)) (-15 -4213 ((-661 (-661 (-971 (-229)))) $)) (-15 -4214 ((-114) $)) (-15 -4215 ((-114) $)) (-15 -4216 ((-114) $ (-114))) (-15 -4217 ($ |#1| (-661 (-661 (-971 (-229)))) (-114)))) +((-4219 (((-971 (-229)) (-971 (-229))) 31 T ELT)) (-4218 (((-971 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4221 (((-661 (-971 (-229))) (-971 (-229)) (-971 (-229)) (-971 (-229)) (-229) (-661 (-661 (-229)))) 57 T ELT)) (-4348 (((-229) (-971 (-229)) (-971 (-229))) 27 T ELT)) (-4346 (((-971 (-229)) (-971 (-229)) (-971 (-229))) 28 T ELT)) (-4220 (((-661 (-661 (-229))) (-558)) 45 T ELT)) (-4349 (((-971 (-229)) (-971 (-229)) (-971 (-229))) 26 T ELT)) (-4351 (((-971 (-229)) (-971 (-229)) (-971 (-229))) 24 T ELT)) (* (((-971 (-229)) (-229) (-971 (-229))) 22 T ELT))) +(((-1244) (-10 -7 (-15 -4218 ((-971 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-971 (-229)) (-229) (-971 (-229)))) (-15 -4351 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4349 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4348 ((-229) (-971 (-229)) (-971 (-229)))) (-15 -4346 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4219 ((-971 (-229)) (-971 (-229)))) (-15 -4220 ((-661 (-661 (-229))) (-558))) (-15 -4221 ((-661 (-971 (-229))) (-971 (-229)) (-971 (-229)) (-971 (-229)) (-229) (-661 (-661 (-229))))))) (T -1244)) +((-4221 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-661 (-661 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 (-971 *4))) (-5 *1 (-1244)) (-5 *3 (-971 *4)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-1244)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) (-4346 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) (-4348 (*1 *2 *3 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) (-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) (-4351 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-971 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) (-4218 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)) (-5 *3 (-229))))) +(-10 -7 (-15 -4218 ((-971 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-971 (-229)) (-229) (-971 (-229)))) (-15 -4351 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4349 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4348 ((-229) (-971 (-229)) (-971 (-229)))) (-15 -4346 ((-971 (-229)) (-971 (-229)) (-971 (-229)))) (-15 -4219 ((-971 (-229)) (-971 (-229)))) (-15 -4220 ((-661 (-661 (-229))) (-558))) (-15 -4221 ((-661 (-971 (-229))) (-971 (-229)) (-971 (-229)) (-971 (-229)) (-229) (-661 (-661 (-229)))))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4222 ((|#1| $ (-791)) 18 T ELT)) (-4345 (((-791) $) 13 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4458 (((-986 |#1|) $) 12 T ELT) (($ (-986 |#1|)) 11 T ELT) (((-886) $) 29 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3536 (((-114) $ $) 22 (|has| |#1| (-1131)) ELT))) +(((-1245 |#1|) (-13 (-502 (-986 |#1|)) (-10 -8 (-15 -4222 (|#1| $ (-791))) (-15 -4345 ((-791) $)) (IF (|has| |#1| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1247)) (T -1245)) +((-4222 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-1245 *2)) (-4 *2 (-1247)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1245 *3)) (-4 *3 (-1247))))) +(-13 (-502 (-986 |#1|)) (-10 -8 (-15 -4222 (|#1| $ (-791))) (-15 -4345 ((-791) $)) (IF (|has| |#1| (-630 (-886))) (-6 (-630 (-886))) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-4225 (((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-558)) 92 T ELT)) (-4223 (((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 84 T ELT)) (-4224 (((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 68 T ELT))) +(((-1246 |#1|) (-10 -7 (-15 -4223 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -4224 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -4225 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-558)))) (-363)) (T -1246)) +((-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1201 (-1201 *5)))) (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5))))) (-4224 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4)))))) +(-10 -7 (-15 -4223 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -4224 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -4225 ((-417 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-558)))) +NIL +(((-1247) (-142)) (T -1247)) +NIL +(-13 (-10 -7 (-6 -2511))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 9 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1248) (-1113)) (T -1248)) +NIL +(-1113) +((-4229 (((-114)) 18 T ELT)) (-4226 (((-1303) (-661 |#1|) (-661 |#1|)) 22 T ELT) (((-1303) (-661 |#1|)) 23 T ELT)) (-4231 (((-114) |#1| |#1|) 37 (|has| |#1| (-870)) ELT)) (-4228 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-4230 ((|#1| (-661 |#1|)) 38 (|has| |#1| (-870)) ELT) ((|#1| (-661 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4227 (((-2 (|:| -3729 (-661 |#1|)) (|:| -3728 (-661 |#1|)))) 20 T ELT))) +(((-1249 |#1|) (-10 -7 (-15 -4226 ((-1303) (-661 |#1|))) (-15 -4226 ((-1303) (-661 |#1|) (-661 |#1|))) (-15 -4227 ((-2 (|:| -3729 (-661 |#1|)) (|:| -3728 (-661 |#1|))))) (-15 -4228 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4228 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4230 (|#1| (-661 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4229 ((-114))) (IF (|has| |#1| (-870)) (PROGN (-15 -4230 (|#1| (-661 |#1|))) (-15 -4231 ((-114) |#1| |#1|))) |%noBranch|)) (-1131)) (T -1249)) +((-4231 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-870)) (-4 *3 (-1131)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-870)) (-5 *1 (-1249 *2)))) (-4229 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2)) (-4 *2 (-1131)))) (-4228 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1131)) (-5 *2 (-114)) (-5 *1 (-1249 *3)))) (-4228 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-4227 (*1 *2) (-12 (-5 *2 (-2 (|:| -3729 (-661 *3)) (|:| -3728 (-661 *3)))) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4))))) +(-10 -7 (-15 -4226 ((-1303) (-661 |#1|))) (-15 -4226 ((-1303) (-661 |#1|) (-661 |#1|))) (-15 -4227 ((-2 (|:| -3729 (-661 |#1|)) (|:| -3728 (-661 |#1|))))) (-15 -4228 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4228 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4230 (|#1| (-661 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4229 ((-114))) (IF (|has| |#1| (-870)) (PROGN (-15 -4230 (|#1| (-661 |#1|))) (-15 -4231 ((-114) |#1| |#1|))) |%noBranch|)) +((-4232 (((-1303) (-661 (-1207)) (-661 (-1207))) 14 T ELT) (((-1303) (-661 (-1207))) 12 T ELT)) (-4234 (((-1303)) 16 T ELT)) (-4233 (((-2 (|:| -3728 (-661 (-1207))) (|:| -3729 (-661 (-1207))))) 20 T ELT))) +(((-1250) (-10 -7 (-15 -4232 ((-1303) (-661 (-1207)))) (-15 -4232 ((-1303) (-661 (-1207)) (-661 (-1207)))) (-15 -4233 ((-2 (|:| -3728 (-661 (-1207))) (|:| -3729 (-661 (-1207)))))) (-15 -4234 ((-1303))))) (T -1250)) +((-4234 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))) (-4233 (*1 *2) (-12 (-5 *2 (-2 (|:| -3728 (-661 (-1207))) (|:| -3729 (-661 (-1207))))) (-5 *1 (-1250)))) (-4232 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))) +(-10 -7 (-15 -4232 ((-1303) (-661 (-1207)))) (-15 -4232 ((-1303) (-661 (-1207)) (-661 (-1207)))) (-15 -4233 ((-2 (|:| -3728 (-661 (-1207))) (|:| -3729 (-661 (-1207)))))) (-15 -4234 ((-1303)))) +((-4287 (($ $) 17 T ELT)) (-4235 (((-114) $) 27 T ELT))) +(((-1251 |#1|) (-10 -8 (-15 -4287 (|#1| |#1|)) (-15 -4235 ((-114) |#1|))) (-1252)) (T -1251)) +NIL +(-10 -8 (-15 -4287 (|#1| |#1|)) (-15 -4235 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 63 T ELT)) (-4483 (((-417 $) $) 64 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4235 (((-114) $) 65 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4244 (((-417 $) $) 62 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1252) (-142)) (T -1252)) +((-4235 (*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114)))) (-4483 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1252)))) (-4287 (*1 *1 *1) (-4 *1 (-1252))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1252))))) +(-13 (-464) (-10 -8 (-15 -4235 ((-114) $)) (-15 -4483 ((-417 $) $)) (-15 -4287 ($ $)) (-15 -4244 ((-417 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-4237 (($ $ $) NIL T ELT)) (-4238 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-1253) (-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464)))) (T -1253)) +((-4238 (*1 *1 *1 *1) (-5 *1 (-1253))) (-4237 (*1 *1 *1 *1) (-5 *1 (-1253))) (-4236 (*1 *1) (-5 *1 (-1253)))) +(-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-4241 (($ $ $) NIL T ELT)) (-4242 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-1256) (-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468)))) (T -1256)) -((-4242 (*1 *1 *1 *1) (-5 *1 (-1256))) (-4241 (*1 *1 *1 *1) (-5 *1 (-1256))) (-4240 (*1 *1) (-5 *1 (-1256)))) -(-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-4237 (($ $ $) NIL T ELT)) (-4238 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-1254) (-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464)))) (T -1254)) +((-4238 (*1 *1 *1 *1) (-5 *1 (-1254))) (-4237 (*1 *1 *1 *1) (-5 *1 (-1254))) (-4236 (*1 *1) (-5 *1 (-1254)))) +(-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-4241 (($ $ $) NIL T ELT)) (-4242 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-1257) (-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468)))) (T -1257)) -((-4242 (*1 *1 *1 *1) (-5 *1 (-1257))) (-4241 (*1 *1 *1 *1) (-5 *1 (-1257))) (-4240 (*1 *1) (-5 *1 (-1257)))) -(-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-4237 (($ $ $) NIL T ELT)) (-4238 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-1255) (-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464)))) (T -1255)) +((-4238 (*1 *1 *1 *1) (-5 *1 (-1255))) (-4237 (*1 *1 *1 *1) (-5 *1 (-1255))) (-4236 (*1 *1) (-5 *1 (-1255)))) +(-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3624 (((-793)) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3481 (($) NIL T ELT)) (-3016 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2234 (((-949) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2645 (($ (-949)) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT)) (-4241 (($ $ $) NIL T ELT)) (-4242 (($ $ $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2538 (($ $ $) NIL T ELT)) (-3051 (((-114) $ $) NIL T ELT)) (-3052 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL T ELT)) (-3172 (((-114) $ $) NIL T ELT)) (-2539 (($ $ $) NIL T ELT))) -(((-1258) (-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468)))) (T -1258)) -((-4242 (*1 *1 *1 *1) (-5 *1 (-1258))) (-4241 (*1 *1 *1 *1) (-5 *1 (-1258))) (-4240 (*1 *1) (-5 *1 (-1258)))) -(-13 (-868) (-684) (-10 -8 (-15 -4242 ($ $ $)) (-15 -4241 ($ $ $)) (-15 -4240 ($) -4468))) +((-3049 (((-114) $ $) NIL T ELT)) (-2536 (($ $) NIL T ELT)) (-3620 (((-791)) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3477 (($) NIL T ELT)) (-3012 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3340 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2230 (((-947) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2641 (($ (-947)) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT)) (-4237 (($ $ $) NIL T ELT)) (-4238 (($ $ $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-3047 (((-114) $ $) NIL T ELT)) (-3048 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL T ELT)) (-3168 (((-114) $ $) NIL T ELT)) (-2535 (($ $ $) NIL T ELT))) +(((-1256) (-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464)))) (T -1256)) +((-4238 (*1 *1 *1 *1) (-5 *1 (-1256))) (-4237 (*1 *1 *1 *1) (-5 *1 (-1256))) (-4236 (*1 *1) (-5 *1 (-1256)))) +(-13 (-866) (-682) (-10 -8 (-15 -4238 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -4236 ($) -4464))) ((|NonNegativeInteger|) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3617 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 10 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2287 (($ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2285 (((-114) $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4287 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) NIL T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-4247 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-4244 (((-3 (-1289 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4245 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4139 (((-560) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-1289 |#1| |#2| |#3|) #2="failed") $) NIL T ELT) (((-3 (-1209) #2#) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) #2#) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT)) (-3660 (((-1289 |#1| |#2| |#3|) $) NIL T ELT) (((-1209) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) ELT)) (-4246 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-1289 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1299 (-1289 |#1| |#2| |#3|)))) (-711 $) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4243 (((-421 (-976 |#1|)) $ (-560)) NIL (|has| |#1| (-571)) ELT) (((-421 (-976 |#1|)) $ (-560) (-560)) NIL (|has| |#1| (-571)) ELT)) (-3481 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3690 (((-114) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-912 (-391))) (|has| |#1| (-376))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-912 (-560))) (|has| |#1| (-376))) ELT)) (-4288 (((-560) $) NIL T ELT) (((-560) $ (-560)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3485 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3951 (((-713 $) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1184)) (|has| |#1| (-376))) ELT)) (-3691 (((-114) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-4293 (($ $ (-949)) NIL T ELT)) (-4331 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-560)) 18 T ELT) (($ $ (-1114) (-560)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-560))) NIL T ELT)) (-3016 (($ $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3344 (($ $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2508 (((-711 (-1289 |#1| |#2| |#3|)) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1299 (-1289 |#1| |#2| |#3|)))) (-1299 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ (-560) (-1289 |#1| |#2| |#3|)) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) 27 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 28 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1184)) (|has| |#1| (-376))) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3616 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3618 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-560)) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1209) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-528 (-1209) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1209)) (-663 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-528 (-1209) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1289 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1289 |#1| |#2| |#3|)) (-663 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-321 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-560)) NIL T ELT) (($ $ $) NIL (|has| (-560) (-1144)) ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-298 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1296 |#2|)) 26 T ELT) (($ $) 25 (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3484 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-4464 (((-560) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4488 (((-549) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-376))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-633 (-916 (-391)))) (|has| |#1| (-376))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-633 (-916 (-560)))) (|has| |#1| (-376))) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1289 |#1| |#2| |#3|)) NIL T ELT) (($ (-1296 |#2|)) 24 T ELT) (($ (-1209)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-1209))) (|has| |#1| (-376))) ELT) (($ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-1070 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-4193 ((|#1| $ (-560)) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 11 T ELT)) (-3619 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-940)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3889 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) ELT)) (-3145 (($) 20 T CONST)) (-3151 (($) 15 T CONST)) (-3156 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1296 |#2|)) NIL T ELT) (($ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1209))) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3051 (((-114) $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3052 (((-114) $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-3171 (((-114) $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-3172 (((-114) $ $) NIL (-4043 (-12 (|has| (-1289 |#1| |#2| |#3|) (-844)) (|has| |#1| (-376))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-872)) (|has| |#1| (-376)))) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 22 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1259 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1289 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1259)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1081)) (-14 *5 *3))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1263 |#1| (-1289 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1296 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-4474 (((-1259 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1259 |#1| |#3| |#5|)) 23 T ELT))) -(((-1260 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4474 ((-1259 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1259 |#1| |#3| |#5|)))) (-1081) (-1081) (-1209) (-1209) |#1| |#2|) (T -1260)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5 *7 *9)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-14 *7 (-1209)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1259 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1209))))) -(-10 -7 (-15 -4474 ((-1259 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1259 |#1| |#3| |#5|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-560)) 121 T ELT) (($ $ (-560) (-560)) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 127 T ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) 188 (|has| |#1| (-376)) ELT)) (-3524 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3996 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 198 T ELT)) (-4000 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-3049 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4243 (((-421 (-976 |#1|)) $ (-560)) 196 (|has| |#1| (-571)) ELT) (((-421 (-976 |#1|)) $ (-560) (-560)) 195 (|has| |#1| (-571)) ELT)) (-3048 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 176 (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) 91 T ELT)) (-4143 (($) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-560) $) 123 T ELT) (((-560) $ (-560)) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) 124 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 197 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 185 (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| (-560)) 78 T ELT) (($ $ (-1114) (-560)) 94 T ELT) (($ $ (-663 (-1114)) (-663 (-560))) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4458 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-2116 (($ (-663 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 193 (-4043 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 175 (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) 186 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-560)) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 177 (|has| |#1| (-376)) ELT)) (-4459 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-1799 (((-793) $) 179 (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-560)) 128 T ELT) (($ $ $) 104 (|has| (-560) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 116 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209))) 114 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209) (-793)) 113 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 106 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-4464 (((-560) $) 81 T ELT)) (-4001 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-560)) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-560)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1209)) 115 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209))) 111 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209) (-793)) 110 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 105 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1261 |#1|) (-142) (-1081)) (T -1261)) -((-4334 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1081)) (-4 *1 (-1261 *3)))) (-4331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1261 *3)) (-4 *3 (-1081)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1261 *4)) (-4 *4 (-1081)) (-4 *4 (-571)) (-5 *2 (-421 (-976 *4))))) (-4243 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1261 *4)) (-4 *4 (-1081)) (-4 *4 (-571)) (-5 *2 (-421 (-976 *4))))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) (-4328 (*1 *1 *1 *2) (-4043 (-12 (-5 *2 (-1209)) (-4 *1 (-1261 *3)) (-4 *3 (-1081)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1209)) (-4 *1 (-1261 *3)) (-4 *3 (-1081)) (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))) -(-13 (-1278 |t#1| (-560)) (-10 -8 (-15 -4334 ($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))))) (-15 -4331 ($ (-1 |t#1| (-560)) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -4243 ((-421 (-976 |t#1|)) $ (-560))) (-15 -4243 ((-421 (-976 |t#1|)) $ (-560) (-560)))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $)) (IF (|has| |t#1| (-15 -4328 (|t#1| |t#1| (-1209)))) (IF (|has| |t#1| (-15 -3570 ((-663 (-1209)) |t#1|))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1235)) (IF (|has| |t#1| (-990)) (IF (|has| |t#1| (-29 (-560))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1034)) (-6 (-1235))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-560)) . T) ((-25) . T) ((-38 #2=(-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-560) (-1144)) ((-302) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-922 $ #3=(-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-930 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-1005 |#1| #1# (-1114)) . T) ((-951) |has| |#1| (-376)) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1083 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1088 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T) ((-1254) |has| |#1| (-376)) ((-1278 |#1| #1#) . T)) -((-3692 (((-114) $) 12 T ELT)) (-3661 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1209) #1#) $) NIL T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT)) (-3660 ((|#3| $) 14 T ELT) (((-1209) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT))) -(((-1262 |#1| |#2| |#3|) (-10 -8 (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -3661 ((-3 |#3| #1#) |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3692 ((-114) |#1|))) (-1263 |#2| |#3|) (-1081) (-1292 |#2|)) (T -1262)) -NIL -(-10 -8 (-15 -3661 ((-3 (-560) #1="failed") |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3661 ((-3 (-1209) #1#) |#1|)) (-15 -3660 ((-1209) |#1|)) (-15 -3661 ((-3 |#3| #1#) |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3692 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3617 ((|#2| $) 263 (-3047 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-560)) 121 T ELT) (($ $ (-560) (-560)) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 127 T ELT)) (-4247 ((|#2| $) 299 T ELT)) (-4244 (((-3 |#2| "failed") $) 295 T ELT)) (-4245 ((|#2| $) 296 T ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 272 (-3047 (|has| |#2| (-940)) (|has| |#1| (-376))) ELT)) (-4291 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) 188 (|has| |#1| (-376)) ELT)) (-3524 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 269 (-3047 (|has| |#2| (-940)) (|has| |#1| (-376))) ELT)) (-1800 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3996 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4139 (((-560) $) 281 (-3047 (|has| |#2| (-844)) (|has| |#1| (-376))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 198 T ELT)) (-4000 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-560) #2#) $) 292 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) #2#) $) 290 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-1209) #2#) $) 274 (-3047 (|has| |#2| (-1070 (-1209))) (|has| |#1| (-376))) ELT)) (-3660 ((|#2| $) 303 T ELT) (((-560) $) 291 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) 289 (-3047 (|has| |#2| (-1070 (-560))) (|has| |#1| (-376))) ELT) (((-1209) $) 273 (-3047 (|has| |#2| (-1070 (-1209))) (|has| |#1| (-376))) ELT)) (-4246 (($ $) 298 T ELT) (($ (-560) $) 297 T ELT)) (-3049 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4475 (($ $) 77 T ELT)) (-2507 (((-711 |#2|) (-711 $)) 251 (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) 250 (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 249 (-3047 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) 248 (-3047 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4243 (((-421 (-976 |#1|)) $ (-560)) 196 (|has| |#1| (-571)) ELT) (((-421 (-976 |#1|)) $ (-560) (-560)) 195 (|has| |#1| (-571)) ELT)) (-3481 (($) 265 (-3047 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3048 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 176 (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3690 (((-114) $) 279 (-3047 (|has| |#2| (-844)) (|has| |#1| (-376))) ELT)) (-3379 (((-114) $) 91 T ELT)) (-4143 (($) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 257 (-3047 (|has| |#2| (-912 (-391))) (|has| |#1| (-376))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 256 (-3047 (|has| |#2| (-912 (-560))) (|has| |#1| (-376))) ELT)) (-4288 (((-560) $) 123 T ELT) (((-560) $ (-560)) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3483 (($ $) 261 (|has| |#1| (-376)) ELT)) (-3485 ((|#2| $) 259 (|has| |#1| (-376)) ELT)) (-3498 (($ $ (-560)) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3951 (((-713 $) $) 293 (-3047 (|has| |#2| (-1184)) (|has| |#1| (-376))) ELT)) (-3691 (((-114) $) 280 (-3047 (|has| |#2| (-844)) (|has| |#1| (-376))) ELT)) (-4293 (($ $ (-949)) 124 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 197 T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) 185 (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| (-560)) 78 T ELT) (($ $ (-1114) (-560)) 94 T ELT) (($ $ (-663 (-1114)) (-663 (-560))) 93 T ELT)) (-3016 (($ $ $) 288 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-3344 (($ $ $) 287 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-376)) ELT)) (-4458 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2508 (((-711 |#2|) (-1299 $)) 253 (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) 252 (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 247 (-3047 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1299 $)) 246 (-3047 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-2116 (($ (-663 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4295 (($ (-560) |#2|) 300 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 193 (-4043 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3952 (($) 294 (-3047 (|has| |#2| (-1184)) (|has| |#1| (-376))) CONST)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 175 (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3616 (($ $) 264 (-3047 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3618 ((|#2| $) 267 (-3047 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 270 (-3047 (|has| |#2| (-940)) (|has| |#1| (-376))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 271 (-3047 (|has| |#2| (-940)) (|has| |#1| (-376))) ELT)) (-4248 (((-419 $) $) 186 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-560)) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 177 (|has| |#1| (-376)) ELT)) (-4459 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1209) |#2|) 240 (-3047 (|has| |#2| (-528 (-1209) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1209)) (-663 |#2|)) 239 (-3047 (|has| |#2| (-528 (-1209) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 |#2|))) 238 (-3047 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 237 (-3047 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 236 (-3047 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 235 (-3047 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1799 (((-793) $) 179 (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-560)) 128 T ELT) (($ $ $) 104 (|has| (-560) (-1144)) ELT) (($ $ |#2|) 234 (-3047 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) 243 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-376)) ELT) (($ $) 108 (-4043 (-3047 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 106 (-4043 (-3047 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) 116 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) 114 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) 113 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3482 (($ $) 262 (|has| |#1| (-376)) ELT)) (-3484 ((|#2| $) 260 (|has| |#1| (-376)) ELT)) (-4464 (((-560) $) 81 T ELT)) (-4001 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4488 (((-229) $) 278 (-3047 (|has| |#2| (-1052)) (|has| |#1| (-376))) ELT) (((-391) $) 277 (-3047 (|has| |#2| (-1052)) (|has| |#1| (-376))) ELT) (((-549) $) 276 (-3047 (|has| |#2| (-633 (-549))) (|has| |#1| (-376))) ELT) (((-916 (-391)) $) 255 (-3047 (|has| |#2| (-633 (-916 (-391)))) (|has| |#1| (-376))) ELT) (((-916 (-560)) $) 254 (-3047 (|has| |#2| (-633 (-916 (-560)))) (|has| |#1| (-376))) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 268 (-3047 (-3047 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#1| (-376))) ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 301 T ELT) (($ (-1209)) 275 (-3047 (|has| |#2| (-1070 (-1209))) (|has| |#1| (-376))) ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-560)) 76 T ELT)) (-3189 (((-713 $) $) 65 (-4043 (-3047 (-4043 (|has| |#2| (-147)) (-3047 (|has| $ (-147)) (|has| |#2| (-940)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-3619 ((|#2| $) 266 (-3047 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-560)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3889 (($ $) 282 (-3047 (|has| |#2| (-844)) (|has| |#1| (-376))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) 245 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-376)) ELT) (($ $) 107 (-4043 (-3047 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 105 (-4043 (-3047 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) 115 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209))) 111 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1209) (-793)) 110 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-4043 (-3047 (|has| |#2| (-930 (-1209))) (|has| |#1| (-376))) (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3051 (((-114) $ $) 286 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-3052 (((-114) $ $) 284 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-3171 (((-114) $ $) 285 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-3172 (((-114) $ $) 283 (-3047 (|has| |#2| (-872)) (|has| |#1| (-376))) ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-376)) ELT) (($ |#2| $) 232 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1263 |#1| |#2|) (-142) (-1081) (-1292 |t#1|)) (T -1263)) -((-4464 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1292 *3)) (-5 *2 (-560)))) (-4295 (*1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *4 (-1081)) (-4 *1 (-1263 *4 *3)) (-4 *3 (-1292 *4)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1292 *2)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1292 *3)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3)))) (-4244 (*1 *2 *1) (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3))))) -(-13 (-1261 |t#1|) (-1070 |t#2|) (-635 |t#2|) (-10 -8 (-15 -4295 ($ (-560) |t#2|)) (-15 -4464 ((-560) $)) (-15 -4247 (|t#2| $)) (-15 -4246 ($ $)) (-15 -4246 ($ (-560) $)) (-15 -4245 (|t#2| $)) (-15 -4244 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1023 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-560)) . T) ((-25) . T) ((-38 #2=(-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-635 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #3=(-1209)) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1052))) ((-633 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1052))) ((-633 (-549)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-549)))) ((-633 (-916 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-391))))) ((-633 (-916 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-560))))) ((-236 $) -4043 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -4043 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-239) -4043 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #1# |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-560) (-1144)) ((-302) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-414 |#2|) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 (-1209) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1209) |#2|))) ((-528 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-571) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-670 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 #4=(-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-670 |#1|) . T) ((-670 |#2|) |has| |#1| (-376)) ((-670 $) . T) ((-662 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 |#2|) |has| |#1| (-376)) ((-662 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-660 #4#) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-660 |#2|) |has| |#1| (-376)) ((-739 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 |#2|) |has| |#1| (-376)) ((-739 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-818) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-821) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-844) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-871) -12 (|has| |#1| (-376)) (|has| |#2| (-844))) ((-872) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) (-12 (|has| |#1| (-376)) (|has| |#2| (-844)))) ((-875) -4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) (-12 (|has| |#1| (-376)) (|has| |#2| (-844)))) ((-922 $ #5=(-1209)) -4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209))))) ((-928 (-1209)) -4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209))))) ((-930 #5#) -4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1209))))) ((-912 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-912 (-391)))) ((-912 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-912 (-560)))) ((-910 |#2|) |has| |#1| (-376)) ((-940) -12 (|has| |#1| (-376)) (|has| |#2| (-940))) ((-1005 |#1| #1# (-1114)) . T) ((-951) |has| |#1| (-376)) ((-1023 |#2|) |has| |#1| (-376)) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1052) -12 (|has| |#1| (-376)) (|has| |#2| (-1052))) ((-1070 (-421 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ((-1070 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ((-1070 #3#) -12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) ((-1070 |#2|) . T) ((-1083 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1083 |#1|) . T) ((-1083 |#2|) |has| |#1| (-376)) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1088 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1088 |#1|) . T) ((-1088 |#2|) |has| |#1| (-376)) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) -12 (|has| |#1| (-376)) (|has| |#2| (-1184))) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T) ((-1254) |has| |#1| (-376)) ((-1261 |#1|) . T) ((-1278 |#1| #1#) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 83 T ELT)) (-3617 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 102 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-560)) 111 T ELT) (($ $ (-560) (-560)) 114 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 51 T ELT)) (-4247 ((|#2| $) 11 T ELT)) (-4244 (((-3 |#2| "failed") $) 35 T ELT)) (-4245 ((|#2| $) 36 T ELT)) (-3998 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-940))) ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-940))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4139 (((-560) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 59 T ELT)) (-4000 (($ $) 212 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) 159 T ELT) (((-3 (-560) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ELT) (((-3 (-421 (-560)) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ELT) (((-3 (-1209) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) ELT)) (-3660 ((|#2| $) 158 T ELT) (((-560) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-560)))) ELT) (((-1209) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) ELT)) (-4246 (($ $) 65 T ELT) (($ (-560) $) 28 T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 |#2|) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ELT)) (-3973 (((-3 $ "failed") $) 90 T ELT)) (-4243 (((-421 (-976 |#1|)) $ (-560)) 126 (|has| |#1| (-571)) ELT) (((-421 (-976 |#1|)) $ (-560) (-560)) 128 (|has| |#1| (-571)) ELT)) (-3481 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-559))) ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3690 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) ELT)) (-3379 (((-114) $) 76 T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-912 (-560)))) ELT)) (-4288 (((-560) $) 107 T ELT) (((-560) $ (-560)) 109 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3483 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3485 ((|#2| $) 167 (|has| |#1| (-376)) ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3951 (((-713 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1184))) ELT)) (-3691 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) ELT)) (-4293 (($ $ (-949)) 150 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 146 T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-560)) 20 T ELT) (($ $ (-1114) (-560)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-560))) NIL T ELT)) (-3016 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-3344 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-4458 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2508 (((-711 |#2|) (-1299 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ELT) (((-711 (-560)) (-1299 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ (-560) |#2|) 10 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 161 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 230 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 235 (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT)) (-3952 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1184))) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3616 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3618 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-559))) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-940))) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-940))) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-560)) 140 T ELT)) (-3972 (((-3 $ "failed") $ $) 130 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1209) |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1209) |#2|))) ELT) (($ $ (-663 (-1209)) (-663 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1209) |#2|))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-560)) 105 T ELT) (($ $ $) 92 (|has| (-560) (-1144)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 151 (-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) 155 (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3484 ((|#2| $) 168 (|has| |#1| (-376)) ELT)) (-4464 (((-560) $) 12 T ELT)) (-4001 (($ $) 214 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4488 (((-229) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1052))) ELT) (((-391) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1052))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-633 (-549)))) ELT) (((-916 (-391)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-633 (-916 (-560))))) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-940))) ELT)) (-3378 (($ $) 138 T ELT)) (-4462 (((-888) $) 268 T ELT) (($ (-560)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1209)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1070 (-1209)))) ELT) (($ (-421 (-560))) 171 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-560)) 87 T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-940))) (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) ELT)) (-3614 (((-793)) 157 T CONST)) (-4289 ((|#1| $) 104 T ELT)) (-3619 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-559))) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 220 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) 216 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 224 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-560)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 226 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 222 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 218 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3889 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-844))) ELT)) (-3145 (($) 13 T CONST)) (-3151 (($) 18 T CONST)) (-3156 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-4043 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-663 (-1209))) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-1209) (-793)) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-4043 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-930 (-1209))))) ELT)) (-3051 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-3052 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-3540 (((-114) $ $) 74 T ELT)) (-3171 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-3172 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-872))) ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 165 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-4355 (($ $ $) 78 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 86 T ELT) (($ $ (-560)) 162 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-376)) ELT) (($ |#2| $) 163 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1264 |#1| |#2|) (-1263 |#1| |#2|) (-1081) (-1292 |#1|)) (T -1264)) -NIL -(-1263 |#1| |#2|) -((-4250 (((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114)) 13 T ELT)) (-4249 (((-419 |#1|) |#1|) 26 T ELT)) (-4248 (((-419 |#1|) |#1|) 24 T ELT))) -(((-1265 |#1|) (-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1|)) (-15 -4250 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114)))) (-1275 (-560))) (T -1265)) -((-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560))))) (-4249 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560))))) (-4248 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560)))))) -(-10 -7 (-15 -4248 ((-419 |#1|) |#1|)) (-15 -4249 ((-419 |#1|) |#1|)) (-15 -4250 ((-2 (|:| |contp| (-560)) (|:| -2001 (-663 (-2 (|:| |irr| |#1|) (|:| -2640 (-560)))))) |#1| (-114)))) -((-3053 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4252 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4474 (((-1187 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-871)) ELT)) (-3733 ((|#1| $) 15 T ELT)) (-3735 ((|#1| $) 12 T ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-3731 (((-560) $) 19 T ELT)) (-3732 ((|#1| $) 18 T ELT)) (-3734 ((|#1| $) 13 T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4251 (((-114) $) 17 T ELT)) (-4479 (((-1187 |#1|) $) 41 (|has| |#1| (-871)) ELT) (((-1187 |#1|) (-663 $)) 40 (|has| |#1| (-871)) ELT)) (-4488 (($ |#1|) 26 T ELT)) (-4462 (($ (-1121 |#1|)) 25 T ELT) (((-888) $) 37 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-1133)) ELT)) (-4253 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3736 (($ $ (-560)) 14 T ELT)) (-3540 (((-114) $ $) 30 (|has| |#1| (-1133)) ELT))) -(((-1266 |#1|) (-13 (-1126 |#1|) (-10 -8 (-15 -4253 ($ |#1|)) (-15 -4252 ($ |#1|)) (-15 -4462 ($ (-1121 |#1|))) (-15 -4251 ((-114) $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-1127 |#1| (-1187 |#1|))) |%noBranch|))) (-1249)) (T -1266)) -((-4253 (*1 *1 *2) (-12 (-5 *1 (-1266 *2)) (-4 *2 (-1249)))) (-4252 (*1 *1 *2) (-12 (-5 *1 (-1266 *2)) (-4 *2 (-1249)))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1121 *3)) (-4 *3 (-1249)) (-5 *1 (-1266 *3)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1266 *3)) (-4 *3 (-1249))))) -(-13 (-1126 |#1|) (-10 -8 (-15 -4253 ($ |#1|)) (-15 -4252 ($ |#1|)) (-15 -4462 ($ (-1121 |#1|))) (-15 -4251 ((-114) $)) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-871)) (-6 (-1127 |#1| (-1187 |#1|))) |%noBranch|))) -((-4474 (((-1187 |#2|) (-1 |#2| |#1|) (-1266 |#1|)) 23 (|has| |#1| (-871)) ELT) (((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|)) 17 T ELT))) -(((-1267 |#1| |#2|) (-10 -7 (-15 -4474 ((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) (IF (|has| |#1| (-871)) (-15 -4474 ((-1187 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) |%noBranch|)) (-1249) (-1249)) (T -1267)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-871)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1187 *6)) (-5 *1 (-1267 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1266 *6)) (-5 *1 (-1267 *5 *6))))) -(-10 -7 (-15 -4474 ((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) (IF (|has| |#1| (-871)) (-15 -4474 ((-1187 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) |%noBranch|)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4283 (((-1299 |#2|) $ (-793)) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4281 (($ (-1203 |#2|)) NIL T ELT)) (-3572 (((-1203 $) $ (-1114)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1114))) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4271 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4291 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-1800 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4277 (($ $ (-793)) NIL T ELT)) (-4276 (($ $ (-793)) NIL T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-466)) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-421 (-560)) #2#) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-3 (-1114) #2#) $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1070 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1070 (-560))) ELT) (((-1114) $) NIL T ELT)) (-4272 (($ $ $ (-1114)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-3049 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-2507 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-711 $) (-1299 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-3048 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4275 (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-4268 (((-2 (|:| -4470 |#2|) (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-4009 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#2| (-466)) ELT)) (-3305 (((-663 $) $) NIL T ELT)) (-4239 (((-114) $) NIL (|has| |#2| (-940)) ELT)) (-1816 (($ $ |#2| (-793) $) NIL T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) NIL (-12 (|has| (-1114) (-912 (-391))) (|has| |#2| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) NIL (-12 (|has| (-1114) (-912 (-560))) (|has| |#2| (-912 (-560)))) ELT)) (-4288 (((-793) $ $) NIL (|has| |#2| (-571)) ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3951 (((-713 $) $) NIL (|has| |#2| (-1184)) ELT)) (-3573 (($ (-1203 |#2|) (-1114)) NIL T ELT) (($ (-1203 $) (-1114)) NIL T ELT)) (-4293 (($ $ (-793)) NIL T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#2| (-793)) 18 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1114)) NIL T ELT) (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL T ELT)) (-3307 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-1817 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4282 (((-1203 |#2|) $) NIL T ELT)) (-3571 (((-3 (-1114) #4="failed") $) NIL T ELT)) (-2508 (((-711 (-560)) (-1299 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#2|)) (|:| |vec| (-1299 |#2|))) (-1299 $) $) NIL T ELT) (((-711 |#2|) (-1299 $)) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) NIL T ELT)) (-3310 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3309 (((-3 (-663 $) #4#) $) NIL T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1114)) (|:| -2646 (-793))) #4#) $) NIL T ELT)) (-4328 (($ $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT)) (-3952 (($) NIL (|has| |#2| (-1184)) CONST)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 ((|#2| $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-4254 (($ $ (-793) |#2| $) NIL T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-940)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#2| (-940)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3972 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-4284 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1114) |#2|) NIL T ELT) (($ $ (-663 (-1114)) (-663 |#2|)) NIL T ELT) (($ $ (-1114) $) NIL T ELT) (($ $ (-663 (-1114)) (-663 $)) NIL T ELT)) (-1799 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-4316 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#2| (-571)) ELT) ((|#2| (-421 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#2| (-571)) ELT)) (-4280 (((-3 $ #5="failed") $ (-793)) NIL T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4273 (($ $ (-1114)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-4464 (((-793) $) NIL T ELT) (((-793) $ (-1114)) NIL T ELT) (((-663 (-793)) $ (-663 (-1114))) NIL T ELT)) (-4488 (((-916 (-391)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-391)))) (|has| |#2| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) NIL (-12 (|has| (-1114) (-633 (-916 (-560)))) (|has| |#2| (-633 (-916 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1114) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1114)) NIL (|has| |#2| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-940))) ELT)) (-4270 (((-3 $ #5#) $ $) NIL (|has| |#2| (-571)) ELT) (((-3 (-421 $) #5#) (-421 $) $) NIL (|has| |#2| (-571)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1114)) NIL T ELT) (($ (-1296 |#1|)) 20 T ELT) (($ (-421 (-560))) NIL (-4043 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1070 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-793)) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3189 (((-713 $) $) NIL (-4043 (-12 (|has| $ (-147)) (|has| |#2| (-940))) (|has| |#2| (-147))) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) 14 T CONST)) (-3156 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1209)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) NIL (|has| |#2| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (|has| |#2| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1268 |#1| |#2|) (-13 (-1275 |#2|) (-635 (-1296 |#1|)) (-10 -8 (-15 -4254 ($ $ (-793) |#2| $)))) (-1209) (-1081)) (T -1268)) -((-4254 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1268 *4 *3)) (-14 *4 (-1209)) (-4 *3 (-1081))))) -(-13 (-1275 |#2|) (-635 (-1296 |#1|)) (-10 -8 (-15 -4254 ($ $ (-793) |#2| $)))) -((-4474 (((-1268 |#3| |#4|) (-1 |#4| |#2|) (-1268 |#1| |#2|)) 15 T ELT))) -(((-1269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 ((-1268 |#3| |#4|) (-1 |#4| |#2|) (-1268 |#1| |#2|)))) (-1209) (-1081) (-1209) (-1081)) (T -1269)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1268 *5 *6)) (-14 *5 (-1209)) (-4 *6 (-1081)) (-4 *8 (-1081)) (-5 *2 (-1268 *7 *8)) (-5 *1 (-1269 *5 *6 *7 *8)) (-14 *7 (-1209))))) -(-10 -7 (-15 -4474 ((-1268 |#3| |#4|) (-1 |#4| |#2|) (-1268 |#1| |#2|)))) -((-4257 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4255 ((|#1| |#3|) 13 T ELT)) (-4256 ((|#3| |#3|) 19 T ELT))) -(((-1270 |#1| |#2| |#3|) (-10 -7 (-15 -4255 (|#1| |#3|)) (-15 -4256 (|#3| |#3|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1023 |#1|) (-1275 |#2|)) (T -1270)) -((-4257 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1270 *4 *5 *3)) (-4 *3 (-1275 *5)))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1023 *3)) (-5 *1 (-1270 *3 *4 *2)) (-4 *2 (-1275 *4)))) (-4255 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-1270 *2 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -4255 (|#1| |#3|)) (-15 -4256 (|#3| |#3|)) (-15 -4257 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4259 (((-3 |#2| "failed") |#2| (-793) |#1|) 35 T ELT)) (-4258 (((-3 |#2| "failed") |#2| (-793)) 36 T ELT)) (-4261 (((-3 (-2 (|:| -3626 |#2|) (|:| -3625 |#2|)) "failed") |#2|) 50 T ELT)) (-4262 (((-663 |#2|) |#2|) 52 T ELT)) (-4260 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) -(((-1271 |#1| |#2|) (-10 -7 (-15 -4258 ((-3 |#2| "failed") |#2| (-793))) (-15 -4259 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -4260 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4261 ((-3 (-2 (|:| -3626 |#2|) (|:| -3625 |#2|)) "failed") |#2|)) (-15 -4262 ((-663 |#2|) |#2|))) (-13 (-571) (-149)) (-1275 |#1|)) (T -1271)) -((-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3)) (-5 *1 (-1271 *4 *3)) (-4 *3 (-1275 *4)))) (-4261 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| -3626 *3) (|:| -3625 *3))) (-5 *1 (-1271 *4 *3)) (-4 *3 (-1275 *4)))) (-4260 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1275 *3)))) (-4259 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1271 *4 *2)) (-4 *2 (-1275 *4)))) (-4258 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1271 *4 *2)) (-4 *2 (-1275 *4))))) -(-10 -7 (-15 -4258 ((-3 |#2| "failed") |#2| (-793))) (-15 -4259 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -4260 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4261 ((-3 (-2 (|:| -3626 |#2|) (|:| -3625 |#2|)) "failed") |#2|)) (-15 -4262 ((-663 |#2|) |#2|))) -((-4263 (((-3 (-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1272 |#1| |#2|) (-10 -7 (-15 -4263 ((-3 (-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) "failed") |#2| |#2|))) (-571) (-1275 |#1|)) (T -1272)) -((-4263 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-1272 *4 *3)) (-4 *3 (-1275 *4))))) -(-10 -7 (-15 -4263 ((-3 (-2 (|:| -2198 |#2|) (|:| -3389 |#2|)) "failed") |#2| |#2|))) -((-4264 ((|#2| |#2| |#2|) 22 T ELT)) (-4265 ((|#2| |#2| |#2|) 36 T ELT)) (-4266 ((|#2| |#2| |#2| (-793) (-793)) 44 T ELT))) -(((-1273 |#1| |#2|) (-10 -7 (-15 -4264 (|#2| |#2| |#2|)) (-15 -4265 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2| |#2| (-793) (-793)))) (-1081) (-1275 |#1|)) (T -1273)) -((-4266 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-1273 *4 *2)) (-4 *2 (-1275 *4)))) (-4265 (*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1275 *3)))) (-4264 (*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1275 *3))))) -(-10 -7 (-15 -4264 (|#2| |#2| |#2|)) (-15 -4265 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2| |#2| (-793) (-793)))) -((-4283 (((-1299 |#2|) $ (-793)) 129 T ELT)) (-3570 (((-663 (-1114)) $) 16 T ELT)) (-4281 (($ (-1203 |#2|)) 80 T ELT)) (-3306 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1114))) 21 T ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 216 T ELT)) (-4291 (($ $) 206 T ELT)) (-4487 (((-419 $) $) 204 T ELT)) (-3191 (((-3 (-663 (-1203 $)) "failed") (-663 (-1203 $)) (-1203 $)) 95 T ELT)) (-4277 (($ $ (-793)) 84 T ELT)) (-4276 (($ $ (-793)) 86 T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3661 (((-3 |#2| #1="failed") $) 132 T ELT) (((-3 (-421 (-560)) #1#) $) NIL T ELT) (((-3 (-560) #1#) $) NIL T ELT) (((-3 (-1114) #1#) $) NIL T ELT)) (-3660 ((|#2| $) 130 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) (((-1114) $) NIL T ELT)) (-4269 (($ $ $) 182 T ELT)) (-4268 (((-2 (|:| -4470 |#2|) (|:| -2198 $) (|:| -3389 $)) $ $) 184 T ELT)) (-4288 (((-793) $ $) 201 T ELT)) (-3951 (((-713 $) $) 149 T ELT)) (-3380 (($ |#2| (-793)) NIL T ELT) (($ $ (-1114) (-793)) 59 T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-3307 (((-793) $) NIL T ELT) (((-793) $ (-1114)) 54 T ELT) (((-663 (-793)) $ (-663 (-1114))) 55 T ELT)) (-4282 (((-1203 |#2|) $) 72 T ELT)) (-3571 (((-3 (-1114) "failed") $) 52 T ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) 83 T ELT)) (-4328 (($ $) 231 T ELT)) (-3952 (($) 134 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 213 T ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 101 T ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 99 T ELT)) (-4248 (((-419 $) $) 120 T ELT)) (-4284 (($ $ (-663 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1114) |#2|) 39 T ELT) (($ $ (-663 (-1114)) (-663 |#2|)) 36 T ELT) (($ $ (-1114) $) 32 T ELT) (($ $ (-663 (-1114)) (-663 $)) 30 T ELT)) (-1799 (((-793) $) 219 T ELT)) (-4316 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) 176 T ELT) ((|#2| (-421 $) |#2|) 218 T ELT) (((-421 $) $ (-421 $)) 200 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 224 T ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114))) NIL T ELT) (($ $ (-1114)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1209)) NIL T ELT) (($ $ (-663 (-1209))) NIL T ELT) (($ $ (-1209) (-793)) NIL T ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL T ELT)) (-4464 (((-793) $) NIL T ELT) (((-793) $ (-1114)) 17 T ELT) (((-663 (-793)) $ (-663 (-1114))) 23 T ELT)) (-3304 ((|#2| $) NIL T ELT) (($ $ (-1114)) 151 T ELT)) (-4270 (((-3 $ "failed") $ $) 192 T ELT) (((-3 (-421 $) "failed") (-421 $) $) 188 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1114)) 64 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT))) -(((-1274 |#1| |#2|) (-10 -8 (-15 -4462 (|#1| |#1|)) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -4316 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -1799 ((-793) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -4316 (|#2| (-421 |#1|) |#2|)) (-15 -4267 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4268 ((-2 (|:| -4470 |#2|) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4270 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -4270 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4288 ((-793) |#1| |#1|)) (-15 -4316 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4276 (|#1| |#1| (-793))) (-15 -4277 (|#1| |#1| (-793))) (-15 -4278 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| (-793))) (-15 -4281 (|#1| (-1203 |#2|))) (-15 -4282 ((-1203 |#2|) |#1|)) (-15 -4283 ((-1299 |#2|) |#1| (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4316 (|#1| |#1| |#1|)) (-15 -4316 (|#2| |#1| |#2|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3194 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3304 (|#1| |#1| (-1114))) (-15 -3570 ((-663 (-1114)) |#1|)) (-15 -3306 ((-793) |#1| (-663 (-1114)))) (-15 -3306 ((-793) |#1|)) (-15 -3380 (|#1| |#1| (-663 (-1114)) (-663 (-793)))) (-15 -3380 (|#1| |#1| (-1114) (-793))) (-15 -3307 ((-663 (-793)) |#1| (-663 (-1114)))) (-15 -3307 ((-793) |#1| (-1114))) (-15 -3571 ((-3 (-1114) "failed") |#1|)) (-15 -4464 ((-663 (-793)) |#1| (-663 (-1114)))) (-15 -4464 ((-793) |#1| (-1114))) (-15 -4462 (|#1| (-1114))) (-15 -3661 ((-3 (-1114) #1="failed") |#1|)) (-15 -3660 ((-1114) |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1114)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-1114) |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1114)) (-663 |#2|))) (-15 -4284 (|#1| |#1| (-1114) |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4464 ((-793) |#1|)) (-15 -3380 (|#1| |#2| (-793))) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3307 ((-793) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -4274 (|#1| |#1| (-1114))) (-15 -4274 (|#1| |#1| (-663 (-1114)))) (-15 -4274 (|#1| |#1| (-1114) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1114)) (-663 (-793)))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) (-1275 |#2|) (-1081)) (T -1274)) -NIL -(-10 -8 (-15 -4462 (|#1| |#1|)) (-15 -3195 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -4274 (|#1| |#1| (-663 (-1209)) (-663 (-793)))) (-15 -4274 (|#1| |#1| (-1209) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1209)))) (-15 -4274 (|#1| |#1| (-1209))) (-15 -4487 ((-419 |#1|) |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -3952 (|#1|)) (-15 -3951 ((-713 |#1|) |#1|)) (-15 -4316 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -1799 ((-793) |#1|)) (-15 -3366 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -4316 (|#2| (-421 |#1|) |#2|)) (-15 -4267 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4268 ((-2 (|:| -4470 |#2|) (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4270 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -4270 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4288 ((-793) |#1| |#1|)) (-15 -4316 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4276 (|#1| |#1| (-793))) (-15 -4277 (|#1| |#1| (-793))) (-15 -4278 ((-2 (|:| -2198 |#1|) (|:| -3389 |#1|)) |#1| (-793))) (-15 -4281 (|#1| (-1203 |#2|))) (-15 -4282 ((-1203 |#2|) |#1|)) (-15 -4283 ((-1299 |#2|) |#1| (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -4274 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4274 (|#1| |#1| (-793))) (-15 -4274 (|#1| |#1|)) (-15 -4316 (|#1| |#1| |#1|)) (-15 -4316 (|#2| |#1| |#2|)) (-15 -4248 ((-419 |#1|) |#1|)) (-15 -3194 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3193 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3192 ((-419 (-1203 |#1|)) (-1203 |#1|))) (-15 -3191 ((-3 (-663 (-1203 |#1|)) "failed") (-663 (-1203 |#1|)) (-1203 |#1|))) (-15 -3304 (|#1| |#1| (-1114))) (-15 -3570 ((-663 (-1114)) |#1|)) (-15 -3306 ((-793) |#1| (-663 (-1114)))) (-15 -3306 ((-793) |#1|)) (-15 -3380 (|#1| |#1| (-663 (-1114)) (-663 (-793)))) (-15 -3380 (|#1| |#1| (-1114) (-793))) (-15 -3307 ((-663 (-793)) |#1| (-663 (-1114)))) (-15 -3307 ((-793) |#1| (-1114))) (-15 -3571 ((-3 (-1114) "failed") |#1|)) (-15 -4464 ((-663 (-793)) |#1| (-663 (-1114)))) (-15 -4464 ((-793) |#1| (-1114))) (-15 -4462 (|#1| (-1114))) (-15 -3661 ((-3 (-1114) #1="failed") |#1|)) (-15 -3660 ((-1114) |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1114)) (-663 |#1|))) (-15 -4284 (|#1| |#1| (-1114) |#1|)) (-15 -4284 (|#1| |#1| (-663 (-1114)) (-663 |#2|))) (-15 -4284 (|#1| |#1| (-1114) |#2|)) (-15 -4284 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4284 (|#1| |#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| (-305 |#1|))) (-15 -4284 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4464 ((-793) |#1|)) (-15 -3380 (|#1| |#2| (-793))) (-15 -3661 ((-3 (-560) #1#) |#1|)) (-15 -3660 ((-560) |#1|)) (-15 -3661 ((-3 (-421 (-560)) #1#) |#1|)) (-15 -3660 ((-421 (-560)) |#1|)) (-15 -3660 (|#2| |#1|)) (-15 -3661 ((-3 |#2| #1#) |#1|)) (-15 -4462 (|#1| |#2|)) (-15 -3307 ((-793) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -4274 (|#1| |#1| (-1114))) (-15 -4274 (|#1| |#1| (-663 (-1114)))) (-15 -4274 (|#1| |#1| (-1114) (-793))) (-15 -4274 (|#1| |#1| (-663 (-1114)) (-663 (-793)))) (-15 -4462 (|#1| (-560))) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4283 (((-1299 |#1|) $ (-793)) 268 T ELT)) (-3570 (((-663 (-1114)) $) 120 T ELT)) (-4281 (($ (-1203 |#1|)) 266 T ELT)) (-3572 (((-1203 $) $ (-1114)) 135 T ELT) (((-1203 |#1|) $) 134 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 97 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 98 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 100 (|has| |#1| (-571)) ELT)) (-3306 (((-793) $) 122 T ELT) (((-793) $ (-663 (-1114))) 121 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4271 (($ $ $) 253 (|has| |#1| (-571)) ELT)) (-3194 (((-419 (-1203 $)) (-1203 $)) 110 (|has| |#1| (-940)) ELT)) (-4291 (($ $) 108 (|has| |#1| (-466)) ELT)) (-4487 (((-419 $) $) 107 (|has| |#1| (-466)) ELT)) (-3191 (((-3 (-663 (-1203 $)) #1="failed") (-663 (-1203 $)) (-1203 $)) 113 (|has| |#1| (-940)) ELT)) (-1800 (((-114) $ $) 238 (|has| |#1| (-376)) ELT)) (-4277 (($ $ (-793)) 261 T ELT)) (-4276 (($ $ (-793)) 260 T ELT)) (-4267 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-466)) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-421 (-560)) #2#) $) 175 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-3 (-560) #2#) $) 173 (|has| |#1| (-1070 (-560))) ELT) (((-3 (-1114) #2#) $) 150 T ELT)) (-3660 ((|#1| $) 177 T ELT) (((-421 (-560)) $) 176 (|has| |#1| (-1070 (-421 (-560)))) ELT) (((-560) $) 174 (|has| |#1| (-1070 (-560))) ELT) (((-1114) $) 151 T ELT)) (-4272 (($ $ $ (-1114)) 118 (|has| |#1| (-175)) ELT) ((|#1| $ $) 256 (|has| |#1| (-175)) ELT)) (-3049 (($ $ $) 242 (|has| |#1| (-376)) ELT)) (-4475 (($ $) 168 T ELT)) (-2507 (((-711 (-560)) (-711 $)) 146 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-711 $) (-1299 $)) 145 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-711 $) (-1299 $)) 144 T ELT) (((-711 |#1|) (-711 $)) 143 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 241 (|has| |#1| (-376)) ELT)) (-4275 (($ $ $) 259 T ELT)) (-4269 (($ $ $) 250 (|has| |#1| (-571)) ELT)) (-4268 (((-2 (|:| -4470 |#1|) (|:| -2198 $) (|:| -3389 $)) $ $) 249 (|has| |#1| (-571)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 236 (|has| |#1| (-376)) ELT)) (-4009 (($ $) 190 (|has| |#1| (-466)) ELT) (($ $ (-1114)) 115 (|has| |#1| (-466)) ELT)) (-3305 (((-663 $) $) 119 T ELT)) (-4239 (((-114) $) 106 (|has| |#1| (-940)) ELT)) (-1816 (($ $ |#1| (-793) $) 186 T ELT)) (-3283 (((-914 (-391) $) $ (-916 (-391)) (-914 (-391) $)) 94 (-12 (|has| (-1114) (-912 (-391))) (|has| |#1| (-912 (-391)))) ELT) (((-914 (-560) $) $ (-916 (-560)) (-914 (-560) $)) 93 (-12 (|has| (-1114) (-912 (-560))) (|has| |#1| (-912 (-560)))) ELT)) (-4288 (((-793) $ $) 254 (|has| |#1| (-571)) ELT)) (-2655 (((-114) $) 40 T ELT)) (-2663 (((-793) $) 183 T ELT)) (-3951 (((-713 $) $) 234 (|has| |#1| (-1184)) ELT)) (-3573 (($ (-1203 |#1|) (-1114)) 127 T ELT) (($ (-1203 $) (-1114)) 126 T ELT)) (-4293 (($ $ (-793)) 265 T ELT)) (-1797 (((-3 (-663 $) #3="failed") (-663 $) $) 245 (|has| |#1| (-376)) ELT)) (-3308 (((-663 $) $) 136 T ELT)) (-4453 (((-114) $) 166 T ELT)) (-3380 (($ |#1| (-793)) 167 T ELT) (($ $ (-1114) (-793)) 129 T ELT) (($ $ (-663 (-1114)) (-663 (-793))) 128 T ELT)) (-4279 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $ (-1114)) 130 T ELT) (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 263 T ELT)) (-3307 (((-793) $) 184 T ELT) (((-793) $ (-1114)) 132 T ELT) (((-663 (-793)) $ (-663 (-1114))) 131 T ELT)) (-1817 (($ (-1 (-793) (-793)) $) 185 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-4282 (((-1203 |#1|) $) 267 T ELT)) (-3571 (((-3 (-1114) #4="failed") $) 133 T ELT)) (-2508 (((-711 (-560)) (-1299 $)) 148 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 (-560))) (|:| |vec| (-1299 (-560)))) (-1299 $) $) 147 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1795 (-711 |#1|)) (|:| |vec| (-1299 |#1|))) (-1299 $) $) 142 T ELT) (((-711 |#1|) (-1299 $)) 141 T ELT)) (-3381 (($ $) 163 T ELT)) (-3678 ((|#1| $) 162 T ELT)) (-2116 (($ (-663 $)) 104 (|has| |#1| (-466)) ELT) (($ $ $) 103 (|has| |#1| (-466)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-4278 (((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793)) 262 T ELT)) (-3310 (((-3 (-663 $) #4#) $) 124 T ELT)) (-3309 (((-3 (-663 $) #4#) $) 125 T ELT)) (-3311 (((-3 (-2 (|:| |var| (-1114)) (|:| -2646 (-793))) #4#) $) 123 T ELT)) (-4328 (($ $) 246 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3952 (($) 233 (|has| |#1| (-1184)) CONST)) (-3747 (((-1152) $) 12 T ELT)) (-2019 (((-114) $) 180 T ELT)) (-2018 ((|#1| $) 181 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 105 (|has| |#1| (-466)) ELT)) (-3648 (($ (-663 $)) 102 (|has| |#1| (-466)) ELT) (($ $ $) 101 (|has| |#1| (-466)) ELT)) (-3192 (((-419 (-1203 $)) (-1203 $)) 112 (|has| |#1| (-940)) ELT)) (-3193 (((-419 (-1203 $)) (-1203 $)) 111 (|has| |#1| (-940)) ELT)) (-4248 (((-419 $) $) 109 (|has| |#1| (-940)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 243 (|has| |#1| (-376)) ELT)) (-3972 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 237 (|has| |#1| (-376)) ELT)) (-4284 (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-663 $) (-663 $)) 156 T ELT) (($ $ (-1114) |#1|) 155 T ELT) (($ $ (-663 (-1114)) (-663 |#1|)) 154 T ELT) (($ $ (-1114) $) 153 T ELT) (($ $ (-663 (-1114)) (-663 $)) 152 T ELT)) (-1799 (((-793) $) 239 (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-421 $) (-421 $) (-421 $)) 255 (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) 247 (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) 235 (|has| |#1| (-571)) ELT)) (-4280 (((-3 $ "failed") $ (-793)) 264 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 240 (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-1114)) 117 (|has| |#1| (-175)) ELT) ((|#1| $) 257 (|has| |#1| (-175)) ELT)) (-4274 (($ $ (-663 (-1114)) (-663 (-793))) 49 T ELT) (($ $ (-1114) (-793)) 48 T ELT) (($ $ (-663 (-1114))) 47 T ELT) (($ $ (-1114)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-793)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1209)) 232 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 230 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 229 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 228 (|has| |#1| (-930 (-1209))) ELT)) (-4464 (((-793) $) 164 T ELT) (((-793) $ (-1114)) 140 T ELT) (((-663 (-793)) $ (-663 (-1114))) 139 T ELT)) (-4488 (((-916 (-391)) $) 92 (-12 (|has| (-1114) (-633 (-916 (-391)))) (|has| |#1| (-633 (-916 (-391))))) ELT) (((-916 (-560)) $) 91 (-12 (|has| (-1114) (-633 (-916 (-560)))) (|has| |#1| (-633 (-916 (-560))))) ELT) (((-549) $) 90 (-12 (|has| (-1114) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-3304 ((|#1| $) 189 (|has| |#1| (-466)) ELT) (($ $ (-1114)) 116 (|has| |#1| (-466)) ELT)) (-3190 (((-3 (-1299 $) #1#) (-711 $)) 114 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) ELT)) (-4270 (((-3 $ "failed") $ $) 252 (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) 251 (|has| |#1| (-571)) ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1114)) 149 T ELT) (($ (-421 (-560))) 88 (-4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 95 (|has| |#1| (-571)) ELT)) (-4333 (((-663 |#1|) $) 182 T ELT)) (-4193 ((|#1| $ (-793)) 169 T ELT) (($ $ (-1114) (-793)) 138 T ELT) (($ $ (-663 (-1114)) (-663 (-793))) 137 T ELT)) (-3189 (((-713 $) $) 89 (-4043 (-3047 (|has| $ (-147)) (|has| |#1| (-940))) (|has| |#1| (-147))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1815 (($ $ $ (-793)) 187 (|has| |#1| (-175)) ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 99 (|has| |#1| (-571)) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-663 (-1114)) (-663 (-793))) 52 T ELT) (($ $ (-1114) (-793)) 51 T ELT) (($ $ (-663 (-1114))) 50 T ELT) (($ $ (-1114)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-793)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 269 T ELT) (($ $ (-1209)) 231 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209))) 227 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-1209) (-793)) 226 (|has| |#1| (-930 (-1209))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 225 (|has| |#1| (-930 (-1209))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1275 |#1|) (-142) (-1081)) (T -1275)) -((-4283 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1275 *4)) (-4 *4 (-1081)) (-5 *2 (-1299 *4)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-5 *2 (-1203 *3)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-1081)) (-4 *1 (-1275 *3)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) (-4280 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) (-4279 (*1 *2 *1 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1275 *3)))) (-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1275 *4)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) (-4275 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)))) (-4274 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-175)))) (-4272 (*1 *2 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-175)))) (-4316 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-4 *3 (-571)))) (-4288 (*1 *2 *1 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-4 *3 (-571)) (-5 *2 (-793)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571)))) (-4270 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571)))) (-4270 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-4 *3 (-571)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| -4470 *3) (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1275 *3)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1081)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1275 *3)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *3 (-421 *1)) (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560))))))) -(-13 (-980 |t#1| (-793) (-1114)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4283 ((-1299 |t#1|) $ (-793))) (-15 -4282 ((-1203 |t#1|) $)) (-15 -4281 ($ (-1203 |t#1|))) (-15 -4293 ($ $ (-793))) (-15 -4280 ((-3 $ "failed") $ (-793))) (-15 -4279 ((-2 (|:| -2198 $) (|:| -3389 $)) $ $)) (-15 -4278 ((-2 (|:| -2198 $) (|:| -3389 $)) $ (-793))) (-15 -4277 ($ $ (-793))) (-15 -4276 ($ $ (-793))) (-15 -4275 ($ $ $)) (-15 -4274 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1184)) (-6 (-1184)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4273 (|t#1| $)) (-15 -4272 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-298 (-421 $) (-421 $))) (-15 -4316 ((-421 $) (-421 $) (-421 $))) (-15 -4288 ((-793) $ $)) (-15 -4271 ($ $ $)) (-15 -4270 ((-3 $ "failed") $ $)) (-15 -4270 ((-3 (-421 $) "failed") (-421 $) $)) (-15 -4269 ($ $ $)) (-15 -4268 ((-2 (|:| -4470 |t#1|) (|:| -2198 $) (|:| -3389 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-15 -4267 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4507) (-15 -4316 (|t#1| (-421 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-15 -4328 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-793)) . T) ((-25) . T) ((-38 #2=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) -4043 (|has| |#1| (-1070 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #3=(-1114)) . T) ((-635 |#1|) . T) ((-635 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| (-1114) (-633 (-549)))) ((-633 (-916 (-391))) -12 (|has| |#1| (-633 (-916 (-391)))) (|has| (-1114) (-633 (-916 (-391))))) ((-633 (-916 (-560))) -12 (|has| |#1| (-633 (-916 (-560)))) (|has| (-1114) (-633 (-916 (-560))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-421 $) (-421 $)) |has| |#1| (-571)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| #1#) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -4043 (|has| |#1| (-940)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-528 #3# |#1|) . T) ((-528 #3# $) . T) ((-528 $ $) . T) ((-571) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-668 #2#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) |has| |#1| (-38 (-421 (-560)))) ((-670 #4=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-660 #4#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #2#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-748) . T) ((-922 $ #3#) . T) ((-922 $ #5=(-1209)) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-928 #3#) . T) ((-928 (-1209)) |has| |#1| (-928 (-1209))) ((-930 #3#) . T) ((-930 #5#) -4043 (|has| |#1| (-930 (-1209))) (|has| |#1| (-928 (-1209)))) ((-912 (-391)) -12 (|has| |#1| (-912 (-391))) (|has| (-1114) (-912 (-391)))) ((-912 (-560)) -12 (|has| |#1| (-912 (-560))) (|has| (-1114) (-912 (-560)))) ((-980 |#1| #1# #3#) . T) ((-940) |has| |#1| (-940)) ((-951) |has| |#1| (-376)) ((-1070 (-421 (-560))) |has| |#1| (-1070 (-421 (-560)))) ((-1070 (-560)) |has| |#1| (-1070 (-560))) ((-1070 #3#) . T) ((-1070 |#1|) . T) ((-1083 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1088 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-940)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1184) |has| |#1| (-1184)) ((-1249) . T) ((-1254) |has| |#1| (-940))) -((-4474 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1276 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|))) (-1081) (-1275 |#1|) (-1081) (-1275 |#3|)) (T -1276)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-1275 *6)) (-5 *1 (-1276 *5 *4 *6 *2)) (-4 *4 (-1275 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#3| |#1|) |#2|))) -((-3570 (((-663 (-1114)) $) 34 T ELT)) (-4475 (($ $) 31 T ELT)) (-3380 (($ |#2| |#3|) NIL T ELT) (($ $ (-1114) |#3|) 28 T ELT) (($ $ (-663 (-1114)) (-663 |#3|)) 27 T ELT)) (-3381 (($ $) 14 T ELT)) (-3678 ((|#2| $) 12 T ELT)) (-4464 ((|#3| $) 10 T ELT))) -(((-1277 |#1| |#2| |#3|) (-10 -8 (-15 -3570 ((-663 (-1114)) |#1|)) (-15 -3380 (|#1| |#1| (-663 (-1114)) (-663 |#3|))) (-15 -3380 (|#1| |#1| (-1114) |#3|)) (-15 -4475 (|#1| |#1|)) (-15 -3380 (|#1| |#2| |#3|)) (-15 -4464 (|#3| |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -3678 (|#2| |#1|))) (-1278 |#2| |#3|) (-1081) (-816)) (T -1277)) -NIL -(-10 -8 (-15 -3570 ((-663 (-1114)) |#1|)) (-15 -3380 (|#1| |#1| (-663 (-1114)) (-663 |#3|))) (-15 -3380 (|#1| |#1| (-1114) |#3|)) (-15 -4475 (|#1| |#1|)) (-15 -3380 (|#1| |#2| |#3|)) (-15 -4464 (|#3| |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -3678 (|#2| |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3379 (((-114) $) 91 T ELT)) (-4288 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-4293 (($ $ (-949)) 124 T ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| |#2|) 78 T ELT) (($ $ (-1114) |#2|) 94 T ELT) (($ $ (-663 (-1114)) (-663 |#2|)) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4285 (($ $ |#2|) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-4316 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1144)) ELT)) (-4274 (($ $ (-1209)) 116 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1209))) 114 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1209) (-793)) 113 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4464 ((|#2| $) 81 T ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4193 ((|#1| $ |#2|) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4286 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1209)) 115 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1209))) 111 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1209) (-793)) 110 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1278 |#1| |#2|) (-142) (-1081) (-816)) (T -1278)) -((-4290 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-1209)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-1278 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4288 (*1 *2 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4287 (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4287 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4286 (*1 *2 *1 *3) (-12 (-4 *1 (-1278 *2 *3)) (-4 *3 (-816)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4462 (*2 (-1209)))) (-4 *2 (-1081)))) (-4285 (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) (-4284 (*1 *2 *1 *3) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) -(-13 (-1005 |t#1| |t#2| (-1114)) (-298 |t#2| |t#1|) (-10 -8 (-15 -4290 ((-1187 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4347 ((-1209) $)) (-15 -4289 (|t#1| $)) (-15 -4293 ($ $ (-949))) (-15 -4288 (|t#2| $)) (-15 -4288 (|t#2| $ |t#2|)) (-15 -4287 ($ $ |t#2|)) (-15 -4287 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4462 (|t#1| (-1209)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4286 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4285 ($ $ |t#2|)) (IF (|has| |t#2| (-1144)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-928 (-1209))) (-6 (-928 (-1209))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4284 ((-1187 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1144)) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-922 $ #2=(-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-928 #2#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-930 #2#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-1005 |#1| |#2| (-1114)) . T) ((-1083 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-4291 ((|#2| |#2|) 12 T ELT)) (-4487 (((-419 |#2|) |#2|) 14 T ELT)) (-4292 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))) 30 T ELT))) -(((-1279 |#1| |#2|) (-10 -7 (-15 -4487 ((-419 |#2|) |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -4292 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) (-571) (-13 (-1275 |#1|) (-571) (-10 -8 (-15 -3648 ($ $ $))))) (T -1279)) -((-4292 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-560)))) (-4 *4 (-13 (-1275 *3) (-571) (-10 -8 (-15 -3648 ($ $ $))))) (-4 *3 (-571)) (-5 *1 (-1279 *3 *4)))) (-4291 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1279 *3 *2)) (-4 *2 (-13 (-1275 *3) (-571) (-10 -8 (-15 -3648 ($ $ $))))))) (-4487 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1279 *4 *3)) (-4 *3 (-13 (-1275 *4) (-571) (-10 -8 (-15 -3648 ($ $ $)))))))) -(-10 -7 (-15 -4487 ((-419 |#2|) |#2|)) (-15 -4291 (|#2| |#2|)) (-15 -4292 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 11 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-1259 |#1| |#2| |#3|) #1="failed") $) 19 T ELT) (((-3 (-1289 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3660 (((-1259 |#1| |#2| |#3|) $) NIL T ELT) (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4297 (((-421 (-560)) $) 68 T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4298 (($ (-421 (-560)) (-1259 |#1| |#2| |#3|)) NIL T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-1797 (((-3 (-663 $) #2="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-421 (-560))) 30 T ELT) (($ $ (-1114) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4296 (((-1259 |#1| |#2| |#3|) $) 71 T ELT)) (-4294 (((-3 (-1259 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4295 (((-1259 |#1| |#2| |#3|) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4328 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) NIL (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) NIL T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) 38 T ELT)) (-4464 (((-421 (-560)) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) NIL T ELT)) (-4462 (((-888) $) 107 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1259 |#1| |#2| |#3|)) 16 T ELT) (($ (-1289 |#1| |#2| |#3|)) 17 T ELT) (($ (-1296 |#2|)) 36 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 12 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 32 T CONST)) (-3151 (($) 26 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1296 |#2|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 34 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1280 |#1| |#2| |#3|) (-13 (-1284 |#1| (-1259 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-1070 (-1289 |#1| |#2| |#3|)) (-635 (-1296 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1280)) -((-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1280 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1284 |#1| (-1259 |#1| |#2| |#3|)) (-922 $ (-1296 |#2|)) (-1070 (-1289 |#1| |#2| |#3|)) (-635 (-1296 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-4474 (((-1280 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1280 |#1| |#3| |#5|)) 24 T ELT))) -(((-1281 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4474 ((-1280 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1280 |#1| |#3| |#5|)))) (-1081) (-1081) (-1209) (-1209) |#1| |#2|) (T -1281)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5 *7 *9)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-14 *7 (-1209)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1280 *6 *8 *10)) (-5 *1 (-1281 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1209))))) -(-10 -7 (-15 -4474 ((-1280 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1280 |#1| |#3| |#5|)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) 121 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 127 T ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) 188 (|has| |#1| (-376)) ELT)) (-3524 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3996 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 196 T ELT)) (-4000 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-3049 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 176 (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) 91 T ELT)) (-4143 (($) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) 123 T ELT) (((-421 (-560)) $ (-421 (-560))) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) 124 T ELT) (($ $ (-421 (-560))) 195 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 185 (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| (-421 (-560))) 78 T ELT) (($ $ (-1114) (-421 (-560))) 94 T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4458 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-2116 (($ (-663 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 193 (-4043 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 175 (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) 186 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 177 (|has| |#1| (-376)) ELT)) (-4459 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) 179 (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) 128 T ELT) (($ $ $) 104 (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 116 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) 114 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) 113 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 106 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-4464 (((-421 (-560)) $) 81 T ELT)) (-4001 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1209)) 115 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) 111 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) 110 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 105 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1282 |#1|) (-142) (-1081)) (T -1282)) -((-4334 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))) (-4 *4 (-1081)) (-4 *1 (-1282 *4)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1282 *3)) (-4 *3 (-1081)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) (-4328 (*1 *1 *1 *2) (-4043 (-12 (-5 *2 (-1209)) (-4 *1 (-1282 *3)) (-4 *3 (-1081)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1209)) (-4 *1 (-1282 *3)) (-4 *3 (-1081)) (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))) -(-13 (-1278 |t#1| (-421 (-560))) (-10 -8 (-15 -4334 ($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |t#1|))))) (-15 -4293 ($ $ (-421 (-560)))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $)) (IF (|has| |t#1| (-15 -4328 (|t#1| |t#1| (-1209)))) (IF (|has| |t#1| (-15 -3570 ((-663 (-1209)) |t#1|))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1235)) (IF (|has| |t#1| (-990)) (IF (|has| |t#1| (-29 (-560))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1034)) (-6 (-1235))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-421 (-560))) . T) ((-25) . T) ((-38 #2=(-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1144)) ((-302) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-922 $ #3=(-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-930 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-1005 |#1| #1# (-1114)) . T) ((-951) |has| |#1| (-376)) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1083 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1088 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T) ((-1254) |has| |#1| (-376)) ((-1278 |#1| #1#) . T)) -((-3692 (((-114) $) 12 T ELT)) (-3661 (((-3 |#3| "failed") $) 17 T ELT)) (-3660 ((|#3| $) 14 T ELT))) -(((-1283 |#1| |#2| |#3|) (-10 -8 (-15 -3661 ((-3 |#3| "failed") |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3692 ((-114) |#1|))) (-1284 |#2| |#3|) (-1081) (-1261 |#2|)) (T -1283)) -NIL -(-10 -8 (-15 -3661 ((-3 |#3| "failed") |#1|)) (-15 -3660 (|#3| |#1|)) (-15 -3692 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) 121 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 127 T ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) 188 (|has| |#1| (-376)) ELT)) (-3524 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3996 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 196 T ELT)) (-4000 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#2| "failed") $) 209 T ELT)) (-3660 ((|#2| $) 210 T ELT)) (-3049 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4297 (((-421 (-560)) $) 206 T ELT)) (-3048 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-4298 (($ (-421 (-560)) |#2|) 207 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 176 (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) 91 T ELT)) (-4143 (($) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) 123 T ELT) (((-421 (-560)) $ (-421 (-560))) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) 124 T ELT) (($ $ (-421 (-560))) 195 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 185 (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| (-421 (-560))) 78 T ELT) (($ $ (-1114) (-421 (-560))) 94 T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4458 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-2116 (($ (-663 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4296 ((|#2| $) 205 T ELT)) (-4294 (((-3 |#2| "failed") $) 203 T ELT)) (-4295 ((|#2| $) 204 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 193 (-4043 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 175 (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) 186 (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 177 (|has| |#1| (-376)) ELT)) (-4459 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) 179 (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) 128 T ELT) (($ $ $) 104 (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 116 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) 114 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) 113 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 106 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-4464 (((-421 (-560)) $) 81 T ELT)) (-4001 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 208 T ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1209)) 115 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) 111 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) 110 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 105 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1284 |#1| |#2|) (-142) (-1081) (-1261 |t#1|)) (T -1284)) -((-4464 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1261 *3)) (-5 *2 (-421 (-560))))) (-4298 (*1 *1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1081)) (-4 *1 (-1284 *4 *3)) (-4 *3 (-1261 *4)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1261 *3)) (-5 *2 (-421 (-560))))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3)))) (-4294 (*1 *2 *1) (|partial| -12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3))))) -(-13 (-1282 |t#1|) (-1070 |t#2|) (-635 |t#2|) (-10 -8 (-15 -4298 ($ (-421 (-560)) |t#2|)) (-15 -4297 ((-421 (-560)) $)) (-15 -4296 (|t#2| $)) (-15 -4464 ((-421 (-560)) $)) (-15 -4295 (|t#2| $)) (-15 -4294 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-421 (-560))) . T) ((-25) . T) ((-38 #2=(-421 (-560))) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1144)) ((-302) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-922 $ #3=(-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-930 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ((-1005 |#1| #1# (-1114)) . T) ((-951) |has| |#1| (-376)) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1070 |#2|) . T) ((-1083 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1088 #2#) -4043 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T) ((-1254) |has| |#1| (-376)) ((-1278 |#1| #1#) . T) ((-1282 |#1|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 104 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-421 (-560))) 116 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 118 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 54 T ELT)) (-3998 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4291 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4487 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1800 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3996 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-793) (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 65 T ELT)) (-4000 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| "failed") $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT)) (-3049 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 85 T ELT)) (-4297 (((-421 (-560)) $) 13 T ELT)) (-3048 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4298 (($ (-421 (-560)) |#2|) 11 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3379 (((-114) $) 74 T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-421 (-560)) $) 113 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) 130 T ELT) (($ $ (-421 (-560))) 128 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-421 (-560))) 33 T ELT) (($ $ (-1114) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-421 (-560)))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4458 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-2116 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4296 ((|#2| $) 12 T ELT)) (-4294 (((-3 |#2| "failed") $) 44 T ELT)) (-4295 ((|#2| $) 45 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-2888 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4328 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 151 (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-3648 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4248 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1798 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4285 (($ $ (-421 (-560))) 122 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4459 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-1799 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4316 ((|#1| $ (-421 (-560))) 108 T ELT) (($ $ $) 94 (|has| (-421 (-560)) (-1144)) ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4274 (($ $ (-1209)) 138 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-4464 (((-421 (-560)) $) 16 T ELT)) (-4001 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 120 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-421 (-560))) 139 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-4193 ((|#1| $ (-421 (-560))) 107 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 127 T CONST)) (-4289 ((|#1| $) 106 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 17 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3540 (((-114) $ $) 72 T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-4355 (($ $ $) 76 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 82 T ELT) (($ $ (-560)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1285 |#1| |#2|) (-1284 |#1| |#2|) (-1081) (-1261 |#1|)) (T -1285)) -NIL -(-1284 |#1| |#2|) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 37 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL T ELT)) (-2287 (($ $) NIL T ELT)) (-2285 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 (-560) #1="failed") $) NIL (|has| (-1280 |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-3 (-421 (-560)) #1#) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-1070 (-421 (-560)))) ELT) (((-3 (-1280 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3660 (((-560) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-1070 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-1070 (-421 (-560)))) ELT) (((-1280 |#2| |#3| |#4|) $) NIL T ELT)) (-4475 (($ $) 41 T ELT)) (-3973 (((-3 $ "failed") $) 27 T ELT)) (-4009 (($ $) NIL (|has| (-1280 |#2| |#3| |#4|) (-466)) ELT)) (-1816 (($ $ (-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) 11 T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ (-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3307 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1817 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-4474 (($ (-1 (-1280 |#2| |#3| |#4|) (-1280 |#2| |#3| |#4|)) $) NIL T ELT)) (-4300 (((-3 (-866 |#2|) "failed") $) 91 T ELT)) (-3381 (($ $) NIL T ELT)) (-3678 (((-1280 |#2| |#3| |#4|) $) 20 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-2019 (((-114) $) NIL T ELT)) (-2018 (((-1280 |#2| |#3| |#4|) $) NIL T ELT)) (-3972 (((-3 $ "failed") $ (-1280 |#2| |#3| |#4|)) NIL (|has| (-1280 |#2| |#3| |#4|) (-571)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-4299 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1280 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1191))) "failed") $) 74 T ELT)) (-4464 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-3304 (((-1280 |#2| |#3| |#4|) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-466)) ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1280 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (-4043 (|has| (-1280 |#2| |#3| |#4|) (-1070 (-421 (-560)))) (|has| (-1280 |#2| |#3| |#4|) (-38 (-421 (-560))))) ELT)) (-4333 (((-663 (-1280 |#2| |#3| |#4|)) $) NIL T ELT)) (-4193 (((-1280 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3189 (((-713 $) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-1815 (($ $ $ (-793)) NIL (|has| (-1280 |#2| |#3| |#4|) (-175)) ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-2286 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ (-1280 |#2| |#3| |#4|)) NIL (|has| (-1280 |#2| |#3| |#4|) (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1280 |#2| |#3| |#4|)) NIL T ELT) (($ (-1280 |#2| |#3| |#4|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-1280 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| (-1280 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT))) -(((-1286 |#1| |#2| |#3| |#4|) (-13 (-338 (-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -4300 ((-3 (-866 |#2|) "failed") $)) (-15 -4299 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1280 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1191))) "failed") $)))) (-13 (-1070 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1235) (-435 |#1|)) (-1209) |#2|) (T -1286)) -((-4300 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) (-5 *2 (-866 *4)) (-5 *1 (-1286 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4))) (-4299 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1280 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))))) (|:| |%type| (-1191)))) (-5 *1 (-1286 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4)))) -(-13 (-338 (-1280 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -4300 ((-3 (-866 |#2|) "failed") $)) (-15 -4299 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1280 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1191))) "failed") $)))) -((-3908 ((|#2| $) 34 T ELT)) (-4311 ((|#2| $) 18 T ELT)) (-4313 (($ $) 44 T ELT)) (-4301 (($ $ (-560)) 79 T ELT)) (-3512 ((|#2| $ |#2|) 76 T ELT)) (-4302 ((|#2| $ |#2|) 72 T ELT)) (-4304 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 65 T ELT) (($ $ "rest" $) 69 T ELT) ((|#2| $ "last" |#2|) 67 T ELT)) (-3513 (($ $ (-663 $)) 75 T ELT)) (-4312 ((|#2| $) 17 T ELT)) (-4315 (($ $) NIL T ELT) (($ $ (-793)) 52 T ELT)) (-3518 (((-663 $) $) 31 T ELT)) (-3514 (((-114) $ $) 63 T ELT)) (-4033 (((-114) $) 33 T ELT)) (-4314 ((|#2| $) 25 T ELT) (($ $ (-793)) 58 T ELT)) (-4316 ((|#2| $ #1#) NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-4149 (((-114) $) 23 T ELT)) (-4308 (($ $) 47 T ELT)) (-4306 (($ $) 80 T ELT)) (-4309 (((-793) $) 51 T ELT)) (-4310 (($ $) 50 T ELT)) (-4318 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-4028 (((-663 $) $) 32 T ELT)) (-3540 (((-114) $ $) 61 T ELT)) (-4473 (((-793) $) 43 T ELT))) -(((-1287 |#1| |#2|) (-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4301 (|#1| |#1| (-560))) (-15 -4304 (|#2| |#1| "last" |#2|)) (-15 -4302 (|#2| |#1| |#2|)) (-15 -4304 (|#1| |#1| "rest" |#1|)) (-15 -4304 (|#2| |#1| "first" |#2|)) (-15 -4306 (|#1| |#1|)) (-15 -4308 (|#1| |#1|)) (-15 -4309 ((-793) |#1|)) (-15 -4310 (|#1| |#1|)) (-15 -4311 (|#2| |#1|)) (-15 -4312 (|#2| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4314 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "last")) (-15 -4314 (|#2| |#1|)) (-15 -4315 (|#1| |#1| (-793))) (-15 -4316 (|#1| |#1| "rest")) (-15 -4315 (|#1| |#1|)) (-15 -4316 (|#2| |#1| "first")) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#1|)) (-15 -3512 (|#2| |#1| |#2|)) (-15 -4304 (|#2| |#1| #1="value" |#2|)) (-15 -3513 (|#1| |#1| (-663 |#1|))) (-15 -3514 ((-114) |#1| |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -3908 (|#2| |#1|)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -4473 ((-793) |#1|))) (-1288 |#2|) (-1249)) (T -1287)) -NIL -(-10 -8 (-15 -3540 ((-114) |#1| |#1|)) (-15 -4301 (|#1| |#1| (-560))) (-15 -4304 (|#2| |#1| "last" |#2|)) (-15 -4302 (|#2| |#1| |#2|)) (-15 -4304 (|#1| |#1| "rest" |#1|)) (-15 -4304 (|#2| |#1| "first" |#2|)) (-15 -4306 (|#1| |#1|)) (-15 -4308 (|#1| |#1|)) (-15 -4309 ((-793) |#1|)) (-15 -4310 (|#1| |#1|)) (-15 -4311 (|#2| |#1|)) (-15 -4312 (|#2| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4314 (|#1| |#1| (-793))) (-15 -4316 (|#2| |#1| "last")) (-15 -4314 (|#2| |#1|)) (-15 -4315 (|#1| |#1| (-793))) (-15 -4316 (|#1| |#1| "rest")) (-15 -4315 (|#1| |#1|)) (-15 -4316 (|#2| |#1| "first")) (-15 -4318 (|#1| |#2| |#1|)) (-15 -4318 (|#1| |#1| |#1|)) (-15 -3512 (|#2| |#1| |#2|)) (-15 -4304 (|#2| |#1| #1="value" |#2|)) (-15 -3513 (|#1| |#1| (-663 |#1|))) (-15 -3514 ((-114) |#1| |#1|)) (-15 -4149 ((-114) |#1|)) (-15 -4316 (|#2| |#1| #1#)) (-15 -3908 (|#2| |#1|)) (-15 -4033 ((-114) |#1|)) (-15 -3518 ((-663 |#1|) |#1|)) (-15 -4028 ((-663 |#1|) |#1|)) (-15 -4473 ((-793) |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3908 ((|#1| $) 52 T ELT)) (-4311 ((|#1| $) 71 T ELT)) (-4313 (($ $) 73 T ELT)) (-4301 (($ $ (-560)) 58 (|has| $ (-6 -4512)) ELT)) (-3512 ((|#1| $ |#1|) 43 (|has| $ (-6 -4512)) ELT)) (-4303 (($ $ $) 62 (|has| $ (-6 -4512)) ELT)) (-4302 ((|#1| $ |#1|) 60 (|has| $ (-6 -4512)) ELT)) (-4305 ((|#1| $ |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4304 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4512)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4512)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4512)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4512)) ELT)) (-3513 (($ $ (-663 $)) 45 (|has| $ (-6 -4512)) ELT)) (-4312 ((|#1| $) 72 T ELT)) (-4240 (($) 7 T CONST)) (-4315 (($ $) 79 T ELT) (($ $ (-793)) 77 T ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-3518 (((-663 $) $) 54 T ELT)) (-3514 (((-114) $ $) 46 (|has| |#1| (-1133)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3517 (((-663 |#1|) $) 49 T ELT)) (-4033 (((-114) $) 53 T ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-4314 ((|#1| $) 76 T ELT) (($ $ (-793)) 74 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 82 T ELT) (($ $ (-793)) 80 T ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3516 (((-560) $ $) 48 T ELT)) (-4149 (((-114) $) 50 T ELT)) (-4308 (($ $) 68 T ELT)) (-4306 (($ $) 65 (|has| $ (-6 -4512)) ELT)) (-4309 (((-793) $) 69 T ELT)) (-4310 (($ $) 70 T ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3906 (($ $) 10 T ELT)) (-4307 (($ $ $) 67 (|has| $ (-6 -4512)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4512)) ELT)) (-4318 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-4028 (((-663 $) $) 55 T ELT)) (-3515 (((-114) $ $) 47 (|has| |#1| (-1133)) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1288 |#1|) (-142) (-1249)) (T -1288)) -((-4318 (*1 *1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4318 (*1 *1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4317 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) (-4315 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) (-4315 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4316 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4314 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4310 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) (-4308 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4307 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4307 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4306 (*1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4305 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4304 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4303 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4304 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) (-4302 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4304 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4512)) (-4 *1 (-1288 *3)) (-4 *3 (-1249))))) -(-13 (-1042 |t#1|) (-10 -8 (-15 -4318 ($ $ $)) (-15 -4318 ($ |t#1| $)) (-15 -4317 (|t#1| $)) (-15 -4316 (|t#1| $ "first")) (-15 -4317 ($ $ (-793))) (-15 -4315 ($ $)) (-15 -4316 ($ $ "rest")) (-15 -4315 ($ $ (-793))) (-15 -4314 (|t#1| $)) (-15 -4316 (|t#1| $ "last")) (-15 -4314 ($ $ (-793))) (-15 -4313 ($ $)) (-15 -4312 (|t#1| $)) (-15 -4311 (|t#1| $)) (-15 -4310 ($ $)) (-15 -4309 ((-793) $)) (-15 -4308 ($ $)) (IF (|has| $ (-6 -4512)) (PROGN (-15 -4307 ($ $ $)) (-15 -4307 ($ $ |t#1|)) (-15 -4306 ($ $)) (-15 -4305 (|t#1| $ |t#1|)) (-15 -4304 (|t#1| $ "first" |t#1|)) (-15 -4303 ($ $ $)) (-15 -4304 ($ $ "rest" $)) (-15 -4302 (|t#1| $ |t#1|)) (-15 -4304 (|t#1| $ "last" |t#1|)) (-15 -4301 ($ $ (-560)))) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-632 (-888)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-1042 |#1|) . T) ((-1133) |has| |#1| (-1133)) ((-1249) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-3570 (((-663 (-1114)) $) NIL T ELT)) (-4347 (((-1209) $) 90 T ELT)) (-4327 (((-1268 |#2| |#1|) $ (-793)) 73 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-2287 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 143 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-793)) 128 T ELT) (($ $ (-793) (-793)) 131 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 43 T ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3524 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1187 |#1|)) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) NIL T CONST)) (-4321 (($ $) 135 T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4332 (($ $) 141 T ELT)) (-4330 (((-976 |#1|) $ (-793)) 63 T ELT) (((-976 |#1|) $ (-793) (-793)) 65 T ELT)) (-3379 (((-114) $) NIL T ELT)) (-4143 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $) NIL T ELT) (((-793) $ (-793)) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4324 (($ $) 118 T ELT)) (-3498 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4320 (($ (-560) (-560) $) 137 T ELT)) (-4293 (($ $ (-949)) 140 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 112 T ELT)) (-4453 (((-114) $) NIL T ELT)) (-3380 (($ |#1| (-793)) 16 T ELT) (($ $ (-1114) (-793)) NIL T ELT) (($ $ (-663 (-1114)) (-663 (-793))) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4458 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4325 (($ $) 116 T ELT)) (-4326 (($ $) 114 T ELT)) (-4319 (($ (-560) (-560) $) 139 T ELT)) (-4328 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 157 (-4043 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))))) ELT) (($ $ (-1296 |#2|)) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4322 (($ $ (-560) (-560)) 122 T ELT)) (-4285 (($ $ (-793)) 124 T ELT)) (-3972 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4459 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4323 (($ $) 120 T ELT)) (-4284 (((-1187 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-4316 ((|#1| $ (-793)) 96 T ELT) (($ $ $) 133 (|has| (-793) (-1144)) ELT)) (-4274 (($ $ (-1209)) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1296 |#2|)) 104 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 126 T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) 26 T ELT) (($ (-421 (-560))) 149 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1268 |#2| |#1|)) 81 T ELT) (($ (-1296 |#2|)) 22 T ELT)) (-4333 (((-1187 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ (-793)) 95 T ELT)) (-3189 (((-713 $) $) NIL (|has| |#1| (-147)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4289 ((|#1| $) 91 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4004 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-793)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 18 T CONST)) (-3151 (($) 13 T CONST)) (-3156 (($ $ (-1209)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) NIL (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1296 |#2|)) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4465 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-4355 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1289 |#1| |#2| |#3|) (-13 (-1292 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1268 |#2| |#1|))) (-15 -4327 ((-1268 |#2| |#1|) $ (-793))) (-15 -4462 ($ (-1296 |#2|))) (-15 -4326 ($ $)) (-15 -4325 ($ $)) (-15 -4324 ($ $)) (-15 -4323 ($ $)) (-15 -4322 ($ $ (-560) (-560))) (-15 -4321 ($ $)) (-15 -4320 ($ (-560) (-560) $)) (-15 -4319 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) (-1081) (-1209) |#1|) (T -1289)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-1268 *4 *3)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) (-5 *1 (-1289 *3 *4 *5)))) (-4327 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1268 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) (-4 *4 (-1081)) (-14 *5 (-1209)) (-14 *6 *4))) (-4462 (*1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *5 *3))) (-4326 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2))) (-4325 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2))) (-4324 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2))) (-4323 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2))) (-4322 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2))) (-4320 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3))) (-4319 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3)))) -(-13 (-1292 |#1|) (-922 $ (-1296 |#2|)) (-10 -8 (-15 -4462 ($ (-1268 |#2| |#1|))) (-15 -4327 ((-1268 |#2| |#1|) $ (-793))) (-15 -4462 ($ (-1296 |#2|))) (-15 -4326 ($ $)) (-15 -4325 ($ $)) (-15 -4324 ($ $)) (-15 -4323 ($ $)) (-15 -4322 ($ $ (-560) (-560))) (-15 -4321 ($ $)) (-15 -4320 ($ (-560) (-560) $)) (-15 -4319 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4328 ($ $ (-1296 |#2|))) |%noBranch|))) -((-4474 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4474 (|#4| (-1 |#2| |#1|) |#3|))) (-1081) (-1081) (-1292 |#1|) (-1292 |#2|)) (T -1290)) -((-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-1292 *6)) (-5 *1 (-1290 *5 *6 *4 *2)) (-4 *4 (-1292 *5))))) -(-10 -7 (-15 -4474 (|#4| (-1 |#2| |#1|) |#3|))) -((-3692 (((-114) $) 17 T ELT)) (-3998 (($ $) 105 T ELT)) (-4155 (($ $) 81 T ELT)) (-3996 (($ $) 101 T ELT)) (-4154 (($ $) 77 T ELT)) (-4000 (($ $) 109 T ELT)) (-4153 (($ $) 85 T ELT)) (-4458 (($ $) 75 T ELT)) (-4459 (($ $) 73 T ELT)) (-4001 (($ $) 111 T ELT)) (-4152 (($ $) 87 T ELT)) (-3999 (($ $) 107 T ELT)) (-4151 (($ $) 83 T ELT)) (-3997 (($ $) 103 T ELT)) (-4150 (($ $) 79 T ELT)) (-4462 (((-888) $) 61 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-4004 (($ $) 117 T ELT)) (-3992 (($ $) 93 T ELT)) (-4002 (($ $) 113 T ELT)) (-3990 (($ $) 89 T ELT)) (-4006 (($ $) 121 T ELT)) (-3994 (($ $) 97 T ELT)) (-4007 (($ $) 123 T ELT)) (-3995 (($ $) 99 T ELT)) (-4005 (($ $) 119 T ELT)) (-3993 (($ $) 95 T ELT)) (-4003 (($ $) 115 T ELT)) (-3991 (($ $) 91 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-421 (-560))) 71 T ELT))) -(((-1291 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -4155 (|#1| |#1|)) (-15 -4154 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4458 (|#1| |#1|)) (-15 -4459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949))) (-15 -3692 ((-114) |#1|)) (-15 -4462 ((-888) |#1|))) (-1292 |#2|) (-1081)) (T -1291)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -4155 (|#1| |#1|)) (-15 -4154 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -4007 (|#1| |#1|)) (-15 -4006 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4458 (|#1| |#1|)) (-15 -4459 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4462 (|#1| |#2|)) (-15 -4462 (|#1| |#1|)) (-15 -4462 (|#1| (-421 (-560)))) (-15 -4462 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-949))) (-15 -3692 ((-114) |#1|)) (-15 -4462 ((-888) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-3570 (((-663 (-1114)) $) 92 T ELT)) (-4347 (((-1209) $) 126 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 68 (|has| |#1| (-571)) ELT)) (-2287 (($ $) 69 (|has| |#1| (-571)) ELT)) (-2285 (((-114) $) 71 (|has| |#1| (-571)) ELT)) (-4287 (($ $ (-793)) 121 T ELT) (($ $ (-793) (-793)) 120 T ELT)) (-4290 (((-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 127 T ELT)) (-3998 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4155 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3996 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4154 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4334 (($ (-1187 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1187 |#1|)) 178 T ELT)) (-4000 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4153 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4240 (($) 22 T CONST)) (-4475 (($ $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4332 (($ $) 177 T ELT)) (-4330 (((-976 |#1|) $ (-793)) 175 T ELT) (((-976 |#1|) $ (-793) (-793)) 174 T ELT)) (-3379 (((-114) $) 91 T ELT)) (-4143 (($) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4288 (((-793) $) 123 T ELT) (((-793) $ (-793)) 122 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3498 (($ $ (-560)) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4293 (($ $ (-949)) 124 T ELT)) (-4331 (($ (-1 |#1| (-560)) $) 176 T ELT)) (-4453 (((-114) $) 79 T ELT)) (-3380 (($ |#1| (-793)) 78 T ELT) (($ $ (-1114) (-793)) 94 T ELT) (($ $ (-663 (-1114)) (-663 (-793))) 93 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4458 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3381 (($ $) 82 T ELT)) (-3678 ((|#1| $) 83 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-4328 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1209)) 171 (-4043 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-990)) (|has| |#1| (-1235)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -3570 ((-663 (-1209)) |#1|))) (|has| |#1| (-15 -4328 (|#1| |#1| (-1209)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4285 (($ $ (-793)) 118 T ELT)) (-3972 (((-3 $ "failed") $ $) 67 (|has| |#1| (-571)) ELT)) (-4459 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4284 (((-1187 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-4316 ((|#1| $ (-793)) 128 T ELT) (($ $ $) 104 (|has| (-793) (-1144)) ELT)) (-4274 (($ $ (-1209)) 116 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) 114 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) 113 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 112 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 106 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-4464 (((-793) $) 81 T ELT)) (-4001 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4152 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3999 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4151 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3378 (($ $) 90 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ (-421 (-560))) 74 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 66 (|has| |#1| (-571)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4333 (((-1187 |#1|) $) 179 T ELT)) (-4193 ((|#1| $ (-793)) 76 T ELT)) (-3189 (((-713 $) $) 65 (|has| |#1| (-147)) ELT)) (-3614 (((-793)) 37 T CONST)) (-4289 ((|#1| $) 125 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-4004 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2286 (((-114) $ $) 70 (|has| |#1| (-571)) ELT)) (-4002 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3990 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4006 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3994 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4286 ((|#1| $ (-793)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -4462 (|#1| (-1209))))) ELT)) (-4007 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3995 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4005 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3993 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4003 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3991 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3156 (($ $ (-1209)) 115 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209))) 111 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1209) (-793)) 110 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1209)) (-663 (-793))) 109 (-12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 105 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-421 (-560)) $) 73 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 72 (|has| |#1| (-38 (-421 (-560)))) ELT))) -(((-1292 |#1|) (-142) (-1081)) (T -1292)) -((-4334 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-793)) (|:| |c| *3)))) (-4 *3 (-1081)) (-4 *1 (-1292 *3)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-1081)) (-5 *2 (-1187 *3)))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-4 *1 (-1292 *3)))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081)))) (-4331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1292 *3)) (-4 *3 (-1081)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1292 *4)) (-4 *4 (-1081)) (-5 *2 (-976 *4)))) (-4330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1292 *4)) (-4 *4 (-1081)) (-5 *2 (-976 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) (-4328 (*1 *1 *1 *2) (-4043 (-12 (-5 *2 (-1209)) (-4 *1 (-1292 *3)) (-4 *3 (-1081)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1209)) (-4 *1 (-1292 *3)) (-4 *3 (-1081)) (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))) -(-13 (-1278 |t#1| (-793)) (-10 -8 (-15 -4334 ($ (-1187 (-2 (|:| |k| (-793)) (|:| |c| |t#1|))))) (-15 -4333 ((-1187 |t#1|) $)) (-15 -4334 ($ (-1187 |t#1|))) (-15 -4332 ($ $)) (-15 -4331 ($ (-1 |t#1| (-560)) $)) (-15 -4330 ((-976 |t#1|) $ (-793))) (-15 -4330 ((-976 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4328 ($ $)) (IF (|has| |t#1| (-15 -4328 (|t#1| |t#1| (-1209)))) (IF (|has| |t#1| (-15 -3570 ((-663 (-1209)) |t#1|))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1235)) (IF (|has| |t#1| (-990)) (IF (|has| |t#1| (-29 (-560))) (-15 -4328 ($ $ (-1209))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1034)) (-6 (-1235))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-793)) . T) ((-25) . T) ((-38 #2=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #2#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-888)) . T) ((-175) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-793) (-1144)) ((-302) |has| |#1| (-571)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) |has| |#1| (-571)) ((-668 #2#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #2#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #2#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #2#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-922 $ #3=(-1209)) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ((-930 #3#) -12 (|has| |#1| (-928 (-1209))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ((-1005 |#1| #1# (-1114)) . T) ((-1034) |has| |#1| (-38 (-421 (-560)))) ((-1083 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1083 |#1|) . T) ((-1083 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1088 #2#) |has| |#1| (-38 (-421 (-560)))) ((-1088 |#1|) . T) ((-1088 $) -4043 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1235) |has| |#1| (-38 (-421 (-560)))) ((-1238) |has| |#1| (-38 (-421 (-560)))) ((-1249) . T) ((-1278 |#1| #1#) . T)) -((-4337 (((-1 (-1187 |#1|) (-663 (-1187 |#1|))) (-1 |#2| (-663 |#2|))) 24 T ELT)) (-4336 (((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-4335 (((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4340 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-4339 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4341 ((|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|)) 60 T ELT)) (-4342 (((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))) 66 T ELT)) (-4338 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1293 |#1| |#2|) (-10 -7 (-15 -4335 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -4336 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4337 ((-1 (-1187 |#1|) (-663 (-1187 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -4338 (|#2| |#2| |#2|)) (-15 -4339 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4340 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4341 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -4342 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))))) (-38 (-421 (-560))) (-1292 |#1|)) (T -1293)) -((-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6)))) (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1292 *5)) (-5 *2 (-663 *6)) (-5 *1 (-1293 *5 *6)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5)) (-4 *5 (-38 (-421 (-560)))) (-4 *2 (-1292 *5)) (-5 *1 (-1293 *5 *2)))) (-4340 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1292 *4)) (-5 *1 (-1293 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1292 *4)) (-5 *1 (-1293 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-4338 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1293 *3 *2)) (-4 *2 (-1292 *3)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1187 *4) (-663 (-1187 *4)))) (-5 *1 (-1293 *4 *5)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1293 *4 *5)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1293 *4 *5))))) -(-10 -7 (-15 -4335 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -4336 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4337 ((-1 (-1187 |#1|) (-663 (-1187 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -4338 (|#2| |#2| |#2|)) (-15 -4339 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4340 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4341 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -4342 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))))) -((-4344 ((|#2| |#4| (-793)) 31 T ELT)) (-4343 ((|#4| |#2|) 26 T ELT)) (-4346 ((|#4| (-421 |#2|)) 49 (|has| |#1| (-571)) ELT)) (-4345 (((-1 |#4| (-663 |#4|)) |#3|) 43 T ELT))) -(((-1294 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4343 (|#4| |#2|)) (-15 -4344 (|#2| |#4| (-793))) (-15 -4345 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -4346 (|#4| (-421 |#2|))) |%noBranch|)) (-1081) (-1275 |#1|) (-680 |#2|) (-1292 |#1|)) (T -1294)) -((-4346 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-571)) (-4 *4 (-1081)) (-4 *2 (-1292 *4)) (-5 *1 (-1294 *4 *5 *6 *2)) (-4 *6 (-680 *5)))) (-4345 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *5 (-1275 *4)) (-5 *2 (-1 *6 (-663 *6))) (-5 *1 (-1294 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1292 *4)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1081)) (-4 *2 (-1275 *5)) (-5 *1 (-1294 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1292 *5)))) (-4343 (*1 *2 *3) (-12 (-4 *4 (-1081)) (-4 *3 (-1275 *4)) (-4 *2 (-1292 *4)) (-5 *1 (-1294 *4 *3 *5 *2)) (-4 *5 (-680 *3))))) -(-10 -7 (-15 -4343 (|#4| |#2|)) (-15 -4344 (|#2| |#4| (-793))) (-15 -4345 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -4346 (|#4| (-421 |#2|))) |%noBranch|)) -NIL -(((-1295) (-142)) (T -1295)) -NIL -(-13 (-10 -7 (-6 -2515))) -((-3053 (((-114) $ $) NIL T ELT)) (-4347 (((-1209)) 12 T ELT)) (-3746 (((-1191) $) 18 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 11 T ELT) (((-1209) $) 8 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 15 T ELT))) -(((-1296 |#1|) (-13 (-1133) (-632 (-1209)) (-10 -8 (-15 -4462 ((-1209) $)) (-15 -4347 ((-1209))))) (-1209)) (T -1296)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1296 *3)) (-14 *3 *2))) (-4347 (*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1296 *3)) (-14 *3 *2)))) -(-13 (-1133) (-632 (-1209)) (-10 -8 (-15 -4462 ((-1209) $)) (-15 -4347 ((-1209))))) -((-4354 (($ (-793)) 19 T ELT)) (-4351 (((-711 |#2|) $ $) 41 T ELT)) (-4348 ((|#2| $) 51 T ELT)) (-4349 ((|#2| $) 50 T ELT)) (-4352 ((|#2| $ $) 36 T ELT)) (-4350 (($ $ $) 47 T ELT)) (-4353 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-4355 (($ $ $) 15 T ELT)) (* (($ (-560) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1297 |#1| |#2|) (-10 -8 (-15 -4348 (|#2| |#1|)) (-15 -4349 (|#2| |#1|)) (-15 -4350 (|#1| |#1| |#1|)) (-15 -4351 ((-711 |#2|) |#1| |#1|)) (-15 -4352 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 -4354 (|#1| (-793))) (-15 -4355 (|#1| |#1| |#1|))) (-1298 |#2|) (-1249)) (T -1297)) -NIL -(-10 -8 (-15 -4348 (|#2| |#1|)) (-15 -4349 (|#2| |#1|)) (-15 -4350 (|#1| |#1| |#1|)) (-15 -4351 ((-711 |#2|) |#1| |#1|)) (-15 -4352 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 -4354 (|#1| (-793))) (-15 -4355 (|#1| |#1| |#1|))) -((-3053 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4354 (($ (-793)) 121 (|has| |#1| (-23)) ELT)) (-2427 (((-1305) $ (-560) (-560)) 44 (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4512)) ELT) (($ $) 97 (-12 (|has| |#1| (-872)) (|has| $ (-6 -4512))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) 56 (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) 64 (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4511)) ELT)) (-4240 (($) 7 T CONST)) (-2524 (($ $) 99 (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) 109 T ELT)) (-1479 (($ $) 84 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-3912 (($ |#1| $) 83 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) 57 (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) 55 T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) 106 T ELT) (((-560) |#1| $) 105 (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) 104 (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) 30 (|has| $ (-6 -4511)) ELT)) (-4351 (((-711 |#1|) $ $) 114 (|has| |#1| (-1081)) ELT)) (-4130 (($ (-793) |#1|) 74 T ELT)) (-2429 (((-560) $) 47 (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) 91 (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) 29 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-2430 (((-560) $) 48 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) 92 (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4348 ((|#1| $) 111 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1034))) ELT)) (-4349 ((|#1| $) 112 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1034))) ELT)) (-3746 (((-1191) $) 22 (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) 66 T ELT) (($ $ $ (-560)) 65 T ELT)) (-2432 (((-663 (-560)) $) 50 T ELT)) (-2433 (((-114) (-560) $) 51 T ELT)) (-3747 (((-1152) $) 21 (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) 46 (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2428 (($ $ |#1|) 45 (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) 11 T ELT)) (-2431 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) 52 T ELT)) (-3909 (((-114) $) 8 T ELT)) (-4079 (($) 9 T ELT)) (-4316 ((|#1| $ (-560) |#1|) 54 T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1266 (-560))) 75 T ELT)) (-4352 ((|#1| $ $) 115 (|has| |#1| (-1081)) ELT)) (-2532 (($ $ (-560)) 68 T ELT) (($ $ (-1266 (-560))) 67 T ELT)) (-4350 (($ $ $) 113 (|has| |#1| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) 28 (-12 (|has| |#1| (-1133)) (|has| $ (-6 -4511))) ELT)) (-1946 (($ $ $ (-560)) 100 (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) 10 T ELT)) (-4488 (((-549) $) 85 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 76 T ELT)) (-4318 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-663 $)) 70 T ELT)) (-4462 (((-888) $) 17 (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) 93 (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) 95 (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) 94 (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) 96 (|has| |#1| (-872)) ELT)) (-4353 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-748)) ELT) (($ $ |#1|) 116 (|has| |#1| (-748)) ELT)) (-4473 (((-793) $) 6 (|has| $ (-6 -4511)) ELT))) -(((-1298 |#1|) (-142) (-1249)) (T -1298)) -((-4355 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-25)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1298 *3)) (-4 *3 (-23)) (-4 *3 (-1249)))) (-4353 (*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-21)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1298 *3)) (-4 *3 (-1249)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-748)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-748)))) (-4352 (*1 *2 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1081)))) (-4351 (*1 *2 *1 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-1249)) (-4 *3 (-1081)) (-5 *2 (-711 *3)))) (-4350 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1081)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1034)) (-4 *2 (-1081)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1034)) (-4 *2 (-1081))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4355 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4354 ($ (-793))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4353 ($ $)) (-15 -4353 ($ $ $)) (-15 * ($ (-560) $))) |%noBranch|) (IF (|has| |t#1| (-748)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1081)) (PROGN (-15 -4352 (|t#1| $ $)) (-15 -4351 ((-711 |t#1|) $ $)) (-15 -4350 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1034)) (IF (|has| |t#1| (-1081)) (PROGN (-15 -4349 (|t#1| $)) (-15 -4348 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-102))) ((-632 (-888)) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872)) (|has| |#1| (-632 (-888)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #1=(-560) |#1|) . T) ((-298 (-1266 (-560)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #1# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-872) |has| |#1| (-872)) ((-875) |has| |#1| (-872)) ((-1133) -4043 (|has| |#1| (-1133)) (|has| |#1| (-872))) ((-1249) . T)) -((-3053 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4354 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-4356 (($ (-663 |#1|)) 11 T ELT)) (-2427 (((-1305) $ (-560) (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-1947 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-872)) ELT)) (-1945 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4512)) (|has| |#1| (-872))) ELT)) (-3396 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-872)) ELT)) (-4304 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT) ((|#1| $ (-1266 (-560)) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-4226 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4240 (($) NIL T CONST)) (-2524 (($ $) NIL (|has| $ (-6 -4512)) ELT)) (-2525 (($ $) NIL T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-3912 (($ |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4358 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4511)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-1731 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-3601 ((|#1| $ (-560)) NIL T ELT)) (-3925 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1133)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1133)) ELT)) (-3376 (((-663 |#1|) $) 16 (|has| $ (-6 -4511)) ELT)) (-4351 (((-711 |#1|) $ $) NIL (|has| |#1| (-1081)) ELT)) (-4130 (($ (-793) |#1|) NIL T ELT)) (-2429 (((-560) $) NIL (|has| (-560) (-872)) ELT)) (-3016 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-4024 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-3093 (((-663 |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2430 (((-560) $) 12 (|has| (-560) (-872)) ELT)) (-3344 (($ $ $) NIL (|has| |#1| (-872)) ELT)) (-2174 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4348 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-4349 ((|#1| $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1081))) ELT)) (-3746 (((-1191) $) NIL (|has| |#1| (-1133)) ELT)) (-2531 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2432 (((-663 (-560)) $) NIL T ELT)) (-2433 (((-114) (-560) $) NIL T ELT)) (-3747 (((-1152) $) NIL (|has| |#1| (-1133)) ELT)) (-4317 ((|#1| $) NIL (|has| (-560) (-872)) ELT)) (-1480 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2428 (($ $ |#1|) NIL (|has| $ (-6 -4512)) ELT)) (-2172 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-2431 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-2434 (((-663 |#1|) $) NIL T ELT)) (-3909 (((-114) $) NIL T ELT)) (-4079 (($) NIL T ELT)) (-4316 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4352 ((|#1| $ $) NIL (|has| |#1| (-1081)) ELT)) (-2532 (($ $ (-560)) NIL T ELT) (($ $ (-1266 (-560))) NIL T ELT)) (-4350 (($ $ $) NIL (|has| |#1| (-1081)) ELT)) (-2171 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#1| (-1133))) ELT)) (-1946 (($ $ $ (-560)) NIL (|has| $ (-6 -4512)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) 20 (|has| |#1| (-633 (-549))) ELT)) (-4036 (($ (-663 |#1|)) 10 T ELT)) (-4318 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4462 (((-888) $) NIL (|has| |#1| (-632 (-888))) ELT)) (-1389 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2173 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3051 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3052 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3540 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3171 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-3172 (((-114) $ $) NIL (|has| |#1| (-872)) ELT)) (-4353 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4355 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1299 |#1|) (-13 (-1298 |#1|) (-10 -8 (-15 -4356 ($ (-663 |#1|))))) (-1249)) (T -1299)) -((-4356 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1299 *3))))) -(-13 (-1298 |#1|) (-10 -8 (-15 -4356 ($ (-663 |#1|))))) -((-4357 (((-1299 |#2|) (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|) 13 T ELT)) (-4358 ((|#2| (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|) 15 T ELT)) (-4474 (((-3 (-1299 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1299 |#1|)) 30 T ELT) (((-1299 |#2|) (-1 |#2| |#1|) (-1299 |#1|)) 18 T ELT))) -(((-1300 |#1| |#2|) (-10 -7 (-15 -4357 ((-1299 |#2|) (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|)) (-15 -4474 ((-1299 |#2|) (-1 |#2| |#1|) (-1299 |#1|))) (-15 -4474 ((-3 (-1299 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1299 |#1|)))) (-1249) (-1249)) (T -1300)) -((-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1299 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1299 *6)) (-5 *1 (-1300 *5 *6)))) (-4474 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1299 *6)) (-5 *1 (-1300 *5 *6)))) (-4358 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1299 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) (-5 *1 (-1300 *5 *2)))) (-4357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1299 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-5 *2 (-1299 *5)) (-5 *1 (-1300 *6 *5))))) -(-10 -7 (-15 -4357 ((-1299 |#2|) (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|)) (-15 -4358 (|#2| (-1 |#2| |#1| |#2|) (-1299 |#1|) |#2|)) (-15 -4474 ((-1299 |#2|) (-1 |#2| |#1|) (-1299 |#1|))) (-15 -4474 ((-3 (-1299 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1299 |#1|)))) -((-4359 (((-482) (-663 (-663 (-973 (-229)))) (-663 (-270))) 22 T ELT) (((-482) (-663 (-663 (-973 (-229))))) 21 T ELT) (((-482) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270))) 20 T ELT)) (-4360 (((-1302) (-663 (-663 (-973 (-229)))) (-663 (-270))) 30 T ELT) (((-1302) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270))) 29 T ELT)) (-4462 (((-1302) (-482)) 46 T ELT))) -(((-1301) (-10 -7 (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270)))) (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))))) (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))) (-663 (-270)))) (-15 -4360 ((-1302) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270)))) (-15 -4360 ((-1302) (-663 (-663 (-973 (-229)))) (-663 (-270)))) (-15 -4462 ((-1302) (-482))))) (T -1301)) -((-4462 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1302)) (-5 *1 (-1301)))) (-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-1301)))) (-4360 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-899)) (-5 *5 (-949)) (-5 *6 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-1301)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1301)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-482)) (-5 *1 (-1301)))) (-4359 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-899)) (-5 *5 (-949)) (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1301))))) -(-10 -7 (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270)))) (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))))) (-15 -4359 ((-482) (-663 (-663 (-973 (-229)))) (-663 (-270)))) (-15 -4360 ((-1302) (-663 (-663 (-973 (-229)))) (-899) (-899) (-949) (-663 (-270)))) (-15 -4360 ((-1302) (-663 (-663 (-973 (-229)))) (-663 (-270)))) (-15 -4462 ((-1302) (-482)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4378 (((-1191) $ (-1191)) 107 T ELT) (((-1191) $ (-1191) (-1191)) 105 T ELT) (((-1191) $ (-1191) (-663 (-1191))) 104 T ELT)) (-4374 (($) 69 T ELT)) (-4361 (((-1305) $ (-482) (-949)) 54 T ELT)) (-4367 (((-1305) $ (-949) (-1191)) 89 T ELT) (((-1305) $ (-949) (-899)) 90 T ELT)) (-4389 (((-1305) $ (-949) (-391) (-391)) 57 T ELT)) (-4399 (((-1305) $ (-1191)) 84 T ELT)) (-4362 (((-1305) $ (-949) (-1191)) 94 T ELT)) (-4363 (((-1305) $ (-949) (-391) (-391)) 58 T ELT)) (-4400 (((-1305) $ (-949) (-949)) 55 T ELT)) (-4380 (((-1305) $) 85 T ELT)) (-4365 (((-1305) $ (-949) (-1191)) 93 T ELT)) (-4369 (((-1305) $ (-482) (-949)) 41 T ELT)) (-4366 (((-1305) $ (-949) (-1191)) 92 T ELT)) (-4402 (((-663 (-270)) $) 29 T ELT) (($ $ (-663 (-270))) 30 T ELT)) (-4401 (((-1305) $ (-793) (-793)) 52 T ELT)) (-4373 (($ $) 70 T ELT) (($ (-482) (-663 (-270))) 71 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4376 (((-560) $) 48 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4370 (((-1299 (-3 (-482) "undefined")) $) 47 T ELT)) (-4371 (((-1299 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4366 (-560)) (|:| -4364 (-560)) (|:| |spline| (-560)) (|:| -4395 (-560)) (|:| |axesColor| (-899)) (|:| -4367 (-560)) (|:| |unitsColor| (-899)) (|:| |showing| (-560)))) $) 46 T ELT)) (-4372 (((-1305) $ (-949) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-899) (-560) (-899) (-560)) 83 T ELT)) (-4375 (((-663 (-973 (-229))) $) NIL T ELT)) (-4368 (((-482) $ (-949)) 43 T ELT)) (-4398 (((-1305) $ (-793) (-793) (-949) (-949)) 50 T ELT)) (-4396 (((-1305) $ (-1191)) 95 T ELT)) (-4364 (((-1305) $ (-949) (-1191)) 91 T ELT)) (-4462 (((-888) $) 102 T ELT)) (-4377 (((-1305) $) 96 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4395 (((-1305) $ (-949) (-1191)) 87 T ELT) (((-1305) $ (-949) (-899)) 88 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1302) (-13 (-1133) (-10 -8 (-15 -4375 ((-663 (-973 (-229))) $)) (-15 -4374 ($)) (-15 -4373 ($ $)) (-15 -4402 ((-663 (-270)) $)) (-15 -4402 ($ $ (-663 (-270)))) (-15 -4373 ($ (-482) (-663 (-270)))) (-15 -4372 ((-1305) $ (-949) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-899) (-560) (-899) (-560))) (-15 -4371 ((-1299 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4366 (-560)) (|:| -4364 (-560)) (|:| |spline| (-560)) (|:| -4395 (-560)) (|:| |axesColor| (-899)) (|:| -4367 (-560)) (|:| |unitsColor| (-899)) (|:| |showing| (-560)))) $)) (-15 -4370 ((-1299 (-3 (-482) "undefined")) $)) (-15 -4399 ((-1305) $ (-1191))) (-15 -4369 ((-1305) $ (-482) (-949))) (-15 -4368 ((-482) $ (-949))) (-15 -4395 ((-1305) $ (-949) (-1191))) (-15 -4395 ((-1305) $ (-949) (-899))) (-15 -4367 ((-1305) $ (-949) (-1191))) (-15 -4367 ((-1305) $ (-949) (-899))) (-15 -4366 ((-1305) $ (-949) (-1191))) (-15 -4365 ((-1305) $ (-949) (-1191))) (-15 -4364 ((-1305) $ (-949) (-1191))) (-15 -4396 ((-1305) $ (-1191))) (-15 -4377 ((-1305) $)) (-15 -4398 ((-1305) $ (-793) (-793) (-949) (-949))) (-15 -4363 ((-1305) $ (-949) (-391) (-391))) (-15 -4389 ((-1305) $ (-949) (-391) (-391))) (-15 -4362 ((-1305) $ (-949) (-1191))) (-15 -4401 ((-1305) $ (-793) (-793))) (-15 -4361 ((-1305) $ (-482) (-949))) (-15 -4400 ((-1305) $ (-949) (-949))) (-15 -4378 ((-1191) $ (-1191))) (-15 -4378 ((-1191) $ (-1191) (-1191))) (-15 -4378 ((-1191) $ (-1191) (-663 (-1191)))) (-15 -4380 ((-1305) $)) (-15 -4376 ((-560) $)) (-15 -4462 ((-888) $))))) (T -1302)) -((-4462 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1302)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-663 (-973 (-229)))) (-5 *1 (-1302)))) (-4374 (*1 *1) (-5 *1 (-1302))) (-4373 (*1 *1 *1) (-5 *1 (-1302))) (-4402 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1302)))) (-4402 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1302)))) (-4373 (*1 *1 *2 *3) (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1302)))) (-4372 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-949)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-899)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-1299 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4366 (-560)) (|:| -4364 (-560)) (|:| |spline| (-560)) (|:| -4395 (-560)) (|:| |axesColor| (-899)) (|:| -4367 (-560)) (|:| |unitsColor| (-899)) (|:| |showing| (-560))))) (-5 *1 (-1302)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-1299 (-3 (-482) "undefined"))) (-5 *1 (-1302)))) (-4399 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4369 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-482)) (-5 *1 (-1302)))) (-4395 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4395 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4367 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4367 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4366 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4365 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4364 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4396 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4398 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4363 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4389 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4362 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4401 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4361 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4378 (*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1302)))) (-4378 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1302)))) (-4378 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-1302)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1302)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1302))))) -(-13 (-1133) (-10 -8 (-15 -4375 ((-663 (-973 (-229))) $)) (-15 -4374 ($)) (-15 -4373 ($ $)) (-15 -4402 ((-663 (-270)) $)) (-15 -4402 ($ $ (-663 (-270)))) (-15 -4373 ($ (-482) (-663 (-270)))) (-15 -4372 ((-1305) $ (-949) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-899) (-560) (-899) (-560))) (-15 -4371 ((-1299 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4366 (-560)) (|:| -4364 (-560)) (|:| |spline| (-560)) (|:| -4395 (-560)) (|:| |axesColor| (-899)) (|:| -4367 (-560)) (|:| |unitsColor| (-899)) (|:| |showing| (-560)))) $)) (-15 -4370 ((-1299 (-3 (-482) "undefined")) $)) (-15 -4399 ((-1305) $ (-1191))) (-15 -4369 ((-1305) $ (-482) (-949))) (-15 -4368 ((-482) $ (-949))) (-15 -4395 ((-1305) $ (-949) (-1191))) (-15 -4395 ((-1305) $ (-949) (-899))) (-15 -4367 ((-1305) $ (-949) (-1191))) (-15 -4367 ((-1305) $ (-949) (-899))) (-15 -4366 ((-1305) $ (-949) (-1191))) (-15 -4365 ((-1305) $ (-949) (-1191))) (-15 -4364 ((-1305) $ (-949) (-1191))) (-15 -4396 ((-1305) $ (-1191))) (-15 -4377 ((-1305) $)) (-15 -4398 ((-1305) $ (-793) (-793) (-949) (-949))) (-15 -4363 ((-1305) $ (-949) (-391) (-391))) (-15 -4389 ((-1305) $ (-949) (-391) (-391))) (-15 -4362 ((-1305) $ (-949) (-1191))) (-15 -4401 ((-1305) $ (-793) (-793))) (-15 -4361 ((-1305) $ (-482) (-949))) (-15 -4400 ((-1305) $ (-949) (-949))) (-15 -4378 ((-1191) $ (-1191))) (-15 -4378 ((-1191) $ (-1191) (-1191))) (-15 -4378 ((-1191) $ (-1191) (-663 (-1191)))) (-15 -4380 ((-1305) $)) (-15 -4376 ((-560) $)) (-15 -4462 ((-888) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4390 (((-1305) $ (-391)) 169 T ELT) (((-1305) $ (-391) (-391) (-391)) 170 T ELT)) (-4378 (((-1191) $ (-1191)) 178 T ELT) (((-1191) $ (-1191) (-1191)) 176 T ELT) (((-1191) $ (-1191) (-663 (-1191))) 175 T ELT)) (-4406 (($) 67 T ELT)) (-4397 (((-1305) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1305) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1305) $ (-560) (-560) (-391) (-391) (-391)) 144 T ELT) (((-1305) $ (-391) (-391)) 145 T ELT) (((-1305) $ (-391) (-391) (-391)) 152 T ELT)) (-4409 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4411 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4410 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4407 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4408 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4389 (((-1305) $ (-391) (-391)) 171 T ELT)) (-4399 (((-1305) $ (-1191)) 153 T ELT)) (-4404 (((-1165 (-229)) $) 68 T ELT) (($ $ (-1165 (-229))) 69 T ELT)) (-4385 (((-1305) $ (-1191)) 187 T ELT)) (-4384 (((-1305) $ (-1191)) 188 T ELT)) (-4391 (((-1305) $ (-391) (-391)) 151 T ELT) (((-1305) $ (-560) (-560)) 168 T ELT)) (-4400 (((-1305) $ (-949) (-949)) 160 T ELT)) (-4380 (((-1305) $) 137 T ELT)) (-4388 (((-1305) $ (-1191)) 186 T ELT)) (-4393 (((-1305) $ (-1191)) 134 T ELT)) (-4402 (((-663 (-270)) $) 70 T ELT) (($ $ (-663 (-270))) 71 T ELT)) (-4401 (((-1305) $ (-793) (-793)) 159 T ELT)) (-4403 (((-1305) $ (-793) (-973 (-229))) 193 T ELT)) (-4405 (($ $) 73 T ELT) (($ (-1165 (-229)) (-1191)) 74 T ELT) (($ (-1165 (-229)) (-663 (-270))) 75 T ELT)) (-4382 (((-1305) $ (-391) (-391) (-391)) 131 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4376 (((-560) $) 128 T ELT)) (-4381 (((-1305) $ (-391)) 173 T ELT)) (-4386 (((-1305) $ (-391)) 191 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4387 (((-1305) $ (-391)) 190 T ELT)) (-4392 (((-1305) $ (-1191)) 136 T ELT)) (-4398 (((-1305) $ (-793) (-793) (-949) (-949)) 158 T ELT)) (-4394 (((-1305) $ (-1191)) 133 T ELT)) (-4396 (((-1305) $ (-1191)) 135 T ELT)) (-4379 (((-1305) $ (-159) (-159)) 157 T ELT)) (-4462 (((-888) $) 166 T ELT)) (-4377 (((-1305) $) 138 T ELT)) (-4383 (((-1305) $ (-1191)) 189 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4395 (((-1305) $ (-1191)) 132 T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1303) (-13 (-1133) (-10 -8 (-15 -4411 ((-391))) (-15 -4411 ((-391) (-391))) (-15 -4410 ((-391))) (-15 -4410 ((-391) (-391))) (-15 -4409 ((-391))) (-15 -4409 ((-391) (-391))) (-15 -4408 ((-391))) (-15 -4408 ((-391) (-391))) (-15 -4407 ((-391))) (-15 -4407 ((-391) (-391))) (-15 -4406 ($)) (-15 -4405 ($ $)) (-15 -4405 ($ (-1165 (-229)) (-1191))) (-15 -4405 ($ (-1165 (-229)) (-663 (-270)))) (-15 -4404 ((-1165 (-229)) $)) (-15 -4404 ($ $ (-1165 (-229)))) (-15 -4403 ((-1305) $ (-793) (-973 (-229)))) (-15 -4402 ((-663 (-270)) $)) (-15 -4402 ($ $ (-663 (-270)))) (-15 -4401 ((-1305) $ (-793) (-793))) (-15 -4400 ((-1305) $ (-949) (-949))) (-15 -4399 ((-1305) $ (-1191))) (-15 -4398 ((-1305) $ (-793) (-793) (-949) (-949))) (-15 -4397 ((-1305) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4397 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4397 ((-1305) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4397 ((-1305) $ (-560) (-560) (-391) (-391) (-391))) (-15 -4397 ((-1305) $ (-391) (-391))) (-15 -4397 ((-1305) $ (-391) (-391) (-391))) (-15 -4396 ((-1305) $ (-1191))) (-15 -4395 ((-1305) $ (-1191))) (-15 -4394 ((-1305) $ (-1191))) (-15 -4393 ((-1305) $ (-1191))) (-15 -4392 ((-1305) $ (-1191))) (-15 -4391 ((-1305) $ (-391) (-391))) (-15 -4391 ((-1305) $ (-560) (-560))) (-15 -4390 ((-1305) $ (-391))) (-15 -4390 ((-1305) $ (-391) (-391) (-391))) (-15 -4389 ((-1305) $ (-391) (-391))) (-15 -4388 ((-1305) $ (-1191))) (-15 -4387 ((-1305) $ (-391))) (-15 -4386 ((-1305) $ (-391))) (-15 -4385 ((-1305) $ (-1191))) (-15 -4384 ((-1305) $ (-1191))) (-15 -4383 ((-1305) $ (-1191))) (-15 -4382 ((-1305) $ (-391) (-391) (-391))) (-15 -4381 ((-1305) $ (-391))) (-15 -4380 ((-1305) $)) (-15 -4379 ((-1305) $ (-159) (-159))) (-15 -4378 ((-1191) $ (-1191))) (-15 -4378 ((-1191) $ (-1191) (-1191))) (-15 -4378 ((-1191) $ (-1191) (-663 (-1191)))) (-15 -4377 ((-1305) $)) (-15 -4376 ((-560) $))))) (T -1303)) -((-4411 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4411 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4410 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4410 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4409 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4409 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4408 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4408 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4407 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4407 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) (-4406 (*1 *1) (-5 *1 (-1303))) (-4405 (*1 *1 *1) (-5 *1 (-1303))) (-4405 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-1191)) (-5 *1 (-1303)))) (-4405 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1303)))) (-4404 (*1 *2 *1) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1303)))) (-4404 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1303)))) (-4403 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4402 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1303)))) (-4402 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1303)))) (-4401 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4399 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4398 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4397 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1303)))) (-4397 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4397 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4397 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4396 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4395 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4394 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4393 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4392 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4391 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4391 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4390 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4389 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4388 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4387 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4385 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4384 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4381 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4379 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4378 (*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1303)))) (-4378 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1303)))) (-4378 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-1303)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1303)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1303))))) -(-13 (-1133) (-10 -8 (-15 -4411 ((-391))) (-15 -4411 ((-391) (-391))) (-15 -4410 ((-391))) (-15 -4410 ((-391) (-391))) (-15 -4409 ((-391))) (-15 -4409 ((-391) (-391))) (-15 -4408 ((-391))) (-15 -4408 ((-391) (-391))) (-15 -4407 ((-391))) (-15 -4407 ((-391) (-391))) (-15 -4406 ($)) (-15 -4405 ($ $)) (-15 -4405 ($ (-1165 (-229)) (-1191))) (-15 -4405 ($ (-1165 (-229)) (-663 (-270)))) (-15 -4404 ((-1165 (-229)) $)) (-15 -4404 ($ $ (-1165 (-229)))) (-15 -4403 ((-1305) $ (-793) (-973 (-229)))) (-15 -4402 ((-663 (-270)) $)) (-15 -4402 ($ $ (-663 (-270)))) (-15 -4401 ((-1305) $ (-793) (-793))) (-15 -4400 ((-1305) $ (-949) (-949))) (-15 -4399 ((-1305) $ (-1191))) (-15 -4398 ((-1305) $ (-793) (-793) (-949) (-949))) (-15 -4397 ((-1305) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4397 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4397 ((-1305) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4397 ((-1305) $ (-560) (-560) (-391) (-391) (-391))) (-15 -4397 ((-1305) $ (-391) (-391))) (-15 -4397 ((-1305) $ (-391) (-391) (-391))) (-15 -4396 ((-1305) $ (-1191))) (-15 -4395 ((-1305) $ (-1191))) (-15 -4394 ((-1305) $ (-1191))) (-15 -4393 ((-1305) $ (-1191))) (-15 -4392 ((-1305) $ (-1191))) (-15 -4391 ((-1305) $ (-391) (-391))) (-15 -4391 ((-1305) $ (-560) (-560))) (-15 -4390 ((-1305) $ (-391))) (-15 -4390 ((-1305) $ (-391) (-391) (-391))) (-15 -4389 ((-1305) $ (-391) (-391))) (-15 -4388 ((-1305) $ (-1191))) (-15 -4387 ((-1305) $ (-391))) (-15 -4386 ((-1305) $ (-391))) (-15 -4385 ((-1305) $ (-1191))) (-15 -4384 ((-1305) $ (-1191))) (-15 -4383 ((-1305) $ (-1191))) (-15 -4382 ((-1305) $ (-391) (-391) (-391))) (-15 -4381 ((-1305) $ (-391))) (-15 -4380 ((-1305) $)) (-15 -4379 ((-1305) $ (-159) (-159))) (-15 -4378 ((-1191) $ (-1191))) (-15 -4378 ((-1191) $ (-1191) (-1191))) (-15 -4378 ((-1191) $ (-1191) (-663 (-1191)))) (-15 -4377 ((-1305) $)) (-15 -4376 ((-560) $)))) -((-4420 (((-663 (-1191)) (-663 (-1191))) 103 T ELT) (((-663 (-1191))) 96 T ELT)) (-4421 (((-663 (-1191))) 94 T ELT)) (-4418 (((-663 (-949)) (-663 (-949))) 69 T ELT) (((-663 (-949))) 64 T ELT)) (-4417 (((-663 (-793)) (-663 (-793))) 61 T ELT) (((-663 (-793))) 55 T ELT)) (-4419 (((-1305)) 71 T ELT)) (-4423 (((-949) (-949)) 87 T ELT) (((-949)) 86 T ELT)) (-4422 (((-949) (-949)) 85 T ELT) (((-949)) 84 T ELT)) (-4415 (((-899) (-899)) 81 T ELT) (((-899)) 80 T ELT)) (-4425 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4424 (((-949)) 88 T ELT) (((-949) (-949)) 89 T ELT)) (-4416 (((-949) (-949)) 83 T ELT) (((-949)) 82 T ELT)) (-4412 (((-899) (-899)) 75 T ELT) (((-899)) 73 T ELT)) (-4413 (((-899) (-899)) 77 T ELT) (((-899)) 76 T ELT)) (-4414 (((-899) (-899)) 79 T ELT) (((-899)) 78 T ELT))) -(((-1304) (-10 -7 (-15 -4412 ((-899))) (-15 -4412 ((-899) (-899))) (-15 -4413 ((-899))) (-15 -4413 ((-899) (-899))) (-15 -4414 ((-899))) (-15 -4414 ((-899) (-899))) (-15 -4415 ((-899))) (-15 -4415 ((-899) (-899))) (-15 -4416 ((-949))) (-15 -4416 ((-949) (-949))) (-15 -4417 ((-663 (-793)))) (-15 -4417 ((-663 (-793)) (-663 (-793)))) (-15 -4418 ((-663 (-949)))) (-15 -4418 ((-663 (-949)) (-663 (-949)))) (-15 -4419 ((-1305))) (-15 -4420 ((-663 (-1191)))) (-15 -4420 ((-663 (-1191)) (-663 (-1191)))) (-15 -4421 ((-663 (-1191)))) (-15 -4422 ((-949))) (-15 -4423 ((-949))) (-15 -4422 ((-949) (-949))) (-15 -4423 ((-949) (-949))) (-15 -4424 ((-949) (-949))) (-15 -4424 ((-949))) (-15 -4425 ((-229) (-391))) (-15 -4425 ((-229))))) (T -1304)) -((-4425 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1304)))) (-4425 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1304)))) (-4424 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4424 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4423 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4422 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4423 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4422 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4421 (*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304)))) (-4420 (*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304)))) (-4420 (*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304)))) (-4419 (*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1304)))) (-4418 (*1 *2 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1304)))) (-4418 (*1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1304)))) (-4417 (*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1304)))) (-4417 (*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1304)))) (-4416 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4416 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) (-4415 (*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4415 (*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4414 (*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4414 (*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4413 (*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4413 (*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4412 (*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) (-4412 (*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304))))) -(-10 -7 (-15 -4412 ((-899))) (-15 -4412 ((-899) (-899))) (-15 -4413 ((-899))) (-15 -4413 ((-899) (-899))) (-15 -4414 ((-899))) (-15 -4414 ((-899) (-899))) (-15 -4415 ((-899))) (-15 -4415 ((-899) (-899))) (-15 -4416 ((-949))) (-15 -4416 ((-949) (-949))) (-15 -4417 ((-663 (-793)))) (-15 -4417 ((-663 (-793)) (-663 (-793)))) (-15 -4418 ((-663 (-949)))) (-15 -4418 ((-663 (-949)) (-663 (-949)))) (-15 -4419 ((-1305))) (-15 -4420 ((-663 (-1191)))) (-15 -4420 ((-663 (-1191)) (-663 (-1191)))) (-15 -4421 ((-663 (-1191)))) (-15 -4422 ((-949))) (-15 -4423 ((-949))) (-15 -4422 ((-949) (-949))) (-15 -4423 ((-949) (-949))) (-15 -4424 ((-949) (-949))) (-15 -4424 ((-949))) (-15 -4425 ((-229) (-391))) (-15 -4425 ((-229)))) -((-4426 (($) 6 T ELT)) (-4462 (((-888) $) 9 T ELT))) -(((-1305) (-13 (-632 (-888)) (-10 -8 (-15 -4426 ($))))) (T -1305)) -((-4426 (*1 *1) (-5 *1 (-1305)))) -(-13 (-632 (-888)) (-10 -8 (-15 -4426 ($)))) -((-4465 (($ $ |#2|) 10 T ELT))) -(((-1306 |#1| |#2|) (-10 -8 (-15 -4465 (|#1| |#1| |#2|))) (-1307 |#2|) (-376)) (T -1306)) -NIL -(-10 -8 (-15 -4465 (|#1| |#1| |#2|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4427 (((-136)) 38 T ELT)) (-4462 (((-888) $) 13 T ELT)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ |#1|) 39 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1307 |#1|) (-142) (-376)) (T -1307)) -((-4465 (*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-376)))) (-4427 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(-13 (-739 |t#1|) (-10 -8 (-15 -4465 ($ $ |t#1|)) (-15 -4427 ((-136))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1133) . T) ((-1249) . T)) -((-4432 (((-663 (-1242 |#1|)) (-1209) (-1242 |#1|)) 83 T ELT)) (-4430 (((-1187 (-1187 (-976 |#1|))) (-1209) (-1187 (-976 |#1|))) 63 T ELT)) (-4433 (((-1 (-1187 (-1242 |#1|)) (-1187 (-1242 |#1|))) (-793) (-1242 |#1|) (-1187 (-1242 |#1|))) 74 T ELT)) (-4428 (((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793)) 65 T ELT)) (-4431 (((-1 (-1203 (-976 |#1|)) (-976 |#1|)) (-1209)) 32 T ELT)) (-4429 (((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793)) 64 T ELT))) -(((-1308 |#1|) (-10 -7 (-15 -4428 ((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793))) (-15 -4429 ((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793))) (-15 -4430 ((-1187 (-1187 (-976 |#1|))) (-1209) (-1187 (-976 |#1|)))) (-15 -4431 ((-1 (-1203 (-976 |#1|)) (-976 |#1|)) (-1209))) (-15 -4432 ((-663 (-1242 |#1|)) (-1209) (-1242 |#1|))) (-15 -4433 ((-1 (-1187 (-1242 |#1|)) (-1187 (-1242 |#1|))) (-793) (-1242 |#1|) (-1187 (-1242 |#1|))))) (-376)) (T -1308)) -((-4433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1242 *6)) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1308 *6)) (-5 *5 (-1187 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-4 *5 (-376)) (-5 *2 (-663 (-1242 *5))) (-5 *1 (-1308 *5)) (-5 *4 (-1242 *5)))) (-4431 (*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1 (-1203 (-976 *4)) (-976 *4))) (-5 *1 (-1308 *4)) (-4 *4 (-376)))) (-4430 (*1 *2 *3 *4) (-12 (-5 *3 (-1209)) (-4 *5 (-376)) (-5 *2 (-1187 (-1187 (-976 *5)))) (-5 *1 (-1308 *5)) (-5 *4 (-1187 (-976 *5))))) (-4429 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1187 (-976 *4)) (-1187 (-976 *4)))) (-5 *1 (-1308 *4)) (-4 *4 (-376)))) (-4428 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1187 (-976 *4)) (-1187 (-976 *4)))) (-5 *1 (-1308 *4)) (-4 *4 (-376))))) -(-10 -7 (-15 -4428 ((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793))) (-15 -4429 ((-1 (-1187 (-976 |#1|)) (-1187 (-976 |#1|))) (-793))) (-15 -4430 ((-1187 (-1187 (-976 |#1|))) (-1209) (-1187 (-976 |#1|)))) (-15 -4431 ((-1 (-1203 (-976 |#1|)) (-976 |#1|)) (-1209))) (-15 -4432 ((-663 (-1242 |#1|)) (-1209) (-1242 |#1|))) (-15 -4433 ((-1 (-1187 (-1242 |#1|)) (-1187 (-1242 |#1|))) (-793) (-1242 |#1|) (-1187 (-1242 |#1|))))) -((-4435 (((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 80 T ELT)) (-4434 (((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 79 T ELT))) -(((-1309 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) (-363) (-1275 |#1|) (-1275 |#2|) (-424 |#2| |#3|)) (T -1309)) -((-4435 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 *3)) (-5 *2 (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1309 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5)))) (-4434 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-2 (|:| -2236 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1309 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5))))) -(-10 -7 (-15 -4434 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -4435 ((-2 (|:| -2236 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) -((-3053 (((-114) $ $) NIL T ELT)) (-4436 (((-1167) $) 11 T ELT)) (-4437 (((-1167) $) 9 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 17 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1310) (-13 (-1115) (-10 -8 (-15 -4437 ((-1167) $)) (-15 -4436 ((-1167) $))))) (T -1310)) -((-4437 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1310)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1310))))) -(-13 (-1115) (-10 -8 (-15 -4437 ((-1167) $)) (-15 -4436 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4438 (((-1167) $) 9 T ELT)) (-4462 (((-888) $) 15 T ELT) (($ (-1214)) NIL T ELT) (((-1214) $) NIL T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT))) -(((-1311) (-13 (-1115) (-10 -8 (-15 -4438 ((-1167) $))))) (T -1311)) -((-4438 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1311))))) -(-13 (-1115) (-10 -8 (-15 -4438 ((-1167) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 58 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 81 T ELT) (($ (-560)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3614 (((-793)) NIL T CONST)) (-4439 (((-1305) (-793)) 16 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 36 T CONST)) (-3151 (($) 84 T CONST)) (-3540 (((-114) $ $) 87 T ELT)) (-4465 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4353 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 63 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-1312 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1081) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4465 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4439 ((-1305) (-793))))) (-1081) (-872) (-817) (-980 |#1| |#3| |#2|) (-663 |#2|) (-663 (-793)) (-793)) (T -1312)) -((-4465 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1081)) (-4 *3 (-872)) (-4 *4 (-817)) (-14 *6 (-663 *3)) (-5 *1 (-1312 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-980 *2 *4 *3)) (-14 *7 (-663 (-793))) (-14 *8 (-793)))) (-4439 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1081)) (-4 *5 (-872)) (-4 *6 (-817)) (-14 *8 (-663 *5)) (-5 *2 (-1305)) (-5 *1 (-1312 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-980 *4 *6 *5)) (-14 *9 (-663 *3)) (-14 *10 *3)))) -(-13 (-1081) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4465 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4439 ((-1305) (-793))))) -((-3053 (((-114) $ $) NIL T ELT)) (-4197 (((-663 (-2 (|:| -4377 $) (|:| -1917 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-4198 (((-663 $) (-663 |#4|)) 96 T ELT)) (-3570 (((-663 |#3|) $) NIL T ELT)) (-3395 (((-114) $) NIL T ELT)) (-3386 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4209 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4204 ((|#4| |#4| $) NIL T ELT)) (-3396 (((-2 (|:| |under| $) (|:| -3618 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4226 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3391 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3393 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3392 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3394 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4205 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3387 (((-663 |#4|) (-663 |#4|) $) 28 (|has| |#1| (-571)) ELT)) (-3388 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3661 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3660 (($ (-663 |#4|)) NIL T ELT)) (-4315 (((-3 $ #1#) $) 78 T ELT)) (-4201 ((|#4| |#4| $) 83 T ELT)) (-1479 (($ $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-3912 (($ |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3389 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4210 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-4358 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4511)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4511)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4212 (((-2 (|:| -4377 (-663 |#4|)) (|:| -1917 (-663 |#4|))) $) NIL T ELT)) (-3376 (((-663 |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4211 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3684 ((|#3| $) 84 T ELT)) (-3093 (((-663 |#4|) $) 32 (|has| $ (-6 -4511)) ELT)) (-3749 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT)) (-4442 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-663 |#4|)) 38 T ELT)) (-2174 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4512)) ELT)) (-4474 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3401 (((-663 |#3|) $) NIL T ELT)) (-3400 (((-114) |#3| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-4314 (((-3 |#4| #1#) $) NIL T ELT)) (-4213 (((-663 |#4|) $) 54 T ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4202 ((|#4| |#4| $) 82 T ELT)) (-4215 (((-114) $ $) 93 T ELT)) (-3390 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4208 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4203 ((|#4| |#4| $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4317 (((-3 |#4| #1#) $) 77 T ELT)) (-1480 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4195 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-4285 (($ $ |#4|) NIL T ELT)) (-2172 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4284 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1133))) ELT)) (-1340 (((-114) $ $) NIL T ELT)) (-3909 (((-114) $) 75 T ELT)) (-4079 (($) 46 T ELT)) (-4464 (((-793) $) NIL T ELT)) (-2171 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4511)) (|has| |#4| (-1133))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-3906 (($ $) NIL T ELT)) (-4488 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-4036 (($ (-663 |#4|)) NIL T ELT)) (-3397 (($ $ |#3|) NIL T ELT)) (-3399 (($ $ |#3|) NIL T ELT)) (-4200 (($ $) NIL T ELT)) (-3398 (($ $ |#3|) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (((-663 |#4|) $) 63 T ELT)) (-4194 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-4441 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-663 |#4|)) 45 T ELT)) (-4440 (((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-663 $) (-663 |#4|)) 74 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-4214 (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3830 (-663 |#4|))) #1#) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4206 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2173 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4511)) ELT)) (-4196 (((-663 |#3|) $) NIL T ELT)) (-4449 (((-114) |#3| $) NIL T ELT)) (-3540 (((-114) $ $) NIL T ELT)) (-4473 (((-793) $) NIL (|has| $ (-6 -4511)) ELT))) -(((-1313 |#1| |#2| |#3| |#4|) (-13 (-1244 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4442 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4442 ((-3 $ "failed") (-663 |#4|))) (-15 -4441 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4441 ((-3 $ "failed") (-663 |#4|))) (-15 -4440 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4440 ((-663 $) (-663 |#4|))))) (-571) (-817) (-872) (-1097 |#1| |#2| |#3|)) (T -1313)) -((-4442 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1313 *5 *6 *7 *8)))) (-4442 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1313 *3 *4 *5 *6)))) (-4441 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1313 *5 *6 *7 *8)))) (-4441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1313 *3 *4 *5 *6)))) (-4440 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) (-4 *8 (-872)) (-5 *2 (-663 (-1313 *6 *7 *8 *9))) (-5 *1 (-1313 *6 *7 *8 *9)))) (-4440 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 (-1313 *4 *5 *6 *7))) (-5 *1 (-1313 *4 *5 *6 *7))))) -(-13 (-1244 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4442 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4442 ((-3 $ "failed") (-663 |#4|))) (-15 -4441 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4441 ((-3 $ "failed") (-663 |#4|))) (-15 -4440 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4440 ((-663 $) (-663 |#4|))))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4240 (($) 22 T CONST)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-1314 |#1|) (-142) (-1081)) (T -1314)) -NIL -(-13 (-1081) (-111 |t#1| |t#1|) (-635 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1083 |#1|) . T) ((-1088 |#1|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T)) -((-3053 (((-114) $ $) 67 T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4450 (((-663 |#1|) $) 52 T ELT)) (-4463 (($ $ (-793)) 46 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4451 (($ $ (-793)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-4240 (($) NIL T CONST)) (-4455 (($ $ $) 70 T ELT) (($ $ (-843 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3661 (((-3 (-843 |#1|) "failed") $) NIL T ELT)) (-3660 (((-843 |#1|) $) NIL T ELT)) (-4475 (($ $) 39 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4467 (((-114) $) NIL T ELT)) (-4466 (($ $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ (-843 |#1|) |#2|) 38 T ELT)) (-4452 (($ $) 40 T ELT)) (-4457 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4471 (((-843 |#1|) $) NIL T ELT)) (-4472 (((-843 |#1|) $) 41 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4456 (($ $ $) 69 T ELT) (($ $ (-843 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1964 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3381 (((-843 |#1|) $) 35 T ELT)) (-3678 ((|#2| $) 37 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4464 (((-793) $) 43 T ELT)) (-4469 (((-114) $) 47 T ELT)) (-4468 ((|#2| $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-843 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-560)) NIL T ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-843 |#1|)) NIL T ELT)) (-4470 ((|#2| $ $) 76 T ELT) ((|#2| $ (-843 |#1|)) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 13 T CONST)) (-3151 (($) 19 T CONST)) (-3150 (((-663 (-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3540 (((-114) $ $) 44 T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 28 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-843 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1315 |#1| |#2|) (-13 (-397 |#2| (-843 |#1|)) (-1322 |#1| |#2|)) (-872) (-1081)) (T -1315)) -NIL -(-13 (-397 |#2| (-843 |#1|)) (-1322 |#1| |#2|)) -((-4458 ((|#3| |#3| (-793)) 28 T ELT)) (-4459 ((|#3| |#3| (-793)) 34 T ELT)) (-4443 ((|#3| |#3| |#3| (-793)) 35 T ELT))) -(((-1316 |#1| |#2| |#3|) (-10 -7 (-15 -4459 (|#3| |#3| (-793))) (-15 -4458 (|#3| |#3| (-793))) (-15 -4443 (|#3| |#3| |#3| (-793)))) (-13 (-1081) (-739 (-421 (-560)))) (-872) (-1322 |#2| |#1|)) (T -1316)) -((-4443 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4)))) (-4458 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4)))) (-4459 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4))))) -(-10 -7 (-15 -4459 (|#3| |#3| (-793))) (-15 -4458 (|#3| |#3| (-793))) (-15 -4443 (|#3| |#3| |#3| (-793)))) -((-4448 (((-114) $) 15 T ELT)) (-4449 (((-114) $) 14 T ELT)) (-4444 (($ $) 19 T ELT) (($ $ (-793)) 21 T ELT))) -(((-1317 |#1| |#2|) (-10 -8 (-15 -4444 (|#1| |#1| (-793))) (-15 -4444 (|#1| |#1|)) (-15 -4448 ((-114) |#1|)) (-15 -4449 ((-114) |#1|))) (-1318 |#2|) (-376)) (T -1317)) -NIL -(-10 -8 (-15 -4444 (|#1| |#1| (-793))) (-15 -4444 (|#1| |#1|)) (-15 -4448 ((-114) |#1|)) (-15 -4449 ((-114) |#1|))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-2288 (((-2 (|:| -1994 $) (|:| -4498 $) (|:| |associate| $)) $) 52 T ELT)) (-2287 (($ $) 51 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-4448 (((-114) $) 111 T ELT)) (-4445 (((-793)) 107 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4291 (($ $) 88 T ELT)) (-4487 (((-419 $) $) 87 T ELT)) (-1800 (((-114) $ $) 72 T ELT)) (-4240 (($) 22 T CONST)) (-3661 (((-3 |#1| "failed") $) 118 T ELT)) (-3660 ((|#1| $) 119 T ELT)) (-3049 (($ $ $) 68 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-3048 (($ $ $) 69 T ELT)) (-3228 (((-2 (|:| -4470 (-663 $)) (|:| -2654 $)) (-663 $)) 63 T ELT)) (-1988 (($ $ (-793)) 104 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4239 (((-114) $) 86 T ELT)) (-4288 (((-856 (-949)) $) 101 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2655 (((-114) $) 40 T ELT)) (-1797 (((-3 (-663 $) #1="failed") (-663 $) $) 65 T ELT)) (-2116 (($ $ $) 57 T ELT) (($ (-663 $)) 56 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-2888 (($ $) 85 T ELT)) (-4447 (((-114) $) 110 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-3195 (((-1203 $) (-1203 $) (-1203 $)) 55 T ELT)) (-3648 (($ $ $) 59 T ELT) (($ (-663 $)) 58 T ELT)) (-4248 (((-419 $) $) 89 T ELT)) (-4446 (((-856 (-949))) 108 T ELT)) (-1798 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2654 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3972 (((-3 $ "failed") $ $) 53 T ELT)) (-3227 (((-713 (-663 $)) (-663 $) $) 62 T ELT)) (-1799 (((-793) $) 71 T ELT)) (-3366 (((-2 (|:| -2198 $) (|:| -3389 $)) $ $) 70 T ELT)) (-1989 (((-3 (-793) "failed") $ $) 102 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4427 (((-136)) 116 T ELT)) (-4464 (((-856 (-949)) $) 109 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ $) 54 T ELT) (($ (-421 (-560))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3189 (((-713 $) $) 100 (-4043 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-2286 (((-114) $ $) 50 T ELT)) (-4449 (((-114) $) 112 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-4444 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-793)) 105 (|has| |#1| (-381)) ELT)) (-3540 (((-114) $ $) 8 T ELT)) (-4465 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT) (($ $ (-560)) 84 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-421 (-560))) 83 T ELT) (($ (-421 (-560)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-1318 |#1|) (-142) (-376)) (T -1318)) -((-4449 (*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4448 (*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4447 (*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-856 (-949))))) (-4446 (*1 *2) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-856 (-949))))) (-4445 (*1 *2) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-793)))) (-4444 (*1 *1 *1) (-12 (-4 *1 (-1318 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-4444 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) -(-13 (-376) (-1070 |t#1|) (-1307 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-416)) |%noBranch|) (-15 -4449 ((-114) $)) (-15 -4448 ((-114) $)) (-15 -4447 ((-114) $)) (-15 -4464 ((-856 (-949)) $)) (-15 -4446 ((-856 (-949)))) (-15 -4445 ((-793))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-416)) (-15 -4444 ($ $)) (-15 -4444 ($ $ (-793)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4043 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-888)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) -4043 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-466) . T) ((-571) . T) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #1#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-951) . T) ((-1070 |#1|) . T) ((-1083 #1#) . T) ((-1083 |#1|) . T) ((-1083 $) . T) ((-1088 #1#) . T) ((-1088 |#1|) . T) ((-1088 $) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1254) . T) ((-1307 |#1|) . T)) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4450 (((-663 |#1|) $) 52 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4451 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-793)) 54 (|has| |#2| (-175)) ELT)) (-4240 (($) 22 T CONST)) (-4455 (($ $ |#1|) 66 T ELT) (($ $ (-843 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3661 (((-3 (-843 |#1|) "failed") $) 76 T ELT)) (-3660 (((-843 |#1|) $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4467 (((-114) $) 57 T ELT)) (-4466 (($ $) 56 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-4453 (((-114) $) 62 T ELT)) (-4454 (($ (-843 |#1|) |#2|) 63 T ELT)) (-4452 (($ $) 61 T ELT)) (-4457 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4471 (((-843 |#1|) $) 73 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4456 (($ $ |#1|) 69 T ELT) (($ $ (-843 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4469 (((-114) $) 59 T ELT)) (-4468 ((|#2| $) 58 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-843 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4470 ((|#2| $ (-843 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1319 |#1| |#2|) (-142) (-872) (-1081)) (T -1319)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4471 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-843 *3)))) (-4457 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-2 (|:| |k| (-843 *3)) (|:| |c| *4))))) (-4470 (*1 *2 *1 *3) (-12 (-5 *3 (-843 *4)) (-4 *1 (-1319 *4 *2)) (-4 *4 (-872)) (-4 *2 (-1081)))) (-4470 (*1 *2 *1 *1) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) (-4456 (*1 *1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4456 (*1 *1 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) (-4456 (*1 *1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4455 (*1 *1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4455 (*1 *1 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) (-4455 (*1 *1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4454 (*1 *1 *2 *3) (-12 (-5 *2 (-843 *4)) (-4 *4 (-872)) (-4 *1 (-1319 *4 *3)) (-4 *3 (-1081)))) (-4453 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114)))) (-4452 (*1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4462 (*1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4469 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114)))) (-4468 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) (-4467 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114)))) (-4466 (*1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) (-4451 (*1 *1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)) (-4 *3 (-175)))) (-4451 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-4 *4 (-175)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) (-4450 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-663 *3))))) -(-13 (-1081) (-1314 |t#2|) (-1070 (-843 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4471 ((-843 |t#1|) $)) (-15 -4457 ((-2 (|:| |k| (-843 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4470 (|t#2| $ (-843 |t#1|))) (-15 -4470 (|t#2| $ $)) (-15 -4456 ($ $ |t#1|)) (-15 -4456 ($ $ (-843 |t#1|))) (-15 -4456 ($ $ $)) (-15 -4455 ($ $ |t#1|)) (-15 -4455 ($ $ (-843 |t#1|))) (-15 -4455 ($ $ $)) (-15 -4454 ($ (-843 |t#1|) |t#2|)) (-15 -4453 ((-114) $)) (-15 -4452 ($ $)) (-15 -4462 ($ |t#1|)) (-15 -4469 ((-114) $)) (-15 -4468 (|t#2| $)) (-15 -4467 ((-114) $)) (-15 -4466 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -4451 ($ $ $)) (-15 -4451 ($ $ (-793)))) |%noBranch|) (-15 -4474 ($ (-1 |t#2| |t#2|) $)) (-15 -4450 ((-663 |t#1|) $)) (IF (|has| |t#2| (-6 -4504)) (-6 -4504) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 #1=(-843 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1070 #1#) . T) ((-1083 |#2|) . T) ((-1088 |#2|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1314 |#2|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4450 (((-663 |#1|) $) 97 T ELT)) (-4463 (($ $ (-793)) 101 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4451 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-4240 (($) NIL T CONST)) (-4455 (($ $ |#1|) NIL T ELT) (($ $ (-843 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3661 (((-3 (-843 |#1|) #1="failed") $) NIL T ELT) (((-3 (-919 |#1|) #1#) $) NIL T ELT)) (-3660 (((-843 |#1|) $) NIL T ELT) (((-919 |#1|) $) NIL T ELT)) (-4475 (($ $) 100 T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4467 (((-114) $) 89 T ELT)) (-4466 (($ $) 92 T ELT)) (-4460 (($ $ $ (-793)) 102 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ (-843 |#1|) |#2|) NIL T ELT) (($ (-919 |#1|) |#2|) 28 T ELT)) (-4452 (($ $) 118 T ELT)) (-4457 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4471 (((-843 |#1|) $) NIL T ELT)) (-4472 (((-843 |#1|) $) NIL T ELT)) (-4474 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4456 (($ $ |#1|) NIL T ELT) (($ $ (-843 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4458 (($ $ (-793)) 111 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-1964 (((-2 (|:| |k| (-919 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3381 (((-919 |#1|) $) 82 T ELT)) (-3678 ((|#2| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4459 (($ $ (-793)) 108 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-4464 (((-793) $) 98 T ELT)) (-4469 (((-114) $) 83 T ELT)) (-4468 ((|#2| $) 87 T ELT)) (-4462 (((-888) $) 68 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-843 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-919 |#1|)) NIL T ELT) (($ (-686 |#1| |#2|)) 47 T ELT) (((-1315 |#1| |#2|) $) 75 T ELT) (((-1324 |#1| |#2|) $) 80 T ELT)) (-4333 (((-663 |#2|) $) NIL T ELT)) (-4193 ((|#2| $ (-919 |#1|)) NIL T ELT)) (-4470 ((|#2| $ (-843 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 21 T CONST)) (-3151 (($) 27 T CONST)) (-3150 (((-663 (-2 (|:| |k| (-919 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4461 (((-3 (-686 |#1| |#2|) "failed") $) 117 T ELT)) (-3540 (((-114) $ $) 76 T ELT)) (-4353 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-4355 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-919 |#1|)) NIL T ELT))) -(((-1320 |#1| |#2|) (-13 (-1322 |#1| |#2|) (-397 |#2| (-919 |#1|)) (-10 -8 (-15 -4462 ($ (-686 |#1| |#2|))) (-15 -4462 ((-1315 |#1| |#2|) $)) (-15 -4462 ((-1324 |#1| |#2|) $)) (-15 -4461 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -4460 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -4459 ($ $ (-793))) (-15 -4458 ($ $ (-793)))) |%noBranch|))) (-872) (-175)) (T -1320)) -((-4462 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *1 (-1320 *3 *4)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-1324 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4461 (*1 *2 *1) (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4460 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) (-4459 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-872)) (-4 *4 (-175)))) (-4458 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-872)) (-4 *4 (-175))))) -(-13 (-1322 |#1| |#2|) (-397 |#2| (-919 |#1|)) (-10 -8 (-15 -4462 ($ (-686 |#1| |#2|))) (-15 -4462 ((-1315 |#1| |#2|) $)) (-15 -4462 ((-1324 |#1| |#2|) $)) (-15 -4461 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -4460 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -4459 ($ $ (-793))) (-15 -4458 ($ $ (-793)))) |%noBranch|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4450 (((-663 (-1209)) $) NIL T ELT)) (-4478 (($ (-1315 (-1209) |#1|)) NIL T ELT)) (-4463 (($ $ (-793)) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4451 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-4240 (($) NIL T CONST)) (-4455 (($ $ (-1209)) NIL T ELT) (($ $ (-843 (-1209))) NIL T ELT) (($ $ $) NIL T ELT)) (-3661 (((-3 (-843 (-1209)) "failed") $) NIL T ELT)) (-3660 (((-843 (-1209)) $) NIL T ELT)) (-3973 (((-3 $ "failed") $) NIL T ELT)) (-4467 (((-114) $) NIL T ELT)) (-4466 (($ $) NIL T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ (-843 (-1209)) |#1|) NIL T ELT)) (-4452 (($ $) NIL T ELT)) (-4457 (((-2 (|:| |k| (-843 (-1209))) (|:| |c| |#1|)) $) NIL T ELT)) (-4471 (((-843 (-1209)) $) NIL T ELT)) (-4472 (((-843 (-1209)) $) NIL T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4456 (($ $ (-1209)) NIL T ELT) (($ $ (-843 (-1209))) NIL T ELT) (($ $ $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4479 (((-1315 (-1209) |#1|) $) NIL T ELT)) (-4464 (((-793) $) NIL T ELT)) (-4469 (((-114) $) NIL T ELT)) (-4468 ((|#1| $) NIL T ELT)) (-4462 (((-888) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-843 (-1209))) NIL T ELT) (($ (-1209)) NIL T ELT)) (-4470 ((|#1| $ (-843 (-1209))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3614 (((-793)) NIL T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) NIL T CONST)) (-4477 (((-663 (-2 (|:| |k| (-1209)) (|:| |c| $))) $) NIL T ELT)) (-3151 (($) NIL T CONST)) (-3540 (((-114) $ $) NIL T ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1209) $) NIL T ELT))) -(((-1321 |#1|) (-13 (-1322 (-1209) |#1|) (-10 -8 (-15 -4479 ((-1315 (-1209) |#1|) $)) (-15 -4478 ($ (-1315 (-1209) |#1|))) (-15 -4477 ((-663 (-2 (|:| |k| (-1209)) (|:| |c| $))) $)))) (-1081)) (T -1321)) -((-4479 (*1 *2 *1) (-12 (-5 *2 (-1315 (-1209) *3)) (-5 *1 (-1321 *3)) (-4 *3 (-1081)))) (-4478 (*1 *1 *2) (-12 (-5 *2 (-1315 (-1209) *3)) (-4 *3 (-1081)) (-5 *1 (-1321 *3)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-1209)) (|:| |c| (-1321 *3))))) (-5 *1 (-1321 *3)) (-4 *3 (-1081))))) -(-13 (-1322 #1=(-1209) |#1|) (-10 -8 (-15 -4479 ((-1315 #1# |#1|) $)) (-15 -4478 ($ (-1315 #1# |#1|))) (-15 -4477 ((-663 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-3053 (((-114) $ $) 7 T ELT)) (-3692 (((-114) $) 21 T ELT)) (-4450 (((-663 |#1|) $) 52 T ELT)) (-4463 (($ $ (-793)) 86 T ELT)) (-1438 (((-3 $ "failed") $ $) 25 T ELT)) (-4451 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-793)) 54 (|has| |#2| (-175)) ELT)) (-4240 (($) 22 T CONST)) (-4455 (($ $ |#1|) 66 T ELT) (($ $ (-843 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3661 (((-3 (-843 |#1|) "failed") $) 76 T ELT)) (-3660 (((-843 |#1|) $) 77 T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4467 (((-114) $) 57 T ELT)) (-4466 (($ $) 56 T ELT)) (-2655 (((-114) $) 40 T ELT)) (-4453 (((-114) $) 62 T ELT)) (-4454 (($ (-843 |#1|) |#2|) 63 T ELT)) (-4452 (($ $) 61 T ELT)) (-4457 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4471 (((-843 |#1|) $) 73 T ELT)) (-4472 (((-843 |#1|) $) 88 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4456 (($ $ |#1|) 69 T ELT) (($ $ (-843 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3746 (((-1191) $) 11 T ELT)) (-3747 (((-1152) $) 12 T ELT)) (-4464 (((-793) $) 87 T ELT)) (-4469 (((-114) $) 59 T ELT)) (-4468 ((|#2| $) 58 T ELT)) (-4462 (((-888) $) 13 T ELT) (($ (-560)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-843 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4470 ((|#2| $ (-843 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3614 (((-793)) 37 T CONST)) (-1389 (((-114) $ $) 6 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 39 T CONST)) (-3540 (((-114) $ $) 8 T ELT)) (-4353 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4355 (($ $ $) 18 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-793)) 41 T ELT)) (* (($ (-949) $) 17 T ELT) (($ (-793) $) 20 T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1322 |#1| |#2|) (-142) (-872) (-1081)) (T -1322)) -((-4472 (*1 *2 *1) (-12 (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-843 *3)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-793)))) (-4463 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081))))) -(-13 (-1319 |t#1| |t#2|) (-10 -8 (-15 -4472 ((-843 |t#1|) $)) (-15 -4464 ((-793) $)) (-15 -4463 ($ $ (-793))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 #1=(-843 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-888)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1070 #1#) . T) ((-1083 |#2|) . T) ((-1088 |#2|) . T) ((-1081) . T) ((-1089) . T) ((-1144) . T) ((-1133) . T) ((-1249) . T) ((-1314 |#2|) . T) ((-1319 |#1| |#2|) . T)) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) NIL T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4240 (($) NIL T CONST)) (-3661 (((-3 |#2| "failed") $) NIL T ELT)) (-3660 ((|#2| $) NIL T ELT)) (-4475 (($ $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 42 T ELT)) (-4467 (((-114) $) 36 T ELT)) (-4466 (($ $) 37 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-2663 (((-793) $) NIL T ELT)) (-3308 (((-663 $) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ |#2| |#1|) NIL T ELT)) (-4471 ((|#2| $) 24 T ELT)) (-4472 ((|#2| $) 22 T ELT)) (-4474 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1964 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3381 ((|#2| $) NIL T ELT)) (-3678 ((|#1| $) NIL T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4469 (((-114) $) 32 T ELT)) (-4468 ((|#1| $) 33 T ELT)) (-4462 (((-888) $) 65 T ELT) (($ (-560)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4333 (((-663 |#1|) $) NIL T ELT)) (-4193 ((|#1| $ |#2|) NIL T ELT)) (-4470 ((|#1| $ |#2|) 28 T ELT)) (-3614 (((-793)) 14 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 29 T CONST)) (-3151 (($) 11 T CONST)) (-3150 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3540 (((-114) $ $) 30 T ELT)) (-4465 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-4353 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4355 (($ $ $) 50 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 52 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4473 (((-793) $) 16 T ELT))) -(((-1323 |#1| |#2|) (-13 (-1081) (-1314 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4473 ((-793) $)) (-15 -4472 (|#2| $)) (-15 -4471 (|#2| $)) (-15 -4475 ($ $)) (-15 -4470 (|#1| $ |#2|)) (-15 -4469 ((-114) $)) (-15 -4468 (|#1| $)) (-15 -4467 ((-114) $)) (-15 -4466 ($ $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4465 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |#1| (-6 -4508)) (-6 -4508) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) (-1081) (-870)) (T -1323)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870)))) (-4475 (*1 *1 *1) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870)))) (-4474 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-1323 *3 *4)) (-4 *4 (-870)))) (-4473 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870)))) (-4472 (*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-1323 *3 *2)) (-4 *3 (-1081)))) (-4471 (*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-1323 *3 *2)) (-4 *3 (-1081)))) (-4470 (*1 *2 *1 *3) (-12 (-4 *2 (-1081)) (-5 *1 (-1323 *2 *3)) (-4 *3 (-870)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870)))) (-4468 (*1 *2 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-1323 *2 *3)) (-4 *3 (-870)))) (-4467 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870)))) (-4466 (*1 *1 *1) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870)))) (-4465 (*1 *1 *1 *2) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1081)) (-4 *3 (-870))))) -(-13 (-1081) (-1314 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4473 ((-793) $)) (-15 -4472 (|#2| $)) (-15 -4471 (|#2| $)) (-15 -4475 ($ $)) (-15 -4470 (|#1| $ |#2|)) (-15 -4469 ((-114) $)) (-15 -4468 (|#1| $)) (-15 -4467 ((-114) $)) (-15 -4466 ($ $)) (-15 -4474 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4465 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |#1| (-6 -4508)) (-6 -4508) |%noBranch|) (IF (|has| |#1| (-6 -4509)) (-6 -4509) |%noBranch|))) -((-3053 (((-114) $ $) 27 T ELT)) (-3692 (((-114) $) NIL T ELT)) (-4450 (((-663 |#1|) $) 132 T ELT)) (-4478 (($ (-1315 |#1| |#2|)) 50 T ELT)) (-4463 (($ $ (-793)) 38 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-4451 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-793)) 52 (|has| |#2| (-175)) ELT)) (-4240 (($) NIL T CONST)) (-4455 (($ $ |#1|) 114 T ELT) (($ $ (-843 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3661 (((-3 (-843 |#1|) "failed") $) NIL T ELT)) (-3660 (((-843 |#1|) $) NIL T ELT)) (-3973 (((-3 $ "failed") $) 122 T ELT)) (-4467 (((-114) $) 117 T ELT)) (-4466 (($ $) 118 T ELT)) (-2655 (((-114) $) NIL T ELT)) (-4453 (((-114) $) NIL T ELT)) (-4454 (($ (-843 |#1|) |#2|) 20 T ELT)) (-4452 (($ $) NIL T ELT)) (-4457 (((-2 (|:| |k| (-843 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4471 (((-843 |#1|) $) 123 T ELT)) (-4472 (((-843 |#1|) $) 126 T ELT)) (-4474 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4456 (($ $ |#1|) 112 T ELT) (($ $ (-843 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4479 (((-1315 |#1| |#2|) $) 94 T ELT)) (-4464 (((-793) $) 129 T ELT)) (-4469 (((-114) $) 81 T ELT)) (-4468 ((|#2| $) 32 T ELT)) (-4462 (((-888) $) 73 T ELT) (($ (-560)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-843 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4470 ((|#2| $ (-843 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3614 (((-793)) 120 T CONST)) (-1389 (((-114) $ $) NIL T ELT)) (-3145 (($) 15 T CONST)) (-4477 (((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-3151 (($) 33 T CONST)) (-3540 (((-114) $ $) 14 T ELT)) (-4353 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-4355 (($ $ $) 61 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 55 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) 53 T ELT) (($ (-560) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1324 |#1| |#2|) (-13 (-1322 |#1| |#2|) (-10 -8 (-15 -4479 ((-1315 |#1| |#2|) $)) (-15 -4478 ($ (-1315 |#1| |#2|))) (-15 -4477 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-872) (-1081)) (T -1324)) -((-4479 (*1 *2 *1) (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-1324 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) (-4478 (*1 *1 *2) (-12 (-5 *2 (-1315 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *1 (-1324 *3 *4)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1324 *3 *4))))) (-5 *1 (-1324 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081))))) -(-13 (-1322 |#1| |#2|) (-10 -8 (-15 -4479 ((-1315 |#1| |#2|) $)) (-15 -4478 ($ (-1315 |#1| |#2|))) (-15 -4477 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3053 (((-114) $ $) NIL T ELT)) (-4481 (($ (-663 (-949))) 10 T ELT)) (-4480 (((-1003) $) 12 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4462 (((-888) $) 25 T ELT) (($ (-1003)) 14 T ELT) (((-1003) $) 13 T ELT)) (-1389 (((-114) $ $) NIL T ELT)) (-3540 (((-114) $ $) 17 T ELT))) -(((-1325) (-13 (-1133) (-504 (-1003)) (-10 -8 (-15 -4481 ($ (-663 (-949)))) (-15 -4480 ((-1003) $))))) (T -1325)) -((-4481 (*1 *1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1325)))) (-4480 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1325))))) -(-13 (-1133) (-504 (-1003)) (-10 -8 (-15 -4481 ($ (-663 (-949)))) (-15 -4480 ((-1003) $)))) -((-4482 (((-663 (-1187 |#1|)) (-1 (-663 (-1187 |#1|)) (-663 (-1187 |#1|))) (-560)) 16 T ELT) (((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|))) 13 T ELT))) -(((-1326 |#1|) (-10 -7 (-15 -4482 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -4482 ((-663 (-1187 |#1|)) (-1 (-663 (-1187 |#1|)) (-663 (-1187 |#1|))) (-560)))) (-1249)) (T -1326)) -((-4482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 (-1187 *5)) (-663 (-1187 *5)))) (-5 *4 (-560)) (-5 *2 (-663 (-1187 *5))) (-5 *1 (-1326 *5)) (-4 *5 (-1249)))) (-4482 (*1 *2 *3) (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1326 *4)) (-4 *4 (-1249))))) -(-10 -7 (-15 -4482 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -4482 ((-663 (-1187 |#1|)) (-1 (-663 (-1187 |#1|)) (-663 (-1187 |#1|))) (-560)))) -((-4484 (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|))) 174 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114)) 173 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114)) 172 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-1078 |#1| |#2|)) 156 T ELT)) (-4483 (((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|))) 85 T ELT) (((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114)) 84 T ELT) (((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114) (-114)) 83 T ELT)) (-4487 (((-663 (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))) (-1078 |#1| |#2|)) 73 T ELT)) (-4485 (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|))) 140 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114)) 139 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114)) 138 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|)) 132 T ELT)) (-4486 (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|))) 145 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114)) 144 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114)) 143 T ELT) (((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|)) 142 T ELT)) (-4488 (((-663 (-802 |#1| (-889 |#3|))) (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))) 111 T ELT) (((-1203 (-1056 (-421 |#1|))) (-1203 |#1|)) 102 T ELT) (((-976 (-1056 (-421 |#1|))) (-802 |#1| (-889 |#3|))) 109 T ELT) (((-976 (-1056 (-421 |#1|))) (-976 |#1|)) 107 T ELT) (((-802 |#1| (-889 |#3|)) (-802 |#1| (-889 |#2|))) 33 T ELT))) -(((-1327 |#1| |#2| |#3|) (-10 -7 (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114))) (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-1078 |#1| |#2|))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)))) (-15 -4487 ((-663 (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))) (-1078 |#1| |#2|))) (-15 -4488 ((-802 |#1| (-889 |#3|)) (-802 |#1| (-889 |#2|)))) (-15 -4488 ((-976 (-1056 (-421 |#1|))) (-976 |#1|))) (-15 -4488 ((-976 (-1056 (-421 |#1|))) (-802 |#1| (-889 |#3|)))) (-15 -4488 ((-1203 (-1056 (-421 |#1|))) (-1203 |#1|))) (-15 -4488 ((-663 (-802 |#1| (-889 |#3|))) (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))))) (-13 (-871) (-319) (-149) (-1052)) (-663 (-1209)) (-663 (-1209))) (T -1327)) -((-4488 (*1 *2 *3) (-12 (-5 *3 (-1178 *4 (-545 (-889 *6)) (-889 *6) (-802 *4 (-889 *6)))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-802 *4 (-889 *6)))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-1203 (-1056 (-421 *4)))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-889 *6))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *6 (-663 (-1209))) (-5 *2 (-976 (-1056 (-421 *4)))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-976 (-1056 (-421 *4)))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4488 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-889 *5))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *5 (-663 (-1209))) (-5 *2 (-802 *4 (-889 *6))) (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) (-4487 (*1 *2 *3) (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-1178 *4 (-545 (-889 *6)) (-889 *6) (-802 *4 (-889 *6))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) (-4486 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4486 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4486 (*1 *2 *3) (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) (-4485 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4485 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4485 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4485 (*1 *2 *3) (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) (-4484 (*1 *2 *3) (-12 (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) (-5 *1 (-1327 *4 *5 *6)) (-5 *3 (-663 (-976 *4))) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4484 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4484 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) (-4483 (*1 *2 *3) (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-1078 *4 *5))) (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) (-4483 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) (-4483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209)))))) -(-10 -7 (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)) (-114))) (-15 -4483 ((-663 (-1078 |#1| |#2|)) (-663 (-976 |#1|)))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-1078 |#1| |#2|))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)) (-114))) (-15 -4484 ((-663 (-2 (|:| -1962 (-1203 |#1|)) (|:| -3728 (-663 (-976 |#1|))))) (-663 (-976 |#1|)))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114))) (-15 -4485 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-1078 |#1| |#2|))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114) (-114))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)) (-114))) (-15 -4486 ((-663 (-663 (-1056 (-421 |#1|)))) (-663 (-976 |#1|)))) (-15 -4487 ((-663 (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))) (-1078 |#1| |#2|))) (-15 -4488 ((-802 |#1| (-889 |#3|)) (-802 |#1| (-889 |#2|)))) (-15 -4488 ((-976 (-1056 (-421 |#1|))) (-976 |#1|))) (-15 -4488 ((-976 (-1056 (-421 |#1|))) (-802 |#1| (-889 |#3|)))) (-15 -4488 ((-1203 (-1056 (-421 |#1|))) (-1203 |#1|))) (-15 -4488 ((-663 (-802 |#1| (-889 |#3|))) (-1178 |#1| (-545 (-889 |#3|)) (-889 |#3|) (-802 |#1| (-889 |#3|)))))) -((-4491 (((-3 (-1299 (-421 (-560))) "failed") (-1299 |#1|) |#1|) 21 T ELT)) (-4489 (((-114) (-1299 |#1|)) 12 T ELT)) (-4490 (((-3 (-1299 (-560)) "failed") (-1299 |#1|)) 16 T ELT))) -(((-1328 |#1|) (-10 -7 (-15 -4489 ((-114) (-1299 |#1|))) (-15 -4490 ((-3 (-1299 (-560)) "failed") (-1299 |#1|))) (-15 -4491 ((-3 (-1299 (-421 (-560))) "failed") (-1299 |#1|) |#1|))) (-13 (-1081) (-660 (-560)))) (T -1328)) -((-4491 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) (-5 *2 (-1299 (-421 (-560)))) (-5 *1 (-1328 *4)))) (-4490 (*1 *2 *3) (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) (-5 *2 (-1299 (-560))) (-5 *1 (-1328 *4)))) (-4489 (*1 *2 *3) (-12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1328 *4))))) -(-10 -7 (-15 -4489 ((-114) (-1299 |#1|))) (-15 -4490 ((-3 (-1299 (-560)) "failed") (-1299 |#1|))) (-15 -4491 ((-3 (-1299 (-421 (-560))) "failed") (-1299 |#1|) |#1|))) -((-3053 (((-114) $ $) NIL T ELT)) (-3692 (((-114) $) 12 T ELT)) (-1438 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-793)) 9 T ELT)) (-4240 (($) NIL T CONST)) (-3973 (((-3 $ "failed") $) 57 T ELT)) (-3481 (($) 46 T ELT)) (-2655 (((-114) $) 38 T ELT)) (-3951 (((-713 $) $) 36 T ELT)) (-2234 (((-949) $) 14 T ELT)) (-3746 (((-1191) $) NIL T ELT)) (-3952 (($) 26 T CONST)) (-2645 (($ (-949)) 47 T ELT)) (-3747 (((-1152) $) NIL T ELT)) (-4488 (((-560) $) 16 T ELT)) (-4462 (((-888) $) 21 T ELT) (($ (-560)) 18 T ELT)) (-3614 (((-793)) 10 T CONST)) (-1389 (((-114) $ $) 59 T ELT)) (-3145 (($) 23 T CONST)) (-3151 (($) 25 T CONST)) (-3540 (((-114) $ $) 31 T ELT)) (-4353 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-4355 (($ $ $) 29 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-793)) 52 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1329 |#1|) (-13 (-175) (-381) (-633 (-560)) (-1184)) (-949)) (T -1329)) -NIL -(-13 (-175) (-381) (-633 (-560)) (-1184)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3450289 3450294 3450299 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3450274 3450279 3450284 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3450259 3450264 3450269 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3450244 3450249 3450254 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1329 3449237 3450119 3450196 "ZMOD" 3450201 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1328 3448273 3448455 3448678 "ZLINDEP" 3449069 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1327 3437435 3439341 3441313 "ZDSOLVE" 3446403 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1326 3436669 3436822 3437011 "YSTREAM" 3437281 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1325 3436029 3436338 3436453 "YDIAGRAM" 3436576 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1324 3433477 3435330 3435534 "XRPOLY" 3435872 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1323 3429744 3431348 3431923 "XPR" 3432949 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1322 3427075 3428751 3428806 "XPOLYC" 3429094 NIL XPOLYC (NIL T T) -9 NIL 3429207 NIL) (-1321 3424479 3426415 3426619 "XPOLY" 3426915 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1320 3420427 3422996 3423384 "XPBWPOLY" 3424137 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1319 3415319 3416898 3416953 "XFALG" 3419125 NIL XFALG (NIL T T) -9 NIL 3419914 NIL) (-1318 3410597 3413295 3413337 "XF" 3413958 NIL XF (NIL T) -9 NIL 3414358 NIL) (-1317 3410194 3410306 3410475 "XF-" 3410480 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1316 3409309 3409431 3409636 "XEXPPKG" 3410086 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1315 3407050 3409159 3409255 "XDPOLY" 3409260 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1314 3405705 3406443 3406486 "XALG" 3406491 NIL XALG (NIL T) -9 NIL 3406602 NIL) (-1313 3398756 3403682 3404176 "WUTSET" 3405297 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1312 3396858 3397808 3398131 "WP" 3398567 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1311 3396406 3396680 3396750 "WHILEAST" 3396810 T WHILEAST (NIL) -8 NIL NIL NIL) (-1310 3395818 3396123 3396217 "WHEREAST" 3396334 T WHEREAST (NIL) -8 NIL NIL NIL) (-1309 3394692 3394902 3395197 "WFFINTBS" 3395615 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1308 3392560 3393023 3393485 "WEIER" 3394264 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1307 3391484 3392042 3392084 "VSPACE" 3392220 NIL VSPACE (NIL T) -9 NIL 3392294 NIL) (-1306 3391316 3391349 3391440 "VSPACE-" 3391445 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1305 3391113 3391167 3391235 "VOID" 3391270 T VOID (NIL) -8 NIL NIL NIL) (-1304 3387381 3388176 3388913 "VIEWDEF" 3390398 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1303 3376325 3378929 3381102 "VIEW3D" 3385230 T VIEW3D (NIL) -8 NIL NIL NIL) (-1302 3368342 3370236 3371815 "VIEW2D" 3374768 T VIEW2D (NIL) -8 NIL NIL NIL) (-1301 3366442 3366837 3367243 "VIEW" 3367958 T VIEW (NIL) -7 NIL NIL NIL) (-1300 3364995 3365278 3365596 "VECTOR2" 3366172 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1299 3360015 3364765 3364857 "VECTOR" 3364938 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1298 3353074 3357719 3357762 "VECTCAT" 3358757 NIL VECTCAT (NIL T) -9 NIL 3359344 NIL) (-1297 3352016 3352342 3352732 "VECTCAT-" 3352737 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1296 3351422 3351667 3351787 "VARIABLE" 3351931 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1295 3351355 3351360 3351390 "UTYPE" 3351395 T UTYPE (NIL) -9 NIL NIL NIL) (-1294 3350163 3350339 3350601 "UTSODETL" 3351181 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1293 3347555 3348063 3348587 "UTSODE" 3349704 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1292 3337565 3343488 3343531 "UTSCAT" 3344643 NIL UTSCAT (NIL T) -9 NIL 3345401 NIL) (-1291 3334691 3335635 3336624 "UTSCAT-" 3336629 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1290 3334312 3334361 3334494 "UTS2" 3334642 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1289 3325629 3332073 3332553 "UTS" 3333890 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1288 3319608 3322439 3322482 "URAGG" 3324552 NIL URAGG (NIL T) -9 NIL 3325275 NIL) (-1287 3316643 3317610 3318633 "URAGG-" 3318638 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1286 3312026 3315278 3315743 "UPXSSING" 3316307 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1285 3304457 3311930 3312002 "UPXSCONS" 3312007 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1284 3293217 3300659 3300721 "UPXSCCA" 3301295 NIL UPXSCCA (NIL T T) -9 NIL 3301528 NIL) (-1283 3292837 3292940 3293114 "UPXSCCA-" 3293119 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1282 3281497 3288664 3288707 "UPXSCAT" 3289355 NIL UPXSCAT (NIL T) -9 NIL 3289964 NIL) (-1281 3280921 3281006 3281185 "UPXS2" 3281412 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1280 3272417 3280303 3280567 "UPXS" 3280715 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1279 3271056 3271326 3271676 "UPSQFREE" 3272161 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1278 3263887 3267322 3267377 "UPSCAT" 3268457 NIL UPSCAT (NIL T T) -9 NIL 3269223 NIL) (-1277 3263043 3263298 3263625 "UPSCAT-" 3263630 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1276 3262664 3262713 3262846 "UPOLYC2" 3262994 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1275 3246840 3255791 3255834 "UPOLYC" 3257935 NIL UPOLYC (NIL T) -9 NIL 3259156 NIL) (-1274 3237745 3240632 3243760 "UPOLYC-" 3243765 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1273 3237066 3237191 3237355 "UPMP" 3237634 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1272 3236613 3236700 3236839 "UPDIVP" 3236979 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1271 3235151 3235430 3235746 "UPDECOMP" 3236362 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1270 3234364 3234494 3234680 "UPCDEN" 3235035 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1269 3233877 3233952 3234101 "UP2" 3234289 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1268 3224508 3233560 3233689 "UP" 3233796 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1267 3223713 3223850 3224055 "UNISEG2" 3224351 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1266 3222066 3222917 3223194 "UNISEG" 3223471 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1265 3221108 3221306 3221532 "UNIFACT" 3221882 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1264 3207855 3221012 3221084 "ULSCONS" 3221089 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1263 3187688 3200935 3200997 "ULSCCAT" 3201635 NIL ULSCCAT (NIL T T) -9 NIL 3201924 NIL) (-1262 3186720 3187007 3187383 "ULSCCAT-" 3187388 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1261 3175177 3182266 3182309 "ULSCAT" 3183172 NIL ULSCAT (NIL T) -9 NIL 3183903 NIL) (-1260 3174601 3174686 3174865 "ULS2" 3175092 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1259 3156448 3173913 3174155 "ULS" 3174417 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1258 3155367 3156067 3156181 "UINT8" 3156292 T UINT8 (NIL) -8 NIL NIL 3156384) (-1257 3154285 3154985 3155099 "UINT64" 3155210 T UINT64 (NIL) -8 NIL NIL 3155302) (-1256 3153203 3153903 3154017 "UINT32" 3154128 T UINT32 (NIL) -8 NIL NIL 3154220) (-1255 3152121 3152821 3152935 "UINT16" 3153046 T UINT16 (NIL) -8 NIL NIL 3153138) (-1254 3150200 3151367 3151397 "UFD" 3151609 T UFD (NIL) -9 NIL 3151723 NIL) (-1253 3149982 3150040 3150135 "UFD-" 3150140 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1252 3149040 3149247 3149463 "UDVO" 3149788 T UDVO (NIL) -7 NIL NIL NIL) (-1251 3146806 3147265 3147736 "UDPO" 3148604 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1250 3146518 3146761 3146792 "TYPEAST" 3146797 T TYPEAST (NIL) -8 NIL NIL NIL) (-1249 3146451 3146456 3146486 "TYPE" 3146491 T TYPE (NIL) -9 NIL NIL NIL) (-1248 3145404 3145624 3145864 "TWOFACT" 3146245 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1247 3144379 3144813 3145048 "TUPLE" 3145204 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1246 3142016 3142589 3143128 "TUBETOOL" 3143862 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1245 3140822 3141063 3141305 "TUBE" 3141809 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1244 3129071 3133579 3133676 "TSETCAT" 3138945 NIL TSETCAT (NIL T T T T) -9 NIL 3140477 NIL) (-1243 3123539 3125403 3127294 "TSETCAT-" 3127299 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1242 3117725 3122511 3122794 "TS" 3123291 NIL TS (NIL T) -8 NIL NIL NIL) (-1241 3112198 3113211 3114140 "TRMANIP" 3116861 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1240 3111627 3111702 3111865 "TRIMAT" 3112130 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1239 3109439 3109730 3110087 "TRIGMNIP" 3111376 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1238 3108923 3109072 3109102 "TRIGCAT" 3109315 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1237 3108568 3108671 3108812 "TRIGCAT-" 3108817 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1236 3105294 3107426 3107707 "TREE" 3108322 NIL TREE (NIL T) -8 NIL NIL NIL) (-1235 3104400 3105096 3105126 "TRANFUN" 3105161 T TRANFUN (NIL) -9 NIL 3105227 NIL) (-1234 3103619 3103870 3104150 "TRANFUN-" 3104155 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1233 3103417 3103455 3103516 "TOPSP" 3103580 T TOPSP (NIL) -7 NIL NIL NIL) (-1232 3102747 3102880 3103034 "TOOLSIGN" 3103298 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1231 3101261 3101924 3102163 "TEXTFILE" 3102530 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1230 3101036 3101073 3101145 "TEX1" 3101224 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1229 3098840 3099489 3099918 "TEX" 3100629 T TEX (NIL) -8 NIL NIL NIL) (-1228 3098476 3098551 3098641 "TEMUTL" 3098772 T TEMUTL (NIL) -7 NIL NIL NIL) (-1227 3096570 3096910 3097235 "TBCMPPK" 3098199 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1226 3088006 3094656 3094712 "TBAGG" 3095112 NIL TBAGG (NIL T T) -9 NIL 3095323 NIL) (-1225 3082890 3084564 3086318 "TBAGG-" 3086323 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1224 3082256 3082381 3082526 "TANEXP" 3082779 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1223 3081707 3082031 3082121 "TALGOP" 3082201 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1222 3081101 3081218 3081356 "TABLEAU" 3081604 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1221 3074231 3080958 3081051 "TABLE" 3081056 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1220 3068761 3070059 3071307 "TABLBUMP" 3073017 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1219 3067971 3068130 3068311 "SYSTEM" 3068602 T SYSTEM (NIL) -8 NIL NIL NIL) (-1218 3064376 3065129 3065912 "SYSSOLP" 3067222 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1217 3064138 3064331 3064362 "SYSPTR" 3064367 T SYSPTR (NIL) -8 NIL NIL NIL) (-1216 3062977 3063669 3063795 "SYSNNI" 3063981 NIL SYSNNI (NIL NIL) -8 NIL NIL 3064073) (-1215 3062184 3062739 3062818 "SYSINT" 3062878 NIL SYSINT (NIL NIL) -8 NIL NIL 3062923) (-1214 3058294 3059462 3060172 "SYNTAX" 3061496 T SYNTAX (NIL) -8 NIL NIL NIL) (-1213 3055374 3056054 3056686 "SYMTAB" 3057684 T SYMTAB (NIL) -8 NIL NIL NIL) (-1212 3050497 3051543 3052520 "SYMS" 3054419 T SYMS (NIL) -8 NIL NIL NIL) (-1211 3047415 3049953 3050186 "SYMPOLY" 3050304 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1210 3046920 3047007 3047130 "SYMFUNC" 3047327 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1209 3042718 3044232 3045045 "SYMBOL" 3046129 T SYMBOL (NIL) -8 NIL NIL NIL) (-1208 3036191 3037946 3039666 "SWITCH" 3041020 T SWITCH (NIL) -8 NIL NIL NIL) (-1207 3028952 3035147 3035441 "SUTS" 3035955 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1206 3020448 3028334 3028598 "SUPXS" 3028746 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1205 3019595 3019734 3019951 "SUPFRACF" 3020316 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1204 3019210 3019275 3019388 "SUP2" 3019530 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1203 3009789 3018828 3018954 "SUP" 3019119 NIL SUP (NIL T) -8 NIL NIL NIL) (-1202 3008213 3008511 3008867 "SUMRF" 3009488 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1201 3007536 3007614 3007806 "SUMFS" 3008134 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1200 2989418 3006848 3007090 "SULS" 3007352 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1199 2988966 2989240 2989310 "SUCHTAST" 2989370 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1198 2988207 2988491 2988631 "SUCH" 2988874 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1197 2981846 2983113 2984072 "SUBSPACE" 2987295 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1196 2981266 2981366 2981530 "SUBRESP" 2981734 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1195 2975277 2976559 2977706 "STTFNC" 2980166 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1194 2968471 2969942 2971253 "STTF" 2974013 NIL STTF (NIL T) -7 NIL NIL NIL) (-1193 2959587 2961653 2963447 "STTAYLOR" 2966712 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1192 2952457 2959451 2959534 "STRTBL" 2959539 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1191 2946968 2952166 2952265 "STRING" 2952380 T STRING (NIL) -8 NIL NIL NIL) (-1190 2946472 2946555 2946699 "STREAM3" 2946885 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1189 2945436 2945637 2945872 "STREAM2" 2946285 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1188 2945118 2945176 2945269 "STREAM1" 2945378 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1187 2937234 2942737 2943348 "STREAM" 2944542 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1186 2936226 2936431 2936662 "STINPROD" 2937050 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1185 2935341 2935715 2935863 "STEPAST" 2936100 T STEPAST (NIL) -8 NIL NIL NIL) (-1184 2934837 2935082 2935112 "STEP" 2935206 T STEP (NIL) -9 NIL 2935277 NIL) (-1183 2928009 2934736 2934813 "STBL" 2934818 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1182 2922192 2926803 2926846 "STAGG" 2927278 NIL STAGG (NIL T) -9 NIL 2927457 NIL) (-1181 2919750 2920500 2921370 "STAGG-" 2921375 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1180 2917836 2919520 2919612 "STACK" 2919693 NIL STACK (NIL T) -8 NIL NIL NIL) (-1179 2917153 2917666 2917696 "SRING" 2917701 T SRING (NIL) -9 NIL 2917721 NIL) (-1178 2909302 2915294 2915750 "SREGSET" 2916783 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1177 2901649 2903096 2904609 "SRDCMPK" 2907908 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1176 2894063 2899008 2899038 "SRAGG" 2900341 T SRAGG (NIL) -9 NIL 2900949 NIL) (-1175 2893014 2893335 2893714 "SRAGG-" 2893719 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1174 2886716 2891961 2892382 "SQMATRIX" 2892640 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1173 2880243 2883434 2884161 "SPLTREE" 2886061 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1172 2876068 2876899 2877545 "SPLNODE" 2879669 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1171 2875043 2875348 2875378 "SPFCAT" 2875822 T SPFCAT (NIL) -9 NIL NIL NIL) (-1170 2873738 2873990 2874254 "SPECOUT" 2874801 T SPECOUT (NIL) -7 NIL NIL NIL) (-1169 2864384 2866702 2866732 "SPADXPT" 2871410 T SPADXPT (NIL) -9 NIL 2873576 NIL) (-1168 2864139 2864185 2864254 "SPADPRSR" 2864337 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1167 2861742 2864094 2864125 "SPADAST" 2864130 T SPADAST (NIL) -8 NIL NIL NIL) (-1166 2853343 2855446 2855489 "SPACEC" 2859862 NIL SPACEC (NIL T) -9 NIL 2861678 NIL) (-1165 2851143 2853275 2853324 "SPACE3" 2853329 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1164 2849875 2850066 2850357 "SORTPAK" 2850948 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1163 2847937 2848270 2848682 "SOLVETRA" 2849539 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1162 2846975 2847209 2847470 "SOLVESER" 2847710 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1161 2842207 2843167 2844162 "SOLVERAD" 2846027 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1160 2837932 2838631 2839360 "SOLVEFOR" 2841574 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1159 2831677 2837280 2837377 "SNTSCAT" 2837382 NIL SNTSCAT (NIL T T T T) -9 NIL 2837452 NIL) (-1158 2825228 2830000 2830391 "SMTS" 2831367 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1157 2818976 2825116 2825193 "SMP" 2825198 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1156 2817105 2817436 2817834 "SMITH" 2818673 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1155 2808742 2813678 2813781 "SMATCAT" 2815135 NIL SMATCAT (NIL NIL T T T) -9 NIL 2815685 NIL) (-1154 2805535 2806519 2807690 "SMATCAT-" 2807695 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1153 2803115 2804743 2804786 "SKAGG" 2805047 NIL SKAGG (NIL T) -9 NIL 2805182 NIL) (-1152 2798637 2802598 2802775 "SINT" 2802927 T SINT (NIL) -8 NIL NIL 2803082) (-1151 2798403 2798447 2798513 "SIMPAN" 2798593 T SIMPAN (NIL) -7 NIL NIL NIL) (-1150 2797244 2797476 2797744 "SIGNRF" 2798169 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1149 2796080 2796242 2796519 "SIGNEF" 2797080 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1148 2795320 2795663 2795787 "SIGAST" 2795978 T SIGAST (NIL) -8 NIL NIL NIL) (-1147 2794545 2794855 2794995 "SIG" 2795202 T SIG (NIL) -8 NIL NIL NIL) (-1146 2792197 2792689 2793195 "SHP" 2794086 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1145 2785642 2792098 2792174 "SHDP" 2792179 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1144 2785153 2785393 2785423 "SGROUP" 2785516 T SGROUP (NIL) -9 NIL 2785578 NIL) (-1143 2785005 2785037 2785110 "SGROUP-" 2785115 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1142 2781724 2782494 2783217 "SGCF" 2784304 T SGCF (NIL) -7 NIL NIL NIL) (-1141 2775567 2781170 2781267 "SFRTCAT" 2781272 NIL SFRTCAT (NIL T T T T) -9 NIL 2781311 NIL) (-1140 2768886 2770006 2771142 "SFRGCD" 2774550 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1139 2761904 2763085 2764271 "SFQCMPK" 2767819 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2761506 2761613 2761724 "SFORT" 2761845 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1137 2760432 2761346 2761467 "SEXOF" 2761472 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1136 2756021 2756928 2757023 "SEXCAT" 2759645 NIL SEXCAT (NIL T T T T T) -9 NIL 2760205 NIL) (-1135 2754936 2755902 2755970 "SEX" 2755975 T SEX (NIL) -8 NIL NIL NIL) (-1134 2753064 2753653 2753956 "SETMN" 2754679 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1133 2752594 2752782 2752812 "SETCAT" 2752929 T SETCAT (NIL) -9 NIL 2753014 NIL) (-1132 2752362 2752426 2752525 "SETCAT-" 2752530 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1131 2748576 2750823 2750866 "SETAGG" 2751736 NIL SETAGG (NIL T) -9 NIL 2752076 NIL) (-1130 2747998 2748150 2748387 "SETAGG-" 2748392 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1129 2744921 2747932 2747980 "SET" 2747985 NIL SET (NIL T) -8 NIL NIL NIL) (-1128 2744304 2744617 2744718 "SEQAST" 2744842 T SEQAST (NIL) -8 NIL NIL NIL) (-1127 2743431 2743797 2743858 "SEGXCAT" 2744144 NIL SEGXCAT (NIL T T) -9 NIL 2744264 NIL) (-1126 2742356 2742624 2742667 "SEGCAT" 2743189 NIL SEGCAT (NIL T) -9 NIL 2743410 NIL) (-1125 2741971 2742036 2742149 "SEGBIND2" 2742291 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1124 2740861 2741334 2741542 "SEGBIND" 2741798 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1123 2740380 2740662 2740739 "SEGAST" 2740806 T SEGAST (NIL) -8 NIL NIL NIL) (-1122 2739589 2739725 2739929 "SEG2" 2740224 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1121 2738505 2739255 2739437 "SEG" 2739442 NIL SEG (NIL T) -8 NIL NIL NIL) (-1120 2737738 2738440 2738487 "SDVAR" 2738492 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1119 2729132 2737508 2737638 "SDPOL" 2737643 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1118 2727701 2727991 2728310 "SCPKG" 2728847 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1117 2726823 2727037 2727229 "SCOPE" 2727531 T SCOPE (NIL) -8 NIL NIL NIL) (-1116 2726019 2726177 2726356 "SCACHE" 2726678 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1115 2725603 2725837 2725867 "SASTCAT" 2725872 T SASTCAT (NIL) -9 NIL 2725885 NIL) (-1114 2725006 2725438 2725514 "SAOS" 2725549 T SAOS (NIL) -8 NIL NIL NIL) (-1113 2724565 2724606 2724779 "SAERFFC" 2724965 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1112 2724152 2724193 2724352 "SAEFACT" 2724524 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1111 2717209 2724049 2724129 "SAE" 2724134 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1110 2715512 2715844 2716245 "RURPK" 2716875 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1109 2714089 2714455 2714760 "RULESET" 2715346 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1108 2713659 2713883 2713966 "RULECOLD" 2714041 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1107 2710774 2711412 2711870 "RULE" 2713340 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1106 2710558 2710592 2710663 "RTVALUE" 2710725 T RTVALUE (NIL) -8 NIL NIL NIL) (-1105 2709969 2710275 2710369 "RSTRCAST" 2710486 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1104 2704739 2705612 2706532 "RSETGCD" 2709168 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1103 2693444 2699047 2699144 "RSETCAT" 2703263 NIL RSETCAT (NIL T T T T) -9 NIL 2704360 NIL) (-1102 2691263 2691910 2692734 "RSETCAT-" 2692739 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1101 2683571 2685025 2686545 "RSDCMPK" 2689862 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2681440 2682003 2682077 "RRCC" 2683163 NIL RRCC (NIL T T) -9 NIL 2683507 NIL) (-1099 2680761 2680965 2681244 "RRCC-" 2681249 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1098 2680144 2680457 2680558 "RPTAST" 2680682 T RPTAST (NIL) -8 NIL NIL NIL) (-1097 2652556 2663256 2663323 "RPOLCAT" 2673989 NIL RPOLCAT (NIL T T T) -9 NIL 2677149 NIL) (-1096 2643562 2646418 2649528 "RPOLCAT-" 2649533 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1095 2634131 2641773 2642255 "ROUTINE" 2643102 T ROUTINE (NIL) -8 NIL NIL NIL) (-1094 2630196 2633757 2633897 "ROMAN" 2634013 T ROMAN (NIL) -8 NIL NIL NIL) (-1093 2628310 2629056 2629316 "ROIRC" 2630001 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1092 2624087 2626852 2626882 "RNS" 2627151 T RNS (NIL) -9 NIL 2627407 NIL) (-1091 2622494 2622979 2623513 "RNS-" 2623588 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1090 2621455 2621859 2622061 "RNGBIND" 2622345 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1089 2620748 2621252 2621282 "RNG" 2621287 T RNG (NIL) -9 NIL 2621308 NIL) (-1088 2620043 2620521 2620564 "RMODULE" 2620569 NIL RMODULE (NIL T) -9 NIL 2620596 NIL) (-1087 2618867 2618973 2619309 "RMCAT2" 2619944 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1086 2615483 2618213 2618510 "RMATRIX" 2618629 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1085 2608093 2610570 2610685 "RMATCAT" 2614044 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2615026 NIL) (-1084 2607432 2607615 2607922 "RMATCAT-" 2607927 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1083 2607005 2607219 2607262 "RLINSET" 2607324 NIL RLINSET (NIL T) -9 NIL 2607368 NIL) (-1082 2606566 2606647 2606775 "RINTERP" 2606924 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1081 2605490 2606164 2606194 "RING" 2606250 T RING (NIL) -9 NIL 2606342 NIL) (-1080 2605270 2605326 2605423 "RING-" 2605428 NIL RING- (NIL T) -8 NIL NIL NIL) (-1079 2604081 2604348 2604606 "RIDIST" 2605034 T RIDIST (NIL) -7 NIL NIL NIL) (-1078 2594847 2603549 2603755 "RGCHAIN" 2603929 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1077 2594105 2594589 2594630 "RGBCSPC" 2594688 NIL RGBCSPC (NIL T) -9 NIL 2594740 NIL) (-1076 2593171 2593630 2593671 "RGBCMDL" 2593903 NIL RGBCMDL (NIL T) -9 NIL 2594017 NIL) (-1075 2592811 2592880 2592983 "RFFACTOR" 2593102 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1074 2592530 2592571 2592668 "RFFACT" 2592770 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1073 2590581 2591011 2591393 "RFDIST" 2592170 T RFDIST (NIL) -7 NIL NIL NIL) (-1072 2587521 2588189 2588859 "RF" 2589945 NIL RF (NIL T) -7 NIL NIL NIL) (-1071 2586968 2587066 2587229 "RETSOL" 2587423 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1070 2586586 2586684 2586727 "RETRACT" 2586860 NIL RETRACT (NIL T) -9 NIL 2586947 NIL) (-1069 2586429 2586460 2586547 "RETRACT-" 2586552 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1068 2585977 2586251 2586321 "RETAST" 2586381 T RETAST (NIL) -8 NIL NIL NIL) (-1067 2578443 2585630 2585757 "RESULT" 2585872 T RESULT (NIL) -8 NIL NIL NIL) (-1066 2576878 2577712 2577911 "RESRING" 2578346 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1065 2576502 2576563 2576661 "RESLATC" 2576815 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1064 2576201 2576242 2576349 "REPSQ" 2576461 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1063 2575892 2575933 2576044 "REPDB" 2576160 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1062 2569724 2571181 2572404 "REP2" 2574704 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1061 2566027 2566782 2567590 "REP1" 2568951 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1060 2563407 2564029 2564631 "REP" 2565447 T REP (NIL) -7 NIL NIL NIL) (-1059 2555556 2561548 2562004 "REGSET" 2563037 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1058 2554265 2554704 2554954 "REF" 2555341 NIL REF (NIL T) -8 NIL NIL NIL) (-1057 2553630 2553745 2553912 "REDORDER" 2554149 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1056 2549032 2552843 2553070 "RECLOS" 2553458 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1055 2548066 2548265 2548480 "REALSOLV" 2548839 T REALSOLV (NIL) -7 NIL NIL NIL) (-1054 2544513 2545351 2546235 "REAL0Q" 2547231 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1053 2540066 2541102 2542163 "REAL0" 2543494 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1052 2539900 2539953 2539983 "REAL" 2539988 T REAL (NIL) -9 NIL 2540023 NIL) (-1051 2539311 2539617 2539711 "RDUCEAST" 2539828 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1050 2538710 2538788 2538995 "RDIV" 2539233 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1049 2537760 2537952 2538165 "RDIST" 2538532 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1048 2536345 2536644 2537016 "RDETRS" 2537468 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1047 2534139 2534611 2535149 "RDETR" 2535887 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1046 2532758 2533042 2533439 "RDEEFS" 2533855 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1045 2531261 2531573 2531998 "RDEEF" 2532446 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1044 2524749 2528215 2528245 "RCFIELD" 2529540 T RCFIELD (NIL) -9 NIL 2530271 NIL) (-1043 2522705 2523317 2524013 "RCFIELD-" 2524088 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1042 2518868 2520778 2520821 "RCAGG" 2521905 NIL RCAGG (NIL T) -9 NIL 2522370 NIL) (-1041 2518478 2518590 2518753 "RCAGG-" 2518758 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1040 2517795 2517925 2518090 "RATRET" 2518362 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1039 2517336 2517415 2517536 "RATFACT" 2517723 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1038 2516614 2516764 2516916 "RANDSRC" 2517206 T RANDSRC (NIL) -7 NIL NIL NIL) (-1037 2516342 2516392 2516465 "RADUTIL" 2516563 T RADUTIL (NIL) -7 NIL NIL NIL) (-1036 2508503 2515173 2515484 "RADIX" 2516065 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1035 2498129 2508345 2508475 "RADFF" 2508480 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1034 2497758 2497851 2497881 "RADCAT" 2498041 T RADCAT (NIL) -9 NIL NIL NIL) (-1033 2497528 2497588 2497688 "RADCAT-" 2497693 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1032 2495553 2497298 2497390 "QUEUE" 2497471 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1031 2495178 2495227 2495358 "QUATCT2" 2495504 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1030 2487563 2491601 2491643 "QUATCAT" 2492434 NIL QUATCAT (NIL T) -9 NIL 2493200 NIL) (-1029 2483465 2484753 2486136 "QUATCAT-" 2486232 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1028 2479318 2483398 2483446 "QUAT" 2483451 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1027 2476685 2478366 2478409 "QUAGG" 2478790 NIL QUAGG (NIL T) -9 NIL 2478965 NIL) (-1026 2476233 2476507 2476577 "QQUTAST" 2476637 T QQUTAST (NIL) -8 NIL NIL NIL) (-1025 2475144 2475746 2475911 "QFORM" 2476114 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1024 2474769 2474818 2474949 "QFCAT2" 2475095 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1023 2464482 2470616 2470658 "QFCAT" 2471326 NIL QFCAT (NIL T) -9 NIL 2472327 NIL) (-1022 2459852 2461288 2462863 "QFCAT-" 2462959 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1021 2459283 2459417 2459549 "QEQUAT" 2459742 T QEQUAT (NIL) -8 NIL NIL NIL) (-1020 2452301 2453482 2454668 "QCMPACK" 2458216 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1019 2451530 2451712 2451948 "QALGSET2" 2452119 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1018 2448986 2449520 2449948 "QALGSET" 2451187 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1017 2447653 2447895 2448214 "PWFFINTB" 2448759 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1016 2445815 2446013 2446369 "PUSHVAR" 2447467 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1015 2441542 2442758 2442801 "PTRANFN" 2444712 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1014 2439879 2440224 2440548 "PTPACK" 2441253 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1013 2439502 2439565 2439676 "PTFUNC2" 2439816 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1012 2433532 2438291 2438334 "PTCAT" 2438634 NIL PTCAT (NIL T) -9 NIL 2438787 NIL) (-1011 2433181 2433222 2433348 "PSQFR" 2433491 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1010 2431753 2432069 2432405 "PSEUDLIN" 2432879 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1009 2418273 2420848 2423174 "PSETPK" 2429513 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1008 2411092 2414009 2414107 "PSETCAT" 2417148 NIL PSETCAT (NIL T T T T) -9 NIL 2417962 NIL) (-1007 2408817 2409559 2410383 "PSETCAT-" 2410388 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1006 2408130 2408325 2408355 "PSCURVE" 2408627 T PSCURVE (NIL) -9 NIL 2408794 NIL) (-1005 2403853 2405620 2405687 "PSCAT" 2406539 NIL PSCAT (NIL T T T) -9 NIL 2406779 NIL) (-1004 2402847 2403129 2403532 "PSCAT-" 2403537 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1003 2401015 2401906 2402171 "PRTITION" 2402604 T PRTITION (NIL) -8 NIL NIL NIL) (-1002 2400426 2400732 2400826 "PRTDAST" 2400943 T PRTDAST (NIL) -8 NIL NIL NIL) (-1001 2389270 2391692 2393882 "PRS" 2398288 NIL PRS (NIL T T) -7 NIL NIL NIL) (-1000 2386996 2388587 2388629 "PRQAGG" 2388815 NIL PRQAGG (NIL T) -9 NIL 2388917 NIL) (-999 2386175 2386624 2386652 "PROPLOG" 2386791 T PROPLOG (NIL) -9 NIL 2386906 NIL) (-998 2385773 2385836 2385959 "PROPFUN2" 2386098 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-997 2385070 2385209 2385381 "PROPFUN1" 2385634 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-996 2383051 2383817 2384114 "PROPFRML" 2384806 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-995 2382496 2382627 2382755 "PROPERTY" 2382943 T PROPERTY (NIL) -8 NIL NIL NIL) (-994 2376309 2380662 2381482 "PRODUCT" 2381722 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-993 2376099 2376137 2376196 "PRINT" 2376270 T PRINT (NIL) -7 NIL NIL NIL) (-992 2375415 2375556 2375708 "PRIMES" 2375979 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-991 2373462 2373881 2374347 "PRIMELT" 2374994 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-990 2373179 2373240 2373268 "PRIMCAT" 2373392 T PRIMCAT (NIL) -9 NIL NIL NIL) (-989 2372168 2372364 2372592 "PRIMARR2" 2372997 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-988 2368004 2372106 2372151 "PRIMARR" 2372156 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-987 2367641 2367703 2367814 "PREASSOC" 2367942 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-986 2364613 2367099 2367333 "PR" 2367452 NIL PR (NIL T T) -8 NIL NIL NIL) (-985 2364064 2364221 2364249 "PPCURVE" 2364454 T PPCURVE (NIL) -9 NIL 2364590 NIL) (-984 2363611 2363859 2363942 "PORTNUM" 2364001 T PORTNUM (NIL) -8 NIL NIL NIL) (-983 2360948 2361369 2361961 "POLYROOT" 2363192 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-982 2360325 2360389 2360623 "POLYLIFT" 2360884 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-981 2356546 2357049 2357678 "POLYCATQ" 2359870 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-980 2342208 2348293 2348358 "POLYCAT" 2351872 NIL POLYCAT (NIL T T T) -9 NIL 2353750 NIL) (-979 2335390 2337561 2339924 "POLYCAT-" 2339929 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-978 2334971 2335045 2335165 "POLY2UP" 2335316 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-977 2334597 2334660 2334769 "POLY2" 2334908 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-976 2327838 2334201 2334361 "POLY" 2334470 NIL POLY (NIL T) -8 NIL NIL NIL) (-975 2326499 2326762 2327038 "POLUTIL" 2327612 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-974 2324818 2325131 2325462 "POLTOPOL" 2326221 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-973 2319928 2324752 2324799 "POINT" 2324804 NIL POINT (NIL T) -8 NIL NIL NIL) (-972 2318061 2318472 2318847 "PNTHEORY" 2319573 T PNTHEORY (NIL) -7 NIL NIL NIL) (-971 2316507 2316816 2317215 "PMTOOLS" 2317759 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-970 2316094 2316178 2316295 "PMSYM" 2316423 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-969 2315596 2315671 2315846 "PMQFCAT" 2316019 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-968 2314977 2315075 2315237 "PMPREDFS" 2315497 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-967 2314320 2314442 2314598 "PMPRED" 2314854 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-966 2312974 2313192 2313570 "PMPLCAT" 2314082 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-965 2312500 2312585 2312737 "PMLSAGG" 2312889 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-964 2311967 2312049 2312231 "PMKERNEL" 2312418 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-963 2311578 2311659 2311772 "PMINS" 2311886 NIL PMINS (NIL T) -7 NIL NIL NIL) (-962 2311014 2311089 2311298 "PMFS" 2311503 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-961 2310230 2310360 2310565 "PMDOWN" 2310891 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-960 2309479 2309613 2309776 "PMASSFS" 2310117 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-959 2308622 2308804 2308985 "PMASS" 2309318 T PMASS (NIL) -7 NIL NIL NIL) (-958 2308271 2308345 2308439 "PLOTTOOL" 2308548 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-957 2303923 2305117 2306039 "PLOT3D" 2307369 T PLOT3D (NIL) -8 NIL NIL NIL) (-956 2302811 2303012 2303247 "PLOT1" 2303727 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-955 2297232 2298622 2299770 "PLOT" 2301683 T PLOT (NIL) -8 NIL NIL NIL) (-954 2272407 2277298 2282149 "PLEQN" 2292498 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-953 2272094 2272147 2272250 "PINTERPA" 2272354 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-952 2271400 2271534 2271714 "PINTERP" 2271959 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-951 2269484 2270650 2270678 "PID" 2270875 T PID (NIL) -9 NIL 2271002 NIL) (-950 2269229 2269272 2269347 "PICOERCE" 2269441 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-949 2268325 2268993 2269080 "PI" 2269120 T PI (NIL) -8 NIL NIL 2269187) (-948 2267633 2267784 2267960 "PGROEB" 2268181 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-947 2263072 2264031 2264937 "PGE" 2266747 T PGE (NIL) -7 NIL NIL NIL) (-946 2261153 2261442 2261808 "PGCD" 2262789 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-945 2260479 2260594 2260755 "PFRPAC" 2261037 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-944 2256739 2259027 2259380 "PFR" 2260158 NIL PFR (NIL T) -8 NIL NIL NIL) (-943 2255092 2255372 2255697 "PFOTOOLS" 2256486 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-942 2253607 2253864 2254215 "PFOQ" 2254849 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-941 2252090 2252320 2252676 "PFO" 2253391 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-940 2249174 2250680 2250708 "PFECAT" 2251301 T PFECAT (NIL) -9 NIL 2251678 NIL) (-939 2248622 2248787 2248994 "PFECAT-" 2248999 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-938 2247195 2247477 2247778 "PFBRU" 2248371 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-937 2245024 2245413 2245845 "PFBR" 2246846 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-936 2240972 2244913 2244982 "PF" 2244987 NIL PF (NIL NIL) -8 NIL NIL NIL) (-935 2236026 2237179 2238049 "PERMGRP" 2240135 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-934 2233938 2235050 2235091 "PERMCAT" 2235491 NIL PERMCAT (NIL T) -9 NIL 2235789 NIL) (-933 2233585 2233632 2233756 "PERMAN" 2233891 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-932 2229387 2231094 2231742 "PERM" 2232970 NIL PERM (NIL T) -8 NIL NIL NIL) (-931 2226744 2229052 2229174 "PENDTREE" 2229298 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-930 2225625 2225888 2225929 "PDSPC" 2226462 NIL PDSPC (NIL T) -9 NIL 2226707 NIL) (-929 2224680 2224946 2225308 "PDSPC-" 2225313 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-928 2223394 2224330 2224371 "PDRING" 2224376 NIL PDRING (NIL T) -9 NIL 2224404 NIL) (-927 2222137 2222899 2222953 "PDMOD" 2222958 NIL PDMOD (NIL T T) -9 NIL 2223062 NIL) (-926 2219304 2220130 2220798 "PDEPROB" 2221489 T PDEPROB (NIL) -8 NIL NIL NIL) (-925 2216813 2217353 2217908 "PDEPACK" 2218769 T PDEPACK (NIL) -7 NIL NIL NIL) (-924 2215701 2215915 2216166 "PDECOMP" 2216612 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-923 2213218 2214109 2214137 "PDECAT" 2214924 T PDECAT (NIL) -9 NIL 2215637 NIL) (-922 2212835 2212902 2212956 "PDDOM" 2213121 NIL PDDOM (NIL T T) -9 NIL 2213201 NIL) (-921 2212648 2212684 2212791 "PDDOM-" 2212796 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-920 2212393 2212432 2212522 "PCOMP" 2212609 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-919 2210433 2211194 2211491 "PBWLB" 2212122 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-918 2210059 2210122 2210231 "PATTERN2" 2210370 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-917 2207768 2208204 2208661 "PATTERN1" 2209648 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-916 2199949 2201841 2203179 "PATTERN" 2206451 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-915 2199507 2199580 2199712 "PATRES2" 2199876 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-914 2196773 2197456 2197937 "PATRES" 2199072 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-913 2194626 2195061 2195468 "PATMATCH" 2196440 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-912 2194080 2194331 2194372 "PATMAB" 2194479 NIL PATMAB (NIL T) -9 NIL 2194562 NIL) (-911 2192526 2192934 2193192 "PATLRES" 2193885 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-910 2192064 2192195 2192236 "PATAB" 2192241 NIL PATAB (NIL T) -9 NIL 2192413 NIL) (-909 2190204 2190641 2191064 "PARTPERM" 2191661 T PARTPERM (NIL) -7 NIL NIL NIL) (-908 2189813 2189888 2189990 "PARSURF" 2190135 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-907 2189439 2189502 2189611 "PARSU2" 2189750 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-906 2189197 2189243 2189310 "PARSER" 2189392 T PARSER (NIL) -7 NIL NIL NIL) (-905 2188806 2188881 2188983 "PARSCURV" 2189128 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-904 2188432 2188495 2188604 "PARSC2" 2188743 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-903 2188059 2188129 2188226 "PARPCURV" 2188368 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-902 2187685 2187748 2187857 "PARPC2" 2187996 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-901 2186674 2187058 2187240 "PARAMAST" 2187523 T PARAMAST (NIL) -8 NIL NIL NIL) (-900 2186182 2186280 2186399 "PAN2EXPR" 2186575 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-899 2184875 2185303 2185531 "PALETTE" 2185974 T PALETTE (NIL) -8 NIL NIL NIL) (-898 2183220 2183880 2184240 "PAIR" 2184561 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-897 2176169 2182477 2182672 "PADICRC" 2183074 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-896 2168442 2175513 2175698 "PADICRAT" 2176016 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-895 2165241 2167102 2167142 "PADICCT" 2167723 NIL PADICCT (NIL NIL) -9 NIL 2168005 NIL) (-894 2163259 2165178 2165223 "PADIC" 2165228 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-893 2162204 2162416 2162684 "PADEPAC" 2163046 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-892 2161404 2161549 2161755 "PADE" 2162066 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-891 2159637 2160612 2160892 "OWP" 2161208 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-890 2159082 2159343 2159440 "OVERSET" 2159560 T OVERSET (NIL) -8 NIL NIL NIL) (-889 2158002 2158687 2158859 "OVAR" 2158950 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-888 2146238 2149111 2151311 "OUTFORM" 2155822 T OUTFORM (NIL) -8 NIL NIL NIL) (-887 2145520 2145835 2145962 "OUTBFILE" 2146131 T OUTBFILE (NIL) -8 NIL NIL NIL) (-886 2144797 2144992 2145020 "OUTBCON" 2145338 T OUTBCON (NIL) -9 NIL 2145504 NIL) (-885 2144380 2144510 2144667 "OUTBCON-" 2144672 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-884 2143620 2143765 2143926 "OUT" 2144239 T OUT (NIL) -7 NIL NIL NIL) (-883 2142916 2143349 2143438 "OSI" 2143551 T OSI (NIL) -8 NIL NIL NIL) (-882 2142335 2142757 2142785 "OSGROUP" 2142790 T OSGROUP (NIL) -9 NIL 2142812 NIL) (-881 2141046 2141307 2141592 "ORTHPOL" 2142082 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-880 2138311 2140881 2141002 "OREUP" 2141007 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-879 2135428 2138002 2138129 "ORESUP" 2138253 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-878 2132928 2133456 2134017 "OREPCTO" 2134917 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-877 2126313 2128801 2128842 "OREPCAT" 2131190 NIL OREPCAT (NIL T) -9 NIL 2132294 NIL) (-876 2123307 2124256 2125307 "OREPCAT-" 2125312 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-875 2122499 2122777 2122805 "ORDTYPE" 2123114 T ORDTYPE (NIL) -9 NIL 2123277 NIL) (-874 2121800 2122016 2122271 "ORDTYPE-" 2122276 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-873 2121156 2121539 2121697 "ORDSTRCT" 2121702 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-872 2120654 2121024 2121052 "ORDSET" 2121057 T ORDSET (NIL) -9 NIL 2121079 NIL) (-871 2119305 2120276 2120304 "ORDRING" 2120309 T ORDRING (NIL) -9 NIL 2120338 NIL) (-870 2118556 2119121 2119149 "ORDMON" 2119154 T ORDMON (NIL) -9 NIL 2119175 NIL) (-869 2117700 2117865 2118060 "ORDFUNS" 2118405 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-868 2116915 2117430 2117458 "ORDFIN" 2117523 T ORDFIN (NIL) -9 NIL 2117597 NIL) (-867 2116169 2116308 2116494 "ORDCOMP2" 2116775 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-866 2112523 2114755 2115164 "ORDCOMP" 2115793 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-865 2109044 2110014 2110828 "OPTPROB" 2111729 T OPTPROB (NIL) -8 NIL NIL NIL) (-864 2105786 2106485 2107189 "OPTPACK" 2108360 T OPTPACK (NIL) -7 NIL NIL NIL) (-863 2103399 2104225 2104253 "OPTCAT" 2105072 T OPTCAT (NIL) -9 NIL 2105722 NIL) (-862 2102717 2103076 2103181 "OPSIG" 2103314 T OPSIG (NIL) -8 NIL NIL NIL) (-861 2102479 2102524 2102590 "OPQUERY" 2102671 T OPQUERY (NIL) -7 NIL NIL NIL) (-860 2101785 2102065 2102106 "OPERCAT" 2102318 NIL OPERCAT (NIL T) -9 NIL 2102415 NIL) (-859 2101528 2101596 2101713 "OPERCAT-" 2101718 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-858 2098446 2099839 2100343 "OP" 2101057 NIL OP (NIL T) -8 NIL NIL NIL) (-857 2097739 2097866 2098040 "ONECOMP2" 2098318 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-856 2094359 2096536 2096905 "ONECOMP" 2097403 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-855 2093760 2093884 2094014 "OMSERVER" 2094249 T OMSERVER (NIL) -7 NIL NIL NIL) (-854 2090383 2093198 2093238 "OMSAGG" 2093299 NIL OMSAGG (NIL T) -9 NIL 2093364 NIL) (-853 2088958 2089269 2089551 "OMPKG" 2090121 T OMPKG (NIL) -7 NIL NIL NIL) (-852 2087305 2088507 2088676 "OMLO" 2088839 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-851 2086241 2086412 2086632 "OMEXPR" 2087131 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-850 2085326 2085662 2085822 "OMERRK" 2086101 T OMERRK (NIL) -8 NIL NIL NIL) (-849 2084563 2084872 2085008 "OMERR" 2085210 T OMERR (NIL) -8 NIL NIL NIL) (-848 2083954 2084240 2084348 "OMENC" 2084475 T OMENC (NIL) -8 NIL NIL NIL) (-847 2077591 2079034 2080205 "OMDEV" 2082803 T OMDEV (NIL) -8 NIL NIL NIL) (-846 2076624 2076831 2077025 "OMCONN" 2077417 T OMCONN (NIL) -8 NIL NIL NIL) (-845 2076030 2076157 2076185 "OM" 2076484 T OM (NIL) -9 NIL NIL NIL) (-844 2074308 2075500 2075528 "OINTDOM" 2075533 T OINTDOM (NIL) -9 NIL 2075554 NIL) (-843 2071390 2072996 2073333 "OFMONOID" 2074003 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-842 2070624 2071327 2071372 "ODVAR" 2071377 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-841 2067770 2070369 2070524 "ODR" 2070529 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-840 2059218 2067546 2067672 "ODPOL" 2067677 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-839 2052633 2059090 2059195 "ODP" 2059200 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-838 2051375 2051614 2051889 "ODETOOLS" 2052407 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-837 2048318 2049000 2049716 "ODESYS" 2050708 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-836 2043148 2044108 2045133 "ODERTRIC" 2047393 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-835 2042568 2042656 2042850 "ODERED" 2043060 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-834 2039428 2040010 2040685 "ODERAT" 2041993 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-833 2036344 2036852 2037449 "ODEPRRIC" 2038957 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-832 2034239 2034883 2035369 "ODEPROB" 2035878 T ODEPROB (NIL) -8 NIL NIL NIL) (-831 2030705 2031244 2031891 "ODEPRIM" 2033718 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-830 2029948 2030056 2030316 "ODEPAL" 2030597 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-829 2026050 2026901 2027765 "ODEPACK" 2029104 T ODEPACK (NIL) -7 NIL NIL NIL) (-828 2025093 2025218 2025440 "ODEINT" 2025939 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-827 2019158 2020619 2022066 "ODEIFTBL" 2023666 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-826 2014522 2015352 2016300 "ODEEF" 2018321 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-825 2013865 2013960 2014183 "ODECONST" 2014427 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-824 2011928 2012637 2012665 "ODECAT" 2013270 T ODECAT (NIL) -9 NIL 2013801 NIL) (-823 2011560 2011609 2011736 "OCTCT2" 2011879 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-822 2008072 2011265 2011387 "OCT" 2011470 NIL OCT (NIL T) -8 NIL NIL NIL) (-821 2007265 2007865 2007893 "OCAMON" 2007898 T OCAMON (NIL) -9 NIL 2007919 NIL) (-820 2001543 2004308 2004348 "OC" 2005445 NIL OC (NIL T) -9 NIL 2006303 NIL) (-819 1998599 1999532 2000515 "OC-" 2000609 NIL OC- (NIL T T) -8 NIL NIL NIL) (-818 1998019 1998444 1998472 "OASGP" 1998477 T OASGP (NIL) -9 NIL 1998497 NIL) (-817 1997115 1997742 1997770 "OAMONS" 1997810 T OAMONS (NIL) -9 NIL 1997853 NIL) (-816 1996291 1996850 1996878 "OAMON" 1996936 T OAMON (NIL) -9 NIL 1996988 NIL) (-815 1996149 1996182 1996250 "OAMON-" 1996255 NIL OAMON- (NIL T) -8 NIL NIL NIL) (-814 1994930 1995683 1995711 "OAGROUP" 1995858 T OAGROUP (NIL) -9 NIL 1995951 NIL) (-813 1994633 1994721 1994839 "OAGROUP-" 1994844 NIL OAGROUP- (NIL T) -8 NIL NIL NIL) (-812 1994315 1994371 1994460 "NUMTUBE" 1994577 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-811 1987834 1989406 1990942 "NUMQUAD" 1992799 T NUMQUAD (NIL) -7 NIL NIL NIL) (-810 1983514 1984548 1985583 "NUMODE" 1986819 T NUMODE (NIL) -7 NIL NIL NIL) (-809 1980795 1981735 1981763 "NUMINT" 1982686 T NUMINT (NIL) -9 NIL 1983450 NIL) (-808 1979707 1979940 1980158 "NUMFMT" 1980597 T NUMFMT (NIL) -7 NIL NIL NIL) (-807 1965890 1969011 1971543 "NUMERIC" 1977214 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-806 1959735 1965338 1965433 "NTSCAT" 1965438 NIL NTSCAT (NIL T T T T) -9 NIL 1965477 NIL) (-805 1958915 1959094 1959287 "NTPOLFN" 1959574 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-804 1958541 1958604 1958713 "NSUP2" 1958852 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-803 1945363 1955366 1956178 "NSUP" 1957762 NIL NSUP (NIL T) -8 NIL NIL NIL) (-802 1934249 1945137 1945270 "NSMP" 1945275 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-801 1932657 1932982 1933339 "NREP" 1933937 NIL NREP (NIL T) -7 NIL NIL NIL) (-800 1931236 1931500 1931858 "NPCOEF" 1932400 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-799 1930284 1930417 1930633 "NORMRETR" 1931117 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-798 1928295 1928615 1929024 "NORMPK" 1929992 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-797 1927974 1928008 1928132 "NORMMA" 1928261 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-796 1927757 1927792 1927861 "NONE1" 1927938 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-795 1927521 1927714 1927743 "NONE" 1927748 T NONE (NIL) -8 NIL NIL NIL) (-794 1927012 1927080 1927259 "NODE1" 1927453 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-793 1925073 1926135 1926390 "NNI" 1926737 T NNI (NIL) -8 NIL NIL 1926972) (-792 1923469 1923806 1924170 "NLINSOL" 1924741 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-791 1919650 1920705 1921604 "NIPROB" 1922590 T NIPROB (NIL) -8 NIL NIL NIL) (-790 1918389 1918641 1918943 "NFINTBAS" 1919412 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-789 1917473 1918039 1918080 "NETCLT" 1918252 NIL NETCLT (NIL T) -9 NIL 1918334 NIL) (-788 1916145 1916412 1916693 "NCODIV" 1917241 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-787 1915901 1915944 1916019 "NCNTFRAC" 1916102 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-786 1914057 1914445 1914865 "NCEP" 1915526 NIL NCEP (NIL T) -7 NIL NIL NIL) (-785 1912727 1913667 1913695 "NASRING" 1913805 T NASRING (NIL) -9 NIL 1913885 NIL) (-784 1912510 1912566 1912660 "NASRING-" 1912665 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-783 1911477 1912128 1912156 "NARNG" 1912273 T NARNG (NIL) -9 NIL 1912364 NIL) (-782 1911151 1911236 1911370 "NARNG-" 1911375 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-781 1909988 1910237 1910472 "NAGSP" 1910936 T NAGSP (NIL) -7 NIL NIL NIL) (-780 1901032 1902944 1904617 "NAGS" 1908335 T NAGS (NIL) -7 NIL NIL NIL) (-779 1899556 1899888 1900219 "NAGF07" 1900721 T NAGF07 (NIL) -7 NIL NIL NIL) (-778 1894028 1895385 1896692 "NAGF04" 1898269 T NAGF04 (NIL) -7 NIL NIL NIL) (-777 1886900 1888610 1890243 "NAGF02" 1892415 T NAGF02 (NIL) -7 NIL NIL NIL) (-776 1882064 1883224 1884341 "NAGF01" 1885803 T NAGF01 (NIL) -7 NIL NIL NIL) (-775 1875644 1877258 1878843 "NAGE04" 1880499 T NAGE04 (NIL) -7 NIL NIL NIL) (-774 1866705 1868934 1871064 "NAGE02" 1873534 T NAGE02 (NIL) -7 NIL NIL NIL) (-773 1862598 1863605 1864569 "NAGE01" 1865761 T NAGE01 (NIL) -7 NIL NIL NIL) (-772 1860375 1860927 1861485 "NAGD03" 1862060 T NAGD03 (NIL) -7 NIL NIL NIL) (-771 1852071 1854053 1856007 "NAGD02" 1858441 T NAGD02 (NIL) -7 NIL NIL NIL) (-770 1845810 1847307 1848747 "NAGD01" 1850651 T NAGD01 (NIL) -7 NIL NIL NIL) (-769 1841947 1842841 1843678 "NAGC06" 1844993 T NAGC06 (NIL) -7 NIL NIL NIL) (-768 1840394 1840744 1841100 "NAGC05" 1841611 T NAGC05 (NIL) -7 NIL NIL NIL) (-767 1839758 1839889 1840033 "NAGC02" 1840270 T NAGC02 (NIL) -7 NIL NIL NIL) (-766 1838559 1839286 1839326 "NAALG" 1839405 NIL NAALG (NIL T) -9 NIL 1839466 NIL) (-765 1838388 1838423 1838513 "NAALG-" 1838518 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-764 1832260 1833446 1834633 "MULTSQFR" 1837284 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-763 1831567 1831654 1831838 "MULTFACT" 1832172 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-762 1823712 1828150 1828203 "MTSCAT" 1829273 NIL MTSCAT (NIL T T) -9 NIL 1829789 NIL) (-761 1823418 1823478 1823570 "MTHING" 1823652 NIL MTHING (NIL T) -7 NIL NIL NIL) (-760 1823204 1823243 1823303 "MSYSCMD" 1823378 T MSYSCMD (NIL) -7 NIL NIL NIL) (-759 1820060 1822765 1822806 "MSETAGG" 1822811 NIL MSETAGG (NIL T) -9 NIL 1822845 NIL) (-758 1815888 1818815 1819135 "MSET" 1819773 NIL MSET (NIL T) -8 NIL NIL NIL) (-757 1811492 1813267 1814012 "MRING" 1815188 NIL MRING (NIL T T) -8 NIL NIL NIL) (-756 1811052 1811125 1811256 "MRF2" 1811419 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-755 1810664 1810705 1810849 "MRATFAC" 1811011 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-754 1808234 1808571 1809002 "MPRFF" 1810369 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-753 1801594 1808088 1808185 "MPOLY" 1808190 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-752 1801078 1801119 1801327 "MPCPF" 1801553 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-751 1800586 1800635 1800819 "MPC3" 1801029 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-750 1799769 1799862 1800083 "MPC2" 1800501 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1798046 1798407 1798797 "MONOTOOL" 1799429 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-748 1797191 1797574 1797602 "MONOID" 1797821 T MONOID (NIL) -9 NIL 1797968 NIL) (-747 1796707 1796856 1797037 "MONOID-" 1797042 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-746 1785689 1792527 1792586 "MONOGEN" 1793260 NIL MONOGEN (NIL T T) -9 NIL 1793716 NIL) (-745 1782760 1783656 1784649 "MONOGEN-" 1784768 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-744 1781477 1782025 1782053 "MONADWU" 1782445 T MONADWU (NIL) -9 NIL 1782683 NIL) (-743 1780807 1781008 1781256 "MONADWU-" 1781261 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-742 1780092 1780396 1780424 "MONAD" 1780631 T MONAD (NIL) -9 NIL 1780743 NIL) (-741 1779759 1779855 1779987 "MONAD-" 1779992 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-740 1777898 1778672 1778951 "MOEBIUS" 1779512 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-739 1777066 1777566 1777606 "MODULE" 1777611 NIL MODULE (NIL T) -9 NIL 1777650 NIL) (-738 1776604 1776730 1776920 "MODULE-" 1776925 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-737 1774178 1775012 1775339 "MODRING" 1776428 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-736 1770909 1772283 1772804 "MODOP" 1773707 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-735 1769395 1769976 1770253 "MODMONOM" 1770772 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-734 1758190 1767686 1768100 "MODMON" 1769032 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-733 1755049 1757058 1757334 "MODFIELD" 1758065 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-732 1753960 1754330 1754520 "MMLFORM" 1754879 T MMLFORM (NIL) -8 NIL NIL NIL) (-731 1753480 1753529 1753708 "MMAP" 1753911 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-730 1751373 1752312 1752353 "MLO" 1752776 NIL MLO (NIL T) -9 NIL 1753018 NIL) (-729 1748721 1749255 1749857 "MLIFT" 1750854 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-728 1748100 1748196 1748350 "MKUCFUNC" 1748632 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-727 1747693 1747769 1747892 "MKRECORD" 1748023 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-726 1746716 1746902 1747130 "MKFUNC" 1747504 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-725 1746092 1746208 1746364 "MKFLCFN" 1746599 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-724 1745357 1745471 1745656 "MKBCFUNC" 1745985 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-723 1741356 1744911 1745047 "MINT" 1745241 T MINT (NIL) -8 NIL NIL NIL) (-722 1740138 1740411 1740688 "MHROWRED" 1741111 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-721 1734898 1738673 1739078 "MFLOAT" 1739753 T MFLOAT (NIL) -8 NIL NIL NIL) (-720 1734243 1734331 1734502 "MFINFACT" 1734810 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-719 1730542 1731421 1732300 "MESH" 1733384 T MESH (NIL) -7 NIL NIL NIL) (-718 1728896 1729244 1729597 "MDDFACT" 1730229 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-717 1725543 1728027 1728068 "MDAGG" 1728323 NIL MDAGG (NIL T) -9 NIL 1728466 NIL) (-716 1713279 1724836 1725043 "MCMPLX" 1725356 T MCMPLX (NIL) -8 NIL NIL NIL) (-715 1712398 1712562 1712763 "MCDEN" 1713128 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-714 1710246 1710558 1710938 "MCALCFN" 1712128 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-713 1709123 1709411 1709644 "MAYBE" 1710052 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-712 1706681 1707258 1707820 "MATSTOR" 1708594 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-711 1702216 1706053 1706301 "MATRIX" 1706466 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-710 1697916 1698689 1699425 "MATLIN" 1701573 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-709 1696492 1696663 1696996 "MATCAT2" 1697751 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-708 1685939 1689546 1689623 "MATCAT" 1694658 NIL MATCAT (NIL T T T) -9 NIL 1696130 NIL) (-707 1681892 1683202 1684615 "MATCAT-" 1684620 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-706 1679968 1680328 1680712 "MAPPKG3" 1681567 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-705 1678925 1679122 1679344 "MAPPKG2" 1679792 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-704 1677382 1677708 1678035 "MAPPKG1" 1678631 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-703 1676383 1676788 1676965 "MAPPAST" 1677225 T MAPPAST (NIL) -8 NIL NIL NIL) (-702 1675988 1676052 1676175 "MAPHACK3" 1676319 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-701 1675568 1675641 1675755 "MAPHACK2" 1675920 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-700 1674994 1675109 1675251 "MAPHACK1" 1675459 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-699 1672917 1673694 1673998 "MAGMA" 1674722 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-698 1672336 1672641 1672732 "MACROAST" 1672846 T MACROAST (NIL) -8 NIL NIL NIL) (-697 1668693 1670575 1671036 "M3D" 1671908 NIL M3D (NIL T) -8 NIL NIL NIL) (-696 1662167 1667004 1667045 "LZSTAGG" 1667827 NIL LZSTAGG (NIL T) -9 NIL 1668122 NIL) (-695 1657849 1659298 1660755 "LZSTAGG-" 1660760 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-694 1654762 1655740 1656227 "LWORD" 1657394 NIL LWORD (NIL T) -8 NIL NIL NIL) (-693 1654284 1654566 1654641 "LSTAST" 1654707 T LSTAST (NIL) -8 NIL NIL NIL) (-692 1646357 1654055 1654189 "LSQM" 1654194 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-691 1645575 1645720 1645948 "LSPP" 1646212 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-690 1642375 1643074 1643787 "LSMP1" 1644894 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-689 1640180 1640504 1640953 "LSMP" 1642071 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-688 1633310 1639270 1639311 "LSAGG" 1639373 NIL LSAGG (NIL T) -9 NIL 1639451 NIL) (-687 1629819 1630929 1632142 "LSAGG-" 1632147 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-686 1627114 1628963 1629212 "LPOLY" 1629614 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-685 1626690 1626781 1626904 "LPEFRAC" 1627023 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-684 1626373 1626452 1626480 "LOGIC" 1626591 T LOGIC (NIL) -9 NIL 1626673 NIL) (-683 1626229 1626258 1626329 "LOGIC-" 1626334 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-682 1625404 1625562 1625755 "LODOOPS" 1626085 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-681 1623928 1624177 1624530 "LODOF" 1625151 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-680 1619818 1622563 1622604 "LODOCAT" 1623042 NIL LODOCAT (NIL T) -9 NIL 1623253 NIL) (-679 1619533 1619609 1619736 "LODOCAT-" 1619741 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-678 1616533 1619374 1619492 "LODO2" 1619497 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-677 1613654 1616470 1616515 "LODO1" 1616520 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-676 1610763 1613570 1613636 "LODO" 1613641 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-675 1609632 1609809 1610114 "LODEEF" 1610586 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-674 1607618 1608726 1608979 "LO" 1609464 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1602701 1605784 1605825 "LNAGG" 1606687 NIL LNAGG (NIL T) -9 NIL 1607122 NIL) (-672 1601794 1602062 1602404 "LNAGG-" 1602409 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-671 1597774 1598719 1599358 "LMOPS" 1601209 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-670 1597073 1597551 1597592 "LMODULE" 1597597 NIL LMODULE (NIL T) -9 NIL 1597623 NIL) (-669 1594142 1596718 1596841 "LMDICT" 1596983 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-668 1593718 1593932 1593973 "LLINSET" 1594034 NIL LLINSET (NIL T) -9 NIL 1594078 NIL) (-667 1593363 1593626 1593686 "LITERAL" 1593691 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-666 1592882 1592962 1593101 "LIST3" 1593283 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-665 1590980 1591328 1591727 "LIST2MAP" 1592529 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-664 1589969 1590165 1590393 "LIST2" 1590798 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-663 1582425 1588903 1589207 "LIST" 1589698 NIL LIST (NIL T) -8 NIL NIL NIL) (-662 1582008 1582244 1582285 "LINSET" 1582290 NIL LINSET (NIL T) -9 NIL 1582324 NIL) (-661 1580822 1581516 1581683 "LINFORM" 1581893 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-660 1579121 1579849 1579890 "LINEXP" 1580380 NIL LINEXP (NIL T) -9 NIL 1580653 NIL) (-659 1577697 1578601 1578782 "LINELT" 1578992 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-658 1576254 1576534 1576845 "LINDEP" 1577449 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-657 1575390 1575986 1576096 "LINBASIS" 1576184 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-656 1572198 1572928 1573686 "LIMITRF" 1574664 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-655 1570506 1570813 1571215 "LIMITPS" 1571900 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-654 1569334 1569909 1569949 "LIECAT" 1570089 NIL LIECAT (NIL T) -9 NIL 1570240 NIL) (-653 1569169 1569202 1569290 "LIECAT-" 1569295 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-652 1563221 1568680 1568908 "LIE" 1568990 NIL LIE (NIL T T) -8 NIL NIL NIL) (-651 1555522 1562761 1562917 "LIB" 1563085 T LIB (NIL) -8 NIL NIL NIL) (-650 1551091 1552040 1552975 "LGROBP" 1554639 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-649 1549715 1550623 1550651 "LFCAT" 1550858 T LFCAT (NIL) -9 NIL 1550997 NIL) (-648 1547653 1547987 1548337 "LF" 1549436 NIL LF (NIL T T) -7 NIL NIL NIL) (-647 1544513 1545185 1545873 "LEXTRIPK" 1547017 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-646 1541101 1542083 1542586 "LEXP" 1544093 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-645 1540517 1540822 1540914 "LETAST" 1541029 T LETAST (NIL) -8 NIL NIL NIL) (-644 1538903 1539228 1539629 "LEADCDET" 1540199 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-643 1538081 1538167 1538396 "LAZM3PK" 1538824 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-642 1532620 1536158 1536696 "LAUPOL" 1537593 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-641 1532193 1532243 1532404 "LAPLACE" 1532570 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-640 1531041 1531757 1531798 "LALG" 1531860 NIL LALG (NIL T) -9 NIL 1531919 NIL) (-639 1530737 1530814 1530950 "LALG-" 1530955 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-638 1528474 1529838 1530089 "LA" 1530570 NIL LA (NIL T T T) -8 NIL NIL NIL) (-637 1528303 1528333 1528374 "KVTFROM" 1528436 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-636 1527060 1527670 1527855 "KTVLOGIC" 1528138 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-635 1526889 1526919 1526960 "KRCFROM" 1527022 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-634 1525781 1525980 1526279 "KOVACIC" 1526689 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-633 1525610 1525640 1525681 "KONVERT" 1525743 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-632 1525439 1525469 1525510 "KOERCE" 1525572 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-631 1524923 1525016 1525148 "KERNEL2" 1525353 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-630 1522610 1523516 1523893 "KERNEL" 1524579 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-629 1516192 1521087 1521141 "KDAGG" 1521518 NIL KDAGG (NIL T T) -9 NIL 1521724 NIL) (-628 1515703 1515845 1516050 "KDAGG-" 1516055 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-627 1508519 1515364 1515519 "KAFILE" 1515581 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-626 1508123 1508408 1508471 "JVMOP" 1508476 T JVMOP (NIL) -8 NIL NIL NIL) (-625 1506859 1507363 1507612 "JVMMDACC" 1507894 T JVMMDACC (NIL) -8 NIL NIL NIL) (-624 1505795 1506249 1506454 "JVMFDACC" 1506674 T JVMFDACC (NIL) -8 NIL NIL NIL) (-623 1504376 1504871 1505171 "JVMCSTTG" 1505515 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-622 1503512 1503916 1504077 "JVMCFACC" 1504235 T JVMCFACC (NIL) -8 NIL NIL NIL) (-621 1503190 1503429 1503478 "JVMBCODE" 1503483 T JVMBCODE (NIL) -8 NIL NIL NIL) (-620 1497241 1502701 1502929 "JORDAN" 1503011 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1496554 1496890 1497011 "JOINAST" 1497140 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1492700 1494731 1494785 "IXAGG" 1495714 NIL IXAGG (NIL T T) -9 NIL 1496173 NIL) (-617 1491553 1491925 1492344 "IXAGG-" 1492349 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1486756 1491475 1491534 "IVECTOR" 1491539 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-615 1485481 1485759 1486025 "ITUPLE" 1486523 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-614 1483953 1484160 1484455 "ITRIGMNP" 1485303 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-613 1482680 1482902 1483185 "ITFUN3" 1483729 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-612 1482278 1482341 1482464 "ITFUN2" 1482603 NIL ITFUN2 (NIL T T) -8 NIL NIL NIL) (-611 1481383 1481758 1481932 "ITFORM" 1482124 T ITFORM (NIL) -8 NIL NIL NIL) (-610 1479152 1480403 1480681 "ITAYLOR" 1481138 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-609 1467556 1473289 1474452 "ISUPS" 1478022 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-608 1466648 1466800 1467036 "ISUMP" 1467403 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-607 1461612 1466593 1466634 "ISTRING" 1466639 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-606 1461028 1461333 1461425 "ISAST" 1461540 T ISAST (NIL) -8 NIL NIL NIL) (-605 1460226 1460319 1460535 "IRURPK" 1460942 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-604 1459138 1459363 1459603 "IRSN" 1460006 T IRSN (NIL) -7 NIL NIL NIL) (-603 1457183 1457564 1457993 "IRRF2F" 1458776 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-602 1456924 1456968 1457044 "IRREDFFX" 1457139 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-601 1455497 1455798 1456097 "IROOT" 1456657 NIL IROOT (NIL T) -7 NIL NIL NIL) (-600 1454636 1454990 1455141 "IRFORM" 1455366 T IRFORM (NIL) -8 NIL NIL NIL) (-599 1453718 1453849 1454063 "IR2F" 1454519 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-598 1451307 1451826 1452392 "IR2" 1453196 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-597 1447747 1448991 1449683 "IR" 1450647 NIL IR (NIL T) -8 NIL NIL NIL) (-596 1447532 1447572 1447632 "IPRNTPK" 1447707 T IPRNTPK (NIL) -7 NIL NIL NIL) (-595 1443508 1447421 1447490 "IPF" 1447495 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-594 1441538 1443433 1443490 "IPADIC" 1443495 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-593 1440796 1441098 1441228 "IP4ADDR" 1441428 T IP4ADDR (NIL) -8 NIL NIL NIL) (-592 1440134 1440425 1440557 "IOMODE" 1440684 T IOMODE (NIL) -8 NIL NIL NIL) (-591 1439105 1439731 1439858 "IOBFILE" 1440027 T IOBFILE (NIL) -8 NIL NIL NIL) (-590 1438515 1439009 1439037 "IOBCON" 1439042 T IOBCON (NIL) -9 NIL 1439063 NIL) (-589 1438020 1438084 1438267 "INVLAPLA" 1438451 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-588 1427638 1430058 1432432 "INTTR" 1435696 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-587 1423931 1424715 1425580 "INTTOOLS" 1426823 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-586 1423511 1423608 1423725 "INTSLPE" 1423834 T INTSLPE (NIL) -7 NIL NIL NIL) (-585 1420978 1423434 1423493 "INTRVL" 1423498 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-584 1418556 1419092 1419667 "INTRF" 1420463 NIL INTRF (NIL T) -7 NIL NIL NIL) (-583 1417949 1418064 1418206 "INTRET" 1418454 NIL INTRET (NIL T) -7 NIL NIL NIL) (-582 1415922 1416335 1416805 "INTRAT" 1417557 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-581 1413167 1413768 1414387 "INTPM" 1415407 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-580 1409907 1410527 1411258 "INTPAF" 1412560 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-579 1405008 1406048 1407099 "INTPACK" 1408876 T INTPACK (NIL) -7 NIL NIL NIL) (-578 1404254 1404412 1404620 "INTHERTR" 1404850 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-577 1403687 1403773 1403961 "INTHERAL" 1404168 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-576 1401455 1401976 1402433 "INTHEORY" 1403250 T INTHEORY (NIL) -7 NIL NIL NIL) (-575 1392845 1394522 1396276 "INTG0" 1399825 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-574 1379070 1382483 1385868 "INTFTBL" 1389480 T INTFTBL (NIL) -8 NIL NIL NIL) (-573 1378295 1378457 1378630 "INTFACT" 1378929 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-572 1375698 1376172 1376727 "INTEF" 1377851 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-571 1373895 1374790 1374818 "INTDOM" 1375119 T INTDOM (NIL) -9 NIL 1375326 NIL) (-570 1373234 1373438 1373680 "INTDOM-" 1373685 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-569 1369102 1371523 1371577 "INTCAT" 1372376 NIL INTCAT (NIL T) -9 NIL 1372697 NIL) (-568 1368556 1368677 1368805 "INTBIT" 1368994 T INTBIT (NIL) -7 NIL NIL NIL) (-567 1367237 1367409 1367716 "INTALG" 1368401 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-566 1366714 1366810 1366967 "INTAF" 1367141 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-565 1359797 1366524 1366664 "INTABL" 1366669 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-564 1359038 1359600 1359665 "INT8" 1359699 T INT8 (NIL) -8 NIL NIL 1359744) (-563 1358278 1358840 1358905 "INT64" 1358939 T INT64 (NIL) -8 NIL NIL 1358984) (-562 1357518 1358080 1358145 "INT32" 1358179 T INT32 (NIL) -8 NIL NIL 1358224) (-561 1356758 1357320 1357385 "INT16" 1357419 T INT16 (NIL) -8 NIL NIL 1357464) (-560 1352964 1356555 1356664 "INT" 1356669 T INT (NIL) -8 NIL NIL NIL) (-559 1347075 1350512 1350540 "INS" 1351474 T INS (NIL) -9 NIL 1352139 NIL) (-558 1344232 1345152 1346093 "INS-" 1346166 NIL INS- (NIL T) -8 NIL NIL NIL) (-557 1343062 1343285 1343561 "INPSIGN" 1344007 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-556 1342156 1342297 1342494 "INPRODPF" 1342942 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-555 1341026 1341167 1341404 "INPRODFF" 1342036 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-554 1340014 1340178 1340438 "INNMFACT" 1340862 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-553 1339193 1339308 1339496 "INMODGCD" 1339913 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-552 1337677 1337946 1338270 "INFSP" 1338938 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-551 1336837 1336978 1337161 "INFPROD0" 1337557 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-550 1336435 1336507 1336605 "INFORM1" 1336772 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-549 1333002 1334500 1335015 "INFORM" 1335928 T INFORM (NIL) -8 NIL NIL NIL) (-548 1332507 1332614 1332728 "INFINITY" 1332908 T INFINITY (NIL) -7 NIL NIL NIL) (-547 1331581 1332227 1332328 "INETCLTS" 1332426 T INETCLTS (NIL) -8 NIL NIL NIL) (-546 1330179 1330447 1330768 "INEP" 1331329 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-545 1329209 1330076 1330141 "INDE" 1330146 NIL INDE (NIL T) -8 NIL NIL NIL) (-544 1328761 1328841 1328958 "INCRMAPS" 1329136 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-543 1327483 1328030 1328236 "INBFILE" 1328575 T INBFILE (NIL) -8 NIL NIL NIL) (-542 1322663 1323719 1324663 "INBFF" 1326571 NIL INBFF (NIL T) -7 NIL NIL NIL) (-541 1321517 1321840 1321868 "INBCON" 1322381 T INBCON (NIL) -9 NIL 1322647 NIL) (-540 1320727 1320992 1321268 "INBCON-" 1321273 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-539 1320146 1320451 1320542 "INAST" 1320656 T INAST (NIL) -8 NIL NIL NIL) (-538 1319513 1319825 1319931 "IMPTAST" 1320060 T IMPTAST (NIL) -8 NIL NIL NIL) (-537 1315547 1319357 1319461 "IMATRIX" 1319466 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-536 1314239 1314378 1314694 "IMATQF" 1315403 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-535 1312419 1312686 1313023 "IMATLIN" 1313995 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-534 1306336 1312343 1312401 "ILIST" 1312406 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-533 1304116 1306196 1306309 "IIARRAY2" 1306314 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-532 1298939 1304027 1304091 "IFF" 1304096 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-531 1298220 1298556 1298672 "IFAST" 1298843 T IFAST (NIL) -8 NIL NIL NIL) (-530 1292846 1297512 1297700 "IFARRAY" 1298077 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-529 1291884 1292750 1292823 "IFAMON" 1292828 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-528 1291456 1291533 1291587 "IEVALAB" 1291794 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-527 1291119 1291199 1291359 "IEVALAB-" 1291364 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-526 1290152 1291008 1291083 "IDPOAMS" 1291088 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-525 1289254 1290041 1290116 "IDPOAM" 1290121 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-524 1288635 1289169 1289231 "IDPO" 1289236 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1287115 1287642 1287694 "IDPC" 1288206 NIL IDPC (NIL T T) -9 NIL 1288487 NIL) (-522 1286447 1287007 1287080 "IDPAM" 1287085 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-521 1285662 1286339 1286412 "IDPAG" 1286417 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-520 1285206 1285468 1285558 "IDENT" 1285592 T IDENT (NIL) -8 NIL NIL NIL) (-519 1281425 1282309 1283204 "IDECOMP" 1284363 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-518 1274060 1275348 1276395 "IDEAL" 1280461 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-517 1273202 1273332 1273532 "ICDEN" 1273944 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-516 1272177 1272682 1272829 "ICARD" 1273075 T ICARD (NIL) -8 NIL NIL NIL) (-515 1270207 1270550 1270955 "IBPTOOLS" 1271854 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-514 1265436 1269827 1269940 "IBITS" 1270126 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-513 1262111 1262735 1263430 "IBATOOL" 1264853 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-512 1259872 1260352 1260885 "IBACHIN" 1261646 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-511 1257576 1259718 1259821 "IARRAY2" 1259826 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-510 1253403 1257502 1257559 "IARRAY1" 1257564 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-509 1246429 1251815 1252296 "IAN" 1252942 T IAN (NIL) -8 NIL NIL NIL) (-508 1245934 1245997 1246170 "IALGFACT" 1246366 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-507 1245426 1245575 1245603 "HYPCAT" 1245810 T HYPCAT (NIL) -9 NIL NIL NIL) (-506 1244928 1245081 1245267 "HYPCAT-" 1245272 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-505 1244475 1244723 1244806 "HOSTNAME" 1244865 T HOSTNAME (NIL) -8 NIL NIL NIL) (-504 1244308 1244357 1244398 "HOMOTOP" 1244403 NIL HOMOTOP (NIL T) -9 NIL 1244436 NIL) (-503 1240852 1242240 1242281 "HOAGG" 1243262 NIL HOAGG (NIL T) -9 NIL 1243991 NIL) (-502 1239368 1239845 1240371 "HOAGG-" 1240376 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-501 1232441 1238961 1239111 "HEXADEC" 1239238 T HEXADEC (NIL) -8 NIL NIL NIL) (-500 1231153 1231411 1231674 "HEUGCD" 1232218 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-499 1230085 1230990 1231120 "HELLFDIV" 1231125 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-498 1228207 1229860 1229949 "HEAP" 1230028 NIL HEAP (NIL T) -8 NIL NIL NIL) (-497 1227404 1227759 1227893 "HEADAST" 1228093 T HEADAST (NIL) -8 NIL NIL NIL) (-496 1220863 1227319 1227381 "HDP" 1227386 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-495 1213908 1220498 1220650 "HDMP" 1220764 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-494 1213214 1213372 1213536 "HB" 1213764 T HB (NIL) -7 NIL NIL NIL) (-493 1206340 1213060 1213164 "HASHTBL" 1213169 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-492 1205756 1206061 1206153 "HASAST" 1206268 T HASAST (NIL) -8 NIL NIL NIL) (-491 1203173 1205378 1205560 "HACKPI" 1205594 T HACKPI (NIL) -8 NIL NIL NIL) (-490 1198486 1203026 1203139 "GTSET" 1203144 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-489 1191641 1198364 1198462 "GSTBL" 1198467 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-488 1183406 1190806 1191062 "GSERIES" 1191441 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-487 1182437 1182950 1182978 "GROUP" 1183181 T GROUP (NIL) -9 NIL 1183315 NIL) (-486 1181761 1181962 1182213 "GROUP-" 1182218 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-485 1180110 1180449 1180836 "GROEBSOL" 1181438 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-484 1178938 1179298 1179349 "GRMOD" 1179878 NIL GRMOD (NIL T T) -9 NIL 1180046 NIL) (-483 1178694 1178742 1178870 "GRMOD-" 1178875 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-482 1173834 1175048 1176048 "GRIMAGE" 1177714 T GRIMAGE (NIL) -8 NIL NIL NIL) (-481 1172228 1172561 1172885 "GRDEF" 1173530 T GRDEF (NIL) -7 NIL NIL NIL) (-480 1171660 1171788 1171929 "GRAY" 1172107 T GRAY (NIL) -7 NIL NIL NIL) (-479 1170737 1171239 1171290 "GRALG" 1171443 NIL GRALG (NIL T T) -9 NIL 1171536 NIL) (-478 1170374 1170471 1170634 "GRALG-" 1170639 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-477 1166969 1169957 1170136 "GPOLSET" 1170280 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-476 1166317 1166380 1166638 "GOSPER" 1166906 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-475 1161887 1162755 1163281 "GMODPOL" 1166016 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-474 1160874 1161076 1161314 "GHENSEL" 1161699 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-473 1154946 1155873 1156893 "GENUPS" 1159958 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-472 1154637 1154694 1154783 "GENUFACT" 1154889 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-471 1154037 1154126 1154291 "GENPGCD" 1154555 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-470 1153505 1153546 1153759 "GENMFACT" 1153996 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-469 1152042 1152328 1152635 "GENEEZ" 1153248 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-468 1145246 1151653 1151815 "GDMP" 1151965 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-467 1134006 1139017 1140123 "GCNAALG" 1144229 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-466 1132133 1133181 1133209 "GCDDOM" 1133464 T GCDDOM (NIL) -9 NIL 1133621 NIL) (-465 1131573 1131730 1131945 "GCDDOM-" 1131950 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-464 1120045 1122519 1124911 "GBINTERN" 1129264 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-463 1117846 1118174 1118595 "GBF" 1119720 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-462 1116603 1116792 1117059 "GBEUCLID" 1117662 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-461 1115253 1115460 1115764 "GB" 1116382 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-460 1114584 1114727 1114876 "GAUSSFAC" 1115124 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-459 1112905 1113253 1113567 "GALUTIL" 1114303 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-458 1111165 1111487 1111811 "GALPOLYU" 1112632 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-457 1108464 1108820 1109227 "GALFACTU" 1110862 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-456 1100078 1101769 1103377 "GALFACT" 1106896 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-455 1097364 1098124 1098152 "FVFUN" 1099308 T FVFUN (NIL) -9 NIL 1100028 NIL) (-454 1096594 1096812 1096840 "FVC" 1097131 T FVC (NIL) -9 NIL 1097314 NIL) (-453 1096195 1096419 1096487 "FUNDESC" 1096546 T FUNDESC (NIL) -8 NIL NIL NIL) (-452 1095768 1095992 1096073 "FUNCTION" 1096147 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-451 1094445 1095069 1095272 "FTEM" 1095585 T FTEM (NIL) -8 NIL NIL NIL) (-450 1092087 1092776 1093239 "FT" 1094002 T FT (NIL) -8 NIL NIL NIL) (-449 1090356 1090667 1091064 "FSUPFACT" 1091778 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-448 1088675 1089042 1089374 "FST" 1090044 T FST (NIL) -8 NIL NIL NIL) (-447 1087856 1087980 1088168 "FSRED" 1088557 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-446 1086545 1086811 1087158 "FSPRMELT" 1087571 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-445 1083755 1084289 1084775 "FSPECF" 1086108 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-444 1083277 1083337 1083507 "FSINT" 1083696 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-443 1081413 1082270 1082573 "FSERIES" 1083056 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-442 1080437 1080571 1080795 "FSCINT" 1081293 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-441 1079461 1079622 1079849 "FSAGG2" 1080290 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-440 1075436 1078405 1078446 "FSAGG" 1078816 NIL FSAGG (NIL T) -9 NIL 1079075 NIL) (-439 1073036 1073799 1074595 "FSAGG-" 1074690 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-438 1070696 1070994 1071542 "FS2UPS" 1072754 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-437 1069562 1069745 1070047 "FS2EXPXP" 1070521 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-436 1069190 1069239 1069368 "FS2" 1069513 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-435 1049457 1058964 1059005 "FS" 1062889 NIL FS (NIL T) -9 NIL 1065178 NIL) (-434 1037599 1041147 1045177 "FS-" 1045477 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 1037013 1037140 1037292 "FRUTIL" 1037479 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-432 1031556 1034702 1034742 "FRNAALG" 1036062 NIL FRNAALG (NIL T) -9 NIL 1036660 NIL) (-431 1027088 1028339 1029597 "FRNAALG-" 1030347 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-430 1026720 1026769 1026896 "FRNAAF2" 1027039 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-429 1025007 1025569 1025865 "FRMOD" 1026532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-428 1024192 1024285 1024576 "FRIDEAL2" 1024914 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-427 1021797 1022567 1022885 "FRIDEAL" 1023983 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-426 1020895 1021344 1021385 "FRETRCT" 1021390 NIL FRETRCT (NIL T) -9 NIL 1021566 NIL) (-425 1019974 1020252 1020596 "FRETRCT-" 1020601 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-424 1016795 1018258 1018317 "FRAMALG" 1019199 NIL FRAMALG (NIL T T) -9 NIL 1019491 NIL) (-423 1014833 1015384 1016014 "FRAMALG-" 1016237 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-422 1014463 1014526 1014633 "FRAC2" 1014770 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-421 1007472 1013936 1014213 "FRAC" 1014218 NIL FRAC (NIL T) -8 NIL NIL NIL) (-420 1007102 1007165 1007272 "FR2" 1007409 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-419 998134 1002678 1004009 "FR" 1005803 NIL FR (NIL T) -8 NIL NIL NIL) (-418 992057 995513 995541 "FPS" 996660 T FPS (NIL) -9 NIL 997217 NIL) (-417 991482 991615 991779 "FPS-" 991925 NIL FPS- (NIL T) -8 NIL NIL NIL) (-416 988450 990439 990467 "FPC" 990692 T FPC (NIL) -9 NIL 990834 NIL) (-415 988231 988283 988380 "FPC-" 988385 NIL FPC- (NIL T) -8 NIL NIL NIL) (-414 986989 987719 987760 "FPATMAB" 987765 NIL FPATMAB (NIL T) -9 NIL 987917 NIL) (-413 985132 985731 986078 "FPARFRAC" 986705 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-412 980463 981063 981745 "FORTRAN" 984564 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-411 978037 978701 978729 "FORTFN" 979789 T FORTFN (NIL) -9 NIL 980413 NIL) (-410 977789 977851 977879 "FORTCAT" 977938 T FORTCAT (NIL) -9 NIL 978000 NIL) (-409 975475 976005 976544 "FORT" 977270 T FORT (NIL) -7 NIL NIL NIL) (-408 975257 975293 975362 "FORMULA1" 975439 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-407 973261 973873 974263 "FORMULA" 974887 T FORMULA (NIL) -8 NIL NIL NIL) (-406 972778 972836 973009 "FORDER" 973203 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 971838 972038 972231 "FOP" 972605 T FOP (NIL) -7 NIL NIL NIL) (-404 970251 971118 971292 "FNLA" 971720 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 968870 969381 969409 "FNCAT" 969869 T FNCAT (NIL) -9 NIL 970129 NIL) (-402 968313 968829 968857 "FNAME" 968862 T FNAME (NIL) -8 NIL NIL NIL) (-401 966639 967812 967840 "FMTC" 967845 T FMTC (NIL) -9 NIL 967881 NIL) (-400 965195 966575 966621 "FMONOID" 966626 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 961784 963150 963191 "FMONCAT" 964408 NIL FMONCAT (NIL T) -9 NIL 965013 NIL) (-398 959106 959854 959882 "FMFUN" 961026 T FMFUN (NIL) -9 NIL 961734 NIL) (-397 955979 957031 957085 "FMCAT" 958280 NIL FMCAT (NIL T T) -9 NIL 958775 NIL) (-396 955212 955429 955457 "FMC" 955747 T FMC (NIL) -9 NIL 955929 NIL) (-395 953880 954978 955078 "FM1" 955157 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 952898 953622 953771 "FM" 953776 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 950636 951088 951582 "FLOATRP" 952449 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 948038 948574 949152 "FLOATCP" 950103 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 940705 945767 946388 "FLOAT" 947437 T FLOAT (NIL) -8 NIL NIL NIL) (-390 939223 940297 940338 "FLINEXP" 940343 NIL FLINEXP (NIL T) -9 NIL 940436 NIL) (-389 938353 938612 938940 "FLINEXP-" 938945 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-388 937411 937573 937797 "FLASORT" 938205 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 934329 935381 935433 "FLALG" 936660 NIL FLALG (NIL T T) -9 NIL 937127 NIL) (-386 933353 933514 933741 "FLAGG2" 934182 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 926722 930762 930803 "FLAGG" 932065 NIL FLAGG (NIL T) -9 NIL 932717 NIL) (-384 925376 925787 926277 "FLAGG-" 926282 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 922014 923221 923280 "FINRALG" 924408 NIL FINRALG (NIL T T) -9 NIL 924916 NIL) (-382 921138 921403 921742 "FINRALG-" 921747 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-381 920444 920743 920771 "FINITE" 920967 T FINITE (NIL) -9 NIL 921074 NIL) (-380 912395 914974 915014 "FINAALG" 918681 NIL FINAALG (NIL T) -9 NIL 920134 NIL) (-379 907511 908777 909921 "FINAALG-" 911300 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-378 906071 906493 906547 "FILECAT" 907231 NIL FILECAT (NIL T T) -9 NIL 907447 NIL) (-377 905349 905826 905929 "FILE" 906001 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 902754 904579 904607 "FIELD" 904647 T FIELD (NIL) -9 NIL 904727 NIL) (-375 901296 901759 902270 "FIELD-" 902275 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-374 898979 899931 900278 "FGROUP" 900982 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 898051 898233 898453 "FGLMICPK" 898811 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 893308 897976 898033 "FFX" 898038 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 892903 892970 893105 "FFSLPE" 893241 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 892401 892443 892652 "FFPOLY2" 892861 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 888277 889173 889969 "FFPOLY" 891637 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 883548 888196 888259 "FFP" 888264 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 878081 882891 883081 "FFNBX" 883402 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 872416 877216 877474 "FFNBP" 877935 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 866456 871700 871911 "FFNB" 872249 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 865276 865486 865801 "FFINTBAS" 866253 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 860871 863523 863551 "FFIELDC" 864171 T FFIELDC (NIL) -9 NIL 864547 NIL) (-362 859491 859932 860415 "FFIELDC-" 860420 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-361 859048 859106 859230 "FFHOM" 859433 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 856707 857230 857747 "FFF" 858563 NIL FFF (NIL T) -7 NIL NIL NIL) (-359 851744 856449 856550 "FFCGX" 856650 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 846785 851476 851583 "FFCGP" 851687 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 841387 846512 846620 "FFCG" 846721 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 840792 840841 841076 "FFCAT2" 841338 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 819483 830524 830610 "FFCAT" 835775 NIL FFCAT (NIL T T T) -9 NIL 837226 NIL) (-354 814494 815728 817042 "FFCAT-" 818272 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-353 809317 814405 814469 "FF" 814474 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 797972 802289 803509 "FEXPR" 808169 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 796900 797369 797410 "FEVALAB" 797494 NIL FEVALAB (NIL T) -9 NIL 797755 NIL) (-350 796017 796269 796607 "FEVALAB-" 796612 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-349 792879 793764 793879 "FDIVCAT" 795447 NIL FDIVCAT (NIL T T T T) -9 NIL 795884 NIL) (-348 792635 792668 792838 "FDIVCAT-" 792843 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-347 791849 791942 792219 "FDIV2" 792542 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 790259 791232 791435 "FDIV" 791748 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 789167 789554 789756 "FCTRDATA" 790077 T FCTRDATA (NIL) -8 NIL NIL NIL) (-344 787823 788112 788401 "FCPAK1" 788898 T FCPAK1 (NIL) -7 NIL NIL NIL) (-343 786826 787323 787464 "FCOMP" 787714 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 770140 773976 777514 "FC" 783308 T FC (NIL) -8 NIL NIL NIL) (-341 761851 766461 766501 "FAXF" 768303 NIL FAXF (NIL T) -9 NIL 768995 NIL) (-340 758992 759799 760617 "FAXF-" 761082 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-339 753675 758368 758544 "FARRAY" 758849 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 748247 750622 750675 "FAMR" 751698 NIL FAMR (NIL T T) -9 NIL 752158 NIL) (-337 747071 747439 747874 "FAMR-" 747879 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-336 746098 746993 747046 "FAMONOID" 747051 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 743728 744580 744633 "FAMONC" 745574 NIL FAMONC (NIL T T) -9 NIL 745960 NIL) (-334 742202 743482 743619 "FAGROUP" 743624 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 739955 740316 740719 "FACUTIL" 741883 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 739042 739239 739461 "FACTFUNC" 739765 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 730785 738345 738544 "EXPUPXS" 738898 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 728238 728808 729394 "EXPRTUBE" 730219 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 724449 725101 725831 "EXPRODE" 727577 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 718883 719590 720396 "EXPR2UPS" 723747 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 718509 718572 718681 "EXPR2" 718820 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 702878 717158 717587 "EXPR" 718113 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 693237 702029 702320 "EXPEXPAN" 702714 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 692657 692961 693052 "EXITAST" 693166 T EXITAST (NIL) -8 NIL NIL NIL) (-323 692421 692614 692643 "EXIT" 692648 T EXIT (NIL) -8 NIL NIL NIL) (-322 692042 692110 692223 "EVALCYC" 692353 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 691559 691701 691742 "EVALAB" 691912 NIL EVALAB (NIL T) -9 NIL 692016 NIL) (-320 691016 691162 691383 "EVALAB-" 691388 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-319 688131 689672 689700 "EUCDOM" 690255 T EUCDOM (NIL) -9 NIL 690605 NIL) (-318 686491 686992 687575 "EUCDOM-" 687580 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-317 686117 686180 686289 "ESTOOLS2" 686428 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 685862 685910 685990 "ESTOOLS1" 686069 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 673179 676160 678910 "ESTOOLS" 683132 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 672918 672956 673038 "ESCONT1" 673141 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 669226 670053 670833 "ESCONT" 672158 T ESCONT (NIL) -7 NIL NIL NIL) (-312 668895 668951 669051 "ES2" 669170 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 668519 668583 668692 "ES1" 668831 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 662220 664150 664178 "ES" 666946 T ES (NIL) -9 NIL 668356 NIL) (-309 656897 658454 660271 "ES-" 660435 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 656089 656242 656418 "ERROR" 656741 T ERROR (NIL) -7 NIL NIL NIL) (-307 649221 655948 656039 "EQTBL" 656044 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 648847 648910 649019 "EQ2" 649158 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 641106 644161 645610 "EQ" 647431 NIL -4042 (NIL T) -8 NIL NIL NIL) (-304 636348 637444 638537 "EP" 640045 NIL EP (NIL T) -7 NIL NIL NIL) (-303 634888 635239 635545 "ENV" 636062 T ENV (NIL) -8 NIL NIL NIL) (-302 633848 634522 634550 "ENTIRER" 634555 T ENTIRER (NIL) -9 NIL 634601 NIL) (-301 630313 632074 632435 "EMR" 633656 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 629417 629628 629682 "ELTAGG" 630062 NIL ELTAGG (NIL T T) -9 NIL 630273 NIL) (-299 629124 629198 629339 "ELTAGG-" 629344 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-298 628882 628917 628971 "ELTAB" 629055 NIL ELTAB (NIL T T) -9 NIL 629107 NIL) (-297 627984 628154 628353 "ELFUTS" 628733 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 627708 627782 627810 "ELEMFUN" 627915 T ELEMFUN (NIL) -9 NIL NIL NIL) (-295 627572 627599 627667 "ELEMFUN-" 627672 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-294 622097 625614 625655 "ELAGG" 626595 NIL ELAGG (NIL T) -9 NIL 627058 NIL) (-293 620274 620816 621479 "ELAGG-" 621484 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-292 619556 619723 619879 "ELABOR" 620138 T ELABOR (NIL) -8 NIL NIL NIL) (-291 618162 618496 618790 "ELABEXPR" 619282 T ELABEXPR (NIL) -8 NIL NIL NIL) (-290 610801 612799 613628 "EFUPXS" 617437 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-289 604054 606050 606861 "EFULS" 610076 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-288 601491 601897 602369 "EFSTRUC" 603686 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 590929 592848 594396 "EF" 600006 NIL EF (NIL T T) -7 NIL NIL NIL) (-286 589907 590414 590563 "EAB" 590800 T EAB (NIL) -8 NIL NIL NIL) (-285 589029 589866 589894 "E04UCFA" 589899 T E04UCFA (NIL) -8 NIL NIL NIL) (-284 588151 588988 589016 "E04NAFA" 589021 T E04NAFA (NIL) -8 NIL NIL NIL) (-283 587273 588110 588138 "E04MBFA" 588143 T E04MBFA (NIL) -8 NIL NIL NIL) (-282 586395 587232 587260 "E04JAFA" 587265 T E04JAFA (NIL) -8 NIL NIL NIL) (-281 585519 586354 586382 "E04GCFA" 586387 T E04GCFA (NIL) -8 NIL NIL NIL) (-280 584643 585478 585506 "E04FDFA" 585511 T E04FDFA (NIL) -8 NIL NIL NIL) (-279 583765 584602 584630 "E04DGFA" 584635 T E04DGFA (NIL) -8 NIL NIL NIL) (-278 577842 579290 580654 "E04AGNT" 582421 T E04AGNT (NIL) -7 NIL NIL NIL) (-277 576462 577143 577183 "DVARCAT" 577524 NIL DVARCAT (NIL T) -9 NIL 577687 NIL) (-276 575612 575878 576192 "DVARCAT-" 576197 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-275 567616 575411 575540 "DSMP" 575545 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 565967 566758 566799 "DSEXT" 567162 NIL DSEXT (NIL T) -9 NIL 567456 NIL) (-273 564156 564680 565346 "DSEXT-" 565351 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-272 563815 563880 563978 "DROPT1" 564091 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 558834 560056 561193 "DROPT0" 562698 T DROPT0 (NIL) -7 NIL NIL NIL) (-270 553417 554779 555847 "DROPT" 557786 T DROPT (NIL) -8 NIL NIL NIL) (-269 551726 552087 552473 "DRAWPT" 553051 T DRAWPT (NIL) -7 NIL NIL NIL) (-268 551353 551412 551530 "DRAWHACK" 551667 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 550054 550353 550644 "DRAWCX" 551082 T DRAWCX (NIL) -7 NIL NIL NIL) (-266 549563 549638 549789 "DRAWCURV" 549980 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 539881 541993 544108 "DRAWCFUN" 547468 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 534372 535391 536470 "DRAW" 538855 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 530954 533037 533078 "DQAGG" 533707 NIL DQAGG (NIL T) -9 NIL 533981 NIL) (-262 517568 525165 525248 "DPOLCAT" 527100 NIL DPOLCAT (NIL T T T T) -9 NIL 527645 NIL) (-261 512138 513787 515728 "DPOLCAT-" 515733 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-260 505067 511999 512097 "DPMO" 512102 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 497893 504847 505014 "DPMM" 505019 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 497415 497677 497766 "DOMTMPLT" 497824 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 496764 497217 497297 "DOMCTOR" 497355 T DOMCTOR (NIL) -8 NIL NIL NIL) (-256 495916 496244 496395 "DOMAIN" 496633 T DOMAIN (NIL) -8 NIL NIL NIL) (-255 488961 495551 495703 "DMP" 495817 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 486738 488028 488069 "DMEXT" 488074 NIL DMEXT (NIL T) -9 NIL 488250 NIL) (-253 486332 486394 486538 "DLP" 486676 NIL DLP (NIL T) -7 NIL NIL NIL) (-252 479457 485659 485849 "DLIST" 486174 NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 476107 478282 478323 "DLAGG" 478873 NIL DLAGG (NIL T) -9 NIL 479103 NIL) (-250 474619 475433 475461 "DIVRING" 475553 T DIVRING (NIL) -9 NIL 475636 NIL) (-249 473802 474046 474346 "DIVRING-" 474351 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-248 471844 472261 472667 "DISPLAY" 473416 T DISPLAY (NIL) -7 NIL NIL NIL) (-247 470674 470895 471160 "DIRPROD2" 471637 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 464153 470588 470651 "DIRPROD" 470656 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 452437 458864 458917 "DIRPCAT" 459175 NIL DIRPCAT (NIL NIL T) -9 NIL 460050 NIL) (-244 449637 450405 451286 "DIRPCAT-" 451623 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-243 448918 449084 449270 "DIOSP" 449471 T DIOSP (NIL) -7 NIL NIL NIL) (-242 445443 447802 447843 "DIOPS" 448277 NIL DIOPS (NIL T) -9 NIL 448506 NIL) (-241 444962 445106 445297 "DIOPS-" 445302 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-240 443869 444641 444669 "DIFRING" 444674 T DIFRING (NIL) -9 NIL 444696 NIL) (-239 443517 443615 443643 "DIFFSPC" 443762 T DIFFSPC (NIL) -9 NIL 443837 NIL) (-238 443138 443240 443392 "DIFFSPC-" 443397 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-237 442074 442672 442713 "DIFFMOD" 442718 NIL DIFFMOD (NIL T) -9 NIL 442816 NIL) (-236 441770 441827 441868 "DIFFDOM" 441989 NIL DIFFDOM (NIL T) -9 NIL 442057 NIL) (-235 441617 441647 441731 "DIFFDOM-" 441736 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-234 439357 440821 440862 "DIFEXT" 440867 NIL DIFEXT (NIL T) -9 NIL 441020 NIL) (-233 436502 438861 438902 "DIAGG" 438907 NIL DIAGG (NIL T) -9 NIL 438927 NIL) (-232 435850 436043 436295 "DIAGG-" 436300 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-231 430813 434809 435086 "DHMATRIX" 435619 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 426281 427334 428344 "DFSFUN" 429823 T DFSFUN (NIL) -7 NIL NIL NIL) (-229 420394 425111 425446 "DFLOAT" 425966 T DFLOAT (NIL) -8 NIL NIL NIL) (-228 418633 418938 419327 "DFINTTLS" 420102 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 415452 416654 417054 "DERHAM" 418299 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 413102 415227 415316 "DEQUEUE" 415396 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 412344 412489 412672 "DEGRED" 412964 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 408930 409654 410455 "DEFINTRF" 411617 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 406579 407038 407602 "DEFINTEF" 408477 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 405863 406199 406314 "DEFAST" 406484 T DEFAST (NIL) -8 NIL NIL NIL) (-221 398936 405456 405606 "DECIMAL" 405733 T DECIMAL (NIL) -8 NIL NIL NIL) (-220 396394 396906 397412 "DDFACT" 398480 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 395984 396033 396184 "DBLRESP" 396345 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 395185 395754 395845 "DBASIS" 395933 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 392969 393415 393776 "DBASE" 394951 NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 392157 392449 392595 "DATAARY" 392868 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 391215 392116 392144 "D03FAFA" 392149 T D03FAFA (NIL) -8 NIL NIL NIL) (-214 390274 391174 391202 "D03EEFA" 391207 T D03EEFA (NIL) -8 NIL NIL NIL) (-213 388200 388690 389179 "D03AGNT" 389805 T D03AGNT (NIL) -7 NIL NIL NIL) (-212 387441 388159 388187 "D02EJFA" 388192 T D02EJFA (NIL) -8 NIL NIL NIL) (-211 386682 387400 387428 "D02CJFA" 387433 T D02CJFA (NIL) -8 NIL NIL NIL) (-210 385923 386641 386669 "D02BHFA" 386674 T D02BHFA (NIL) -8 NIL NIL NIL) (-209 385164 385882 385910 "D02BBFA" 385915 T D02BBFA (NIL) -8 NIL NIL NIL) (-208 378295 379950 381556 "D02AGNT" 383578 T D02AGNT (NIL) -7 NIL NIL NIL) (-207 376045 376586 377132 "D01WGTS" 377769 T D01WGTS (NIL) -7 NIL NIL NIL) (-206 375052 376004 376032 "D01TRNS" 376037 T D01TRNS (NIL) -8 NIL NIL NIL) (-205 374060 375011 375039 "D01GBFA" 375044 T D01GBFA (NIL) -8 NIL NIL NIL) (-204 373068 374019 374047 "D01FCFA" 374052 T D01FCFA (NIL) -8 NIL NIL NIL) (-203 372076 373027 373055 "D01ASFA" 373060 T D01ASFA (NIL) -8 NIL NIL NIL) (-202 371084 372035 372063 "D01AQFA" 372068 T D01AQFA (NIL) -8 NIL NIL NIL) (-201 370092 371043 371071 "D01APFA" 371076 T D01APFA (NIL) -8 NIL NIL NIL) (-200 369100 370051 370079 "D01ANFA" 370084 T D01ANFA (NIL) -8 NIL NIL NIL) (-199 368108 369059 369087 "D01AMFA" 369092 T D01AMFA (NIL) -8 NIL NIL NIL) (-198 367116 368067 368095 "D01ALFA" 368100 T D01ALFA (NIL) -8 NIL NIL NIL) (-197 366124 367075 367103 "D01AKFA" 367108 T D01AKFA (NIL) -8 NIL NIL NIL) (-196 365132 366083 366111 "D01AJFA" 366116 T D01AJFA (NIL) -8 NIL NIL NIL) (-195 358355 359980 361541 "D01AGNT" 363591 T D01AGNT (NIL) -7 NIL NIL NIL) (-194 357674 357820 357972 "CYCLOTOM" 358223 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 354329 355122 355849 "CYCLES" 356967 T CYCLES (NIL) -7 NIL NIL NIL) (-192 353629 353775 353946 "CVMP" 354190 NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 351416 351728 352097 "CTRIGMNP" 353357 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 350889 351147 351248 "CTORKIND" 351335 T CTORKIND (NIL) -8 NIL NIL NIL) (-189 350094 350482 350510 "CTORCAT" 350692 T CTORCAT (NIL) -9 NIL 350805 NIL) (-188 349668 349803 349962 "CTORCAT-" 349967 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-187 349082 349342 349450 "CTORCALL" 349592 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 348440 348876 348949 "CTOR" 349029 T CTOR (NIL) -8 NIL NIL NIL) (-185 347796 347913 348066 "CSTTOOLS" 348337 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 343493 344252 345010 "CRFP" 347108 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 342908 343214 343306 "CRCEAST" 343421 T CRCEAST (NIL) -8 NIL NIL NIL) (-182 341931 342140 342368 "CRAPACK" 342712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 341311 341416 341620 "CPMATCH" 341807 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 341030 341064 341170 "CPIMA" 341277 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 337288 338050 338769 "COORDSYS" 340365 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 336676 336821 336963 "CONTOUR" 337166 T CONTOUR (NIL) -8 NIL NIL NIL) (-177 332149 334679 335171 "CONTFRAC" 336216 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 332023 332050 332078 "CONDUIT" 332115 T CONDUIT (NIL) -9 NIL NIL NIL) (-175 330977 331651 331679 "COMRING" 331684 T COMRING (NIL) -9 NIL 331736 NIL) (-174 329959 330335 330519 "COMPPROP" 330813 T COMPPROP (NIL) -8 NIL NIL NIL) (-173 329614 329655 329783 "COMPLPAT" 329918 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 329244 329307 329414 "COMPLEX2" 329551 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 317661 329053 329162 "COMPLEX" 329167 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 316982 317121 317281 "COMPILER" 317521 T COMPILER (NIL) -8 NIL NIL NIL) (-169 316694 316735 316833 "COMPFACT" 316941 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 298097 310398 310438 "COMPCAT" 311442 NIL COMPCAT (NIL T) -9 NIL 312790 NIL) (-167 287006 290550 294170 "COMPCAT-" 294526 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-166 286729 286763 286866 "COMMUPC" 286972 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 286517 286557 286616 "COMMONOP" 286690 T COMMONOP (NIL) -7 NIL NIL NIL) (-164 286039 286321 286396 "COMMAAST" 286462 T COMMAAST (NIL) -8 NIL NIL NIL) (-163 285546 285790 285877 "COMM" 285972 T COMM (NIL) -8 NIL NIL NIL) (-162 284741 284989 285017 "COMBOPC" 285355 T COMBOPC (NIL) -9 NIL 285530 NIL) (-161 283595 283847 284089 "COMBINAT" 284531 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 279938 280626 281253 "COMBF" 283017 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 278600 279054 279289 "COLOR" 279723 T COLOR (NIL) -8 NIL NIL NIL) (-158 278016 278321 278413 "COLONAST" 278528 T COLONAST (NIL) -8 NIL NIL NIL) (-157 277650 277703 277828 "CMPLXRT" 277963 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 277038 277350 277449 "CLLCTAST" 277571 T CLLCTAST (NIL) -8 NIL NIL NIL) (-155 272498 273568 274648 "CLIP" 275978 T CLIP (NIL) -7 NIL NIL NIL) (-154 270671 271599 271839 "CLIF" 272325 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 266764 268789 268830 "CLAGG" 269759 NIL CLAGG (NIL T) -9 NIL 270295 NIL) (-152 265108 265643 266226 "CLAGG-" 266231 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-151 264646 264737 264877 "CINTSLPE" 265017 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 262111 262618 263166 "CHVAR" 264174 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 261151 261825 261853 "CHARZ" 261858 T CHARZ (NIL) -9 NIL 261873 NIL) (-148 260899 260945 261023 "CHARPOL" 261105 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 259817 260523 260551 "CHARNZ" 260612 T CHARNZ (NIL) -9 NIL 260661 NIL) (-146 256761 257871 258400 "CHAR" 259308 T CHAR (NIL) -8 NIL NIL NIL) (-145 256469 256548 256576 "CFCAT" 256687 T CFCAT (NIL) -9 NIL NIL NIL) (-144 255692 255821 256004 "CDEN" 256353 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 251403 254845 255125 "CCLASS" 255432 T CCLASS (NIL) -8 NIL NIL NIL) (-142 250624 250811 250988 "CATEGORY" 251246 T -10 (NIL) -8 NIL NIL NIL) (-141 250119 250543 250591 "CATCTOR" 250596 T CATCTOR (NIL) -8 NIL NIL NIL) (-140 249510 249822 249920 "CATAST" 250041 T CATAST (NIL) -8 NIL NIL NIL) (-139 248926 249231 249323 "CASEAST" 249438 T CASEAST (NIL) -8 NIL NIL NIL) (-138 248022 248182 248403 "CARTEN2" 248773 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 242919 244179 244923 "CARTEN" 247334 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 241049 242069 242326 "CARD" 242682 T CARD (NIL) -8 NIL NIL NIL) (-135 240571 240853 240928 "CAPSLAST" 240994 T CAPSLAST (NIL) -8 NIL NIL NIL) (-134 240013 240269 240297 "CACHSET" 240429 T CACHSET (NIL) -9 NIL 240507 NIL) (-133 239403 239791 239819 "CABMON" 239869 T CABMON (NIL) -9 NIL 239925 NIL) (-132 238840 239107 239217 "BYTEORD" 239313 T BYTEORD (NIL) -8 NIL NIL NIL) (-131 233881 238345 238517 "BYTEBUF" 238688 T BYTEBUF (NIL) -8 NIL NIL NIL) (-130 232712 233424 233559 "BYTE" 233722 T BYTE (NIL) -8 NIL NIL 233837) (-129 230090 232404 232511 "BTREE" 232638 NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 227408 229738 229860 "BTOURN" 230000 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 224628 226850 226891 "BTCAT" 226959 NIL BTCAT (NIL T) -9 NIL 227036 NIL) (-126 224277 224375 224524 "BTCAT-" 224529 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-125 219280 223523 223551 "BTAGG" 223665 T BTAGG (NIL) -9 NIL 223775 NIL) (-124 218734 218895 219101 "BTAGG-" 219106 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-123 215586 218012 218227 "BSTREE" 218551 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 214694 214850 215034 "BRILL" 215442 NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 211201 213392 213433 "BRAGG" 214082 NIL BRAGG (NIL T) -9 NIL 214340 NIL) (-120 209637 210138 210692 "BRAGG-" 210697 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-119 201910 208981 209166 "BPADICRT" 209484 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 199928 201847 201892 "BPADIC" 201897 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 199620 199656 199770 "BOUNDZRO" 199892 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 197347 197805 198280 "BOP1" 199178 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 192377 193807 194705 "BOP" 196469 T BOP (NIL) -8 NIL NIL NIL) (-114 191042 191965 192107 "BOOLEAN" 192255 T BOOLEAN (NIL) -8 NIL NIL NIL) (-113 190635 190792 190820 "BOOLE" 190931 T BOOLE (NIL) -9 NIL 191012 NIL) (-112 190503 190530 190596 "BOOLE-" 190601 NIL BOOLE- (NIL T) -8 NIL NIL NIL) (-111 189672 190172 190226 "BMODULE" 190231 NIL BMODULE (NIL T T) -9 NIL 190296 NIL) (-110 185107 189470 189543 "BITS" 189619 T BITS (NIL) -8 NIL NIL NIL) (-109 184504 184647 184787 "BINDING" 184987 T BINDING (NIL) -8 NIL NIL NIL) (-108 177580 184099 184248 "BINARY" 184375 T BINARY (NIL) -8 NIL NIL NIL) (-107 175298 176807 176848 "BGAGG" 177108 NIL BGAGG (NIL T) -9 NIL 177245 NIL) (-106 175123 175161 175252 "BGAGG-" 175257 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 174146 174507 174712 "BFUNCT" 174938 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 172810 173011 173299 "BEZOUT" 173970 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 169124 171662 171992 "BBTREE" 172513 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 168707 168803 168831 "BASTYPE" 169008 T BASTYPE (NIL) -9 NIL 169107 NIL) (-101 168365 168464 168599 "BASTYPE-" 168604 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 167787 167875 168027 "BALFACT" 168276 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 166523 167202 167388 "AUTOMOR" 167632 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 166249 166254 166280 "ATTREG" 166285 T ATTREG (NIL) -9 NIL NIL NIL) (-97 164411 164946 165298 "ATTRBUT" 165915 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 163965 164239 164305 "ATTRAST" 164363 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 163465 163614 163640 "ATRIG" 163841 T ATRIG (NIL) -9 NIL NIL NIL) (-94 163262 163315 163402 "ATRIG-" 163407 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 162845 163079 163105 "ASTCAT" 163110 T ASTCAT (NIL) -9 NIL 163140 NIL) (-92 162554 162631 162750 "ASTCAT-" 162755 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 160642 162330 162418 "ASTACK" 162497 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 159131 159444 159809 "ASSOCEQ" 160324 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 158077 158790 158914 "ASP9" 159038 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 156859 157682 157824 "ASP80" 157966 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 156587 156807 156846 "ASP8" 156851 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 155455 156264 156382 "ASP78" 156500 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 154338 155135 155252 "ASP77" 155369 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 153164 153976 154107 "ASP74" 154238 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 151978 152799 152931 "ASP73" 153063 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 150790 151613 151745 "ASP7" 151877 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 149808 150616 150716 "ASP6" 150721 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 148669 149485 149603 "ASP55" 149721 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 147532 148343 148462 "ASP50" 148581 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 146534 147233 147343 "ASP49" 147453 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 145232 146073 146241 "ASP42" 146423 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 143923 144765 144935 "ASP41" 145119 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 142925 143624 143734 "ASP4" 143844 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 141789 142602 142720 "ASP35" 142838 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 141518 141737 141776 "ASP34" 141781 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 141237 141322 141398 "ASP33" 141473 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 140045 140872 141004 "ASP31" 141136 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 139774 139993 140032 "ASP30" 140037 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 139491 139578 139654 "ASP29" 139729 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 139220 139439 139478 "ASP28" 139483 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 138949 139168 139207 "ASP27" 139212 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 137947 138647 138758 "ASP24" 138869 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 136938 137749 137861 "ASP20" 137866 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 135795 136612 136731 "ASP19" 136850 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 135514 135599 135675 "ASP12" 135750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 134280 135113 135257 "ASP10" 135401 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 133282 133981 134091 "ASP1" 134201 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 131008 133126 133217 "ARRAY2" 133222 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 130022 130213 130434 "ARRAY12" 130831 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 125496 129670 129784 "ARRAY1" 129939 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 119652 121698 121773 "ARR2CAT" 124403 NIL ARR2CAT (NIL T T T) -9 NIL 125161 NIL) (-56 117251 118028 118883 "ARR2CAT-" 118888 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 116502 116878 117003 "ARITY" 117144 T ARITY (NIL) -8 NIL NIL NIL) (-54 115260 115430 115729 "APPRULE" 116338 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 114905 114959 115078 "APPLYORE" 115206 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 114159 114306 114463 "ANY1" 114779 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 113459 113752 113872 "ANY" 114057 T ANY (NIL) -8 NIL NIL NIL) (-50 110785 111896 112223 "ANTISYM" 113183 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 110229 110492 110588 "ANON" 110707 T ANON (NIL) -8 NIL NIL NIL) (-48 103401 108768 109222 "AN" 109793 T AN (NIL) -8 NIL NIL NIL) (-47 99064 100673 100724 "AMR" 101472 NIL AMR (NIL T T) -9 NIL 102072 NIL) (-46 98116 98397 98760 "AMR-" 98765 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 81591 98033 98094 "ALIST" 98099 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 77920 81185 81354 "ALGSC" 81509 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 74370 75030 75637 "ALGPKG" 77360 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 73635 73748 73932 "ALGMFACT" 74256 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 69618 70249 70843 "ALGMANIP" 73219 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58989 69244 69394 "ALGFF" 69551 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 58161 58316 58495 "ALGFACT" 58847 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56950 57688 57726 "ALGEBRA" 57731 NIL ALGEBRA (NIL T) -9 NIL 57772 NIL) (-37 56650 56727 56859 "ALGEBRA-" 56864 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 37610 54487 54539 "ALAGG" 54675 NIL ALAGG (NIL T T) -9 NIL 54836 NIL) (-35 37110 37259 37285 "AHYP" 37486 T AHYP (NIL) -9 NIL NIL NIL) (-34 36412 36595 36621 "AGG" 36904 T AGG (NIL) -9 NIL 37093 NIL) (-33 36119 36206 36321 "AGG-" 36326 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 33879 34348 34753 "AF" 35761 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33299 33604 33694 "ADDAST" 33807 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32531 32826 32982 "ACPLOT" 33161 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20151 29463 29501 "ACFS" 30108 NIL ACFS (NIL T) -9 NIL 30347 NIL) (-28 18058 18668 19430 "ACFS-" 19435 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13768 16091 16117 "ACF" 16996 T ACF (NIL) -9 NIL 17409 NIL) (-26 12400 12806 13299 "ACF-" 13304 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11910 12153 12179 "ABELSG" 12271 T ABELSG (NIL) -9 NIL 12336 NIL) (-24 11771 11802 11868 "ABELSG-" 11873 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11040 11387 11413 "ABELMON" 11583 T ABELMON (NIL) -9 NIL 11695 NIL) (-22 10680 10788 10926 "ABELMON-" 10931 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9930 10386 10412 "ABELGRP" 10484 T ABELGRP (NIL) -9 NIL 10559 NIL) (-20 9357 9522 9738 "ABELGRP-" 9743 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8619 8658 "A1AGG" 8663 NIL A1AGG (NIL T) -9 NIL 8703 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3613 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 10 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2283 (($ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2281 (((-114) $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4283 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) NIL T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4243 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-4240 (((-3 (-1287 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4241 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4135 (((-558) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-1287 |#1| |#2| |#3|) #2="failed") $) NIL T ELT) (((-3 (-1207) #2#) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #2#) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT)) (-3656 (((-1287 |#1| |#2| |#3|) $) NIL T ELT) (((-1207) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) ELT)) (-4242 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-1287 |#1| |#2| |#3|)) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-709 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4239 (((-419 (-974 |#1|)) $ (-558)) NIL (|has| |#1| (-569)) ELT) (((-419 (-974 |#1|)) $ (-558) (-558)) NIL (|has| |#1| (-569)) ELT)) (-3477 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3686 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-376))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-910 (-558))) (|has| |#1| (-376))) ELT)) (-4284 (((-558) $) NIL T ELT) (((-558) $ (-558)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3481 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3947 (((-711 $) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-3687 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4289 (($ $ (-947)) NIL T ELT)) (-4327 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-558)) 18 T ELT) (($ $ (-1112) (-558)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-558))) NIL T ELT)) (-3012 (($ $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3340 (($ $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2504 (((-709 (-1287 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4291 (($ (-558) (-1287 |#1| |#2| |#3|)) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) 27 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 28 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3612 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3614 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-558)) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1207) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-526 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1207)) (-661 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-526 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 (-1287 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1287 |#1| |#2| |#3|)) (-661 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-558)) NIL T ELT) (($ $ $) NIL (|has| (-558) (-1142)) ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-298 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 26 T ELT) (($ $) 25 (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3480 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-4460 (((-558) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4484 (((-547) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-631 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-376))) ELT) (((-914 (-391)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-631 (-914 (-391)))) (|has| |#1| (-376))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-631 (-914 (-558)))) (|has| |#1| (-376))) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1287 |#1| |#2| |#3|)) NIL T ELT) (($ (-1294 |#2|)) 24 T ELT) (($ (-1207)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-1068 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4189 ((|#1| $ (-558)) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 11 T ELT)) (-3615 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3885 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3141 (($) 20 T CONST)) (-3147 (($) 15 T CONST)) (-3152 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-926 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3047 (((-114) $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3048 (((-114) $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-3167 (((-114) $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-3168 (((-114) $ $) NIL (-4039 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-870)) (|has| |#1| (-376)))) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 22 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1257 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1257)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-4470 (((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)) 23 T ELT))) +(((-1258 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4470 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)))) (-1079) (-1079) (-1207) (-1207) |#1| |#2|) (T -1258)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207))))) +(-10 -7 (-15 -4470 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-3994 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3520 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3992 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3996 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-3045 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4239 (((-419 (-974 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-974 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-3044 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) 91 T ELT)) (-4139 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) 124 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| (-558)) 78 T ELT) (($ $ (-1112) (-558)) 94 T ELT) (($ $ (-661 (-1112)) (-661 (-558))) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4454 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-2112 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 193 (-4039 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 175 (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-558)) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4455 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-1797 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 116 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207))) 114 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207) (-791)) 113 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4460 (((-558) $) 81 T ELT)) (-3997 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-558)) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1207)) 115 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207))) 111 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207) (-791)) 110 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1259 |#1|) (-142) (-1079)) (T -1259)) +((-4330 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1259 *3)))) (-4327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1259 *3)) (-4 *3 (-1079)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1259 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-419 (-974 *4))))) (-4239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1259 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-419 (-974 *4))))) (-4324 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) (-4324 (*1 *1 *1 *2) (-4039 (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1276 |t#1| (-558)) (-10 -8 (-15 -4330 ($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |t#1|))))) (-15 -4327 ($ (-1 |t#1| (-558)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -4239 ((-419 (-974 |t#1|)) $ (-558))) (-15 -4239 ((-419 (-974 |t#1|)) $ (-558) (-558)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $)) (IF (|has| |t#1| (-15 -4324 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -3566 ((-661 (-1207)) |t#1|))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-558))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-558)) . T) ((-25) . T) ((-38 #2=(-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-558) (-1142)) ((-302) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-920 $ #3=(-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-926 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-1003 |#1| #1# (-1112)) . T) ((-949) |has| |#1| (-376)) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1081 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1086 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #1#) . T)) +((-3688 (((-114) $) 12 T ELT)) (-3657 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1207) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT)) (-3656 ((|#3| $) 14 T ELT) (((-1207) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT))) +(((-1260 |#1| |#2| |#3|) (-10 -8 (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -3657 ((-3 |#3| #1#) |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3688 ((-114) |#1|))) (-1261 |#2| |#3|) (-1079) (-1290 |#2|)) (T -1260)) +NIL +(-10 -8 (-15 -3657 ((-3 (-558) #1="failed") |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3657 ((-3 (-1207) #1#) |#1|)) (-15 -3656 ((-1207) |#1|)) (-15 -3657 ((-3 |#3| #1#) |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3688 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3613 ((|#2| $) 263 (-3043 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-4243 ((|#2| $) 299 T ELT)) (-4240 (((-3 |#2| "failed") $) 295 T ELT)) (-4241 ((|#2| $) 296 T ELT)) (-3994 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 272 (-3043 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-4287 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3520 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 269 (-3043 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-1798 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3992 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4135 (((-558) $) 281 (-3043 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3996 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-558) #2#) $) 292 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #2#) $) 290 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-1207) #2#) $) 274 (-3043 (|has| |#2| (-1068 (-1207))) (|has| |#1| (-376))) ELT)) (-3656 ((|#2| $) 303 T ELT) (((-558) $) 291 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) 289 (-3043 (|has| |#2| (-1068 (-558))) (|has| |#1| (-376))) ELT) (((-1207) $) 273 (-3043 (|has| |#2| (-1068 (-1207))) (|has| |#1| (-376))) ELT)) (-4242 (($ $) 298 T ELT) (($ (-558) $) 297 T ELT)) (-3045 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 77 T ELT)) (-2503 (((-709 |#2|) (-709 $)) 251 (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) 250 (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 249 (-3043 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) 248 (-3043 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4239 (((-419 (-974 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-974 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-3477 (($) 265 (-3043 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-3044 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3686 (((-114) $) 279 (-3043 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3375 (((-114) $) 91 T ELT)) (-4139 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 257 (-3043 (|has| |#2| (-910 (-391))) (|has| |#1| (-376))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 256 (-3043 (|has| |#2| (-910 (-558))) (|has| |#1| (-376))) ELT)) (-4284 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3479 (($ $) 261 (|has| |#1| (-376)) ELT)) (-3481 ((|#2| $) 259 (|has| |#1| (-376)) ELT)) (-3494 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3947 (((-711 $) $) 293 (-3043 (|has| |#2| (-1182)) (|has| |#1| (-376))) ELT)) (-3687 (((-114) $) 280 (-3043 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4289 (($ $ (-947)) 124 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| (-558)) 78 T ELT) (($ $ (-1112) (-558)) 94 T ELT) (($ $ (-661 (-1112)) (-661 (-558))) 93 T ELT)) (-3012 (($ $ $) 288 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-3340 (($ $ $) 287 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-376)) ELT)) (-4454 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2504 (((-709 |#2|) (-1297 $)) 253 (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 252 (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 247 (-3043 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1297 $)) 246 (-3043 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-2112 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4291 (($ (-558) |#2|) 300 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 193 (-4039 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3948 (($) 294 (-3043 (|has| |#2| (-1182)) (|has| |#1| (-376))) CONST)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 175 (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3612 (($ $) 264 (-3043 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3614 ((|#2| $) 267 (-3043 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 270 (-3043 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 271 (-3043 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-4244 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-558)) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4455 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1207) |#2|) 240 (-3043 (|has| |#2| (-526 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1207)) (-661 |#2|)) 239 (-3043 (|has| |#2| (-526 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 |#2|))) 238 (-3043 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 237 (-3043 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 236 (-3043 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 235 (-3043 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1797 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1142)) ELT) (($ $ |#2|) 234 (-3043 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) 243 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-376)) ELT) (($ $) 108 (-4039 (-3043 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) 106 (-4039 (-3043 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) 116 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) 114 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) 113 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3478 (($ $) 262 (|has| |#1| (-376)) ELT)) (-3480 ((|#2| $) 260 (|has| |#1| (-376)) ELT)) (-4460 (((-558) $) 81 T ELT)) (-3997 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4484 (((-229) $) 278 (-3043 (|has| |#2| (-1050)) (|has| |#1| (-376))) ELT) (((-391) $) 277 (-3043 (|has| |#2| (-1050)) (|has| |#1| (-376))) ELT) (((-547) $) 276 (-3043 (|has| |#2| (-631 (-547))) (|has| |#1| (-376))) ELT) (((-914 (-391)) $) 255 (-3043 (|has| |#2| (-631 (-914 (-391)))) (|has| |#1| (-376))) ELT) (((-914 (-558)) $) 254 (-3043 (|has| |#2| (-631 (-914 (-558)))) (|has| |#1| (-376))) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 268 (-3043 (-3043 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#1| (-376))) ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 301 T ELT) (($ (-1207)) 275 (-3043 (|has| |#2| (-1068 (-1207))) (|has| |#1| (-376))) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-558)) 76 T ELT)) (-3185 (((-711 $) $) 65 (-4039 (-3043 (-4039 (|has| |#2| (-147)) (-3043 (|has| $ (-147)) (|has| |#2| (-938)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-3615 ((|#2| $) 266 (-3043 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3885 (($ $) 282 (-3043 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) 245 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-376)) ELT) (($ $) 107 (-4039 (-3043 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) 105 (-4039 (-3043 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) 115 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207))) 111 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1207) (-791)) 110 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-4039 (-3043 (|has| |#2| (-928 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3047 (((-114) $ $) 286 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-3048 (((-114) $ $) 284 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-3167 (((-114) $ $) 285 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-3168 (((-114) $ $) 283 (-3043 (|has| |#2| (-870)) (|has| |#1| (-376))) ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-376)) ELT) (($ |#2| $) 232 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1261 |#1| |#2|) (-142) (-1079) (-1290 |t#1|)) (T -1261)) +((-4460 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1290 *3)) (-5 *2 (-558)))) (-4291 (*1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *4 (-1079)) (-4 *1 (-1261 *4 *3)) (-4 *3 (-1290 *4)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1290 *2)))) (-4242 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1290 *3)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3)))) (-4240 (*1 *2 *1) (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3))))) +(-13 (-1259 |t#1|) (-1068 |t#2|) (-633 |t#2|) (-10 -8 (-15 -4291 ($ (-558) |t#2|)) (-15 -4460 ((-558) $)) (-15 -4243 (|t#2| $)) (-15 -4242 ($ $)) (-15 -4242 ($ (-558) $)) (-15 -4241 (|t#2| $)) (-15 -4240 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1021 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-558)) . T) ((-25) . T) ((-38 #2=(-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-633 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 #3=(-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) ((-633 |#1|) |has| |#1| (-175)) ((-633 |#2|) . T) ((-633 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-631 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1050))) ((-631 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1050))) ((-631 (-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547)))) ((-631 (-914 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-391))))) ((-631 (-914 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-558))))) ((-236 $) -4039 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -4039 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-239) -4039 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 #1# |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-558) (-1142)) ((-302) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-412 |#2|) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 (-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1207) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-569) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 |#2|) |has| |#1| (-376)) ((-666 $) . T) ((-668 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 #4=(-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-660 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 |#2|) |has| |#1| (-376)) ((-660 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-658 #4#) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((-658 |#2|) |has| |#1| (-376)) ((-737 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 |#2|) |has| |#1| (-376)) ((-737 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-812) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-819) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-842) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-869) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-870) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-873) -4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-920 $ #5=(-1207)) -4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207))))) ((-926 (-1207)) -4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207))))) ((-928 #5#) -4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-926 (-1207))))) ((-910 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-910 (-391)))) ((-910 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-910 (-558)))) ((-908 |#2|) |has| |#1| (-376)) ((-938) -12 (|has| |#1| (-376)) (|has| |#2| (-938))) ((-1003 |#1| #1# (-1112)) . T) ((-949) |has| |#1| (-376)) ((-1021 |#2|) |has| |#1| (-376)) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1050) -12 (|has| |#1| (-376)) (|has| |#2| (-1050))) ((-1068 (-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ((-1068 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ((-1068 #3#) -12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) ((-1068 |#2|) . T) ((-1081 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1081 |#1|) . T) ((-1081 |#2|) |has| |#1| (-376)) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1086 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1086 |#1|) . T) ((-1086 |#2|) |has| |#1| (-376)) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) -12 (|has| |#1| (-376)) (|has| |#2| (-1182))) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1259 |#1|) . T) ((-1276 |#1| #1#) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 83 T ELT)) (-3613 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 102 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-558)) 111 T ELT) (($ $ (-558) (-558)) 114 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 51 T ELT)) (-4243 ((|#2| $) 11 T ELT)) (-4240 (((-3 |#2| "failed") $) 35 T ELT)) (-4241 ((|#2| $) 36 T ELT)) (-3994 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-938))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-938))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4135 (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 59 T ELT)) (-3996 (($ $) 212 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) 159 T ELT) (((-3 (-558) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ELT) (((-3 (-419 (-558)) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ELT) (((-3 (-1207) #2#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) ELT)) (-3656 ((|#2| $) 158 T ELT) (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-558)))) ELT) (((-1207) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) ELT)) (-4242 (($ $) 65 T ELT) (($ (-558) $) 28 T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 |#2|) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT)) (-3969 (((-3 $ "failed") $) 90 T ELT)) (-4239 (((-419 (-974 |#1|)) $ (-558)) 126 (|has| |#1| (-569)) ELT) (((-419 (-974 |#1|)) $ (-558) (-558)) 128 (|has| |#1| (-569)) ELT)) (-3477 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3686 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-3375 (((-114) $) 76 T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-910 (-558)))) ELT)) (-4284 (((-558) $) 107 T ELT) (((-558) $ (-558)) 109 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3479 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3481 ((|#2| $) 167 (|has| |#1| (-376)) ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3947 (((-711 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1182))) ELT)) (-3687 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-4289 (($ $ (-947)) 150 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 146 T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-558)) 20 T ELT) (($ $ (-1112) (-558)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-558))) NIL T ELT)) (-3012 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-3340 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-4454 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2504 (((-709 |#2|) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT) (((-709 (-558)) (-1297 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4291 (($ (-558) |#2|) 10 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 161 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 230 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 235 (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT)) (-3948 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1182))) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3612 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3614 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-938))) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-938))) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-558)) 140 T ELT)) (-3968 (((-3 $ "failed") $ $) 130 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1207) |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1207) |#2|))) ELT) (($ $ (-661 (-1207)) (-661 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1207) |#2|))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-558)) 105 T ELT) (($ $ $) 92 (|has| (-558) (-1142)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 151 (-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) 155 (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3480 ((|#2| $) 168 (|has| |#1| (-376)) ELT)) (-4460 (((-558) $) 12 T ELT)) (-3997 (($ $) 214 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4484 (((-229) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1050))) ELT) (((-391) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1050))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547)))) ELT) (((-914 (-391)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-914 (-558))))) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-938))) ELT)) (-3374 (($ $) 138 T ELT)) (-4458 (((-886) $) 268 T ELT) (($ (-558)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1068 (-1207)))) ELT) (($ (-419 (-558))) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-558)) 87 T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-938))) (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) ELT)) (-3610 (((-791)) 157 T CONST)) (-4285 ((|#1| $) 104 T ELT)) (-3615 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 220 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) 216 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 224 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-558)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 226 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 222 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 218 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3885 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-3141 (($) 13 T CONST)) (-3147 (($) 18 T CONST)) (-3152 (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-4039 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-661 (-1207))) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-1207) (-791)) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-4039 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-928 (-1207))))) ELT)) (-3047 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-3048 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-3536 (((-114) $ $) 74 T ELT)) (-3167 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-3168 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-870))) ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 165 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-4351 (($ $ $) 78 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 86 T ELT) (($ $ (-558)) 162 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-376)) ELT) (($ |#2| $) 163 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1262 |#1| |#2|) (-1261 |#1| |#2|) (-1079) (-1290 |#1|)) (T -1262)) +NIL +(-1261 |#1| |#2|) +((-4246 (((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114)) 13 T ELT)) (-4245 (((-417 |#1|) |#1|) 26 T ELT)) (-4244 (((-417 |#1|) |#1|) 24 T ELT))) +(((-1263 |#1|) (-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1|)) (-15 -4246 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114)))) (-1273 (-558))) (T -1263)) +((-4246 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558))))) (-4245 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558))))) (-4244 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558)))))) +(-10 -7 (-15 -4244 ((-417 |#1|) |#1|)) (-15 -4245 ((-417 |#1|) |#1|)) (-15 -4246 ((-2 (|:| |contp| (-558)) (|:| -1997 (-661 (-2 (|:| |irr| |#1|) (|:| -2636 (-558)))))) |#1| (-114)))) +((-3049 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4248 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4470 (((-1185 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-869)) ELT)) (-3729 ((|#1| $) 15 T ELT)) (-3731 ((|#1| $) 12 T ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3727 (((-558) $) 19 T ELT)) (-3728 ((|#1| $) 18 T ELT)) (-3730 ((|#1| $) 13 T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4247 (((-114) $) 17 T ELT)) (-4475 (((-1185 |#1|) $) 41 (|has| |#1| (-869)) ELT) (((-1185 |#1|) (-661 $)) 40 (|has| |#1| (-869)) ELT)) (-4484 (($ |#1|) 26 T ELT)) (-4458 (($ (-1119 |#1|)) 25 T ELT) (((-886) $) 37 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4249 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3732 (($ $ (-558)) 14 T ELT)) (-3536 (((-114) $ $) 30 (|has| |#1| (-1131)) ELT))) +(((-1264 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -4249 ($ |#1|)) (-15 -4248 ($ |#1|)) (-15 -4458 ($ (-1119 |#1|))) (-15 -4247 ((-114) $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1185 |#1|))) |%noBranch|))) (-1247)) (T -1264)) +((-4249 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-4248 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) +(-13 (-1124 |#1|) (-10 -8 (-15 -4249 ($ |#1|)) (-15 -4248 ($ |#1|)) (-15 -4458 ($ (-1119 |#1|))) (-15 -4247 ((-114) $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1185 |#1|))) |%noBranch|))) +((-4470 (((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 23 (|has| |#1| (-869)) ELT) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 17 T ELT))) +(((-1265 |#1| |#2|) (-10 -7 (-15 -4470 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -4470 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1265)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1265 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6))))) +(-10 -7 (-15 -4470 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -4470 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4279 (((-1297 |#2|) $ (-791)) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4277 (($ (-1201 |#2|)) NIL T ELT)) (-3568 (((-1201 $) $ (-1112)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1112))) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4287 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-1798 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4273 (($ $ (-791)) NIL T ELT)) (-4272 (($ $ (-791)) NIL T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| #2="failed") $) NIL T ELT) (((-3 (-419 (-558)) #2#) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-3 (-1112) #2#) $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1068 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1068 (-558))) ELT) (((-1112) $) NIL T ELT)) (-4268 (($ $ $ (-1112)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-3045 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-2503 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-709 $) (-1297 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-3044 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4271 (($ $ $) NIL T ELT)) (-4265 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-4264 (((-2 (|:| -4466 |#2|) (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#2| (-376)) ELT)) (-4005 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-464)) ELT)) (-3301 (((-661 $) $) NIL T ELT)) (-4235 (((-114) $) NIL (|has| |#2| (-938)) ELT)) (-1814 (($ $ |#2| (-791) $) NIL T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) NIL (-12 (|has| (-1112) (-910 (-558))) (|has| |#2| (-910 (-558)))) ELT)) (-4284 (((-791) $ $) NIL (|has| |#2| (-569)) ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3947 (((-711 $) $) NIL (|has| |#2| (-1182)) ELT)) (-3569 (($ (-1201 |#2|) (-1112)) NIL T ELT) (($ (-1201 $) (-1112)) NIL T ELT)) (-4289 (($ $ (-791)) NIL T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#2| (-791)) 18 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL T ELT)) (-3303 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-1815 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4278 (((-1201 |#2|) $) NIL T ELT)) (-3567 (((-3 (-1112) #4="failed") $) NIL T ELT)) (-2504 (((-709 (-558)) (-1297 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-709 |#2|) (-1297 $)) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) NIL T ELT)) (-3306 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3305 (((-3 (-661 $) #4#) $) NIL T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1112)) (|:| -2642 (-791))) #4#) $) NIL T ELT)) (-4324 (($ $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT)) (-3948 (($) NIL (|has| |#2| (-1182)) CONST)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 ((|#2| $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-464)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-4250 (($ $ (-791) |#2| $) NIL T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-938)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#2| (-938)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3968 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-4280 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1112) |#2|) NIL T ELT) (($ $ (-661 (-1112)) (-661 |#2|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-661 (-1112)) (-661 $)) NIL T ELT)) (-1797 (((-791) $) NIL (|has| |#2| (-376)) ELT)) (-4312 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-569)) ELT)) (-4276 (((-3 $ #5="failed") $ (-791)) NIL T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4269 (($ $ (-1112)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-4460 (((-791) $) NIL T ELT) (((-791) $ (-1112)) NIL T ELT) (((-661 (-791)) $ (-661 (-1112))) NIL T ELT)) (-4484 (((-914 (-391)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-391)))) (|has| |#2| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) NIL (-12 (|has| (-1112) (-631 (-914 (-558)))) (|has| |#2| (-631 (-914 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1112) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3300 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-4266 (((-3 $ #5#) $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-419 $) #5#) (-419 $) $) NIL (|has| |#2| (-569)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) NIL T ELT) (($ (-1294 |#1|)) 20 T ELT) (($ (-419 (-558))) NIL (-4039 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1068 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-791)) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3185 (((-711 $) $) NIL (-4039 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) 14 T CONST)) (-3152 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) NIL (|has| |#2| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (|has| |#2| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1266 |#1| |#2|) (-13 (-1273 |#2|) (-633 (-1294 |#1|)) (-10 -8 (-15 -4250 ($ $ (-791) |#2| $)))) (-1207) (-1079)) (T -1266)) +((-4250 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207)) (-4 *3 (-1079))))) +(-13 (-1273 |#2|) (-633 (-1294 |#1|)) (-10 -8 (-15 -4250 ($ $ (-791) |#2| $)))) +((-4470 (((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)) 15 T ELT))) +(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)))) (-1207) (-1079) (-1207) (-1079)) (T -1267)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207)) (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1266 *7 *8)) (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207))))) +(-10 -7 (-15 -4470 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)))) +((-4253 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4251 ((|#1| |#3|) 13 T ELT)) (-4252 ((|#3| |#3|) 19 T ELT))) +(((-1268 |#1| |#2| |#3|) (-10 -7 (-15 -4251 (|#1| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1021 |#1|) (-1273 |#2|)) (T -1268)) +((-4253 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1021 *3)) (-5 *1 (-1268 *3 *4 *2)) (-4 *2 (-1273 *4)))) (-4251 (*1 *2 *3) (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-1268 *2 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4251 (|#1| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4253 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4255 (((-3 |#2| "failed") |#2| (-791) |#1|) 35 T ELT)) (-4254 (((-3 |#2| "failed") |#2| (-791)) 36 T ELT)) (-4257 (((-3 (-2 (|:| -3622 |#2|) (|:| -3621 |#2|)) "failed") |#2|) 50 T ELT)) (-4258 (((-661 |#2|) |#2|) 52 T ELT)) (-4256 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) +(((-1269 |#1| |#2|) (-10 -7 (-15 -4254 ((-3 |#2| "failed") |#2| (-791))) (-15 -4255 ((-3 |#2| "failed") |#2| (-791) |#1|)) (-15 -4256 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4257 ((-3 (-2 (|:| -3622 |#2|) (|:| -3621 |#2|)) "failed") |#2|)) (-15 -4258 ((-661 |#2|) |#2|))) (-13 (-569) (-149)) (-1273 |#1|)) (T -1269)) +((-4258 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-661 *3)) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-4257 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| -3622 *3) (|:| -3621 *3))) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-4256 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3)))) (-4255 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))) (-4254 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4))))) +(-10 -7 (-15 -4254 ((-3 |#2| "failed") |#2| (-791))) (-15 -4255 ((-3 |#2| "failed") |#2| (-791) |#1|)) (-15 -4256 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4257 ((-3 (-2 (|:| -3622 |#2|) (|:| -3621 |#2|)) "failed") |#2|)) (-15 -4258 ((-661 |#2|) |#2|))) +((-4259 (((-3 (-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1270 |#1| |#2|) (-10 -7 (-15 -4259 ((-3 (-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) "failed") |#2| |#2|))) (-569) (-1273 |#1|)) (T -1270)) +((-4259 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-1270 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4259 ((-3 (-2 (|:| -2194 |#2|) (|:| -3385 |#2|)) "failed") |#2| |#2|))) +((-4260 ((|#2| |#2| |#2|) 22 T ELT)) (-4261 ((|#2| |#2| |#2|) 36 T ELT)) (-4262 ((|#2| |#2| |#2| (-791) (-791)) 44 T ELT))) +(((-1271 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2| |#2|)) (-15 -4261 (|#2| |#2| |#2|)) (-15 -4262 (|#2| |#2| |#2| (-791) (-791)))) (-1079) (-1273 |#1|)) (T -1271)) +((-4262 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-1271 *4 *2)) (-4 *2 (-1273 *4)))) (-4261 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))) (-4260 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -4260 (|#2| |#2| |#2|)) (-15 -4261 (|#2| |#2| |#2|)) (-15 -4262 (|#2| |#2| |#2| (-791) (-791)))) +((-4279 (((-1297 |#2|) $ (-791)) 129 T ELT)) (-3566 (((-661 (-1112)) $) 16 T ELT)) (-4277 (($ (-1201 |#2|)) 80 T ELT)) (-3302 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1112))) 21 T ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 216 T ELT)) (-4287 (($ $) 206 T ELT)) (-4483 (((-417 $) $) 204 T ELT)) (-3187 (((-3 (-661 (-1201 $)) "failed") (-661 (-1201 $)) (-1201 $)) 95 T ELT)) (-4273 (($ $ (-791)) 84 T ELT)) (-4272 (($ $ (-791)) 86 T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3657 (((-3 |#2| #1="failed") $) 132 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1112) #1#) $) NIL T ELT)) (-3656 ((|#2| $) 130 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) (((-1112) $) NIL T ELT)) (-4265 (($ $ $) 182 T ELT)) (-4264 (((-2 (|:| -4466 |#2|) (|:| -2194 $) (|:| -3385 $)) $ $) 184 T ELT)) (-4284 (((-791) $ $) 201 T ELT)) (-3947 (((-711 $) $) 149 T ELT)) (-3376 (($ |#2| (-791)) NIL T ELT) (($ $ (-1112) (-791)) 59 T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-3303 (((-791) $) NIL T ELT) (((-791) $ (-1112)) 54 T ELT) (((-661 (-791)) $ (-661 (-1112))) 55 T ELT)) (-4278 (((-1201 |#2|) $) 72 T ELT)) (-3567 (((-3 (-1112) "failed") $) 52 T ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) 83 T ELT)) (-4324 (($ $) 231 T ELT)) (-3948 (($) 134 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 213 T ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 101 T ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 99 T ELT)) (-4244 (((-417 $) $) 120 T ELT)) (-4280 (($ $ (-661 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1112) |#2|) 39 T ELT) (($ $ (-661 (-1112)) (-661 |#2|)) 36 T ELT) (($ $ (-1112) $) 32 T ELT) (($ $ (-661 (-1112)) (-661 $)) 30 T ELT)) (-1797 (((-791) $) 219 T ELT)) (-4312 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) 176 T ELT) ((|#2| (-419 $) |#2|) 218 T ELT) (((-419 $) $ (-419 $)) 200 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 224 T ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112))) NIL T ELT) (($ $ (-1112)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-661 (-1207))) NIL T ELT) (($ $ (-1207) (-791)) NIL T ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL T ELT)) (-4460 (((-791) $) NIL T ELT) (((-791) $ (-1112)) 17 T ELT) (((-661 (-791)) $ (-661 (-1112))) 23 T ELT)) (-3300 ((|#2| $) NIL T ELT) (($ $ (-1112)) 151 T ELT)) (-4266 (((-3 $ "failed") $ $) 192 T ELT) (((-3 (-419 $) "failed") (-419 $) $) 188 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) 64 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) +(((-1272 |#1| |#2|) (-10 -8 (-15 -4458 (|#1| |#1|)) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -4312 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1797 ((-791) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -4312 (|#2| (-419 |#1|) |#2|)) (-15 -4263 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4264 ((-2 (|:| -4466 |#2|) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4266 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4284 ((-791) |#1| |#1|)) (-15 -4312 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4272 (|#1| |#1| (-791))) (-15 -4273 (|#1| |#1| (-791))) (-15 -4274 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| (-791))) (-15 -4277 (|#1| (-1201 |#2|))) (-15 -4278 ((-1201 |#2|) |#1|)) (-15 -4279 ((-1297 |#2|) |#1| (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4312 (|#1| |#1| |#1|)) (-15 -4312 (|#2| |#1| |#2|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3190 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3300 (|#1| |#1| (-1112))) (-15 -3566 ((-661 (-1112)) |#1|)) (-15 -3302 ((-791) |#1| (-661 (-1112)))) (-15 -3302 ((-791) |#1|)) (-15 -3376 (|#1| |#1| (-661 (-1112)) (-661 (-791)))) (-15 -3376 (|#1| |#1| (-1112) (-791))) (-15 -3303 ((-661 (-791)) |#1| (-661 (-1112)))) (-15 -3303 ((-791) |#1| (-1112))) (-15 -3567 ((-3 (-1112) "failed") |#1|)) (-15 -4460 ((-661 (-791)) |#1| (-661 (-1112)))) (-15 -4460 ((-791) |#1| (-1112))) (-15 -4458 (|#1| (-1112))) (-15 -3657 ((-3 (-1112) #1="failed") |#1|)) (-15 -3656 ((-1112) |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1112)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-1112) |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1112)) (-661 |#2|))) (-15 -4280 (|#1| |#1| (-1112) |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4460 ((-791) |#1|)) (-15 -3376 (|#1| |#2| (-791))) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3303 ((-791) |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -4270 (|#1| |#1| (-1112))) (-15 -4270 (|#1| |#1| (-661 (-1112)))) (-15 -4270 (|#1| |#1| (-1112) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1112)) (-661 (-791)))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) (-1273 |#2|) (-1079)) (T -1272)) +NIL +(-10 -8 (-15 -4458 (|#1| |#1|)) (-15 -3191 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -4270 (|#1| |#1| (-661 (-1207)) (-661 (-791)))) (-15 -4270 (|#1| |#1| (-1207) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1207)))) (-15 -4270 (|#1| |#1| (-1207))) (-15 -4483 ((-417 |#1|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -3948 (|#1|)) (-15 -3947 ((-711 |#1|) |#1|)) (-15 -4312 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1797 ((-791) |#1|)) (-15 -3362 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -4312 (|#2| (-419 |#1|) |#2|)) (-15 -4263 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4264 ((-2 (|:| -4466 |#2|) (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -4266 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4284 ((-791) |#1| |#1|)) (-15 -4312 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4272 (|#1| |#1| (-791))) (-15 -4273 (|#1| |#1| (-791))) (-15 -4274 ((-2 (|:| -2194 |#1|) (|:| -3385 |#1|)) |#1| (-791))) (-15 -4277 (|#1| (-1201 |#2|))) (-15 -4278 ((-1201 |#2|) |#1|)) (-15 -4279 ((-1297 |#2|) |#1| (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4270 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4270 (|#1| |#1| (-791))) (-15 -4270 (|#1| |#1|)) (-15 -4312 (|#1| |#1| |#1|)) (-15 -4312 (|#2| |#1| |#2|)) (-15 -4244 ((-417 |#1|) |#1|)) (-15 -3190 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3189 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3188 ((-417 (-1201 |#1|)) (-1201 |#1|))) (-15 -3187 ((-3 (-661 (-1201 |#1|)) "failed") (-661 (-1201 |#1|)) (-1201 |#1|))) (-15 -3300 (|#1| |#1| (-1112))) (-15 -3566 ((-661 (-1112)) |#1|)) (-15 -3302 ((-791) |#1| (-661 (-1112)))) (-15 -3302 ((-791) |#1|)) (-15 -3376 (|#1| |#1| (-661 (-1112)) (-661 (-791)))) (-15 -3376 (|#1| |#1| (-1112) (-791))) (-15 -3303 ((-661 (-791)) |#1| (-661 (-1112)))) (-15 -3303 ((-791) |#1| (-1112))) (-15 -3567 ((-3 (-1112) "failed") |#1|)) (-15 -4460 ((-661 (-791)) |#1| (-661 (-1112)))) (-15 -4460 ((-791) |#1| (-1112))) (-15 -4458 (|#1| (-1112))) (-15 -3657 ((-3 (-1112) #1="failed") |#1|)) (-15 -3656 ((-1112) |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1112)) (-661 |#1|))) (-15 -4280 (|#1| |#1| (-1112) |#1|)) (-15 -4280 (|#1| |#1| (-661 (-1112)) (-661 |#2|))) (-15 -4280 (|#1| |#1| (-1112) |#2|)) (-15 -4280 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4280 (|#1| |#1| |#1| |#1|)) (-15 -4280 (|#1| |#1| (-305 |#1|))) (-15 -4280 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4460 ((-791) |#1|)) (-15 -3376 (|#1| |#2| (-791))) (-15 -3657 ((-3 (-558) #1#) |#1|)) (-15 -3656 ((-558) |#1|)) (-15 -3657 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3656 ((-419 (-558)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -3657 ((-3 |#2| #1#) |#1|)) (-15 -4458 (|#1| |#2|)) (-15 -3303 ((-791) |#1|)) (-15 -3300 (|#2| |#1|)) (-15 -4270 (|#1| |#1| (-1112))) (-15 -4270 (|#1| |#1| (-661 (-1112)))) (-15 -4270 (|#1| |#1| (-1112) (-791))) (-15 -4270 (|#1| |#1| (-661 (-1112)) (-661 (-791)))) (-15 -4458 (|#1| (-558))) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4279 (((-1297 |#1|) $ (-791)) 268 T ELT)) (-3566 (((-661 (-1112)) $) 120 T ELT)) (-4277 (($ (-1201 |#1|)) 266 T ELT)) (-3568 (((-1201 $) $ (-1112)) 135 T ELT) (((-1201 |#1|) $) 134 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3302 (((-791) $) 122 T ELT) (((-791) $ (-661 (-1112))) 121 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4267 (($ $ $) 253 (|has| |#1| (-569)) ELT)) (-3190 (((-417 (-1201 $)) (-1201 $)) 110 (|has| |#1| (-938)) ELT)) (-4287 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4483 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3187 (((-3 (-661 (-1201 $)) #1="failed") (-661 (-1201 $)) (-1201 $)) 113 (|has| |#1| (-938)) ELT)) (-1798 (((-114) $ $) 238 (|has| |#1| (-376)) ELT)) (-4273 (($ $ (-791)) 261 T ELT)) (-4272 (($ $ (-791)) 260 T ELT)) (-4263 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-464)) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1068 (-558))) ELT) (((-3 (-1112) #2#) $) 150 T ELT)) (-3656 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1068 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1068 (-558))) ELT) (((-1112) $) 151 T ELT)) (-4268 (($ $ $ (-1112)) 118 (|has| |#1| (-175)) ELT) ((|#1| $ $) 256 (|has| |#1| (-175)) ELT)) (-3045 (($ $ $) 242 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 168 T ELT)) (-2503 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-709 $) (-1297 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-709 $) (-1297 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 241 (|has| |#1| (-376)) ELT)) (-4271 (($ $ $) 259 T ELT)) (-4265 (($ $ $) 250 (|has| |#1| (-569)) ELT)) (-4264 (((-2 (|:| -4466 |#1|) (|:| -2194 $) (|:| -3385 $)) $ $) 249 (|has| |#1| (-569)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 236 (|has| |#1| (-376)) ELT)) (-4005 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ (-1112)) 115 (|has| |#1| (-464)) ELT)) (-3301 (((-661 $) $) 119 T ELT)) (-4235 (((-114) $) 106 (|has| |#1| (-938)) ELT)) (-1814 (($ $ |#1| (-791) $) 186 T ELT)) (-3279 (((-912 (-391) $) $ (-914 (-391)) (-912 (-391) $)) 94 (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-912 (-558) $) $ (-914 (-558)) (-912 (-558) $)) 93 (-12 (|has| (-1112) (-910 (-558))) (|has| |#1| (-910 (-558)))) ELT)) (-4284 (((-791) $ $) 254 (|has| |#1| (-569)) ELT)) (-2651 (((-114) $) 40 T ELT)) (-2659 (((-791) $) 183 T ELT)) (-3947 (((-711 $) $) 234 (|has| |#1| (-1182)) ELT)) (-3569 (($ (-1201 |#1|) (-1112)) 127 T ELT) (($ (-1201 $) (-1112)) 126 T ELT)) (-4289 (($ $ (-791)) 265 T ELT)) (-1795 (((-3 (-661 $) #3="failed") (-661 $) $) 245 (|has| |#1| (-376)) ELT)) (-3304 (((-661 $) $) 136 T ELT)) (-4449 (((-114) $) 166 T ELT)) (-3376 (($ |#1| (-791)) 167 T ELT) (($ $ (-1112) (-791)) 129 T ELT) (($ $ (-661 (-1112)) (-661 (-791))) 128 T ELT)) (-4275 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $ (-1112)) 130 T ELT) (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 263 T ELT)) (-3303 (((-791) $) 184 T ELT) (((-791) $ (-1112)) 132 T ELT) (((-661 (-791)) $ (-661 (-1112))) 131 T ELT)) (-1815 (($ (-1 (-791) (-791)) $) 185 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-4278 (((-1201 |#1|) $) 267 T ELT)) (-3567 (((-3 (-1112) #4="failed") $) 133 T ELT)) (-2504 (((-709 (-558)) (-1297 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 (-558))) (|:| |vec| (-1297 (-558)))) (-1297 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1793 (-709 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 142 T ELT) (((-709 |#1|) (-1297 $)) 141 T ELT)) (-3377 (($ $) 163 T ELT)) (-3674 ((|#1| $) 162 T ELT)) (-2112 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-4274 (((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791)) 262 T ELT)) (-3306 (((-3 (-661 $) #4#) $) 124 T ELT)) (-3305 (((-3 (-661 $) #4#) $) 125 T ELT)) (-3307 (((-3 (-2 (|:| |var| (-1112)) (|:| -2642 (-791))) #4#) $) 123 T ELT)) (-4324 (($ $) 246 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3948 (($) 233 (|has| |#1| (-1182)) CONST)) (-3743 (((-1150) $) 12 T ELT)) (-2015 (((-114) $) 180 T ELT)) (-2014 ((|#1| $) 181 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 105 (|has| |#1| (-464)) ELT)) (-3644 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3188 (((-417 (-1201 $)) (-1201 $)) 112 (|has| |#1| (-938)) ELT)) (-3189 (((-417 (-1201 $)) (-1201 $)) 111 (|has| |#1| (-938)) ELT)) (-4244 (((-417 $) $) 109 (|has| |#1| (-938)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 243 (|has| |#1| (-376)) ELT)) (-3968 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 237 (|has| |#1| (-376)) ELT)) (-4280 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ (-1112) |#1|) 155 T ELT) (($ $ (-661 (-1112)) (-661 |#1|)) 154 T ELT) (($ $ (-1112) $) 153 T ELT) (($ $ (-661 (-1112)) (-661 $)) 152 T ELT)) (-1797 (((-791) $) 239 (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-419 $) (-419 $) (-419 $)) 255 (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) 247 (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) 235 (|has| |#1| (-569)) ELT)) (-4276 (((-3 $ "failed") $ (-791)) 264 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 240 (|has| |#1| (-376)) ELT)) (-4269 (($ $ (-1112)) 117 (|has| |#1| (-175)) ELT) ((|#1| $) 257 (|has| |#1| (-175)) ELT)) (-4270 (($ $ (-661 (-1112)) (-661 (-791))) 49 T ELT) (($ $ (-1112) (-791)) 48 T ELT) (($ $ (-661 (-1112))) 47 T ELT) (($ $ (-1112)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-791)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1207)) 232 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 230 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 229 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 228 (|has| |#1| (-928 (-1207))) ELT)) (-4460 (((-791) $) 164 T ELT) (((-791) $ (-1112)) 140 T ELT) (((-661 (-791)) $ (-661 (-1112))) 139 T ELT)) (-4484 (((-914 (-391)) $) 92 (-12 (|has| (-1112) (-631 (-914 (-391)))) (|has| |#1| (-631 (-914 (-391))))) ELT) (((-914 (-558)) $) 91 (-12 (|has| (-1112) (-631 (-914 (-558)))) (|has| |#1| (-631 (-914 (-558))))) ELT) (((-547) $) 90 (-12 (|has| (-1112) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3300 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ (-1112)) 116 (|has| |#1| (-464)) ELT)) (-3186 (((-3 (-1297 $) #1#) (-709 $)) 114 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-4266 (((-3 $ "failed") $ $) 252 (|has| |#1| (-569)) ELT) (((-3 (-419 $) "failed") (-419 $) $) 251 (|has| |#1| (-569)) ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1112)) 149 T ELT) (($ (-419 (-558))) 88 (-4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4329 (((-661 |#1|) $) 182 T ELT)) (-4189 ((|#1| $ (-791)) 169 T ELT) (($ $ (-1112) (-791)) 138 T ELT) (($ $ (-661 (-1112)) (-661 (-791))) 137 T ELT)) (-3185 (((-711 $) $) 89 (-4039 (-3043 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1813 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-661 (-1112)) (-661 (-791))) 52 T ELT) (($ $ (-1112) (-791)) 51 T ELT) (($ $ (-661 (-1112))) 50 T ELT) (($ $ (-1112)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-791)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 269 T ELT) (($ $ (-1207)) 231 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207))) 227 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-1207) (-791)) 226 (|has| |#1| (-928 (-1207))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 225 (|has| |#1| (-928 (-1207))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1273 |#1|) (-142) (-1079)) (T -1273)) +((-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1201 *3)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-4276 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-4275 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1273 *3)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1273 *4)))) (-4273 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)))) (-4270 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-175)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-175)))) (-4312 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-4284 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) (-5 *2 (-791)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-4266 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-4266 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -4466 *3) (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1273 *3)))) (-4263 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3)))) (-4312 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-4324 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558))))))) +(-13 (-978 |t#1| (-791) (-1112)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4279 ((-1297 |t#1|) $ (-791))) (-15 -4278 ((-1201 |t#1|) $)) (-15 -4277 ($ (-1201 |t#1|))) (-15 -4289 ($ $ (-791))) (-15 -4276 ((-3 $ "failed") $ (-791))) (-15 -4275 ((-2 (|:| -2194 $) (|:| -3385 $)) $ $)) (-15 -4274 ((-2 (|:| -2194 $) (|:| -3385 $)) $ (-791))) (-15 -4273 ($ $ (-791))) (-15 -4272 ($ $ (-791))) (-15 -4271 ($ $ $)) (-15 -4270 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4269 (|t#1| $)) (-15 -4268 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-298 (-419 $) (-419 $))) (-15 -4312 ((-419 $) (-419 $) (-419 $))) (-15 -4284 ((-791) $ $)) (-15 -4267 ($ $ $)) (-15 -4266 ((-3 $ "failed") $ $)) (-15 -4266 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4265 ($ $ $)) (-15 -4264 ((-2 (|:| -4466 |t#1|) (|:| -2194 $) (|:| -3385 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4263 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4503) (-15 -4312 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-15 -4324 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-791)) . T) ((-25) . T) ((-38 #2=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) -4039 (|has| |#1| (-1068 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 #3=(-1112)) . T) ((-633 |#1|) . T) ((-633 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| (-1112) (-631 (-547)))) ((-631 (-914 (-391))) -12 (|has| |#1| (-631 (-914 (-391)))) (|has| (-1112) (-631 (-914 (-391))))) ((-631 (-914 (-558))) -12 (|has| |#1| (-631 (-914 (-558)))) (|has| (-1112) (-631 (-914 (-558))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-419 $) (-419 $)) |has| |#1| (-569)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| #1#) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -4039 (|has| |#1| (-938)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-526 #3# |#1|) . T) ((-526 #3# $) . T) ((-526 $ $) . T) ((-569) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-666 #2#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) |has| |#1| (-38 (-419 (-558)))) ((-668 #4=(-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-658 #4#) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 #2#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-746) . T) ((-920 $ #3#) . T) ((-920 $ #5=(-1207)) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-926 #3#) . T) ((-926 (-1207)) |has| |#1| (-926 (-1207))) ((-928 #3#) . T) ((-928 #5#) -4039 (|has| |#1| (-928 (-1207))) (|has| |#1| (-926 (-1207)))) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| (-1112) (-910 (-391)))) ((-910 (-558)) -12 (|has| |#1| (-910 (-558))) (|has| (-1112) (-910 (-558)))) ((-978 |#1| #1# #3#) . T) ((-938) |has| |#1| (-938)) ((-949) |has| |#1| (-376)) ((-1068 (-419 (-558))) |has| |#1| (-1068 (-419 (-558)))) ((-1068 (-558)) |has| |#1| (-1068 (-558))) ((-1068 #3#) . T) ((-1068 |#1|) . T) ((-1081 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1086 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-938)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) |has| |#1| (-938))) +((-4470 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-1273 |#1|) (-1079) (-1273 |#3|)) (T -1274)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1273 *6)) (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#3| |#1|) |#2|))) +((-3566 (((-661 (-1112)) $) 34 T ELT)) (-4471 (($ $) 31 T ELT)) (-3376 (($ |#2| |#3|) NIL T ELT) (($ $ (-1112) |#3|) 28 T ELT) (($ $ (-661 (-1112)) (-661 |#3|)) 27 T ELT)) (-3377 (($ $) 14 T ELT)) (-3674 ((|#2| $) 12 T ELT)) (-4460 ((|#3| $) 10 T ELT))) +(((-1275 |#1| |#2| |#3|) (-10 -8 (-15 -3566 ((-661 (-1112)) |#1|)) (-15 -3376 (|#1| |#1| (-661 (-1112)) (-661 |#3|))) (-15 -3376 (|#1| |#1| (-1112) |#3|)) (-15 -4471 (|#1| |#1|)) (-15 -3376 (|#1| |#2| |#3|)) (-15 -4460 (|#3| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3674 (|#2| |#1|))) (-1276 |#2| |#3|) (-1079) (-814)) (T -1275)) +NIL +(-10 -8 (-15 -3566 ((-661 (-1112)) |#1|)) (-15 -3376 (|#1| |#1| (-661 (-1112)) (-661 |#3|))) (-15 -3376 (|#1| |#1| (-1112) |#3|)) (-15 -4471 (|#1| |#1|)) (-15 -3376 (|#1| |#2| |#3|)) (-15 -4460 (|#3| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3674 (|#2| |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3375 (((-114) $) 91 T ELT)) (-4284 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-4289 (($ $ (-947)) 124 T ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| |#2|) 78 T ELT) (($ $ (-1112) |#2|) 94 T ELT) (($ $ (-661 (-1112)) (-661 |#2|)) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4281 (($ $ |#2|) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-4312 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1142)) ELT)) (-4270 (($ $ (-1207)) 116 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1207))) 114 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-791)) 113 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4460 ((|#2| $) 81 T ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4189 ((|#1| $ |#2|) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-4282 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1207)) 115 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1207))) 111 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-791)) 110 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1276 |#1| |#2|) (-142) (-1079) (-814)) (T -1276)) +((-4286 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-1207)))) (-4285 (*1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4284 (*1 *2 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4283 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4283 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4282 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4458 (*2 (-1207)))) (-4 *2 (-1079)))) (-4281 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) (-4280 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3))))) +(-13 (-1003 |t#1| |t#2| (-1112)) (-298 |t#2| |t#1|) (-10 -8 (-15 -4286 ((-1185 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4343 ((-1207) $)) (-15 -4285 (|t#1| $)) (-15 -4289 ($ $ (-947))) (-15 -4284 (|t#2| $)) (-15 -4284 (|t#2| $ |t#2|)) (-15 -4283 ($ $ |t#2|)) (-15 -4283 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4458 (|t#1| (-1207)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4282 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4281 ($ $ |t#2|)) (IF (|has| |t#2| (-1142)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-926 (-1207))) (-6 (-926 (-1207))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4280 ((-1185 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #1#) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1142)) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 #1#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #1#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-920 $ #2=(-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-926 #2#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-928 #2#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-1003 |#1| |#2| (-1112)) . T) ((-1081 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #1#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-4287 ((|#2| |#2|) 12 T ELT)) (-4483 (((-417 |#2|) |#2|) 14 T ELT)) (-4288 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))) 30 T ELT))) +(((-1277 |#1| |#2|) (-10 -7 (-15 -4483 ((-417 |#2|) |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -4288 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) (-569) (-13 (-1273 |#1|) (-569) (-10 -8 (-15 -3644 ($ $ $))))) (T -1277)) +((-4288 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3644 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1277 *3 *4)))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1277 *3 *2)) (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3644 ($ $ $))))))) (-4483 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1277 *4 *3)) (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -3644 ($ $ $)))))))) +(-10 -7 (-15 -4483 ((-417 |#2|) |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -4288 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 11 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-1257 |#1| |#2| |#3|) #1="failed") $) 19 T ELT) (((-3 (-1287 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3656 (((-1257 |#1| |#2| |#3|) $) NIL T ELT) (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4293 (((-419 (-558)) $) 68 T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4294 (($ (-419 (-558)) (-1257 |#1| |#2| |#3|)) NIL T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1795 (((-3 (-661 $) #2="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-419 (-558))) 30 T ELT) (($ $ (-1112) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4292 (((-1257 |#1| |#2| |#3|) $) 71 T ELT)) (-4290 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-4291 (((-1257 |#1| |#2| |#3|) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4324 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) NIL (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) NIL T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-4460 (((-419 (-558)) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) NIL T ELT)) (-4458 (((-886) $) 107 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1257 |#1| |#2| |#3|)) 16 T ELT) (($ (-1287 |#1| |#2| |#3|)) 17 T ELT) (($ (-1294 |#2|)) 36 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 12 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 32 T CONST)) (-3147 (($) 26 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 34 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1278 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-1068 (-1287 |#1| |#2| |#3|)) (-633 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1278)) +((-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-920 $ (-1294 |#2|)) (-1068 (-1287 |#1| |#2| |#3|)) (-633 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-4470 (((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)) 24 T ELT))) +(((-1279 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4470 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)))) (-1079) (-1079) (-1207) (-1207) |#1| |#2|) (T -1279)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207))))) +(-10 -7 (-15 -4470 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3994 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3520 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3992 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3996 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-3045 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) 91 T ELT)) (-4139 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1112) (-419 (-558))) 94 T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4454 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-2112 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 193 (-4039 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 175 (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4455 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 116 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) 114 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) 113 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4460 (((-419 (-558)) $) 81 T ELT)) (-3997 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1207)) 115 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) 111 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) 110 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1280 |#1|) (-142) (-1079)) (T -1280)) +((-4330 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) (-4 *4 (-1079)) (-4 *1 (-1280 *4)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1280 *3)) (-4 *3 (-1079)))) (-4324 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) (-4324 (*1 *1 *1 *2) (-4039 (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1276 |t#1| (-419 (-558))) (-10 -8 (-15 -4330 ($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |t#1|))))) (-15 -4289 ($ $ (-419 (-558)))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $)) (IF (|has| |t#1| (-15 -4324 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -3566 ((-661 (-1207)) |t#1|))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-558))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-419 (-558))) . T) ((-25) . T) ((-38 #2=(-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1142)) ((-302) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-920 $ #3=(-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-926 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-1003 |#1| #1# (-1112)) . T) ((-949) |has| |#1| (-376)) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1081 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1086 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #1#) . T)) +((-3688 (((-114) $) 12 T ELT)) (-3657 (((-3 |#3| "failed") $) 17 T ELT)) (-3656 ((|#3| $) 14 T ELT))) +(((-1281 |#1| |#2| |#3|) (-10 -8 (-15 -3657 ((-3 |#3| "failed") |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3688 ((-114) |#1|))) (-1282 |#2| |#3|) (-1079) (-1259 |#2|)) (T -1281)) +NIL +(-10 -8 (-15 -3657 ((-3 |#3| "failed") |#1|)) (-15 -3656 (|#3| |#1|)) (-15 -3688 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3994 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3520 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3992 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3996 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#2| "failed") $) 209 T ELT)) (-3656 ((|#2| $) 210 T ELT)) (-3045 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4293 (((-419 (-558)) $) 206 T ELT)) (-3044 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-4294 (($ (-419 (-558)) |#2|) 207 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) 91 T ELT)) (-4139 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1112) (-419 (-558))) 94 T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4454 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-2112 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4292 ((|#2| $) 205 T ELT)) (-4290 (((-3 |#2| "failed") $) 203 T ELT)) (-4291 ((|#2| $) 204 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 193 (-4039 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 175 (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4455 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 116 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) 114 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) 113 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4460 (((-419 (-558)) $) 81 T ELT)) (-3997 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 208 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1207)) 115 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) 111 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) 110 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1282 |#1| |#2|) (-142) (-1079) (-1259 |t#1|)) (T -1282)) +((-4460 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1259 *3)) (-5 *2 (-419 (-558))))) (-4294 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1079)) (-4 *1 (-1282 *4 *3)) (-4 *3 (-1259 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1259 *3)) (-5 *2 (-419 (-558))))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3)))) (-4290 (*1 *2 *1) (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3))))) +(-13 (-1280 |t#1|) (-1068 |t#2|) (-633 |t#2|) (-10 -8 (-15 -4294 ($ (-419 (-558)) |t#2|)) (-15 -4293 ((-419 (-558)) $)) (-15 -4292 (|t#2| $)) (-15 -4460 ((-419 (-558)) $)) (-15 -4291 (|t#2| $)) (-15 -4290 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-419 (-558))) . T) ((-25) . T) ((-38 #2=(-419 (-558))) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 |#2|) . T) ((-633 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1142)) ((-302) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-920 $ #3=(-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-926 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-1003 |#1| #1# (-1112)) . T) ((-949) |has| |#1| (-376)) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1068 |#2|) . T) ((-1081 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1086 #2#) -4039 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #1#) . T) ((-1280 |#1|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 104 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-419 (-558))) 116 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 118 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 54 T ELT)) (-3994 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4287 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4483 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1798 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3992 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-791) (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 65 T ELT)) (-3996 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| "failed") $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT)) (-3045 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 85 T ELT)) (-4293 (((-419 (-558)) $) 13 T ELT)) (-3044 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4294 (($ (-419 (-558)) |#2|) 11 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4235 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3375 (((-114) $) 74 T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-419 (-558)) $) 113 T ELT) (((-419 (-558)) $ (-419 (-558))) 114 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) 130 T ELT) (($ $ (-419 (-558))) 128 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-419 (-558))) 33 T ELT) (($ $ (-1112) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-419 (-558)))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4454 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-2112 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4292 ((|#2| $) 12 T ELT)) (-4290 (((-3 |#2| "failed") $) 44 T ELT)) (-4291 ((|#2| $) 45 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-2884 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4324 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 151 (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-3644 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4244 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4281 (($ $ (-419 (-558))) 122 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1797 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4312 ((|#1| $ (-419 (-558))) 108 T ELT) (($ $ $) 94 (|has| (-419 (-558)) (-1142)) ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4270 (($ $ (-1207)) 138 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4460 (((-419 (-558)) $) 16 T ELT)) (-3997 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 120 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-419 (-558))) 139 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4189 ((|#1| $ (-419 (-558))) 107 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 127 T CONST)) (-4285 ((|#1| $) 106 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 17 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3536 (((-114) $ $) 72 T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-4351 (($ $ $) 76 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 82 T ELT) (($ $ (-558)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1283 |#1| |#2|) (-1282 |#1| |#2|) (-1079) (-1259 |#1|)) (T -1283)) +NIL +(-1282 |#1| |#2|) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 37 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-2281 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 (-558) #1="failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1068 (-419 (-558)))) ELT) (((-3 (-1278 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3656 (((-558) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1068 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1068 (-419 (-558)))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-4471 (($ $) 41 T ELT)) (-3969 (((-3 $ "failed") $) 27 T ELT)) (-4005 (($ $) NIL (|has| (-1278 |#2| |#3| |#4|) (-464)) ELT)) (-1814 (($ $ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) 11 T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3303 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1815 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-4470 (($ (-1 (-1278 |#2| |#3| |#4|) (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-4296 (((-3 (-864 |#2|) "failed") $) 91 T ELT)) (-3377 (($ $) NIL T ELT)) (-3674 (((-1278 |#2| |#3| |#4|) $) 20 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-2015 (((-114) $) NIL T ELT)) (-2014 (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-3968 (((-3 $ "failed") $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-4295 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $) 74 T ELT)) (-4460 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-3300 (((-1278 |#2| |#3| |#4|) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-464)) ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (-4039 (|has| (-1278 |#2| |#3| |#4|) (-1068 (-419 (-558)))) (|has| (-1278 |#2| |#3| |#4|) (-38 (-419 (-558))))) ELT)) (-4329 (((-661 (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-4189 (((-1278 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3185 (((-711 $) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-1813 (($ $ $ (-791)) NIL (|has| (-1278 |#2| |#3| |#4|) (-175)) ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-2282 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT))) +(((-1284 |#1| |#2| |#3| |#4|) (-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4296 ((-3 (-864 |#2|) "failed") $)) (-15 -4295 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) (-13 (-1068 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1233) (-433 |#1|)) (-1207) |#2|) (T -1284)) +((-4296 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4))) (-4295 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) (|:| |%type| (-1189)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4)))) +(-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4296 ((-3 (-864 |#2|) "failed") $)) (-15 -4295 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) +((-3904 ((|#2| $) 34 T ELT)) (-4307 ((|#2| $) 18 T ELT)) (-4309 (($ $) 44 T ELT)) (-4297 (($ $ (-558)) 79 T ELT)) (-3508 ((|#2| $ |#2|) 76 T ELT)) (-4298 ((|#2| $ |#2|) 72 T ELT)) (-4300 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 65 T ELT) (($ $ "rest" $) 69 T ELT) ((|#2| $ "last" |#2|) 67 T ELT)) (-3509 (($ $ (-661 $)) 75 T ELT)) (-4308 ((|#2| $) 17 T ELT)) (-4311 (($ $) NIL T ELT) (($ $ (-791)) 52 T ELT)) (-3514 (((-661 $) $) 31 T ELT)) (-3510 (((-114) $ $) 63 T ELT)) (-4029 (((-114) $) 33 T ELT)) (-4310 ((|#2| $) 25 T ELT) (($ $ (-791)) 58 T ELT)) (-4312 ((|#2| $ #1#) NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-4145 (((-114) $) 23 T ELT)) (-4304 (($ $) 47 T ELT)) (-4302 (($ $) 80 T ELT)) (-4305 (((-791) $) 51 T ELT)) (-4306 (($ $) 50 T ELT)) (-4314 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-4024 (((-661 $) $) 32 T ELT)) (-3536 (((-114) $ $) 61 T ELT)) (-4469 (((-791) $) 43 T ELT))) +(((-1285 |#1| |#2|) (-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4297 (|#1| |#1| (-558))) (-15 -4300 (|#2| |#1| "last" |#2|)) (-15 -4298 (|#2| |#1| |#2|)) (-15 -4300 (|#1| |#1| "rest" |#1|)) (-15 -4300 (|#2| |#1| "first" |#2|)) (-15 -4302 (|#1| |#1|)) (-15 -4304 (|#1| |#1|)) (-15 -4305 ((-791) |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4308 (|#2| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4310 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "last")) (-15 -4310 (|#2| |#1|)) (-15 -4311 (|#1| |#1| (-791))) (-15 -4312 (|#1| |#1| "rest")) (-15 -4311 (|#1| |#1|)) (-15 -4312 (|#2| |#1| "first")) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -3508 (|#2| |#1| |#2|)) (-15 -4300 (|#2| |#1| #1="value" |#2|)) (-15 -3509 (|#1| |#1| (-661 |#1|))) (-15 -3510 ((-114) |#1| |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -3904 (|#2| |#1|)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -4469 ((-791) |#1|))) (-1286 |#2|) (-1247)) (T -1285)) +NIL +(-10 -8 (-15 -3536 ((-114) |#1| |#1|)) (-15 -4297 (|#1| |#1| (-558))) (-15 -4300 (|#2| |#1| "last" |#2|)) (-15 -4298 (|#2| |#1| |#2|)) (-15 -4300 (|#1| |#1| "rest" |#1|)) (-15 -4300 (|#2| |#1| "first" |#2|)) (-15 -4302 (|#1| |#1|)) (-15 -4304 (|#1| |#1|)) (-15 -4305 ((-791) |#1|)) (-15 -4306 (|#1| |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4308 (|#2| |#1|)) (-15 -4309 (|#1| |#1|)) (-15 -4310 (|#1| |#1| (-791))) (-15 -4312 (|#2| |#1| "last")) (-15 -4310 (|#2| |#1|)) (-15 -4311 (|#1| |#1| (-791))) (-15 -4312 (|#1| |#1| "rest")) (-15 -4311 (|#1| |#1|)) (-15 -4312 (|#2| |#1| "first")) (-15 -4314 (|#1| |#2| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -3508 (|#2| |#1| |#2|)) (-15 -4300 (|#2| |#1| #1="value" |#2|)) (-15 -3509 (|#1| |#1| (-661 |#1|))) (-15 -3510 ((-114) |#1| |#1|)) (-15 -4145 ((-114) |#1|)) (-15 -4312 (|#2| |#1| #1#)) (-15 -3904 (|#2| |#1|)) (-15 -4029 ((-114) |#1|)) (-15 -3514 ((-661 |#1|) |#1|)) (-15 -4024 ((-661 |#1|) |#1|)) (-15 -4469 ((-791) |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3904 ((|#1| $) 52 T ELT)) (-4307 ((|#1| $) 71 T ELT)) (-4309 (($ $) 73 T ELT)) (-4297 (($ $ (-558)) 58 (|has| $ (-6 -4508)) ELT)) (-3508 ((|#1| $ |#1|) 43 (|has| $ (-6 -4508)) ELT)) (-4299 (($ $ $) 62 (|has| $ (-6 -4508)) ELT)) (-4298 ((|#1| $ |#1|) 60 (|has| $ (-6 -4508)) ELT)) (-4301 ((|#1| $ |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4300 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4508)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4508)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4508)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4508)) ELT)) (-3509 (($ $ (-661 $)) 45 (|has| $ (-6 -4508)) ELT)) (-4308 ((|#1| $) 72 T ELT)) (-4236 (($) 7 T CONST)) (-4311 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-3514 (((-661 $) $) 54 T ELT)) (-3510 (((-114) $ $) 46 (|has| |#1| (-1131)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3513 (((-661 |#1|) $) 49 T ELT)) (-4029 (((-114) $) 53 T ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-4310 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3512 (((-558) $ $) 48 T ELT)) (-4145 (((-114) $) 50 T ELT)) (-4304 (($ $) 68 T ELT)) (-4302 (($ $) 65 (|has| $ (-6 -4508)) ELT)) (-4305 (((-791) $) 69 T ELT)) (-4306 (($ $) 70 T ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3902 (($ $) 10 T ELT)) (-4303 (($ $ $) 67 (|has| $ (-6 -4508)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4508)) ELT)) (-4314 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-4024 (((-661 $) $) 55 T ELT)) (-3511 (((-114) $ $) 47 (|has| |#1| (-1131)) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1286 |#1|) (-142) (-1247)) (T -1286)) +((-4314 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4314 (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4311 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4312 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4310 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4306 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) (-4304 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4303 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4303 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4302 (*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4301 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4299 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4300 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4298 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4508)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -4314 ($ $ $)) (-15 -4314 ($ |t#1| $)) (-15 -4313 (|t#1| $)) (-15 -4312 (|t#1| $ "first")) (-15 -4313 ($ $ (-791))) (-15 -4311 ($ $)) (-15 -4312 ($ $ "rest")) (-15 -4311 ($ $ (-791))) (-15 -4310 (|t#1| $)) (-15 -4312 (|t#1| $ "last")) (-15 -4310 ($ $ (-791))) (-15 -4309 ($ $)) (-15 -4308 (|t#1| $)) (-15 -4307 (|t#1| $)) (-15 -4306 ($ $)) (-15 -4305 ((-791) $)) (-15 -4304 ($ $)) (IF (|has| $ (-6 -4508)) (PROGN (-15 -4303 ($ $ $)) (-15 -4303 ($ $ |t#1|)) (-15 -4302 ($ $)) (-15 -4301 (|t#1| $ |t#1|)) (-15 -4300 (|t#1| $ "first" |t#1|)) (-15 -4299 ($ $ $)) (-15 -4300 ($ $ "rest" $)) (-15 -4298 (|t#1| $ |t#1|)) (-15 -4300 (|t#1| $ "last" |t#1|)) (-15 -4297 ($ $ (-558)))) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-630 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1040 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1247) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-3566 (((-661 (-1112)) $) NIL T ELT)) (-4343 (((-1207) $) 90 T ELT)) (-4323 (((-1266 |#2| |#1|) $ (-791)) 73 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2283 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 143 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-791)) 128 T ELT) (($ $ (-791) (-791)) 131 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 43 T ELT)) (-3994 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3520 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1185 |#1|)) NIL T ELT)) (-3996 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) NIL T CONST)) (-4317 (($ $) 135 T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4328 (($ $) 141 T ELT)) (-4326 (((-974 |#1|) $ (-791)) 63 T ELT) (((-974 |#1|) $ (-791) (-791)) 65 T ELT)) (-3375 (((-114) $) NIL T ELT)) (-4139 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $) NIL T ELT) (((-791) $ (-791)) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4320 (($ $) 118 T ELT)) (-3494 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4316 (($ (-558) (-558) $) 137 T ELT)) (-4289 (($ $ (-947)) 140 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 112 T ELT)) (-4449 (((-114) $) NIL T ELT)) (-3376 (($ |#1| (-791)) 16 T ELT) (($ $ (-1112) (-791)) NIL T ELT) (($ $ (-661 (-1112)) (-661 (-791))) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4454 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4321 (($ $) 116 T ELT)) (-4322 (($ $) 114 T ELT)) (-4315 (($ (-558) (-558) $) 139 T ELT)) (-4324 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 157 (-4039 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))))) ELT) (($ $ (-1294 |#2|)) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4318 (($ $ (-558) (-558)) 122 T ELT)) (-4281 (($ $ (-791)) 124 T ELT)) (-3968 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-4455 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4319 (($ $) 120 T ELT)) (-4280 (((-1185 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4312 ((|#1| $ (-791)) 96 T ELT) (($ $ $) 133 (|has| (-791) (-1142)) ELT)) (-4270 (($ $ (-1207)) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1294 |#2|)) 104 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-3997 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 126 T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) 26 T ELT) (($ (-419 (-558))) 149 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 81 T ELT) (($ (-1294 |#2|)) 22 T ELT)) (-4329 (((-1185 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ (-791)) 95 T ELT)) (-3185 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4285 ((|#1| $) 91 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4000 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3998 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-791)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 18 T CONST)) (-3147 (($) 13 T CONST)) (-3152 (($ $ (-1207)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) NIL (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4461 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-4351 (($ $ $) 20 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1287 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1266 |#2| |#1|))) (-15 -4323 ((-1266 |#2| |#1|) $ (-791))) (-15 -4458 ($ (-1294 |#2|))) (-15 -4322 ($ $)) (-15 -4321 ($ $)) (-15 -4320 ($ $)) (-15 -4319 ($ $)) (-15 -4318 ($ $ (-558) (-558))) (-15 -4317 ($ $)) (-15 -4316 ($ (-558) (-558) $)) (-15 -4315 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) (-1079) (-1207) |#1|) (T -1287)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1287 *3 *4 *5)))) (-4323 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1207)) (-14 *6 *4))) (-4458 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2))) (-4320 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2))) (-4318 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3))) (-4317 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2))) (-4316 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3))) (-4315 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3))) (-4324 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1290 |#1|) (-920 $ (-1294 |#2|)) (-10 -8 (-15 -4458 ($ (-1266 |#2| |#1|))) (-15 -4323 ((-1266 |#2| |#1|) $ (-791))) (-15 -4458 ($ (-1294 |#2|))) (-15 -4322 ($ $)) (-15 -4321 ($ $)) (-15 -4320 ($ $)) (-15 -4319 ($ $)) (-15 -4318 ($ $ (-558) (-558))) (-15 -4317 ($ $)) (-15 -4316 ($ (-558) (-558) $)) (-15 -4315 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4324 ($ $ (-1294 |#2|))) |%noBranch|))) +((-4470 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1288 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4470 (|#4| (-1 |#2| |#1|) |#3|))) (-1079) (-1079) (-1290 |#1|) (-1290 |#2|)) (T -1288)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1290 *6)) (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5))))) +(-10 -7 (-15 -4470 (|#4| (-1 |#2| |#1|) |#3|))) +((-3688 (((-114) $) 17 T ELT)) (-3994 (($ $) 105 T ELT)) (-4151 (($ $) 81 T ELT)) (-3992 (($ $) 101 T ELT)) (-4150 (($ $) 77 T ELT)) (-3996 (($ $) 109 T ELT)) (-4149 (($ $) 85 T ELT)) (-4454 (($ $) 75 T ELT)) (-4455 (($ $) 73 T ELT)) (-3997 (($ $) 111 T ELT)) (-4148 (($ $) 87 T ELT)) (-3995 (($ $) 107 T ELT)) (-4147 (($ $) 83 T ELT)) (-3993 (($ $) 103 T ELT)) (-4146 (($ $) 79 T ELT)) (-4458 (((-886) $) 61 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-4000 (($ $) 117 T ELT)) (-3988 (($ $) 93 T ELT)) (-3998 (($ $) 113 T ELT)) (-3986 (($ $) 89 T ELT)) (-4002 (($ $) 121 T ELT)) (-3990 (($ $) 97 T ELT)) (-4003 (($ $) 123 T ELT)) (-3991 (($ $) 99 T ELT)) (-4001 (($ $) 119 T ELT)) (-3989 (($ $) 95 T ELT)) (-3999 (($ $) 115 T ELT)) (-3987 (($ $) 91 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-419 (-558))) 71 T ELT))) +(((-1289 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3988 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4454 (|#1| |#1|)) (-15 -4455 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947))) (-15 -3688 ((-114) |#1|)) (-15 -4458 ((-886) |#1|))) (-1290 |#2|) (-1079)) (T -1289)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -4151 (|#1| |#1|)) (-15 -4150 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -3987 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3988 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4454 (|#1| |#1|)) (-15 -4455 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4458 (|#1| |#2|)) (-15 -4458 (|#1| |#1|)) (-15 -4458 (|#1| (-419 (-558)))) (-15 -4458 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-947))) (-15 -3688 ((-114) |#1|)) (-15 -4458 ((-886) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-3566 (((-661 (-1112)) $) 92 T ELT)) (-4343 (((-1207) $) 126 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2283 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2281 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4283 (($ $ (-791)) 121 T ELT) (($ $ (-791) (-791)) 120 T ELT)) (-4286 (((-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 127 T ELT)) (-3994 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4151 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-3520 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3992 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4150 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4330 (($ (-1185 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1185 |#1|)) 178 T ELT)) (-3996 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4149 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($) 22 T CONST)) (-4471 (($ $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4328 (($ $) 177 T ELT)) (-4326 (((-974 |#1|) $ (-791)) 175 T ELT) (((-974 |#1|) $ (-791) (-791)) 174 T ELT)) (-3375 (((-114) $) 91 T ELT)) (-4139 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4284 (((-791) $) 123 T ELT) (((-791) $ (-791)) 122 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3494 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4289 (($ $ (-947)) 124 T ELT)) (-4327 (($ (-1 |#1| (-558)) $) 176 T ELT)) (-4449 (((-114) $) 79 T ELT)) (-3376 (($ |#1| (-791)) 78 T ELT) (($ $ (-1112) (-791)) 94 T ELT) (($ $ (-661 (-1112)) (-661 (-791))) 93 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4454 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3377 (($ $) 82 T ELT)) (-3674 ((|#1| $) 83 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-4324 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1207)) 171 (-4039 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3566 ((-661 (-1207)) |#1|))) (|has| |#1| (-15 -4324 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4281 (($ $ (-791)) 118 T ELT)) (-3968 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4455 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4280 (((-1185 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4312 ((|#1| $ (-791)) 128 T ELT) (($ $ $) 104 (|has| (-791) (-1142)) ELT)) (-4270 (($ $ (-1207)) 116 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) 114 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) 113 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 112 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT)) (-4460 (((-791) $) 81 T ELT)) (-3997 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4148 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3995 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4147 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3993 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4146 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3374 (($ $) 90 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4329 (((-1185 |#1|) $) 179 T ELT)) (-4189 ((|#1| $ (-791)) 76 T ELT)) (-3185 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3610 (((-791)) 37 T CONST)) (-4285 ((|#1| $) 125 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-4000 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3988 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2282 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3998 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3986 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4002 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3990 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4282 ((|#1| $ (-791)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4458 (|#1| (-1207))))) ELT)) (-4003 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3991 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4001 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3989 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3999 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3987 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3152 (($ $ (-1207)) 115 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207))) 111 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1207) (-791)) 110 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1207)) (-661 (-791))) 109 (-12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1290 |#1|) (-142) (-1079)) (T -1290)) +((-4330 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-791)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1290 *3)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1079)) (-5 *2 (-1185 *3)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-4 *1 (-1290 *3)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079)))) (-4327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1290 *3)) (-4 *3 (-1079)))) (-4326 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1290 *4)) (-4 *4 (-1079)) (-5 *2 (-974 *4)))) (-4326 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1290 *4)) (-4 *4 (-1079)) (-5 *2 (-974 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) (-4324 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) (-4324 (*1 *1 *1 *2) (-4039 (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1276 |t#1| (-791)) (-10 -8 (-15 -4330 ($ (-1185 (-2 (|:| |k| (-791)) (|:| |c| |t#1|))))) (-15 -4329 ((-1185 |t#1|) $)) (-15 -4330 ($ (-1185 |t#1|))) (-15 -4328 ($ $)) (-15 -4327 ($ (-1 |t#1| (-558)) $)) (-15 -4326 ((-974 |t#1|) $ (-791))) (-15 -4326 ((-974 |t#1|) $ (-791) (-791))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4324 ($ $)) (IF (|has| |t#1| (-15 -4324 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -3566 ((-661 (-1207)) |t#1|))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-558))) (-15 -4324 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1233))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-791)) . T) ((-25) . T) ((-38 #2=(-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 #2#) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-886)) . T) ((-175) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 #1# |#1|) . T) ((-298 $ $) |has| (-791) (-1142)) ((-302) |has| |#1| (-569)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) |has| |#1| (-569)) ((-666 #2#) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #2#) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #2#) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 #2#) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-920 $ #3=(-1207)) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-926 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-928 #3#) -12 (|has| |#1| (-926 (-1207))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-1003 |#1| #1# (-1112)) . T) ((-1032) |has| |#1| (-38 (-419 (-558)))) ((-1081 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1081 |#1|) . T) ((-1081 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1086 #2#) |has| |#1| (-38 (-419 (-558)))) ((-1086 |#1|) . T) ((-1086 $) -4039 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-419 (-558)))) ((-1236) |has| |#1| (-38 (-419 (-558)))) ((-1247) . T) ((-1276 |#1| #1#) . T)) +((-4333 (((-1 (-1185 |#1|) (-661 (-1185 |#1|))) (-1 |#2| (-661 |#2|))) 24 T ELT)) (-4332 (((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-4331 (((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4336 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-4335 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4337 ((|#2| (-1 |#2| (-661 |#2|)) (-661 |#1|)) 60 T ELT)) (-4338 (((-661 |#2|) (-661 |#1|) (-661 (-1 |#2| (-661 |#2|)))) 66 T ELT)) (-4334 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1291 |#1| |#2|) (-10 -7 (-15 -4331 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -4332 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4333 ((-1 (-1185 |#1|) (-661 (-1185 |#1|))) (-1 |#2| (-661 |#2|)))) (-15 -4334 (|#2| |#2| |#2|)) (-15 -4335 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4337 (|#2| (-1 |#2| (-661 |#2|)) (-661 |#1|))) (-15 -4338 ((-661 |#2|) (-661 |#1|) (-661 (-1 |#2| (-661 |#2|)))))) (-38 (-419 (-558))) (-1290 |#1|)) (T -1291)) +((-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 (-1 *6 (-661 *6)))) (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1290 *5)) (-5 *2 (-661 *6)) (-5 *1 (-1291 *5 *6)))) (-4337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-661 *2))) (-5 *4 (-661 *5)) (-4 *5 (-38 (-419 (-558)))) (-4 *2 (-1290 *5)) (-5 *1 (-1291 *5 *2)))) (-4336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4334 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1291 *3 *2)) (-4 *2 (-1290 *3)))) (-4333 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-661 *5))) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1185 *4) (-661 (-1185 *4)))) (-5 *1 (-1291 *4 *5)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5))))) +(-10 -7 (-15 -4331 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -4332 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4333 ((-1 (-1185 |#1|) (-661 (-1185 |#1|))) (-1 |#2| (-661 |#2|)))) (-15 -4334 (|#2| |#2| |#2|)) (-15 -4335 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4337 (|#2| (-1 |#2| (-661 |#2|)) (-661 |#1|))) (-15 -4338 ((-661 |#2|) (-661 |#1|) (-661 (-1 |#2| (-661 |#2|)))))) +((-4340 ((|#2| |#4| (-791)) 31 T ELT)) (-4339 ((|#4| |#2|) 26 T ELT)) (-4342 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-4341 (((-1 |#4| (-661 |#4|)) |#3|) 43 T ELT))) +(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4339 (|#4| |#2|)) (-15 -4340 (|#2| |#4| (-791))) (-15 -4341 ((-1 |#4| (-661 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4342 (|#4| (-419 |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-678 |#2|) (-1290 |#1|)) (T -1292)) +((-4342 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) (-4 *4 (-1079)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) (-4 *6 (-678 *5)))) (-4341 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-661 *6))) (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1290 *4)))) (-4340 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1290 *5)))) (-4339 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) +(-10 -7 (-15 -4339 (|#4| |#2|)) (-15 -4340 (|#2| |#4| (-791))) (-15 -4341 ((-1 |#4| (-661 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4342 (|#4| (-419 |#2|))) |%noBranch|)) +NIL +(((-1293) (-142)) (T -1293)) +NIL +(-13 (-10 -7 (-6 -2511))) +((-3049 (((-114) $ $) NIL T ELT)) (-4343 (((-1207)) 12 T ELT)) (-3742 (((-1189) $) 18 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 11 T ELT) (((-1207) $) 8 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 15 T ELT))) +(((-1294 |#1|) (-13 (-1131) (-630 (-1207)) (-10 -8 (-15 -4458 ((-1207) $)) (-15 -4343 ((-1207))))) (-1207)) (T -1294)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) (-4343 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))) +(-13 (-1131) (-630 (-1207)) (-10 -8 (-15 -4458 ((-1207) $)) (-15 -4343 ((-1207))))) +((-4350 (($ (-791)) 19 T ELT)) (-4347 (((-709 |#2|) $ $) 41 T ELT)) (-4344 ((|#2| $) 51 T ELT)) (-4345 ((|#2| $) 50 T ELT)) (-4348 ((|#2| $ $) 36 T ELT)) (-4346 (($ $ $) 47 T ELT)) (-4349 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-4351 (($ $ $) 15 T ELT)) (* (($ (-558) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1295 |#1| |#2|) (-10 -8 (-15 -4344 (|#2| |#1|)) (-15 -4345 (|#2| |#1|)) (-15 -4346 (|#1| |#1| |#1|)) (-15 -4347 ((-709 |#2|) |#1| |#1|)) (-15 -4348 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| (-791))) (-15 -4351 (|#1| |#1| |#1|))) (-1296 |#2|) (-1247)) (T -1295)) +NIL +(-10 -8 (-15 -4344 (|#2| |#1|)) (-15 -4345 (|#2| |#1|)) (-15 -4346 (|#1| |#1| |#1|)) (-15 -4347 ((-709 |#2|) |#1| |#1|)) (-15 -4348 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4349 (|#1| |#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| (-791))) (-15 -4351 (|#1| |#1| |#1|))) +((-3049 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4350 (($ (-791)) 121 (|has| |#1| (-23)) ELT)) (-2423 (((-1303) $ (-558) (-558)) 44 (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4508)) ELT) (($ $) 97 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4508))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) 64 (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4507)) ELT)) (-4236 (($) 7 T CONST)) (-2520 (($ $) 99 (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) 109 T ELT)) (-1477 (($ $) 84 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-3908 (($ |#1| $) 83 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) 55 T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) 30 (|has| $ (-6 -4507)) ELT)) (-4347 (((-709 |#1|) $ $) 114 (|has| |#1| (-1079)) ELT)) (-4126 (($ (-791) |#1|) 74 T ELT)) (-2425 (((-558) $) 47 (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) 91 (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) 29 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-2426 (((-558) $) 48 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) 92 (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4344 ((|#1| $) 111 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-4345 ((|#1| $) 112 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3742 (((-1189) $) 22 (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2428 (((-661 (-558)) $) 50 T ELT)) (-2429 (((-114) (-558) $) 51 T ELT)) (-3743 (((-1150) $) 21 (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) 46 (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2424 (($ $ |#1|) 45 (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) 11 T ELT)) (-2427 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) 52 T ELT)) (-3905 (((-114) $) 8 T ELT)) (-4075 (($) 9 T ELT)) (-4312 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1264 (-558))) 75 T ELT)) (-4348 ((|#1| $ $) 115 (|has| |#1| (-1079)) ELT)) (-2528 (($ $ (-558)) 68 T ELT) (($ $ (-1264 (-558))) 67 T ELT)) (-4346 (($ $ $) 113 (|has| |#1| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4507))) ELT)) (-1944 (($ $ $ (-558)) 100 (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) 10 T ELT)) (-4484 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 76 T ELT)) (-4314 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4458 (((-886) $) 17 (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) 93 (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) 95 (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) 94 (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) 96 (|has| |#1| (-870)) ELT)) (-4349 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-746)) ELT) (($ $ |#1|) 116 (|has| |#1| (-746)) ELT)) (-4469 (((-791) $) 6 (|has| $ (-6 -4507)) ELT))) +(((-1296 |#1|) (-142) (-1247)) (T -1296)) +((-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))) (-4350 (*1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (-4349 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-746)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-746)))) (-4348 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-4347 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) (-5 *2 (-709 *3)))) (-4346 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4351 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4350 ($ (-791))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4349 ($ $)) (-15 -4349 ($ $ $)) (-15 * ($ (-558) $))) |%noBranch|) (IF (|has| |t#1| (-746)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-15 -4348 (|t#1| $ $)) (-15 -4347 ((-709 |t#1|) $ $)) (-15 -4346 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1032)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -4345 (|t#1| $)) (-15 -4344 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-630 (-886)) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870)) (|has| |#1| (-630 (-886)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 #1=(-558) |#1|) . T) ((-298 (-1264 (-558)) $) . T) ((-300 #1# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 #1# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-671 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1131) -4039 (|has| |#1| (-1131)) (|has| |#1| (-870))) ((-1247) . T)) +((-3049 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4350 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-4352 (($ (-661 |#1|)) 11 T ELT)) (-2423 (((-1303) $ (-558) (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-1945 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1943 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-870))) ELT)) (-3392 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-4300 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| $ (-1264 (-558)) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-4222 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4236 (($) NIL T CONST)) (-2520 (($ $) NIL (|has| $ (-6 -4508)) ELT)) (-2521 (($ $) NIL T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-3908 (($ |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4354 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4507)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-1729 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-3597 ((|#1| $ (-558)) NIL T ELT)) (-3921 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1131)) ELT)) (-3372 (((-661 |#1|) $) 16 (|has| $ (-6 -4507)) ELT)) (-4347 (((-709 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-4126 (($ (-791) |#1|) NIL T ELT)) (-2425 (((-558) $) NIL (|has| (-558) (-870)) ELT)) (-3012 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4020 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3089 (((-661 |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2426 (((-558) $) 12 (|has| (-558) (-870)) ELT)) (-3340 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2170 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4344 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-4345 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3742 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2527 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2428 (((-661 (-558)) $) NIL T ELT)) (-2429 (((-114) (-558) $) NIL T ELT)) (-3743 (((-1150) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 ((|#1| $) NIL (|has| (-558) (-870)) ELT)) (-1478 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2424 (($ $ |#1|) NIL (|has| $ (-6 -4508)) ELT)) (-2168 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-2427 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-2430 (((-661 |#1|) $) NIL T ELT)) (-3905 (((-114) $) NIL T ELT)) (-4075 (($) NIL T ELT)) (-4312 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4348 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-2528 (($ $ (-558)) NIL T ELT) (($ $ (-1264 (-558))) NIL T ELT)) (-4346 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-2167 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#1| (-1131))) ELT)) (-1944 (($ $ $ (-558)) NIL (|has| $ (-6 -4508)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) 20 (|has| |#1| (-631 (-547))) ELT)) (-4032 (($ (-661 |#1|)) 10 T ELT)) (-4314 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4458 (((-886) $) NIL (|has| |#1| (-630 (-886))) ELT)) (-1387 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2169 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3047 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3048 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3536 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3167 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-3168 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-4349 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4351 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1297 |#1|) (-13 (-1296 |#1|) (-10 -8 (-15 -4352 ($ (-661 |#1|))))) (-1247)) (T -1297)) +((-4352 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) +(-13 (-1296 |#1|) (-10 -8 (-15 -4352 ($ (-661 |#1|))))) +((-4353 (((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 13 T ELT)) (-4354 ((|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 15 T ELT)) (-4470 (((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)) 30 T ELT) (((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|)) 18 T ELT))) +(((-1298 |#1| |#2|) (-10 -7 (-15 -4353 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4470 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -4470 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) (-1247) (-1247)) (T -1298)) +((-4470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-4354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1298 *5 *2)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5))))) +(-10 -7 (-15 -4353 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4354 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4470 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -4470 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) +((-4355 (((-480) (-661 (-661 (-971 (-229)))) (-661 (-270))) 22 T ELT) (((-480) (-661 (-661 (-971 (-229))))) 21 T ELT) (((-480) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270))) 20 T ELT)) (-4356 (((-1300) (-661 (-661 (-971 (-229)))) (-661 (-270))) 30 T ELT) (((-1300) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270))) 29 T ELT)) (-4458 (((-1300) (-480)) 46 T ELT))) +(((-1299) (-10 -7 (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270)))) (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))))) (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))) (-661 (-270)))) (-15 -4356 ((-1300) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270)))) (-15 -4356 ((-1300) (-661 (-661 (-971 (-229)))) (-661 (-270)))) (-15 -4458 ((-1300) (-480))))) (T -1299)) +((-4458 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4356 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-897)) (-5 *5 (-947)) (-5 *6 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4355 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1299)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-480)) (-5 *1 (-1299)))) (-4355 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-897)) (-5 *5 (-947)) (-5 *6 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1299))))) +(-10 -7 (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270)))) (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))))) (-15 -4355 ((-480) (-661 (-661 (-971 (-229)))) (-661 (-270)))) (-15 -4356 ((-1300) (-661 (-661 (-971 (-229)))) (-897) (-897) (-947) (-661 (-270)))) (-15 -4356 ((-1300) (-661 (-661 (-971 (-229)))) (-661 (-270)))) (-15 -4458 ((-1300) (-480)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4374 (((-1189) $ (-1189)) 107 T ELT) (((-1189) $ (-1189) (-1189)) 105 T ELT) (((-1189) $ (-1189) (-661 (-1189))) 104 T ELT)) (-4370 (($) 69 T ELT)) (-4357 (((-1303) $ (-480) (-947)) 54 T ELT)) (-4363 (((-1303) $ (-947) (-1189)) 89 T ELT) (((-1303) $ (-947) (-897)) 90 T ELT)) (-4385 (((-1303) $ (-947) (-391) (-391)) 57 T ELT)) (-4395 (((-1303) $ (-1189)) 84 T ELT)) (-4358 (((-1303) $ (-947) (-1189)) 94 T ELT)) (-4359 (((-1303) $ (-947) (-391) (-391)) 58 T ELT)) (-4396 (((-1303) $ (-947) (-947)) 55 T ELT)) (-4376 (((-1303) $) 85 T ELT)) (-4361 (((-1303) $ (-947) (-1189)) 93 T ELT)) (-4365 (((-1303) $ (-480) (-947)) 41 T ELT)) (-4362 (((-1303) $ (-947) (-1189)) 92 T ELT)) (-4398 (((-661 (-270)) $) 29 T ELT) (($ $ (-661 (-270))) 30 T ELT)) (-4397 (((-1303) $ (-791) (-791)) 52 T ELT)) (-4369 (($ $) 70 T ELT) (($ (-480) (-661 (-270))) 71 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4372 (((-558) $) 48 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4366 (((-1297 (-3 (-480) "undefined")) $) 47 T ELT)) (-4367 (((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4362 (-558)) (|:| -4360 (-558)) (|:| |spline| (-558)) (|:| -4391 (-558)) (|:| |axesColor| (-897)) (|:| -4363 (-558)) (|:| |unitsColor| (-897)) (|:| |showing| (-558)))) $) 46 T ELT)) (-4368 (((-1303) $ (-947) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-897) (-558) (-897) (-558)) 83 T ELT)) (-4371 (((-661 (-971 (-229))) $) NIL T ELT)) (-4364 (((-480) $ (-947)) 43 T ELT)) (-4394 (((-1303) $ (-791) (-791) (-947) (-947)) 50 T ELT)) (-4392 (((-1303) $ (-1189)) 95 T ELT)) (-4360 (((-1303) $ (-947) (-1189)) 91 T ELT)) (-4458 (((-886) $) 102 T ELT)) (-4373 (((-1303) $) 96 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4391 (((-1303) $ (-947) (-1189)) 87 T ELT) (((-1303) $ (-947) (-897)) 88 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1300) (-13 (-1131) (-10 -8 (-15 -4371 ((-661 (-971 (-229))) $)) (-15 -4370 ($)) (-15 -4369 ($ $)) (-15 -4398 ((-661 (-270)) $)) (-15 -4398 ($ $ (-661 (-270)))) (-15 -4369 ($ (-480) (-661 (-270)))) (-15 -4368 ((-1303) $ (-947) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-897) (-558) (-897) (-558))) (-15 -4367 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4362 (-558)) (|:| -4360 (-558)) (|:| |spline| (-558)) (|:| -4391 (-558)) (|:| |axesColor| (-897)) (|:| -4363 (-558)) (|:| |unitsColor| (-897)) (|:| |showing| (-558)))) $)) (-15 -4366 ((-1297 (-3 (-480) "undefined")) $)) (-15 -4395 ((-1303) $ (-1189))) (-15 -4365 ((-1303) $ (-480) (-947))) (-15 -4364 ((-480) $ (-947))) (-15 -4391 ((-1303) $ (-947) (-1189))) (-15 -4391 ((-1303) $ (-947) (-897))) (-15 -4363 ((-1303) $ (-947) (-1189))) (-15 -4363 ((-1303) $ (-947) (-897))) (-15 -4362 ((-1303) $ (-947) (-1189))) (-15 -4361 ((-1303) $ (-947) (-1189))) (-15 -4360 ((-1303) $ (-947) (-1189))) (-15 -4392 ((-1303) $ (-1189))) (-15 -4373 ((-1303) $)) (-15 -4394 ((-1303) $ (-791) (-791) (-947) (-947))) (-15 -4359 ((-1303) $ (-947) (-391) (-391))) (-15 -4385 ((-1303) $ (-947) (-391) (-391))) (-15 -4358 ((-1303) $ (-947) (-1189))) (-15 -4397 ((-1303) $ (-791) (-791))) (-15 -4357 ((-1303) $ (-480) (-947))) (-15 -4396 ((-1303) $ (-947) (-947))) (-15 -4374 ((-1189) $ (-1189))) (-15 -4374 ((-1189) $ (-1189) (-1189))) (-15 -4374 ((-1189) $ (-1189) (-661 (-1189)))) (-15 -4376 ((-1303) $)) (-15 -4372 ((-558) $)) (-15 -4458 ((-886) $))))) (T -1300)) +((-4458 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1300)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-661 (-971 (-229)))) (-5 *1 (-1300)))) (-4370 (*1 *1) (-5 *1 (-1300))) (-4369 (*1 *1 *1) (-5 *1 (-1300))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1300)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1300)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-661 (-270))) (-5 *1 (-1300)))) (-4368 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-947)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-897)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4362 (-558)) (|:| -4360 (-558)) (|:| |spline| (-558)) (|:| -4391 (-558)) (|:| |axesColor| (-897)) (|:| -4363 (-558)) (|:| |unitsColor| (-897)) (|:| |showing| (-558))))) (-5 *1 (-1300)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-480) "undefined"))) (-5 *1 (-1300)))) (-4395 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4365 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4364 (*1 *2 *1 *3) (-12 (-5 *3 (-947)) (-5 *2 (-480)) (-5 *1 (-1300)))) (-4391 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4391 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4363 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4363 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4362 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4361 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4360 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4392 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4394 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-791)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4359 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4385 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4358 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4357 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4374 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-4374 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-4374 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1300))))) +(-13 (-1131) (-10 -8 (-15 -4371 ((-661 (-971 (-229))) $)) (-15 -4370 ($)) (-15 -4369 ($ $)) (-15 -4398 ((-661 (-270)) $)) (-15 -4398 ($ $ (-661 (-270)))) (-15 -4369 ($ (-480) (-661 (-270)))) (-15 -4368 ((-1303) $ (-947) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-897) (-558) (-897) (-558))) (-15 -4367 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4362 (-558)) (|:| -4360 (-558)) (|:| |spline| (-558)) (|:| -4391 (-558)) (|:| |axesColor| (-897)) (|:| -4363 (-558)) (|:| |unitsColor| (-897)) (|:| |showing| (-558)))) $)) (-15 -4366 ((-1297 (-3 (-480) "undefined")) $)) (-15 -4395 ((-1303) $ (-1189))) (-15 -4365 ((-1303) $ (-480) (-947))) (-15 -4364 ((-480) $ (-947))) (-15 -4391 ((-1303) $ (-947) (-1189))) (-15 -4391 ((-1303) $ (-947) (-897))) (-15 -4363 ((-1303) $ (-947) (-1189))) (-15 -4363 ((-1303) $ (-947) (-897))) (-15 -4362 ((-1303) $ (-947) (-1189))) (-15 -4361 ((-1303) $ (-947) (-1189))) (-15 -4360 ((-1303) $ (-947) (-1189))) (-15 -4392 ((-1303) $ (-1189))) (-15 -4373 ((-1303) $)) (-15 -4394 ((-1303) $ (-791) (-791) (-947) (-947))) (-15 -4359 ((-1303) $ (-947) (-391) (-391))) (-15 -4385 ((-1303) $ (-947) (-391) (-391))) (-15 -4358 ((-1303) $ (-947) (-1189))) (-15 -4397 ((-1303) $ (-791) (-791))) (-15 -4357 ((-1303) $ (-480) (-947))) (-15 -4396 ((-1303) $ (-947) (-947))) (-15 -4374 ((-1189) $ (-1189))) (-15 -4374 ((-1189) $ (-1189) (-1189))) (-15 -4374 ((-1189) $ (-1189) (-661 (-1189)))) (-15 -4376 ((-1303) $)) (-15 -4372 ((-558) $)) (-15 -4458 ((-886) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4386 (((-1303) $ (-391)) 169 T ELT) (((-1303) $ (-391) (-391) (-391)) 170 T ELT)) (-4374 (((-1189) $ (-1189)) 178 T ELT) (((-1189) $ (-1189) (-1189)) 176 T ELT) (((-1189) $ (-1189) (-661 (-1189))) 175 T ELT)) (-4402 (($) 67 T ELT)) (-4393 (((-1303) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1303) $ (-558) (-558) (-391) (-391) (-391)) 144 T ELT) (((-1303) $ (-391) (-391)) 145 T ELT) (((-1303) $ (-391) (-391) (-391)) 152 T ELT)) (-4405 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4407 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4406 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4403 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4404 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4385 (((-1303) $ (-391) (-391)) 171 T ELT)) (-4395 (((-1303) $ (-1189)) 153 T ELT)) (-4400 (((-1163 (-229)) $) 68 T ELT) (($ $ (-1163 (-229))) 69 T ELT)) (-4381 (((-1303) $ (-1189)) 187 T ELT)) (-4380 (((-1303) $ (-1189)) 188 T ELT)) (-4387 (((-1303) $ (-391) (-391)) 151 T ELT) (((-1303) $ (-558) (-558)) 168 T ELT)) (-4396 (((-1303) $ (-947) (-947)) 160 T ELT)) (-4376 (((-1303) $) 137 T ELT)) (-4384 (((-1303) $ (-1189)) 186 T ELT)) (-4389 (((-1303) $ (-1189)) 134 T ELT)) (-4398 (((-661 (-270)) $) 70 T ELT) (($ $ (-661 (-270))) 71 T ELT)) (-4397 (((-1303) $ (-791) (-791)) 159 T ELT)) (-4399 (((-1303) $ (-791) (-971 (-229))) 193 T ELT)) (-4401 (($ $) 73 T ELT) (($ (-1163 (-229)) (-1189)) 74 T ELT) (($ (-1163 (-229)) (-661 (-270))) 75 T ELT)) (-4378 (((-1303) $ (-391) (-391) (-391)) 131 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4372 (((-558) $) 128 T ELT)) (-4377 (((-1303) $ (-391)) 173 T ELT)) (-4382 (((-1303) $ (-391)) 191 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4383 (((-1303) $ (-391)) 190 T ELT)) (-4388 (((-1303) $ (-1189)) 136 T ELT)) (-4394 (((-1303) $ (-791) (-791) (-947) (-947)) 158 T ELT)) (-4390 (((-1303) $ (-1189)) 133 T ELT)) (-4392 (((-1303) $ (-1189)) 135 T ELT)) (-4375 (((-1303) $ (-159) (-159)) 157 T ELT)) (-4458 (((-886) $) 166 T ELT)) (-4373 (((-1303) $) 138 T ELT)) (-4379 (((-1303) $ (-1189)) 189 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4391 (((-1303) $ (-1189)) 132 T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1301) (-13 (-1131) (-10 -8 (-15 -4407 ((-391))) (-15 -4407 ((-391) (-391))) (-15 -4406 ((-391))) (-15 -4406 ((-391) (-391))) (-15 -4405 ((-391))) (-15 -4405 ((-391) (-391))) (-15 -4404 ((-391))) (-15 -4404 ((-391) (-391))) (-15 -4403 ((-391))) (-15 -4403 ((-391) (-391))) (-15 -4402 ($)) (-15 -4401 ($ $)) (-15 -4401 ($ (-1163 (-229)) (-1189))) (-15 -4401 ($ (-1163 (-229)) (-661 (-270)))) (-15 -4400 ((-1163 (-229)) $)) (-15 -4400 ($ $ (-1163 (-229)))) (-15 -4399 ((-1303) $ (-791) (-971 (-229)))) (-15 -4398 ((-661 (-270)) $)) (-15 -4398 ($ $ (-661 (-270)))) (-15 -4397 ((-1303) $ (-791) (-791))) (-15 -4396 ((-1303) $ (-947) (-947))) (-15 -4395 ((-1303) $ (-1189))) (-15 -4394 ((-1303) $ (-791) (-791) (-947) (-947))) (-15 -4393 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4393 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4393 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4393 ((-1303) $ (-558) (-558) (-391) (-391) (-391))) (-15 -4393 ((-1303) $ (-391) (-391))) (-15 -4393 ((-1303) $ (-391) (-391) (-391))) (-15 -4392 ((-1303) $ (-1189))) (-15 -4391 ((-1303) $ (-1189))) (-15 -4390 ((-1303) $ (-1189))) (-15 -4389 ((-1303) $ (-1189))) (-15 -4388 ((-1303) $ (-1189))) (-15 -4387 ((-1303) $ (-391) (-391))) (-15 -4387 ((-1303) $ (-558) (-558))) (-15 -4386 ((-1303) $ (-391))) (-15 -4386 ((-1303) $ (-391) (-391) (-391))) (-15 -4385 ((-1303) $ (-391) (-391))) (-15 -4384 ((-1303) $ (-1189))) (-15 -4383 ((-1303) $ (-391))) (-15 -4382 ((-1303) $ (-391))) (-15 -4381 ((-1303) $ (-1189))) (-15 -4380 ((-1303) $ (-1189))) (-15 -4379 ((-1303) $ (-1189))) (-15 -4378 ((-1303) $ (-391) (-391) (-391))) (-15 -4377 ((-1303) $ (-391))) (-15 -4376 ((-1303) $)) (-15 -4375 ((-1303) $ (-159) (-159))) (-15 -4374 ((-1189) $ (-1189))) (-15 -4374 ((-1189) $ (-1189) (-1189))) (-15 -4374 ((-1189) $ (-1189) (-661 (-1189)))) (-15 -4373 ((-1303) $)) (-15 -4372 ((-558) $))))) (T -1301)) +((-4407 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4407 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4406 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4406 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4405 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4405 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4404 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4404 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4403 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4402 (*1 *1) (-5 *1 (-1301))) (-4401 (*1 *1 *1) (-5 *1 (-1301))) (-4401 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301)))) (-4401 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-661 (-270))) (-5 *1 (-1301)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1301)))) (-4400 (*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1301)))) (-4399 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1301)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1301)))) (-4397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4396 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4395 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4394 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-791)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4393 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1301)))) (-4393 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4393 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4393 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4393 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4392 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4391 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4389 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4388 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4387 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4387 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4386 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4384 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4381 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4379 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4378 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4377 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4375 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4374 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-4374 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-4374 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1301))))) +(-13 (-1131) (-10 -8 (-15 -4407 ((-391))) (-15 -4407 ((-391) (-391))) (-15 -4406 ((-391))) (-15 -4406 ((-391) (-391))) (-15 -4405 ((-391))) (-15 -4405 ((-391) (-391))) (-15 -4404 ((-391))) (-15 -4404 ((-391) (-391))) (-15 -4403 ((-391))) (-15 -4403 ((-391) (-391))) (-15 -4402 ($)) (-15 -4401 ($ $)) (-15 -4401 ($ (-1163 (-229)) (-1189))) (-15 -4401 ($ (-1163 (-229)) (-661 (-270)))) (-15 -4400 ((-1163 (-229)) $)) (-15 -4400 ($ $ (-1163 (-229)))) (-15 -4399 ((-1303) $ (-791) (-971 (-229)))) (-15 -4398 ((-661 (-270)) $)) (-15 -4398 ($ $ (-661 (-270)))) (-15 -4397 ((-1303) $ (-791) (-791))) (-15 -4396 ((-1303) $ (-947) (-947))) (-15 -4395 ((-1303) $ (-1189))) (-15 -4394 ((-1303) $ (-791) (-791) (-947) (-947))) (-15 -4393 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4393 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4393 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4393 ((-1303) $ (-558) (-558) (-391) (-391) (-391))) (-15 -4393 ((-1303) $ (-391) (-391))) (-15 -4393 ((-1303) $ (-391) (-391) (-391))) (-15 -4392 ((-1303) $ (-1189))) (-15 -4391 ((-1303) $ (-1189))) (-15 -4390 ((-1303) $ (-1189))) (-15 -4389 ((-1303) $ (-1189))) (-15 -4388 ((-1303) $ (-1189))) (-15 -4387 ((-1303) $ (-391) (-391))) (-15 -4387 ((-1303) $ (-558) (-558))) (-15 -4386 ((-1303) $ (-391))) (-15 -4386 ((-1303) $ (-391) (-391) (-391))) (-15 -4385 ((-1303) $ (-391) (-391))) (-15 -4384 ((-1303) $ (-1189))) (-15 -4383 ((-1303) $ (-391))) (-15 -4382 ((-1303) $ (-391))) (-15 -4381 ((-1303) $ (-1189))) (-15 -4380 ((-1303) $ (-1189))) (-15 -4379 ((-1303) $ (-1189))) (-15 -4378 ((-1303) $ (-391) (-391) (-391))) (-15 -4377 ((-1303) $ (-391))) (-15 -4376 ((-1303) $)) (-15 -4375 ((-1303) $ (-159) (-159))) (-15 -4374 ((-1189) $ (-1189))) (-15 -4374 ((-1189) $ (-1189) (-1189))) (-15 -4374 ((-1189) $ (-1189) (-661 (-1189)))) (-15 -4373 ((-1303) $)) (-15 -4372 ((-558) $)))) +((-4416 (((-661 (-1189)) (-661 (-1189))) 103 T ELT) (((-661 (-1189))) 96 T ELT)) (-4417 (((-661 (-1189))) 94 T ELT)) (-4414 (((-661 (-947)) (-661 (-947))) 69 T ELT) (((-661 (-947))) 64 T ELT)) (-4413 (((-661 (-791)) (-661 (-791))) 61 T ELT) (((-661 (-791))) 55 T ELT)) (-4415 (((-1303)) 71 T ELT)) (-4419 (((-947) (-947)) 87 T ELT) (((-947)) 86 T ELT)) (-4418 (((-947) (-947)) 85 T ELT) (((-947)) 84 T ELT)) (-4411 (((-897) (-897)) 81 T ELT) (((-897)) 80 T ELT)) (-4421 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4420 (((-947)) 88 T ELT) (((-947) (-947)) 89 T ELT)) (-4412 (((-947) (-947)) 83 T ELT) (((-947)) 82 T ELT)) (-4408 (((-897) (-897)) 75 T ELT) (((-897)) 73 T ELT)) (-4409 (((-897) (-897)) 77 T ELT) (((-897)) 76 T ELT)) (-4410 (((-897) (-897)) 79 T ELT) (((-897)) 78 T ELT))) +(((-1302) (-10 -7 (-15 -4408 ((-897))) (-15 -4408 ((-897) (-897))) (-15 -4409 ((-897))) (-15 -4409 ((-897) (-897))) (-15 -4410 ((-897))) (-15 -4410 ((-897) (-897))) (-15 -4411 ((-897))) (-15 -4411 ((-897) (-897))) (-15 -4412 ((-947))) (-15 -4412 ((-947) (-947))) (-15 -4413 ((-661 (-791)))) (-15 -4413 ((-661 (-791)) (-661 (-791)))) (-15 -4414 ((-661 (-947)))) (-15 -4414 ((-661 (-947)) (-661 (-947)))) (-15 -4415 ((-1303))) (-15 -4416 ((-661 (-1189)))) (-15 -4416 ((-661 (-1189)) (-661 (-1189)))) (-15 -4417 ((-661 (-1189)))) (-15 -4418 ((-947))) (-15 -4419 ((-947))) (-15 -4418 ((-947) (-947))) (-15 -4419 ((-947) (-947))) (-15 -4420 ((-947) (-947))) (-15 -4420 ((-947))) (-15 -4421 ((-229) (-391))) (-15 -4421 ((-229))))) (T -1302)) +((-4421 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302)))) (-4420 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4420 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4419 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4418 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4419 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4418 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4417 (*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302)))) (-4416 (*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302)))) (-4416 (*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302)))) (-4415 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302)))) (-4414 (*1 *2 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1302)))) (-4414 (*1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1302)))) (-4413 (*1 *2 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1302)))) (-4413 (*1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1302)))) (-4412 (*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4412 (*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) (-4411 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4411 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4410 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4410 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4409 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4409 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4408 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) (-4408 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302))))) +(-10 -7 (-15 -4408 ((-897))) (-15 -4408 ((-897) (-897))) (-15 -4409 ((-897))) (-15 -4409 ((-897) (-897))) (-15 -4410 ((-897))) (-15 -4410 ((-897) (-897))) (-15 -4411 ((-897))) (-15 -4411 ((-897) (-897))) (-15 -4412 ((-947))) (-15 -4412 ((-947) (-947))) (-15 -4413 ((-661 (-791)))) (-15 -4413 ((-661 (-791)) (-661 (-791)))) (-15 -4414 ((-661 (-947)))) (-15 -4414 ((-661 (-947)) (-661 (-947)))) (-15 -4415 ((-1303))) (-15 -4416 ((-661 (-1189)))) (-15 -4416 ((-661 (-1189)) (-661 (-1189)))) (-15 -4417 ((-661 (-1189)))) (-15 -4418 ((-947))) (-15 -4419 ((-947))) (-15 -4418 ((-947) (-947))) (-15 -4419 ((-947) (-947))) (-15 -4420 ((-947) (-947))) (-15 -4420 ((-947))) (-15 -4421 ((-229) (-391))) (-15 -4421 ((-229)))) +((-4422 (($) 6 T ELT)) (-4458 (((-886) $) 9 T ELT))) +(((-1303) (-13 (-630 (-886)) (-10 -8 (-15 -4422 ($))))) (T -1303)) +((-4422 (*1 *1) (-5 *1 (-1303)))) +(-13 (-630 (-886)) (-10 -8 (-15 -4422 ($)))) +((-4461 (($ $ |#2|) 10 T ELT))) +(((-1304 |#1| |#2|) (-10 -8 (-15 -4461 (|#1| |#1| |#2|))) (-1305 |#2|) (-376)) (T -1304)) +NIL +(-10 -8 (-15 -4461 (|#1| |#1| |#2|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4423 (((-136)) 38 T ELT)) (-4458 (((-886) $) 13 T ELT)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ |#1|) 39 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1305 |#1|) (-142) (-376)) (T -1305)) +((-4461 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) (-4423 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) +(-13 (-737 |t#1|) (-10 -8 (-15 -4461 ($ $ |t#1|)) (-15 -4423 ((-136))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1131) . T) ((-1247) . T)) +((-4428 (((-661 (-1240 |#1|)) (-1207) (-1240 |#1|)) 83 T ELT)) (-4426 (((-1185 (-1185 (-974 |#1|))) (-1207) (-1185 (-974 |#1|))) 63 T ELT)) (-4429 (((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-791) (-1240 |#1|) (-1185 (-1240 |#1|))) 74 T ELT)) (-4424 (((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791)) 65 T ELT)) (-4427 (((-1 (-1201 (-974 |#1|)) (-974 |#1|)) (-1207)) 32 T ELT)) (-4425 (((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791)) 64 T ELT))) +(((-1306 |#1|) (-10 -7 (-15 -4424 ((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791))) (-15 -4425 ((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791))) (-15 -4426 ((-1185 (-1185 (-974 |#1|))) (-1207) (-1185 (-974 |#1|)))) (-15 -4427 ((-1 (-1201 (-974 |#1|)) (-974 |#1|)) (-1207))) (-15 -4428 ((-661 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -4429 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-791) (-1240 |#1|) (-1185 (-1240 |#1|))))) (-376)) (T -1306)) +((-4429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791)) (-4 *6 (-376)) (-5 *4 (-1240 *6)) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6)) (-5 *5 (-1185 *4)))) (-4428 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-661 (-1240 *5))) (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5)))) (-4427 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-974 *4)) (-974 *4))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-4426 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-974 *5)))) (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-974 *5))))) (-4425 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1185 (-974 *4)) (-1185 (-974 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1185 (-974 *4)) (-1185 (-974 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376))))) +(-10 -7 (-15 -4424 ((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791))) (-15 -4425 ((-1 (-1185 (-974 |#1|)) (-1185 (-974 |#1|))) (-791))) (-15 -4426 ((-1185 (-1185 (-974 |#1|))) (-1207) (-1185 (-974 |#1|)))) (-15 -4427 ((-1 (-1201 (-974 |#1|)) (-974 |#1|)) (-1207))) (-15 -4428 ((-661 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -4429 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-791) (-1240 |#1|) (-1185 (-1240 |#1|))))) +((-4431 (((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|) 80 T ELT)) (-4430 (((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) 79 T ELT))) +(((-1307 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|))) (-363) (-1273 |#1|) (-1273 |#2|) (-422 |#2| |#3|)) (T -1307)) +((-4431 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-4430 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2232 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +(-10 -7 (-15 -4430 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4431 ((-2 (|:| -2232 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|))) +((-3049 (((-114) $ $) NIL T ELT)) (-4432 (((-1165) $) 11 T ELT)) (-4433 (((-1165) $) 9 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1308) (-13 (-1113) (-10 -8 (-15 -4433 ((-1165) $)) (-15 -4432 ((-1165) $))))) (T -1308)) +((-4433 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) +(-13 (-1113) (-10 -8 (-15 -4433 ((-1165) $)) (-15 -4432 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4434 (((-1165) $) 9 T ELT)) (-4458 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT))) +(((-1309) (-13 (-1113) (-10 -8 (-15 -4434 ((-1165) $))))) (T -1309)) +((-4434 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1309))))) +(-13 (-1113) (-10 -8 (-15 -4434 ((-1165) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 58 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 81 T ELT) (($ (-558)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3610 (((-791)) NIL T CONST)) (-4435 (((-1303) (-791)) 16 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 36 T CONST)) (-3147 (($) 84 T CONST)) (-3536 (((-114) $ $) 87 T ELT)) (-4461 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4349 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 63 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-1310 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1079) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4461 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4435 ((-1303) (-791))))) (-1079) (-870) (-815) (-978 |#1| |#3| |#2|) (-661 |#2|) (-661 (-791)) (-791)) (T -1310)) +((-4461 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-815)) (-14 *6 (-661 *3)) (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-978 *2 *4 *3)) (-14 *7 (-661 (-791))) (-14 *8 (-791)))) (-4435 (*1 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-815)) (-14 *8 (-661 *5)) (-5 *2 (-1303)) (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-978 *4 *6 *5)) (-14 *9 (-661 *3)) (-14 *10 *3)))) +(-13 (-1079) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4461 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4435 ((-1303) (-791))))) +((-3049 (((-114) $ $) NIL T ELT)) (-4193 (((-661 (-2 (|:| -4373 $) (|:| -1915 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4194 (((-661 $) (-661 |#4|)) 96 T ELT)) (-3566 (((-661 |#3|) $) NIL T ELT)) (-3391 (((-114) $) NIL T ELT)) (-3382 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4205 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4200 ((|#4| |#4| $) NIL T ELT)) (-3392 (((-2 (|:| |under| $) (|:| -3614 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4222 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3387 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3389 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3388 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3390 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3383 (((-661 |#4|) (-661 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-3384 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3657 (((-3 $ "failed") (-661 |#4|)) NIL T ELT)) (-3656 (($ (-661 |#4|)) NIL T ELT)) (-4311 (((-3 $ #1#) $) 78 T ELT)) (-4197 ((|#4| |#4| $) 83 T ELT)) (-1477 (($ $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-3908 (($ |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3385 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4206 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4195 ((|#4| |#4| $) NIL T ELT)) (-4354 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4507)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4507)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4208 (((-2 (|:| -4373 (-661 |#4|)) (|:| -1915 (-661 |#4|))) $) NIL T ELT)) (-3372 (((-661 |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4207 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3680 ((|#3| $) 84 T ELT)) (-3089 (((-661 |#4|) $) 32 (|has| $ (-6 -4507)) ELT)) (-3745 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT)) (-4438 (((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-661 |#4|)) 38 T ELT)) (-2170 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4470 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3397 (((-661 |#3|) $) NIL T ELT)) (-3396 (((-114) |#3| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-4310 (((-3 |#4| #1#) $) NIL T ELT)) (-4209 (((-661 |#4|) $) 54 T ELT)) (-4203 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4198 ((|#4| |#4| $) 82 T ELT)) (-4211 (((-114) $ $) 93 T ELT)) (-3386 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4204 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4199 ((|#4| |#4| $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4313 (((-3 |#4| #1#) $) 77 T ELT)) (-1478 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-4191 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-4281 (($ $ |#4|) NIL T ELT)) (-2168 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4280 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-1338 (((-114) $ $) NIL T ELT)) (-3905 (((-114) $) 75 T ELT)) (-4075 (($) 46 T ELT)) (-4460 (((-791) $) NIL T ELT)) (-2167 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4507)) (|has| |#4| (-1131))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-3902 (($ $) NIL T ELT)) (-4484 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-4032 (($ (-661 |#4|)) NIL T ELT)) (-3393 (($ $ |#3|) NIL T ELT)) (-3395 (($ $ |#3|) NIL T ELT)) (-4196 (($ $) NIL T ELT)) (-3394 (($ $ |#3|) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (((-661 |#4|) $) 63 T ELT)) (-4190 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-4437 (((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-661 |#4|)) 45 T ELT)) (-4436 (((-661 $) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-661 $) (-661 |#4|)) 74 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-4210 (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3826 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4202 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-2169 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4507)) ELT)) (-4192 (((-661 |#3|) $) NIL T ELT)) (-4445 (((-114) |#3| $) NIL T ELT)) (-3536 (((-114) $ $) NIL T ELT)) (-4469 (((-791) $) NIL (|has| $ (-6 -4507)) ELT))) +(((-1311 |#1| |#2| |#3| |#4|) (-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4438 ((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4438 ((-3 $ "failed") (-661 |#4|))) (-15 -4437 ((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4437 ((-3 $ "failed") (-661 |#4|))) (-15 -4436 ((-661 $) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4436 ((-661 $) (-661 |#4|))))) (-569) (-815) (-870) (-1095 |#1| |#2| |#3|)) (T -1311)) +((-4438 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-4438 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-4437 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-4437 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-4436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-870)) (-5 *2 (-661 (-1311 *6 *7 *8 *9))) (-5 *1 (-1311 *6 *7 *8 *9)))) (-4436 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 (-1311 *4 *5 *6 *7))) (-5 *1 (-1311 *4 *5 *6 *7))))) +(-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4438 ((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4438 ((-3 $ "failed") (-661 |#4|))) (-15 -4437 ((-3 $ "failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4437 ((-3 $ "failed") (-661 |#4|))) (-15 -4436 ((-661 $) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4436 ((-661 $) (-661 |#4|))))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4236 (($) 22 T CONST)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-1312 |#1|) (-142) (-1079)) (T -1312)) +NIL +(-13 (-1079) (-111 |t#1| |t#1|) (-633 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T)) +((-3049 (((-114) $ $) 67 T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4446 (((-661 |#1|) $) 52 T ELT)) (-4459 (($ $ (-791)) 46 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4447 (($ $ (-791)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-4236 (($) NIL T CONST)) (-4451 (($ $ $) 70 T ELT) (($ $ (-841 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3657 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3656 (((-841 |#1|) $) NIL T ELT)) (-4471 (($ $) 39 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4463 (((-114) $) NIL T ELT)) (-4462 (($ $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ (-841 |#1|) |#2|) 38 T ELT)) (-4448 (($ $) 40 T ELT)) (-4453 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4467 (((-841 |#1|) $) NIL T ELT)) (-4468 (((-841 |#1|) $) 41 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4452 (($ $ $) 69 T ELT) (($ $ (-841 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1962 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3377 (((-841 |#1|) $) 35 T ELT)) (-3674 ((|#2| $) 37 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4460 (((-791) $) 43 T ELT)) (-4465 (((-114) $) 47 T ELT)) (-4464 ((|#2| $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-841 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-558)) NIL T ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-841 |#1|)) NIL T ELT)) (-4466 ((|#2| $ $) 76 T ELT) ((|#2| $ (-841 |#1|)) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 13 T CONST)) (-3147 (($) 19 T CONST)) (-3146 (((-661 (-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3536 (((-114) $ $) 44 T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 28 T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-947)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-841 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1313 |#1| |#2|) (-13 (-397 |#2| (-841 |#1|)) (-1320 |#1| |#2|)) (-870) (-1079)) (T -1313)) +NIL +(-13 (-397 |#2| (-841 |#1|)) (-1320 |#1| |#2|)) +((-4454 ((|#3| |#3| (-791)) 28 T ELT)) (-4455 ((|#3| |#3| (-791)) 34 T ELT)) (-4439 ((|#3| |#3| |#3| (-791)) 35 T ELT))) +(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -4455 (|#3| |#3| (-791))) (-15 -4454 (|#3| |#3| (-791))) (-15 -4439 (|#3| |#3| |#3| (-791)))) (-13 (-1079) (-737 (-419 (-558)))) (-870) (-1320 |#2| |#1|)) (T -1314)) +((-4439 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-4454 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-4455 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))) +(-10 -7 (-15 -4455 (|#3| |#3| (-791))) (-15 -4454 (|#3| |#3| (-791))) (-15 -4439 (|#3| |#3| |#3| (-791)))) +((-4444 (((-114) $) 15 T ELT)) (-4445 (((-114) $) 14 T ELT)) (-4440 (($ $) 19 T ELT) (($ $ (-791)) 21 T ELT))) +(((-1315 |#1| |#2|) (-10 -8 (-15 -4440 (|#1| |#1| (-791))) (-15 -4440 (|#1| |#1|)) (-15 -4444 ((-114) |#1|)) (-15 -4445 ((-114) |#1|))) (-1316 |#2|) (-376)) (T -1315)) +NIL +(-10 -8 (-15 -4440 (|#1| |#1| (-791))) (-15 -4440 (|#1| |#1|)) (-15 -4444 ((-114) |#1|)) (-15 -4445 ((-114) |#1|))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-2284 (((-2 (|:| -1990 $) (|:| -4494 $) (|:| |associate| $)) $) 52 T ELT)) (-2283 (($ $) 51 T ELT)) (-2281 (((-114) $) 49 T ELT)) (-4444 (((-114) $) 111 T ELT)) (-4441 (((-791)) 107 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4287 (($ $) 88 T ELT)) (-4483 (((-417 $) $) 87 T ELT)) (-1798 (((-114) $ $) 72 T ELT)) (-4236 (($) 22 T CONST)) (-3657 (((-3 |#1| "failed") $) 118 T ELT)) (-3656 ((|#1| $) 119 T ELT)) (-3045 (($ $ $) 68 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-3044 (($ $ $) 69 T ELT)) (-3224 (((-2 (|:| -4466 (-661 $)) (|:| -2650 $)) (-661 $)) 63 T ELT)) (-1984 (($ $ (-791)) 104 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4235 (((-114) $) 86 T ELT)) (-4284 (((-854 (-947)) $) 101 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2651 (((-114) $) 40 T ELT)) (-1795 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2112 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-2884 (($ $) 85 T ELT)) (-4443 (((-114) $) 110 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-3191 (((-1201 $) (-1201 $) (-1201 $)) 55 T ELT)) (-3644 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4244 (((-417 $) $) 89 T ELT)) (-4442 (((-854 (-947))) 108 T ELT)) (-1796 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2650 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3968 (((-3 $ "failed") $ $) 53 T ELT)) (-3223 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1797 (((-791) $) 71 T ELT)) (-3362 (((-2 (|:| -2194 $) (|:| -3385 $)) $ $) 70 T ELT)) (-1985 (((-3 (-791) "failed") $ $) 102 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4423 (((-136)) 116 T ELT)) (-4460 (((-854 (-947)) $) 109 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3185 (((-711 $) $) 100 (-4039 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-2282 (((-114) $ $) 50 T ELT)) (-4445 (((-114) $) 112 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-4440 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-791)) 105 (|has| |#1| (-381)) ELT)) (-3536 (((-114) $ $) 8 T ELT)) (-4461 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-1316 |#1|) (-142) (-376)) (T -1316)) +((-4445 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4444 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4443 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-947))))) (-4442 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-947))))) (-4441 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-791)))) (-4440 (*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-4440 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) +(-13 (-376) (-1068 |t#1|) (-1305 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-414)) |%noBranch|) (-15 -4445 ((-114) $)) (-15 -4444 ((-114) $)) (-15 -4443 ((-114) $)) (-15 -4460 ((-854 (-947)) $)) (-15 -4442 ((-854 (-947)))) (-15 -4441 ((-791))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-414)) (-15 -4440 ($ $)) (-15 -4440 ($ $ (-791)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -4039 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 #1#) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) -4039 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-464) . T) ((-569) . T) ((-666 #1#) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 #1#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 #1#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-737 #1#) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-949) . T) ((-1068 |#1|) . T) ((-1081 #1#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #1#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T)) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4446 (((-661 |#1|) $) 52 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4447 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-791)) 54 (|has| |#2| (-175)) ELT)) (-4236 (($) 22 T CONST)) (-4451 (($ $ |#1|) 66 T ELT) (($ $ (-841 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3657 (((-3 (-841 |#1|) "failed") $) 76 T ELT)) (-3656 (((-841 |#1|) $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4463 (((-114) $) 57 T ELT)) (-4462 (($ $) 56 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-4449 (((-114) $) 62 T ELT)) (-4450 (($ (-841 |#1|) |#2|) 63 T ELT)) (-4448 (($ $) 61 T ELT)) (-4453 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4467 (((-841 |#1|) $) 73 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4452 (($ $ |#1|) 69 T ELT) (($ $ (-841 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4465 (((-114) $) 59 T ELT)) (-4464 ((|#2| $) 58 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-841 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4466 ((|#2| $ (-841 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1317 |#1| |#2|) (-142) (-870) (-1079)) (T -1317)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4467 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-841 *3)))) (-4453 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))) (-4466 (*1 *2 *1 *3) (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-4466 (*1 *2 *1 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-4452 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4452 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4452 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4451 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4451 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4451 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4450 (*1 *1 *2 *3) (-12 (-5 *2 (-841 *4)) (-4 *4 (-870)) (-4 *1 (-1317 *4 *3)) (-4 *3 (-1079)))) (-4449 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114)))) (-4448 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4458 (*1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4465 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114)))) (-4464 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-4463 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114)))) (-4462 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4447 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) (-4 *3 (-175)))) (-4447 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-4 *4 (-175)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4446 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-661 *3))))) +(-13 (-1079) (-1312 |t#2|) (-1068 (-841 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4467 ((-841 |t#1|) $)) (-15 -4453 ((-2 (|:| |k| (-841 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4466 (|t#2| $ (-841 |t#1|))) (-15 -4466 (|t#2| $ $)) (-15 -4452 ($ $ |t#1|)) (-15 -4452 ($ $ (-841 |t#1|))) (-15 -4452 ($ $ $)) (-15 -4451 ($ $ |t#1|)) (-15 -4451 ($ $ (-841 |t#1|))) (-15 -4451 ($ $ $)) (-15 -4450 ($ (-841 |t#1|) |t#2|)) (-15 -4449 ((-114) $)) (-15 -4448 ($ $)) (-15 -4458 ($ |t#1|)) (-15 -4465 ((-114) $)) (-15 -4464 (|t#2| $)) (-15 -4463 ((-114) $)) (-15 -4462 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -4447 ($ $ $)) (-15 -4447 ($ $ (-791)))) |%noBranch|) (-15 -4470 ($ (-1 |t#2| |t#2|) $)) (-15 -4446 ((-661 |t#1|) $)) (IF (|has| |t#2| (-6 -4500)) (-6 -4500) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 #1=(-841 |#1|)) . T) ((-633 |#2|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) |has| |#2| (-175)) ((-737 |#2|) |has| |#2| (-175)) ((-746) . T) ((-1068 #1#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1312 |#2|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4446 (((-661 |#1|) $) 97 T ELT)) (-4459 (($ $ (-791)) 101 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4447 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-4236 (($) NIL T CONST)) (-4451 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3657 (((-3 (-841 |#1|) #1="failed") $) NIL T ELT) (((-3 (-917 |#1|) #1#) $) NIL T ELT)) (-3656 (((-841 |#1|) $) NIL T ELT) (((-917 |#1|) $) NIL T ELT)) (-4471 (($ $) 100 T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4463 (((-114) $) 89 T ELT)) (-4462 (($ $) 92 T ELT)) (-4456 (($ $ $ (-791)) 102 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ (-841 |#1|) |#2|) NIL T ELT) (($ (-917 |#1|) |#2|) 28 T ELT)) (-4448 (($ $) 118 T ELT)) (-4453 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4467 (((-841 |#1|) $) NIL T ELT)) (-4468 (((-841 |#1|) $) NIL T ELT)) (-4470 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4452 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4454 (($ $ (-791)) 111 (|has| |#2| (-737 (-419 (-558)))) ELT)) (-1962 (((-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3377 (((-917 |#1|) $) 82 T ELT)) (-3674 ((|#2| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4455 (($ $ (-791)) 108 (|has| |#2| (-737 (-419 (-558)))) ELT)) (-4460 (((-791) $) 98 T ELT)) (-4465 (((-114) $) 83 T ELT)) (-4464 ((|#2| $) 87 T ELT)) (-4458 (((-886) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-841 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-917 |#1|)) NIL T ELT) (($ (-684 |#1| |#2|)) 47 T ELT) (((-1313 |#1| |#2|) $) 75 T ELT) (((-1322 |#1| |#2|) $) 80 T ELT)) (-4329 (((-661 |#2|) $) NIL T ELT)) (-4189 ((|#2| $ (-917 |#1|)) NIL T ELT)) (-4466 ((|#2| $ (-841 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 21 T CONST)) (-3147 (($) 27 T CONST)) (-3146 (((-661 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4457 (((-3 (-684 |#1| |#2|) "failed") $) 117 T ELT)) (-3536 (((-114) $ $) 76 T ELT)) (-4349 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-4351 (($ $ $) 20 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-917 |#1|)) NIL T ELT))) +(((-1318 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-397 |#2| (-917 |#1|)) (-10 -8 (-15 -4458 ($ (-684 |#1| |#2|))) (-15 -4458 ((-1313 |#1| |#2|) $)) (-15 -4458 ((-1322 |#1| |#2|) $)) (-15 -4457 ((-3 (-684 |#1| |#2|) "failed") $)) (-15 -4456 ($ $ $ (-791))) (IF (|has| |#2| (-737 (-419 (-558)))) (PROGN (-15 -4455 ($ $ (-791))) (-15 -4454 ($ $ (-791)))) |%noBranch|))) (-870) (-175)) (T -1318)) +((-4458 (*1 *1 *2) (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *1 (-1318 *3 *4)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4457 (*1 *2 *1) (|partial| -12 (-5 *2 (-684 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4456 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) (-4455 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-737 (-419 (-558)))) (-4 *3 (-870)) (-4 *4 (-175)))) (-4454 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-737 (-419 (-558)))) (-4 *3 (-870)) (-4 *4 (-175))))) +(-13 (-1320 |#1| |#2|) (-397 |#2| (-917 |#1|)) (-10 -8 (-15 -4458 ($ (-684 |#1| |#2|))) (-15 -4458 ((-1313 |#1| |#2|) $)) (-15 -4458 ((-1322 |#1| |#2|) $)) (-15 -4457 ((-3 (-684 |#1| |#2|) "failed") $)) (-15 -4456 ($ $ $ (-791))) (IF (|has| |#2| (-737 (-419 (-558)))) (PROGN (-15 -4455 ($ $ (-791))) (-15 -4454 ($ $ (-791)))) |%noBranch|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4446 (((-661 (-1207)) $) NIL T ELT)) (-4474 (($ (-1313 (-1207) |#1|)) NIL T ELT)) (-4459 (($ $ (-791)) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4447 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-4236 (($) NIL T CONST)) (-4451 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-3657 (((-3 (-841 (-1207)) "failed") $) NIL T ELT)) (-3656 (((-841 (-1207)) $) NIL T ELT)) (-3969 (((-3 $ "failed") $) NIL T ELT)) (-4463 (((-114) $) NIL T ELT)) (-4462 (($ $) NIL T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ (-841 (-1207)) |#1|) NIL T ELT)) (-4448 (($ $) NIL T ELT)) (-4453 (((-2 (|:| |k| (-841 (-1207))) (|:| |c| |#1|)) $) NIL T ELT)) (-4467 (((-841 (-1207)) $) NIL T ELT)) (-4468 (((-841 (-1207)) $) NIL T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4452 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4475 (((-1313 (-1207) |#1|) $) NIL T ELT)) (-4460 (((-791) $) NIL T ELT)) (-4465 (((-114) $) NIL T ELT)) (-4464 ((|#1| $) NIL T ELT)) (-4458 (((-886) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-841 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT)) (-4466 ((|#1| $ (-841 (-1207))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3610 (((-791)) NIL T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) NIL T CONST)) (-4473 (((-661 (-2 (|:| |k| (-1207)) (|:| |c| $))) $) NIL T ELT)) (-3147 (($) NIL T CONST)) (-3536 (((-114) $ $) NIL T ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) NIL T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1207) $) NIL T ELT))) +(((-1319 |#1|) (-13 (-1320 (-1207) |#1|) (-10 -8 (-15 -4475 ((-1313 (-1207) |#1|) $)) (-15 -4474 ($ (-1313 (-1207) |#1|))) (-15 -4473 ((-661 (-2 (|:| |k| (-1207)) (|:| |c| $))) $)))) (-1079)) (T -1319)) +((-4475 (*1 *2 *1) (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) (-4474 (*1 *1 *2) (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) (-4473 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3))))) (-5 *1 (-1319 *3)) (-4 *3 (-1079))))) +(-13 (-1320 #1=(-1207) |#1|) (-10 -8 (-15 -4475 ((-1313 #1# |#1|) $)) (-15 -4474 ($ (-1313 #1# |#1|))) (-15 -4473 ((-661 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-3049 (((-114) $ $) 7 T ELT)) (-3688 (((-114) $) 21 T ELT)) (-4446 (((-661 |#1|) $) 52 T ELT)) (-4459 (($ $ (-791)) 86 T ELT)) (-1436 (((-3 $ "failed") $ $) 25 T ELT)) (-4447 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-791)) 54 (|has| |#2| (-175)) ELT)) (-4236 (($) 22 T CONST)) (-4451 (($ $ |#1|) 66 T ELT) (($ $ (-841 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3657 (((-3 (-841 |#1|) "failed") $) 76 T ELT)) (-3656 (((-841 |#1|) $) 77 T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4463 (((-114) $) 57 T ELT)) (-4462 (($ $) 56 T ELT)) (-2651 (((-114) $) 40 T ELT)) (-4449 (((-114) $) 62 T ELT)) (-4450 (($ (-841 |#1|) |#2|) 63 T ELT)) (-4448 (($ $) 61 T ELT)) (-4453 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4467 (((-841 |#1|) $) 73 T ELT)) (-4468 (((-841 |#1|) $) 88 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4452 (($ $ |#1|) 69 T ELT) (($ $ (-841 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3742 (((-1189) $) 11 T ELT)) (-3743 (((-1150) $) 12 T ELT)) (-4460 (((-791) $) 87 T ELT)) (-4465 (((-114) $) 59 T ELT)) (-4464 ((|#2| $) 58 T ELT)) (-4458 (((-886) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-841 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4466 ((|#2| $ (-841 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3610 (((-791)) 37 T CONST)) (-1387 (((-114) $ $) 6 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 39 T CONST)) (-3536 (((-114) $ $) 8 T ELT)) (-4349 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4351 (($ $ $) 18 T ELT)) (** (($ $ (-947)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-947) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1320 |#1| |#2|) (-142) (-870) (-1079)) (T -1320)) +((-4468 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-841 *3)))) (-4460 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-791)))) (-4459 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(-13 (-1317 |t#1| |t#2|) (-10 -8 (-15 -4468 ((-841 |t#1|) $)) (-15 -4460 ((-791) $)) (-15 -4459 ($ $ (-791))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 #1=(-841 |#1|)) . T) ((-633 |#2|) . T) ((-630 (-886)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) |has| |#2| (-175)) ((-737 |#2|) |has| |#2| (-175)) ((-746) . T) ((-1068 #1#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1087) . T) ((-1142) . T) ((-1131) . T) ((-1247) . T) ((-1312 |#2|) . T) ((-1317 |#1| |#2|) . T)) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) NIL T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4236 (($) NIL T CONST)) (-3657 (((-3 |#2| "failed") $) NIL T ELT)) (-3656 ((|#2| $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 42 T ELT)) (-4463 (((-114) $) 36 T ELT)) (-4462 (($ $) 37 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-2659 (((-791) $) NIL T ELT)) (-3304 (((-661 $) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ |#2| |#1|) NIL T ELT)) (-4467 ((|#2| $) 24 T ELT)) (-4468 ((|#2| $) 22 T ELT)) (-4470 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1962 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3377 ((|#2| $) NIL T ELT)) (-3674 ((|#1| $) NIL T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4465 (((-114) $) 32 T ELT)) (-4464 ((|#1| $) 33 T ELT)) (-4458 (((-886) $) 65 T ELT) (($ (-558)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4329 (((-661 |#1|) $) NIL T ELT)) (-4189 ((|#1| $ |#2|) NIL T ELT)) (-4466 ((|#1| $ |#2|) 28 T ELT)) (-3610 (((-791)) 14 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 29 T CONST)) (-3147 (($) 11 T CONST)) (-3146 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3536 (((-114) $ $) 30 T ELT)) (-4461 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-4349 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4351 (($ $ $) 50 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 52 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4469 (((-791) $) 16 T ELT))) +(((-1321 |#1| |#2|) (-13 (-1079) (-1312 |#1|) (-397 |#1| |#2|) (-633 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4469 ((-791) $)) (-15 -4468 (|#2| $)) (-15 -4467 (|#2| $)) (-15 -4471 ($ $)) (-15 -4466 (|#1| $ |#2|)) (-15 -4465 ((-114) $)) (-15 -4464 (|#1| $)) (-15 -4463 ((-114) $)) (-15 -4462 ($ $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4461 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4500)) (-6 -4500) |%noBranch|) (IF (|has| |#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) (-1079) (-868)) (T -1321)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868)))) (-4471 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868)))) (-4470 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1321 *3 *4)) (-4 *4 (-868)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868)))) (-4468 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1079)))) (-4467 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1079)))) (-4466 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-4465 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868)))) (-4464 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-4463 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868)))) (-4462 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868)))) (-4461 (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1079)) (-4 *3 (-868))))) +(-13 (-1079) (-1312 |#1|) (-397 |#1| |#2|) (-633 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4469 ((-791) $)) (-15 -4468 (|#2| $)) (-15 -4467 (|#2| $)) (-15 -4471 ($ $)) (-15 -4466 (|#1| $ |#2|)) (-15 -4465 ((-114) $)) (-15 -4464 (|#1| $)) (-15 -4463 ((-114) $)) (-15 -4462 ($ $)) (-15 -4470 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4461 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4500)) (-6 -4500) |%noBranch|) (IF (|has| |#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|))) +((-3049 (((-114) $ $) 27 T ELT)) (-3688 (((-114) $) NIL T ELT)) (-4446 (((-661 |#1|) $) 132 T ELT)) (-4474 (($ (-1313 |#1| |#2|)) 50 T ELT)) (-4459 (($ $ (-791)) 38 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-4447 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-791)) 52 (|has| |#2| (-175)) ELT)) (-4236 (($) NIL T CONST)) (-4451 (($ $ |#1|) 114 T ELT) (($ $ (-841 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3657 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3656 (((-841 |#1|) $) NIL T ELT)) (-3969 (((-3 $ "failed") $) 122 T ELT)) (-4463 (((-114) $) 117 T ELT)) (-4462 (($ $) 118 T ELT)) (-2651 (((-114) $) NIL T ELT)) (-4449 (((-114) $) NIL T ELT)) (-4450 (($ (-841 |#1|) |#2|) 20 T ELT)) (-4448 (($ $) NIL T ELT)) (-4453 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4467 (((-841 |#1|) $) 123 T ELT)) (-4468 (((-841 |#1|) $) 126 T ELT)) (-4470 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4452 (($ $ |#1|) 112 T ELT) (($ $ (-841 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4475 (((-1313 |#1| |#2|) $) 94 T ELT)) (-4460 (((-791) $) 129 T ELT)) (-4465 (((-114) $) 81 T ELT)) (-4464 ((|#2| $) 32 T ELT)) (-4458 (((-886) $) 73 T ELT) (($ (-558)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-841 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4466 ((|#2| $ (-841 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3610 (((-791)) 120 T CONST)) (-1387 (((-114) $ $) NIL T ELT)) (-3141 (($) 15 T CONST)) (-4473 (((-661 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-3147 (($) 33 T CONST)) (-3536 (((-114) $ $) 14 T ELT)) (-4349 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-4351 (($ $ $) 61 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 55 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) 53 T ELT) (($ (-558) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1322 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-10 -8 (-15 -4475 ((-1313 |#1| |#2|) $)) (-15 -4474 ($ (-1313 |#1| |#2|))) (-15 -4473 ((-661 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-870) (-1079)) (T -1322)) +((-4475 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4474 (*1 *1 *2) (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *1 (-1322 *3 *4)))) (-4473 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) (-5 *1 (-1322 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(-13 (-1320 |#1| |#2|) (-10 -8 (-15 -4475 ((-1313 |#1| |#2|) $)) (-15 -4474 ($ (-1313 |#1| |#2|))) (-15 -4473 ((-661 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3049 (((-114) $ $) NIL T ELT)) (-4477 (($ (-661 (-947))) 10 T ELT)) (-4476 (((-1001) $) 12 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4458 (((-886) $) 25 T ELT) (($ (-1001)) 14 T ELT) (((-1001) $) 13 T ELT)) (-1387 (((-114) $ $) NIL T ELT)) (-3536 (((-114) $ $) 17 T ELT))) +(((-1323) (-13 (-1131) (-502 (-1001)) (-10 -8 (-15 -4477 ($ (-661 (-947)))) (-15 -4476 ((-1001) $))))) (T -1323)) +((-4477 (*1 *1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1323)))) (-4476 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1323))))) +(-13 (-1131) (-502 (-1001)) (-10 -8 (-15 -4477 ($ (-661 (-947)))) (-15 -4476 ((-1001) $)))) +((-4478 (((-661 (-1185 |#1|)) (-1 (-661 (-1185 |#1|)) (-661 (-1185 |#1|))) (-558)) 16 T ELT) (((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|))) 13 T ELT))) +(((-1324 |#1|) (-10 -7 (-15 -4478 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -4478 ((-661 (-1185 |#1|)) (-1 (-661 (-1185 |#1|)) (-661 (-1185 |#1|))) (-558)))) (-1247)) (T -1324)) +((-4478 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-661 (-1185 *5)) (-661 (-1185 *5)))) (-5 *4 (-558)) (-5 *2 (-661 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247)))) (-4478 (*1 *2 *3) (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1324 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -4478 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -4478 ((-661 (-1185 |#1|)) (-1 (-661 (-1185 |#1|)) (-661 (-1185 |#1|))) (-558)))) +((-4480 (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|))) 174 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114)) 173 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114)) 172 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-1076 |#1| |#2|)) 156 T ELT)) (-4479 (((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|))) 85 T ELT) (((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114)) 84 T ELT) (((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114) (-114)) 83 T ELT)) (-4483 (((-661 (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))) (-1076 |#1| |#2|)) 73 T ELT)) (-4481 (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|))) 140 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114)) 139 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114)) 138 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|)) 132 T ELT)) (-4482 (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|))) 145 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114)) 144 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114)) 143 T ELT) (((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|)) 142 T ELT)) (-4484 (((-661 (-800 |#1| (-887 |#3|))) (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))) 111 T ELT) (((-1201 (-1054 (-419 |#1|))) (-1201 |#1|)) 102 T ELT) (((-974 (-1054 (-419 |#1|))) (-800 |#1| (-887 |#3|))) 109 T ELT) (((-974 (-1054 (-419 |#1|))) (-974 |#1|)) 107 T ELT) (((-800 |#1| (-887 |#3|)) (-800 |#1| (-887 |#2|))) 33 T ELT))) +(((-1325 |#1| |#2| |#3|) (-10 -7 (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114))) (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-1076 |#1| |#2|))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)))) (-15 -4483 ((-661 (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -4484 ((-800 |#1| (-887 |#3|)) (-800 |#1| (-887 |#2|)))) (-15 -4484 ((-974 (-1054 (-419 |#1|))) (-974 |#1|))) (-15 -4484 ((-974 (-1054 (-419 |#1|))) (-800 |#1| (-887 |#3|)))) (-15 -4484 ((-1201 (-1054 (-419 |#1|))) (-1201 |#1|))) (-15 -4484 ((-661 (-800 |#1| (-887 |#3|))) (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))))) (-13 (-869) (-319) (-149) (-1050)) (-661 (-1207)) (-661 (-1207))) (T -1325)) +((-4484 (*1 *2 *3) (-12 (-5 *3 (-1176 *4 (-543 (-887 *6)) (-887 *6) (-800 *4 (-887 *6)))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-800 *4 (-887 *6)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-1201 (-1054 (-419 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-800 *4 (-887 *6))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *6 (-661 (-1207))) (-5 *2 (-974 (-1054 (-419 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-974 *4)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-974 (-1054 (-419 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4484 (*1 *2 *3) (-12 (-5 *3 (-800 *4 (-887 *5))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *5 (-661 (-1207))) (-5 *2 (-800 *4 (-887 *6))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) (-4483 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-1176 *4 (-543 (-887 *6)) (-887 *6) (-800 *4 (-887 *6))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) (-4482 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4482 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4482 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4482 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) (-4481 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4481 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4481 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4481 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4481 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) (-4480 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-661 (-974 *4))) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4480 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4480 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4480 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4480 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) (-4479 (*1 *2 *3) (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-1076 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) (-4479 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) (-4479 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207)))))) +(-10 -7 (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)) (-114))) (-15 -4479 ((-661 (-1076 |#1| |#2|)) (-661 (-974 |#1|)))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-1076 |#1| |#2|))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)) (-114))) (-15 -4480 ((-661 (-2 (|:| -1960 (-1201 |#1|)) (|:| -3724 (-661 (-974 |#1|))))) (-661 (-974 |#1|)))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114))) (-15 -4481 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-1076 |#1| |#2|))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114) (-114))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)) (-114))) (-15 -4482 ((-661 (-661 (-1054 (-419 |#1|)))) (-661 (-974 |#1|)))) (-15 -4483 ((-661 (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -4484 ((-800 |#1| (-887 |#3|)) (-800 |#1| (-887 |#2|)))) (-15 -4484 ((-974 (-1054 (-419 |#1|))) (-974 |#1|))) (-15 -4484 ((-974 (-1054 (-419 |#1|))) (-800 |#1| (-887 |#3|)))) (-15 -4484 ((-1201 (-1054 (-419 |#1|))) (-1201 |#1|))) (-15 -4484 ((-661 (-800 |#1| (-887 |#3|))) (-1176 |#1| (-543 (-887 |#3|)) (-887 |#3|) (-800 |#1| (-887 |#3|)))))) +((-4487 (((-3 (-1297 (-419 (-558))) "failed") (-1297 |#1|) |#1|) 21 T ELT)) (-4485 (((-114) (-1297 |#1|)) 12 T ELT)) (-4486 (((-3 (-1297 (-558)) "failed") (-1297 |#1|)) 16 T ELT))) +(((-1326 |#1|) (-10 -7 (-15 -4485 ((-114) (-1297 |#1|))) (-15 -4486 ((-3 (-1297 (-558)) "failed") (-1297 |#1|))) (-15 -4487 ((-3 (-1297 (-419 (-558))) "failed") (-1297 |#1|) |#1|))) (-13 (-1079) (-658 (-558)))) (T -1326)) +((-4487 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) (-5 *2 (-1297 (-419 (-558)))) (-5 *1 (-1326 *4)))) (-4486 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) (-5 *2 (-1297 (-558))) (-5 *1 (-1326 *4)))) (-4485 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-1326 *4))))) +(-10 -7 (-15 -4485 ((-114) (-1297 |#1|))) (-15 -4486 ((-3 (-1297 (-558)) "failed") (-1297 |#1|))) (-15 -4487 ((-3 (-1297 (-419 (-558))) "failed") (-1297 |#1|) |#1|))) +((-3049 (((-114) $ $) NIL T ELT)) (-3688 (((-114) $) 12 T ELT)) (-1436 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-791)) 9 T ELT)) (-4236 (($) NIL T CONST)) (-3969 (((-3 $ "failed") $) 57 T ELT)) (-3477 (($) 46 T ELT)) (-2651 (((-114) $) 38 T ELT)) (-3947 (((-711 $) $) 36 T ELT)) (-2230 (((-947) $) 14 T ELT)) (-3742 (((-1189) $) NIL T ELT)) (-3948 (($) 26 T CONST)) (-2641 (($ (-947)) 47 T ELT)) (-3743 (((-1150) $) NIL T ELT)) (-4484 (((-558) $) 16 T ELT)) (-4458 (((-886) $) 21 T ELT) (($ (-558)) 18 T ELT)) (-3610 (((-791)) 10 T CONST)) (-1387 (((-114) $ $) 59 T ELT)) (-3141 (($) 23 T CONST)) (-3147 (($) 25 T CONST)) (-3536 (((-114) $ $) 31 T ELT)) (-4349 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-4351 (($ $ $) 29 T ELT)) (** (($ $ (-947)) NIL T ELT) (($ $ (-791)) 52 T ELT)) (* (($ (-947) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1327 |#1|) (-13 (-175) (-381) (-631 (-558)) (-1182)) (-947)) (T -1327)) +NIL +(-13 (-175) (-381) (-631 (-558)) (-1182)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3448028 3448033 3448038 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3448013 3448018 3448023 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3447998 3448003 3448008 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3447983 3447988 3447993 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1327 3446976 3447858 3447935 "ZMOD" 3447940 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1326 3446012 3446194 3446417 "ZLINDEP" 3446808 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1325 3435174 3437080 3439052 "ZDSOLVE" 3444142 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1324 3434408 3434561 3434750 "YSTREAM" 3435020 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1323 3433768 3434077 3434192 "YDIAGRAM" 3434315 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1322 3431216 3433069 3433273 "XRPOLY" 3433611 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1321 3427483 3429087 3429662 "XPR" 3430688 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1320 3424814 3426490 3426545 "XPOLYC" 3426833 NIL XPOLYC (NIL T T) -9 NIL 3426946 NIL) (-1319 3422218 3424154 3424358 "XPOLY" 3424654 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1318 3418166 3420735 3421123 "XPBWPOLY" 3421876 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1317 3413058 3414637 3414692 "XFALG" 3416864 NIL XFALG (NIL T T) -9 NIL 3417653 NIL) (-1316 3408336 3411034 3411076 "XF" 3411697 NIL XF (NIL T) -9 NIL 3412097 NIL) (-1315 3407933 3408045 3408214 "XF-" 3408219 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1314 3407048 3407170 3407375 "XEXPPKG" 3407825 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1313 3404789 3406898 3406994 "XDPOLY" 3406999 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3403444 3404182 3404225 "XALG" 3404230 NIL XALG (NIL T) -9 NIL 3404341 NIL) (-1311 3396495 3401421 3401915 "WUTSET" 3403036 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1310 3394597 3395547 3395870 "WP" 3396306 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1309 3394145 3394419 3394489 "WHILEAST" 3394549 T WHILEAST (NIL) -8 NIL NIL NIL) (-1308 3393557 3393862 3393956 "WHEREAST" 3394073 T WHEREAST (NIL) -8 NIL NIL NIL) (-1307 3392431 3392641 3392936 "WFFINTBS" 3393354 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1306 3390299 3390762 3391224 "WEIER" 3392003 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1305 3389223 3389781 3389823 "VSPACE" 3389959 NIL VSPACE (NIL T) -9 NIL 3390033 NIL) (-1304 3389055 3389088 3389179 "VSPACE-" 3389184 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1303 3388852 3388906 3388974 "VOID" 3389009 T VOID (NIL) -8 NIL NIL NIL) (-1302 3385120 3385915 3386652 "VIEWDEF" 3388137 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1301 3374064 3376668 3378841 "VIEW3D" 3382969 T VIEW3D (NIL) -8 NIL NIL NIL) (-1300 3366081 3367975 3369554 "VIEW2D" 3372507 T VIEW2D (NIL) -8 NIL NIL NIL) (-1299 3364181 3364576 3364982 "VIEW" 3365697 T VIEW (NIL) -7 NIL NIL NIL) (-1298 3362734 3363017 3363335 "VECTOR2" 3363911 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1297 3357754 3362504 3362596 "VECTOR" 3362677 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1296 3350813 3355458 3355501 "VECTCAT" 3356496 NIL VECTCAT (NIL T) -9 NIL 3357083 NIL) (-1295 3349755 3350081 3350471 "VECTCAT-" 3350476 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1294 3349161 3349406 3349526 "VARIABLE" 3349670 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1293 3349094 3349099 3349129 "UTYPE" 3349134 T UTYPE (NIL) -9 NIL NIL NIL) (-1292 3347902 3348078 3348340 "UTSODETL" 3348920 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1291 3345294 3345802 3346326 "UTSODE" 3347443 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1290 3335304 3341227 3341270 "UTSCAT" 3342382 NIL UTSCAT (NIL T) -9 NIL 3343140 NIL) (-1289 3332430 3333374 3334363 "UTSCAT-" 3334368 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1288 3332051 3332100 3332233 "UTS2" 3332381 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1287 3323368 3329812 3330292 "UTS" 3331629 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1286 3317347 3320178 3320221 "URAGG" 3322291 NIL URAGG (NIL T) -9 NIL 3323014 NIL) (-1285 3314382 3315349 3316372 "URAGG-" 3316377 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1284 3309765 3313017 3313482 "UPXSSING" 3314046 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1283 3302196 3309669 3309741 "UPXSCONS" 3309746 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1282 3290956 3298398 3298460 "UPXSCCA" 3299034 NIL UPXSCCA (NIL T T) -9 NIL 3299267 NIL) (-1281 3290576 3290679 3290853 "UPXSCCA-" 3290858 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1280 3279236 3286403 3286446 "UPXSCAT" 3287094 NIL UPXSCAT (NIL T) -9 NIL 3287703 NIL) (-1279 3278660 3278745 3278924 "UPXS2" 3279151 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1278 3270156 3278042 3278306 "UPXS" 3278454 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3268795 3269065 3269415 "UPSQFREE" 3269900 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1276 3261626 3265061 3265116 "UPSCAT" 3266196 NIL UPSCAT (NIL T T) -9 NIL 3266962 NIL) (-1275 3260782 3261037 3261364 "UPSCAT-" 3261369 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1274 3260403 3260452 3260585 "UPOLYC2" 3260733 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1273 3244579 3253530 3253573 "UPOLYC" 3255674 NIL UPOLYC (NIL T) -9 NIL 3256895 NIL) (-1272 3235484 3238371 3241499 "UPOLYC-" 3241504 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1271 3234805 3234930 3235094 "UPMP" 3235373 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1270 3234352 3234439 3234578 "UPDIVP" 3234718 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1269 3232890 3233169 3233485 "UPDECOMP" 3234101 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1268 3232103 3232233 3232419 "UPCDEN" 3232774 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1267 3231616 3231691 3231840 "UP2" 3232028 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1266 3222247 3231299 3231428 "UP" 3231535 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1265 3221452 3221589 3221794 "UNISEG2" 3222090 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1264 3219805 3220656 3220933 "UNISEG" 3221210 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1263 3218847 3219045 3219271 "UNIFACT" 3219621 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1262 3205594 3218751 3218823 "ULSCONS" 3218828 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1261 3185427 3198674 3198736 "ULSCCAT" 3199374 NIL ULSCCAT (NIL T T) -9 NIL 3199663 NIL) (-1260 3184459 3184746 3185122 "ULSCCAT-" 3185127 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1259 3172916 3180005 3180048 "ULSCAT" 3180911 NIL ULSCAT (NIL T) -9 NIL 3181642 NIL) (-1258 3172340 3172425 3172604 "ULS2" 3172831 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1257 3154187 3171652 3171894 "ULS" 3172156 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1256 3153106 3153806 3153920 "UINT8" 3154031 T UINT8 (NIL) -8 NIL NIL 3154123) (-1255 3152024 3152724 3152838 "UINT64" 3152949 T UINT64 (NIL) -8 NIL NIL 3153041) (-1254 3150942 3151642 3151756 "UINT32" 3151867 T UINT32 (NIL) -8 NIL NIL 3151959) (-1253 3149860 3150560 3150674 "UINT16" 3150785 T UINT16 (NIL) -8 NIL NIL 3150877) (-1252 3147939 3149106 3149136 "UFD" 3149348 T UFD (NIL) -9 NIL 3149462 NIL) (-1251 3147721 3147779 3147874 "UFD-" 3147879 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1250 3146779 3146986 3147202 "UDVO" 3147527 T UDVO (NIL) -7 NIL NIL NIL) (-1249 3144545 3145004 3145475 "UDPO" 3146343 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1248 3144257 3144500 3144531 "TYPEAST" 3144536 T TYPEAST (NIL) -8 NIL NIL NIL) (-1247 3144190 3144195 3144225 "TYPE" 3144230 T TYPE (NIL) -9 NIL NIL NIL) (-1246 3143143 3143363 3143603 "TWOFACT" 3143984 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1245 3142118 3142552 3142787 "TUPLE" 3142943 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1244 3139755 3140328 3140867 "TUBETOOL" 3141601 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1243 3138561 3138802 3139044 "TUBE" 3139548 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1242 3126810 3131318 3131415 "TSETCAT" 3136684 NIL TSETCAT (NIL T T T T) -9 NIL 3138216 NIL) (-1241 3121278 3123142 3125033 "TSETCAT-" 3125038 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1240 3115464 3120250 3120533 "TS" 3121030 NIL TS (NIL T) -8 NIL NIL NIL) (-1239 3109937 3110950 3111879 "TRMANIP" 3114600 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1238 3109366 3109441 3109604 "TRIMAT" 3109869 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1237 3107178 3107469 3107826 "TRIGMNIP" 3109115 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1236 3106662 3106811 3106841 "TRIGCAT" 3107054 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1235 3106307 3106410 3106551 "TRIGCAT-" 3106556 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1234 3103033 3105165 3105446 "TREE" 3106061 NIL TREE (NIL T) -8 NIL NIL NIL) (-1233 3102139 3102835 3102865 "TRANFUN" 3102900 T TRANFUN (NIL) -9 NIL 3102966 NIL) (-1232 3101358 3101609 3101889 "TRANFUN-" 3101894 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1231 3101156 3101194 3101255 "TOPSP" 3101319 T TOPSP (NIL) -7 NIL NIL NIL) (-1230 3100486 3100619 3100773 "TOOLSIGN" 3101037 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1229 3099000 3099663 3099902 "TEXTFILE" 3100269 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1228 3098775 3098812 3098884 "TEX1" 3098963 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1227 3096579 3097228 3097657 "TEX" 3098368 T TEX (NIL) -8 NIL NIL NIL) (-1226 3096215 3096290 3096380 "TEMUTL" 3096511 T TEMUTL (NIL) -7 NIL NIL NIL) (-1225 3094309 3094649 3094974 "TBCMPPK" 3095938 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1224 3085745 3092395 3092451 "TBAGG" 3092851 NIL TBAGG (NIL T T) -9 NIL 3093062 NIL) (-1223 3080629 3082303 3084057 "TBAGG-" 3084062 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1222 3079995 3080120 3080265 "TANEXP" 3080518 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1221 3079446 3079770 3079860 "TALGOP" 3079940 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1220 3078840 3078957 3079095 "TABLEAU" 3079343 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1219 3071970 3078697 3078790 "TABLE" 3078795 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1218 3066500 3067798 3069046 "TABLBUMP" 3070756 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1217 3065710 3065869 3066050 "SYSTEM" 3066341 T SYSTEM (NIL) -8 NIL NIL NIL) (-1216 3062115 3062868 3063651 "SYSSOLP" 3064961 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1215 3061877 3062070 3062101 "SYSPTR" 3062106 T SYSPTR (NIL) -8 NIL NIL NIL) (-1214 3060716 3061408 3061534 "SYSNNI" 3061720 NIL SYSNNI (NIL NIL) -8 NIL NIL 3061812) (-1213 3059923 3060478 3060557 "SYSINT" 3060617 NIL SYSINT (NIL NIL) -8 NIL NIL 3060662) (-1212 3056033 3057201 3057911 "SYNTAX" 3059235 T SYNTAX (NIL) -8 NIL NIL NIL) (-1211 3053113 3053793 3054425 "SYMTAB" 3055423 T SYMTAB (NIL) -8 NIL NIL NIL) (-1210 3048236 3049282 3050259 "SYMS" 3052158 T SYMS (NIL) -8 NIL NIL NIL) (-1209 3045154 3047692 3047925 "SYMPOLY" 3048043 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1208 3044659 3044746 3044869 "SYMFUNC" 3045066 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1207 3040457 3041971 3042784 "SYMBOL" 3043868 T SYMBOL (NIL) -8 NIL NIL NIL) (-1206 3033930 3035685 3037405 "SWITCH" 3038759 T SWITCH (NIL) -8 NIL NIL NIL) (-1205 3026691 3032886 3033180 "SUTS" 3033694 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1204 3018187 3026073 3026337 "SUPXS" 3026485 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3017334 3017473 3017690 "SUPFRACF" 3018055 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1202 3016949 3017014 3017127 "SUP2" 3017269 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1201 3007528 3016567 3016693 "SUP" 3016858 NIL SUP (NIL T) -8 NIL NIL NIL) (-1200 3005952 3006250 3006606 "SUMRF" 3007227 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1199 3005275 3005353 3005545 "SUMFS" 3005873 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1198 2987157 3004587 3004829 "SULS" 3005091 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 2986705 2986979 2987049 "SUCHTAST" 2987109 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1196 2985946 2986230 2986370 "SUCH" 2986613 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1195 2979585 2980852 2981811 "SUBSPACE" 2985034 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1194 2979005 2979105 2979269 "SUBRESP" 2979473 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1193 2973016 2974298 2975445 "STTFNC" 2977905 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1192 2966210 2967681 2968992 "STTF" 2971752 NIL STTF (NIL T) -7 NIL NIL NIL) (-1191 2957326 2959392 2961186 "STTAYLOR" 2964451 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1190 2950196 2957190 2957273 "STRTBL" 2957278 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1189 2944707 2949905 2950004 "STRING" 2950119 T STRING (NIL) -8 NIL NIL NIL) (-1188 2944211 2944294 2944438 "STREAM3" 2944624 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1187 2943175 2943376 2943611 "STREAM2" 2944024 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1186 2942857 2942915 2943008 "STREAM1" 2943117 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1185 2934973 2940476 2941087 "STREAM" 2942281 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1184 2933965 2934170 2934401 "STINPROD" 2934789 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1183 2933080 2933454 2933602 "STEPAST" 2933839 T STEPAST (NIL) -8 NIL NIL NIL) (-1182 2932576 2932821 2932851 "STEP" 2932945 T STEP (NIL) -9 NIL 2933016 NIL) (-1181 2925748 2932475 2932552 "STBL" 2932557 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1180 2919931 2924542 2924585 "STAGG" 2925017 NIL STAGG (NIL T) -9 NIL 2925196 NIL) (-1179 2917489 2918239 2919109 "STAGG-" 2919114 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1178 2915575 2917259 2917351 "STACK" 2917432 NIL STACK (NIL T) -8 NIL NIL NIL) (-1177 2914892 2915405 2915435 "SRING" 2915440 T SRING (NIL) -9 NIL 2915460 NIL) (-1176 2907041 2913033 2913489 "SREGSET" 2914522 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1175 2899388 2900835 2902348 "SRDCMPK" 2905647 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1174 2891802 2896747 2896777 "SRAGG" 2898080 T SRAGG (NIL) -9 NIL 2898688 NIL) (-1173 2890753 2891074 2891453 "SRAGG-" 2891458 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1172 2884455 2889700 2890121 "SQMATRIX" 2890379 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1171 2877982 2881173 2881900 "SPLTREE" 2883800 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1170 2873807 2874638 2875284 "SPLNODE" 2877408 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1169 2872782 2873087 2873117 "SPFCAT" 2873561 T SPFCAT (NIL) -9 NIL NIL NIL) (-1168 2871477 2871729 2871993 "SPECOUT" 2872540 T SPECOUT (NIL) -7 NIL NIL NIL) (-1167 2862123 2864441 2864471 "SPADXPT" 2869149 T SPADXPT (NIL) -9 NIL 2871315 NIL) (-1166 2861878 2861924 2861993 "SPADPRSR" 2862076 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1165 2859481 2861833 2861864 "SPADAST" 2861869 T SPADAST (NIL) -8 NIL NIL NIL) (-1164 2851082 2853185 2853228 "SPACEC" 2857601 NIL SPACEC (NIL T) -9 NIL 2859417 NIL) (-1163 2848882 2851014 2851063 "SPACE3" 2851068 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1162 2847614 2847805 2848096 "SORTPAK" 2848687 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1161 2845676 2846009 2846421 "SOLVETRA" 2847278 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1160 2844714 2844948 2845209 "SOLVESER" 2845449 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1159 2839946 2840906 2841901 "SOLVERAD" 2843766 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1158 2835671 2836370 2837099 "SOLVEFOR" 2839313 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1157 2829416 2835019 2835116 "SNTSCAT" 2835121 NIL SNTSCAT (NIL T T T T) -9 NIL 2835191 NIL) (-1156 2822967 2827739 2828130 "SMTS" 2829106 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1155 2816715 2822855 2822932 "SMP" 2822937 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1154 2814844 2815175 2815573 "SMITH" 2816412 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1153 2806481 2811417 2811520 "SMATCAT" 2812874 NIL SMATCAT (NIL NIL T T T) -9 NIL 2813424 NIL) (-1152 2803274 2804258 2805429 "SMATCAT-" 2805434 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1151 2800854 2802482 2802525 "SKAGG" 2802786 NIL SKAGG (NIL T) -9 NIL 2802921 NIL) (-1150 2796376 2800337 2800514 "SINT" 2800666 T SINT (NIL) -8 NIL NIL 2800821) (-1149 2796142 2796186 2796252 "SIMPAN" 2796332 T SIMPAN (NIL) -7 NIL NIL NIL) (-1148 2794983 2795215 2795483 "SIGNRF" 2795908 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1147 2793819 2793981 2794258 "SIGNEF" 2794819 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1146 2793059 2793402 2793526 "SIGAST" 2793717 T SIGAST (NIL) -8 NIL NIL NIL) (-1145 2792284 2792594 2792734 "SIG" 2792941 T SIG (NIL) -8 NIL NIL NIL) (-1144 2789936 2790428 2790934 "SHP" 2791825 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1143 2783381 2789837 2789913 "SHDP" 2789918 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1142 2782892 2783132 2783162 "SGROUP" 2783255 T SGROUP (NIL) -9 NIL 2783317 NIL) (-1141 2782744 2782776 2782849 "SGROUP-" 2782854 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1140 2779463 2780233 2780956 "SGCF" 2782043 T SGCF (NIL) -7 NIL NIL NIL) (-1139 2773306 2778909 2779006 "SFRTCAT" 2779011 NIL SFRTCAT (NIL T T T T) -9 NIL 2779050 NIL) (-1138 2766625 2767745 2768881 "SFRGCD" 2772289 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1137 2759643 2760824 2762010 "SFQCMPK" 2765558 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1136 2759245 2759352 2759463 "SFORT" 2759584 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1135 2758171 2759085 2759206 "SEXOF" 2759211 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1134 2753760 2754667 2754762 "SEXCAT" 2757384 NIL SEXCAT (NIL T T T T T) -9 NIL 2757944 NIL) (-1133 2752675 2753641 2753709 "SEX" 2753714 T SEX (NIL) -8 NIL NIL NIL) (-1132 2750803 2751392 2751695 "SETMN" 2752418 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1131 2750333 2750521 2750551 "SETCAT" 2750668 T SETCAT (NIL) -9 NIL 2750753 NIL) (-1130 2750101 2750165 2750264 "SETCAT-" 2750269 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1129 2746315 2748562 2748605 "SETAGG" 2749475 NIL SETAGG (NIL T) -9 NIL 2749815 NIL) (-1128 2745737 2745889 2746126 "SETAGG-" 2746131 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1127 2742660 2745671 2745719 "SET" 2745724 NIL SET (NIL T) -8 NIL NIL NIL) (-1126 2742043 2742356 2742457 "SEQAST" 2742581 T SEQAST (NIL) -8 NIL NIL NIL) (-1125 2741170 2741536 2741597 "SEGXCAT" 2741883 NIL SEGXCAT (NIL T T) -9 NIL 2742003 NIL) (-1124 2740095 2740363 2740406 "SEGCAT" 2740928 NIL SEGCAT (NIL T) -9 NIL 2741149 NIL) (-1123 2739710 2739775 2739888 "SEGBIND2" 2740030 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1122 2738600 2739073 2739281 "SEGBIND" 2739537 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1121 2738119 2738401 2738478 "SEGAST" 2738545 T SEGAST (NIL) -8 NIL NIL NIL) (-1120 2737328 2737464 2737668 "SEG2" 2737963 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1119 2736244 2736994 2737176 "SEG" 2737181 NIL SEG (NIL T) -8 NIL NIL NIL) (-1118 2735477 2736179 2736226 "SDVAR" 2736231 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1117 2726871 2735247 2735377 "SDPOL" 2735382 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1116 2725440 2725730 2726049 "SCPKG" 2726586 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1115 2724562 2724776 2724968 "SCOPE" 2725270 T SCOPE (NIL) -8 NIL NIL NIL) (-1114 2723758 2723916 2724095 "SCACHE" 2724417 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1113 2723342 2723576 2723606 "SASTCAT" 2723611 T SASTCAT (NIL) -9 NIL 2723624 NIL) (-1112 2722745 2723177 2723253 "SAOS" 2723288 T SAOS (NIL) -8 NIL NIL NIL) (-1111 2722304 2722345 2722518 "SAERFFC" 2722704 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1110 2721891 2721932 2722091 "SAEFACT" 2722263 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1109 2714948 2721788 2721868 "SAE" 2721873 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1108 2713251 2713583 2713984 "RURPK" 2714614 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1107 2711828 2712194 2712499 "RULESET" 2713085 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1106 2711398 2711622 2711705 "RULECOLD" 2711780 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1105 2708513 2709151 2709609 "RULE" 2711079 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1104 2708297 2708331 2708402 "RTVALUE" 2708464 T RTVALUE (NIL) -8 NIL NIL NIL) (-1103 2707708 2708014 2708108 "RSTRCAST" 2708225 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1102 2702478 2703351 2704271 "RSETGCD" 2706907 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2691183 2696786 2696883 "RSETCAT" 2701002 NIL RSETCAT (NIL T T T T) -9 NIL 2702099 NIL) (-1100 2689002 2689649 2690473 "RSETCAT-" 2690478 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1099 2681310 2682764 2684284 "RSDCMPK" 2687601 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1098 2679179 2679742 2679816 "RRCC" 2680902 NIL RRCC (NIL T T) -9 NIL 2681246 NIL) (-1097 2678500 2678704 2678983 "RRCC-" 2678988 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1096 2677883 2678196 2678297 "RPTAST" 2678421 T RPTAST (NIL) -8 NIL NIL NIL) (-1095 2650295 2660995 2661062 "RPOLCAT" 2671728 NIL RPOLCAT (NIL T T T) -9 NIL 2674888 NIL) (-1094 2641301 2644157 2647267 "RPOLCAT-" 2647272 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1093 2631870 2639512 2639994 "ROUTINE" 2640841 T ROUTINE (NIL) -8 NIL NIL NIL) (-1092 2627935 2631496 2631636 "ROMAN" 2631752 T ROMAN (NIL) -8 NIL NIL NIL) (-1091 2626049 2626795 2627055 "ROIRC" 2627740 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1090 2621826 2624591 2624621 "RNS" 2624890 T RNS (NIL) -9 NIL 2625146 NIL) (-1089 2620233 2620718 2621252 "RNS-" 2621327 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1088 2619194 2619598 2619800 "RNGBIND" 2620084 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1087 2618487 2618991 2619021 "RNG" 2619026 T RNG (NIL) -9 NIL 2619047 NIL) (-1086 2617782 2618260 2618303 "RMODULE" 2618308 NIL RMODULE (NIL T) -9 NIL 2618335 NIL) (-1085 2616606 2616712 2617048 "RMCAT2" 2617683 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1084 2613222 2615952 2616249 "RMATRIX" 2616368 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1083 2605832 2608309 2608424 "RMATCAT" 2611783 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2612765 NIL) (-1082 2605171 2605354 2605661 "RMATCAT-" 2605666 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1081 2604744 2604958 2605001 "RLINSET" 2605063 NIL RLINSET (NIL T) -9 NIL 2605107 NIL) (-1080 2604305 2604386 2604514 "RINTERP" 2604663 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1079 2603229 2603903 2603933 "RING" 2603989 T RING (NIL) -9 NIL 2604081 NIL) (-1078 2603009 2603065 2603162 "RING-" 2603167 NIL RING- (NIL T) -8 NIL NIL NIL) (-1077 2601820 2602087 2602345 "RIDIST" 2602773 T RIDIST (NIL) -7 NIL NIL NIL) (-1076 2592586 2601288 2601494 "RGCHAIN" 2601668 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1075 2591844 2592328 2592369 "RGBCSPC" 2592427 NIL RGBCSPC (NIL T) -9 NIL 2592479 NIL) (-1074 2590910 2591369 2591410 "RGBCMDL" 2591642 NIL RGBCMDL (NIL T) -9 NIL 2591756 NIL) (-1073 2590550 2590619 2590722 "RFFACTOR" 2590841 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1072 2590269 2590310 2590407 "RFFACT" 2590509 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1071 2588320 2588750 2589132 "RFDIST" 2589909 T RFDIST (NIL) -7 NIL NIL NIL) (-1070 2585260 2585928 2586598 "RF" 2587684 NIL RF (NIL T) -7 NIL NIL NIL) (-1069 2584707 2584805 2584968 "RETSOL" 2585162 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1068 2584325 2584423 2584466 "RETRACT" 2584599 NIL RETRACT (NIL T) -9 NIL 2584686 NIL) (-1067 2584168 2584199 2584286 "RETRACT-" 2584291 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1066 2583716 2583990 2584060 "RETAST" 2584120 T RETAST (NIL) -8 NIL NIL NIL) (-1065 2576182 2583369 2583496 "RESULT" 2583611 T RESULT (NIL) -8 NIL NIL NIL) (-1064 2574617 2575451 2575650 "RESRING" 2576085 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1063 2574241 2574302 2574400 "RESLATC" 2574554 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1062 2573940 2573981 2574088 "REPSQ" 2574200 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1061 2573631 2573672 2573783 "REPDB" 2573899 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1060 2567463 2568920 2570143 "REP2" 2572443 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1059 2563766 2564521 2565329 "REP1" 2566690 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1058 2561146 2561768 2562370 "REP" 2563186 T REP (NIL) -7 NIL NIL NIL) (-1057 2553295 2559287 2559743 "REGSET" 2560776 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1056 2552004 2552443 2552693 "REF" 2553080 NIL REF (NIL T) -8 NIL NIL NIL) (-1055 2551369 2551484 2551651 "REDORDER" 2551888 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1054 2546771 2550582 2550809 "RECLOS" 2551197 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1053 2545805 2546004 2546219 "REALSOLV" 2546578 T REALSOLV (NIL) -7 NIL NIL NIL) (-1052 2542252 2543090 2543974 "REAL0Q" 2544970 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1051 2537805 2538841 2539902 "REAL0" 2541233 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1050 2537639 2537692 2537722 "REAL" 2537727 T REAL (NIL) -9 NIL 2537762 NIL) (-1049 2537050 2537356 2537450 "RDUCEAST" 2537567 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1048 2536449 2536527 2536734 "RDIV" 2536972 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1047 2535499 2535691 2535904 "RDIST" 2536271 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1046 2534084 2534383 2534755 "RDETRS" 2535207 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1045 2531878 2532350 2532888 "RDETR" 2533626 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1044 2530497 2530781 2531178 "RDEEFS" 2531594 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1043 2529000 2529312 2529737 "RDEEF" 2530185 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1042 2522488 2525954 2525984 "RCFIELD" 2527279 T RCFIELD (NIL) -9 NIL 2528010 NIL) (-1041 2520444 2521056 2521752 "RCFIELD-" 2521827 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1040 2516607 2518517 2518560 "RCAGG" 2519644 NIL RCAGG (NIL T) -9 NIL 2520109 NIL) (-1039 2516217 2516329 2516492 "RCAGG-" 2516497 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1038 2515534 2515664 2515829 "RATRET" 2516101 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1037 2515075 2515154 2515275 "RATFACT" 2515462 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1036 2514353 2514503 2514655 "RANDSRC" 2514945 T RANDSRC (NIL) -7 NIL NIL NIL) (-1035 2514081 2514131 2514204 "RADUTIL" 2514302 T RADUTIL (NIL) -7 NIL NIL NIL) (-1034 2506242 2512912 2513223 "RADIX" 2513804 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1033 2495868 2506084 2506214 "RADFF" 2506219 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1032 2495497 2495590 2495620 "RADCAT" 2495780 T RADCAT (NIL) -9 NIL NIL NIL) (-1031 2495267 2495327 2495427 "RADCAT-" 2495432 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1030 2493292 2495037 2495129 "QUEUE" 2495210 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1029 2492917 2492966 2493097 "QUATCT2" 2493243 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1028 2485302 2489340 2489382 "QUATCAT" 2490173 NIL QUATCAT (NIL T) -9 NIL 2490939 NIL) (-1027 2481204 2482492 2483875 "QUATCAT-" 2483971 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1026 2477057 2481137 2481185 "QUAT" 2481190 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1025 2474424 2476105 2476148 "QUAGG" 2476529 NIL QUAGG (NIL T) -9 NIL 2476704 NIL) (-1024 2473972 2474246 2474316 "QQUTAST" 2474376 T QQUTAST (NIL) -8 NIL NIL NIL) (-1023 2472883 2473485 2473650 "QFORM" 2473853 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1022 2472508 2472557 2472688 "QFCAT2" 2472834 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1021 2462221 2468355 2468397 "QFCAT" 2469065 NIL QFCAT (NIL T) -9 NIL 2470066 NIL) (-1020 2457591 2459027 2460602 "QFCAT-" 2460698 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1019 2457022 2457156 2457288 "QEQUAT" 2457481 T QEQUAT (NIL) -8 NIL NIL NIL) (-1018 2450040 2451221 2452407 "QCMPACK" 2455955 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2449269 2449451 2449687 "QALGSET2" 2449858 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1016 2446725 2447259 2447687 "QALGSET" 2448926 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1015 2445392 2445634 2445953 "PWFFINTB" 2446498 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1014 2443554 2443752 2444108 "PUSHVAR" 2445206 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1013 2439281 2440497 2440540 "PTRANFN" 2442451 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1012 2437618 2437963 2438287 "PTPACK" 2438992 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1011 2437241 2437304 2437415 "PTFUNC2" 2437555 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1010 2431271 2436030 2436073 "PTCAT" 2436373 NIL PTCAT (NIL T) -9 NIL 2436526 NIL) (-1009 2430920 2430961 2431087 "PSQFR" 2431230 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1008 2429492 2429808 2430144 "PSEUDLIN" 2430618 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1007 2416012 2418587 2420913 "PSETPK" 2427252 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1006 2408831 2411748 2411846 "PSETCAT" 2414887 NIL PSETCAT (NIL T T T T) -9 NIL 2415701 NIL) (-1005 2406556 2407298 2408122 "PSETCAT-" 2408127 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1004 2405869 2406064 2406094 "PSCURVE" 2406366 T PSCURVE (NIL) -9 NIL 2406533 NIL) (-1003 2401592 2403359 2403426 "PSCAT" 2404278 NIL PSCAT (NIL T T T) -9 NIL 2404518 NIL) (-1002 2400586 2400868 2401271 "PSCAT-" 2401276 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1001 2398754 2399645 2399910 "PRTITION" 2400343 T PRTITION (NIL) -8 NIL NIL NIL) (-1000 2398165 2398471 2398565 "PRTDAST" 2398682 T PRTDAST (NIL) -8 NIL NIL NIL) (-999 2387047 2389469 2391657 "PRS" 2396027 NIL PRS (NIL T T) -7 NIL NIL NIL) (-998 2384778 2386369 2386409 "PRQAGG" 2386592 NIL PRQAGG (NIL T) -9 NIL 2386694 NIL) (-997 2383957 2384406 2384434 "PROPLOG" 2384573 T PROPLOG (NIL) -9 NIL 2384688 NIL) (-996 2383555 2383618 2383741 "PROPFUN2" 2383880 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-995 2382852 2382991 2383163 "PROPFUN1" 2383416 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-994 2380833 2381599 2381896 "PROPFRML" 2382588 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-993 2380278 2380409 2380537 "PROPERTY" 2380725 T PROPERTY (NIL) -8 NIL NIL NIL) (-992 2374091 2378444 2379264 "PRODUCT" 2379504 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-991 2373881 2373919 2373978 "PRINT" 2374052 T PRINT (NIL) -7 NIL NIL NIL) (-990 2373197 2373338 2373490 "PRIMES" 2373761 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-989 2371244 2371663 2372129 "PRIMELT" 2372776 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-988 2370961 2371022 2371050 "PRIMCAT" 2371174 T PRIMCAT (NIL) -9 NIL NIL NIL) (-987 2369950 2370146 2370374 "PRIMARR2" 2370779 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-986 2365786 2369888 2369933 "PRIMARR" 2369938 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-985 2365423 2365485 2365596 "PREASSOC" 2365724 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-984 2362395 2364881 2365115 "PR" 2365234 NIL PR (NIL T T) -8 NIL NIL NIL) (-983 2361846 2362003 2362031 "PPCURVE" 2362236 T PPCURVE (NIL) -9 NIL 2362372 NIL) (-982 2361393 2361641 2361724 "PORTNUM" 2361783 T PORTNUM (NIL) -8 NIL NIL NIL) (-981 2358730 2359151 2359743 "POLYROOT" 2360974 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-980 2358107 2358171 2358405 "POLYLIFT" 2358666 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-979 2354328 2354831 2355460 "POLYCATQ" 2357652 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-978 2339990 2346075 2346140 "POLYCAT" 2349654 NIL POLYCAT (NIL T T T) -9 NIL 2351532 NIL) (-977 2333172 2335343 2337706 "POLYCAT-" 2337711 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-976 2332753 2332827 2332947 "POLY2UP" 2333098 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-975 2332379 2332442 2332551 "POLY2" 2332690 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-974 2325620 2331983 2332143 "POLY" 2332252 NIL POLY (NIL T) -8 NIL NIL NIL) (-973 2324281 2324544 2324820 "POLUTIL" 2325394 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-972 2322600 2322913 2323244 "POLTOPOL" 2324003 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-971 2317710 2322534 2322581 "POINT" 2322586 NIL POINT (NIL T) -8 NIL NIL NIL) (-970 2315843 2316254 2316629 "PNTHEORY" 2317355 T PNTHEORY (NIL) -7 NIL NIL NIL) (-969 2314289 2314598 2314997 "PMTOOLS" 2315541 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-968 2313876 2313960 2314077 "PMSYM" 2314205 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-967 2313378 2313453 2313628 "PMQFCAT" 2313801 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-966 2312759 2312857 2313019 "PMPREDFS" 2313279 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-965 2312102 2312224 2312380 "PMPRED" 2312636 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-964 2310756 2310974 2311352 "PMPLCAT" 2311864 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-963 2310282 2310367 2310519 "PMLSAGG" 2310671 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-962 2309749 2309831 2310013 "PMKERNEL" 2310200 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-961 2309360 2309441 2309554 "PMINS" 2309668 NIL PMINS (NIL T) -7 NIL NIL NIL) (-960 2308796 2308871 2309080 "PMFS" 2309285 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-959 2308012 2308142 2308347 "PMDOWN" 2308673 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-958 2307261 2307395 2307558 "PMASSFS" 2307899 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-957 2306404 2306586 2306767 "PMASS" 2307100 T PMASS (NIL) -7 NIL NIL NIL) (-956 2306053 2306127 2306221 "PLOTTOOL" 2306330 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-955 2301705 2302899 2303821 "PLOT3D" 2305151 T PLOT3D (NIL) -8 NIL NIL NIL) (-954 2300593 2300794 2301029 "PLOT1" 2301509 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-953 2295014 2296404 2297552 "PLOT" 2299465 T PLOT (NIL) -8 NIL NIL NIL) (-952 2270189 2275080 2279931 "PLEQN" 2290280 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-951 2269876 2269929 2270032 "PINTERPA" 2270136 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-950 2269182 2269316 2269496 "PINTERP" 2269741 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-949 2267266 2268432 2268460 "PID" 2268657 T PID (NIL) -9 NIL 2268784 NIL) (-948 2267011 2267054 2267129 "PICOERCE" 2267223 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-947 2266107 2266775 2266862 "PI" 2266902 T PI (NIL) -8 NIL NIL 2266969) (-946 2265415 2265566 2265742 "PGROEB" 2265963 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-945 2260854 2261813 2262719 "PGE" 2264529 T PGE (NIL) -7 NIL NIL NIL) (-944 2258935 2259224 2259590 "PGCD" 2260571 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-943 2258261 2258376 2258537 "PFRPAC" 2258819 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-942 2254521 2256809 2257162 "PFR" 2257940 NIL PFR (NIL T) -8 NIL NIL NIL) (-941 2252874 2253154 2253479 "PFOTOOLS" 2254268 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-940 2251389 2251646 2251997 "PFOQ" 2252631 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-939 2249872 2250102 2250458 "PFO" 2251173 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-938 2246956 2248462 2248490 "PFECAT" 2249083 T PFECAT (NIL) -9 NIL 2249460 NIL) (-937 2246404 2246569 2246776 "PFECAT-" 2246781 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-936 2244977 2245259 2245560 "PFBRU" 2246153 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-935 2242806 2243195 2243627 "PFBR" 2244628 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-934 2238754 2242695 2242764 "PF" 2242769 NIL PF (NIL NIL) -8 NIL NIL NIL) (-933 2233808 2234961 2235831 "PERMGRP" 2237917 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-932 2231720 2232832 2232873 "PERMCAT" 2233273 NIL PERMCAT (NIL T) -9 NIL 2233571 NIL) (-931 2231367 2231414 2231538 "PERMAN" 2231673 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-930 2227169 2228876 2229524 "PERM" 2230752 NIL PERM (NIL T) -8 NIL NIL NIL) (-929 2224526 2226834 2226956 "PENDTREE" 2227080 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-928 2223407 2223670 2223711 "PDSPC" 2224244 NIL PDSPC (NIL T) -9 NIL 2224489 NIL) (-927 2222462 2222728 2223090 "PDSPC-" 2223095 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-926 2221176 2222112 2222153 "PDRING" 2222158 NIL PDRING (NIL T) -9 NIL 2222186 NIL) (-925 2219919 2220681 2220735 "PDMOD" 2220740 NIL PDMOD (NIL T T) -9 NIL 2220844 NIL) (-924 2217086 2217912 2218580 "PDEPROB" 2219271 T PDEPROB (NIL) -8 NIL NIL NIL) (-923 2214595 2215135 2215690 "PDEPACK" 2216551 T PDEPACK (NIL) -7 NIL NIL NIL) (-922 2213483 2213697 2213948 "PDECOMP" 2214394 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-921 2211000 2211891 2211919 "PDECAT" 2212706 T PDECAT (NIL) -9 NIL 2213419 NIL) (-920 2210617 2210684 2210738 "PDDOM" 2210903 NIL PDDOM (NIL T T) -9 NIL 2210983 NIL) (-919 2210430 2210466 2210573 "PDDOM-" 2210578 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-918 2210175 2210214 2210304 "PCOMP" 2210391 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-917 2208215 2208976 2209273 "PBWLB" 2209904 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-916 2207841 2207904 2208013 "PATTERN2" 2208152 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-915 2205550 2205986 2206443 "PATTERN1" 2207430 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-914 2197731 2199623 2200961 "PATTERN" 2204233 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-913 2197289 2197362 2197494 "PATRES2" 2197658 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-912 2194555 2195238 2195719 "PATRES" 2196854 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-911 2192408 2192843 2193250 "PATMATCH" 2194222 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-910 2191862 2192113 2192154 "PATMAB" 2192261 NIL PATMAB (NIL T) -9 NIL 2192344 NIL) (-909 2190308 2190716 2190974 "PATLRES" 2191667 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-908 2189846 2189977 2190018 "PATAB" 2190023 NIL PATAB (NIL T) -9 NIL 2190195 NIL) (-907 2187986 2188423 2188846 "PARTPERM" 2189443 T PARTPERM (NIL) -7 NIL NIL NIL) (-906 2187595 2187670 2187772 "PARSURF" 2187917 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-905 2187221 2187284 2187393 "PARSU2" 2187532 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-904 2186979 2187025 2187092 "PARSER" 2187174 T PARSER (NIL) -7 NIL NIL NIL) (-903 2186588 2186663 2186765 "PARSCURV" 2186910 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-902 2186214 2186277 2186386 "PARSC2" 2186525 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-901 2185841 2185911 2186008 "PARPCURV" 2186150 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-900 2185467 2185530 2185639 "PARPC2" 2185778 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-899 2184456 2184840 2185022 "PARAMAST" 2185305 T PARAMAST (NIL) -8 NIL NIL NIL) (-898 2183964 2184062 2184181 "PAN2EXPR" 2184357 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-897 2182657 2183085 2183313 "PALETTE" 2183756 T PALETTE (NIL) -8 NIL NIL NIL) (-896 2181002 2181662 2182022 "PAIR" 2182343 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-895 2173951 2180259 2180454 "PADICRC" 2180856 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-894 2166224 2173295 2173480 "PADICRAT" 2173798 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-893 2163023 2164884 2164924 "PADICCT" 2165505 NIL PADICCT (NIL NIL) -9 NIL 2165787 NIL) (-892 2161041 2162960 2163005 "PADIC" 2163010 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-891 2159986 2160198 2160466 "PADEPAC" 2160828 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-890 2159186 2159331 2159537 "PADE" 2159848 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-889 2157419 2158394 2158674 "OWP" 2158990 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-888 2156864 2157125 2157222 "OVERSET" 2157342 T OVERSET (NIL) -8 NIL NIL NIL) (-887 2155784 2156469 2156641 "OVAR" 2156732 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-886 2144020 2146893 2149093 "OUTFORM" 2153604 T OUTFORM (NIL) -8 NIL NIL NIL) (-885 2143302 2143617 2143744 "OUTBFILE" 2143913 T OUTBFILE (NIL) -8 NIL NIL NIL) (-884 2142579 2142774 2142802 "OUTBCON" 2143120 T OUTBCON (NIL) -9 NIL 2143286 NIL) (-883 2142162 2142292 2142449 "OUTBCON-" 2142454 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-882 2141402 2141547 2141708 "OUT" 2142021 T OUT (NIL) -7 NIL NIL NIL) (-881 2140698 2141131 2141220 "OSI" 2141333 T OSI (NIL) -8 NIL NIL NIL) (-880 2140117 2140539 2140567 "OSGROUP" 2140572 T OSGROUP (NIL) -9 NIL 2140594 NIL) (-879 2138828 2139089 2139374 "ORTHPOL" 2139864 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-878 2136093 2138663 2138784 "OREUP" 2138789 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-877 2133210 2135784 2135911 "ORESUP" 2136035 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-876 2130710 2131238 2131799 "OREPCTO" 2132699 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-875 2124095 2126583 2126624 "OREPCAT" 2128972 NIL OREPCAT (NIL T) -9 NIL 2130076 NIL) (-874 2121089 2122038 2123089 "OREPCAT-" 2123094 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-873 2120281 2120559 2120587 "ORDTYPE" 2120896 T ORDTYPE (NIL) -9 NIL 2121059 NIL) (-872 2119582 2119798 2120053 "ORDTYPE-" 2120058 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-871 2118938 2119321 2119479 "ORDSTRCT" 2119484 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-870 2118436 2118806 2118834 "ORDSET" 2118839 T ORDSET (NIL) -9 NIL 2118861 NIL) (-869 2117087 2118058 2118086 "ORDRING" 2118091 T ORDRING (NIL) -9 NIL 2118120 NIL) (-868 2116338 2116903 2116931 "ORDMON" 2116936 T ORDMON (NIL) -9 NIL 2116957 NIL) (-867 2115482 2115647 2115842 "ORDFUNS" 2116187 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-866 2114697 2115212 2115240 "ORDFIN" 2115305 T ORDFIN (NIL) -9 NIL 2115379 NIL) (-865 2113951 2114090 2114276 "ORDCOMP2" 2114557 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-864 2110305 2112537 2112946 "ORDCOMP" 2113575 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-863 2106826 2107796 2108610 "OPTPROB" 2109511 T OPTPROB (NIL) -8 NIL NIL NIL) (-862 2103568 2104267 2104971 "OPTPACK" 2106142 T OPTPACK (NIL) -7 NIL NIL NIL) (-861 2101181 2102007 2102035 "OPTCAT" 2102854 T OPTCAT (NIL) -9 NIL 2103504 NIL) (-860 2100499 2100858 2100963 "OPSIG" 2101096 T OPSIG (NIL) -8 NIL NIL NIL) (-859 2100261 2100306 2100372 "OPQUERY" 2100453 T OPQUERY (NIL) -7 NIL NIL NIL) (-858 2099567 2099847 2099888 "OPERCAT" 2100100 NIL OPERCAT (NIL T) -9 NIL 2100197 NIL) (-857 2099310 2099378 2099495 "OPERCAT-" 2099500 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-856 2096228 2097621 2098125 "OP" 2098839 NIL OP (NIL T) -8 NIL NIL NIL) (-855 2095521 2095648 2095822 "ONECOMP2" 2096100 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-854 2092141 2094318 2094687 "ONECOMP" 2095185 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-853 2091542 2091666 2091796 "OMSERVER" 2092031 T OMSERVER (NIL) -7 NIL NIL NIL) (-852 2088167 2090982 2091022 "OMSAGG" 2091083 NIL OMSAGG (NIL T) -9 NIL 2091147 NIL) (-851 2086742 2087053 2087335 "OMPKG" 2087905 T OMPKG (NIL) -7 NIL NIL NIL) (-850 2085089 2086291 2086460 "OMLO" 2086623 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-849 2084025 2084196 2084416 "OMEXPR" 2084915 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-848 2083110 2083446 2083606 "OMERRK" 2083885 T OMERRK (NIL) -8 NIL NIL NIL) (-847 2082347 2082656 2082792 "OMERR" 2082994 T OMERR (NIL) -8 NIL NIL NIL) (-846 2081738 2082024 2082132 "OMENC" 2082259 T OMENC (NIL) -8 NIL NIL NIL) (-845 2075375 2076818 2077989 "OMDEV" 2080587 T OMDEV (NIL) -8 NIL NIL NIL) (-844 2074408 2074615 2074809 "OMCONN" 2075201 T OMCONN (NIL) -8 NIL NIL NIL) (-843 2073814 2073941 2073969 "OM" 2074268 T OM (NIL) -9 NIL NIL NIL) (-842 2072092 2073284 2073312 "OINTDOM" 2073317 T OINTDOM (NIL) -9 NIL 2073338 NIL) (-841 2069174 2070780 2071117 "OFMONOID" 2071787 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-840 2068408 2069111 2069156 "ODVAR" 2069161 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-839 2065554 2068153 2068308 "ODR" 2068313 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-838 2057002 2065330 2065456 "ODPOL" 2065461 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-837 2050417 2056874 2056979 "ODP" 2056984 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-836 2049159 2049398 2049673 "ODETOOLS" 2050191 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-835 2046102 2046784 2047500 "ODESYS" 2048492 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-834 2040932 2041892 2042917 "ODERTRIC" 2045177 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-833 2040352 2040440 2040634 "ODERED" 2040844 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-832 2037212 2037794 2038469 "ODERAT" 2039777 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-831 2034128 2034636 2035233 "ODEPRRIC" 2036741 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-830 2032023 2032667 2033153 "ODEPROB" 2033662 T ODEPROB (NIL) -8 NIL NIL NIL) (-829 2028489 2029028 2029675 "ODEPRIM" 2031502 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-828 2027732 2027840 2028100 "ODEPAL" 2028381 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-827 2023834 2024685 2025549 "ODEPACK" 2026888 T ODEPACK (NIL) -7 NIL NIL NIL) (-826 2022877 2023002 2023224 "ODEINT" 2023723 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-825 2016942 2018403 2019850 "ODEIFTBL" 2021450 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-824 2012306 2013136 2014084 "ODEEF" 2016105 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-823 2011649 2011744 2011967 "ODECONST" 2012211 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-822 2009712 2010421 2010449 "ODECAT" 2011054 T ODECAT (NIL) -9 NIL 2011585 NIL) (-821 2009344 2009393 2009520 "OCTCT2" 2009663 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-820 2005856 2009049 2009171 "OCT" 2009254 NIL OCT (NIL T) -8 NIL NIL NIL) (-819 2005049 2005649 2005677 "OCAMON" 2005682 T OCAMON (NIL) -9 NIL 2005703 NIL) (-818 1999327 2002092 2002132 "OC" 2003229 NIL OC (NIL T) -9 NIL 2004087 NIL) (-817 1996383 1997316 1998299 "OC-" 1998393 NIL OC- (NIL T T) -8 NIL NIL NIL) (-816 1995803 1996228 1996256 "OASGP" 1996261 T OASGP (NIL) -9 NIL 1996281 NIL) (-815 1994899 1995526 1995554 "OAMONS" 1995594 T OAMONS (NIL) -9 NIL 1995637 NIL) (-814 1994075 1994634 1994662 "OAMON" 1994720 T OAMON (NIL) -9 NIL 1994772 NIL) (-813 1993933 1993966 1994034 "OAMON-" 1994039 NIL OAMON- (NIL T) -8 NIL NIL NIL) (-812 1992714 1993467 1993495 "OAGROUP" 1993642 T OAGROUP (NIL) -9 NIL 1993735 NIL) (-811 1992417 1992505 1992623 "OAGROUP-" 1992628 NIL OAGROUP- (NIL T) -8 NIL NIL NIL) (-810 1992099 1992155 1992244 "NUMTUBE" 1992361 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-809 1985618 1987190 1988726 "NUMQUAD" 1990583 T NUMQUAD (NIL) -7 NIL NIL NIL) (-808 1981298 1982332 1983367 "NUMODE" 1984603 T NUMODE (NIL) -7 NIL NIL NIL) (-807 1978579 1979519 1979547 "NUMINT" 1980470 T NUMINT (NIL) -9 NIL 1981234 NIL) (-806 1977491 1977724 1977942 "NUMFMT" 1978381 T NUMFMT (NIL) -7 NIL NIL NIL) (-805 1963674 1966795 1969327 "NUMERIC" 1974998 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-804 1957519 1963122 1963217 "NTSCAT" 1963222 NIL NTSCAT (NIL T T T T) -9 NIL 1963261 NIL) (-803 1956699 1956878 1957071 "NTPOLFN" 1957358 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-802 1956325 1956388 1956497 "NSUP2" 1956636 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-801 1943147 1953150 1953962 "NSUP" 1955546 NIL NSUP (NIL T) -8 NIL NIL NIL) (-800 1932033 1942921 1943054 "NSMP" 1943059 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-799 1930441 1930766 1931123 "NREP" 1931721 NIL NREP (NIL T) -7 NIL NIL NIL) (-798 1929020 1929284 1929642 "NPCOEF" 1930184 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-797 1928068 1928201 1928417 "NORMRETR" 1928901 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-796 1926079 1926399 1926808 "NORMPK" 1927776 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-795 1925758 1925792 1925916 "NORMMA" 1926045 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-794 1925541 1925576 1925645 "NONE1" 1925722 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-793 1925305 1925498 1925527 "NONE" 1925532 T NONE (NIL) -8 NIL NIL NIL) (-792 1924796 1924864 1925043 "NODE1" 1925237 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-791 1922857 1923919 1924174 "NNI" 1924521 T NNI (NIL) -8 NIL NIL 1924756) (-790 1921253 1921590 1921954 "NLINSOL" 1922525 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-789 1917434 1918489 1919388 "NIPROB" 1920374 T NIPROB (NIL) -8 NIL NIL NIL) (-788 1916173 1916425 1916727 "NFINTBAS" 1917196 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-787 1915257 1915823 1915864 "NETCLT" 1916036 NIL NETCLT (NIL T) -9 NIL 1916118 NIL) (-786 1913929 1914196 1914477 "NCODIV" 1915025 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-785 1913685 1913728 1913803 "NCNTFRAC" 1913886 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-784 1911841 1912229 1912649 "NCEP" 1913310 NIL NCEP (NIL T) -7 NIL NIL NIL) (-783 1910511 1911451 1911479 "NASRING" 1911589 T NASRING (NIL) -9 NIL 1911669 NIL) (-782 1910294 1910350 1910444 "NASRING-" 1910449 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-781 1909261 1909912 1909940 "NARNG" 1910057 T NARNG (NIL) -9 NIL 1910148 NIL) (-780 1908935 1909020 1909154 "NARNG-" 1909159 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-779 1907772 1908021 1908256 "NAGSP" 1908720 T NAGSP (NIL) -7 NIL NIL NIL) (-778 1898816 1900728 1902401 "NAGS" 1906119 T NAGS (NIL) -7 NIL NIL NIL) (-777 1897340 1897672 1898003 "NAGF07" 1898505 T NAGF07 (NIL) -7 NIL NIL NIL) (-776 1891812 1893169 1894476 "NAGF04" 1896053 T NAGF04 (NIL) -7 NIL NIL NIL) (-775 1884684 1886394 1888027 "NAGF02" 1890199 T NAGF02 (NIL) -7 NIL NIL NIL) (-774 1879848 1881008 1882125 "NAGF01" 1883587 T NAGF01 (NIL) -7 NIL NIL NIL) (-773 1873428 1875042 1876627 "NAGE04" 1878283 T NAGE04 (NIL) -7 NIL NIL NIL) (-772 1864489 1866718 1868848 "NAGE02" 1871318 T NAGE02 (NIL) -7 NIL NIL NIL) (-771 1860382 1861389 1862353 "NAGE01" 1863545 T NAGE01 (NIL) -7 NIL NIL NIL) (-770 1858159 1858711 1859269 "NAGD03" 1859844 T NAGD03 (NIL) -7 NIL NIL NIL) (-769 1849855 1851837 1853791 "NAGD02" 1856225 T NAGD02 (NIL) -7 NIL NIL NIL) (-768 1843594 1845091 1846531 "NAGD01" 1848435 T NAGD01 (NIL) -7 NIL NIL NIL) (-767 1839731 1840625 1841462 "NAGC06" 1842777 T NAGC06 (NIL) -7 NIL NIL NIL) (-766 1838178 1838528 1838884 "NAGC05" 1839395 T NAGC05 (NIL) -7 NIL NIL NIL) (-765 1837542 1837673 1837817 "NAGC02" 1838054 T NAGC02 (NIL) -7 NIL NIL NIL) (-764 1836343 1837070 1837110 "NAALG" 1837189 NIL NAALG (NIL T) -9 NIL 1837250 NIL) (-763 1836172 1836207 1836297 "NAALG-" 1836302 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-762 1830044 1831230 1832417 "MULTSQFR" 1835068 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-761 1829351 1829438 1829622 "MULTFACT" 1829956 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-760 1821496 1825934 1825987 "MTSCAT" 1827057 NIL MTSCAT (NIL T T) -9 NIL 1827573 NIL) (-759 1821202 1821262 1821354 "MTHING" 1821436 NIL MTHING (NIL T) -7 NIL NIL NIL) (-758 1820988 1821027 1821087 "MSYSCMD" 1821162 T MSYSCMD (NIL) -7 NIL NIL NIL) (-757 1817844 1820549 1820590 "MSETAGG" 1820595 NIL MSETAGG (NIL T) -9 NIL 1820629 NIL) (-756 1813672 1816599 1816919 "MSET" 1817557 NIL MSET (NIL T) -8 NIL NIL NIL) (-755 1809276 1811051 1811796 "MRING" 1812972 NIL MRING (NIL T T) -8 NIL NIL NIL) (-754 1808836 1808909 1809040 "MRF2" 1809203 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-753 1808448 1808489 1808633 "MRATFAC" 1808795 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-752 1806018 1806355 1806786 "MPRFF" 1808153 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-751 1799378 1805872 1805969 "MPOLY" 1805974 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-750 1798862 1798903 1799111 "MPCPF" 1799337 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-749 1798370 1798419 1798603 "MPC3" 1798813 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-748 1797553 1797646 1797867 "MPC2" 1798285 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-747 1795830 1796191 1796581 "MONOTOOL" 1797213 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-746 1794975 1795358 1795386 "MONOID" 1795605 T MONOID (NIL) -9 NIL 1795752 NIL) (-745 1794491 1794640 1794821 "MONOID-" 1794826 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-744 1783473 1790311 1790370 "MONOGEN" 1791044 NIL MONOGEN (NIL T T) -9 NIL 1791500 NIL) (-743 1780544 1781440 1782433 "MONOGEN-" 1782552 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-742 1779261 1779809 1779837 "MONADWU" 1780229 T MONADWU (NIL) -9 NIL 1780467 NIL) (-741 1778591 1778792 1779040 "MONADWU-" 1779045 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-740 1777876 1778180 1778208 "MONAD" 1778415 T MONAD (NIL) -9 NIL 1778527 NIL) (-739 1777543 1777639 1777771 "MONAD-" 1777776 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-738 1775682 1776456 1776735 "MOEBIUS" 1777296 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-737 1774850 1775350 1775390 "MODULE" 1775395 NIL MODULE (NIL T) -9 NIL 1775434 NIL) (-736 1774388 1774514 1774704 "MODULE-" 1774709 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-735 1771962 1772796 1773123 "MODRING" 1774212 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-734 1768693 1770067 1770588 "MODOP" 1771491 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-733 1767179 1767760 1768037 "MODMONOM" 1768556 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-732 1755974 1765470 1765884 "MODMON" 1766816 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-731 1752833 1754842 1755118 "MODFIELD" 1755849 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-730 1751744 1752114 1752304 "MMLFORM" 1752663 T MMLFORM (NIL) -8 NIL NIL NIL) (-729 1751264 1751313 1751492 "MMAP" 1751695 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-728 1749157 1750096 1750137 "MLO" 1750560 NIL MLO (NIL T) -9 NIL 1750802 NIL) (-727 1746505 1747039 1747641 "MLIFT" 1748638 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-726 1745884 1745980 1746134 "MKUCFUNC" 1746416 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-725 1745477 1745553 1745676 "MKRECORD" 1745807 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-724 1744500 1744686 1744914 "MKFUNC" 1745288 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-723 1743876 1743992 1744148 "MKFLCFN" 1744383 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-722 1743141 1743255 1743440 "MKBCFUNC" 1743769 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-721 1739140 1742695 1742831 "MINT" 1743025 T MINT (NIL) -8 NIL NIL NIL) (-720 1737922 1738195 1738472 "MHROWRED" 1738895 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-719 1732682 1736457 1736862 "MFLOAT" 1737537 T MFLOAT (NIL) -8 NIL NIL NIL) (-718 1732027 1732115 1732286 "MFINFACT" 1732594 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-717 1728326 1729205 1730084 "MESH" 1731168 T MESH (NIL) -7 NIL NIL NIL) (-716 1726680 1727028 1727381 "MDDFACT" 1728013 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-715 1723327 1725811 1725852 "MDAGG" 1726107 NIL MDAGG (NIL T) -9 NIL 1726250 NIL) (-714 1711063 1722620 1722827 "MCMPLX" 1723140 T MCMPLX (NIL) -8 NIL NIL NIL) (-713 1710182 1710346 1710547 "MCDEN" 1710912 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-712 1708030 1708342 1708722 "MCALCFN" 1709912 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-711 1706907 1707195 1707428 "MAYBE" 1707836 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-710 1704465 1705042 1705604 "MATSTOR" 1706378 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-709 1700000 1703837 1704085 "MATRIX" 1704250 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-708 1695700 1696473 1697209 "MATLIN" 1699357 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-707 1694276 1694447 1694780 "MATCAT2" 1695535 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-706 1683723 1687330 1687407 "MATCAT" 1692442 NIL MATCAT (NIL T T T) -9 NIL 1693914 NIL) (-705 1679676 1680986 1682399 "MATCAT-" 1682404 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-704 1677752 1678112 1678496 "MAPPKG3" 1679351 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-703 1676709 1676906 1677128 "MAPPKG2" 1677576 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-702 1675166 1675492 1675819 "MAPPKG1" 1676415 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-701 1674167 1674572 1674749 "MAPPAST" 1675009 T MAPPAST (NIL) -8 NIL NIL NIL) (-700 1673772 1673836 1673959 "MAPHACK3" 1674103 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-699 1673352 1673425 1673539 "MAPHACK2" 1673704 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-698 1672778 1672893 1673035 "MAPHACK1" 1673243 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-697 1670701 1671478 1671782 "MAGMA" 1672506 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-696 1670120 1670425 1670516 "MACROAST" 1670630 T MACROAST (NIL) -8 NIL NIL NIL) (-695 1666477 1668359 1668820 "M3D" 1669692 NIL M3D (NIL T) -8 NIL NIL NIL) (-694 1659951 1664788 1664829 "LZSTAGG" 1665611 NIL LZSTAGG (NIL T) -9 NIL 1665906 NIL) (-693 1655633 1657082 1658539 "LZSTAGG-" 1658544 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-692 1652546 1653524 1654011 "LWORD" 1655178 NIL LWORD (NIL T) -8 NIL NIL NIL) (-691 1652068 1652350 1652425 "LSTAST" 1652491 T LSTAST (NIL) -8 NIL NIL NIL) (-690 1644141 1651839 1651973 "LSQM" 1651978 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-689 1643359 1643504 1643732 "LSPP" 1643996 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-688 1640159 1640858 1641571 "LSMP1" 1642678 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-687 1637964 1638288 1638737 "LSMP" 1639855 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-686 1631094 1637054 1637095 "LSAGG" 1637157 NIL LSAGG (NIL T) -9 NIL 1637235 NIL) (-685 1627603 1628713 1629926 "LSAGG-" 1629931 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-684 1624898 1626747 1626996 "LPOLY" 1627398 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-683 1624474 1624565 1624688 "LPEFRAC" 1624807 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-682 1624157 1624236 1624264 "LOGIC" 1624375 T LOGIC (NIL) -9 NIL 1624457 NIL) (-681 1624013 1624042 1624113 "LOGIC-" 1624118 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-680 1623188 1623346 1623539 "LODOOPS" 1623869 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-679 1621712 1621961 1622314 "LODOF" 1622935 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-678 1617602 1620347 1620388 "LODOCAT" 1620826 NIL LODOCAT (NIL T) -9 NIL 1621037 NIL) (-677 1617317 1617393 1617520 "LODOCAT-" 1617525 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-676 1614317 1617158 1617276 "LODO2" 1617281 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-675 1611438 1614254 1614299 "LODO1" 1614304 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-674 1608547 1611354 1611420 "LODO" 1611425 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-673 1607416 1607593 1607898 "LODEEF" 1608370 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-672 1605402 1606510 1606763 "LO" 1607248 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1600485 1603568 1603609 "LNAGG" 1604471 NIL LNAGG (NIL T) -9 NIL 1604906 NIL) (-670 1599578 1599846 1600188 "LNAGG-" 1600193 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-669 1595558 1596503 1597142 "LMOPS" 1598993 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-668 1594857 1595335 1595376 "LMODULE" 1595381 NIL LMODULE (NIL T) -9 NIL 1595407 NIL) (-667 1591926 1594502 1594625 "LMDICT" 1594767 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-666 1591502 1591716 1591757 "LLINSET" 1591818 NIL LLINSET (NIL T) -9 NIL 1591862 NIL) (-665 1591147 1591410 1591470 "LITERAL" 1591475 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-664 1590666 1590746 1590885 "LIST3" 1591067 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-663 1588764 1589112 1589511 "LIST2MAP" 1590313 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-662 1587753 1587949 1588177 "LIST2" 1588582 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-661 1580209 1586687 1586991 "LIST" 1587482 NIL LIST (NIL T) -8 NIL NIL NIL) (-660 1579792 1580028 1580069 "LINSET" 1580074 NIL LINSET (NIL T) -9 NIL 1580108 NIL) (-659 1578606 1579300 1579467 "LINFORM" 1579677 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-658 1576905 1577633 1577674 "LINEXP" 1578164 NIL LINEXP (NIL T) -9 NIL 1578437 NIL) (-657 1575481 1576385 1576566 "LINELT" 1576776 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-656 1574038 1574318 1574629 "LINDEP" 1575233 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-655 1573174 1573770 1573880 "LINBASIS" 1573968 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-654 1569982 1570712 1571470 "LIMITRF" 1572448 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-653 1568290 1568597 1568999 "LIMITPS" 1569684 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-652 1567118 1567693 1567733 "LIECAT" 1567873 NIL LIECAT (NIL T) -9 NIL 1568024 NIL) (-651 1566953 1566986 1567074 "LIECAT-" 1567079 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-650 1561005 1566464 1566692 "LIE" 1566774 NIL LIE (NIL T T) -8 NIL NIL NIL) (-649 1553306 1560545 1560701 "LIB" 1560869 T LIB (NIL) -8 NIL NIL NIL) (-648 1548875 1549824 1550759 "LGROBP" 1552423 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-647 1547499 1548407 1548435 "LFCAT" 1548642 T LFCAT (NIL) -9 NIL 1548781 NIL) (-646 1545437 1545771 1546121 "LF" 1547220 NIL LF (NIL T T) -7 NIL NIL NIL) (-645 1542297 1542969 1543657 "LEXTRIPK" 1544801 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-644 1538885 1539867 1540370 "LEXP" 1541877 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-643 1538301 1538606 1538698 "LETAST" 1538813 T LETAST (NIL) -8 NIL NIL NIL) (-642 1536687 1537012 1537413 "LEADCDET" 1537983 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-641 1535865 1535951 1536180 "LAZM3PK" 1536608 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-640 1530404 1533942 1534480 "LAUPOL" 1535377 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-639 1529977 1530027 1530188 "LAPLACE" 1530354 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-638 1528825 1529541 1529582 "LALG" 1529644 NIL LALG (NIL T) -9 NIL 1529703 NIL) (-637 1528521 1528598 1528734 "LALG-" 1528739 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-636 1526258 1527622 1527873 "LA" 1528354 NIL LA (NIL T T T) -8 NIL NIL NIL) (-635 1526087 1526117 1526158 "KVTFROM" 1526220 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-634 1524844 1525454 1525639 "KTVLOGIC" 1525922 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-633 1524673 1524703 1524744 "KRCFROM" 1524806 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-632 1523565 1523764 1524063 "KOVACIC" 1524473 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-631 1523394 1523424 1523465 "KONVERT" 1523527 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-630 1523223 1523253 1523294 "KOERCE" 1523356 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-629 1522707 1522800 1522932 "KERNEL2" 1523137 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-628 1520394 1521300 1521677 "KERNEL" 1522363 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-627 1513976 1518871 1518925 "KDAGG" 1519302 NIL KDAGG (NIL T T) -9 NIL 1519508 NIL) (-626 1513487 1513629 1513834 "KDAGG-" 1513839 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-625 1506303 1513148 1513303 "KAFILE" 1513365 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-624 1505907 1506192 1506255 "JVMOP" 1506260 T JVMOP (NIL) -8 NIL NIL NIL) (-623 1504643 1505147 1505396 "JVMMDACC" 1505678 T JVMMDACC (NIL) -8 NIL NIL NIL) (-622 1503579 1504033 1504238 "JVMFDACC" 1504458 T JVMFDACC (NIL) -8 NIL NIL NIL) (-621 1502160 1502655 1502955 "JVMCSTTG" 1503299 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-620 1501296 1501700 1501861 "JVMCFACC" 1502019 T JVMCFACC (NIL) -8 NIL NIL NIL) (-619 1500974 1501213 1501262 "JVMBCODE" 1501267 T JVMBCODE (NIL) -8 NIL NIL NIL) (-618 1495025 1500485 1500713 "JORDAN" 1500795 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-617 1494338 1494674 1494795 "JOINAST" 1494924 T JOINAST (NIL) -8 NIL NIL NIL) (-616 1490484 1492515 1492569 "IXAGG" 1493498 NIL IXAGG (NIL T T) -9 NIL 1493957 NIL) (-615 1489337 1489709 1490128 "IXAGG-" 1490133 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1484540 1489259 1489318 "IVECTOR" 1489323 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1483265 1483543 1483809 "ITUPLE" 1484307 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1481737 1481944 1482239 "ITRIGMNP" 1483087 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1480464 1480686 1480969 "ITFUN3" 1481513 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1480062 1480125 1480248 "ITFUN2" 1480387 NIL ITFUN2 (NIL T T) -8 NIL NIL NIL) (-609 1479167 1479542 1479716 "ITFORM" 1479908 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1476936 1478187 1478465 "ITAYLOR" 1478922 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1465340 1471073 1472236 "ISUPS" 1475806 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1464432 1464584 1464820 "ISUMP" 1465187 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1459396 1464377 1464418 "ISTRING" 1464423 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1458812 1459117 1459209 "ISAST" 1459324 T ISAST (NIL) -8 NIL NIL NIL) (-603 1458010 1458103 1458319 "IRURPK" 1458726 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1456922 1457147 1457387 "IRSN" 1457790 T IRSN (NIL) -7 NIL NIL NIL) (-601 1454967 1455348 1455777 "IRRF2F" 1456560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1454708 1454752 1454828 "IRREDFFX" 1454923 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1453281 1453582 1453881 "IROOT" 1454441 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1452420 1452774 1452925 "IRFORM" 1453150 T IRFORM (NIL) -8 NIL NIL NIL) (-597 1451502 1451633 1451847 "IR2F" 1452303 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-596 1449091 1449610 1450176 "IR2" 1450980 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1445531 1446775 1447467 "IR" 1448431 NIL IR (NIL T) -8 NIL NIL NIL) (-594 1445316 1445356 1445416 "IPRNTPK" 1445491 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1441292 1445205 1445274 "IPF" 1445279 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1439322 1441217 1441274 "IPADIC" 1441279 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1438580 1438882 1439012 "IP4ADDR" 1439212 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1437918 1438209 1438341 "IOMODE" 1438468 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1436889 1437515 1437642 "IOBFILE" 1437811 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1436299 1436793 1436821 "IOBCON" 1436826 T IOBCON (NIL) -9 NIL 1436847 NIL) (-587 1435804 1435868 1436051 "INVLAPLA" 1436235 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1425422 1427842 1430216 "INTTR" 1433480 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1421715 1422499 1423364 "INTTOOLS" 1424607 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1421295 1421392 1421509 "INTSLPE" 1421618 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1418762 1421218 1421277 "INTRVL" 1421282 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1416340 1416876 1417451 "INTRF" 1418247 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1415733 1415848 1415990 "INTRET" 1416238 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1413706 1414119 1414589 "INTRAT" 1415341 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1410951 1411552 1412171 "INTPM" 1413191 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1407691 1408311 1409042 "INTPAF" 1410344 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1402792 1403832 1404883 "INTPACK" 1406660 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1402038 1402196 1402404 "INTHERTR" 1402634 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1401471 1401557 1401745 "INTHERAL" 1401952 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1399239 1399760 1400217 "INTHEORY" 1401034 T INTHEORY (NIL) -7 NIL NIL NIL) (-573 1390629 1392306 1394060 "INTG0" 1397609 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1376854 1380267 1383652 "INTFTBL" 1387264 T INTFTBL (NIL) -8 NIL NIL NIL) (-571 1376079 1376241 1376414 "INTFACT" 1376713 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1373482 1373956 1374511 "INTEF" 1375635 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1371679 1372574 1372602 "INTDOM" 1372903 T INTDOM (NIL) -9 NIL 1373110 NIL) (-568 1371018 1371222 1371464 "INTDOM-" 1371469 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-567 1366886 1369307 1369361 "INTCAT" 1370160 NIL INTCAT (NIL T) -9 NIL 1370481 NIL) (-566 1366340 1366461 1366589 "INTBIT" 1366778 T INTBIT (NIL) -7 NIL NIL NIL) (-565 1365021 1365193 1365500 "INTALG" 1366185 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1364498 1364594 1364751 "INTAF" 1364925 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1357581 1364308 1364448 "INTABL" 1364453 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1356822 1357384 1357449 "INT8" 1357483 T INT8 (NIL) -8 NIL NIL 1357528) (-561 1356062 1356624 1356689 "INT64" 1356723 T INT64 (NIL) -8 NIL NIL 1356768) (-560 1355302 1355864 1355929 "INT32" 1355963 T INT32 (NIL) -8 NIL NIL 1356008) (-559 1354542 1355104 1355169 "INT16" 1355203 T INT16 (NIL) -8 NIL NIL 1355248) (-558 1350748 1354339 1354448 "INT" 1354453 T INT (NIL) -8 NIL NIL NIL) (-557 1344859 1348296 1348324 "INS" 1349258 T INS (NIL) -9 NIL 1349923 NIL) (-556 1342016 1342936 1343877 "INS-" 1343950 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1340846 1341069 1341345 "INPSIGN" 1341791 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1339940 1340081 1340278 "INPRODPF" 1340726 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1338810 1338951 1339188 "INPRODFF" 1339820 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1337798 1337962 1338222 "INNMFACT" 1338646 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1336977 1337092 1337280 "INMODGCD" 1337697 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1335461 1335730 1336054 "INFSP" 1336722 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1334621 1334762 1334945 "INFPROD0" 1335341 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1334219 1334291 1334389 "INFORM1" 1334556 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1330786 1332284 1332799 "INFORM" 1333712 T INFORM (NIL) -8 NIL NIL NIL) (-546 1330291 1330398 1330512 "INFINITY" 1330692 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1329365 1330011 1330112 "INETCLTS" 1330210 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1327963 1328231 1328552 "INEP" 1329113 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1326993 1327860 1327925 "INDE" 1327930 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1326545 1326625 1326742 "INCRMAPS" 1326920 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1325267 1325814 1326020 "INBFILE" 1326359 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1320447 1321503 1322447 "INBFF" 1324355 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1319301 1319624 1319652 "INBCON" 1320165 T INBCON (NIL) -9 NIL 1320431 NIL) (-538 1318511 1318776 1319052 "INBCON-" 1319057 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1317930 1318235 1318326 "INAST" 1318440 T INAST (NIL) -8 NIL NIL NIL) (-536 1317297 1317609 1317715 "IMPTAST" 1317844 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1313331 1317141 1317245 "IMATRIX" 1317250 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1312023 1312162 1312478 "IMATQF" 1313187 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1310203 1310470 1310807 "IMATLIN" 1311779 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1304120 1310127 1310185 "ILIST" 1310190 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1301900 1303980 1304093 "IIARRAY2" 1304098 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1296723 1301811 1301875 "IFF" 1301880 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1296004 1296340 1296456 "IFAST" 1296627 T IFAST (NIL) -8 NIL NIL NIL) (-528 1290630 1295296 1295484 "IFARRAY" 1295861 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1289668 1290534 1290607 "IFAMON" 1290612 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1289240 1289317 1289371 "IEVALAB" 1289578 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1288903 1288983 1289143 "IEVALAB-" 1289148 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1287936 1288792 1288867 "IDPOAMS" 1288872 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1287038 1287825 1287900 "IDPOAM" 1287905 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1286419 1286953 1287015 "IDPO" 1287020 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1284899 1285426 1285478 "IDPC" 1285990 NIL IDPC (NIL T T) -9 NIL 1286271 NIL) (-520 1284231 1284791 1284864 "IDPAM" 1284869 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1283446 1284123 1284196 "IDPAG" 1284201 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1282990 1283252 1283342 "IDENT" 1283376 T IDENT (NIL) -8 NIL NIL NIL) (-517 1279209 1280093 1280988 "IDECOMP" 1282147 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1271844 1273132 1274179 "IDEAL" 1278245 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1270986 1271116 1271316 "ICDEN" 1271728 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1269961 1270466 1270613 "ICARD" 1270859 T ICARD (NIL) -8 NIL NIL NIL) (-513 1267991 1268334 1268739 "IBPTOOLS" 1269638 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1263220 1267611 1267724 "IBITS" 1267910 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1259895 1260519 1261214 "IBATOOL" 1262637 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1257656 1258136 1258669 "IBACHIN" 1259430 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1255360 1257502 1257605 "IARRAY2" 1257610 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1251187 1255286 1255343 "IARRAY1" 1255348 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1244213 1249599 1250080 "IAN" 1250726 T IAN (NIL) -8 NIL NIL NIL) (-506 1243718 1243781 1243954 "IALGFACT" 1244150 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1243210 1243359 1243387 "HYPCAT" 1243594 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1242712 1242865 1243051 "HYPCAT-" 1243056 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1242259 1242507 1242590 "HOSTNAME" 1242649 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1242092 1242141 1242182 "HOMOTOP" 1242187 NIL HOMOTOP (NIL T) -9 NIL 1242220 NIL) (-501 1238636 1240024 1240065 "HOAGG" 1241046 NIL HOAGG (NIL T) -9 NIL 1241775 NIL) (-500 1237152 1237629 1238155 "HOAGG-" 1238160 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1230225 1236745 1236895 "HEXADEC" 1237022 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1228937 1229195 1229458 "HEUGCD" 1230002 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1227869 1228774 1228904 "HELLFDIV" 1228909 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1225993 1227646 1227734 "HEAP" 1227813 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1225190 1225545 1225679 "HEADAST" 1225879 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1218649 1225105 1225167 "HDP" 1225172 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1211694 1218284 1218436 "HDMP" 1218550 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1211000 1211158 1211322 "HB" 1211550 T HB (NIL) -7 NIL NIL NIL) (-491 1204126 1210846 1210950 "HASHTBL" 1210955 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1203542 1203847 1203939 "HASAST" 1204054 T HASAST (NIL) -8 NIL NIL NIL) (-489 1200959 1203164 1203346 "HACKPI" 1203380 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1196272 1200812 1200925 "GTSET" 1200930 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1189427 1196150 1196248 "GSTBL" 1196253 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1181192 1188592 1188848 "GSERIES" 1189227 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1180223 1180736 1180764 "GROUP" 1180967 T GROUP (NIL) -9 NIL 1181101 NIL) (-484 1179547 1179748 1179999 "GROUP-" 1180004 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1177896 1178235 1178622 "GROEBSOL" 1179224 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1176724 1177084 1177135 "GRMOD" 1177664 NIL GRMOD (NIL T T) -9 NIL 1177832 NIL) (-481 1176480 1176528 1176656 "GRMOD-" 1176661 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1171620 1172834 1173834 "GRIMAGE" 1175500 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1170014 1170347 1170671 "GRDEF" 1171316 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1169446 1169574 1169715 "GRAY" 1169893 T GRAY (NIL) -7 NIL NIL NIL) (-477 1168523 1169025 1169076 "GRALG" 1169229 NIL GRALG (NIL T T) -9 NIL 1169322 NIL) (-476 1168160 1168257 1168420 "GRALG-" 1168425 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1164755 1167743 1167922 "GPOLSET" 1168066 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1164103 1164166 1164424 "GOSPER" 1164692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1159673 1160541 1161067 "GMODPOL" 1163802 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1158660 1158862 1159100 "GHENSEL" 1159485 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1152732 1153659 1154679 "GENUPS" 1157744 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1152423 1152480 1152569 "GENUFACT" 1152675 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1151823 1151912 1152077 "GENPGCD" 1152341 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1151291 1151332 1151545 "GENMFACT" 1151782 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1149828 1150114 1150421 "GENEEZ" 1151034 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1143032 1149439 1149601 "GDMP" 1149751 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1131792 1136803 1137909 "GCNAALG" 1142015 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1129919 1130967 1130995 "GCDDOM" 1131250 T GCDDOM (NIL) -9 NIL 1131407 NIL) (-463 1129359 1129516 1129731 "GCDDOM-" 1129736 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1117831 1120305 1122697 "GBINTERN" 1127050 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1115632 1115960 1116381 "GBF" 1117506 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1114389 1114578 1114845 "GBEUCLID" 1115448 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1113039 1113246 1113550 "GB" 1114168 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1112370 1112513 1112662 "GAUSSFAC" 1112910 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1110691 1111039 1111353 "GALUTIL" 1112089 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1108951 1109273 1109597 "GALPOLYU" 1110418 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1106250 1106606 1107013 "GALFACTU" 1108648 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1097864 1099555 1101163 "GALFACT" 1104682 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1095150 1095910 1095938 "FVFUN" 1097094 T FVFUN (NIL) -9 NIL 1097814 NIL) (-452 1094380 1094598 1094626 "FVC" 1094917 T FVC (NIL) -9 NIL 1095100 NIL) (-451 1093981 1094205 1094273 "FUNDESC" 1094332 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1093554 1093778 1093859 "FUNCTION" 1093933 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1092231 1092855 1093058 "FTEM" 1093371 T FTEM (NIL) -8 NIL NIL NIL) (-448 1089873 1090562 1091025 "FT" 1091788 T FT (NIL) -8 NIL NIL NIL) (-447 1088142 1088453 1088850 "FSUPFACT" 1089564 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1086461 1086828 1087160 "FST" 1087830 T FST (NIL) -8 NIL NIL NIL) (-445 1085642 1085766 1085954 "FSRED" 1086343 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1084331 1084597 1084944 "FSPRMELT" 1085357 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1081541 1082075 1082561 "FSPECF" 1083894 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1081063 1081123 1081293 "FSINT" 1081482 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-441 1079199 1080056 1080359 "FSERIES" 1080842 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-440 1078223 1078357 1078581 "FSCINT" 1079079 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-439 1077247 1077408 1077635 "FSAGG2" 1078076 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-438 1073222 1076191 1076232 "FSAGG" 1076602 NIL FSAGG (NIL T) -9 NIL 1076861 NIL) (-437 1070822 1071585 1072381 "FSAGG-" 1072476 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-436 1068482 1068780 1069328 "FS2UPS" 1070540 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-435 1067348 1067531 1067833 "FS2EXPXP" 1068307 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-434 1066976 1067025 1067154 "FS2" 1067299 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 1047243 1056750 1056791 "FS" 1060675 NIL FS (NIL T) -9 NIL 1062964 NIL) (-432 1035385 1038933 1042963 "FS-" 1043263 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 1034799 1034926 1035078 "FRUTIL" 1035265 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 1029342 1032488 1032528 "FRNAALG" 1033848 NIL FRNAALG (NIL T) -9 NIL 1034446 NIL) (-429 1024874 1026125 1027383 "FRNAALG-" 1028133 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-428 1024506 1024555 1024682 "FRNAAF2" 1024825 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 1022793 1023355 1023651 "FRMOD" 1024318 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 1021978 1022071 1022362 "FRIDEAL2" 1022700 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-425 1019583 1020353 1020671 "FRIDEAL" 1021769 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 1018681 1019130 1019171 "FRETRCT" 1019176 NIL FRETRCT (NIL T) -9 NIL 1019352 NIL) (-423 1017760 1018038 1018382 "FRETRCT-" 1018387 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-422 1014581 1016044 1016103 "FRAMALG" 1016985 NIL FRAMALG (NIL T T) -9 NIL 1017277 NIL) (-421 1012619 1013170 1013800 "FRAMALG-" 1014023 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-420 1012249 1012312 1012419 "FRAC2" 1012556 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-419 1005258 1011722 1011999 "FRAC" 1012004 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 1004888 1004951 1005058 "FR2" 1005195 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 995920 1000464 1001795 "FR" 1003589 NIL FR (NIL T) -8 NIL NIL NIL) (-416 989843 993299 993327 "FPS" 994446 T FPS (NIL) -9 NIL 995003 NIL) (-415 989268 989401 989565 "FPS-" 989711 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 986236 988225 988253 "FPC" 988478 T FPC (NIL) -9 NIL 988620 NIL) (-413 986017 986069 986166 "FPC-" 986171 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 984775 985505 985546 "FPATMAB" 985551 NIL FPATMAB (NIL T) -9 NIL 985703 NIL) (-411 982918 983517 983864 "FPARFRAC" 984491 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 978249 978849 979531 "FORTRAN" 982350 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 975823 976487 976515 "FORTFN" 977575 T FORTFN (NIL) -9 NIL 978199 NIL) (-408 975575 975637 975665 "FORTCAT" 975724 T FORTCAT (NIL) -9 NIL 975786 NIL) (-407 973261 973791 974330 "FORT" 975056 T FORT (NIL) -7 NIL NIL NIL) (-406 972778 972836 973009 "FORDER" 973203 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 971838 972038 972231 "FOP" 972605 T FOP (NIL) -7 NIL NIL NIL) (-404 970251 971118 971292 "FNLA" 971720 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 968870 969381 969409 "FNCAT" 969869 T FNCAT (NIL) -9 NIL 970129 NIL) (-402 968313 968829 968857 "FNAME" 968862 T FNAME (NIL) -8 NIL NIL NIL) (-401 966639 967812 967840 "FMTC" 967845 T FMTC (NIL) -9 NIL 967881 NIL) (-400 965195 966575 966621 "FMONOID" 966626 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 961784 963150 963191 "FMONCAT" 964408 NIL FMONCAT (NIL T) -9 NIL 965013 NIL) (-398 959106 959854 959882 "FMFUN" 961026 T FMFUN (NIL) -9 NIL 961734 NIL) (-397 955979 957031 957085 "FMCAT" 958280 NIL FMCAT (NIL T T) -9 NIL 958775 NIL) (-396 955212 955429 955457 "FMC" 955747 T FMC (NIL) -9 NIL 955929 NIL) (-395 953880 954978 955078 "FM1" 955157 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 952898 953622 953771 "FM" 953776 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 950636 951088 951582 "FLOATRP" 952449 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 948038 948574 949152 "FLOATCP" 950103 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 940705 945767 946388 "FLOAT" 947437 T FLOAT (NIL) -8 NIL NIL NIL) (-390 939223 940297 940338 "FLINEXP" 940343 NIL FLINEXP (NIL T) -9 NIL 940436 NIL) (-389 938353 938612 938940 "FLINEXP-" 938945 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-388 937411 937573 937797 "FLASORT" 938205 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 934329 935381 935433 "FLALG" 936660 NIL FLALG (NIL T T) -9 NIL 937127 NIL) (-386 933353 933514 933741 "FLAGG2" 934182 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 926722 930762 930803 "FLAGG" 932065 NIL FLAGG (NIL T) -9 NIL 932717 NIL) (-384 925376 925787 926277 "FLAGG-" 926282 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 922014 923221 923280 "FINRALG" 924408 NIL FINRALG (NIL T T) -9 NIL 924916 NIL) (-382 921138 921403 921742 "FINRALG-" 921747 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-381 920444 920743 920771 "FINITE" 920967 T FINITE (NIL) -9 NIL 921074 NIL) (-380 912395 914974 915014 "FINAALG" 918681 NIL FINAALG (NIL T) -9 NIL 920134 NIL) (-379 907511 908777 909921 "FINAALG-" 911300 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-378 906071 906493 906547 "FILECAT" 907231 NIL FILECAT (NIL T T) -9 NIL 907447 NIL) (-377 905349 905826 905929 "FILE" 906001 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 902754 904579 904607 "FIELD" 904647 T FIELD (NIL) -9 NIL 904727 NIL) (-375 901296 901759 902270 "FIELD-" 902275 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-374 898979 899931 900278 "FGROUP" 900982 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 898051 898233 898453 "FGLMICPK" 898811 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 893308 897976 898033 "FFX" 898038 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 892903 892970 893105 "FFSLPE" 893241 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 892401 892443 892652 "FFPOLY2" 892861 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 888277 889173 889969 "FFPOLY" 891637 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 883548 888196 888259 "FFP" 888264 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 878081 882891 883081 "FFNBX" 883402 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 872416 877216 877474 "FFNBP" 877935 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 866456 871700 871911 "FFNB" 872249 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 865276 865486 865801 "FFINTBAS" 866253 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 860871 863523 863551 "FFIELDC" 864171 T FFIELDC (NIL) -9 NIL 864547 NIL) (-362 859491 859932 860415 "FFIELDC-" 860420 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-361 859048 859106 859230 "FFHOM" 859433 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 856707 857230 857747 "FFF" 858563 NIL FFF (NIL T) -7 NIL NIL NIL) (-359 851744 856449 856550 "FFCGX" 856650 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 846785 851476 851583 "FFCGP" 851687 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 841387 846512 846620 "FFCG" 846721 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 840792 840841 841076 "FFCAT2" 841338 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 819483 830524 830610 "FFCAT" 835775 NIL FFCAT (NIL T T T) -9 NIL 837226 NIL) (-354 814494 815728 817042 "FFCAT-" 818272 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-353 809317 814405 814469 "FF" 814474 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 797972 802289 803509 "FEXPR" 808169 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 796900 797369 797410 "FEVALAB" 797494 NIL FEVALAB (NIL T) -9 NIL 797755 NIL) (-350 796017 796269 796607 "FEVALAB-" 796612 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-349 792879 793764 793879 "FDIVCAT" 795447 NIL FDIVCAT (NIL T T T T) -9 NIL 795884 NIL) (-348 792635 792668 792838 "FDIVCAT-" 792843 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-347 791849 791942 792219 "FDIV2" 792542 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 790259 791232 791435 "FDIV" 791748 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 789167 789554 789756 "FCTRDATA" 790077 T FCTRDATA (NIL) -8 NIL NIL NIL) (-344 787823 788112 788401 "FCPAK1" 788898 T FCPAK1 (NIL) -7 NIL NIL NIL) (-343 786826 787323 787464 "FCOMP" 787714 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 770140 773976 777514 "FC" 783308 T FC (NIL) -8 NIL NIL NIL) (-341 761851 766461 766501 "FAXF" 768303 NIL FAXF (NIL T) -9 NIL 768995 NIL) (-340 758992 759799 760617 "FAXF-" 761082 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-339 753675 758368 758544 "FARRAY" 758849 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 748247 750622 750675 "FAMR" 751698 NIL FAMR (NIL T T) -9 NIL 752158 NIL) (-337 747071 747439 747874 "FAMR-" 747879 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-336 746098 746993 747046 "FAMONOID" 747051 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 743728 744580 744633 "FAMONC" 745574 NIL FAMONC (NIL T T) -9 NIL 745960 NIL) (-334 742202 743482 743619 "FAGROUP" 743624 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 739955 740316 740719 "FACUTIL" 741883 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 739042 739239 739461 "FACTFUNC" 739765 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 730785 738345 738544 "EXPUPXS" 738898 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 728238 728808 729394 "EXPRTUBE" 730219 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 724449 725101 725831 "EXPRODE" 727577 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 718883 719590 720396 "EXPR2UPS" 723747 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 718509 718572 718681 "EXPR2" 718820 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 702878 717158 717587 "EXPR" 718113 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 693237 702029 702320 "EXPEXPAN" 702714 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 692657 692961 693052 "EXITAST" 693166 T EXITAST (NIL) -8 NIL NIL NIL) (-323 692421 692614 692643 "EXIT" 692648 T EXIT (NIL) -8 NIL NIL NIL) (-322 692042 692110 692223 "EVALCYC" 692353 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 691559 691701 691742 "EVALAB" 691912 NIL EVALAB (NIL T) -9 NIL 692016 NIL) (-320 691016 691162 691383 "EVALAB-" 691388 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-319 688131 689672 689700 "EUCDOM" 690255 T EUCDOM (NIL) -9 NIL 690605 NIL) (-318 686491 686992 687575 "EUCDOM-" 687580 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-317 686117 686180 686289 "ESTOOLS2" 686428 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 685862 685910 685990 "ESTOOLS1" 686069 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 673179 676160 678910 "ESTOOLS" 683132 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 672918 672956 673038 "ESCONT1" 673141 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 669226 670053 670833 "ESCONT" 672158 T ESCONT (NIL) -7 NIL NIL NIL) (-312 668895 668951 669051 "ES2" 669170 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 668519 668583 668692 "ES1" 668831 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 662220 664150 664178 "ES" 666946 T ES (NIL) -9 NIL 668356 NIL) (-309 656897 658454 660271 "ES-" 660435 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 656089 656242 656418 "ERROR" 656741 T ERROR (NIL) -7 NIL NIL NIL) (-307 649221 655948 656039 "EQTBL" 656044 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 648847 648910 649019 "EQ2" 649158 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 641106 644161 645610 "EQ" 647431 NIL -4038 (NIL T) -8 NIL NIL NIL) (-304 636348 637444 638537 "EP" 640045 NIL EP (NIL T) -7 NIL NIL NIL) (-303 634888 635239 635545 "ENV" 636062 T ENV (NIL) -8 NIL NIL NIL) (-302 633848 634522 634550 "ENTIRER" 634555 T ENTIRER (NIL) -9 NIL 634601 NIL) (-301 630313 632074 632435 "EMR" 633656 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 629417 629628 629682 "ELTAGG" 630062 NIL ELTAGG (NIL T T) -9 NIL 630273 NIL) (-299 629124 629198 629339 "ELTAGG-" 629344 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-298 628882 628917 628971 "ELTAB" 629055 NIL ELTAB (NIL T T) -9 NIL 629107 NIL) (-297 627984 628154 628353 "ELFUTS" 628733 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 627708 627782 627810 "ELEMFUN" 627915 T ELEMFUN (NIL) -9 NIL NIL NIL) (-295 627572 627599 627667 "ELEMFUN-" 627672 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-294 622097 625614 625655 "ELAGG" 626595 NIL ELAGG (NIL T) -9 NIL 627058 NIL) (-293 620274 620816 621479 "ELAGG-" 621484 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-292 619556 619723 619879 "ELABOR" 620138 T ELABOR (NIL) -8 NIL NIL NIL) (-291 618162 618496 618790 "ELABEXPR" 619282 T ELABEXPR (NIL) -8 NIL NIL NIL) (-290 610801 612799 613628 "EFUPXS" 617437 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-289 604054 606050 606861 "EFULS" 610076 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-288 601491 601897 602369 "EFSTRUC" 603686 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 590929 592848 594396 "EF" 600006 NIL EF (NIL T T) -7 NIL NIL NIL) (-286 589907 590414 590563 "EAB" 590800 T EAB (NIL) -8 NIL NIL NIL) (-285 589029 589866 589894 "E04UCFA" 589899 T E04UCFA (NIL) -8 NIL NIL NIL) (-284 588151 588988 589016 "E04NAFA" 589021 T E04NAFA (NIL) -8 NIL NIL NIL) (-283 587273 588110 588138 "E04MBFA" 588143 T E04MBFA (NIL) -8 NIL NIL NIL) (-282 586395 587232 587260 "E04JAFA" 587265 T E04JAFA (NIL) -8 NIL NIL NIL) (-281 585519 586354 586382 "E04GCFA" 586387 T E04GCFA (NIL) -8 NIL NIL NIL) (-280 584643 585478 585506 "E04FDFA" 585511 T E04FDFA (NIL) -8 NIL NIL NIL) (-279 583765 584602 584630 "E04DGFA" 584635 T E04DGFA (NIL) -8 NIL NIL NIL) (-278 577842 579290 580654 "E04AGNT" 582421 T E04AGNT (NIL) -7 NIL NIL NIL) (-277 576462 577143 577183 "DVARCAT" 577524 NIL DVARCAT (NIL T) -9 NIL 577687 NIL) (-276 575612 575878 576192 "DVARCAT-" 576197 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-275 567616 575411 575540 "DSMP" 575545 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 565967 566758 566799 "DSEXT" 567162 NIL DSEXT (NIL T) -9 NIL 567456 NIL) (-273 564156 564680 565346 "DSEXT-" 565351 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-272 563815 563880 563978 "DROPT1" 564091 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 558834 560056 561193 "DROPT0" 562698 T DROPT0 (NIL) -7 NIL NIL NIL) (-270 553417 554779 555847 "DROPT" 557786 T DROPT (NIL) -8 NIL NIL NIL) (-269 551726 552087 552473 "DRAWPT" 553051 T DRAWPT (NIL) -7 NIL NIL NIL) (-268 551353 551412 551530 "DRAWHACK" 551667 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 550054 550353 550644 "DRAWCX" 551082 T DRAWCX (NIL) -7 NIL NIL NIL) (-266 549563 549638 549789 "DRAWCURV" 549980 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 539881 541993 544108 "DRAWCFUN" 547468 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 534372 535391 536470 "DRAW" 538855 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 530954 533037 533078 "DQAGG" 533707 NIL DQAGG (NIL T) -9 NIL 533981 NIL) (-262 517568 525165 525248 "DPOLCAT" 527100 NIL DPOLCAT (NIL T T T T) -9 NIL 527645 NIL) (-261 512138 513787 515728 "DPOLCAT-" 515733 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-260 505067 511999 512097 "DPMO" 512102 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 497893 504847 505014 "DPMM" 505019 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 497415 497677 497766 "DOMTMPLT" 497824 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 496764 497217 497297 "DOMCTOR" 497355 T DOMCTOR (NIL) -8 NIL NIL NIL) (-256 495916 496244 496395 "DOMAIN" 496633 T DOMAIN (NIL) -8 NIL NIL NIL) (-255 488961 495551 495703 "DMP" 495817 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 486738 488028 488069 "DMEXT" 488074 NIL DMEXT (NIL T) -9 NIL 488250 NIL) (-253 486332 486394 486538 "DLP" 486676 NIL DLP (NIL T) -7 NIL NIL NIL) (-252 479457 485659 485849 "DLIST" 486174 NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 476107 478282 478323 "DLAGG" 478873 NIL DLAGG (NIL T) -9 NIL 479103 NIL) (-250 474619 475433 475461 "DIVRING" 475553 T DIVRING (NIL) -9 NIL 475636 NIL) (-249 473802 474046 474346 "DIVRING-" 474351 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-248 471844 472261 472667 "DISPLAY" 473416 T DISPLAY (NIL) -7 NIL NIL NIL) (-247 470674 470895 471160 "DIRPROD2" 471637 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 464153 470588 470651 "DIRPROD" 470656 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 452437 458864 458917 "DIRPCAT" 459175 NIL DIRPCAT (NIL NIL T) -9 NIL 460050 NIL) (-244 449637 450405 451286 "DIRPCAT-" 451623 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-243 448918 449084 449270 "DIOSP" 449471 T DIOSP (NIL) -7 NIL NIL NIL) (-242 445443 447802 447843 "DIOPS" 448277 NIL DIOPS (NIL T) -9 NIL 448506 NIL) (-241 444962 445106 445297 "DIOPS-" 445302 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-240 443869 444641 444669 "DIFRING" 444674 T DIFRING (NIL) -9 NIL 444696 NIL) (-239 443517 443615 443643 "DIFFSPC" 443762 T DIFFSPC (NIL) -9 NIL 443837 NIL) (-238 443138 443240 443392 "DIFFSPC-" 443397 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-237 442074 442672 442713 "DIFFMOD" 442718 NIL DIFFMOD (NIL T) -9 NIL 442816 NIL) (-236 441770 441827 441868 "DIFFDOM" 441989 NIL DIFFDOM (NIL T) -9 NIL 442057 NIL) (-235 441617 441647 441731 "DIFFDOM-" 441736 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-234 439357 440821 440862 "DIFEXT" 440867 NIL DIFEXT (NIL T) -9 NIL 441020 NIL) (-233 436502 438861 438902 "DIAGG" 438907 NIL DIAGG (NIL T) -9 NIL 438927 NIL) (-232 435850 436043 436295 "DIAGG-" 436300 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-231 430813 434809 435086 "DHMATRIX" 435619 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 426281 427334 428344 "DFSFUN" 429823 T DFSFUN (NIL) -7 NIL NIL NIL) (-229 420394 425111 425446 "DFLOAT" 425966 T DFLOAT (NIL) -8 NIL NIL NIL) (-228 418633 418938 419327 "DFINTTLS" 420102 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 415452 416654 417054 "DERHAM" 418299 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 413102 415227 415316 "DEQUEUE" 415396 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 412344 412489 412672 "DEGRED" 412964 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 408930 409654 410455 "DEFINTRF" 411617 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 406579 407038 407602 "DEFINTEF" 408477 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 405863 406199 406314 "DEFAST" 406484 T DEFAST (NIL) -8 NIL NIL NIL) (-221 398936 405456 405606 "DECIMAL" 405733 T DECIMAL (NIL) -8 NIL NIL NIL) (-220 396394 396906 397412 "DDFACT" 398480 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 395984 396033 396184 "DBLRESP" 396345 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 395185 395754 395845 "DBASIS" 395933 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 392969 393415 393776 "DBASE" 394951 NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 392157 392449 392595 "DATAARY" 392868 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 391215 392116 392144 "D03FAFA" 392149 T D03FAFA (NIL) -8 NIL NIL NIL) (-214 390274 391174 391202 "D03EEFA" 391207 T D03EEFA (NIL) -8 NIL NIL NIL) (-213 388200 388690 389179 "D03AGNT" 389805 T D03AGNT (NIL) -7 NIL NIL NIL) (-212 387441 388159 388187 "D02EJFA" 388192 T D02EJFA (NIL) -8 NIL NIL NIL) (-211 386682 387400 387428 "D02CJFA" 387433 T D02CJFA (NIL) -8 NIL NIL NIL) (-210 385923 386641 386669 "D02BHFA" 386674 T D02BHFA (NIL) -8 NIL NIL NIL) (-209 385164 385882 385910 "D02BBFA" 385915 T D02BBFA (NIL) -8 NIL NIL NIL) (-208 378295 379950 381556 "D02AGNT" 383578 T D02AGNT (NIL) -7 NIL NIL NIL) (-207 376045 376586 377132 "D01WGTS" 377769 T D01WGTS (NIL) -7 NIL NIL NIL) (-206 375052 376004 376032 "D01TRNS" 376037 T D01TRNS (NIL) -8 NIL NIL NIL) (-205 374060 375011 375039 "D01GBFA" 375044 T D01GBFA (NIL) -8 NIL NIL NIL) (-204 373068 374019 374047 "D01FCFA" 374052 T D01FCFA (NIL) -8 NIL NIL NIL) (-203 372076 373027 373055 "D01ASFA" 373060 T D01ASFA (NIL) -8 NIL NIL NIL) (-202 371084 372035 372063 "D01AQFA" 372068 T D01AQFA (NIL) -8 NIL NIL NIL) (-201 370092 371043 371071 "D01APFA" 371076 T D01APFA (NIL) -8 NIL NIL NIL) (-200 369100 370051 370079 "D01ANFA" 370084 T D01ANFA (NIL) -8 NIL NIL NIL) (-199 368108 369059 369087 "D01AMFA" 369092 T D01AMFA (NIL) -8 NIL NIL NIL) (-198 367116 368067 368095 "D01ALFA" 368100 T D01ALFA (NIL) -8 NIL NIL NIL) (-197 366124 367075 367103 "D01AKFA" 367108 T D01AKFA (NIL) -8 NIL NIL NIL) (-196 365132 366083 366111 "D01AJFA" 366116 T D01AJFA (NIL) -8 NIL NIL NIL) (-195 358355 359980 361541 "D01AGNT" 363591 T D01AGNT (NIL) -7 NIL NIL NIL) (-194 357674 357820 357972 "CYCLOTOM" 358223 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 354329 355122 355849 "CYCLES" 356967 T CYCLES (NIL) -7 NIL NIL NIL) (-192 353629 353775 353946 "CVMP" 354190 NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 351416 351728 352097 "CTRIGMNP" 353357 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 350889 351147 351248 "CTORKIND" 351335 T CTORKIND (NIL) -8 NIL NIL NIL) (-189 350094 350482 350510 "CTORCAT" 350692 T CTORCAT (NIL) -9 NIL 350805 NIL) (-188 349668 349803 349962 "CTORCAT-" 349967 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-187 349082 349342 349450 "CTORCALL" 349592 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 348440 348876 348949 "CTOR" 349029 T CTOR (NIL) -8 NIL NIL NIL) (-185 347796 347913 348066 "CSTTOOLS" 348337 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 343493 344252 345010 "CRFP" 347108 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 342908 343214 343306 "CRCEAST" 343421 T CRCEAST (NIL) -8 NIL NIL NIL) (-182 341931 342140 342368 "CRAPACK" 342712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 341311 341416 341620 "CPMATCH" 341807 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 341030 341064 341170 "CPIMA" 341277 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 337288 338050 338769 "COORDSYS" 340365 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 336676 336821 336963 "CONTOUR" 337166 T CONTOUR (NIL) -8 NIL NIL NIL) (-177 332149 334679 335171 "CONTFRAC" 336216 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 332023 332050 332078 "CONDUIT" 332115 T CONDUIT (NIL) -9 NIL NIL NIL) (-175 330977 331651 331679 "COMRING" 331684 T COMRING (NIL) -9 NIL 331736 NIL) (-174 329959 330335 330519 "COMPPROP" 330813 T COMPPROP (NIL) -8 NIL NIL NIL) (-173 329614 329655 329783 "COMPLPAT" 329918 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 329244 329307 329414 "COMPLEX2" 329551 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 317661 329053 329162 "COMPLEX" 329167 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 316982 317121 317281 "COMPILER" 317521 T COMPILER (NIL) -8 NIL NIL NIL) (-169 316694 316735 316833 "COMPFACT" 316941 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 298097 310398 310438 "COMPCAT" 311442 NIL COMPCAT (NIL T) -9 NIL 312790 NIL) (-167 287006 290550 294170 "COMPCAT-" 294526 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-166 286729 286763 286866 "COMMUPC" 286972 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 286517 286557 286616 "COMMONOP" 286690 T COMMONOP (NIL) -7 NIL NIL NIL) (-164 286039 286321 286396 "COMMAAST" 286462 T COMMAAST (NIL) -8 NIL NIL NIL) (-163 285546 285790 285877 "COMM" 285972 T COMM (NIL) -8 NIL NIL NIL) (-162 284741 284989 285017 "COMBOPC" 285355 T COMBOPC (NIL) -9 NIL 285530 NIL) (-161 283595 283847 284089 "COMBINAT" 284531 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 279938 280626 281253 "COMBF" 283017 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 278600 279054 279289 "COLOR" 279723 T COLOR (NIL) -8 NIL NIL NIL) (-158 278016 278321 278413 "COLONAST" 278528 T COLONAST (NIL) -8 NIL NIL NIL) (-157 277650 277703 277828 "CMPLXRT" 277963 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 277038 277350 277449 "CLLCTAST" 277571 T CLLCTAST (NIL) -8 NIL NIL NIL) (-155 272498 273568 274648 "CLIP" 275978 T CLIP (NIL) -7 NIL NIL NIL) (-154 270671 271599 271839 "CLIF" 272325 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 266764 268789 268830 "CLAGG" 269759 NIL CLAGG (NIL T) -9 NIL 270295 NIL) (-152 265108 265643 266226 "CLAGG-" 266231 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-151 264646 264737 264877 "CINTSLPE" 265017 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 262111 262618 263166 "CHVAR" 264174 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 261151 261825 261853 "CHARZ" 261858 T CHARZ (NIL) -9 NIL 261873 NIL) (-148 260899 260945 261023 "CHARPOL" 261105 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 259817 260523 260551 "CHARNZ" 260612 T CHARNZ (NIL) -9 NIL 260661 NIL) (-146 256761 257871 258400 "CHAR" 259308 T CHAR (NIL) -8 NIL NIL NIL) (-145 256469 256548 256576 "CFCAT" 256687 T CFCAT (NIL) -9 NIL NIL NIL) (-144 255692 255821 256004 "CDEN" 256353 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 251403 254845 255125 "CCLASS" 255432 T CCLASS (NIL) -8 NIL NIL NIL) (-142 250624 250811 250988 "CATEGORY" 251246 T -10 (NIL) -8 NIL NIL NIL) (-141 250119 250543 250591 "CATCTOR" 250596 T CATCTOR (NIL) -8 NIL NIL NIL) (-140 249510 249822 249920 "CATAST" 250041 T CATAST (NIL) -8 NIL NIL NIL) (-139 248926 249231 249323 "CASEAST" 249438 T CASEAST (NIL) -8 NIL NIL NIL) (-138 248022 248182 248403 "CARTEN2" 248773 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 242919 244179 244923 "CARTEN" 247334 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 241049 242069 242326 "CARD" 242682 T CARD (NIL) -8 NIL NIL NIL) (-135 240571 240853 240928 "CAPSLAST" 240994 T CAPSLAST (NIL) -8 NIL NIL NIL) (-134 240013 240269 240297 "CACHSET" 240429 T CACHSET (NIL) -9 NIL 240507 NIL) (-133 239403 239791 239819 "CABMON" 239869 T CABMON (NIL) -9 NIL 239925 NIL) (-132 238840 239107 239217 "BYTEORD" 239313 T BYTEORD (NIL) -8 NIL NIL NIL) (-131 233881 238345 238517 "BYTEBUF" 238688 T BYTEBUF (NIL) -8 NIL NIL NIL) (-130 232712 233424 233559 "BYTE" 233722 T BYTE (NIL) -8 NIL NIL 233837) (-129 230090 232404 232511 "BTREE" 232638 NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 227408 229738 229860 "BTOURN" 230000 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 224628 226850 226891 "BTCAT" 226959 NIL BTCAT (NIL T) -9 NIL 227036 NIL) (-126 224277 224375 224524 "BTCAT-" 224529 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-125 219280 223523 223551 "BTAGG" 223665 T BTAGG (NIL) -9 NIL 223775 NIL) (-124 218734 218895 219101 "BTAGG-" 219106 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-123 215586 218012 218227 "BSTREE" 218551 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 214694 214850 215034 "BRILL" 215442 NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 211201 213392 213433 "BRAGG" 214082 NIL BRAGG (NIL T) -9 NIL 214340 NIL) (-120 209637 210138 210692 "BRAGG-" 210697 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-119 201910 208981 209166 "BPADICRT" 209484 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 199928 201847 201892 "BPADIC" 201897 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 199620 199656 199770 "BOUNDZRO" 199892 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 197347 197805 198280 "BOP1" 199178 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 192377 193807 194705 "BOP" 196469 T BOP (NIL) -8 NIL NIL NIL) (-114 191042 191965 192107 "BOOLEAN" 192255 T BOOLEAN (NIL) -8 NIL NIL NIL) (-113 190635 190792 190820 "BOOLE" 190931 T BOOLE (NIL) -9 NIL 191012 NIL) (-112 190503 190530 190596 "BOOLE-" 190601 NIL BOOLE- (NIL T) -8 NIL NIL NIL) (-111 189672 190172 190226 "BMODULE" 190231 NIL BMODULE (NIL T T) -9 NIL 190296 NIL) (-110 185107 189470 189543 "BITS" 189619 T BITS (NIL) -8 NIL NIL NIL) (-109 184504 184647 184787 "BINDING" 184987 T BINDING (NIL) -8 NIL NIL NIL) (-108 177580 184099 184248 "BINARY" 184375 T BINARY (NIL) -8 NIL NIL NIL) (-107 175298 176807 176848 "BGAGG" 177108 NIL BGAGG (NIL T) -9 NIL 177245 NIL) (-106 175123 175161 175252 "BGAGG-" 175257 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 174146 174507 174712 "BFUNCT" 174938 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 172810 173011 173299 "BEZOUT" 173970 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 169124 171662 171992 "BBTREE" 172513 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 168707 168803 168831 "BASTYPE" 169008 T BASTYPE (NIL) -9 NIL 169107 NIL) (-101 168365 168464 168599 "BASTYPE-" 168604 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 167787 167875 168027 "BALFACT" 168276 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 166523 167202 167388 "AUTOMOR" 167632 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 166249 166254 166280 "ATTREG" 166285 T ATTREG (NIL) -9 NIL NIL NIL) (-97 164411 164946 165298 "ATTRBUT" 165915 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 163965 164239 164305 "ATTRAST" 164363 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 163465 163614 163640 "ATRIG" 163841 T ATRIG (NIL) -9 NIL NIL NIL) (-94 163262 163315 163402 "ATRIG-" 163407 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 162845 163079 163105 "ASTCAT" 163110 T ASTCAT (NIL) -9 NIL 163140 NIL) (-92 162554 162631 162750 "ASTCAT-" 162755 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 160642 162330 162418 "ASTACK" 162497 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 159131 159444 159809 "ASSOCEQ" 160324 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 158077 158790 158914 "ASP9" 159038 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 156859 157682 157824 "ASP80" 157966 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 156587 156807 156846 "ASP8" 156851 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 155455 156264 156382 "ASP78" 156500 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 154338 155135 155252 "ASP77" 155369 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 153164 153976 154107 "ASP74" 154238 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 151978 152799 152931 "ASP73" 153063 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 150790 151613 151745 "ASP7" 151877 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 149808 150616 150716 "ASP6" 150721 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 148669 149485 149603 "ASP55" 149721 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 147532 148343 148462 "ASP50" 148581 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 146534 147233 147343 "ASP49" 147453 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 145232 146073 146241 "ASP42" 146423 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 143923 144765 144935 "ASP41" 145119 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 142925 143624 143734 "ASP4" 143844 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 141789 142602 142720 "ASP35" 142838 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 141518 141737 141776 "ASP34" 141781 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 141237 141322 141398 "ASP33" 141473 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 140045 140872 141004 "ASP31" 141136 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 139774 139993 140032 "ASP30" 140037 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 139491 139578 139654 "ASP29" 139729 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 139220 139439 139478 "ASP28" 139483 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 138949 139168 139207 "ASP27" 139212 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 137947 138647 138758 "ASP24" 138869 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 136938 137749 137861 "ASP20" 137866 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 135795 136612 136731 "ASP19" 136850 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 135514 135599 135675 "ASP12" 135750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 134280 135113 135257 "ASP10" 135401 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 133282 133981 134091 "ASP1" 134201 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 131008 133126 133217 "ARRAY2" 133222 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 130022 130213 130434 "ARRAY12" 130831 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 125496 129670 129784 "ARRAY1" 129939 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 119652 121698 121773 "ARR2CAT" 124403 NIL ARR2CAT (NIL T T T) -9 NIL 125161 NIL) (-56 117251 118028 118883 "ARR2CAT-" 118888 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 116502 116878 117003 "ARITY" 117144 T ARITY (NIL) -8 NIL NIL NIL) (-54 115260 115430 115729 "APPRULE" 116338 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 114905 114959 115078 "APPLYORE" 115206 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 114159 114306 114463 "ANY1" 114779 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 113459 113752 113872 "ANY" 114057 T ANY (NIL) -8 NIL NIL NIL) (-50 110785 111896 112223 "ANTISYM" 113183 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 110229 110492 110588 "ANON" 110707 T ANON (NIL) -8 NIL NIL NIL) (-48 103401 108768 109222 "AN" 109793 T AN (NIL) -8 NIL NIL NIL) (-47 99064 100673 100724 "AMR" 101472 NIL AMR (NIL T T) -9 NIL 102072 NIL) (-46 98116 98397 98760 "AMR-" 98765 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 81591 98033 98094 "ALIST" 98099 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 77920 81185 81354 "ALGSC" 81509 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 74370 75030 75637 "ALGPKG" 77360 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 73635 73748 73932 "ALGMFACT" 74256 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 69618 70249 70843 "ALGMANIP" 73219 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58989 69244 69394 "ALGFF" 69551 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 58161 58316 58495 "ALGFACT" 58847 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56950 57688 57726 "ALGEBRA" 57731 NIL ALGEBRA (NIL T) -9 NIL 57772 NIL) (-37 56650 56727 56859 "ALGEBRA-" 56864 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 37610 54487 54539 "ALAGG" 54675 NIL ALAGG (NIL T T) -9 NIL 54836 NIL) (-35 37110 37259 37285 "AHYP" 37486 T AHYP (NIL) -9 NIL NIL NIL) (-34 36412 36595 36621 "AGG" 36904 T AGG (NIL) -9 NIL 37093 NIL) (-33 36119 36206 36321 "AGG-" 36326 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 33879 34348 34753 "AF" 35761 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33299 33604 33694 "ADDAST" 33807 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32531 32826 32982 "ACPLOT" 33161 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20151 29463 29501 "ACFS" 30108 NIL ACFS (NIL T) -9 NIL 30347 NIL) (-28 18058 18668 19430 "ACFS-" 19435 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13768 16091 16117 "ACF" 16996 T ACF (NIL) -9 NIL 17409 NIL) (-26 12400 12806 13299 "ACF-" 13304 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11910 12153 12179 "ABELSG" 12271 T ABELSG (NIL) -9 NIL 12336 NIL) (-24 11771 11802 11868 "ABELSG-" 11873 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11040 11387 11413 "ABELMON" 11583 T ABELMON (NIL) -9 NIL 11695 NIL) (-22 10680 10788 10926 "ABELMON-" 10931 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9930 10386 10412 "ABELGRP" 10484 T ABELGRP (NIL) -9 NIL 10559 NIL) (-20 9357 9522 9738 "ABELGRP-" 9743 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8619 8658 "A1AGG" 8663 NIL A1AGG (NIL T) -9 NIL 8703 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 6ba694d5..ff77aec5 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,879 +1,878 @@ -(725174 . 3518066233) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) - (-5 *2 (-1299 (-421 (-560)))) (-5 *1 (-1328 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) - (-5 *2 (-1299 (-560))) (-5 *1 (-1328 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 (-560)))) (-5 *2 (-114)) - (-5 *1 (-1328 *4))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-916 *4)) (-5 *1 (-173 *4 *5 *3)) - (-4 *4 (-1133)) (-4 *3 (-168 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-1121 (-866 (-391))))) - (-5 *2 (-663 (-1121 (-866 (-229))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-407)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) - (-4 *4 (-1275 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) - (-5 *2 (-1299 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571)) (-4 *3 (-1133)))) - ((*1 *1 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-477 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-549)))) - ((*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1275 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 *3)) (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) - (-4 *5 (-633 (-1209))) (-4 *4 (-817)) (-4 *5 (-872)))) - ((*1 *1 *2) - (-4043 - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872))))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) - (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1191)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) - (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1141 *4 *5 *6 *7)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1191)) - (-5 *1 (-1177 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-1229)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-888)) (-5 *3 (-560)) (-5 *1 (-1229)))) - ((*1 *2 *3) - (-12 (-5 *3 (-802 *4 (-889 *5))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *5 (-663 (-1209))) (-5 *2 (-802 *4 (-889 *6))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *6 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-976 *4)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-976 (-1056 (-421 *4)))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-802 *4 (-889 *6))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *6 (-663 (-1209))) (-5 *2 (-976 (-1056 (-421 *4)))) - (-5 *1 (-1327 *4 *5 *6)) (-14 *5 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-1203 (-1056 (-421 *4)))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 *4 (-545 (-889 *6)) (-889 *6) (-802 *4 (-889 *6)))) - (-4 *4 (-13 (-871) (-319) (-149) (-1052))) (-14 *6 (-663 (-1209))) - (-5 *2 (-663 (-802 *4 (-889 *6)))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209)))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) - (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-980 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-4 *7 (-980 *6 *4 *5)) - (-5 *2 (-419 (-1203 *7))) (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-466)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-419 *1)) (-4 *1 (-980 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-466)) (-5 *2 (-419 *3)) - (-5 *1 (-1011 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-466)) (-4 *7 (-980 *6 *4 *5)) - (-5 *2 (-419 (-1203 (-421 *7)))) (-5 *1 (-1205 *4 *5 *6 *7)) - (-5 *3 (-1203 (-421 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1254)))) - ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1279 *4 *3)) - (-4 *3 (-13 (-1275 *4) (-571) (-10 -8 (-15 -3648 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *5 (-663 (-1209))) - (-5 *2 (-663 (-1178 *4 (-545 (-889 *6)) (-889 *6) (-802 *4 (-889 *6))))) - (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) - (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) +(724491 . 3518758387) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) + (-5 *2 (-1297 (-419 (-558)))) (-5 *1 (-1326 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) + (-5 *2 (-1297 (-558))) (-5 *1 (-1326 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 (-558)))) (-5 *2 (-114)) + (-5 *1 (-1326 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-631 *2) (-175))) (-5 *2 (-914 *4)) (-5 *1 (-173 *4 *5 *3)) + (-4 *4 (-1131)) (-4 *3 (-168 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-1119 (-864 (-391))))) + (-5 *2 (-661 (-1119 (-864 (-229))))) (-5 *1 (-315)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) + (-5 *2 (-1297 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1131)))) + ((*1 *1 *2) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-475 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-547)))) + ((*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) + (-12 (-5 *2 (-974 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) + (-4 *5 (-631 (-1207))) (-4 *4 (-815)) (-4 *5 (-870)))) + ((*1 *1 *2) + (-4039 + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870))))) + ((*1 *1 *2) + (-12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1189)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1189)) + (-5 *1 (-1175 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1212)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-558)) (-5 *1 (-1227)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-558)) (-5 *1 (-1227)))) + ((*1 *2 *3) + (-12 (-5 *3 (-800 *4 (-887 *5))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *5 (-661 (-1207))) (-5 *2 (-800 *4 (-887 *6))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *6 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-974 *4)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-974 (-1054 (-419 *4)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-800 *4 (-887 *6))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *6 (-661 (-1207))) (-5 *2 (-974 (-1054 (-419 *4)))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-1201 (-1054 (-419 *4)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1176 *4 (-543 (-887 *6)) (-887 *6) (-800 *4 (-887 *6)))) + (-4 *4 (-13 (-869) (-319) (-149) (-1050))) (-14 *6 (-661 (-1207))) + (-5 *2 (-661 (-800 *4 (-887 *6)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207)))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-417 (-1201 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-417 *1)) (-4 *1 (-978 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-464)) (-5 *2 (-417 *3)) + (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-464)) (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-417 (-1201 (-419 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) + (-5 *3 (-1201 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1252)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1277 *4 *3)) + (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -3644 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *5 (-661 (-1207))) + (-5 *2 (-661 (-1176 *4 (-543 (-887 *6)) (-887 *6) (-800 *4 (-887 *6))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) - (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) - (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209)))))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-663 (-1209))) - (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1055)) (-5 *5 (-391)))) + (-12 (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-661 (-1207))) + (-5 *2 (-661 (-661 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) ((*1 *2 *3) - (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *5 (-663 (-1209))) (-5 *2 (-663 (-663 (-1056 (-421 *4))))) - (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *5 (-661 (-1207))) (-5 *2 (-661 (-661 (-1054 (-419 *4))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) - (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) - (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *5))))) (-5 *1 (-1327 *5 *6 *7)) - (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-663 (-1056 (-421 *4))))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1078 *4 *5)) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-14 *5 (-663 (-1209))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) - (-5 *1 (-1327 *4 *5 *6)) (-14 *6 (-663 (-1209))))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-661 (-1054 (-419 *4))))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-14 *5 (-661 (-1207))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-661 (-1207))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) - (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) - (-14 *7 (-663 (-1209))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) + (-14 *7 (-661 (-1207))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) - (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) - (-14 *7 (-663 (-1209))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) - (-5 *1 (-1327 *5 *6 *7)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))) - (-14 *7 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) - (-5 *1 (-1327 *4 *5 *6)) (-5 *3 (-663 (-976 *4))) (-14 *5 (-663 (-1209))) - (-14 *6 (-663 (-1209)))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) + (-14 *7 (-661 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))) + (-14 *7 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) + (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-661 (-974 *4))) (-14 *5 (-661 (-1207))) + (-14 *6 (-661 (-1207)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-1078 *5 *6))) - (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-1076 *5 *6))) + (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-871) (-319) (-149) (-1052))) (-5 *2 (-663 (-1078 *5 *6))) - (-5 *1 (-1327 *5 *6 *7)) (-14 *6 (-663 (-1209))) (-14 *7 (-663 (-1209))))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-869) (-319) (-149) (-1050))) (-5 *2 (-661 (-1076 *5 *6))) + (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-661 (-1207))) (-14 *7 (-661 (-1207))))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-871) (-319) (-149) (-1052))) - (-5 *2 (-663 (-1078 *4 *5))) (-5 *1 (-1327 *4 *5 *6)) - (-14 *5 (-663 (-1209))) (-14 *6 (-663 (-1209)))))) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-869) (-319) (-149) (-1050))) + (-5 *2 (-661 (-1076 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-661 (-1207))) (-14 *6 (-661 (-1207)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1326 *4)) - (-4 *4 (-1249)))) + (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1324 *4)) + (-4 *4 (-1247)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-663 (-1187 *5)) (-663 (-1187 *5)))) (-5 *4 (-560)) - (-5 *2 (-663 (-1187 *5))) (-5 *1 (-1326 *5)) (-4 *5 (-1249))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1325))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1325))))) + (-12 (-5 *3 (-1 (-661 (-1185 *5)) (-661 (-1185 *5)))) (-5 *4 (-558)) + (-5 *2 (-661 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1323))))) +(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1323))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6))) - (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1081)))) - ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) + (-12 (-5 *4 (-947)) (-4 *6 (-569)) (-5 *2 (-661 (-326 *6))) + (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1079)))) + ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) ((*1 *2 *3) - (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1235))) - (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-663 *5)) - (-5 *1 (-599 *4 *5)))) + (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1233))) + (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-661 *5)) + (-5 *1 (-597 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-597 (-421 (-976 *4)))) - (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-663 (-326 *4))) - (-5 *1 (-603 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1182 *3)))) + (-12 (-5 *3 (-595 (-419 (-974 *4)))) + (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-661 (-326 *4))) + (-5 *1 (-601 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1180 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-1127 *4 *2)) (-4 *4 (-871)) - (-4 *2 (-1182 *4)))) + (-12 (-5 *3 (-661 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) + (-4 *2 (-1180 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233))))) ((*1 *2 *1) - (-12 (-5 *2 (-1315 (-1209) *3)) (-5 *1 (-1321 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-1324 *3 *4)) (-4 *3 (-872)) - (-4 *4 (-1081))))) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079))))) (((*1 *1 *2) - (-12 (-5 *2 (-1315 (-1209) *3)) (-4 *3 (-1081)) (-5 *1 (-1321 *3)))) + (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1315 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) - (-5 *1 (-1324 *3 *4))))) + (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *1 (-1322 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |k| (-1209)) (|:| |c| (-1321 *3))))) - (-5 *1 (-1321 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-661 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3))))) + (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1324 *3 *4))))) - (-5 *1 (-1324 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949)))) + (-12 (-5 *2 (-661 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) + (-5 *1 (-1322 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-791)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-947)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-159)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-159)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235))) (-5 *1 (-231 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1144)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1144)) (-4 *2 (-1249)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-133)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-872)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233))) (-5 *1 (-231 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *6 (-245 (-4473 *3) (-793))) + (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-4469 *3) (-791))) (-14 *7 - (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) - (-2 (|:| -2645 *5) (|:| -2646 *6)))) - (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-872)) - (-4 *2 (-980 *4 *6 (-889 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) + (-2 (|:| -2641 *5) (|:| -2642 *6)))) + (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) + (-4 *2 (-978 *4 *6 (-887 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1144)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-4 *7 (-1133)) (-5 *2 (-1 *7 *5)) (-5 *1 (-706 *5 *6 *7)))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1142)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *7 (-1131)) (-5 *2 (-1 *7 *5)) (-5 *1 (-704 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1081)) (-4 *2 (-385 *3)) + (-12 (-4 *1 (-706 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-706 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-742))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) + ((*1 *1 *1 *1) (-4 *1 (-740))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-571)) - (-5 *1 (-1001 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1144)))) - ((*1 *1 *1 *1) (-4 *1 (-1144))) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) + (-5 *1 (-999 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142)))) + ((*1 *1 *1 *1) (-4 *1 (-1142))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1155 *3 *4 *2 *5)) (-4 *4 (-1081)) (-4 *2 (-245 *3 *4)) + (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1155 *3 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-872)) (-5 *1 (-1158 *3 *4 *2)) - (-4 *2 (-980 *3 (-545 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-973 (-229))) (-5 *3 (-229)) (-5 *1 (-1246)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-748)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-748)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) + (-4 *2 (-978 *3 (-543 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-971 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-746)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-746)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-560)) (-4 *1 (-1298 *3)) (-4 *3 (-1249)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1081)) (-14 *3 (-663 (-1209))))) + (-12 (-5 *2 (-558)) (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-661 (-1207))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) - (-14 *3 (-663 (-1209))))) - ((*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1133)))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-661 (-1207))))) + ((*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1131)))) ((*1 *1 *1) - (-12 (-14 *2 (-663 (-1209))) (-4 *3 (-175)) (-4 *5 (-245 (-4473 *2) (-793))) + (-12 (-14 *2 (-661 (-1207))) (-4 *3 (-175)) (-4 *5 (-245 (-4469 *2) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *4) (|:| -2646 *5)) - (-2 (|:| -2645 *4) (|:| -2646 *5)))) - (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-872)) - (-4 *7 (-980 *3 *5 (-889 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-875)))) - ((*1 *1 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1081)))) + (-1 (-114) (-2 (|:| -2641 *4) (|:| -2642 *5)) + (-2 (|:| -2641 *4) (|:| -2642 *5)))) + (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) + (-4 *7 (-978 *3 *5 (-887 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) + ((*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1079)))) ((*1 *1 *1) - (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-872)) (-4 *2 (-1081)) (-4 *3 (-748)))) - ((*1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) + (-12 (-5 *1 (-755 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) (-4 *3 (-746)))) + ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870))))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-661 (-1207))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) - (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) + (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1081) (-872))) - (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1079) (-870))) + (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1207))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1249)) - (-4 *7 (-1249)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-305 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1247)) + (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-628 *1)) (-4 *1 (-310)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1191)) (-5 *5 (-630 *6)) (-4 *6 (-310)) - (-4 *2 (-1249)) (-5 *1 (-311 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-628 *6)) (-4 *6 (-310)) + (-4 *2 (-1247)) (-5 *1 (-311 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310)) (-4 *2 (-310)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-628 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-709 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-5 *2 (-709 *6)) (-5 *1 (-317 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) - (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *9 (-376)) (-4 *10 (-1275 *9)) (-4 *11 (-1275 (-421 *10))) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1254)) (-4 *8 (-1254)) (-4 *6 (-1275 *5)) - (-4 *7 (-1275 (-421 *6))) (-4 *9 (-1275 *8)) (-4 *2 (-355 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) (-4 *6 (-1273 *5)) + (-4 *7 (-1273 (-419 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) - (-4 *10 (-1275 (-421 *9))))) + (-4 *10 (-1273 (-419 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *2 (-385 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) - (-4 *4 (-1133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-417 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571)) (-4 *6 (-571)) - (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-569)) (-4 *6 (-569)) + (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571)) (-4 *6 (-571)) - (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-569)) (-4 *6 (-569)) + (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) - (-4 *6 (-1023 *5)) (-4 *7 (-1275 *6)) (-4 *8 (-13 (-424 *6 *7) (-1070 *6))) - (-4 *9 (-319)) (-4 *10 (-1023 *9)) (-4 *11 (-1275 *10)) - (-5 *2 (-427 *9 *10 *11 *12)) (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-424 *10 *11) (-1070 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) + (-4 *6 (-1021 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) + (-4 *9 (-319)) (-4 *10 (-1021 *9)) (-4 *11 (-1273 *10)) + (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-422 *10 *11) (-1068 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-432 *6)) - (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) + (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-435 *6)) - (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-433 *6)) + (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-440 *6)) - (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1249)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-438 *6)) + (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1247)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-875)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376)) (-4 *6 (-376)) - (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-376)) (-4 *6 (-376)) + (-5 *2 (-595 *6)) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2365 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) - (-4 *6 (-376)) (-5 *2 (-2 (|:| -2365 *6) (|:| |coeff| *6))) - (-5 *1 (-598 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2361 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) + (-4 *6 (-376)) (-5 *2 (-2 (|:| -2361 *6) (|:| |coeff| *6))) + (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) - (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) + (-4 *2 (-376)) (-5 *1 (-596 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-598 *5 *6)))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) - (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-615 *8)) - (-5 *1 (-613 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-613 *8)) + (-5 *1 (-611 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-615 *7)) - (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) - (-5 *1 (-613 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-613 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) + (-5 *1 (-611 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1187 *7)) - (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) - (-5 *1 (-613 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1185 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) + (-5 *1 (-611 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-661 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-661 *6)) (-5 *1 (-662 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7)) - (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-663 *8)) - (-5 *1 (-666 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-661 *6)) (-5 *5 (-661 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-661 *8)) + (-5 *1 (-664 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1081)) (-4 *8 (-1081)) (-4 *6 (-385 *5)) - (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) - (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) + (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) + (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1081)) - (-4 *8 (-1081)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) - (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) + (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) + (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571)) (-4 *6 (-1275 *5)) - (-4 *2 (-1275 (-421 *8))) (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1275 (-421 *6))) (-4 *8 (-1275 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1273 *5)) + (-4 *2 (-1273 (-419 *8))) (-5 *1 (-729 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1273 (-419 *6))) (-4 *8 (-1273 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1081)) (-4 *9 (-1081)) (-4 *5 (-872)) - (-4 *6 (-817)) (-4 *2 (-980 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-817)) (-4 *4 (-980 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) (-4 *5 (-870)) + (-4 *6 (-815)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-872)) (-4 *6 (-872)) (-4 *7 (-817)) - (-4 *9 (-1081)) (-4 *2 (-980 *9 *8 *6)) (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-817)) (-4 *4 (-980 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-815)) + (-4 *9 (-1079)) (-4 *2 (-978 *9 *8 *6)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-815)) (-4 *4 (-978 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) (-5 *1 (-756 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-755 *5 *7)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-4 *7 (-746)) (-5 *2 (-755 *6 *7)) (-5 *1 (-754 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-757 *3 *4)) (-4 *4 (-748)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-755 *3 *4)) (-4 *4 (-746)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-5 *2 (-801 *6)) (-5 *1 (-802 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-820 *6)) - (-5 *1 (-823 *4 *5 *2 *6)) (-4 *4 (-820 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) + (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-856 *6)) (-5 *1 (-857 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1133)) - (-4 *6 (-1133)) (-5 *1 (-857 *5 *6)))) + (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *1 (-855 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-866 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1133)) - (-4 *6 (-1133)) (-5 *1 (-867 *5 *6)))) + (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *1 (-865 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-914 *5 *6)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-4 *7 (-1133)) (-5 *2 (-914 *5 *7)) (-5 *1 (-915 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-912 *5 *6)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *7 (-1131)) (-5 *2 (-912 *5 *7)) (-5 *1 (-913 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-916 *6)) (-5 *1 (-918 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-914 *6)) (-5 *1 (-916 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-5 *2 (-976 *6)) (-5 *1 (-977 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-5 *2 (-974 *6)) (-5 *1 (-975 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-872)) (-4 *8 (-1081)) - (-4 *6 (-817)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) + (-4 *6 (-815)) (-4 *2 - (-13 (-1133) - (-10 -8 (-15 -4355 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) - (-5 *1 (-982 *6 *7 *8 *5 *2)) (-4 *5 (-980 *8 *6 *7)))) + (-13 (-1131) + (-10 -8 (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) + (-5 *1 (-980 *6 *7 *8 *5 *2)) (-4 *5 (-978 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-988 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-988 *6)) (-5 *1 (-989 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-986 *6)) (-5 *1 (-987 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-996 *6)) (-5 *1 (-998 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-5 *2 (-973 *6)) (-5 *1 (-1013 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-976 *4))) (-4 *4 (-1081)) (-4 *2 (-980 (-976 *4) *5 *6)) - (-4 *5 (-817)) + (-12 (-5 *3 (-1 *2 (-974 *4))) (-4 *4 (-1079)) (-4 *2 (-978 (-974 *4) *5 *6)) + (-4 *5 (-815)) (-4 *6 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209)))))) - (-5 *1 (-1016 *4 *5 *6 *2)))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207)))))) + (-5 *1 (-1014 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-4 *2 (-1023 *6)) - (-5 *1 (-1024 *5 *6 *4 *2)) (-4 *4 (-1023 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1021 *6)) + (-5 *1 (-1022 *5 *6 *4 *2)) (-4 *4 (-1021 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1030 *6)) - (-5 *1 (-1031 *4 *5 *2 *6)) (-4 *4 (-1030 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1028 *6)) + (-5 *1 (-1029 *4 *5 *2 *6)) (-4 *4 (-1028 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1081)) (-4 *10 (-1081)) (-14 *5 (-793)) - (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) - (-4 *2 (-1085 *5 *6 *10 *11 *12)) - (-5 *1 (-1087 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1085 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) (-14 *5 (-791)) + (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) + (-4 *2 (-1083 *5 *6 *10 *11 *12)) + (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-1121 *6)) (-5 *1 (-1122 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-1119 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-871)) (-4 *5 (-1249)) - (-4 *6 (-1249)) (-5 *2 (-663 *6)) (-5 *1 (-1122 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-661 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-1124 *6)) (-5 *1 (-1125 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-1122 *6)) (-5 *1 (-1123 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1127 *4 *2)) (-4 *4 (-871)) - (-4 *2 (-1182 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) + (-4 *2 (-1180 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-1187 *6)) (-5 *1 (-1189 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) - (-4 *6 (-1249)) (-4 *7 (-1249)) (-4 *8 (-1249)) (-5 *2 (-1187 *8)) - (-5 *1 (-1190 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) + (-5 *1 (-1188 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) - (-5 *2 (-1203 *6)) (-5 *1 (-1204 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1133)) - (-4 *4 (-1133)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5 *7 *9)) (-4 *5 (-1081)) - (-4 *6 (-1081)) (-14 *7 (-1209)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1259 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1209)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-1266 *6)) (-5 *1 (-1267 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-871)) (-4 *5 (-1249)) - (-4 *6 (-1249)) (-5 *2 (-1187 *6)) (-5 *1 (-1267 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1265 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1268 *5 *6)) (-14 *5 (-1209)) - (-4 *6 (-1081)) (-4 *8 (-1081)) (-5 *2 (-1268 *7 *8)) - (-5 *1 (-1269 *5 *6 *7 *8)) (-14 *7 (-1209)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207)) + (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1266 *7 *8)) + (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-1275 *6)) - (-5 *1 (-1276 *5 *4 *6 *2)) (-4 *4 (-1275 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1273 *6)) + (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5 *7 *9)) (-4 *5 (-1081)) - (-4 *6 (-1081)) (-14 *7 (-1209)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1280 *6 *8 *10)) (-5 *1 (-1281 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1209)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1081)) (-4 *6 (-1081)) (-4 *2 (-1292 *6)) - (-5 *1 (-1290 *5 *6 *4 *2)) (-4 *4 (-1292 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1290 *6)) + (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-1249)) (-4 *6 (-1249)) - (-5 *2 (-1299 *6)) (-5 *1 (-1300 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1299 *5)) - (-4 *5 (-1249)) (-4 *6 (-1249)) (-5 *2 (-1299 *6)) (-5 *1 (-1300 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) + (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) - (-4 *4 (-1081)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-1323 *3 *4)) - (-4 *4 (-870))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-34)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1003)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1321 *3 *4)) + (-4 *4 (-868))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-34)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1001)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-560)))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868))))) (((*1 *2 *1) - (-12 (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-843 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-1323 *3 *2)) (-4 *3 (-1081))))) + (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-841 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-843 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-1323 *3 *2)) (-4 *3 (-1081))))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-841 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1079))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1324 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-872)) + (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-870)) (-4 *2 (-175)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-843 *4)) (-4 *1 (-1319 *4 *2)) (-4 *4 (-872)) (-4 *2 (-1081)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1081)) (-5 *1 (-1323 *2 *3)) (-4 *3 (-870))))) + (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1133)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)) - (-4 *4 (-1133)))) - ((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) - ((*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1319 *3 *2)) (-4 *3 (-872)) (-4 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-1323 *2 *3)) (-4 *3 (-870))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)) + (-4 *4 (-1131)))) + ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) + ((*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + ((*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868))))) (((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1323 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-870))))) -(((*1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) - ((*1 *1 *1) (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-870))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-868))))) +(((*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-868))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-229)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-229)))) ((*1 *1 *1 *1) - (-4043 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1249))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1249))))) + (-4039 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1247))))) ((*1 *1 *1 *1) (-4 *1 (-376))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1157 *3 (-630 *1))) (-4 *3 (-571)) (-4 *3 (-1133)) - (-4 *1 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-487))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) + (-12 (-5 *2 (-1155 *3 (-628 *1))) (-4 *3 (-569)) (-4 *3 (-1131)) + (-4 *1 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-748) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-746) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-748) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) + (-12 (-4 *4 (-175)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-746) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-739 *4)) - (-4 *3 (|SubsetCategory| (-748) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-737 *4)) + (-4 *3 (|SubsetCategory| (-746) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)) - (-4 *2 (|SubsetCategory| (-748) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)) + (-4 *2 (|SubsetCategory| (-746) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) + ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-891 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1081)) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-793))) (-14 *5 (-793)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)))) + (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1079)) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-791))) (-14 *5 (-791)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *2 (-1081)) (-4 *5 (-245 *4 *2)) + (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-376)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1081)) (-4 *3 (-872)) (-4 *4 (-817)) - (-14 *6 (-663 *3)) (-5 *1 (-1312 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-980 *2 *4 *3)) (-14 *7 (-663 (-793))) (-14 *8 (-793)))) + (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-815)) + (-14 *6 (-661 *3)) (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-978 *2 *4 *3)) (-14 *7 (-661 (-791))) (-14 *8 (-791)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1323 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1081)) (-4 *3 (-870))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) + (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1079)) (-4 *3 (-868))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-560)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) - (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-286)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *8)) (-5 *4 (-663 *6)) (-4 *6 (-872)) - (-4 *8 (-980 *7 *5 *6)) (-4 *5 (-817)) (-4 *7 (-1081)) (-5 *2 (-663 (-793))) + (-12 (-5 *3 (-1201 *8)) (-5 *4 (-661 *6)) (-4 *6 (-870)) + (-4 *8 (-978 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1079)) (-5 *2 (-661 (-791))) (-5 *1 (-333 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-949)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-947)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) + (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 (-793))))) + (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 (-791))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) - (-5 *2 (-793)))) + (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) + (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *2 *4)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *2 (-816)))) + (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *2 (-814)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-793)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1292 *3)) - (-5 *2 (-560)))) + (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1290 *3)) + (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1261 *3)) - (-5 *2 (-421 (-560))))) - ((*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-856 (-949))))) + (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1259 *3)) + (-5 *2 (-419 (-558))))) + ((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-947))))) ((*1 *2 *1) - (-12 (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-793))))) + (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-791))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)))) + (-12 (-5 *2 (-791)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1322 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081))))) + (-12 (-5 *2 (-791)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) (((*1 *1 *2) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-376)) (-14 *6 (-1299 (-711 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))))) - ((*1 *1 *2) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-709 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-4036 'X) (-4036) (-721))) (-5 *1 (-61 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-352 (-4032 'X) (-4032) (-719))) (-5 *1 (-61 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'JINT 'X 'ELAM) (-4036) (-721)))) - (-5 *1 (-62 *3)) (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'JINT 'X 'ELAM) (-4032) (-719)))) + (-5 *1 (-62 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 'XC) (-721)))) (-5 *1 (-64 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 'XC) (-719)))) (-5 *1 (-64 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-4036) (-4036 'XC) (-721))) (-5 *1 (-66 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-352 (-4032) (-4032 'XC) (-719))) (-5 *1 (-66 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'X) (-4036 '-4482) (-721)))) (-5 *1 (-71 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'X) (-4032 '-4478) (-719)))) (-5 *1 (-71 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 'X) (-721)))) (-5 *1 (-74 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 'X) (-719)))) (-5 *1 (-74 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-4036) (-4036 'X) (-721))) (-5 *1 (-75 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-352 (-4032) (-4032 'X) (-719))) (-5 *1 (-75 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'X 'EPS) (-4036 '-4482) (-721)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1209)) (-14 *4 (-1209)) (-14 *5 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'X 'EPS) (-4032 '-4478) (-719)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'EPS) (-4036 'YA 'YB) (-721)))) - (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1209)) (-14 *4 (-1209)) (-14 *5 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'EPS) (-4032 'YA 'YB) (-719)))) + (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-4036) (-4036 'X) (-721))) (-5 *1 (-78 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-352 (-4032) (-4032 'X) (-719))) (-5 *1 (-78 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 'XC) (-721)))) (-5 *1 (-79 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 'XC) (-719)))) (-5 *1 (-79 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036) (-4036 'X) (-721)))) (-5 *1 (-80 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032) (-4032 'X) (-719)))) (-5 *1 (-80 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'X) (-4036 '-4482) (-721)))) (-5 *1 (-82 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'X) (-4032 '-4478) (-719)))) (-5 *1 (-82 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'X '-4482) (-4036) (-721)))) (-5 *1 (-83 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'X '-4478) (-4032) (-719)))) (-5 *1 (-83 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-711 (-352 (-4036 'X '-4482) (-4036) (-721)))) (-5 *1 (-84 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-709 (-352 (-4032 'X '-4478) (-4032) (-719)))) (-5 *1 (-84 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-711 (-352 (-4036 'X) (-4036) (-721)))) (-5 *1 (-85 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-709 (-352 (-4032 'X) (-4032) (-719)))) (-5 *1 (-85 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-352 (-4036 'X) (-4036) (-721)))) (-5 *1 (-86 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-1297 (-352 (-4032 'X) (-4032) (-719)))) (-5 *1 (-86 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-711 (-352 (-4036 'XL 'XR 'ELAM) (-4036) (-721)))) - (-5 *1 (-88 *3)) (-14 *3 (-1209)))) + (-12 (-5 *2 (-709 (-352 (-4032 'XL 'XR 'ELAM) (-4032) (-719)))) + (-5 *1 (-88 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-4036 'X) (-4036 '-4482) (-721))) (-5 *1 (-89 *3)) - (-14 *3 (-1209)))) + (-12 (-5 *2 (-352 (-4032 'X) (-4032 '-4478) (-719))) (-5 *1 (-89 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) - (-14 *4 (-793)) (-4 *5 (-175)))) + (-12 (-5 *2 (-661 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-791)) (-4 *5 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) - (-14 *4 (-793)))) + (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-791)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) + (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) + (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 (-711 *4))) (-4 *4 (-175)) - (-5 *2 (-1299 (-711 (-421 (-976 *4))))) (-5 *1 (-192 *4)))) + (-12 (-5 *3 (-1297 (-709 *4))) (-4 *4 (-175)) + (-5 *2 (-1297 (-709 (-419 (-974 *4))))) (-5 *1 (-192 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-326 *4))) (-4 *4 (-13 (-872) (-571) (-633 (-391)))) - (-5 *2 (-1124 (-391))) (-5 *1 (-268 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) + (-12 (-5 *3 (-1122 (-326 *4))) (-4 *4 (-13 (-870) (-569) (-631 (-391)))) + (-5 *2 (-1122 (-391))) (-5 *1 (-268 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-870)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) ((*1 *2 *1) - (-12 (-4 *2 (-1275 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1280 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) - (-14 *5 (-1209)) (-14 *6 *4) - (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) + (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) + (-14 *5 (-1207)) (-14 *6 *4) + (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) - (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) + (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4)))) @@ -881,2883 +880,2875 @@ (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) - (-5 *2 (-1324 *3 *4)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) + (-5 *2 (-1322 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) - (-5 *2 (-1315 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) + (-5 *2 (-1313 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-719))) (-4 *1 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398)))) - ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) - (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6)) - (-14 *3 (-1209)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) - (-14 *5 (-663 (-1209))) (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) - (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1209)) - (-14 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-14 *5 (-663 (-1209))) - (-14 *6 (-1213)))) - ((*1 *1 *2) - (-12 (-5 *2 (-421 (-976 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1133)) - (-4 *1 (-435 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1133)) - (-4 *1 (-435 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1133)) (-4 *1 (-435 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1157 *3 (-630 *1))) (-4 *3 (-1081)) (-4 *3 (-1133)) - (-4 *1 (-435 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-872) (-21))) (-5 *1 (-443 *3 *4)) - (-4 *3 (-13 (-175) (-38 (-421 (-560))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560))))) - (-4 *3 (-13 (-872) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-448)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-448)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-448)))) - ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) - (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-721))) (-4 *1 (-454)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1213)) (|:| -1825 (-663 (-342))))) - (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-421 (-976 *3)))) (-4 *3 (-175)) - (-14 *6 (-1299 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-14 *4 (-949)) - (-14 *5 (-663 (-1209))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-482)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1280 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) - (-5 *1 (-488 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-488 *3 *4 *5)) - (-4 *3 (-1081)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-516)))) - ((*1 *1 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-538)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-619)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1081)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1320 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) - (-12 (-5 *2 (-988 (-988 (-988 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2) - (-12 (-5 *2 (-988 (-988 (-988 *3)))) (-4 *3 (-1133)) (-5 *1 (-697 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-703)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) + (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-409)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) + (-14 *5 (-661 (-1207))) (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-721))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) + (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-661 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-14 *5 (-661 (-1207))) + (-14 *6 (-1211)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-974 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1131)) + (-4 *1 (-433 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-974 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1131)) + (-4 *1 (-433 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1131)) (-4 *1 (-433 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 *3 (-628 *1))) (-4 *3 (-1079)) (-4 *3 (-1131)) + (-4 *1 (-433 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-870) (-21))) (-5 *1 (-441 *3 *4)) + (-4 *3 (-13 (-175) (-38 (-419 (-558))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-558))))) + (-4 *3 (-13 (-870) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) + (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-719))) (-4 *1 (-452)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -1823 (-661 (-342))))) + (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-453)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 (-419 (-974 *3)))) (-4 *3 (-175)) + (-14 *6 (-1297 (-709 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-947)) + (-14 *5 (-661 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-480)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) + (-5 *1 (-486 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-514)))) + ((*1 *1 *2) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-536)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-617)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-618 *3 *2)) (-4 *2 (-764 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-650 *3 *2)) (-4 *2 (-764 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) + (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-695 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) + (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1131)) (-5 *1 (-695 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) + ((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-701)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))) - ((*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723)))) - ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732)))) - ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-714)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-714)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-714)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) + ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-719)))) + ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-719)))) + ((*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-721))) (-5 *1 (-721)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730)))) + ((*1 *2 *1) + (-12 (-4 *2 (-175)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-175)) (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| -4470 *3) (|:| -4454 *4)))) (-4 *3 (-1081)) - (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785)))) + (-12 (-5 *2 (-661 (-2 (|:| -4466 *3) (|:| -4450 *4)))) (-4 *3 (-1079)) + (-4 *4 (-746)) (-5 *1 (-755 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-783)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-791)))) + (-5 *1 (-789)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-791)))) + (-5 *1 (-789)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-791)))) - ((*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1249)))) + (-5 *1 (-789)))) + ((*1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-794 *3)) (-4 *3 (-1247)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-832)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-850)))) + (-5 *1 (-830)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) - (-5 *1 (-865)))) + (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) + (-5 *1 (-863)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) - (-5 *1 (-865)))) + (-12 (-5 *2 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) + (-5 *1 (-863)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) - (-5 *1 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-883)))) - ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) - ((*1 *2 *3) (-12 (-5 *3 (-976 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-900)))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) + (-5 *1 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-881)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) + ((*1 *2 *3) (-12 (-5 *3 (-974 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-898)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 (-48)))) (-5 *2 (-326 (-560))) (-5 *1 (-900)))) - ((*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-843 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) + (-12 (-5 *3 (-419 (-974 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-898)))) + ((*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-663 (-326 (-229)))) + (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| - (-663 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) - (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) - (|:| |dFinish| (-711 (-229)))))) - (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) + (-661 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) + (|:| |dFinish| (-709 (-229)))))) + (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) - (-5 *1 (-926)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-932 *3))) (-4 *3 (-1133)) (-5 *1 (-935 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2) (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-944 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319)))) - ((*1 *2 *3) - (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-950 *4)) (-4 *4 (-571)))) - ((*1 *2 *3) (-12 (-5 *2 (-1305)) (-5 *1 (-1065 *3)) (-4 *3 (-1249)))) - ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1065 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *2 (-980 *3 *4 *5)) (-14 *6 (-663 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-1072 *3)) (-4 *3 (-571)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1081)) (-4 *4 (-872)) (-5 *1 (-1158 *3 *4 *2)) - (-4 *2 (-980 *3 (-545 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1081)) (-4 *2 (-872)) (-5 *1 (-1158 *3 *2 *4)) - (-4 *4 (-980 *3 (-545 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-888)))) - ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1176)))) - ((*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1200 *3 *4 *5)) - (-4 *3 (-1081)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1207 *3 *4 *5)) - (-4 *3 (-1081)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1268 *4 *3)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) - (-5 *1 (-1207 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1221 (-1209) (-450))) (-5 *1 (-1213)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1222 *3)) (-4 *3 (-1133)))) - ((*1 *2 *3) (-12 (-5 *2 (-1229)) (-5 *1 (-1230 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1081)) (-5 *1 (-1242 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1242 *3)) (-4 *3 (-1081)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-1081)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1121 *3)) (-4 *3 (-1249)) (-5 *1 (-1266 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1289 *3 *4 *5)) - (-4 *3 (-1081)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1268 *4 *3)) (-4 *3 (-1081)) (-14 *4 (-1209)) (-14 *5 *3) - (-5 *1 (-1289 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1296 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1302)) (-5 *1 (-1301)))) - ((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-1302)))) - ((*1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1324 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) + (-5 *1 (-924)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-930 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-942 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319)))) + ((*1 *2 *3) + (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-948 *4)) (-4 *4 (-569)))) + ((*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1063 *3)) (-4 *3 (-1247)))) + ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-661 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-569)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) + (-4 *2 (-978 *3 (-543 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) + (-4 *4 (-978 *3 (-543 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1174)))) + ((*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) + (-5 *1 (-1205 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-448))) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1220 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-974 *3)) (-4 *3 (-1079)) (-5 *1 (-1240 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3) + (-5 *1 (-1287 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1300)) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1300)))) + ((*1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) ((*1 *2 *1) - (-12 (-5 *2 (-1315 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) - (-5 *1 (-1320 *3 *4))))) + (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) + (-5 *1 (-1318 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1315 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) - (-5 *1 (-686 *3 *4)))) + (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) + (-5 *1 (-684 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) + (|partial| -12 (-5 *2 (-684 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1124 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-661 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5)) - (-14 *5 (-949)))) + (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-5 *1 (-644 *3 *4 *5)) + (-14 *5 (-947)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) - (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4)))) + (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) + (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-739 (-421 (-560)))) - (-4 *3 (-872)) (-4 *4 (-175))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-737 (-419 (-558)))) + (-4 *3 (-870)) (-4 *4 (-175))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *2 *3) - (-12 (-5 *3 (-419 *4)) (-4 *4 (-571)) - (-5 *2 (-663 (-2 (|:| -4470 (-793)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) + (-12 (-5 *3 (-417 *4)) (-4 *4 (-569)) + (-5 *2 (-661 (-2 (|:| -4466 (-791)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *1) - (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) + (-12 (-5 *2 (-684 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) - (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4)))) + (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) + (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-739 (-421 (-560)))) - (-4 *3 (-872)) (-4 *4 (-175))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-737 (-419 (-558)))) + (-4 *3 (-870)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) - (-5 *2 (-2 (|:| |k| (-843 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1324 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) + (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-843 *3)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1324 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) + (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-843 *3)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1133)))) + (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081)))) + (-12 (-5 *4 (-558)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-843 *4)) (-4 *4 (-872)) (-4 *1 (-1319 *4 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-841 *4)) (-4 *4 (-870)) (-4 *1 (-1317 *4 *3)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-114)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1081)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *3 (-571)) (-5 *2 (-114)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) + (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) + (-12 (-5 *2 (-114)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) ((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-114))))) +(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) ((*1 *1 *1) - (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-872)) - (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-949)))) - ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081))))) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-870)) + (-4 *3 (-13 (-175) (-737 (-419 (-558))))) (-14 *4 (-947)))) + ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) + (-12 (-5 *2 (-791)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-4 *4 (-175)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1319 *2 *3)) (-4 *2 (-872)) (-4 *3 (-1081)) (-4 *3 (-175))))) + (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) (-4 *3 (-175))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1209))) (-5 *1 (-213)) (-5 *3 (-1209)))) + (-12 (-5 *4 (-791)) (-5 *2 (-661 (-1207))) (-5 *1 (-213)) (-5 *3 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1209))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-791)) (-5 *2 (-661 (-1207))) (-5 *1 (-278)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-872)) (-4 *4 (-175)) (-5 *2 (-663 *3)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-870)) (-4 *4 (-175)) (-5 *2 (-661 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-843 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) + (-12 (-5 *2 (-661 *3)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-841 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) ((*1 *2 *1) - (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-872)) (-4 *4 (-1081)) (-5 *2 (-663 *3))))) + (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-661 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1244 *4 *5 *3 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *3 (-872)) - (-4 *6 (-1097 *4 *5 *3)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-870)) + (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-949)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-947)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-856 (-949))) (-5 *1 (-340 *3 *4)) + (-12 (-4 *4 (-376)) (-5 *2 (-854 (-947))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-949)))) - ((*1 *2) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-856 (-949)))))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-947)))) + ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-947)))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-5 *2 (-793))))) + (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-791))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1275 *4)) - (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1275 *5)) (-14 *6 (-949)))) + (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1273 *4)) + (-5 *1 (-797 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-947)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1318 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) - ((*1 *1 *1) (-12 (-4 *1 (-1318 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) + (-12 (-5 *2 (-791)) (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + ((*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1081) (-739 (-421 (-560))))) (-4 *5 (-872)) - (-5 *1 (-1316 *4 *5 *2)) (-4 *2 (-1322 *5 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1079) (-737 (-419 (-558))))) (-4 *5 (-870)) + (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1313 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1311 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) - (-4 *7 (-872)) (-5 *1 (-1313 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) + (-4 *7 (-870)) (-5 *1 (-1311 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1313 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1311 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) - (-4 *7 (-872)) (-5 *1 (-1313 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) + (-4 *7 (-870)) (-5 *1 (-1311 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 (-1313 *4 *5 *6 *7))) - (-5 *1 (-1313 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 (-1311 *4 *5 *6 *7))) + (-5 *1 (-1311 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) (-4 *8 (-872)) - (-5 *2 (-663 (-1313 *6 *7 *8 *9))) (-5 *1 (-1313 *6 *7 *8 *9))))) + (-12 (-5 *3 (-661 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-870)) + (-5 *2 (-661 (-1311 *6 *7 *8 *9))) (-5 *1 (-1311 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-891 *4 *5 *6 *7)) - (-4 *4 (-1081)) (-14 *5 (-663 (-1209))) (-14 *6 (-663 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-889 *4 *5 *6 *7)) + (-4 *4 (-1079)) (-14 *5 (-661 (-1207))) (-14 *6 (-661 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-1081)) (-4 *5 (-872)) (-4 *6 (-817)) - (-14 *8 (-663 *5)) (-5 *2 (-1305)) (-5 *1 (-1312 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-980 *4 *6 *5)) (-14 *9 (-663 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531)))) + (-12 (-5 *3 (-791)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-815)) + (-14 *8 (-661 *5)) (-5 *2 (-1303)) (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-978 *4 *6 *5)) (-14 *9 (-661 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1133) (-34))) (-5 *1 (-1172 *3 *2)) - (-4 *3 (-13 (-1133) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1311))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1310))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1310))))) + (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1170 *3 *2)) + (-4 *3 (-13 (-1131) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1309))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-1275 *3)) + (-12 (-5 *3 (-558)) (-4 *4 (-1273 *3)) (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4)))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-5 *1 (-788 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 *3)) + (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-5 *1 (-1017 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-744 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 *3)) + (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-5 *1 (-1309 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5))))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)))) + (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1275 (-560))) + (-12 (-4 *3 (-1273 (-558))) (-5 *2 - (-2 (|:| -2236 (-711 (-560))) (|:| |basisDen| (-560)) - (|:| |basisInv| (-711 (-560))))) - (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3)))) + (-2 (|:| -2232 (-709 (-558))) (|:| |basisDen| (-558)) + (|:| |basisInv| (-709 (-558))))) + (-5 *1 (-788 *3 *4)) (-4 *4 (-422 (-558) *3)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 *4)) + (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 - (-2 (|:| -2236 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) - (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5)))) + (-2 (|:| -2232 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) + (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-744 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 *4)) + (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 - (-2 (|:| -2236 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) - (-5 *1 (-1309 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5))))) + (-2 (|:| -2232 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) + (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1242 *6)) - (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1308 *6)) (-5 *5 (-1187 *4))))) + (-12 (-5 *3 (-791)) (-4 *6 (-376)) (-5 *4 (-1240 *6)) + (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6)) (-5 *5 (-1185 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-4 *5 (-376)) (-5 *2 (-663 (-1242 *5))) - (-5 *1 (-1308 *5)) (-5 *4 (-1242 *5))))) + (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-661 (-1240 *5))) + (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-1 (-1203 (-976 *4)) (-976 *4))) - (-5 *1 (-1308 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-974 *4)) (-974 *4))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-4 *5 (-376)) (-5 *2 (-1187 (-1187 (-976 *5)))) - (-5 *1 (-1308 *5)) (-5 *4 (-1187 (-976 *5)))))) + (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-974 *5)))) + (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-974 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1187 (-976 *4)) (-1187 (-976 *4)))) - (-5 *1 (-1308 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1185 (-974 *4)) (-1185 (-974 *4)))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) (((*1 *2 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1187 (-976 *4)) (-1187 (-976 *4)))) - (-5 *1 (-1308 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1185 (-974 *4)) (-1185 (-974 *4)))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) (((*1 *2) - (-12 (-14 *4 (-793)) (-4 *5 (-1249)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 (-791)) (-4 *5 (-1247)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) ((*1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-560)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-558)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) - (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1081)) (-5 *2 (-949)))) - ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(((*1 *1) (-5 *1 (-1305)))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1304)))) - ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1304))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304))))) -(((*1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304)))) - ((*1 *2 *2) (-12 (-5 *2 (-899)) (-5 *1 (-1304))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-947)))) + ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) (((*1 *1) (-5 *1 (-1303)))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302)))) + ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) + ((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1302))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))) +(((*1 *1) (-5 *1 (-1301)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1303)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-1191)) (-5 *1 (-1303)))) - ((*1 *1 *1) (-5 *1 (-1303)))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-1197 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1303)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1303))))) + (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-661 (-270))) (-5 *1 (-1301)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301)))) + ((*1 *1 *1) (-5 *1 (-1301)))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1195 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1301)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1301))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-793)) (-5 *3 (-973 *4)) (-4 *1 (-1166 *4)) (-4 *4 (-1081)))) + (-12 (-5 *2 (-791)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1302)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1303)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1303))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-791)) (-5 *4 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1300)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1301)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1301))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302)))) + (-12 (-5 *3 (-791)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-791)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1301))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *3 (-663 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) + (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) + (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *2 (-1305)) (-5 *1 (-1303)))) + (-5 *2 (-1303)) (-5 *1 (-1301)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4363 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4359 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *1 (-1303)))) + (-5 *1 (-1301)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-1302)))) + (-12 (-5 *3 (-947)) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-1300)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1303)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1301)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1305)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-947)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-1302)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1302)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1302)))) + (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-1303)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1303)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1303))))) + (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1302)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1303))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1302)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1303))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-973 (-229)))) (-5 *1 (-1302))))) -(((*1 *1) (-5 *1 (-1302)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1302)))) - ((*1 *1 *1) (-5 *1 (-1302)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-971 (-229)))) (-5 *1 (-1300))))) +(((*1 *1) (-5 *1 (-1300)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-661 (-270))) (-5 *1 (-1300)))) + ((*1 *1 *1) (-5 *1 (-1300)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-949)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-899)) - (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-897)) + (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1) (-12 (-5 *2 - (-1299 + (-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) - (|:| |deltaY| (-229)) (|:| -4366 (-560)) (|:| -4364 (-560)) - (|:| |spline| (-560)) (|:| -4395 (-560)) (|:| |axesColor| (-899)) - (|:| -4367 (-560)) (|:| |unitsColor| (-899)) (|:| |showing| (-560))))) - (-5 *1 (-1302))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) - ((*1 *2 *1) (-12 (-5 *2 (-1299 (-3 (-482) "undefined"))) (-5 *1 (-1302))))) + (|:| |deltaY| (-229)) (|:| -4362 (-558)) (|:| -4360 (-558)) + (|:| |spline| (-558)) (|:| -4391 (-558)) (|:| |axesColor| (-897)) + (|:| -4363 (-558)) (|:| |unitsColor| (-897)) (|:| |showing| (-558))))) + (-5 *1 (-1300))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-480) "undefined"))) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-482)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-482)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-480)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-947)) (-5 *2 (-480)) (-5 *1 (-1300))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) + (-12 (-5 *2 (-661 (-391))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-1302)))) + (-12 (-5 *3 (-947)) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-1300)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-947)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-482)) (-5 *4 (-949)) (-5 *2 (-1305)) (-5 *1 (-1302))))) + (-12 (-5 *3 (-480)) (-5 *4 (-947)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-899)) (-5 *5 (-949)) - (-5 *6 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-1301)))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-897)) (-5 *5 (-947)) + (-5 *6 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-663 (-270))) - (-5 *2 (-1302)) (-5 *1 (-1301))))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-661 (-270))) + (-5 *2 (-1300)) (-5 *1 (-1299))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-899)) (-5 *5 (-949)) - (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1301)))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-897)) (-5 *5 (-947)) + (-5 *6 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1299)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-482)) (-5 *1 (-1301)))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-480)) (-5 *1 (-1299)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-482)) - (-5 *1 (-1301))))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-480)) + (-5 *1 (-1299))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1133)) (|has| *1 (-6 -4511)) - (-4 *1 (-153 *2)) (-4 *2 (-1249)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (|has| *1 (-6 -4507)) + (-4 *1 (-153 *2)) (-4 *2 (-1247)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) - (-4 *2 (-1249)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) + (-4 *2 (-1247)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) - (-4 *2 (-1249)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) + (-4 *2 (-1247)))) ((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-5 *2 (-2 (|:| -2228 (-1203 *4)) (|:| |deg| (-949)))) - (-5 *1 (-225 *4 *5)) (-5 *3 (-1203 *4)) (-4 *5 (-571)))) + (-12 (-4 *4 (-1079)) (-5 *2 (-2 (|:| -2224 (-1201 *4)) (|:| |deg| (-947)))) + (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-569)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) - (-4 *6 (-1249)) (-4 *2 (-1249)) (-5 *1 (-247 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) + (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1275 *4)) + (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1133)))) + ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1131)))) ((*1 *1 *1) - (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1275 *2)) - (-4 *4 (-1275 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) + (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1249)) (-4 *2 (-1249)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1133)) (-4 *2 (-1133)) - (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2)))) - ((*1 *1 *1) (-5 *1 (-509))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) + ((*1 *1 *1) (-5 *1 (-507))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) - (-5 *1 (-664 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-661 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) + (-5 *1 (-662 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1081)) (-4 *2 (-1081)) (-4 *6 (-385 *5)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) - (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) - (-4 *10 (-708 *2 *8 *9)))) + (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-706 *5 *6 *7)) + (-4 *10 (-706 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1275 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-376)) - (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1275 *3)))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376)) + (-4 *3 (-175)) (-4 *1 (-744 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-988 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) - (-5 *1 (-989 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) + (-5 *1 (-987 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *2 (-980 *3 *4 *5)) (-14 *6 (-663 *2)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-661 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1081)) (-4 *2 (-1081)) (-14 *5 (-793)) - (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) (-14 *5 (-791)) + (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) - (-5 *1 (-1087 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1085 *5 *6 *7 *8 *9)) (-4 *12 (-1085 *5 *6 *2 *10 *11)))) + (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) - (-5 *1 (-1189 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) + (-5 *1 (-1187 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) - (-4 *1 (-1244 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *2 (-1097 *5 *6 *7)))) + (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *2 (-1095 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1299 *5)) (-4 *5 (-1249)) (-4 *2 (-1249)) - (-5 *1 (-1300 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) + (-5 *1 (-1298 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793)) - (-4 *7 (-1249)) (-4 *5 (-1249)) (-5 *2 (-246 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-791)) + (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1249)) (-4 *5 (-1249)) (-4 *2 (-385 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1133)) (-4 *5 (-1133)) (-4 *2 (-440 *5)) - (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-438 *5)) + (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) - (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-661 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) + (-5 *2 (-661 *5)) (-5 *1 (-662 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-988 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) - (-5 *2 (-988 *5)) (-5 *1 (-989 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) + (-5 *2 (-986 *5)) (-5 *1 (-987 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1249)) (-4 *3 (-1249)) - (-5 *2 (-1187 *3)) (-5 *1 (-1189 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) + (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1299 *6)) (-4 *6 (-1249)) (-4 *5 (-1249)) - (-5 *2 (-1299 *5)) (-5 *1 (-1300 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1299 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) + (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) - (-15 -2189 ((-1305) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-133)))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) + (-15 -2185 ((-1303) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) (-4 *2 (-1275 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-25))))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-793)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-791)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1298 *3)) (-4 *3 (-23)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-791)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-136))) ((*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) - (-15 -2189 ((-1305) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) + (-15 -2185 ((-1303) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1249)) (-4 *2 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-229)) (-5 *1 (-1246)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1081))))) + ((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1298 *3)) (-4 *3 (-1249)) (-4 *3 (-1081)) (-5 *2 (-711 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1081)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1081))))) + (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) (-5 *2 (-709 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) - (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) - ((*1 *1 *1) (-4 *1 (-559))) - ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-843 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1247 *3)) (-4 *3 (-1249)))) + (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) + ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-841 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1245 *3)) (-4 *3 (-1247)))) ((*1 *2 *1) - (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1034)) (-4 *2 (-1081))))) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-1298 *2)) (-4 *2 (-1249)) (-4 *2 (-1034)) (-4 *2 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-870)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-889 *3)) (-14 *3 (-663 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1021)))) + (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-887 *3)) (-14 *3 (-661 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1019)))) ((*1 *2 *1) - (-12 (-4 *4 (-1249)) (-5 *2 (-1209)) (-5 *1 (-1090 *3 *4)) - (-4 *3 (-1126 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1124 *3)) (-4 *3 (-1249)))) + (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1088 *3 *4)) + (-4 *3 (-1124 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1296 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-421 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-571)) (-4 *4 (-1081)) - (-4 *2 (-1292 *4)) (-5 *1 (-1294 *4 *5 *6 *2)) (-4 *6 (-680 *5))))) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) (-4 *4 (-1079)) + (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) (-4 *6 (-678 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-1275 *4)) (-5 *2 (-1 *6 (-663 *6))) - (-5 *1 (-1294 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1292 *4))))) + (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-661 *6))) + (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1290 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-1081)) (-4 *2 (-1275 *5)) - (-5 *1 (-1294 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1292 *5))))) + (-12 (-5 *4 (-791)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) + (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1290 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *3 (-1275 *4)) (-4 *2 (-1292 *4)) - (-5 *1 (-1294 *4 *3 *5 *2)) (-4 *5 (-680 *3))))) + (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1290 *4)) + (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6)))) - (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1292 *5)) (-5 *2 (-663 *6)) - (-5 *1 (-1293 *5 *6))))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 (-1 *6 (-661 *6)))) + (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1290 *5)) (-5 *2 (-661 *6)) + (-5 *1 (-1291 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5)) (-4 *5 (-38 (-421 (-560)))) - (-4 *2 (-1292 *5)) (-5 *1 (-1293 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-661 *2))) (-5 *4 (-661 *5)) (-4 *5 (-38 (-419 (-558)))) + (-4 *2 (-1290 *5)) (-5 *1 (-1291 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1292 *4)) (-5 *1 (-1293 *4 *2)) - (-4 *4 (-38 (-421 (-560))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) + (-4 *4 (-38 (-419 (-558))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1292 *4)) (-5 *1 (-1293 *4 *2)) - (-4 *4 (-38 (-421 (-560))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) + (-4 *4 (-38 (-419 (-558))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1293 *3 *2)) (-4 *2 (-1292 *3))))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1291 *3 *2)) (-4 *2 (-1290 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) - (-5 *2 (-1 (-1187 *4) (-663 (-1187 *4)))) (-5 *1 (-1293 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-661 *5))) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1185 *4) (-661 (-1185 *4)))) (-5 *1 (-1291 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) - (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1293 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1292 *4)) (-4 *4 (-38 (-421 (-560)))) - (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1293 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) - (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) + (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *6 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-560))) - (-4 *7 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-558))) + (-4 *7 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-560))) - (-4 *3 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *7 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-558))) + (-4 *3 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) - (-5 *5 (-1266 (-421 (-560)))) (-5 *6 (-421 (-560))) - (-4 *8 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) + (-5 *5 (-1264 (-419 (-558)))) (-5 *6 (-419 (-558))) + (-4 *8 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-421 (-560)))) - (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *8))) - (-4 *8 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *8 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-419 (-558)))) + (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *8))) + (-4 *8 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1081)) - (-5 *1 (-609 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-610 *3)))) + (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1079)) + (-5 *1 (-607 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1081)) - (-4 *1 (-1261 *3)))) + (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1079)) + (-4 *1 (-1259 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-793)) (-5 *3 (-1187 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))) - (-4 *4 (-1081)) (-4 *1 (-1282 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-4 *1 (-1292 *3)))) + (-12 (-5 *2 (-791)) (-5 *3 (-1185 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) + (-4 *4 (-1079)) (-4 *1 (-1280 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-4 *1 (-1290 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-793)) (|:| |c| *3)))) (-4 *3 (-1081)) - (-4 *1 (-1292 *3))))) + (-12 (-5 *2 (-1185 (-2 (|:| |k| (-791)) (|:| |c| *3)))) (-4 *3 (-1079)) + (-4 *1 (-1290 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-663 *3)))) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-661 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-663 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-661 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748)))) - ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-663 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-1081)) (-5 *2 (-1187 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1081)) (-5 *1 (-609 *3)))) + (-12 (-5 *2 (-661 *3)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-661 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1079)) (-5 *2 (-1185 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1079)) (-5 *1 (-607 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1261 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1259 *3)) (-4 *3 (-1079)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1292 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1290 *3)) (-4 *3 (-1079))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)) - (-5 *2 (-976 *4)))) + (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) + (-5 *2 (-974 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1081)) (-4 *5 (-872)) - (-5 *2 (-976 *4)))) + (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) + (-5 *2 (-974 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1292 *4)) (-4 *4 (-1081)) (-5 *2 (-976 *4)))) + (-12 (-5 *3 (-791)) (-4 *1 (-1290 *4)) (-4 *4 (-1079)) (-5 *2 (-974 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1292 *4)) (-4 *4 (-1081)) (-5 *2 (-976 *4))))) + (-12 (-5 *3 (-791)) (-4 *1 (-1290 *4)) (-4 *4 (-1079)) (-5 *2 (-974 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-421 (-560))) (-4 *4 (-1070 (-560))) (-4 *4 (-571)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1068 (-558))) (-4 *4 (-569)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *1 *1 *1) (-5 *1 (-136))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *1 *1 *1) (-5 *1 (-229))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-560)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-558)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1292 *4)) - (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1263 *4 *5)))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1290 *4)) + (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1261 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1261 *4)) - (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1284 *4 *5)) (-4 *6 (-1015 *5)))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) + (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1282 *4 *5)) (-4 *6 (-1013 *5)))) ((*1 *1 *1 *1) (-4 *1 (-296))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1133)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-4 *3 (-1144)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-560)))) + (-12 (-5 *2 (-791)) (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-4 *3 (-1142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-558)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) + (-12 (-5 *2 (-791)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-549)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-549)))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-547)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1133)) (-5 *1 (-704 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *4 (-1131)) (-5 *1 (-702 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-791)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-712 *4)))) + (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-710 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (-4 *3 (-1081)) (-5 *1 (-736 *3 *4)) (-4 *4 (-670 *3)))) + (-12 (-5 *2 (-558)) (-4 *3 (-1079)) (-5 *1 (-734 *3 *4)) (-4 *4 (-668 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-736 *4 *5)) - (-4 *5 (-670 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-858 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-734 *4 *5)) + (-4 *5 (-668 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-791)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-856 *3)) (-4 *3 (-1079)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-5 *1 (-858 *4)) (-4 *4 (-1081)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-421 (-560))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-949)))) + (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-856 *4)) (-4 *4 (-1079)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-558))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-947)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-1155 *3 *4 *5 *6)) (-4 *4 (-1081)) + (-12 (-5 *2 (-558)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-866 *3))) (-4 *3 (-13 (-1235) (-990) (-29 *5))) - (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1233) (-988) (-29 *5))) + (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1124 (-866 *3))) (-5 *5 (-1191)) - (-4 *3 (-13 (-1235) (-990) (-29 *6))) - (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1189)) + (-4 *3 (-13 (-1233) (-988) (-29 *6))) + (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1124 (-866 (-326 *5)))) - (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1122 (-864 (-326 *5)))) + (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 (-326 *5))) (|:| |f2| (-663 (-866 (-326 *5)))) + (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-661 (-864 (-326 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-224 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-421 (-976 *6))) (-5 *4 (-1124 (-866 (-326 *6)))) - (-5 *5 (-1191)) (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *3 (-419 (-974 *6))) (-5 *4 (-1122 (-864 (-326 *6)))) + (-5 *5 (-1189)) (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 (-326 *6))) (|:| |f2| (-663 (-866 (-326 *6)))) + (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-661 (-864 (-326 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-866 (-421 (-976 *5))))) (-5 *3 (-421 (-976 *5))) - (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-1122 (-864 (-419 (-974 *5))))) (-5 *3 (-419 (-974 *5))) + (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 (-326 *5))) (|:| |f2| (-663 (-866 (-326 *5)))) + (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-661 (-864 (-326 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1124 (-866 (-421 (-976 *6))))) (-5 *5 (-1191)) - (-5 *3 (-421 (-976 *6))) - (-4 *6 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-1122 (-864 (-419 (-974 *6))))) (-5 *5 (-1189)) + (-5 *3 (-419 (-974 *6))) + (-4 *6 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (|:| |f1| (-866 (-326 *6))) (|:| |f2| (-663 (-866 (-326 *6)))) + (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-661 (-864 (-326 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3)) - (-4 *3 (-13 (-1235) (-990) (-29 *5))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-3 *3 (-661 *3))) (-5 *1 (-442 *5 *3)) + (-4 *3 (-13 (-1233) (-988) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-488 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) - (-5 *6 (-1095)) (-5 *2 (-1067)) (-5 *1 (-579)))) - ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) + (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) + (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *5 (-391)) + (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1121 (-866 (-391)))) (-5 *2 (-1067)) - (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1119 (-864 (-391)))) (-5 *2 (-1065)) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) - (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) + (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1121 (-866 (-391))))) - (-5 *5 (-391)) (-5 *6 (-1095)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1119 (-864 (-391))))) + (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1124 (-866 (-391)))) - (-5 *5 (-1191)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1122 (-864 (-391)))) + (-5 *5 (-1189)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1124 (-866 (-391)))) - (-5 *5 (-1209)) (-5 *2 (-1067)) (-5 *1 (-579)))) + (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1122 (-864 (-391)))) + (-5 *5 (-1207)) (-5 *2 (-1065)) (-5 *1 (-577)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) - (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) + (-5 *2 (-595 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-149)) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-3 (-326 *5) (-661 (-326 *5)))) (-5 *1 (-601 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081)))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-872)) - (-4 *3 (-38 (-421 (-560)))))) + (-12 (-4 *1 (-760 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) + (-4 *3 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1209)) (-5 *1 (-976 *3)) (-4 *3 (-38 (-421 (-560)))) - (-4 *3 (-1081)))) + (-12 (-5 *2 (-1207)) (-5 *1 (-974 *3)) (-4 *3 (-38 (-419 (-558)))) + (-4 *3 (-1079)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-4 *2 (-872)) - (-5 *1 (-1158 *3 *2 *4)) (-4 *4 (-980 *3 (-545 *2) *2)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-4 *2 (-870)) + (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-978 *3 (-543 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) - (-5 *1 (-1193 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) + (-5 *1 (-1191 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1200 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1206 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1207 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *1 (-1242 *3)) (-4 *3 (-38 (-421 (-560)))) - (-4 *3 (-1081)))) + (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-419 (-558)))) + (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1259 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-4043 - (-12 (-5 *2 (-1209)) (-4 *1 (-1261 *3)) (-4 *3 (-1081)) - (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) - (-4 *3 (-38 (-421 (-560)))))) - (-12 (-5 *2 (-1209)) (-4 *1 (-1261 *3)) (-4 *3 (-1081)) - (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) - (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))) + (-4039 + (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-419 (-558)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) + (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) + (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1280 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-4043 - (-12 (-5 *2 (-1209)) (-4 *1 (-1282 *3)) (-4 *3 (-1081)) - (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) - (-4 *3 (-38 (-421 (-560)))))) - (-12 (-5 *2 (-1209)) (-4 *1 (-1282 *3)) (-4 *3 (-1081)) - (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) - (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))) + (-4039 + (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-419 (-558)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) + (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560)))))) + (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1296 *4)) (-14 *4 (-1209)) (-5 *1 (-1289 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-4043 - (-12 (-5 *2 (-1209)) (-4 *1 (-1292 *3)) (-4 *3 (-1081)) - (-12 (-4 *3 (-29 (-560))) (-4 *3 (-990)) (-4 *3 (-1235)) - (-4 *3 (-38 (-421 (-560)))))) - (-12 (-5 *2 (-1209)) (-4 *1 (-1292 *3)) (-4 *3 (-1081)) - (-12 (|has| *3 (-15 -3570 ((-663 *2) *3))) - (|has| *3 (-15 -4328 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))) + (-4039 + (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-419 (-558)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3566 ((-661 *2) *3))) + (|has| *3 (-15 -4324 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1292 *2)) (-4 *2 (-1081)) (-4 *2 (-38 (-421 (-560))))))) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-419 (-558))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1268 *5 *4)) (-5 *1 (-1207 *4 *5 *6)) - (-4 *4 (-1081)) (-14 *5 (-1209)) (-14 *6 *4))) + (-12 (-5 *3 (-791)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) + (-4 *4 (-1079)) (-14 *5 (-1207)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1268 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) - (-4 *4 (-1081)) (-14 *5 (-1209)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) + (-12 (-5 *3 (-791)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6)) + (-4 *4 (-1079)) (-14 *5 (-1207)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) + (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) + (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) + (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2)))) + (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) + (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) + (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1081)) (-14 *3 (-1209)) (-14 *4 *2)))) + (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1207)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) + (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) + (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-1081)) (-5 *1 (-1193 *4)))) + (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-1079)) (-5 *1 (-1191 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-560)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-1209)) + (-12 (-5 *2 (-558)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1207)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-315)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-1067))) (-5 *2 (-1067)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *1) (-5 *1 (-1095))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1188 *4)) - (-4 *4 (-1249)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) - (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1133)) (-4 *3 (-872)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) - ((*1 *2 *1) (-12 (-4 *2 (-1249)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-919 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-315)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-1065))) (-5 *2 (-1065)) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-5 *1 (-1093))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4)) + (-4 *4 (-1247)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1131)) (-4 *3 (-870)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1249)))) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) + (-4 *5 (-385 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-560)) (-14 *5 (-793)))) + (-12 (-5 *3 (-661 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-558)) (-14 *5 (-791)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-793)))) + (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-791)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-793)))) + (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-791)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-793)))) + (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-791)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-793)))) + (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-791)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-252 (-1191))) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ *3)) (-15 -4133 ((-1305) $)) - (-15 -2189 ((-1305) $))))))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ *3)) (-15 -4129 ((-1303) $)) + (-15 -2185 ((-1303) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1021)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-1019)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 ((-1305) $)) - (-15 -2189 ((-1305) $))))))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 ((-1303) $)) + (-15 -2185 ((-1303) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-872)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-872)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-872)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1249)) (-4 *2 (-1249)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) + (-12 (-5 *3 "count") (-5 *2 (-791)) (-5 *1 (-252 *4)) (-4 *4 (-870)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-870)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-870)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1254)) (-4 *3 (-1275 *2)) - (-4 *4 (-1275 (-421 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1191)) (-5 *1 (-516)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1133)))) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-419 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-514)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) + (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-663 (-916 *4))) (-5 *1 (-916 *4)) - (-4 *4 (-1133)))) + (-12 (-5 *2 (-115)) (-5 *3 (-661 (-914 *4))) (-5 *1 (-914 *4)) + (-4 *4 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-932 *4)) (-5 *1 (-935 *4)) (-4 *4 (-1133)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1042 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) + (-12 (-5 *3 (-791)) (-5 *2 (-930 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *2 (-1081)) + (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1081)))) + (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) + (-4 *7 (-245 *4 *2)) (-4 *2 (-1079)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) + (-12 (-5 *3 (-947)) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1109 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1176))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209)))) + (-12 (-5 *3 (-947)) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1107 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1174))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-421 *1)) (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) + (-12 (-5 *3 (-419 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-421 *1)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-4 *3 (-571)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872)))) + (-12 (-5 *2 (-419 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1244 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-817)) - (-4 *4 (-872)) (-4 *5 (-1097 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1128)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1288 *3)) (-4 *3 (-1249)))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) + (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) + (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) ((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) - ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *2 (-1249)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1249)))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1249)) (-5 *2 (-793))))) -(((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-791))))) +(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4512)) (-4 *1 (-121 *3)) - (-4 *3 (-1249)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4508)) (-4 *1 (-121 *3)) + (-4 *3 (-1247)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4512)) (-4 *1 (-121 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4508)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4512)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) - (-4 *2 (-1249)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1209)) (-5 *1 (-651)))) + (-12 (|has| *1 (-6 -4508)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1247)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-649)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1266 (-560))) (|has| *1 (-6 -4512)) (-4 *1 (-673 *2)) - (-4 *2 (-1249)))) + (-12 (-5 *3 (-1264 (-558))) (|has| *1 (-6 -4508)) (-4 *1 (-671 *2)) + (-4 *2 (-1247)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) + (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4512)) (-4 *1 (-1042 *2)) - (-4 *2 (-1249)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4508)) (-4 *1 (-1040 *2)) + (-4 *2 (-1247)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) - (-4 *2 (-1249)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) + (-4 *2 (-1247)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *3)) - (-4 *3 (-1249)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *3)) + (-4 *3 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) - (-4 *2 (-1249))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1187 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1288 *2)) (-4 *2 (-1249))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) + (-4 *2 (-1247))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (|has| *1 (-6 -4512)) (-4 *1 (-1288 *3)) - (-4 *3 (-1249))))) + (-12 (-5 *2 (-558)) (|has| *1 (-6 -4508)) (-4 *1 (-1286 *3)) + (-4 *3 (-1247))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) - (-5 *2 (-866 *4)) (-5 *1 (-325 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) + (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) - (-5 *2 (-866 *4)) (-5 *1 (-1286 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1235) (-435 *3))) (-14 *5 (-1209)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) + (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1233) (-433 *3))) (-14 *5 (-1207)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1070 (-560)) (-660 (-560)) (-466))) + (|partial| -12 (-4 *3 (-13 (-1068 (-558)) (-658 (-558)) (-464))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1280 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) - (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))))) - (|:| |%type| (-1191)))) - (-5 *1 (-1286 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1235) (-435 *3))) - (-14 *5 (-1209)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1278 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) + (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) + (|:| |%type| (-1189)))) + (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-433 *3))) + (-14 *5 (-1207)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) - (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) + (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) - (-5 *5 (-1266 (-421 (-560)))) (-5 *6 (-421 (-560))) - (-4 *8 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) + (-5 *5 (-1264 (-419 (-558)))) (-5 *6 (-419 (-558))) + (-4 *8 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-421 (-560)))) - (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1235) (-435 *8))) - (-4 *8 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *8 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-419 (-558)))) + (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1233) (-433 *8))) + (-4 *8 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1081)) (-4 *1 (-1284 *4 *3)) - (-4 *3 (-1261 *4))))) + (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1079)) (-4 *1 (-1282 *4 *3)) + (-4 *3 (-1259 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1284 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1261 *3)) - (-5 *2 (-421 (-560)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3))))) + (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1259 *3)) + (-5 *2 (-419 (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1070 *4) (-660 *4))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1068 *4) (-658 *4))) (-5 *2 (-51)) + (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-1070 *5) (-660 *5))) (-5 *5 (-560)) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-1068 *5) (-658 *5))) (-5 *5 (-558)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-560))) - (-4 *7 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-558))) + (-4 *7 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-560))) - (-4 *3 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *7 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-558))) + (-4 *3 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-560)) (-4 *4 (-1081)) (-4 *1 (-1263 *4 *3)) - (-4 *3 (-1292 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3))))) + (-12 (-5 *2 (-558)) (-4 *4 (-1079)) (-4 *1 (-1261 *4 *3)) + (-4 *3 (-1290 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1284 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1261 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)))) + (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1259 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1282 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-947)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1280 *3)) (-4 *3 (-1079))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-560)))) - (-4 *4 (-13 (-1275 *3) (-571) (-10 -8 (-15 -3648 ($ $ $))))) (-4 *3 (-571)) - (-5 *1 (-1279 *3 *4))))) + (|:| |xpnt| (-558)))) + (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3644 ($ $ $))))) (-4 *3 (-569)) + (-5 *1 (-1277 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-980 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *1)))) - (-4 *1 (-1103 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1254))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1252))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-1279 *3 *2)) - (-4 *2 (-13 (-1275 *3) (-571) (-10 -8 (-15 -3648 ($ $ $)))))))) + (-12 (-4 *3 (-569)) (-5 *1 (-1277 *3 *2)) + (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3644 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)) - (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) + (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-875)) - (-5 *2 (-663 (-898 *4 *3))))) + (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) + (-5 *2 (-661 (-896 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| -4470 *3) (|:| -4454 *4)))) (-5 *1 (-757 *3 *4)) - (-4 *3 (-1081)) (-4 *4 (-748)))) + (-12 (-5 *2 (-661 (-2 (|:| -4466 *3) (|:| -4450 *4)))) (-5 *1 (-755 *3 *4)) + (-4 *3 (-1079)) (-4 *4 (-746)))) ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) - (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-248)))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-248)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-663 (-1191))) (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *1 (-248)))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-4 *1 (-1278 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081))))) + (-12 (-5 *2 (-661 (-1189))) (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *1 (-248)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) - (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-793)))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) - (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-872)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-949)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-870)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-947)))) ((*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) - (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) - (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-856 (-949))))) - ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) - ((*1 *2 *1) - (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1275 *3)))) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) + (-5 *2 (-791)) (-5 *1 (-406 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-854 (-947))))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1273 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1081)) (-4 *3 (-872)))) + (-12 (-5 *2 (-791)) (-4 *1 (-760 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1081)) (-4 *3 (-872)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) - (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-793)) - (-5 *1 (-941 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) - (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-1275 (-421 *4))) - (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793)) (-5 *1 (-942 *4 *5 *6)))) + (-12 (-4 *1 (-760 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-791)) + (-5 *1 (-939 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) + (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-1273 (-419 *4))) + (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-791)) (-5 *1 (-940 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) - (-4 *7 (-1275 *6)) (-4 *4 (-1275 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) - (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) (-5 *1 (-1050 *6 *7 *4 *8 *9)))) + (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) + (-4 *9 (-13 (-381) (-376))) (-5 *2 (-791)) (-5 *1 (-1048 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-4 *3 (-571)) (-5 *2 (-793)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) - ((*1 *2 *1) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816))))) -(((*1 *1 *1) (-4 *1 (-1092))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816))))) + (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) (-5 *2 (-791)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814))))) +(((*1 *1 *1) (-4 *1 (-1090))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-560)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-558)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-896 *4)) (-14 *4 *3) (-5 *3 (-560)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-894 *4)) (-14 *4 *3) (-5 *3 (-558)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-897 *4 *5)) (-5 *3 (-560)) - (-4 *5 (-895 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-421 (-560))))) + (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-895 *4 *5)) (-5 *3 (-558)) + (-4 *5 (-893 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-419 (-558))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-13 (-871) (-376))) (-4 *3 (-1275 *2)))) + (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-376))) (-4 *3 (-1273 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1278 *2 *3)) (-4 *3 (-816)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4462 (*2 (-1209)))) (-4 *2 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4458 (*2 (-1207)))) (-4 *2 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-872)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1012 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-791)) (-4 *1 (-760 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-870)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) - (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1278 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-421 *5)) (-4 *4 (-1254)) (-4 *5 (-1275 *4)) - (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1275 *3)))) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) + (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1211 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) + (-12 (-5 *3 (-1209 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1209))) - (-5 *4 (-1299 (-326 (-229)))) (-5 *1 (-208)))) + (-12 (-5 *2 (-709 (-326 (-229)))) (-5 *3 (-661 (-1207))) + (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1133)) - (-4 *3 (-1249)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-661 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1131)) + (-4 *3 (-1247)) (-5 *1 (-305 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-321 *2)) (-4 *2 (-1133)) (-4 *2 (-1249)) (-5 *1 (-305 *2)))) + (-12 (-4 *2 (-321 *2)) (-4 *2 (-1131)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1133)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-661 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1211 (-421 (-560)))) (-5 *1 (-322 *2)) - (-4 *2 (-38 (-421 (-560)))))) + (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1209 (-419 (-558)))) (-5 *1 (-322 *2)) + (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-872)) + (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-870)) (-4 *5 (-175)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-872)) (-4 *3 (-175)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-870)) (-4 *3 (-175)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) - (-4 *5 (-1133)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) + (-4 *5 (-1131)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1))) - (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *4 (-1 *1 (-661 *1))) + (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-793))) - (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1133)) - (-4 *5 (-1081)))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-791))) + (-5 *4 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1131)) + (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 *1))) - (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 *1))) + (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1209)) - (-4 *1 (-435 *5)) (-4 *5 (-1133)) (-4 *5 (-633 (-549))))) + (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 *1)) (-5 *4 (-1207)) + (-4 *1 (-433 *5)) (-4 *5 (-1131)) (-4 *5 (-631 (-547))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1209)) (-4 *1 (-435 *4)) (-4 *4 (-1133)) - (-4 *4 (-633 (-549))))) - ((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-633 (-549))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-433 *4)) (-4 *4 (-1131)) + (-4 *4 (-631 (-547))))) + ((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-631 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-1209))) (-4 *1 (-435 *3)) (-4 *3 (-1133)) - (-4 *3 (-633 (-549))))) + (-12 (-5 *2 (-661 (-1207))) (-4 *1 (-433 *3)) (-4 *3 (-1131)) + (-4 *3 (-631 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)) - (-4 *3 (-633 (-549))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)) + (-4 *3 (-631 (-547))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1247)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5)) (-4 *4 (-1133)) - (-4 *5 (-1249)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1131)) + (-4 *5 (-1247)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-738 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-421 (-976 *4))) (-5 *3 (-1209)) (-4 *4 (-571)) - (-5 *1 (-1072 *4)))) + (-12 (-5 *2 (-419 (-974 *4))) (-5 *3 (-1207)) (-4 *4 (-569)) + (-5 *1 (-1070 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-663 (-1209))) (-5 *4 (-663 (-421 (-976 *5)))) - (-5 *2 (-421 (-976 *5))) (-4 *5 (-571)) (-5 *1 (-1072 *5)))) + (-12 (-5 *3 (-661 (-1207))) (-5 *4 (-661 (-419 (-974 *5)))) + (-5 *2 (-419 (-974 *5))) (-4 *5 (-569)) (-5 *1 (-1070 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-305 (-421 (-976 *4)))) (-5 *2 (-421 (-976 *4))) (-4 *4 (-571)) - (-5 *1 (-1072 *4)))) + (-12 (-5 *3 (-305 (-419 (-974 *4)))) (-5 *2 (-419 (-974 *4))) (-4 *4 (-569)) + (-5 *1 (-1070 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-305 (-421 (-976 *4))))) (-5 *2 (-421 (-976 *4))) - (-4 *4 (-571)) (-5 *1 (-1072 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3)))) + (-12 (-5 *3 (-661 (-305 (-419 (-974 *4))))) (-5 *2 (-419 (-974 *4))) + (-4 *4 (-569)) (-5 *1 (-1070 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1275 *4)) (-4 *4 (-1081)) (-5 *2 (-1299 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1081)) (-5 *2 (-1203 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-1081)) (-4 *1 (-1275 *3))))) + (-12 (-5 *3 (-791)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1201 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081))))) + (|partial| -12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-980 *4 *5 *3)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-978 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1081)) (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) - (-4 *1 (-1275 *3))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) + (-4 *1 (-1273 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-1081)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1275 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1275 *3)) (-4 *3 (-1081))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) + (-12 (-5 *3 (-791)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1273 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) - (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-928 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1209)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-922 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1249)))) + (-12 (-4 *2 (-376)) (-4 *2 (-926 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1207)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-930 *4)) - (-4 *4 (-1133)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-930 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-930 *3)) (-4 *3 (-1133)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1275 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-928 *4)) + (-4 *4 (-1131)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-928 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) (((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1275 *2)) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *4 (-1275 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4)) - (-4 *3 (-424 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) + (-4 *3 (-422 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *3 (-1275 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4)) - (-4 *4 (-424 *2 *3)))) + (-12 (-4 *3 (-1273 *2)) (-5 *2 (-558)) (-5 *1 (-788 *3 *4)) + (-4 *4 (-422 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-175)))) - ((*1 *2 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-175))))) + ((*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-175))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) (-4 *3 (-175)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-175))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-175))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1275 *3)) (-4 *3 (-1081)) - (-4 *3 (-571)))) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) + (-4 *3 (-569)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1081)) (-4 *2 (-571))))) + (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -4470 *4) (|:| -2198 *3) (|:| -3389 *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4466 *4) (|:| -2194 *3) (|:| -3385 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-1097 *3 *4 *5)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-1095 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| -4470 *3) (|:| -2198 *1) (|:| -3389 *1))) - (-4 *1 (-1275 *3))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -4466 *3) (|:| -2194 *1) (|:| -3385 *1))) + (-4 *1 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1275 *4)) - (-5 *2 (-2 (|:| -1986 (-642 *4 *5)) (|:| -1985 (-421 *5)))) - (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5)))) + (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -1982 (-640 *4 *5)) (|:| -1981 (-419 *5)))) + (-5 *1 (-640 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081)))) + (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-466)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1275 *3))))) + (-12 (-4 *3 (-464)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-1273 *4 *2)) - (-4 *2 (-1275 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1275 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1275 *3))))) + (-12 (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-1271 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) - (-5 *1 (-1272 *4 *3)) (-4 *3 (-1275 *4))))) + (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) + (-5 *1 (-1270 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3)) (-5 *1 (-1271 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-661 *3)) (-5 *1 (-1269 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-571) (-149))) - (-5 *2 (-2 (|:| -3626 *3) (|:| -3625 *3))) (-5 *1 (-1271 *4 *3)) - (-4 *3 (-1275 *4))))) + (|partial| -12 (-4 *4 (-13 (-569) (-149))) + (-5 *2 (-2 (|:| -3622 *3) (|:| -3621 *3))) (-5 *1 (-1269 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1271 *3 *2)) - (-4 *2 (-1275 *3))))) + (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1269 *3 *2)) + (-4 *2 (-1273 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) - (-5 *1 (-1271 *4 *2)) (-4 *2 (-1275 *4))))) + (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) - (-5 *1 (-1271 *4 *2)) (-4 *2 (-1275 *4))))) + (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) + (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-517 *4 *5 *6 *3)) + (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-571)) - (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) (-5 *1 (-715 *4 *5)))) + (-12 (-5 *3 (-709 *5)) (-4 *5 (-1021 *4)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| (-709 *4)) (|:| |den| *4))) (-5 *1 (-713 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) - (-5 *2 (-2 (|:| -3770 *7) (|:| |rh| (-663 (-421 *6))))) - (-5 *1 (-831 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6))) (-4 *7 (-680 *6)) - (-4 *3 (-680 (-421 *6))))) + (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) + (-5 *2 (-2 (|:| -3766 *7) (|:| |rh| (-661 (-419 *6))))) + (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-661 (-419 *6))) (-4 *7 (-678 *6)) + (-4 *3 (-678 (-419 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1270 *4 *5 *3)) - (-4 *3 (-1275 *5))))) + (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3)) + (-4 *3 (-1273 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-4 *4 (-1023 *3)) (-5 *1 (-144 *3 *4 *2)) + (-12 (-4 *3 (-569)) (-4 *4 (-1021 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-1023 *4)) (-4 *2 (-385 *4)) - (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) + (-12 (-4 *4 (-569)) (-4 *5 (-1021 *4)) (-4 *2 (-385 *4)) + (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-571)) (-5 *2 (-711 *4)) - (-5 *1 (-715 *4 *5)))) + (-12 (-5 *3 (-709 *5)) (-4 *5 (-1021 *4)) (-4 *4 (-569)) (-5 *2 (-709 *4)) + (-5 *1 (-713 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-4 *4 (-1023 *3)) (-5 *1 (-1270 *3 *4 *2)) - (-4 *2 (-1275 *4))))) + (-12 (-4 *3 (-569)) (-4 *4 (-1021 *3)) (-5 *1 (-1268 *3 *4 *2)) + (-4 *2 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3)) + (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3)) + (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 *4)) (-4 *4 (-1023 *2)) (-4 *2 (-571)) - (-5 *1 (-715 *2 *4)))) + (-12 (-5 *3 (-709 *4)) (-4 *4 (-1021 *2)) (-4 *2 (-569)) + (-5 *1 (-713 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1023 *2)) (-4 *2 (-571)) (-5 *1 (-1270 *2 *4 *3)) - (-4 *3 (-1275 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1081)))) + (-12 (-4 *4 (-1021 *2)) (-4 *2 (-569)) (-5 *1 (-1268 *2 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-801 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571)) (-4 *3 (-1081)) - (-4 *2 (-816)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1203 *3)) (-4 *3 (-1081)))) + (-12 (-5 *1 (-984 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1079)) + (-4 *2 (-814)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1201 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-1003)) (-4 *2 (-133)) (-5 *1 (-1211 *3)) (-4 *3 (-571)) - (-4 *3 (-1081)))) + (-12 (-5 *2 (-1001)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-569)) + (-4 *3 (-1079)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-1268 *4 *3)) (-14 *4 (-1209)) (-4 *3 (-1081))))) -(((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-5 *1 (-1266 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *2 (-1126 *3)) (-5 *1 (-1090 *2 *3)) (-4 *3 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1249)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) (-12 (-5 *1 (-1266 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1266 *3)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207)) (-4 *3 (-1079))))) +(((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *2 (-1124 *3)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 - (-2 (|:| |contp| (-560)) - (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) - (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) + (-2 (|:| |contp| (-558)) + (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 - (-2 (|:| |contp| (-560)) - (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) - (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560)))))) + (-2 (|:| |contp| (-558)) + (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) + (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1275 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3) - (-12 (-5 *2 (-419 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1275 (-421 (-560)))))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560)))))) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-419 (-558)))))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1275 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48))))) + (-12 (-5 *4 (-661 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1273 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-48))) (-4 *5 (-872)) (-4 *6 (-817)) (-5 *2 (-419 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-980 (-48) *6 *5)))) + (-12 (-5 *4 (-661 (-48))) (-4 *5 (-870)) (-4 *6 (-815)) (-5 *2 (-417 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-978 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-48))) (-4 *5 (-872)) (-4 *6 (-817)) - (-4 *7 (-980 (-48) *6 *5)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1203 *7)))) + (-12 (-5 *4 (-661 (-48))) (-4 *5 (-870)) (-4 *6 (-815)) + (-4 *7 (-978 (-48) *6 *5)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1201 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3)) - (-4 *3 (-1275 (-171 *4))))) + (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) + (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) + (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1275 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1275 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1275 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560))))) + (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558))))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460)) (-5 *3 (-171 (-560))))) + (-12 (-5 *2 (-417 (-171 (-558)))) (-5 *1 (-458)) (-5 *3 (-171 (-558))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209)))))) - (-4 *5 (-817)) (-4 *7 (-571)) (-5 *2 (-419 *3)) - (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571)) (-4 *3 (-980 *7 *5 *4)))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207)))))) + (-4 *5 (-815)) (-4 *7 (-569)) (-5 *2 (-417 *3)) + (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-978 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1203 *4))) (-5 *1 (-472 *4)) - (-5 *3 (-1203 *4)))) + (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1201 *4))) (-5 *1 (-470 *4)) + (-5 *3 (-1201 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) - (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3)) - (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1275 *7)))) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) + (-4 *7 (-13 (-376) (-149) (-744 *5 *6))) (-5 *2 (-417 *3)) + (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1273 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-419 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-872)) (-4 *6 (-817)) (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3)) - (-4 *3 (-980 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-417 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) + (-4 *5 (-870)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) + (-4 *3 (-978 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-419 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-872)) (-4 *6 (-817)) (-4 *8 (-980 *7 *6 *5)) - (-5 *2 (-419 (-1203 *8))) (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1203 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) + (-12 (-5 *4 (-1 (-417 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) + (-4 *5 (-870)) (-4 *6 (-815)) (-4 *8 (-978 *7 *6 *5)) + (-5 *2 (-417 (-1201 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1201 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *6 (-1275 *5)) (-5 *2 (-663 (-677 (-421 *6)))) (-5 *1 (-681 *5 *6)) - (-5 *3 (-677 (-421 *6))))) + (-12 (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *6 (-1273 *5)) (-5 *2 (-661 (-675 (-419 *6)))) (-5 *1 (-679 *5 *6)) + (-5 *3 (-675 (-419 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *5 (-1275 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) - (-5 *3 (-677 (-421 *5))))) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *5 (-1273 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) + (-5 *3 (-675 (-419 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-843 *4)) (-4 *4 (-872)) (-5 *2 (-663 (-694 *4))) - (-5 *1 (-694 *4)))) + (-12 (-5 *3 (-841 *4)) (-4 *4 (-870)) (-5 *2 (-661 (-692 *4))) + (-5 *1 (-692 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1275 *4)))) + (-12 (-5 *4 (-558)) (-5 *2 (-661 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-363)) (-5 *2 (-419 *3)) - (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4)))) + (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-417 *3)) + (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-363)) (-4 *7 (-980 *6 *5 *4)) - (-5 *2 (-419 (-1203 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-978 *6 *5 *4)) + (-5 *2 (-417 (-1201 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-817)) + (-12 (-4 *4 (-815)) (-4 *5 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ "failed") (-1209)))))) - (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3)) - (-4 *3 (-980 (-976 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) - (-4 *6 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3)) - (-4 *3 (-980 (-421 (-976 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3)) - (-4 *3 (-980 (-421 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-980 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-872)) (-4 *5 (-817)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-980 *6 *5 *4)) (-5 *2 (-419 (-1203 *7))) (-5 *1 (-763 *4 *5 *6 *7)) - (-5 *3 (-1203 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-419 *3)) (-5 *1 (-1039 *3)) (-4 *3 (-1275 (-421 (-560)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-419 *3)) (-5 *1 (-1074 *3)) - (-4 *3 (-1275 (-421 (-976 (-560))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1275 (-421 (-560)))) - (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4))) (-5 *2 (-419 *3)) - (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1275 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1275 (-421 (-976 (-560))))) - (-4 *5 (-13 (-376) (-149) (-746 (-421 (-976 (-560))) *4))) (-5 *2 (-419 *3)) - (-5 *1 (-1113 *4 *5 *3)) (-4 *3 (-1275 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-466)) (-4 *7 (-980 *6 *4 *5)) - (-5 *2 (-419 (-1203 (-421 *7)))) (-5 *1 (-1205 *4 *5 *6 *7)) - (-5 *3 (-1203 (-421 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1254)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1265 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-896 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-14 *2 (-560)))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ "failed") (-1207)))))) + (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) + (-4 *3 (-978 (-974 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) + (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) + (-4 *3 (-978 (-419 (-974 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-417 *3)) (-5 *1 (-753 *4 *5 *6 *3)) + (-4 *3 (-978 (-419 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-417 (-1201 *7))) (-5 *1 (-761 *4 *5 *6 *7)) + (-5 *3 (-1201 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-419 (-558)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-1273 (-419 (-974 (-558))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-419 (-558)))) + (-4 *5 (-13 (-376) (-149) (-744 (-419 (-558)) *4))) (-5 *2 (-417 *3)) + (-5 *1 (-1110 *4 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-419 (-974 (-558))))) + (-4 *5 (-13 (-376) (-149) (-744 (-419 (-974 (-558))) *4))) (-5 *2 (-417 *3)) + (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-464)) (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-417 (-1201 (-419 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) + (-5 *3 (-1201 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1252)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-119 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-558)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-894 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-558)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-897 *3 *4)) (-4 *4 (-895 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-897 *2 *3)) (-4 *3 (-895 *2)))) + (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) (-4 *4 (-893 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-895 *2 *3)) (-4 *3 (-893 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-560)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1081)) - (-4 *4 (-1292 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-1292 *2))))) + (-12 (-5 *2 (-558)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-1290 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1290 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (-12 (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-793)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-791)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *6 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1266 (-793))) - (-4 *7 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-791))) + (-4 *7 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1209)) (-5 *5 (-305 *3)) (-5 *6 (-1266 (-793))) - (-4 *3 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-51)) - (-5 *1 (-473 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3))))) + (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-791))) + (-4 *3 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *1 (-471 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1292 *3))))) + (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1290 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1261 *4)) (-4 *4 (-1081)) (-4 *4 (-571)) - (-5 *2 (-421 (-976 *4))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1259 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) + (-5 *2 (-419 (-974 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1261 *4)) (-4 *4 (-1081)) (-4 *4 (-571)) - (-5 *2 (-421 (-976 *4)))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1259 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) + (-5 *2 (-419 (-974 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949)))) - ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))) - ((*1 *1 *1 *1) (-5 *1 (-1257))) ((*1 *1 *1 *1) (-5 *1 (-1258)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947)))) + ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254))) + ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256)))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949)))) - ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))) - ((*1 *1 *1 *1) (-5 *1 (-1257))) ((*1 *1 *1 *1) (-5 *1 (-1258)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947)))) + ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254))) + ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-130))) ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) - ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562))) ((*1 *1) (-5 *1 (-563))) - ((*1 *1) (-5 *1 (-564))) ((*1 *1) (-4 *1 (-748))) ((*1 *1) (-5 *1 (-1209))) - ((*1 *1) (-12 (-5 *1 (-1215 *2)) (-14 *2 (-949)))) - ((*1 *1) (-12 (-5 *1 (-1216 *2)) (-14 *2 (-949)))) ((*1 *1) (-5 *1 (-1255))) - ((*1 *1) (-5 *1 (-1256))) ((*1 *1) (-5 *1 (-1257))) ((*1 *1) (-5 *1 (-1258)))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) + ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-5 *1 (-562))) ((*1 *1) (-4 *1 (-746))) ((*1 *1) (-5 *1 (-1207))) + ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-947)))) + ((*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-947)))) ((*1 *1) (-5 *1 (-1253))) + ((*1 *1) (-5 *1 (-1254))) ((*1 *1) (-5 *1 (-1255))) ((*1 *1) (-5 *1 (-1256)))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-558))) (-5 *2 (-114)) (-5 *1 (-458)))) ((*1 *2 *3) (-12 (-5 *3 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) - (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) - (-5 *1 (-519 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-992 *3)) (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-4 *1 (-1254)) (-5 *2 (-114))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1252))))) + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) + (-5 *1 (-517 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-990 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3732 (-663 (-1209))) (|:| -3733 (-663 (-1209))))) - (-5 *1 (-1252))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1252)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1252))))) + (-12 (-5 *2 (-2 (|:| -3728 (-661 (-1207))) (|:| -3729 (-661 (-1207))))) + (-5 *1 (-1250))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) + (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-872)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-870)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1251 *2)) - (-4 *2 (-1133)))) + (-12 (-5 *3 (-661 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2)) + (-4 *2 (-1131)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-872)) (-5 *1 (-1251 *2))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-1133))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-870)) (-5 *1 (-1249 *2))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1131))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114)))) + (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1251 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1133)) (-5 *2 (-114)) - (-5 *1 (-1251 *3))))) + (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1131)) (-5 *2 (-114)) + (-5 *1 (-1249 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3733 (-663 *3)) (|:| -3732 (-663 *3)))) - (-5 *1 (-1251 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-2 (|:| -3729 (-661 *3)) (|:| -3728 (-661 *3)))) + (-5 *1 (-1249 *3)) (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-5 *2 (-1305)) (-5 *1 (-1251 *4)))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-5 *2 (-1305)) (-5 *1 (-1251 *4))))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1203 (-1203 *5)))) - (-5 *1 (-1248 *5)) (-5 *3 (-1203 (-1203 *5)))))) + (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1201 (-1201 *5)))) + (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1203 (-1203 *4)))) (-5 *1 (-1248 *4)) - (-5 *3 (-1203 (-1203 *4)))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) + (-5 *3 (-1201 (-1201 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1203 (-1203 *4)))) (-5 *1 (-1248 *4)) - (-5 *3 (-1203 (-1203 *4)))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) + (-5 *3 (-1201 (-1201 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *3)) - (-4 *3 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *3)) + (-4 *3 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1244 *4 *5 *3 *2)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *3 (-872)) (-4 *2 (-1097 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-1247 *2)) (-4 *2 (-1249))))) + (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-1245 *2)) (-4 *2 (-1247))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 (-973 *4))) - (-5 *1 (-1246)) (-5 *3 (-973 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1246))))) + (-12 (-5 *5 (-661 (-661 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 (-971 *4))) + (-5 *1 (-1244)) (-5 *3 (-971 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-1244))))) (((*1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1081)) (-4 *4 (-1249)))) + (-12 (-5 *2 (-947)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1079)) (-4 *4 (-1247)))) ((*1 *1 *2) - (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *5 (-245 (-4473 *3) (-793))) + (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *5)) - (-2 (|:| -2645 *2) (|:| -2646 *5)))) - (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-872)) - (-4 *7 (-980 *4 *5 (-889 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246))))) + (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *5)) + (-2 (|:| -2641 *2) (|:| -2642 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) + (-4 *7 (-978 *4 *5 (-887 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-973 (-229))) (-5 *4 (-899)) (-5 *2 (-1305)) (-5 *1 (-482)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1081)) (-4 *1 (-1012 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-973 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-973 *3)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) + (-12 (-5 *3 (-971 (-229))) (-5 *4 (-897)) (-5 *2 (-1303)) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-973 (-229))) (-5 *1 (-1246)) (-5 *3 (-229))))) + (-12 (-5 *2 (-971 (-229))) (-5 *1 (-1244)) (-5 *3 (-229))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1245 *3)) (-5 *1 (-812 *3)) - (-4 *3 (-1006)))) + (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1243 *3)) (-5 *1 (-810 *3)) + (-4 *3 (-1004)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *4 (-114)) (-5 *1 (-1245 *2)) - (-4 *2 (-1006))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006))))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *4 (-114)) (-5 *1 (-1243 *2)) + (-4 *2 (-1004))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1245 *3)) (-4 *3 (-1006))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1004))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-1245 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *1 (-1245 *2)) (-4 *2 (-1006))))) + (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-1243 *3)) (-4 *3 (-1004))))) +(((*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1004))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) - (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) (-4 *8 (-872)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3830 (-663 *9)))) (-5 *3 (-663 *9)) - (-4 *1 (-1244 *6 *7 *8 *9)))) + (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-870)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3826 (-661 *9)))) (-5 *3 (-661 *9)) + (-4 *1 (-1242 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3830 (-663 *8)))) (-5 *3 (-663 *8)) - (-4 *1 (-1244 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3826 (-661 *8)))) (-5 *3 (-661 *8)) + (-4 *1 (-1242 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *6))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-2 (|:| -4377 (-663 *6)) (|:| -1917 (-663 *6))))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-2 (|:| -4373 (-661 *6)) (|:| -1915 (-661 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) + (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) + (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1244 *5 *6 *7 *3)) (-4 *5 (-571)) - (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) (-5 *2 (-114))))) + (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3)) (-4 *5 (-569)) + (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) + (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-1097 *4 *5 *6)) (-4 *4 (-1081)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)))) + (-12 (-5 *3 (-661 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1244 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1244 *4 *5 *6 *7)) - (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) + (-12 (-5 *3 (-1 (-114) *7 (-661 *7))) (-4 *1 (-1242 *4 *5 *6 *7)) + (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) - (-4 *1 (-1244 *5 *6 *7 *8)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-1097 *5 *6 *7))))) + (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) + (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1244 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *5 (-1097 *2 *3 *4))))) + (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *5 (-1095 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 *10)) - (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1103 *5 *6 *7 *8)) - (-4 *10 (-1141 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 *10)) + (-5 *1 (-641 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) + (-4 *10 (-1139 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) - (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-647 *5 *6)))) + (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-645 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) - (-14 *6 (-663 (-1209))) - (-5 *2 (-663 (-1178 *5 (-545 (-889 *6)) (-889 *6) (-802 *5 (-889 *6))))) - (-5 *1 (-647 *5 *6)))) + (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-661 (-1207))) + (-5 *2 (-661 (-1176 *5 (-543 (-887 *6)) (-887 *6) (-800 *5 (-887 *6))))) + (-5 *1 (-645 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) + (-5 *1 (-1057 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) + (-5 *1 (-1057 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) - (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-1078 *5 *6)))) + (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-1076 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-1103 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-1101 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) - (-5 *1 (-1178 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) + (-5 *1 (-1176 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) - (-5 *1 (-1178 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) + (-5 *1 (-1176 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1244 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1242 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-663 (-2 (|:| -4377 *1) (|:| -1917 (-663 *7))))) (-5 *3 (-663 *7)) - (-4 *1 (-1244 *4 *5 *6 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-661 (-2 (|:| -4373 *1) (|:| -1915 (-661 *7))))) (-5 *3 (-661 *7)) + (-4 *1 (-1242 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5))))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1244 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *2 (-1097 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1244 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-793))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) + (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-791))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1081)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1209))))) + (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1207))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 (-949))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) - (-14 *4 (-949)) (-14 *5 (-1025 *4 *2)))) + (-12 (-5 *3 (-661 (-947))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) + (-14 *4 (-947)) (-14 *5 (-1023 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-133)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1081)))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1079)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1275 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1081)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1081)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) + (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1273 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-755 *2 *3)) (-4 *3 (-746)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) - (-4 *4 (-1081)) (-4 *5 (-872)))) + (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) + (-4 *4 (-1079)) (-4 *5 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1081)) (-4 *2 (-872)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-877 *2)) (-4 *2 (-1081)))) + (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-980 *4 *5 *6)) - (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)))) + (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-978 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-980 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *2 (-872)))) + (-12 (-5 *3 (-791)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *2 (-870)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *2 (-980 *4 (-545 *5) *5)) (-5 *1 (-1158 *4 *5 *2)) - (-4 *4 (-1081)) (-4 *5 (-872)))) + (-12 (-5 *3 (-791)) (-4 *2 (-978 *4 (-543 *5) *5)) (-5 *1 (-1156 *4 *5 *2)) + (-4 *4 (-1079)) (-4 *5 (-870)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-976 *4)) (-5 *1 (-1242 *4)) (-4 *4 (-1081))))) + (-12 (-5 *3 (-791)) (-5 *2 (-974 *4)) (-5 *1 (-1240 *4)) (-4 *4 (-1079))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1158 *4 *3 *5))) (-4 *4 (-38 (-421 (-560)))) - (-4 *4 (-1081)) (-4 *3 (-872)) (-5 *1 (-1158 *4 *3 *5)) - (-4 *5 (-980 *4 (-545 *3) *3)))) + (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) + (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) + (-4 *5 (-978 *4 (-543 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1242 *4))) (-5 *3 (-1209)) (-5 *1 (-1242 *4)) - (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1081))))) + (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4)) + (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1079))))) (((*1 *2 *2) - (-12 (-4 *3 (-633 (-916 *3))) (-4 *3 (-912 *3)) (-4 *3 (-466)) - (-5 *1 (-1241 *3 *2)) (-4 *2 (-633 (-916 *3))) (-4 *2 (-912 *3)) - (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-631 (-914 *3))) (-4 *3 (-910 *3)) (-4 *3 (-464)) + (-5 *1 (-1239 *3 *2)) (-4 *2 (-631 (-914 *3))) (-4 *2 (-910 *3)) + (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) -(((*1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-1133)) (-5 *1 (-997 *3)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) +(((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1131)) (-5 *1 (-995 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-872)) - (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-980 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1151)))) + (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-870)) + (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1149)))) ((*1 *2 *2) - (-12 (-4 *3 (-466)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-13 (-435 *3) (-1235)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-433 *3) (-1233)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1240 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1240 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-171 *3)) - (-5 *1 (-1239 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-171 *3)) + (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-114)) - (-5 *1 (-1239 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-114)) + (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-326 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-326 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 (-171 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *4 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3))))) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-1239 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 (-171 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *1 (-191 *4 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3))))) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1237 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-1239 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3)))) - ((*1 *1 *1) (-4 *1 (-1238)))) -(((*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1236 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-1236 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-1234 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-663 (-1236 *2))) (-5 *1 (-1236 *2)) (-4 *2 (-1133))))) -(((*1 *1 *1) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1133))))) + (-12 (-5 *3 (-661 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-1236 *3))) (-5 *1 (-1236 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1236 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-661 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-1236 *3))) (-5 *1 (-1236 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-661 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) (((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) + (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) ((*1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *1) (-5 *1 (-491))) ((*1 *1) (-4 *1 (-1235)))) -(((*1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-1233))))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1233)))) +(((*1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-1231))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191)) (-5 *2 (-560)) (-5 *1 (-1232 *4)) (-4 *4 (-1081))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1232 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) + (-12 (-5 *3 (-1189)) (-5 *2 (-558)) (-5 *1 (-1230 *4)) (-4 *4 (-1079))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1230 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) - (-5 *2 (-560)))) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) + (-5 *2 (-558)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-571) (-1070 *2) (-660 *2) (-466))) - (-5 *2 (-560)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *4))))) + (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-658 *2) (-464))) + (-5 *2 (-558)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-866 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-571) (-1070 *2) (-660 *2) (-466))) (-5 *2 (-560)) - (-5 *1 (-1149 *6 *3)))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-569) (-1068 *2) (-658 *2) (-464))) (-5 *2 (-558)) + (-5 *1 (-1147 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-1191)) - (-4 *6 (-13 (-571) (-1070 *2) (-660 *2) (-466))) (-5 *2 (-560)) - (-5 *1 (-1149 *6 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *6))))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) + (-4 *6 (-13 (-569) (-1068 *2) (-658 *2) (-464))) (-5 *2 (-558)) + (-5 *1 (-1147 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-466)) (-5 *2 (-560)) - (-5 *1 (-1150 *4)))) + (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-464)) (-5 *2 (-558)) + (-5 *1 (-1148 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-866 (-421 (-976 *6)))) - (-5 *3 (-421 (-976 *6))) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1150 *6)))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-419 (-974 *6)))) + (-5 *3 (-419 (-974 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1148 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-421 (-976 *6))) (-5 *4 (-1209)) (-5 *5 (-1191)) - (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1150 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1232 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1231)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1231))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191)) (-5 *1 (-1231))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1133)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1191)) (-5 *1 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1231))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-888) (-888))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-888) (-663 (-888)))) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-713 (-1 (-888) (-663 (-888))))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1305)) (-5 *1 (-217 *3)) + (|partial| -12 (-5 *3 (-419 (-974 *6))) (-5 *4 (-1207)) (-5 *5 (-1189)) + (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1148 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1230 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-886))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-661 (-886)))) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-886) (-661 (-886))))) (-5 *1 (-115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) - (-15 -2189 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-407)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-516)))) - ((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-732)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1229))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) + (-15 -2185 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-730)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1227))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-793)) (-4 *3 (-1249)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-791)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1) (-5 *1 (-174))) - ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1133)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1191)) (-4 *1 (-403)))) - ((*1 *1) (-5 *1 (-407))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) + ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1131)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) ((*1 *1) - (-12 (-4 *3 (-1133)) (-5 *1 (-911 *2 *3 *4)) (-4 *2 (-1133)) - (-4 *4 (-688 *3)))) - ((*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) - ((*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1081)))) - ((*1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081)))) - ((*1 *1 *1) (-5 *1 (-1209))) ((*1 *1) (-5 *1 (-1209))) - ((*1 *1) (-5 *1 (-1229)))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1229))))) -(((*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1228))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-1228))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-872)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-872)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-294 *2)) (-4 *2 (-1249)))) + (-12 (-4 *3 (-1131)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1131)) + (-4 *4 (-686 *3)))) + ((*1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-791)) (-4 *2 (-1079)))) + ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079)))) + ((*1 *1 *1) (-5 *1 (-1207))) ((*1 *1) (-5 *1 (-1207))) + ((*1 *1) (-5 *1 (-1227)))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1227))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-870)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1247)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4376 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (|:| -4372 + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2300 + (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3770,8028 +3761,8028 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-574)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1133)))) + (-5 *1 (-572)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-715 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4376 + (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2300 + (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) - (-5 *1 (-827)))) + (-5 *1 (-825)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1133)) (-5 *1 (-1227 *3 *2)) (-4 *3 (-1133))))) + (|partial| -12 (-4 *2 (-1131)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1227 *4 *5)) (-4 *4 (-1133)) - (-4 *5 (-1133))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) + (-4 *5 (-1131))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1227 *4 *5)) (-4 *4 (-1133)) - (-4 *5 (-1133))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) + (-4 *5 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-1305)) (-5 *1 (-1227 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| -4376 *3) (|:| -2300 *4)))) (-4 *3 (-1133)) - (-4 *4 (-1133)) (-4 *1 (-1226 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1224 *2)) (-4 *2 (-376))))) + (-12 (-5 *2 (-661 (-2 (|:| -4372 *3) (|:| -2296 *4)))) (-4 *3 (-1131)) + (-4 *4 (-1131)) (-4 *1 (-1224 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-1203 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1224 *2)) (-4 *2 (-376))))) + (-12 (-5 *4 (-947)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-376))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-793)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-791)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4)) (-4 *4 (-435 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-115)) (-5 *1 (-165)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4)) - (-4 *4 (-13 (-435 *3) (-1034))))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-287 *3 *4)) + (-4 *4 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1133)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1131)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4)) (-4 *4 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4)) - (-4 *4 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1051)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1223 *2)) (-4 *2 (-1133))))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-646 *3 *4)) + (-4 *4 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3))))) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-661 (-661 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-1222 *3))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-661 (-661 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-661 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-1220 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-872)) + (-12 (-4 *4 (-870)) (-5 *2 - (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4)))) - (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4)))))) - (-5 *1 (-1220 *4)) (-5 *3 (-663 (-663 (-663 *4))))))) + (-2 (|:| |f1| (-661 *4)) (|:| |f2| (-661 (-661 (-661 *4)))) + (|:| |f3| (-661 (-661 *4))) (|:| |f4| (-661 (-661 (-661 *4)))))) + (-5 *1 (-1218 *4)) (-5 *3 (-661 (-661 (-661 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-872)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3)) + (-12 (-4 *6 (-870)) (-5 *3 (-661 *6)) (-5 *5 (-661 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5) (|:| |f4| (-663 *5)))) - (-5 *1 (-1220 *6)) (-5 *4 (-663 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-661 *5)) (|:| |f3| *5) (|:| |f4| (-661 *5)))) + (-5 *1 (-1218 *6)) (-5 *4 (-661 *5))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1023 *4)) (-4 *2 (-708 *7 *8 *9)) - (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1021 *4)) (-4 *2 (-706 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1081)))) + (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2)) (-4 *2 (-376)) (-4 *2 (-1079)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1155 *2 *3 *4 *5)) (-4 *3 (-1081)) + (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-1220 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-1218 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-872)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1220 *4)) - (-5 *3 (-663 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-872)) (-5 *1 (-1220 *3))))) + (-12 (-4 *4 (-870)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1218 *4)) + (-5 *3 (-661 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-870)) (-5 *1 (-1218 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-872)) (-5 *2 (-1222 (-663 *4))) (-5 *1 (-1220 *4)) - (-5 *3 (-663 *4))))) + (-12 (-4 *4 (-870)) (-5 *2 (-1220 (-661 *4))) (-5 *1 (-1218 *4)) + (-5 *3 (-661 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-872)) (-5 *2 (-663 (-663 (-663 *4)))) (-5 *1 (-1220 *4)) - (-5 *3 (-663 (-663 *4)))))) + (-12 (-4 *4 (-870)) (-5 *2 (-661 (-661 (-661 *4)))) (-5 *1 (-1218 *4)) + (-5 *3 (-661 (-661 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1222 (-663 *4))) (-4 *4 (-872)) (-5 *2 (-663 (-663 *4))) - (-5 *1 (-1220 *4))))) + (-12 (-5 *3 (-1220 (-661 *4))) (-4 *4 (-870)) (-5 *2 (-661 (-661 *4))) + (-5 *1 (-1218 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) - (-5 *1 (-1220 *4)) (-4 *4 (-872))))) + (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) + (-5 *1 (-1218 *4)) (-4 *4 (-870))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-4 *4 (-872)) - (-5 *1 (-1220 *4))))) + (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-4 *4 (-870)) + (-5 *1 (-1218 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-872)) - (-5 *1 (-1220 *4))))) + (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-661 *4)) (-4 *4 (-870)) + (-5 *1 (-1218 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5)) - (-5 *4 (-663 *5)) (-4 *5 (-872)) (-5 *1 (-1220 *5))))) + (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-1 (-114) *5 *5)) + (-5 *4 (-661 *5)) (-4 *5 (-870)) (-5 *1 (-1218 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-872)) (-5 *4 (-663 *6)) - (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4)))) - (-5 *1 (-1220 *6)) (-5 *5 (-663 *4))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-1219))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-1219))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-976 *5)))) (-5 *1 (-1218 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 (-560))))) - (-5 *2 (-663 (-663 (-305 (-976 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-871) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-305 (-421 (-976 (-560)))))) - (-5 *2 (-663 (-663 (-305 (-976 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-871) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 (-560)))) (-5 *2 (-663 (-305 (-976 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-421 (-976 (-560))))) (-5 *2 (-663 (-305 (-976 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-871) (-376))))) + (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-870)) (-5 *4 (-661 *6)) + (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-661 *4)))) + (-5 *1 (-1218 *6)) (-5 *5 (-661 *4))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) +(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-974 *5)))) (-5 *1 (-1216 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-419 (-974 (-558))))) + (-5 *2 (-661 (-661 (-305 (-974 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-869) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-305 (-419 (-974 (-558)))))) + (-5 *2 (-661 (-661 (-305 (-974 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-869) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-974 (-558)))) (-5 *2 (-661 (-305 (-974 *4)))) + (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-419 (-974 (-558))))) (-5 *2 (-661 (-305 (-974 *4)))) + (-5 *1 (-393 *4)) (-4 *4 (-13 (-869) (-376))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1209)) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-4 *4 (-13 (-29 *6) (-1235) (-990))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2236 (-663 *4)))) - (-5 *1 (-675 *6 *4 *3)) (-4 *3 (-680 *4)))) + (|partial| -12 (-5 *5 (-1207)) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-4 *4 (-13 (-29 *6) (-1233) (-988))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2232 (-661 *4)))) + (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-678 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 *2)) - (-4 *2 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *1 (-675 *6 *2 *3)) (-4 *3 (-680 *2)))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-678 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-5 *2 (-663 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2236 (-663 *7))))) - (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-663 *7)) (-4 *3 (-708 *5 *6 *7)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-5 *2 (-661 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2232 (-661 *7))))) + (-5 *1 (-687 *5 *6 *7 *3)) (-5 *4 (-661 *7)) (-4 *3 (-706 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |particular| (-3 (-1299 *5) #2="failed")) - (|:| -2236 (-663 (-1299 *5))))) - (-5 *1 (-690 *5)) (-5 *4 (-1299 *5)))) + (-2 (|:| |particular| (-3 (-1297 *5) #2="failed")) + (|:| -2232 (-661 (-1297 *5))))) + (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |particular| (-3 (-1299 *5) #2#)) (|:| -2236 (-663 (-1299 *5))))) - (-5 *1 (-690 *5)) (-5 *4 (-1299 *5)))) + (-2 (|:| |particular| (-3 (-1297 *5) #2#)) (|:| -2232 (-661 (-1297 *5))))) + (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 - (-663 - (-2 (|:| |particular| (-3 (-1299 *5) #2#)) - (|:| -2236 (-663 (-1299 *5)))))) - (-5 *1 (-690 *5)) (-5 *4 (-663 (-1299 *5))))) + (-661 + (-2 (|:| |particular| (-3 (-1297 *5) #2#)) + (|:| -2232 (-661 (-1297 *5)))))) + (-5 *1 (-688 *5)) (-5 *4 (-661 (-1297 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 - (-663 - (-2 (|:| |particular| (-3 (-1299 *5) #2#)) - (|:| -2236 (-663 (-1299 *5)))))) - (-5 *1 (-690 *5)) (-5 *4 (-663 (-1299 *5))))) + (-661 + (-2 (|:| |particular| (-3 (-1297 *5) #2#)) + (|:| -2232 (-661 (-1297 *5)))))) + (-5 *1 (-688 *5)) (-5 *4 (-661 (-1297 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-792 *5)))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-790 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-792 *4)))) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-790 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1209)) - (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1235) (-990))))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *1 (-792 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-988))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1209)) - (-4 *7 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) - (-5 *1 (-826 *6 *7)) (-5 *4 (-1299 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1209)) - (-4 *6 (-13 (-29 *5) (-1235) (-990))) - (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-1299 *6))) (-5 *1 (-826 *5 *6)))) + (|partial| -12 (-5 *3 (-709 *7)) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) + (-5 *1 (-824 *6 *7)) (-5 *4 (-1297 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-709 *6)) (-5 *4 (-1207)) + (-4 *6 (-13 (-29 *5) (-1233) (-988))) + (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-1297 *6))) (-5 *1 (-824 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-1209)) - (-4 *7 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) - (-5 *1 (-826 *6 *7)))) + (|partial| -12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-1209)) - (-4 *7 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1299 *7)) (|:| -2236 (-663 (-1299 *7))))) - (-5 *1 (-826 *6 *7)))) + (|partial| -12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2232 (-661 (-1297 *7))))) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1209)) - (-4 *7 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2236 (-663 *7))) *7 #3="failed")) - (-5 *1 (-826 *6 *7)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2232 (-661 *7))) *7 #3="failed")) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1209)) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2236 (-663 *3))) *3 #3#)) - (-5 *1 (-826 *6 *3)) (-4 *3 (-13 (-29 *6) (-1235) (-990))))) + (-12 (-5 *4 (-115)) (-5 *5 (-1207)) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2232 (-661 *3))) *3 #3#)) + (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-988))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-663 *2)) - (-4 *2 (-13 (-29 *6) (-1235) (-990))) (-5 *1 (-826 *6 *2)) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))))) + (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-661 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-5 *1 (-824 *6 *2)) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-663 *2)) - (-4 *2 (-13 (-29 *6) (-1235) (-990))) - (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *1 (-826 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1067)) (-5 *1 (-829)))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-661 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *1 (-824 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-830)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) - (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) + (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) - (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) + (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1299 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) - (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) + (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1299 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1067)) (-5 *1 (-829)))) + (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2236 (-663 *6))) "failed") *7 *6)) - (-4 *6 (-376)) (-4 *7 (-680 *6)) - (-5 *2 (-2 (|:| |particular| (-1299 *6)) (|:| -2236 (-711 *6)))) - (-5 *1 (-837 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1299 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-926)) (-5 *2 (-1067)) (-5 *1 (-925)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2232 (-661 *6))) "failed") *7 *6)) + (-4 *6 (-376)) (-4 *7 (-678 *6)) + (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2232 (-709 *6)))) + (-5 *1 (-835 *6 *7)) (-5 *3 (-709 *6)) (-5 *4 (-1297 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-926)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-925)))) + (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1191)) - (-5 *8 (-229)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1067)) - (-5 *1 (-925)))) + (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1189)) + (-5 *8 (-229)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) + (-5 *1 (-923)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1191)) - (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1067)) (-5 *1 (-925)))) + (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1189)) + (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *2 (-663 (-391))) (-5 *1 (-1055)) + (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *2 (-661 (-391))) (-5 *1 (-1053)) (-5 *4 (-391)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 (-560))) (-5 *2 (-663 (-391))) (-5 *1 (-1055)) + (-12 (-5 *3 (-974 (-558))) (-5 *2 (-661 (-391))) (-5 *1 (-1053)) (-5 *4 (-391)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-326 *4)))) + (-12 (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-326 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1163 *4)) + (-12 (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-305 (-326 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1163 *5)) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-305 (-326 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1163 *5)) (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1209))) - (-4 *5 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1163 *5)) - (-5 *3 (-663 (-305 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-1218 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1209))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-1218 *5)) - (-5 *3 (-663 (-305 (-421 (-976 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-421 (-976 *4)))) (-4 *4 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-1218 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) - (-5 *1 (-1218 *4)) (-5 *3 (-663 (-305 (-421 (-976 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *5))))) - (-5 *1 (-1218 *5)) (-5 *3 (-421 (-976 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *5))))) - (-5 *1 (-1218 *5)) (-5 *3 (-305 (-421 (-976 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *4))))) (-5 *1 (-1218 *4)) - (-5 *3 (-421 (-976 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-976 *4))))) (-5 *1 (-1218 *4)) - (-5 *3 (-305 (-421 (-976 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888))))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-901)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-901)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1191)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-520)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-606)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-492)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1199)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-645)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1123)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1105)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1002)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-324)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1185)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-539)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1311)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1098)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-531)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1148)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-619)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-140)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1310)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-698)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-222)))) - ((*1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-538)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1214))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1214)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1214))) (-5 *1 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1214))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1191) (-1214))) (-5 *1 (-1214))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1214))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3342)) (-5 *2 (-114)) (-5 *1 (-636)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2468)) (-5 *2 (-114)) (-5 *1 (-636)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3341)) (-5 *2 (-114)) (-5 *1 (-636)))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-326 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-1207))) + (-4 *5 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1161 *5)) + (-5 *3 (-661 (-305 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-1216 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-1207))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-1216 *5)) + (-5 *3 (-661 (-305 (-419 (-974 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-419 (-974 *4)))) (-4 *4 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-1216 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) + (-5 *1 (-1216 *4)) (-5 *3 (-661 (-305 (-419 (-974 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *5))))) + (-5 *1 (-1216 *5)) (-5 *3 (-419 (-974 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *5))))) + (-5 *1 (-1216 *5)) (-5 *3 (-305 (-419 (-974 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *4))))) (-5 *1 (-1216 *4)) + (-5 *3 (-419 (-974 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-974 *4))))) (-5 *1 (-1216 *4)) + (-5 *3 (-305 (-419 (-974 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886))))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-604)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1197)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-643)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-324)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-691)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1309)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-701)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1146)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-135)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-140)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-222)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1212))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1212)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-1212))) (-5 *1 (-1212))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1189) (-1212))) (-5 *1 (-1212))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-291))) (-5 *1 (-291)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1212))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3338)) (-5 *2 (-114)) (-5 *1 (-634)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2464)) (-5 *2 (-114)) (-5 *1 (-634)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3337)) (-5 *2 (-114)) (-5 *1 (-634)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-114)) (-5 *1 (-713 *4)) - (-4 *4 (-632 (-888))))) + (-12 (-5 *3 (|[\|\|]| -2594)) (-5 *2 (-114)) (-5 *1 (-711 *4)) + (-4 *4 (-630 (-886))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-888))) (-5 *2 (-114)) - (-5 *1 (-713 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)) (-5 *1 (-901)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-901)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-630 (-886))) (-5 *2 (-114)) + (-5 *1 (-711 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-899)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-899)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1199))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-643))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1311))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-701))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1146))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-1310))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-696))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-114)) (-5 *1 (-1214)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1214)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1214)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1214))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) ((*1 *1) (-5 *1 (-888))) + (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1212)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1212))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) ((*1 *1) (-5 *1 (-886))) ((*1 *1) - (-12 (-4 *2 (-466)) (-4 *3 (-872)) (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1117))) + (-12 (-4 *2 (-464)) (-4 *3 (-870)) (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1115))) ((*1 *1) - (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34))))) - ((*1 *1) (-5 *1 (-1212))) ((*1 *1) (-5 *1 (-1213)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) + ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1209))) (-5 *4 (-1209)) (-5 *1 (-1212)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1212)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1209)) (-5 *1 (-1213)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1209))) (-5 *1 (-1213))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-450)) (-5 *1 (-1213))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1213))))) + (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1207))) (-5 *4 (-1207)) (-5 *1 (-1210)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1210)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1207)) (-5 *1 (-1211)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1207))) (-5 *1 (-1211))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-448)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1211))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-448)) + (-12 (-5 *3 (-446)) (-5 *2 - (-663 - (-3 (|:| -4056 (-1209)) - (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560))))))))) - (-5 *1 (-1213))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1213))))) + (-661 + (-3 (|:| -4052 (-1207)) + (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558))))))))) + (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1211))))) (((*1 *2 *1) (-12 (-5 *2 - (-663 - (-663 - (-3 (|:| -4056 (-1209)) - (|:| -3729 (-663 (-3 (|:| S (-1209)) (|:| P (-976 (-560)))))))))) - (-5 *1 (-1213))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1213))))) -(((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-1213))))) + (-661 + (-661 + (-3 (|:| -4052 (-1207)) + (|:| -3725 (-661 (-3 (|:| S (-1207)) (|:| P (-974 (-558)))))))))) + (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-1211))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 (-450))))) - (-5 *1 (-1213))))) -(((*1 *1) (-5 *1 (-1212)))) -(((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1212))))) -(((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1212))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1305)) (-5 *1 (-1212)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) + (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 (-448))))) + (-5 *1 (-1211))))) +(((*1 *1) (-5 *1 (-1210)))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212))))) + (-12 (-5 *4 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) (-5 *2 (-1305)) - (-5 *1 (-1212)))) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) (-5 *2 (-1303)) + (-5 *1 (-1210)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) - (-5 *2 (-1305)) (-5 *1 (-1212)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) + (-5 *2 (-1303)) (-5 *1 (-1210)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1209)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) - (-5 *2 (-1305)) (-5 *1 (-1212))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1212)))) - ((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-1212))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) + (-5 *2 (-1303)) (-5 *1 (-1210))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1209)) (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 "void"))) - (-5 *1 (-1212))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1212)) (-5 *3 (-1209))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1209)) (-5 *2 (-1213)) (-5 *1 (-1212))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-1081)) (-5 *2 (-1299 *4)) - (-5 *1 (-1210 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-1299 *3)) (-5 *1 (-1210 *3)) (-4 *3 (-1081))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1133)))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-452 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-1108 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1148)))) ((*1 *1 *1) (-5 *1 (-1209)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) + (-12 (-5 *3 (-1207)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 "void"))) + (-5 *1 (-1210))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210))))) +(((*1 *2 *3) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) + (-5 *1 (-1208 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-947)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-450 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1106 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1146)))) ((*1 *1 *1) (-5 *1 (-1207)))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) - (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) - (|:| |args| (-663 (-888))))) - (-5 *1 (-1209))))) + (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) + (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) + (|:| |args| (-661 (-886))))) + (-5 *1 (-1207))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -3069 (-663 (-888))) (|:| -2887 (-663 (-888))) - (|:| |presup| (-663 (-888))) (|:| -3067 (-663 (-888))) - (|:| |args| (-663 (-888))))) - (-5 *1 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-888)))) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-1209))))) -(((*1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1191)))) - ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1191)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1209))))) -(((*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-1209))))) + (-2 (|:| -3065 (-661 (-886))) (|:| -2883 (-661 (-886))) + (|:| |presup| (-661 (-886))) (|:| -3063 (-661 (-886))) + (|:| |args| (-661 (-886))))) + (-5 *1 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 (-886)))) (-5 *1 (-1207))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-1207))))) +(((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207))))) +(((*1 *1 *2) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-1207))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) -(((*1 *1 *1) (-5 *1 (-1208))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *1 *1) (-5 *1 (-1206))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-560))) (|:| -3581 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1208)))) - (-5 *1 (-1208))))) + (-3 (|:| I (-326 (-558))) (|:| -3577 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-888) (-888) (-888))) (-5 *4 (-560)) (-5 *2 (-888)) - (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1133)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-886) (-886) (-886))) (-5 *4 (-558)) (-5 *2 (-886)) + (-5 *1 (-669 *5 *6 *7)) (-4 *5 (-1131)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-888)) (-5 *1 (-879 *3 *4 *5)) (-4 *3 (-1081)) (-14 *4 (-99 *3)) + (-12 (-5 *2 (-886)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-888)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-888)))) - ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1203 *3)) (-4 *3 (-1081))))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1201 *3)) (-4 *3 (-1079))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1121 *3)) (-4 *3 (-980 *7 *6 *4)) (-4 *6 (-817)) (-4 *4 (-872)) - (-4 *7 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) - (-5 *1 (-608 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-571)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *5 *4 *6 *3)) - (-4 *3 (-980 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1) (-5 *1 (-888))) + (-12 (-5 *5 (-1119 *3)) (-4 *3 (-978 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-870)) + (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) + (-5 *1 (-606 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *5 *4 *6 *3)) + (-4 *3 (-978 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-1201 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1235))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1233))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1124 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1235))) - (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-1201 *4 *2)))) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1233))) + (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-1199 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)))) - (-5 *2 (-421 (-976 *5))) (-5 *1 (-1202 *5)) (-5 *3 (-976 *5)))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)))) + (-5 *2 (-419 (-974 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-974 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)))) - (-5 *2 (-3 (-421 (-976 *5)) (-326 *5))) (-5 *1 (-1202 *5)) - (-5 *3 (-421 (-976 *5))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)))) + (-5 *2 (-3 (-419 (-974 *5)) (-326 *5))) (-5 *1 (-1200 *5)) + (-5 *3 (-419 (-974 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-976 *5))) (-5 *3 (-976 *5)) - (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-421 *3)) (-5 *1 (-1202 *5)))) + (-12 (-5 *4 (-1122 (-974 *5))) (-5 *3 (-974 *5)) + (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1200 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1202 *5))))) + (-12 (-5 *4 (-1122 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)))) (-5 *2 (-3 *3 (-326 *5))) + (-5 *1 (-1200 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-917 *4 *5)) (-4 *5 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1199))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-153 *3)))) + (-12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-114) *5)) + (-5 *1 (-915 *4 *5)) (-4 *5 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1197))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| -2646 (-793)) (|:| -4289 *4) (|:| |num| *4)))) - (-4 *4 (-1275 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) + (-12 (-5 *2 (-661 (-2 (|:| -2642 (-791)) (|:| -4285 *4) (|:| |num| *4)))) + (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1="void"))) - (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-114)) (-5 *1 (-450)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1="void"))) + (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 #1#))) (-5 *3 (-663 (-1209))) - (-5 *4 (-114)) (-5 *1 (-450)))) - ((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 #1#))) (-5 *3 (-661 (-1207))) + (-5 *4 (-114)) (-5 *1 (-448)))) + ((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1133)) (-5 *1 (-697 *3)))) + (-12 (-5 *2 (-661 (-661 (-661 *3)))) (-4 *3 (-1131)) (-5 *1 (-695 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-872)) (-4 *3 (-1133)) + (-12 (-5 *1 (-733 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1131)) (-14 *4 - (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *3)) - (-2 (|:| -2645 *2) (|:| -2646 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1147)) (-5 *1 (-862)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1249)) (-4 *3 (-1249)))) + (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *3)) + (-2 (|:| -2641 *2) (|:| -2642 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1145)) (-5 *1 (-860)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 *4)))) (-4 *4 (-1133)) - (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 *4)))) (-4 *4 (-1131)) + (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1133) (-34))) - (-5 *2 (-663 (-1172 *3 *5))) (-5 *1 (-1172 *3 *5)) - (-4 *3 (-13 (-1133) (-34))))) + (-12 (-5 *4 (-661 *5)) (-4 *5 (-13 (-1131) (-34))) + (-5 *2 (-661 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -1755 *5)))) - (-4 *4 (-13 (-1133) (-34))) (-4 *5 (-13 (-1133) (-34))) - (-5 *2 (-663 (-1172 *4 *5))) (-5 *1 (-1172 *4 *5)))) + (-12 (-5 *3 (-661 (-2 (|:| |val| *4) (|:| -1753 *5)))) + (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) + (-5 *2 (-661 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1755 *4))) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1172 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1753 *4))) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1170 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34))))) + (-12 (-5 *4 (-114)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1133) (-34))) (-5 *1 (-1173 *2 *3)) - (-4 *2 (-13 (-1133) (-34))))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)) + (-4 *2 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1172 *2 *3))) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34))) (-5 *1 (-1173 *2 *3)))) + (-12 (-5 *4 (-661 (-1170 *2 *3))) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1173 *2 *3))) (-5 *1 (-1173 *2 *3)) - (-4 *2 (-13 (-1133) (-34))) (-4 *3 (-13 (-1133) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1198 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-492)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-606)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-645)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) - (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-1198 *2 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-492)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-606)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-645)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) - (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-1198 *3 *2)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081))))) + (-12 (-5 *4 (-661 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) + (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-643)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) + (-5 *1 (-1105 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-643)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) + (-5 *1 (-1105 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *2 *1) (-12 (-4 *3 (-1249)) (-5 *2 (-663 *1)) (-4 *1 (-1042 *3)))) + (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-661 *1)) (-4 *1 (-1040 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081))))) + (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081))))) -(((*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) + (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) - ((*1 *1 *2) - (-12 (-5 *2 (-663 (-1197 *3 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2) + (-12 (-5 *2 (-661 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *2 (-793)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)))) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-791)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-973 *5)) (-4 *5 (-1081)) - (-5 *1 (-1197 *4 *5)) (-14 *4 (-949))))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-947))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-973 *4)) (-4 *4 (-1081)) (-5 *1 (-1197 *3 *4)) - (-14 *3 (-949))))) + (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1195 *3 *4)) + (-14 *3 (-947))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-973 *5)) (-5 *3 (-793)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-971 *5)) (-5 *3 (-791)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-793)) (-5 *3 (-973 *5)) (-4 *5 (-1081)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)))) + (-12 (-5 *2 (-791)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-973 *5)) (-4 *5 (-1081)) - (-5 *1 (-1197 *4 *5)) (-14 *4 (-949))))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-947))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1081))))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)) (-4 *5 (-1079))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1197 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1081))))) + (-12 (-5 *2 (-661 (-791))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-947)) (-4 *5 (-1079))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081))))) + (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-973 *4)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081))))) + (-12 (-5 *2 (-971 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-174)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324)))) + (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-324)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1081))))) -(((*1 *1 *1) (-12 (-5 *1 (-1197 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-791)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) (-4 *4 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-947)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-973 *4))) (-5 *1 (-1197 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1081))))) + (-12 (-5 *2 (-661 (-971 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-947)) + (-4 *4 (-1079))))) (((*1 *1 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *2 (-466)))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *2 (-464)))) ((*1 *1 *1) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1254)) (-4 *3 (-1275 *2)) - (-4 *4 (-1275 (-421 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-466)))) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-464)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) - (-4 *3 (-466)))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) + (-4 *3 (-464)))) ((*1 *1 *1) - (-12 (-4 *1 (-980 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1196 *3 *2)) (-4 *2 (-1275 *3))))) + (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1194 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-988 *3)) (-5 *1 (-1196 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1194 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) - ((*1 *1 *1) (-4 *1 (-507))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) - ((*1 *1 *1) (-4 *1 (-507))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) - ((*1 *1 *1) (-4 *1 (-507))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-507))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-507))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *1 *1) (-4 *1 (-507))) + ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *1 *1 *1) (-5 *1 (-391))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1292 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1263 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1261 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1261 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1284 *3 *4)) (-4 *5 (-1015 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1259 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1194 *3)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1195 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1193 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-421 (-560)))) - (-5 *2 (-2 (|:| -3996 (-1187 *4)) (|:| -3997 (-1187 *4)))) - (-5 *1 (-1194 *4)) (-5 *3 (-1187 *4))))) + (-12 (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-2 (|:| -3992 (-1185 *4)) (|:| -3993 (-1185 *4)))) + (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-421 (-560)))) - (-5 *2 (-2 (|:| -4154 (-1187 *4)) (|:| -4150 (-1187 *4)))) - (-5 *1 (-1194 *4)) (-5 *3 (-1187 *4))))) + (-12 (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-2 (|:| -4150 (-1185 *4)) (|:| -4146 (-1185 *4)))) + (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-376)) - (-4 *4 (-1081)) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4))))) + (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376)) + (-4 *4 (-1079)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-376)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1081)) - (-5 *3 (-421 (-560))) (-5 *1 (-1193 *4))))) + (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) + (-5 *3 (-419 (-558))) (-5 *1 (-1191 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4)) - (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1081))))) + (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) + (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) - (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1081))))) + (-12 (-5 *4 (-1 (-1185 *3))) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1193 *4)) - (-4 *4 (-1081))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-920 *2 *3)) (-4 *2 (-1275 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) + (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) + (-4 *4 (-1079))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1081)) - (-5 *1 (-1193 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) + (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1079)) + (-5 *1 (-1191 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *1 (-828 *4 *2)) (-4 *2 (-13 (-29 *4) (-1235) (-990))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-1081))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1079))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1193 *4)) (-4 *4 (-1081)) - (-5 *3 (-560))))) + (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1191 *4)) (-4 *4 (-1079)) + (-5 *3 (-558))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1193 *4)) (-4 *4 (-1081)) - (-5 *3 (-560))))) + (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1191 *4)) (-4 *4 (-1079)) + (-5 *3 (-558))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-376)) - (-14 *4 (-1025 *2 *3)))) + (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-947)) (-4 *3 (-376)) + (-14 *4 (-1023 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1275 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) - ((*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) - ((*1 *1 *1) (|partial| -4 *1 (-744))) ((*1 *1 *1) (|partial| -4 *1 (-748))) + ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + ((*1 *1 *1) (|partial| -4 *1 (-742))) ((*1 *1 *1) (|partial| -4 *1 (-746))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-798 *5 *6 *7 *3 *4)) - (-4 *4 (-1103 *5 *6 *7 *3)))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-796 *5 *6 *7 *3 *4)) + (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-13 (-871) (-376))) - (-4 *2 (-1275 *3)))) + (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-376))) + (-4 *2 (-1273 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) + (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)) - (-4 *2 (-571)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-571))) + (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *2 (-569)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-569))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-571)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-793))) + (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-791))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-571)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-571)) - (-5 *1 (-1001 *3 *4)))) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) + (-5 *1 (-999 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *2 (-1081)) - (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571)))) + (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) + (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-569)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1081)) (-5 *1 (-1193 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3))))) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1079)) (-5 *1 (-1191 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-1133)) (-4 *4 (-1249)) (-5 *2 (-114)) - (-5 *1 (-1187 *4))))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-1131)) (-4 *4 (-1247)) (-5 *2 (-114)) + (-5 *1 (-1185 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -3080 (-793)) (|:| |period| (-793)))) - (-5 *1 (-1187 *4)) (-4 *4 (-1249)) (-5 *3 (-793))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1249))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1249))))) -(((*1 *1) (-5 *1 (-592))) - ((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-884)))) - ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-884)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-888)) (-5 *2 (-1305)) (-5 *1 (-884)))) + (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -3076 (-791)) (|:| |period| (-791)))) + (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-791))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247))))) +(((*1 *1) (-5 *1 (-590))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-882)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-882)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-882)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1187 *4)) (-4 *4 (-1133)) - (-4 *4 (-1249))))) + (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1185 *4)) (-4 *4 (-1131)) + (-4 *4 (-1247))))) (((*1 *2 *1) - (-12 (-5 *2 (-888)) (-5 *1 (-1187 *3)) (-4 *3 (-1133)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-886)) (-5 *1 (-1185 *3)) (-4 *3 (-1131)) (-4 *3 (-1247))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1187 *3)) (-4 *3 (-1133)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1131)) (-4 *3 (-1247))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1299 (-663 (-560)))) (-5 *1 (-494)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) + (-12 (-5 *3 (-791)) (-5 *2 (-1297 (-661 (-558)))) (-5 *1 (-492)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-615 *3)))) + (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-613 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1249)) (-5 *1 (-1187 *3))))) + (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2)) - (-4 *2 (-1292 *4)))) + (-12 (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-549 *4 *2)) + (-4 *2 (-1290 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-4 *5 (-1275 *4)) - (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) (-4 *2 (-1292 *6)))) + (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-4 *5 (-1273 *4)) + (-4 *6 (-744 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1290 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) - (-5 *1 (-556 *4 *2)) (-4 *2 (-1292 *4)))) + (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1290 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) - (-5 *1 (-1186 *4))))) + (-12 (-5 *2 (-1185 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1184 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) - (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) + (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) - (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) - (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) + (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) - (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1275 *3)) - (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1292 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1273 *3)) + (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) - (-4 *2 (-1292 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1290 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1186 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) - ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-713 (-1167))) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185))))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1184 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-711 (-1165))) (-5 *1 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)))) - ((*1 *1) (-4 *1 (-1184)))) -(((*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-1184))))) -(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1249)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1249)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)))) + ((*1 *1) (-4 *1 (-1182)))) +(((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-1182))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-1182 *4)) (-4 *4 (-1249)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-1180 *3))))) + (-12 (-5 *3 (-791)) (-4 *1 (-1180 *4)) (-4 *4 (-1247)) (-5 *2 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-663 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) - (-4 *3 (-1097 *5 *6 *7)))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-661 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) + (-4 *3 (-1095 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-663 *6)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)))) + (-12 (-5 *2 (-661 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *2 (-1097 *3 *4 *5)))) + (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *2 (-1095 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-663 (-1178 *5 *6 *7 *3))) (-5 *1 (-1178 *5 *6 *7 *3)) - (-4 *3 (-1097 *5 *6 *7))))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-661 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) + (-4 *3 (-1095 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1057 *5 *6 *7 *8))) + (-5 *1 (-1057 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-663 (-1178 *5 *6 *7 *8))) - (-5 *1 (-1178 *5 *6 *7 *8))))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-661 (-1176 *5 *6 *7 *8))) + (-5 *1 (-1176 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-1097 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1059 *5 *6 *7 *8))))) - (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1057 *5 *6 *7 *8))))) + (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-1097 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1178 *5 *6 *7 *8))))) - (-5 *1 (-1178 *5 *6 *7 *8)) (-5 *3 (-663 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *4 (-793)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-1305)) - (-5 *1 (-1101 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *4 (-793)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-1305)) - (-5 *1 (-1177 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1176 *5 *6 *7 *8))))) + (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *4 (-791)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-1303)) + (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *4 (-791)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-1303)) + (-5 *1 (-1175 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-663 *11)) - (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -1755 *11)))))) - (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -1755 *11)))) - (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1097 *7 *8 *9)) - (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) - (-5 *1 (-1101 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-661 *11)) + (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1753 *11)))))) + (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1753 *11)))) + (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1095 *7 *8 *9)) + (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) + (-5 *1 (-1099 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-663 *11)) - (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -1755 *11)))))) - (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -1755 *11)))) - (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1097 *7 *8 *9)) - (-4 *11 (-1141 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-817)) (-4 *9 (-872)) - (-5 *1 (-1177 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-661 *11)) + (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1753 *11)))))) + (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1753 *11)))) + (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1095 *7 *8 *9)) + (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-870)) + (-5 *1 (-1175 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 - (-2 (|:| -2569 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2565 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3578 (-421 *6)) (|:| |special| (-421 *6)))) - (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3574 (-419 *6)) (|:| |special| (-419 *6)))) + (-5 *1 (-747 *5 *6)) (-5 *3 (-419 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-924 *3 *4)) - (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-922 *3 *4)) + (-4 *3 (-1273 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3626 *3) (|:| -3625 *3))) (-5 *1 (-924 *3 *5)) - (-4 *3 (-1275 *5)))) + (|partial| -12 (-5 *4 (-791)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3622 *3) (|:| -3621 *3))) (-5 *1 (-922 *3 *5)) + (-4 *3 (-1273 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1177 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-5 *1 (-1177 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-817)) - (-4 *9 (-872)) (-4 *3 (-1097 *7 *8 *9)) + (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) + (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) + (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-817)) - (-4 *9 (-872)) (-4 *3 (-1097 *7 *8 *9)) + (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) + (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *7 *8 *9 *3 *4)) (-4 *4 (-1141 *7 *8 *9 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) + (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *6 *7 *8 *3 *4)) (-4 *4 (-1141 *6 *7 *8 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3))))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) + (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) + (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *6 *7 *8 *3 *4)) (-4 *4 (-1141 *6 *7 *8 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3))))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-663 *4)) - (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))))) - (-5 *1 (-1177 *5 *6 *7 *3 *4)) (-4 *4 (-1141 *5 *6 *7 *3))))) + (-2 (|:| |done| (-661 *4)) + (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-793)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-791)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-793)) (-5 *1 (-1177 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-791)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-793)) (-5 *1 (-1101 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-791)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *9 (-1141 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-793)) (-5 *1 (-1177 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-791)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *1 *1) (-4 *1 (-1176)))) + ((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-114))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-114))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-560)) (-5 *2 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1133)) (-4 *6 (-1249)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-114))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-114))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-558)) (-5 *2 (-114))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1131)) (-4 *6 (-1247)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1133)) (-4 *2 (-1249)) - (-5 *1 (-665 *5 *2)))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1131)) (-4 *2 (-1247)) + (-5 *1 (-663 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1133)) (-4 *5 (-1249)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5)))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 *5)) (-4 *6 (-1131)) (-4 *5 (-1247)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1133)) (-4 *2 (-1249)) - (-5 *1 (-665 *5 *2)))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1131)) (-4 *2 (-1247)) + (-5 *1 (-663 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1133)) - (-4 *6 (-1249)) (-5 *1 (-665 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1131)) + (-4 *6 (-1247)) (-5 *1 (-663 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1133)) - (-4 *2 (-1249)) (-5 *1 (-665 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-146)) (-5 *2 (-793))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1176)) (-5 *3 (-146)) (-5 *2 (-114))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-1266 (-560)))))) -(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1131)) + (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-146)) (-5 *2 (-791))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-146)) (-5 *2 (-114))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-791)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-560)))) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-558)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1249)) - (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-543)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-560)) (-5 *3 (-143)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-560))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48))))) + (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) + (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-558)) (-5 *3 (-143)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) - (-5 *1 (-123 *3)) (-4 *3 (-872)))) - ((*1 *2 *2) - (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1235))) - (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-599 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-597 (-421 (-976 *3)))) - (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-603 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3578 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) - (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) - (-5 *3 (-663 (-711 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1299 (-1299 *5))) (-4 *5 (-376)) (-4 *5 (-1081)) - (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) - (-5 *3 (-663 (-711 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1176)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1176))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1176)) (-5 *2 (-146))))) + (-5 *1 (-123 *3)) (-4 *3 (-870)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1233))) + (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-597 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 (-419 (-974 *3)))) + (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-601 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3574 *3) (|:| |special| *3))) (-5 *1 (-747 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) + (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-661 (-709 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1079)) + (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-661 (-709 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-661 *1)) (-4 *1 (-1174)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-661 *1)) (-4 *1 (-1174))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-146))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1081)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) + (-12 (-4 *3 (-1079)) (-4 *1 (-706 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1081))))) + ((*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-791)) (-4 *3 (-1079))))) (((*1 *1 *2) - (-12 (-5 *2 (-711 *4)) (-4 *4 (-1081)) (-5 *1 (-1174 *3 *4)) - (-14 *3 (-793))))) + (-12 (-5 *2 (-709 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) + (-14 *3 (-791))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34)))))) + (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34)))))) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 *4)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34)))))) + (-12 (-5 *2 (-661 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) (-5 *1 (-1173 *3 *4)) - (-4 *3 (-13 (-1133) (-34))) (-4 *4 (-13 (-1133) (-34)))))) + (-12 (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) (-5 *1 (-1171 *3 *4)) + (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1172 *4 *5)) (-4 *4 (-13 (-1133) (-34))) - (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-114)) (-5 *1 (-1173 *4 *5))))) + (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1131) (-34))) + (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1172 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1133) (-34))) (-4 *6 (-13 (-1133) (-34))) (-5 *2 (-114)) - (-5 *1 (-1173 *5 *6))))) + (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) + (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-114)) + (-5 *1 (-1171 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)) - (-4 *2 (-1133)))) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) + (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-153 *3)) - (-4 *3 (-1249)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-153 *3)) + (-4 *3 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1247)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1133)) - (-5 *1 (-758 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1133)))) + (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1131)) + (-5 *1 (-756 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4))))) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-242 *3)) - (-4 *3 (-1133)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4511)) (-4 *1 (-242 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-1133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-242 *3)) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4507)) (-4 *1 (-242 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133)))) + (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1133)) - (-5 *1 (-758 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1133)))) + (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1131)) + (-5 *1 (-756 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4))))) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1172 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) - (-4 *4 (-13 (-1133) (-34))) (-4 *5 (-13 (-1133) (-34))) - (-5 *1 (-1173 *4 *5)))) + (-12 (-5 *2 (-661 (-1170 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) + (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) + (-5 *1 (-1171 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-663 (-1172 *3 *4))) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34))) (-5 *1 (-1173 *3 *4))))) + (-12 (-5 *2 (-661 (-1170 *3 *4))) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-114)) - (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) + (-12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-114)) + (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-883)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1021)))) - ((*1 *2 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-1249)))) + (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-881)))) + ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1133) (-34))) (-5 *1 (-1172 *2 *3)) - (-4 *3 (-13 (-1133) (-34)))))) + (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1170 *2 *3)) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-114)) - (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-114)) + (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-559))) - ((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081)))) + ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) ((*1 *1 *1) - (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34)))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34)))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1172 *3 *2)) (-4 *3 (-13 (-1133) (-34))) - (-4 *2 (-13 (-1133) (-34)))))) + (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1131) (-34))) + (-4 *2 (-13 (-1131) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1133) (-34))) - (-4 *4 (-13 (-1133) (-34)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1133) (-34))) - (-4 *3 (-13 (-1133) (-34)))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1133) (-34))) (-4 *6 (-13 (-1133) (-34))) (-5 *2 (-114)) - (-5 *1 (-1172 *5 *6))))) + (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-114)) + (-5 *1 (-1170 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1133) (-34))) (-5 *2 (-114)) - (-5 *1 (-1172 *4 *5)) (-4 *4 (-13 (-1133) (-34)))))) + (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-114)) + (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1131) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1171))) ((*1 *1 *1 *1) (-4 *1 (-1171)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1169))) ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-791)) (-5 *1 (-230)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-791)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1171)))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073)))) - ((*1 *1 *1 *1) (-4 *1 (-1171)))) -(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-814))) - ((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)) (-4 *2 (-1092)))) - ((*1 *1 *1) (-4 *1 (-1171)))) -(((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170))))) -(((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-63 *3)) (-14 *3 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-69 *3)) (-14 *3 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-72 *3)) (-14 *3 (-1209)))) - ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1305)) (-5 *1 (-409)))) - ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1305)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) - ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-1170)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-888))) (-5 *2 (-1305)) (-5 *1 (-1170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-1214))) (-5 *1 (-1168))))) -(((*1 *1 *2) (-12 (-5 *2 (-1197 3 *3)) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) - ((*1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081))))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *1 *1) (-4 *1 (-812))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)) (-4 *2 (-1090)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207)))) + ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1303)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-886))) (-5 *2 (-1303)) (-5 *1 (-1168))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-1212))) (-5 *1 (-1166))))) +(((*1 *1 *2) (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) (((*1 *2) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) - (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) + (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-793))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-793))))) -(((*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-663 *1)) (-4 *1 (-1166 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1081)) (-5 *2 (-663 *1)) (-4 *1 (-1166 *3))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-661 *1)) (-4 *1 (-1164 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-661 *1)) (-4 *1 (-1164 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 (-973 *4))) (-4 *1 (-1166 *4)) (-4 *4 (-1081)) - (-5 *2 (-793))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) + (-12 (-5 *3 (-661 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) + (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) + (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-973 *3))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) + (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-973 *3))) (-4 *1 (-1166 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114))))) + (-12 (-5 *2 (-661 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-973 *3)))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-971 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-663 (-663 (-973 *4)))) (-5 *3 (-114)) (-4 *4 (-1081)) - (-4 *1 (-1166 *4)))) + (-12 (-5 *2 (-661 (-661 (-971 *4)))) (-5 *3 (-114)) (-4 *4 (-1079)) + (-4 *1 (-1164 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-663 (-973 *3)))) (-4 *3 (-1081)) (-4 *1 (-1166 *3)))) + (-12 (-5 *2 (-661 (-661 (-971 *3)))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114)) (-4 *1 (-1166 *4)) - (-4 *4 (-1081)))) + (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-114)) (-4 *1 (-1164 *4)) + (-4 *4 (-1079)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-663 (-663 (-973 *4)))) (-5 *3 (-114)) (-4 *1 (-1166 *4)) - (-4 *4 (-1081)))) + (-12 (-5 *2 (-661 (-661 (-971 *4)))) (-5 *3 (-114)) (-4 *1 (-1164 *4)) + (-4 *4 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) - (-4 *1 (-1166 *5)) (-4 *5 (-1081)))) + (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) + (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-663 (-663 (-973 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) - (-4 *1 (-1166 *5)) (-4 *5 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-973 *3)))))) + (-12 (-5 *2 (-661 (-661 (-971 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) + (-4 *1 (-1164 *5)) (-4 *5 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-971 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-663 (-793)))))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-661 (-791)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) - (-5 *2 (-663 (-663 (-663 (-973 *3)))))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) + (-5 *2 (-661 (-661 (-661 (-971 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-663 (-174))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) (-5 *2 (-663 (-174)))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-661 (-174))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-661 (-174)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1081)) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 - (-2 (|:| -4366 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) - (|:| |constructs| (-793))))))) + (-2 (|:| -4362 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) + (|:| |constructs| (-791))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 (-2 (|:| -4248 (-1203 *6)) (|:| -2646 (-560))))) - (-4 *6 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1081))))) + (-12 (-5 *3 (-661 (-2 (|:| -4244 (-1201 *6)) (|:| -2642 (-558))))) + (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-1164 *4 *2)) - (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4511) (-6 -4512)))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) + (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4507) (-6 -4508)))))) ((*1 *2 *2) - (-12 (-4 *3 (-872)) (-4 *3 (-1249)) (-5 *1 (-1164 *3 *2)) - (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4511) (-6 -4512))))))) + (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4507) (-6 -4508))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-1164 *4 *2)) - (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4511) (-6 -4512)))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) + (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4507) (-6 -4508)))))) ((*1 *2 *2) - (-12 (-4 *3 (-872)) (-4 *3 (-1249)) (-5 *1 (-1164 *3 *2)) - (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4511) (-6 -4512))))))) + (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4507) (-6 -4508))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-1081)) (-4 *2 (-1275 *4)) - (-5 *1 (-458 *4 *2)))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) + (-5 *1 (-456 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-421 (-1203 (-326 *5)))) (-5 *3 (-1299 (-326 *5))) - (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1162 *5))))) + (-12 (-5 *2 (-419 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5))) + (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1160 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-421 (-1203 (-326 *3)))) (-4 *3 (-571)) (-5 *1 (-1162 *3))))) + (-12 (-5 *2 (-419 (-1201 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1160 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-421 (-976 *5)))) (-5 *4 (-1209)) + (-12 (-5 *3 (-305 (-419 (-974 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1198 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) - (-5 *1 (-1161 *5)))) + (-5 *2 (-1196 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1198 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) - (-5 *1 (-1161 *5))))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-1196 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) + (-5 *1 (-1159 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-663 (-326 *5))) (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-661 (-326 *5))) (-5 *1 (-1159 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5)))) - (-5 *1 (-1161 *5))))) + (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-326 *5)))) + (-5 *1 (-1159 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1161 *4)))) + (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-421 (-976 *5)))) (-5 *4 (-1209)) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) - (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-305 (-419 (-974 *5)))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-305 (-421 (-976 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1161 *4)))) + (-12 (-5 *3 (-305 (-419 (-974 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 *5)))) (-5 *4 (-663 (-1209))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) - (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-661 (-419 (-974 *5)))) (-5 *4 (-661 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-421 (-976 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1161 *4)))) + (-12 (-5 *3 (-661 (-419 (-974 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-305 (-421 (-976 *5))))) (-5 *4 (-663 (-1209))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) - (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-661 (-305 (-419 (-974 *5))))) (-5 *4 (-661 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-305 (-421 (-976 *4))))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1161 *4))))) + (-12 (-5 *3 (-661 (-305 (-419 (-974 *4))))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1159 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *2 (-663 *3)) (-5 *1 (-1160 *4 *3)) (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *2 (-661 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) + (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 - (-2 (|:| |solns| (-663 *5)) - (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1160 *3 *5)) (-4 *3 (-1275 *5))))) + (-2 (|:| |solns| (-661 *5)) + (|:| |maps| (-661 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4512)))) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512)))) (-5 *1 (-689 *4 *5 *2 *3)) - (-4 *3 (-708 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4508)))) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508)))) (-5 *1 (-687 *4 *5 *2 *3)) + (-4 *3 (-706 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1299 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) - (-5 *1 (-690 *4)))) + (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-709 *4)) (-4 *4 (-376)) + (-5 *1 (-688 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) - (-5 *1 (-838 *2 *3)) (-4 *3 (-680 *2)))) + (|partial| -12 (-5 *4 (-661 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) + (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) - (-5 *1 (-1160 *3 *2)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1187 *7))) (-4 *6 (-872)) - (-4 *7 (-980 *5 (-545 *6) *6)) (-4 *5 (-1081)) (-5 *2 (-1 (-1187 *7) *7)) - (-5 *1 (-1158 *5 *6 *7))))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1185 *7))) (-4 *6 (-870)) + (-4 *7 (-978 *5 (-543 *6) *6)) (-4 *5 (-1079)) (-5 *2 (-1 (-1185 *7) *7)) + (-5 *1 (-1156 *5 *6 *7))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-1156 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1156 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))) + (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1156 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) + (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) (((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1156 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560)))) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) + (-4 *3 (-706 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558)))) ((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1156 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) + (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-793)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-791)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1081)) (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 *1)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) + (-12 (-5 *2 (-661 *1)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1081)) (-5 *1 (-711 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-709 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 *4)) (-4 *4 (-1081)) (-4 *1 (-1155 *3 *4 *5 *6)) + (-12 (-5 *2 (-661 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *4 *2 *5)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + (-12 (-5 *2 (-947)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-949)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-947)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1081))))) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (-4 *2 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 *2)) (-4 *4 (-1275 *2)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4)))) + (-12 (-5 *3 (-709 *2)) (-4 *4 (-1273 *2)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1081))))) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (-4 *2 (-1079))))) (((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) - (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4513 "*"))) (-4 *2 (-1081)))) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4509 "*"))) (-4 *2 (-1079)))) ((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) + (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4513 "*"))) (-4 *2 (-1081))))) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (|has| *2 (-6 (-4509 "*"))) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4513 "*"))) (-4 *2 (-1081)))) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4509 "*"))) (-4 *2 (-1079)))) ((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1155 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4513 "*"))) (-4 *2 (-1081))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1249)) (-5 *2 (-793))))) + (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (|has| *2 (-6 (-4509 "*"))) (-4 *2 (-1079))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-791))))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))) - ((*1 *1 *1 *1) (-5 *1 (-1152)))) -(((*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) - ((*1 *1 *1) (-5 *1 (-1152)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) - ((*1 *1 *1 *1) (-5 *1 (-1152)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) - ((*1 *1 *1 *1) (-5 *1 (-1152)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1147)) (-5 *1 (-1148))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-453)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-862)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1214))) (-5 *3 (-1214)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1148))))) -(((*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-1002)))) - ((*1 *2 *1) (-12 (-5 *2 (-1250)) (-5 *1 (-1105)))) - ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-1147))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-1147))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-466)) (-4 *4 (-844)) (-14 *5 (-1209)) - (-5 *2 (-560)) (-5 *1 (-1146 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) + ((*1 *1 *1) (-5 *1 (-1150)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1145)) (-5 *1 (-1146))))) +(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-860)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1145)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-1146))))) +(((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-701)))) + ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1000)))) + ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1103)))) + ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1145))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-701)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-1145))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1207)) + (-5 *2 (-558)) (-5 *1 (-1144 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-466)) (-4 *4 (-844)) (-14 *5 (-1209)) - (-5 *2 (-560)) (-5 *1 (-1146 *4 *5))))) + (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1207)) + (-5 *2 (-558)) (-5 *1 (-1144 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) - (-5 *1 (-1146 *4 *5))))) + (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) + (-5 *1 (-1144 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-560)) - (-5 *1 (-1146 *4 *5))))) + (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-558)) + (-5 *1 (-1144 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1268 *5 *4)) (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 *4)) - (-5 *1 (-1146 *4 *5))))) + (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 *4)) + (-5 *1 (-1144 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 (-1268 *5 *4))) - (-5 *1 (-1146 *4 *5)) (-5 *3 (-1268 *5 *4))))) + (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 (-1266 *5 *4))) + (-5 *1 (-1144 *4 *5)) (-5 *3 (-1266 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-844)) (-14 *5 (-1209)) (-5 *2 (-663 (-1268 *5 *4))) - (-5 *1 (-1146 *4 *5)) (-5 *3 (-1268 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1142)) (-5 *3 (-560))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1142))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1299 (-560))) (-5 *3 (-560)) (-5 *1 (-1142)))) + (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-661 (-1266 *5 *4))) + (-5 *1 (-1144 *4 *5)) (-5 *3 (-1266 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1140)) (-5 *3 (-558))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1140))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-558))) (-5 *3 (-558)) (-5 *1 (-1140)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1299 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560)) - (-5 *1 (-1142))))) + (-12 (-5 *2 (-1297 (-558))) (-5 *3 (-661 (-558))) (-5 *4 (-558)) + (-5 *1 (-1140))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-949))) (-5 *4 (-114)) - (-5 *1 (-1142))))) + (-12 (-5 *2 (-661 (-558))) (-5 *3 (-661 (-947))) (-5 *4 (-114)) + (-5 *1 (-1140))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1142))))) + (-12 (-5 *2 (-709 (-558))) (-5 *3 (-661 (-558))) (-5 *1 (-1140))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-949))) (-5 *4 (-663 (-560))) (-5 *2 (-711 (-560))) - (-5 *1 (-1142))))) + (-12 (-5 *3 (-661 (-947))) (-5 *4 (-661 (-558))) (-5 *2 (-709 (-558))) + (-5 *1 (-1140))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-949))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1142))))) + (-12 (-5 *3 (-661 (-947))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1140))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1142))))) + (-12 (-5 *2 (-661 (-558))) (-5 *3 (-709 (-558))) (-5 *1 (-1140))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1142))))) + (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1140))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) - (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) + (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) - (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) + (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 *4)) (-5 *1 (-1140 *5 *6 *7 *3 *4)) - (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) + (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1140 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *5 (-114)) - (-4 *8 (-1097 *6 *7 *4)) (-4 *9 (-1103 *6 *7 *4 *8)) (-4 *6 (-466)) - (-4 *7 (-817)) (-4 *4 (-872)) - (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -1755 *9)))) - (-5 *1 (-1140 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *5 (-114)) + (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-464)) + (-4 *7 (-815)) (-4 *4 (-870)) + (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1753 *9)))) + (-5 *1 (-1138 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))) - (-5 *1 (-1140 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1140 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1140 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1104 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1140 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1104 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1140 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *9 (-1097 *6 *7 *8)) - (-5 *2 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *4) (|:| |ineq| (-663 *9)))) - (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) - (-4 *4 (-1103 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *4) (|:| |ineq| (-661 *9)))) + (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) + (-4 *4 (-1101 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *9 (-1097 *6 *7 *8)) - (-5 *2 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *4) (|:| |ineq| (-663 *9)))) - (-5 *1 (-1139 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) - (-4 *4 (-1103 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *4) (|:| |ineq| (-661 *9)))) + (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) + (-4 *4 (-1101 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1103 *6 *7 *8 *9)) - (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) + (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1101 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 - (-663 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *10) (|:| |ineq| (-663 *9))))) - (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) + (-661 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *10) (|:| |ineq| (-661 *9))))) + (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1103 *6 *7 *8 *9)) - (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-1097 *6 *7 *8)) + (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1101 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 - (-663 (-2 (|:| -3770 (-663 *9)) (|:| -1755 *10) (|:| |ineq| (-663 *9))))) - (-5 *1 (-1139 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9))))) + (-661 (-2 (|:| -3766 (-661 *9)) (|:| -1753 *10) (|:| |ineq| (-661 *9))))) + (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -1755 *7)))) - (-4 *6 (-1097 *3 *4 *5)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1753 *7)))) + (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -1755 *7)))) - (-4 *6 (-1097 *3 *4 *5)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1139 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1753 *7)))) + (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) - (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-1020 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -1755 *8))) - (-4 *7 (-1097 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-1139 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *1 (-1020 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *1 (-1139 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1753 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-1137 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1137 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1020 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) + (-5 *1 (-1018 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-466)) - (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1139 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) + (-5 *1 (-1137 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) - (-4 *3 (-1103 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) + (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) - (-4 *3 (-1103 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) + (-4 *3 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *1 (-1020 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-663 *7)) (-4 *7 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *1 (-1139 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1137 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1139 *4 *5 *6 *7 *3)) (-4 *3 (-1103 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *2 (-1305)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1103 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-1303)) (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) (-5 *2 (-1305)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) - (-4 *8 (-1103 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1189)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) + (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-448)) (-4 *5 (-1133)) (-5 *1 (-1138 *5 *4)) - (-4 *4 (-435 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1106)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-446)) (-4 *5 (-1131)) (-5 *1 (-1136 *5 *4)) + (-4 *4 (-433 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1104)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1070 (-560))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) + ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1068 (-558))))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *7)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *7 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| -4376 (-1209)) (|:| -2300 *4)))) - (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)))) + (-12 (-5 *2 (-661 (-2 (|:| -4372 (-1207)) (|:| -2296 *4)))) + (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) ((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-4 *7 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-1136 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *7 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-1134 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *2 *4 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133))))) -(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1070 *2)))) + (-12 (-4 *1 (-1134 *3 *2 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1068 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *2 *5 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-949)) (-4 *1 (-418)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418)))) + (-12 (-4 *1 (-1134 *3 *4 *2 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-947)) (-4 *1 (-416)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-416)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *2 *6)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *2 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *5 *6 *2)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-1133)) (-4 *2 (-1133))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *2)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) (((*1 *1 *1) - (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *2 (-1133)) (-4 *3 (-1133)) - (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133))))) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) + (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131))))) (((*1 *1 *1) - (-12 (-4 *1 (-1136 *2 *3 *4 *5 *6)) (-4 *2 (-1133)) (-4 *3 (-1133)) - (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133))))) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) + (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1134 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-947)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1134 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-693)))) + (|partial| -12 (-5 *2 (-947)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-691)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) + (-14 *4 (-947))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) + (-14 *4 (-947))))) (((*1 *2) - (-12 (-5 *2 (-1299 (-1134 *3 *4))) (-5 *1 (-1134 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-1297 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-947)) + (-14 *4 (-947))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-114)) (-5 *1 (-935 *4)))) + (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-114)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-949)) (-5 *2 (-114)) (-5 *1 (-1134 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-947)) (-5 *2 (-114)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-793)) (-5 *1 (-1134 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-947)) (-5 *2 (-791)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-1152))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-1191))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-1131 *3)))) - ((*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-1131 *3)))) - ((*1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1150))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1189))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) + ((*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) + ((*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) + (-12 (-5 *2 (-661 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) - (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1133)) - (-5 *1 (-587 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-698)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1051)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1098)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1128))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1126 *3)) (-4 *3 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1249)) (-5 *2 (-560))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1191)) (-5 *1 (-1021)))) + (-12 (-5 *2 (-661 (-628 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1131)) + (-5 *1 (-585 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1126))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1124 *3)) (-4 *3 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1247)) (-5 *2 (-558))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1019)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-4 *4 (-1249)) (-5 *1 (-1090 *3 *4)) - (-4 *3 (-1126 *4)))) + (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1088 *3 *4)) + (-4 *3 (-1124 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1121 *4)) (-4 *4 (-1249)) (-5 *1 (-1124 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1123))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1119 *4)) (-4 *4 (-1247)) (-5 *1 (-1122 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1299 *3)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1299 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1275 *4)) (-5 *2 (-1299 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) - (-5 *2 (-1299 *3)))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) + (-5 *2 (-1297 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 *3)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1299 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-1297 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-1299 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) - (-5 *2 (-1299 *5)) (-5 *1 (-1118 *5))))) + (-12 (-5 *4 (-661 (-709 *5))) (-5 *3 (-709 *5)) (-4 *5 (-376)) + (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-1299 (-711 *4))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-1297 (-709 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1299 (-711 *4))) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) - ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1299 (-711 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-1209))) (-4 *5 (-376)) - (-5 *2 (-1299 (-711 (-421 (-976 *5))))) (-5 *1 (-1118 *5)) - (-5 *4 (-711 (-421 (-976 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-1209))) (-4 *5 (-376)) (-5 *2 (-1299 (-711 (-976 *5)))) - (-5 *1 (-1118 *5)) (-5 *4 (-711 (-976 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-5 *2 (-1299 (-711 *4))) - (-5 *1 (-1118 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1117))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1117))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1117))))) -(((*1 *1) (-5 *1 (-1117)))) -(((*1 *1) (-5 *1 (-1117)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1116 *2)))) + (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-709 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-709 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-1207))) (-4 *5 (-376)) + (-5 *2 (-1297 (-709 (-419 (-974 *5))))) (-5 *1 (-1116 *5)) + (-5 *4 (-709 (-419 (-974 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-709 (-974 *5)))) + (-5 *1 (-1116 *5)) (-5 *4 (-709 (-974 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-5 *2 (-1297 (-709 *4))) + (-5 *1 (-1116 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-178))) (-5 *1 (-1115))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-178)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-1115))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115))))) +(((*1 *1) (-5 *1 (-1115)))) +(((*1 *1) (-5 *1 (-1115)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1114 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1116 *2))))) -(((*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1116 *3)) (-4 *3 (-134))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-1116 *3)) (-4 *3 (-134))))) -(((*1 *1) (-5 *1 (-1114)))) + (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1114 *2))))) +(((*1 *2) (-12 (-5 *2 (-661 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-134))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1114 *3)) (-4 *3 (-134))))) +(((*1 *1) (-5 *1 (-1112)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-663 *3)) (-5 *1 (-605 *5 *6 *7 *8 *3)) - (-4 *3 (-1141 *5 *6 *7 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-661 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) + (-4 *3 (-1139 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) - (-5 *1 (-1110 *5 *6)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209))))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) + (-5 *1 (-1108 *5 *6)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *4)) (|:| -3728 (-663 (-976 *4)))))) - (-5 *1 (-1110 *4 *5)) (-5 *3 (-663 (-976 *4))) (-14 *5 (-663 (-1209))))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *4)) (|:| -3724 (-661 (-974 *4)))))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-661 (-974 *4))) (-14 *5 (-661 (-1207))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-663 (-2 (|:| -1962 (-1203 *5)) (|:| -3728 (-663 (-976 *5)))))) - (-5 *1 (-1110 *5 *6)) (-5 *3 (-663 (-976 *5))) (-14 *6 (-663 (-1209)))))) + (-5 *2 (-661 (-2 (|:| -1960 (-1201 *5)) (|:| -3724 (-661 (-974 *5)))))) + (-5 *1 (-1108 *5 *6)) (-5 *3 (-661 (-974 *5))) (-14 *6 (-661 (-1207)))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-1107 *3 *4 *5))) (-4 *3 (-1133)) - (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) - (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3)))) - (-5 *1 (-1109 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) - (-5 *2 (-663 (-1107 *3 *4 *5))) (-5 *1 (-1109 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3))))))) + (-12 (-5 *2 (-661 (-1105 *3 *4 *5))) (-4 *3 (-1131)) + (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) + (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3)))) + (-5 *1 (-1107 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) + (-5 *2 (-661 (-1105 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))))) + (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) - (-5 *1 (-1107 *3 *4 *2)) - (-4 *2 (-13 (-435 *4) (-912 *3) (-633 (-916 *3))))))) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) + (-5 *1 (-1105 *3 *4 *2)) + (-4 *2 (-13 (-433 *4) (-910 *3) (-631 (-914 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1133)) (-4 *5 (-1249)) - (-5 *1 (-917 *4 *5)))) + (-12 (-5 *2 (-914 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1131)) (-4 *5 (-1247)) + (-5 *1 (-915 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1133)) - (-4 *5 (-1249)) (-5 *1 (-917 *4 *5)))) + (-12 (-5 *2 (-914 *4)) (-5 *3 (-661 (-1 (-114) *5))) (-4 *4 (-1131)) + (-4 *5 (-1247)) (-5 *1 (-915 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-916 *5)) (-5 *3 (-663 (-1209))) (-5 *4 (-1 (-114) (-663 *6))) - (-4 *5 (-1133)) (-4 *6 (-1249)) (-5 *1 (-917 *5 *6)))) + (-12 (-5 *2 (-914 *5)) (-5 *3 (-661 (-1207))) (-5 *4 (-1 (-114) (-661 *6))) + (-4 *5 (-1131)) (-4 *6 (-1247)) (-5 *1 (-915 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1249)) - (-5 *2 (-326 (-560))) (-5 *1 (-967 *5)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247)) + (-5 *2 (-326 (-558))) (-5 *1 (-965 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1249)) - (-5 *2 (-326 (-560))) (-5 *1 (-967 *5)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-661 (-1 (-114) *5))) (-4 *5 (-1247)) + (-5 *2 (-326 (-558))) (-5 *1 (-965 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1249)) (-4 *4 (-1133)) - (-5 *1 (-968 *4 *2 *5)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1131)) + (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1249)) (-4 *4 (-1133)) - (-5 *1 (-968 *4 *2 *5)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-661 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1131)) + (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-433 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-1 (-114) (-663 *6))) - (-4 *6 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-1107 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 *2))) - (-5 *2 (-916 *3)) (-5 *1 (-1107 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-912 *3) (-633 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1133)) (-4 *4 (-13 (-1081) (-912 *3) (-633 (-916 *3)))) - (-5 *2 (-663 (-1209))) (-5 *1 (-1107 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-912 *3) (-633 (-916 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-324)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1002)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1026)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1105))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 *4)) (-5 *1 (-1104 *5 *6 *7 *3 *4)) - (-4 *4 (-1103 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) - (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-1 (-114) (-661 *6))) + (-4 *6 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-1105 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 *2))) + (-5 *2 (-914 *3)) (-5 *1 (-1105 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-910 *3) (-631 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1079) (-910 *3) (-631 (-914 *3)))) + (-5 *2 (-661 (-1207))) (-5 *1 (-1105 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-910 *3) (-631 (-914 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-324)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) + (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-114)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *3 (-1097 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-1104 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -1755 *9)))) (-5 *5 (-114)) - (-4 *8 (-1097 *6 *7 *4)) (-4 *9 (-1103 *6 *7 *4 *8)) (-4 *6 (-466)) - (-4 *7 (-817)) (-4 *4 (-872)) - (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -1755 *9)))) - (-5 *1 (-1104 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1753 *9)))) (-5 *5 (-114)) + (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-464)) + (-4 *7 (-815)) (-4 *4 (-870)) + (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1753 *9)))) + (-5 *1 (-1102 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -1755 *4)))) - (-5 *1 (-1104 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1753 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-3 (-114) (-663 *1))) (-4 *1 (-1103 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-3 (-114) (-661 *1))) (-4 *1 (-1101 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *3 (-1097 *4 *5 *6)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *1)))) - (-4 *1 (-1103 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-3 *3 (-663 *1))) (-4 *1 (-1103 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1081)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-3 *3 (-661 *1))) (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *1)))) - (-4 *1 (-1103 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1103 *4 *5 *6 *7)) - (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)))) + (-12 (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) - (-5 *2 (-663 *1)) (-4 *1 (-1103 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-661 *1)) (-4 *1 (-1101 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114)))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-816)) (-5 *2 (-114)))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1100 *4 *3)) (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114))))) (((*1 *2 *2) - (-12 (-4 *3 (-1070 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-435 *3)))) + (-12 (-4 *3 (-1068 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-433 *3)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1203 *4)) (-5 *1 (-167 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1081)) (-4 *1 (-310)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) - ((*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1100 *3 *2)) (-4 *3 (-13 (-871) (-376))) (-4 *2 (-1275 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-976 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) - ((*1 *2 *3) - (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) - ((*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-1044)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1203 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1203 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1044)))) - ((*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-1044)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-871) (-376))) (-4 *3 (-1275 *4)) (-5 *2 (-663 *1)) - (-4 *1 (-1100 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1209)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-976 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *2)) (-5 *4 (-1209)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-571)))) + ((*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-310)))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) + ((*1 *2) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-376))) (-4 *2 (-1273 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-974 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) + (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-1042)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1201 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1042)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-869) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-661 *1)) + (-4 *1 (-1098 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-974 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-569)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-949)) (-4 *1 (-1044)))) + (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-947)) (-4 *1 (-1042)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-949)) (-5 *4 (-888)) - (-4 *1 (-1044)))) + (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-947)) (-5 *4 (-886)) + (-4 *1 (-1042)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-871) (-376))) - (-4 *1 (-1100 *4 *2)) (-4 *2 (-1275 *4))))) + (|partial| -12 (-5 *3 (-947)) (-4 *4 (-13 (-869) (-376))) + (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1056 *3)) - (-4 *3 (-13 (-871) (-376) (-1052))))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1054 *3)) + (-4 *3 (-13 (-869) (-376) (-1050))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2)))) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1100 *2 *3)) (-4 *2 (-13 (-871) (-376))) (-4 *3 (-1275 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1167))) (-5 *1 (-1098))))) + (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-376))) (-4 *3 (-1273 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1165))) (-5 *1 (-1096))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-1097 *3 *4 *2)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872))))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870))))) (((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-793))))) -(((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) - ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) + ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-696)))) ((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *2 (-1081)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1209))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) + ((*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209))))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1133)) (-4 *2 (-1081)))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207))))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1079)))) ((*1 *2 *1) - (-12 (-14 *3 (-663 (-1209))) (-4 *5 (-245 (-4473 *3) (-793))) + (-12 (-14 *3 (-661 (-1207))) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *4) (|:| -2646 *5)) - (-2 (|:| -2645 *4) (|:| -2646 *5)))) - (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-872)) - (-4 *7 (-980 *2 *5 (-889 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-875)) (-4 *2 (-102)))) - ((*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1081)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1081)) (-5 *1 (-757 *2 *3)) (-4 *3 (-872)) (-4 *3 (-748)))) - ((*1 *2 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *3 (-816)) (-4 *4 (-872)) (-4 *2 (-1081)))) + (-1 (-114) (-2 (|:| -2641 *4) (|:| -2642 *5)) + (-2 (|:| -2641 *4) (|:| -2642 *5)))) + (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) + (-4 *7 (-978 *2 *5 (-887 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) + ((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1079)) (-5 *1 (-755 *2 *3)) (-4 *3 (-870)) (-4 *3 (-746)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-1079)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872))))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-1079)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *2 (-114))))) + (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1097 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) - (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -3389 *1))) - (-4 *1 (-1097 *4 *5 *3)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) + (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -3385 *1))) + (-4 *1 (-1095 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -3389 *1))) - (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -3385 *1))) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4470 *3) (|:| |gap| (-793)) (|:| -2198 (-803 *3)) - (|:| -3389 (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-1081)))) + (-2 (|:| -4466 *3) (|:| |gap| (-791)) (|:| -2194 (-801 *3)) + (|:| -3385 (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-1079)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) - (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -2198 *1) (|:| -3389 *1))) - (-4 *1 (-1097 *4 *5 *3)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) + (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -2194 *1) (|:| -3385 *1))) + (-4 *1 (-1095 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -4470 *1) (|:| |gap| (-793)) (|:| -2198 *1) (|:| -3389 *1))) - (-4 *1 (-1097 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -4466 *1) (|:| |gap| (-791)) (|:| -2194 *1) (|:| -3385 *1))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -3987 (-793)))) - (-5 *1 (-803 *3)) (-4 *3 (-1081)))) + (-5 *2 (-2 (|:| |polnum| (-801 *3)) (|:| |polden| *3) (|:| -3983 (-791)))) + (-5 *1 (-801 *3)) (-4 *3 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3987 (-793)))) - (-4 *1 (-1097 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1249)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3983 (-791)))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-976 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (|partial| -12 (-5 *2 (-974 (-391))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-421 (-976 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (|partial| -12 (-5 *2 (-419 (-974 (-391)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-976 (-560))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (|partial| -12 (-5 *2 (-974 (-558))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-421 (-976 (-560)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (|partial| -12 (-5 *2 (-419 (-974 (-558)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (|partial| -12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) - (-14 *4 (-663 *2)) (-4 *5 (-401)))) + (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) + (-14 *4 (-661 *2)) (-4 *5 (-401)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-711 (-421 (-976 (-560))))) (-4 *1 (-398)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-711 (-421 (-976 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-976 (-560)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-976 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-560)))) (-4 *1 (-411)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-976 (-391)))) (-4 *1 (-411)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-560))) (-4 *1 (-411)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-976 (-391))) (-4 *1 (-411)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1299 (-421 (-976 (-560))))) (-4 *1 (-455)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1299 (-421 (-976 (-391))))) (-4 *1 (-455)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-976 (-560)))) (-4 *1 (-455)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-976 (-391)))) (-4 *1 (-455)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-326 (-560)))) (-4 *1 (-455)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1299 (-326 (-391)))) (-4 *1 (-455)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1275 *5)) - (-5 *2 (-1203 (-1203 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1275 *6)) - (-14 *7 (-949)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *1 (-1008 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1070 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) - (|partial| -4043 - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-3045 (-4 *3 (-38 (-560)))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-559))) (-3045 (-4 *3 (-38 (-421 (-560))))) - (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-1023 (-560)))) (-4 *3 (-38 (-421 (-560)))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))))) - ((*1 *1 *2) - (|partial| -4043 - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-421 (-976 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-391))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-709 (-419 (-974 (-558))))) (-4 *1 (-398)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-709 (-419 (-974 (-391))))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-974 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-974 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-558)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-974 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-974 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-419 (-974 (-558))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-419 (-974 (-391))))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-974 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-974 (-391)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-453)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) + (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) + (-14 *7 (-947)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (|partial| -4039 + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-3041 (-4 *3 (-38 (-558)))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-557))) (-3041 (-4 *3 (-38 (-419 (-558))))) + (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-1021 (-558)))) (-4 *3 (-38 (-419 (-558)))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))))) + ((*1 *1 *2) + (|partial| -4039 + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-12 (-5 *2 (-974 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-974 (-391)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-391))) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-391))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-976 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) + (-12 (-5 *2 (-974 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-421 (-976 (-560)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1070 (-560))) (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) + (-12 (-5 *2 (-419 (-974 (-558)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1068 (-558))) (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1070 (-560))) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1068 (-558))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-1209)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) - (-14 *4 (-663 *2)) (-4 *5 (-401)))) + (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) + (-14 *4 (-661 *2)) (-4 *5 (-401)))) ((*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-663 (-1209))) (-14 *4 (-663 (-1209))))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-976 (-560))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-976 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-976 (-560)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-976 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-560)))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-421 (-976 (-391)))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-976 (-560))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-976 (-391))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-421 (-976 (-560))))) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-421 (-976 (-391))))) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-976 (-560)))) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-976 (-391)))) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-326 (-560)))) (-4 *1 (-455)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 (-326 (-391)))) (-4 *1 (-455)))) + (-14 *3 (-661 (-1207))) (-14 *4 (-661 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-974 (-558))))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-974 (-391))))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-974 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-974 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-558)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-974 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-974 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-974 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-419 (-974 (-558))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-419 (-974 (-391))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-974 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-974 (-391)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-453)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-791)))) + (-5 *1 (-789)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-832)))) + (-5 *1 (-830)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) - (-5 *1 (-865)))) + (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) + (-5 *1 (-863)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-663 (-326 (-229)))) + (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| - (-663 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) - (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) - (|:| |dFinish| (-711 (-229)))))) - (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) + (-661 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) + (|:| |dFinish| (-709 (-229)))))) + (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) - (-5 *1 (-926)))) - ((*1 *1 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *1 (-1008 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1249)))) - ((*1 *1 *2) - (-4043 - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-3045 (-4 *3 (-38 (-560)))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-559))) (-3045 (-4 *3 (-38 (-421 (-560))))) - (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 *3)) - (-12 (-3045 (-4 *3 (-1023 (-560)))) (-4 *3 (-38 (-421 (-560)))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *1 (-1097 *3 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872))))) - ((*1 *1 *2) - (-4043 - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-3045 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) - (-4 *5 (-633 (-1209)))) - (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872))) - (-12 (-5 *2 (-976 (-560))) (-4 *1 (-1097 *3 *4 *5)) - (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209)))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872))))) - ((*1 *1 *2) - (-12 (-5 *2 (-976 (-421 (-560)))) (-4 *1 (-1097 *3 *4 *5)) - (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1209))) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872))))) + (-5 *1 (-924)))) + ((*1 *1 *2) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-4039 + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-3041 (-4 *3 (-38 (-558)))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-557))) (-3041 (-4 *3 (-38 (-419 (-558))))) + (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 *3)) + (-12 (-3041 (-4 *3 (-1021 (-558)))) (-4 *3 (-38 (-419 (-558)))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870))))) + ((*1 *1 *2) + (-4039 + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-3041 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-631 (-1207)))) + (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870))) + (-12 (-5 *2 (-974 (-558))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207)))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870))))) + ((*1 *1 *2) + (-12 (-5 *2 (-974 (-419 (-558)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1207))) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3648 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) + (-2 (|:| -3644 (-801 *3)) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -3648 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3644 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3648 (-803 *3)) (|:| |coef1| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-2 (|:| -3644 (-801 *3)) (|:| |coef1| (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -3648 *1) (|:| |coef1| *1))) (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3644 *1) (|:| |coef1| *1))) (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3648 (-803 *3)) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-2 (|:| -3644 (-801 *3)) (|:| |coef2| (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-2 (|:| -3648 *1) (|:| |coef2| *1))) (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3644 *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-663 *1)) (-4 *1 (-1097 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-661 *1)) (-4 *1 (-1095 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *3 (-571))))) + (-12 (-5 *2 (-791)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *3 (-569))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-1097 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *3 (-571))))) + (-12 (-5 *2 (-791)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *3 (-569))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-571))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) - ((*1 *1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1275 (-560))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-793))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-569))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1273 (-558))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-791))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *2)) - (-4 *2 (-980 *5 *3 *4)))) + (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *2)) + (-4 *2 (-978 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *6 *4 *5)) (-5 *1 (-946 *4 *5 *6 *2)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-1203 *7))) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) - (-5 *2 (-1203 *7)) (-5 *1 (-946 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-949))) + (-12 (-5 *3 (-661 (-1201 *7))) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) + (-5 *2 (-1201 *7)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-947))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-466)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3)))) + (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1097 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *2 (-466))))) -(((*1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1) (-5 *1 (-1095)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-391)) (-5 *1 (-1095))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-391)) (-5 *1 (-1095))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-391)) (-5 *1 (-1095))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-1095)) (-5 *3 (-1191))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1095))))) -(((*1 *1) (-5 *1 (-1095)))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *2 (-464))))) +(((*1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1093))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1093))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1093))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-1093)) (-5 *3 (-1189))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093))))) +(((*1 *1) (-5 *1 (-1093)))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-1095))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-1094))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-872)))) - ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2))))) + (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1092))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1249)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)) (-5 *2 (-793)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) (-5 *2 (-791)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) - ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1133)) (-5 *2 (-793)))) + (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) + ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-791)))) ((*1 *2) - (-12 (-4 *4 (-1133)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-791)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) + (-12 (-5 *2 (-791)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-793)) (-5 *1 (-745 *3 *4 *5)) - (-4 *3 (-746 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038)))) + (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-791)) (-5 *1 (-743 *3 *4 *5)) + (-4 *3 (-744 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4)) - (-5 *1 (-433 *4)))) + (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-569)) (-5 *2 (-417 *4)) + (-5 *1 (-431 *4)))) + ((*1 *1 *1) (-5 *1 (-953))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *1 *1) (-5 *1 (-955))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) - ((*1 *1 *1) (-5 *1 (-957))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) - (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))))) + (-12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) + (-5 *4 (-419 (-558))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) - (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))))) + (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) - (-5 *4 (-421 (-560))) (-5 *1 (-1054 *3)) (-4 *3 (-1275 *4)))) + (-12 (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) + (-5 *4 (-419 (-558))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) - (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560)))))) + (-5 *2 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-871) (-376))) (-5 *1 (-1093 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-13 (-869) (-376))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-871) (-376))) (-5 *2 (-114)) (-5 *1 (-1093 *4 *3)) - (-4 *3 (-1275 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-869) (-376))) (-5 *2 (-114)) (-5 *1 (-1091 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-628 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-661 (-628 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-628 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1275 (-171 *2))))) + (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1273 (-171 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + (-12 (-5 *2 (-947)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1275 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) ((*1 *2 *1) - (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-427 *3 *2 *4 *5)) - (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1070 *2))))) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1021 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-429 *3 *2 *4 *5 *6)) - (-4 *3 (-319)) (-4 *5 (-424 *2 *4)) (-14 *6 (-1299 *5)))) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1021 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) + (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1297 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-1081)) - (-4 *2 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))) - (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1275 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509)))) + (-12 (-5 *4 (-947)) (-4 *5 (-1079)) + (-4 *2 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1273 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-628 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-663 (-630 (-509)))) (-5 *1 (-509)))) + (-12 (-5 *2 (-1201 (-507))) (-5 *3 (-661 (-628 (-507)))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509)))) + (-12 (-5 *2 (-1201 (-507))) (-5 *3 (-628 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-949)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1275 *4)) - (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1275 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175)))) - ((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-559)))) - ((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-559)))) - ((*1 *1 *1) (-4 *1 (-1092)))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-947)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-744 *4 *2)) (-4 *2 (-1273 *4)) + (-5 *1 (-795 *4 *2 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1090)))) (((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))) - ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560)))) - ((*1 *1 *1) (-4 *1 (-1092)))) -(((*1 *1 *1) (-4 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *1 *1) (-4 *1 (-1090)))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1249)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1133)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) - ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559)))) - ((*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-791)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) + ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-783)) (-5 *2 (-791)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-819 *3 *4)) (-4 *3 (-820 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4)))) ((*1 *2) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1022 *3 *4)) (-4 *3 (-1023 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-1020 *3 *4)) (-4 *3 (-1021 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1030 *4)))) - ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1043 *3)) (-4 *3 (-1044)))) - ((*1 *2) (-12 (-4 *1 (-1081)) (-5 *2 (-793)))) - ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1091 *3)) (-4 *3 (-1092))))) + (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-1027 *3 *4)) (-4 *3 (-1028 *4)))) + ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1041 *3)) (-4 *3 (-1042)))) + ((*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-791)))) + ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) (((*1 *1 *2) - (-12 (-5 *2 (-711 *5)) (-4 *5 (-1081)) (-5 *1 (-1086 *3 *4 *5)) - (-14 *3 (-793)) (-14 *4 (-793))))) + (-12 (-5 *2 (-709 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) + (-14 *3 (-791)) (-14 *4 (-791))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1081)) - (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) + (-12 (-5 *2 (-791)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1079)) + (-4 *1 (-706 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1081)) (-4 *1 (-708 *3 *4 *5)) + (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1079)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-888)))) (-5 *1 (-888)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-886)))) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-5 *2 (-1174 *3 *4)) (-5 *1 (-1025 *3 *4)) (-14 *3 (-949)) + (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-947)) (-4 *4 (-376)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1081)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-661 (-661 *5))) (-4 *5 (-1079)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-560)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-560))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-560)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-560))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-560)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-560))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-560)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-560))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-793)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-793))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-791))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-793)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-793))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-791))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1249)))) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) + (-4 *5 (-385 *2)) (-4 *2 (-1247)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-793)) (-4 *2 (-1133)) (-5 *1 (-216 *4 *2)) (-14 *4 (-949)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1249)))) + (-12 (-5 *3 (-791)) (-4 *2 (-1131)) (-5 *1 (-216 *4 *2)) (-14 *4 (-947)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1247)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1081))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) + (-4 *7 (-245 *4 *2)) (-4 *2 (-1079))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *6 *2 *7)) (-4 *6 (-1081)) + (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-1085 *4 *5 *6 *7 *2)) (-4 *6 (-1081)) + (-12 (-5 *3 (-558)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1023 *4)) - (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1021 *4)) + (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) ((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) + (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319))))) (((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) + (-12 (-5 *2 (-791)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-175)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-949)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-949)))) + (-12 (-4 *4 (-175)) (-5 *2 (-947)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-947)))) ((*1 *2) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-949)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-947)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) - (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) + (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-793)) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-791)) + (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-5 *2 (-793)) - (-5 *1 (-690 *5)))) + (-12 (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-791)) + (-5 *1 (-688 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) - (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) + (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4512)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4508)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-661 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4512)) (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1023 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-663 *6)) - (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) - (-4 *10 (-708 *7 *8 *9)))) + (-12 (|has| *9 (-6 -4508)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1021 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-661 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-706 *4 *5 *6)) + (-4 *10 (-706 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5)))) + (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-661 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-661 *6)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *5 (-1081)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-663 *7))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-661 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1268 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1209)) (-4 *5 (-376)) - (-5 *1 (-952 *4 *5)))) + (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-661 *5)) (-14 *4 (-1207)) (-4 *5 (-376)) + (-5 *1 (-950 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1203 *5)) (-5 *1 (-952 *4 *5)) - (-14 *4 (-1209)))) + (-12 (-5 *3 (-661 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5)) (-5 *1 (-950 *4 *5)) + (-14 *4 (-1207)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376)) (-5 *2 (-421 (-976 *6))) - (-5 *1 (-1082 *5 *6)) (-14 *5 (-1209))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1079))))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-791)) (-4 *6 (-376)) (-5 *2 (-419 (-974 *6))) + (-5 *1 (-1080 *5 *6)) (-14 *5 (-1207))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1077))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077))))) (((*1 *1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1079)) - (-5 *3 (-560))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1129 *4)) (-4 *4 (-1133)) (-5 *2 (-1 *4)) (-5 *1 (-1049 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1121 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1079))))) -(((*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-319)) (-5 *2 (-421 (-419 (-976 *4)))) - (-5 *1 (-1075 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1073))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1077)) + (-5 *3 (-558))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391)))) + ((*1 *2 *3) (-12 (-5 *3 (-1119 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1077))))) +(((*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-974 *4)))) + (-5 *1 (-1073 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1071))))) (((*1 *1 *2) - (-12 (-5 *2 (-1280 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1209)) (-14 *5 *3) + (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1073)) (-5 *3 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1073))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1073))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1071)) (-5 *3 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-391)) (-5 *1 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1071))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1203 (-421 (-1203 *2)))) (-5 *4 (-630 *2)) - (-4 *2 (-13 (-435 *5) (-27) (-1235))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1133)))) + (-12 (-5 *3 (-1201 (-419 (-1201 *2)))) (-5 *4 (-628 *2)) + (-4 *2 (-13 (-433 *5) (-27) (-1233))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1131)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1203 *1)) (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) - (-4 *5 (-817)) (-4 *3 (-872)))) + (-12 (-5 *2 (-1201 *1)) (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) + (-4 *5 (-815)) (-4 *3 (-870)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1203 *4)) (-4 *4 (-1081)) (-4 *1 (-980 *4 *5 *3)) - (-4 *5 (-817)) (-4 *3 (-872)))) + (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1079)) (-4 *1 (-978 *4 *5 *3)) + (-4 *5 (-815)) (-4 *3 (-870)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-1203 *2))) (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) + (-12 (-5 *3 (-419 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *2 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))) - (-5 *1 (-981 *5 *4 *6 *7 *2)) (-4 *7 (-980 *6 *5 *4)))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))) + (-5 *1 (-979 *5 *4 *6 *7 *2)) (-4 *7 (-978 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-1203 (-421 (-976 *5))))) (-5 *4 (-1209)) - (-5 *2 (-421 (-976 *5))) (-5 *1 (-1072 *5)) (-4 *5 (-571))))) + (-12 (-5 *3 (-419 (-1201 (-419 (-974 *5))))) (-5 *4 (-1207)) + (-5 *2 (-419 (-974 *5))) (-5 *1 (-1070 *5)) (-4 *5 (-569))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1133)) (-4 *4 (-571)) - (-5 *2 (-421 (-1203 *1))))) + (-12 (-5 *3 (-628 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1131)) (-4 *4 (-569)) + (-5 *2 (-419 (-1201 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-1203 (-421 (-1203 *3)))) (-5 *1 (-575 *6 *3 *7)) (-5 *5 (-1203 *3)) - (-4 *7 (-1133)))) + (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-1201 (-419 (-1201 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1201 *3)) + (-4 *7 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1296 *5)) (-14 *5 (-1209)) (-4 *6 (-1081)) - (-5 *2 (-1268 *5 (-976 *6))) (-5 *1 (-978 *5 *6)) (-5 *3 (-976 *6)))) + (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1079)) + (-5 *2 (-1266 *5 (-974 *6))) (-5 *1 (-976 *5 *6)) (-5 *3 (-974 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-1203 *3)))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-1201 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-5 *2 (-1203 *1)) - (-4 *1 (-980 *4 *5 *3)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-5 *2 (-1201 *1)) + (-4 *1 (-978 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *5 *4)) - (-5 *2 (-421 (-1203 *3))) (-5 *1 (-981 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *5 *4)) + (-5 *2 (-419 (-1201 *3))) (-5 *1 (-979 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1203 *3)) + (-12 (-5 *2 (-1201 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))) - (-4 *7 (-980 *6 *5 *4)) (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-1081)) - (-5 *1 (-981 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))) + (-4 *7 (-978 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-1079)) + (-5 *1 (-979 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-571)) (-5 *2 (-421 (-1203 (-421 (-976 *5))))) - (-5 *1 (-1072 *5)) (-5 *3 (-421 (-976 *5)))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-569)) (-5 *2 (-419 (-1201 (-419 (-974 *5))))) + (-5 *1 (-1070 *5)) (-5 *3 (-419 (-974 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *2 (-872)))) + (|partial| -12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *2 (-870)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-817)) (-4 *5 (-1081)) (-4 *6 (-980 *5 *4 *2)) - (-4 *2 (-872)) (-5 *1 (-981 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1079)) (-4 *6 (-978 *5 *4 *2)) + (-4 *2 (-870)) (-5 *1 (-979 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *6)) (-15 -3485 (*6 $)) (-15 -3484 (*6 $))))))) + (-10 -8 (-15 -4458 ($ *6)) (-15 -3481 (*6 $)) (-15 -3480 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-1209)) - (-5 *1 (-1072 *4))))) + (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-1207)) + (-5 *1 (-1070 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) - (-5 *2 (-663 (-1209))) (-5 *1 (-278)))) + (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) + (-5 *2 (-661 (-1207))) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-5 *3 (-1203 *7)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1081)) (-5 *2 (-663 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1201 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1079)) (-5 *2 (-661 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-5 *2 (-663 (-1209))))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-5 *2 (-661 (-1207))))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-663 *5)))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-661 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) (-4 *7 (-980 *6 *4 *5)) - (-5 *2 (-663 *5)) (-5 *1 (-981 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-661 *5)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-816)) (-4 *5 (-872)) - (-5 *2 (-663 *5)))) + (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-661 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5)))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1209))) - (-5 *1 (-1072 *4))))) + (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-1207))) + (-5 *1 (-1070 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) - (-4 *6 (-13 (-571) (-1070 *5))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *6)))))) (-5 *1 (-1071 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1067))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1067))))) + (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) + (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *6)))))) (-5 *1 (-1069 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1065))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1065))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1235))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-1203 (-421 (-1203 *6)))) (-5 *1 (-575 *5 *6 *7)) (-5 *3 (-1203 *6)) - (-4 *7 (-1133)))) - ((*1 *2 *1) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) + (-12 (-5 *4 (-628 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1233))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-1201 (-419 (-1201 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1201 *6)) + (-4 *7 (-1131)))) + ((*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1079)))) + ((*1 *2 *1) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1203 *11)) (-5 *6 (-663 *10)) (-5 *7 (-663 (-793))) - (-5 *8 (-663 *11)) (-4 *10 (-872)) (-4 *11 (-319)) (-4 *9 (-817)) - (-4 *5 (-980 *11 *9 *10)) (-5 *2 (-663 (-1203 *5))) - (-5 *1 (-764 *9 *10 *11 *5)) (-5 *3 (-1203 *5)))) + (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-661 *10)) (-5 *7 (-661 (-791))) + (-5 *8 (-661 *11)) (-4 *10 (-870)) (-4 *11 (-319)) (-4 *9 (-815)) + (-4 *5 (-978 *11 *9 *10)) (-5 *2 (-661 (-1201 *5))) + (-5 *1 (-762 *9 *10 *11 *5)) (-5 *3 (-1201 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-980 *3 *4 *5)) (-5 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-376)) - (-4 *4 (-817)) (-4 *5 (-872)) (-14 *6 (-663 *2))))) + (-12 (-4 *2 (-978 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *3 (-376)) + (-4 *4 (-815)) (-4 *5 (-870)) (-14 *6 (-661 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-949)) (-5 *1 (-1064 *2)) - (-4 *2 (-13 (-1133) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-947)) (-5 *1 (-1062 *2)) + (-4 *2 (-13 (-1131) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-949)) (-5 *1 (-1063 *2)) - (-4 *2 (-13 (-1133) (-10 -8 (-15 -4355 ($ $ $)))))))) + (-12 (-5 *3 (-947)) (-5 *1 (-1061 *2)) + (-4 *2 (-13 (-1131) (-10 -8 (-15 -4351 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-1299 *5))) (-5 *4 (-560)) (-5 *2 (-1299 *5)) - (-5 *1 (-1062 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081))))) + (-12 (-5 *3 (-661 (-1297 *5))) (-5 *4 (-558)) (-5 *2 (-1297 *5)) + (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381)) - (-4 *6 (-1081)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1062 *6)) - (-5 *3 (-663 (-711 *6))))) + (-12 (-5 *4 (-114)) (-5 *5 (-558)) (-4 *6 (-376)) (-4 *6 (-381)) + (-4 *6 (-1079)) (-5 *2 (-661 (-661 (-709 *6)))) (-5 *1 (-1060 *6)) + (-5 *3 (-661 (-709 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1081)) - (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1062 *4)) - (-5 *3 (-663 (-711 *4))))) + (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1079)) + (-5 *2 (-661 (-661 (-709 *4)))) (-5 *1 (-1060 *4)) + (-5 *3 (-661 (-709 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081)) - (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) - (-5 *3 (-663 (-711 *5))))) + (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079)) + (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-661 (-709 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1081)) - (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1062 *5)) - (-5 *3 (-663 (-711 *5)))))) + (-12 (-5 *4 (-947)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1079)) + (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-661 (-709 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376)) (-4 *5 (-1081)) - (-5 *2 (-114)) (-5 *1 (-1062 *5)))) + (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1079)) + (-5 *2 (-114)) (-5 *1 (-1060 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1081)) (-5 *2 (-114)) - (-5 *1 (-1062 *4))))) + (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-4 *4 (-1079)) (-5 *2 (-114)) + (-5 *1 (-1060 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560)) (-5 *2 (-711 *6)) - (-5 *1 (-1062 *6)) (-4 *6 (-376)) (-4 *6 (-1081)))) + (-12 (-5 *3 (-661 (-709 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-709 *6)) + (-5 *1 (-1060 *6)) (-4 *6 (-376)) (-4 *6 (-1079)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1062 *4)) - (-4 *4 (-376)) (-4 *4 (-1081)))) + (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-5 *1 (-1060 *4)) + (-4 *4 (-376)) (-4 *4 (-1079)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5)) - (-5 *1 (-1062 *5)) (-4 *5 (-376)) (-4 *5 (-1081))))) + (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-5 *2 (-709 *5)) + (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-1299 *5)) (-4 *5 (-319)) - (-4 *5 (-1081)) (-5 *2 (-711 *5)) (-5 *1 (-1062 *5))))) + (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-319)) + (-4 *5 (-1079)) (-5 *2 (-709 *5)) (-5 *1 (-1060 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1081)) - (-5 *2 (-1299 (-1299 *5))) (-5 *1 (-1062 *5)) (-5 *4 (-1299 *5))))) + (-12 (-5 *3 (-661 (-709 *5))) (-4 *5 (-319)) (-4 *5 (-1079)) + (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1060 *5)) (-5 *4 (-1297 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1081)) - (-5 *1 (-1062 *4))))) + (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-4 *4 (-1079)) + (-5 *1 (-1060 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 (-1299 *4))) (-4 *4 (-1081)) (-5 *2 (-711 *4)) - (-5 *1 (-1062 *4))))) + (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-709 *4)) + (-5 *1 (-1060 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-932 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4)) - (-5 *1 (-1061 *5)) (-4 *5 (-1081)))) + (-12 (-5 *3 (-930 (-558))) (-5 *4 (-558)) (-5 *2 (-709 *4)) + (-5 *1 (-1059 *5)) (-4 *5 (-1079)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1061 *4)) - (-4 *4 (-1081)))) + (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1059 *4)) + (-4 *4 (-1079)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-932 (-560)))) (-5 *4 (-560)) (-5 *2 (-663 (-711 *4))) - (-5 *1 (-1061 *5)) (-4 *5 (-1081)))) + (-12 (-5 *3 (-661 (-930 (-558)))) (-5 *4 (-558)) (-5 *2 (-661 (-709 *4))) + (-5 *1 (-1059 *5)) (-4 *5 (-1079)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560)))) - (-5 *1 (-1061 *4)) (-4 *4 (-1081))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) + (-12 (-5 *3 (-661 (-661 (-558)))) (-5 *2 (-661 (-709 (-558)))) + (-5 *1 (-1059 *4)) (-4 *4 (-1079))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1081)) (-5 *1 (-1061 *3))))) + (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-1059 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1079)) (-5 *1 (-1059 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-711 *4)) (-5 *3 (-949)) (-4 *4 (-1081)) (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-709 *4)) (-5 *3 (-947)) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-949)) (-4 *4 (-1081)) - (-5 *1 (-1061 *4))))) + (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-947)) (-4 *4 (-1079)) + (-5 *1 (-1059 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-711 (-976 *4))) (-5 *1 (-1061 *4)) - (-4 *4 (-1081))))) + (-12 (-5 *3 (-791)) (-5 *2 (-709 (-974 *4))) (-5 *1 (-1059 *4)) + (-4 *4 (-1079))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-711 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4513 "*"))) - (-4 *4 (-1081)) (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-709 *4)) (-5 *3 (-947)) (|has| *4 (-6 (-4509 "*"))) + (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-949)) (|has| *4 (-6 (-4513 "*"))) - (-4 *4 (-1081)) (-5 *1 (-1061 *4))))) + (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-947)) (|has| *4 (-6 (-4509 "*"))) + (-4 *4 (-1079)) (-5 *1 (-1059 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) - (-5 *1 (-1060))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1060))))) -(((*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1060))))) + (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) + (-5 *1 (-1058))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1058))))) +(((*1 *2 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1058))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-711 (-421 (-976 (-560))))) - (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1060))))) + (|partial| -12 (-5 *3 (-709 (-419 (-974 (-558))))) + (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1058))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-326 (-560)))) - (-5 *1 (-1060))))) + (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-326 (-558)))) + (-5 *1 (-1058))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-711 (-421 (-976 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) - (-5 *1 (-1060)) (-5 *3 (-326 (-560)))))) + (-12 (-5 *4 (-709 (-419 (-974 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) + (-5 *1 (-1058)) (-5 *3 (-326 (-558)))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-976 (-560))))) + (-12 (-5 *3 (-709 (-419 (-974 (-558))))) (-5 *2 - (-663 - (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) - (|:| |radvect| (-663 (-711 (-326 (-560)))))))) - (-5 *1 (-1060))))) -(((*1 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1249))))) + (-661 + (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) + (|:| |radvect| (-661 (-709 (-326 (-558)))))))) + (-5 *1 (-1058))))) +(((*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1058 *3)) (-4 *3 (-1249))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1057 *3 *2)) (-4 *2 (-680 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3770 *3) (|:| -2984 (-663 *5)))) - (-5 *1 (-1057 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-678 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3766 *3) (|:| -2980 (-661 *5)))) + (-5 *1 (-1055 *5 *3)) (-5 *4 (-661 *5)) (-4 *3 (-678 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1093 (-1056 *4) (-1203 (-1056 *4)))) (-5 *3 (-888)) - (-5 *1 (-1056 *4)) (-4 *4 (-13 (-871) (-376) (-1052)))))) + (-12 (-5 *2 (-1091 (-1054 *4) (-1201 (-1054 *4)))) (-5 *3 (-886)) + (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-376) (-1050)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1093 (-1056 *3) (-1203 (-1056 *3)))) - (-5 *1 (-1056 *3)) (-4 *3 (-13 (-871) (-376) (-1052)))))) + (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1201 (-1054 *3)))) + (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-376) (-1050)))))) (((*1 *2 *3) - (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))))) + (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) - (-5 *4 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) + (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) + (-5 *4 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) (-5 *4 (-421 (-560))))) + (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) (-5 *4 (-419 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *5) (|:| -3625 *5)))) - (-5 *1 (-1053 *3)) (-4 *3 (-1275 (-560))) - (-5 *4 (-2 (|:| -3626 *5) (|:| -3625 *5))))) + (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *5) (|:| -3621 *5)))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-558))) + (-5 *4 (-2 (|:| -3622 *5) (|:| -3621 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560)))))) + (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *1 (-1054 *3)) (-4 *3 (-1275 (-421 (-560)))) - (-5 *4 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))))) + (-12 (-5 *2 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-419 (-558)))) + (-5 *4 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *4) (|:| -3625 *4)))) - (-5 *1 (-1054 *3)) (-4 *3 (-1275 *4)))) + (-12 (-5 *4 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *4) (|:| -3621 *4)))) + (-5 *1 (-1052 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -3626 *5) (|:| -3625 *5)))) - (-5 *1 (-1054 *3)) (-4 *3 (-1275 *5)) - (-5 *4 (-2 (|:| -3626 *5) (|:| -3625 *5)))))) + (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3622 *5) (|:| -3621 *5)))) + (-5 *1 (-1052 *3)) (-4 *3 (-1273 *5)) + (-5 *4 (-2 (|:| -3622 *5) (|:| -3621 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1053 *4)) (-4 *4 (-1275 (-560)))))) + (-12 (-5 *3 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *2 (-661 (-419 (-558)))) (-5 *1 (-1051 *4)) (-4 *4 (-1273 (-558)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560))))) - (-5 *2 (-421 (-560))) (-5 *1 (-1053 *4)) (-4 *4 (-1275 (-560)))))) + (-12 (-5 *3 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558))))) + (-5 *2 (-419 (-558))) (-5 *1 (-1051 *4)) (-4 *4 (-1273 (-558)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1299 *6)) (-5 *4 (-1299 (-560))) (-5 *5 (-560)) (-4 *6 (-1133)) - (-5 *2 (-1 *6)) (-5 *1 (-1049 *6))))) + (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-558))) (-5 *5 (-558)) (-4 *6 (-1131)) + (-5 *2 (-1 *6)) (-5 *1 (-1047 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -3908 *4) (|:| -1666 (-560))))) (-4 *4 (-1133)) - (-5 *2 (-1 *4)) (-5 *1 (-1049 *4))))) + (-12 (-5 *3 (-661 (-2 (|:| -3904 *4) (|:| -1664 (-558))))) (-4 *4 (-1131)) + (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) - (-5 *2 (-663 (-421 *5))) (-5 *1 (-1048 *4 *5)) (-5 *3 (-421 *5))))) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) + (-5 *2 (-661 (-419 *5))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) (|:| |c1| (-421 *6)) - (|:| |c2| (-421 *6)) (|:| -3582 *6))) - (-5 *1 (-1048 *5 *6)) (-5 *3 (-421 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) + (|:| |c2| (-419 *6)) (|:| -3578 *6))) + (-5 *1 (-1046 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1275 *6)) - (-4 *6 (-13 (-376) (-149) (-1070 *4))) (-5 *4 (-560)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) + (-4 *6 (-13 (-376) (-149) (-1068 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) - (|:| -3770 + (|:| -3766 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-1047 *6 *3))))) + (-5 *1 (-1045 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) - (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114)))) - (-5 *1 (-1047 *4 *5)) (-5 *3 (-421 *5))))) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) + (-5 *1 (-1045 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) (|:| -3582 *6))) - (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3578 *6))) + (-5 *1 (-1045 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1209)) + (|partial| -12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-663 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1235) (-27) (-435 *8))) - (-4 *8 (-13 (-466) (-149) (-1070 *3) (-660 *3))) (-5 *3 (-560)) - (-5 *2 (-663 *4)) (-5 *1 (-1046 *8 *4))))) + *4 (-661 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1233) (-27) (-433 *8))) + (-4 *8 (-13 (-464) (-149) (-1068 *3) (-658 *3))) (-5 *3 (-558)) + (-5 *2 (-661 *4)) (-5 *1 (-1044 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1209)) + (-12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-663 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1235) (-27) (-435 *8))) - (-4 *8 (-13 (-466) (-149) (-1070 *3) (-660 *3))) (-5 *3 (-560)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3625 *4) (|:| |sol?| (-114)))) - (-5 *1 (-1045 *8 *4))))) + *4 (-661 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1233) (-27) (-433 *8))) + (-4 *8 (-13 (-464) (-149) (-1068 *3) (-658 *3))) (-5 *3 (-558)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3621 *4) (|:| |sol?| (-114)))) + (-5 *1 (-1043 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560)))) - ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1044)))) - ((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1044)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-949)))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1044)) (-5 *2 (-888))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1044))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1044))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-888))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-888))))) -(((*1 *2 *1) (-12 (-4 *3 (-1249)) (-5 *2 (-663 *1)) (-4 *1 (-1042 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-663 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-5 *2 (-560))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1032))) ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1042)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1042)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-947)))) + ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-886))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1042))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1042))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-886))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-886))))) +(((*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-661 *1)) (-4 *1 (-1040 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-661 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-558))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1042 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4512)) (-4 *1 (-1042 *3)) - (-4 *3 (-1249))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-1042 *2)) (-4 *2 (-1249))))) + (-12 (-5 *2 (-661 *1)) (|has| *1 (-6 -4508)) (-4 *1 (-1040 *3)) + (-4 *3 (-1247))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) - (-5 *2 (-421 (-560))))) + (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) + (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) - (-4 *3 (-571)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) + (-4 *3 (-569)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) - (-5 *2 (-421 (-560))))) + (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) + (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-856 *3)) (-4 *3 (-559)) - (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) + (-4 *3 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-866 *3)) (-4 *3 (-559)) - (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-864 *3)) (-4 *3 (-557)) + (-4 *3 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) - (-5 *2 (-421 (-560))))) + (|partial| -12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) + (-5 *2 (-419 (-558))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1040 *3)) (-4 *3 (-1070 *2))))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) - ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) + (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) + (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1040 *3)) (-4 *3 (-1070 (-421 (-560))))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-419 (-558))))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) - ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (-12 (-4 *1 (-820 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) + (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-856 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-866 *3)) (-4 *3 (-559)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-864 *3)) (-4 *3 (-557)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1030 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) - ((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1040 *3)) (-4 *3 (-1070 *2))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-1038))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1038))))) + (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) + ((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036))))) +(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-1036))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1036))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51)) (-5 *1 (-1037))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1036 *3)) (-14 *3 (-560))))) + (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1035))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1034 *3)) (-14 *3 (-558))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-571)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *5) (|:| |radicand| (-663 *5)))) - (-5 *1 (-332 *5)) (-5 *4 (-793)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-1032 *3))))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *5) (|:| |radicand| (-661 *5)))) + (-5 *1 (-332 *5)) (-5 *4 (-791)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-1030 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) - ((*1 *1 *1 *1) (-4 *1 (-487))) - ((*1 *1 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-909)))) - ((*1 *1 *1) (-5 *1 (-1003))) - ((*1 *1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-175))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1249))))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-907)))) + ((*1 *1 *1) (-5 *1 (-1001))) + ((*1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) (((*1 *1 *2) - (-12 (-5 *2 (-1174 *3 *4)) (-14 *3 (-949)) (-4 *4 (-376)) - (-5 *1 (-1025 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-947)) (-4 *4 (-376)) + (-5 *1 (-1023 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) - (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))))) + (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) + (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *3 (-1133)) (-5 *2 (-1157 *3 (-630 *1))) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) + (-12 (-4 *3 (-1079)) (-4 *3 (-1131)) (-5 *2 (-1155 *3 (-628 *1))) + (-4 *1 (-433 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-748) *3)))) + (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-636 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-746) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-748) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-175)) (-4 *2 (-737 *3)) (-5 *1 (-672 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-746) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1023 *2)) (-4 *4 (-1275 *3)) (-4 *2 (-319)) - (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1070 *3))))) + (-12 (-4 *3 (-1021 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1133)) (-5 *2 (-1157 *3 (-630 *1))) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157 (-560) (-630 (-509)))) (-5 *1 (-509)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1131)) (-5 *2 (-1155 *3 (-628 *1))) + (-4 *1 (-433 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155 (-558) (-628 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) - (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) + (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) - (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133)) (-4 *2 (-571)))) - ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-571))))) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) + (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131)) (-4 *2 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) ((*1 *1) (-4 *1 (-381))) ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) - ((*1 *1 *1) (-4 *1 (-559))) ((*1 *1) (-4 *1 (-559))) - ((*1 *1 *1) (-5 *1 (-793))) - ((*1 *2 *1) (-12 (-5 *2 (-932 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133)))) + (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) + ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-5 *1 (-791))) + ((*1 *2 *1) (-12 (-5 *2 (-930 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-5 *2 (-932 *4)) (-5 *1 (-935 *4)) (-4 *4 (-1133)))) - ((*1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-559)) (-4 *2 (-571))))) + (-12 (-5 *3 (-558)) (-5 *2 (-930 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) + ((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-557)) (-4 *2 (-569))))) (((*1 *2 *2) (-12 (-5 *2 - (-1018 (-421 (-560)) (-889 *3) (-246 *4 (-793)) (-255 *3 (-421 (-560))))) - (-14 *3 (-663 (-1209))) (-14 *4 (-793)) (-5 *1 (-1019 *3 *4))))) + (-1016 (-419 (-558)) (-887 *3) (-246 *4 (-791)) (-255 *3 (-419 (-558))))) + (-14 *3 (-661 (-1207))) (-14 *4 (-791)) (-5 *1 (-1017 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-980 *4 *6 *5)) (-4 *4 (-466)) (-4 *5 (-872)) - (-4 *6 (-817)) (-5 *1 (-1018 *4 *5 *6 *3))))) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-978 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-870)) + (-4 *6 (-815)) (-5 *1 (-1016 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-872)) - (-4 *5 (-817)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-870)) + (-4 *5 (-815)) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-466)) (-4 *4 (-872)) (-4 *5 (-817)) (-5 *2 (-663 *6)) - (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-980 *3 *5 *4))))) + (-12 (-4 *3 (-464)) (-4 *4 (-870)) (-4 *5 (-815)) (-5 *2 (-661 *6)) + (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-980 *3 *5 *4)) (-5 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-466)) - (-4 *4 (-872)) (-4 *5 (-817))))) + (-12 (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-1016 *3 *4 *5 *2)) (-4 *3 (-464)) + (-4 *4 (-870)) (-4 *5 (-815))))) (((*1 *1 *1) - (-12 (-4 *2 (-466)) (-4 *3 (-872)) (-4 *4 (-817)) (-5 *1 (-1018 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *4 *3))))) + (-12 (-4 *2 (-464)) (-4 *3 (-870)) (-4 *4 (-815)) (-5 *1 (-1016 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1275 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1017 *4 *2 *3 *5)) - (-4 *4 (-363)) (-4 *5 (-746 *2 *3))))) + (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1015 *4 *2 *3 *5)) + (-4 *4 (-363)) (-4 *5 (-744 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) - (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) - (-4 *2 (-980 (-421 (-976 *5)) *4 *3)))) + (-12 (-4 *4 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) + (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) + (-4 *2 (-978 (-419 (-974 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) - (-15 -4347 ((-3 $ #1="failed") (-1209)))))) - (-5 *1 (-1016 *4 *5 *3 *2)) (-4 *2 (-980 (-976 *4) *5 *3)))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) + (-15 -4343 ((-3 $ #1="failed") (-1207)))))) + (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-978 (-974 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *6)) + (-12 (-5 *3 (-661 *6)) (-4 *6 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) - (-4 *4 (-1081)) (-4 *5 (-817)) (-5 *1 (-1016 *4 *5 *6 *2)) - (-4 *2 (-980 (-976 *4) *5 *6))))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) + (-4 *4 (-1079)) (-4 *5 (-815)) (-5 *1 (-1014 *4 *5 *6 *2)) + (-4 *2 (-978 (-974 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-817)) (-4 *3 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) - (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) - (-4 *2 (-980 (-421 (-976 *5)) *4 *3)))) + (-12 (-4 *4 (-815)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) + (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) + (-4 *2 (-978 (-419 (-974 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) - (-15 -4347 ((-3 $ #1="failed") (-1209)))))) - (-5 *1 (-1016 *4 *5 *3 *2)) (-4 *2 (-980 (-976 *4) *5 *3)))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) + (-15 -4343 ((-3 $ #1="failed") (-1207)))))) + (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-978 (-974 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *6)) + (-12 (-5 *3 (-661 *6)) (-4 *6 - (-13 (-872) - (-10 -8 (-15 -4488 ((-1209) $)) (-15 -4347 ((-3 $ #1#) (-1209)))))) - (-4 *4 (-1081)) (-4 *5 (-817)) (-5 *1 (-1016 *4 *5 *6 *2)) - (-4 *2 (-980 (-976 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) + (-13 (-870) + (-10 -8 (-15 -4484 ((-1207) $)) (-15 -4343 ((-3 $ #1#) (-1207)))))) + (-4 *4 (-1079)) (-4 *5 (-815)) (-5 *1 (-1014 *4 *5 *6 *2)) + (-4 *2 (-978 (-974 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1015 *2)) (-4 *2 (-1235))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-899)))) - ((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-899)))) - ((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159)))) - ((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-973 *2)) (-5 *1 (-1014 *2)) (-4 *2 (-1081))))) + (|partial| -12 (-5 *3 (-791)) (-4 *1 (-1013 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-897)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-897)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) + ((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-376)) - (-5 *2 (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1299 *5))))) - (-5 *1 (-1010 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1299 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-949)) (-5 *1 (-721)))) + (-5 *2 (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1297 *5))))) + (-5 *1 (-1008 *5)) (-5 *3 (-709 *5)) (-5 *4 (-1297 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-947)) (-5 *1 (-719)))) ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-5 *1 (-1010 *5))))) + (-12 (-5 *2 (-709 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-5 *1 (-1008 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *2)))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) - (-5 *2 (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) - (-5 *1 (-1010 *6)) (-5 *3 (-711 *6))))) + (-5 *2 (-2 (|:| R (-709 *6)) (|:| A (-709 *6)) (|:| |Ainv| (-709 *6)))) + (-5 *1 (-1008 *6)) (-5 *3 (-709 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-571)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) - (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-466)) - (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-464)) + (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-5 *2 (-663 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-5 *2 (-661 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *1 (-1009 *5 *6 *7 *8))))) + (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *1 (-1007 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1097 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-817)) - (-4 *8 (-872)) (-5 *1 (-1009 *6 *7 *8 *9))))) + (-12 (-5 *2 (-661 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) + (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -3830 (-663 *7)))) - (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3826 (-661 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *2))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) - (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) - (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) - (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-1097 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) - (-5 *1 (-1009 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) - (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) - (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8))))) + (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) - (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) - (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8))))) + (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1097 *5 *6 *7)) (-4 *5 (-571)) - (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) - (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *4 (-663 *8))))) + (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-1097 *5 *6 *7)) - (-4 *5 (-571)) (-4 *6 (-817)) (-4 *7 (-872)) (-5 *2 (-114)) - (-5 *1 (-1009 *5 *6 *7 *8))))) + (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-870)) (-5 *2 (-114)) + (-5 *1 (-1007 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-114)) (-5 *1 (-1007 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *3)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *3)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *1 (-1009 *4 *5 *6 *3)))) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7)) - (-4 *7 (-1097 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) - (-5 *1 (-1009 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-661 *7) (-661 *7))) (-5 *2 (-661 *7)) + (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) + (-5 *1 (-1007 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-663 *3)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-1097 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-661 *3)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-1009 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-663 *5))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-661 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *5 *3 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *3 (-872)) (-4 *6 (-1097 *4 *5 *3)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-114))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2))))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2))))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-1008 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *2 (-872)) (-4 *5 (-1097 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1249)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-930 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) (-4 *6 (-1097 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3618 *1) (|:| |upper| *1))) - (-4 *1 (-1008 *4 *5 *3 *6))))) + (-12 (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3614 *1) (|:| |upper| *1))) + (-4 *1 (-1006 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *5 *6 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) + (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1008 *4 *5 *6 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *6 (-872)) (-4 *3 (-1097 *4 *5 *6)) (-4 *4 (-571)) + (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-663 *6)) (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571))))) + (-12 (-5 *2 (-661 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-663 *6)) (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1008 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-663 (-663 (-973 (-229))))))) - ((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-663 (-663 (-973 (-229)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1121 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1121 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1121 (-229)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-1133)))) - ((*1 *2 *1) - (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *6 (-245 (-4473 *3) (-793))) + (-12 (-5 *2 (-661 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-661 (-661 (-971 (-229))))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-661 (-661 (-971 (-229)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1119 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229)))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1119 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1119 (-229)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1131)))) + ((*1 *2 *1) + (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-4469 *3) (-791))) (-14 *7 - (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) - (-2 (|:| -2645 *5) (|:| -2646 *6)))) - (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872)) - (-4 *8 (-980 *4 *6 (-889 *3))))) + (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) + (-2 (|:| -2641 *5) (|:| -2642 *6)))) + (-5 *2 (-733 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870)) + (-4 *8 (-978 *4 *6 (-887 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-748)) (-4 *2 (-872)) (-5 *1 (-757 *3 *2)) (-4 *3 (-1081)))) + (-12 (-4 *2 (-746)) (-4 *2 (-870)) (-5 *1 (-755 *3 *2)) (-4 *3 (-1079)))) ((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *4 (-872))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816)))) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-663 (-949))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-949)) - (-4 *2 (-376)) (-14 *5 (-1025 *4 *2)))) + (-12 (-5 *3 (-661 (-947))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-947)) + (-4 *2 (-376)) (-14 *5 (-1023 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-872)) (-4 *6 (-245 (-4473 *4) (-793))) + (-12 (-5 *3 (-733 *5 *6 *7)) (-4 *5 (-870)) (-4 *6 (-245 (-4469 *4) (-791))) (-14 *7 - (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *6)) - (-2 (|:| -2645 *5) (|:| -2646 *6)))) - (-14 *4 (-663 (-1209))) (-4 *2 (-175)) (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-980 *2 *6 (-889 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-875)))) + (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *6)) + (-2 (|:| -2641 *5) (|:| -2642 *6)))) + (-14 *4 (-661 (-1207))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-978 *2 *6 (-887 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1275 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1081)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-748)))) + (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1273 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1079)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-755 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-746)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) - (-4 *4 (-1081)) (-4 *5 (-872)))) + (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) + (-4 *4 (-1079)) (-4 *5 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1081)) (-4 *2 (-872)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-877 *2)) (-4 *2 (-1081)))) + (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-980 *4 *5 *6)) - (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *6 (-872)))) + (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-978 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *6 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *1 (-980 *4 *5 *2)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *2 (-872)))) + (-12 (-5 *3 (-791)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *2 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1005 *4 *5 *6)) - (-4 *4 (-1081)) (-4 *5 (-816)) (-4 *6 (-872)))) + (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 *5)) (-4 *1 (-1003 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-1005 *4 *3 *2)) (-4 *4 (-1081)) (-4 *3 (-816)) (-4 *2 (-872))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1081)))) + (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-814)) (-4 *2 (-870))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-816)) (-4 *5 (-872)) + (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-114))))) (((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193)))) - ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1) (-4 *1 (-895 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193)))) + ((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-4 *1 (-893 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-1005 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-816)) (-4 *4 (-872))))) -(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1003))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-663 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) - (-5 *2 (-663 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-949))) (-5 *1 (-1003))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1187 (-1003))) (-5 *1 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-898 (-949) (-949)))) (-5 *1 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1003))))) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870))))) +(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1001))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-661 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) + (-5 *2 (-661 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-947))) (-5 *1 (-1001))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1185 (-1001))) (-5 *1 (-1001))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-896 (-947) (-947)))) (-5 *1 (-1001))))) +(((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-1001))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4272 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4268 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4272 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4268 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-1275 *3))))) + (-12 (-5 *4 (-791)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1001 *2 *4)) (-4 *4 (-1275 *2))))) + (-12 (-5 *3 (-791)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) (-4 *4 (-1273 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-319)))) + (-12 (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-319)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1133)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (|partial| -12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2198 (-793)) (|:| -3389 (-793)))) (-5 *1 (-793)))) + (-12 (-5 *2 (-2 (|:| -2194 (-791)) (|:| -3385 (-791)))) (-5 *1 (-791)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3363 *4))) (-5 *1 (-1001 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-464)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3359 *4))) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3363 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-464)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3359 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1001 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1001 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-661 (-791))) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1001 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4273 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4269 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4273 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4269 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3648 *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3644 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3648 *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3644 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3648 *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3644 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-571)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) - (-4 *3 (-1275 *5))))) + (-12 (-5 *4 (-791)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) + (-4 *3 (-1273 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-571)) + (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5))))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1001 *4 *2)) (-4 *2 (-1275 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-571)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1001 *5 *3)) - (-4 *3 (-1275 *5))))) + (-12 (-5 *4 (-791)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) + (-4 *3 (-1273 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-571)) + (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-1001 *5 *3)) (-4 *3 (-1275 *5))))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1001 *4 *2)) (-4 *2 (-1275 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4272 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4268 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4272 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4268 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-571)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4272 *4))) - (-5 *1 (-1001 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4268 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *1) - (-12 (-4 *1 (-418)) (-3045 (|has| *1 (-6 -4502))) - (-3045 (|has| *1 (-6 -4494))))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-872)))) - ((*1 *1) (-4 *1 (-868))) ((*1 *1 *1 *1) (-4 *1 (-875))) - ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) + (-12 (-4 *1 (-416)) (-3041 (|has| *1 (-6 -4498))) + (-3041 (|has| *1 (-6 -4490))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-870)))) + ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-873))) + ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-872))))) -(((*1 *1) (-4 *1 (-999)))) -(((*1 *1) (-4 *1 (-999)))) -(((*1 *1 *1 *1) (-4 *1 (-999)))) -(((*1 *1 *1 *1) (-4 *1 (-999)))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1209))) (-5 *1 (-218 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1209))) (-5 *1 (-657 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-1133)) (-5 *1 (-997 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1133)) (-5 *2 (-914 *3 *4)) (-5 *1 (-911 *3 *4 *5)) - (-4 *3 (-1133)) (-4 *5 (-688 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-996 *4)) (-4 *4 (-1133)) (-5 *2 (-1129 *4)) (-5 *1 (-997 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-713 (-996 *3))) (-5 *1 (-996 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) - (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) - (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) - (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-713 (-898 (-996 *3) (-996 *3)))) (-5 *1 (-996 *3)) - (-4 *3 (-1133))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-996 *2)) (-4 *2 (-1133))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-996 *2)) (-4 *2 (-1133))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1191)) (-5 *2 (-795)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-995))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-994 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *2 (-1133)) (-5 *1 (-994 *3 *2)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1305)) (-5 *1 (-993))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-5 *1 (-992 *3)) (-4 *3 (-559))))) -(((*1 *2 *2) (-12 (-5 *1 (-992 *2)) (-4 *2 (-559))))) -(((*1 *2 *2) (-12 (-5 *1 (-992 *2)) (-4 *2 (-559))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(((*1 *1) (-4 *1 (-997)))) +(((*1 *1) (-4 *1 (-997)))) +(((*1 *1 *1 *1) (-4 *1 (-997)))) +(((*1 *1 *1 *1) (-4 *1 (-997)))) +(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-14 *3 (-661 (-1207))) (-5 *1 (-218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-661 (-1207))) (-5 *1 (-655 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1131)) (-5 *1 (-995 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1131)) (-5 *2 (-912 *3 *4)) (-5 *1 (-909 *3 *4 *5)) + (-4 *3 (-1131)) (-4 *5 (-686 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-994 *4)) (-4 *4 (-1131)) (-5 *2 (-1127 *4)) (-5 *1 (-995 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-711 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-711 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-711 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-793))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-793)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1133)) (-5 *1 (-993))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-886)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-991))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-661 *3)) (-5 *1 (-990 *3)) (-4 *3 (-557))))) +(((*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-557))))) (((*1 *1) (-4 *1 (-363))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149))) + (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1203 *5))) - (|:| |prim| (-1203 *5)))) - (-5 *1 (-446 *4 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-661 (-1201 *5))) + (|:| |prim| (-1201 *5)))) + (-5 *1 (-444 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-571) (-149))) + (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1203 *3)) (|:| |pol2| (-1203 *3)) - (|:| |prim| (-1203 *3)))) - (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3)) (|:| |pol2| (-1201 *3)) + (|:| |prim| (-1201 *3)))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-976 *5)) (-5 *4 (-1209)) (-4 *5 (-13 (-376) (-149))) + (-12 (-5 *3 (-974 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1203 *5)))) - (-5 *1 (-991 *5)))) + (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1201 *5)))) + (-5 *1 (-989 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 *5))) - (|:| |prim| (-1203 *5)))) - (-5 *1 (-991 *5)))) + (-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 *5))) + (|:| |prim| (-1201 *5)))) + (-5 *1 (-989 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) (-5 *5 (-1209)) + (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) (-5 *5 (-1207)) (-4 *6 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -4470 (-663 (-560))) (|:| |poly| (-663 (-1203 *6))) - (|:| |prim| (-1203 *6)))) - (-5 *1 (-991 *6))))) + (-2 (|:| -4466 (-661 (-558))) (|:| |poly| (-661 (-1201 *6))) + (|:| |prim| (-1201 *6)))) + (-5 *1 (-989 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1209)) (-5 *1 (-597 *2)) (-4 *2 (-1070 *3)) (-4 *2 (-376)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) + (-12 (-5 *3 (-1207)) (-5 *1 (-595 *2)) (-4 *2 (-1068 *3)) (-4 *2 (-376)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)) - (-4 *2 (-13 (-435 *4) (-1034) (-1235))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)) + (-4 *2 (-13 (-433 *4) (-1032) (-1233))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1124 *2)) (-4 *2 (-13 (-435 *4) (-1034) (-1235))) - (-4 *4 (-571)) (-5 *1 (-648 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-990)) (-5 *2 (-1209)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-990))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-949)) (-4 *5 (-571)) (-5 *2 (-711 *5)) - (-5 *1 (-987 *5 *3)) (-4 *3 (-680 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-984))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) (-4 *3 (-980 *7 *5 *6)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| (-663 *3)))) - (-5 *1 (-983 *5 *6 *7 *3 *8)) (-5 *4 (-793)) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-433 *4) (-1032) (-1233))) + (-4 *4 (-569)) (-5 *1 (-646 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-988))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-947)) (-4 *5 (-569)) (-5 *2 (-709 *5)) + (-5 *1 (-985 *5 *3)) (-4 *3 (-678 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *3 (-978 *7 *5 *6)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| (-661 *3)))) + (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) - (-10 -8 (-15 -4462 ($ *3)) (-15 -3485 (*3 $)) (-15 -3484 (*3 $)))))))) + (-10 -8 (-15 -4458 ($ *3)) (-15 -3481 (*3 $)) (-15 -3480 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) - (-4 *8 (-980 *7 *5 *6)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| *3))) - (-5 *1 (-983 *5 *6 *7 *8 *3)) (-5 *4 (-793)) + (-12 (-4 *7 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) + (-4 *8 (-978 *7 *5 *6)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| *3))) + (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-791)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *8)) (-15 -3485 (*8 $)) (-15 -3484 (*8 $)))))))) + (-10 -8 (-15 -4458 ($ *8)) (-15 -3481 (*8 $)) (-15 -3480 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-560))) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-571)) - (-4 *8 (-980 *7 *5 *6)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *9) (|:| |radicand| *9))) - (-5 *1 (-983 *5 *6 *7 *8 *9)) (-5 *4 (-793)) + (-12 (-5 *3 (-419 (-558))) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-569)) + (-4 *8 (-978 *7 *5 *6)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *9) (|:| |radicand| *9))) + (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-791)) (-4 *9 (-13 (-376) - (-10 -8 (-15 -4462 ($ *8)) (-15 -3485 (*8 $)) (-15 -3484 (*8 $)))))))) + (-10 -8 (-15 -4458 ($ *8)) (-15 -3481 (*8 $)) (-15 -3480 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-817)) (-4 *6 (-872)) (-4 *3 (-571)) (-4 *7 (-980 *3 *5 *6)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *8) (|:| |radicand| *8))) - (-5 *1 (-983 *5 *6 *3 *7 *8)) (-5 *4 (-793)) + (-12 (-4 *5 (-815)) (-4 *6 (-870)) (-4 *3 (-569)) (-4 *7 (-978 *3 *5 *6)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *8) (|:| |radicand| *8))) + (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1081)) (-4 *3 (-1133)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2646 (-560)))) (-4 *1 (-435 *3)))) + (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2642 (-558)))) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2646 (-916 *3)))) - (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-914 *3)) (|:| -2642 (-914 *3)))) + (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) - (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2646 (-560)))) - (-5 *1 (-981 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2642 (-558)))) + (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1209)) (-4 *4 (-1081)) (-4 *4 (-1133)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *4)))) + (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1079)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1081)) (-4 *4 (-1133)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *4)))) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1144)) (-4 *3 (-1133)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2646 (-560)))) (-4 *1 (-435 *3)))) + (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2642 (-558)))) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2646 (-793)))) - (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-914 *3)) (|:| -2642 (-791)))) + (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *2 (-2 (|:| |var| *5) (|:| -2646 (-793)))))) + (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2642 (-791)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) - (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2646 (-560)))) - (-5 *1 (-981 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2642 (-558)))) + (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1144)) (-4 *3 (-1133)) (-5 *2 (-663 *1)) - (-4 *1 (-435 *3)))) + (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1131)) (-5 *2 (-661 *1)) + (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) - (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-981 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1133)) (-5 *2 (-663 *1)) - (-4 *1 (-435 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-661 *1)) + (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-663 *1)) (-4 *1 (-980 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-661 *1)) (-4 *1 (-978 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1081)) - (-4 *7 (-980 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-981 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-663 *1)) (-4 *1 (-397 *3 *4)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-661 *1)) (-4 *1 (-397 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) - (-4 *4 (-748)))) + (-12 (-5 *2 (-661 (-755 *3 *4))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-746)))) ((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-980 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1081)) (-4 *2 (-816)))) - ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-4 *3 (-1081)) (-5 *2 (-793)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-978 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-814)))) + ((*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-791)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-663 (-793))))) + (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-661 (-791))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-980 *4 *5 *3)) (-4 *4 (-1081)) (-4 *5 (-817)) (-4 *3 (-872)) - (-5 *2 (-793))))) + (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-815)) (-4 *3 (-870)) + (-5 *2 (-791))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *1 (-980 *4 *5 *6)) (-4 *4 (-1081)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-793)))) + (-12 (-5 *3 (-661 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-793))))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-791))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *1)) - (-4 *1 (-980 *3 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *1)) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)) (-4 *2 (-466)))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)) (-4 *2 (-464)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-1275 (-560))) (-5 *2 (-663 (-560))) - (-5 *1 (-500 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-466)))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-1273 (-558))) (-5 *2 (-661 (-558))) + (-5 *1 (-498 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-464)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-980 *3 *4 *2)) (-4 *3 (-1081)) (-4 *4 (-817)) (-4 *2 (-872)) - (-4 *3 (-466))))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-815)) (-4 *2 (-870)) + (-4 *3 (-464))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-871)) (-4 *5 (-376)) - (-5 *2 (-793)) (-5 *1 (-975 *5 *6)) (-4 *6 (-1275 *5))))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-558)) (-4 *5 (-869)) (-4 *5 (-376)) + (-5 *2 (-791)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-4 *4 (-376)) (-5 *2 (-793)) - (-5 *1 (-975 *4 *5)) (-4 *5 (-1275 *4))))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-869)) (-4 *4 (-376)) (-5 *2 (-791)) + (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-871)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *2 (-376)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-975 *4 *3)) - (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1273 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-975 *4 *3)) - (-4 *3 (-1275 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-976 *5)) (-4 *5 (-1081)) (-5 *2 (-255 *4 *5)) - (-5 *1 (-974 *4 *5)) (-14 *4 (-663 (-1209)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) - (-5 *2 (-976 *5)) (-5 *1 (-974 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) - (-5 *2 (-976 *5)) (-5 *1 (-974 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-976 *5)) (-4 *5 (-1081)) (-5 *2 (-495 *4 *5)) - (-5 *1 (-974 *4 *5)) (-14 *4 (-663 (-1209)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) - (-5 *2 (-255 *4 *5)) (-5 *1 (-974 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-1081)) - (-5 *2 (-495 *4 *5)) (-5 *1 (-974 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-1203 (-560))) (-5 *2 (-560)) (-5 *1 (-972))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-194)) (-5 *3 (-560)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *1 (-972)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) - ((*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-972)) (-5 *3 (-560))))) + (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-974 *5)) (-4 *5 (-1079)) (-5 *2 (-255 *4 *5)) + (-5 *1 (-972 *4 *5)) (-14 *4 (-661 (-1207)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) + (-5 *2 (-974 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) + (-5 *2 (-974 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-974 *5)) (-4 *5 (-1079)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-972 *4 *5)) (-14 *4 (-661 (-1207)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) + (-5 *2 (-255 *4 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-1079)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *3 (-1201 (-558))) (-5 *2 (-558)) (-5 *1 (-970))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *1 (-970)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) + ((*1 *2 *3) (-12 (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-970)) (-5 *3 (-558))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-916 *6))) - (-5 *5 (-1 (-914 *6 *8) *8 (-916 *6) (-914 *6 *8))) (-4 *6 (-1133)) - (-4 *8 (-13 (-1081) (-633 (-916 *6)) (-1070 *7))) (-5 *2 (-914 *6 *8)) - (-4 *7 (-1081)) (-5 *1 (-971 *6 *7 *8))))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-914 *6))) + (-5 *5 (-1 (-912 *6 *8) *8 (-914 *6) (-912 *6 *8))) (-4 *6 (-1131)) + (-4 *8 (-13 (-1079) (-631 (-914 *6)) (-1068 *7))) (-5 *2 (-912 *6 *8)) + (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *3 (-168 *6)) - (-4 (-976 *6) (-912 *5)) (-4 *6 (-13 (-912 *5) (-175))) + (-12 (-5 *2 (-912 *5 *3)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *3 (-168 *6)) + (-4 (-974 *6) (-910 *5)) (-4 *6 (-13 (-910 *5) (-175))) (-5 *1 (-181 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-914 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-912 *4)) - (-4 *4 (-1133)))) + (-12 (-5 *2 (-912 *4 *1)) (-5 *3 (-914 *4)) (-4 *1 (-910 *4)) + (-4 *4 (-1131)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) - (-4 *6 (-13 (-1133) (-1070 *3))) (-4 *3 (-912 *5)) (-5 *1 (-961 *5 *3 *6)))) + (-12 (-5 *2 (-912 *5 *6)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1131) (-1068 *3))) (-4 *3 (-910 *5)) (-5 *1 (-959 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) - (-4 *3 (-13 (-435 *6) (-633 *4) (-912 *5) (-1070 (-630 $)))) - (-5 *4 (-916 *5)) (-4 *6 (-13 (-571) (-912 *5))) (-5 *1 (-962 *5 *6 *3)))) + (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) + (-4 *3 (-13 (-433 *6) (-631 *4) (-910 *5) (-1068 (-628 $)))) + (-5 *4 (-914 *5)) (-4 *6 (-13 (-569) (-910 *5))) (-5 *1 (-960 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 (-560) *3)) (-5 *4 (-916 (-560))) (-4 *3 (-559)) - (-5 *1 (-963 *3)))) + (-12 (-5 *2 (-912 (-558) *3)) (-5 *4 (-914 (-558))) (-4 *3 (-557)) + (-5 *1 (-961 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1133)) - (-4 *6 (-13 (-1133) (-1070 (-630 $)) (-633 *4) (-912 *5))) (-5 *4 (-916 *5)) - (-5 *1 (-964 *5 *6)))) + (-12 (-5 *2 (-912 *5 *6)) (-5 *3 (-628 *6)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1131) (-1068 (-628 $)) (-631 *4) (-910 *5))) (-5 *4 (-914 *5)) + (-5 *1 (-962 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-911 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) - (-4 *6 (-912 *5)) (-4 *3 (-688 *6)) (-5 *1 (-965 *5 *6 *3)))) + (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) + (-4 *6 (-910 *5)) (-4 *3 (-686 *6)) (-5 *1 (-963 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-914 *6 *3) *8 (-916 *6) (-914 *6 *3))) (-4 *8 (-872)) - (-5 *2 (-914 *6 *3)) (-5 *4 (-916 *6)) (-4 *6 (-1133)) - (-4 *3 (-13 (-980 *9 *7 *8) (-633 *4))) (-4 *7 (-817)) - (-4 *9 (-13 (-1081) (-912 *6))) (-5 *1 (-966 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-912 *6 *3) *8 (-914 *6) (-912 *6 *3))) (-4 *8 (-870)) + (-5 *2 (-912 *6 *3)) (-5 *4 (-914 *6)) (-4 *6 (-1131)) + (-4 *3 (-13 (-978 *9 *7 *8) (-631 *4))) (-4 *7 (-815)) + (-4 *9 (-13 (-1079) (-910 *6))) (-5 *1 (-964 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) - (-4 *3 (-13 (-980 *8 *6 *7) (-633 *4))) (-5 *4 (-916 *5)) (-4 *7 (-912 *5)) - (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-13 (-1081) (-912 *5))) - (-5 *1 (-966 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) + (-4 *3 (-13 (-978 *8 *6 *7) (-631 *4))) (-5 *4 (-914 *5)) (-4 *7 (-910 *5)) + (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-13 (-1079) (-910 *5))) + (-5 *1 (-964 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1133)) (-4 *3 (-1023 *6)) - (-4 *6 (-13 (-571) (-912 *5) (-633 *4))) (-5 *4 (-916 *5)) - (-5 *1 (-969 *5 *6 *3)))) + (-12 (-5 *2 (-912 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-1021 *6)) + (-4 *6 (-13 (-569) (-910 *5) (-631 *4))) (-5 *4 (-914 *5)) + (-5 *1 (-967 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-914 *5 (-1209))) (-5 *3 (-1209)) (-5 *4 (-916 *5)) - (-4 *5 (-1133)) (-5 *1 (-970 *5)))) + (-12 (-5 *2 (-912 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-914 *5)) + (-4 *5 (-1131)) (-5 *1 (-968 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-663 (-916 *7))) (-5 *5 (-1 *9 (-663 *9))) - (-5 *6 (-1 (-914 *7 *9) *9 (-916 *7) (-914 *7 *9))) (-4 *7 (-1133)) - (-4 *9 (-13 (-1081) (-633 (-916 *7)) (-1070 *8))) (-5 *2 (-914 *7 *9)) - (-5 *3 (-663 *9)) (-4 *8 (-1081)) (-5 *1 (-971 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1133) (-1070 *5))) - (-4 *5 (-912 *4)) (-4 *4 (-1133)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-961 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) - ((*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) - ((*1 *2 *2) (-12 (-4 *3 (-1133)) (-5 *1 (-960 *3 *2)) (-4 *2 (-435 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-520)) (-5 *2 (-326 (-560))) (-5 *1 (-959)))) + (-12 (-5 *4 (-661 (-914 *7))) (-5 *5 (-1 *9 (-661 *9))) + (-5 *6 (-1 (-912 *7 *9) *9 (-914 *7) (-912 *7 *9))) (-4 *7 (-1131)) + (-4 *9 (-13 (-1079) (-631 (-914 *7)) (-1068 *8))) (-5 *2 (-912 *7 *9)) + (-5 *3 (-661 *9)) (-4 *8 (-1079)) (-5 *1 (-969 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1131) (-1068 *5))) + (-4 *5 (-910 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-114) *5)) + (-5 *1 (-959 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) + ((*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) + ((*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-957)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-520)) (-4 *4 (-1133)) (-5 *1 (-960 *4 *2)) (-4 *2 (-435 *4))))) + (-12 (-5 *3 (-518)) (-4 *4 (-1131)) (-5 *1 (-958 *4 *2)) (-4 *2 (-433 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-663 (-1121 (-229)))) - (-5 *1 (-958))))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-661 (-1119 (-229)))) + (-5 *1 (-956))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) - (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) + (-5 *1 (-953)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) - (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) + (-5 *1 (-953)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) - (-5 *1 (-957)))) + (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) + (-5 *1 (-955)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-973 (-229)) (-229))) (-5 *3 (-1121 (-229))) - (-5 *1 (-957))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-971 (-229)) (-229))) (-5 *3 (-1119 (-229))) + (-5 *1 (-955))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1121 (-229))) - (-5 *1 (-955)))) + (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1119 (-229))) + (-5 *1 (-953)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1121 (-229))) - (-5 *1 (-955)))) + (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1119 (-229))) + (-5 *1 (-953)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) - (-4 *3 (-633 (-549))))) + (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) + (-4 *3 (-631 (-547))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) - (-4 *3 (-633 (-549))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) + (-4 *3 (-631 (-547))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-957))))) -(((*1 *2 *1) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-955)))) - ((*1 *2 *1) (-12 (-5 *2 (-1121 (-229))) (-5 *1 (-957))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-957))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-957))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-955)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1121 (-229))) (-5 *1 (-955)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1209)) (-5 *5 (-1121 (-229))) (-5 *2 (-955)) (-5 *1 (-956 *3)) - (-4 *3 (-633 (-549))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-5 *2 (-955)) (-5 *1 (-956 *3)) (-4 *3 (-633 (-549)))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-955))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-953)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119 (-229))) (-5 *1 (-955))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) (((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) (((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-955))))) (((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-955))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-114)) - (-5 *1 (-954 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-114)) - (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-872) (-633 (-1209)))) - (-4 *5 (-817)) (-5 *1 (-954 *3 *4 *5 *2)) (-4 *2 (-980 *3 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-953)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1119 (-229))) (-5 *1 (-953)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1207)) (-5 *5 (-1119 (-229))) (-5 *2 (-953)) (-5 *1 (-954 *3)) + (-4 *3 (-631 (-547))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-5 *2 (-953)) (-5 *1 (-954 *3)) (-4 *3 (-631 (-547)))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-953))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-953))))) +(((*1 *2 *3) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) + (-5 *1 (-952 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-870) (-631 (-1207)))) + (-4 *5 (-815)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-978 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) - (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-976 *9)))) (-5 *6 (-663 (-663 *12))) - (-5 *7 (-793)) (-5 *8 (-560)) (-4 *9 (-13 (-319) (-149))) - (-4 *12 (-980 *9 *11 *10)) (-4 *10 (-13 (-872) (-633 (-1209)))) - (-4 *11 (-817)) - (-5 *2 - (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12)) - (|:| |wcond| (-663 (-976 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) + (-5 *4 (-709 *12)) (-5 *5 (-661 (-419 (-974 *9)))) (-5 *6 (-661 (-661 *12))) + (-5 *7 (-791)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) + (-4 *12 (-978 *9 *11 *10)) (-4 *10 (-13 (-870) (-631 (-1207)))) + (-4 *11 (-815)) + (-5 *2 + (-2 (|:| |eqzro| (-661 *12)) (|:| |neqzro| (-661 *12)) + (|:| |wcond| (-661 (-974 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *9)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *9))))))))) - (-5 *1 (-954 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *9)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *9))))))))) + (-5 *1 (-952 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) (-5 *1 (-954 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-980 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) - (-4 *7 (-817)) - (-5 *2 - (-663 - (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) - (|:| |cols| (-663 (-560)))))) - (-5 *1 (-954 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-980 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) - (-4 *7 (-817)) (-5 *2 (-114)) (-5 *1 (-954 *5 *6 *7 *8))))) + (-12 (-5 *2 (-709 *7)) (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) (-5 *1 (-952 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-709 *8)) (-5 *4 (-791)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) + (-4 *7 (-815)) + (-5 *2 + (-661 + (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) + (|:| |cols| (-661 (-558)))))) + (-5 *1 (-952 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) + (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-952 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) (-5 *2 (-663 (-663 (-560)))) (-5 *1 (-954 *4 *5 *6 *7)) - (-5 *3 (-560)) (-4 *7 (-980 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-661 (-661 (-558)))) (-5 *1 (-952 *4 *5 *6 *7)) + (-5 *3 (-558)) (-4 *7 (-978 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-980 *3 *5 *4)) - (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-872) (-633 (-1209)))) - (-4 *5 (-817)) (-5 *1 (-954 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 (-661 *6))) (-4 *6 (-978 *3 *5 *4)) + (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-870) (-631 (-1207)))) + (-4 *5 (-815)) (-5 *1 (-952 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-663 - (-2 (|:| -3597 (-793)) + (-661 + (-2 (|:| -3593 (-791)) (|:| |eqns| - (-663 - (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) - (|:| |cols| (-663 (-560)))))) - (|:| |fgb| (-663 *7))))) - (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-793)) - (-5 *1 (-954 *4 *5 *6 *7))))) + (-661 + (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) + (|:| |cols| (-661 (-558)))))) + (|:| |fgb| (-661 *7))))) + (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-791)) + (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-663 - (-2 (|:| -3597 (-793)) + (-661 + (-2 (|:| -3593 (-791)) (|:| |eqns| - (-663 - (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) - (|:| |cols| (-663 (-560)))))) - (|:| |fgb| (-663 *7))))) - (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) (-5 *2 (-793)) - (-5 *1 (-954 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) (-5 *2 (-663 *3)) (-5 *1 (-954 *4 *5 *6 *3)) - (-4 *3 (-980 *4 *6 *5))))) + (-661 + (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) + (|:| |cols| (-661 (-558)))))) + (|:| |fgb| (-661 *7))))) + (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 (-791)) + (-5 *1 (-952 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-661 *3)) (-5 *1 (-952 *4 *5 *6 *3)) + (-4 *3 (-978 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1795 (-711 (-421 (-976 *4)))) (|:| |vec| (-663 (-421 (-976 *4)))) - (|:| -3597 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) - (-5 *2 - (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *4))))))) - (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5))))) + (-2 (|:| -1793 (-709 (-419 (-974 *4)))) (|:| |vec| (-661 (-419 (-974 *4)))) + (|:| -3593 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) + (-5 *2 + (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *4))))))) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *4))))))) - (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-980 *4 *6 *5)) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) - (-5 *1 (-954 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *4))))))) + (-5 *3 (-661 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-978 *4 *6 *5)) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) + (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) + (-12 (-5 *3 (-709 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) + (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 - (-663 - (-2 (|:| -3597 (-793)) + (-661 + (-2 (|:| -3593 (-791)) (|:| |eqns| - (-663 - (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) - (|:| |cols| (-663 (-560)))))) - (|:| |fgb| (-663 *8))))) - (-5 *1 (-954 *5 *6 *7 *8)) (-5 *4 (-793))))) + (-661 + (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) + (|:| |cols| (-661 (-558)))))) + (|:| |fgb| (-661 *8))))) + (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-791))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) (-4 *7 (-980 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7)))) - (-5 *1 (-954 *4 *5 *6 *7)) (-5 *3 (-663 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-976 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-980 *4 *6 *5)) - (-5 *1 (-954 *4 *5 *6 *2)) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) - (-5 *2 (-663 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7)) - (-4 *7 (-980 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-872) (-633 (-1209)))) - (-4 *6 (-817)) (-5 *2 (-421 (-976 *4))) (-5 *1 (-954 *4 *5 *6 *3)) - (-4 *3 (-980 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-711 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) - (-5 *2 (-711 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) - (-5 *2 (-663 (-421 (-976 *4)))) (-5 *1 (-954 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) (-4 *7 (-978 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-661 *7)) (|:| |n0| (-661 *7)))) + (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-974 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-978 *4 *6 *5)) + (-5 *1 (-952 *4 *5 *6 *2)) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815))))) +(((*1 *2 *3) + (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) + (-5 *2 (-661 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) + (-4 *7 (-978 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-870) (-631 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-419 (-974 *4))) (-5 *1 (-952 *4 *5 *6 *3)) + (-4 *3 (-978 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-709 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) + (-5 *2 (-709 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) + (-5 *2 (-661 (-419 (-974 *4)))) (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-976 *8)))) (-5 *5 (-793)) - (-5 *6 (-1191)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-980 *8 *10 *9)) - (-4 *9 (-13 (-872) (-633 (-1209)))) (-4 *10 (-817)) + (-12 (-5 *3 (-709 *11)) (-5 *4 (-661 (-419 (-974 *8)))) (-5 *5 (-791)) + (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-978 *8 *10 *9)) + (-4 *9 (-13 (-870) (-631 (-1207)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| - (-663 - (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11)) - (|:| |wcond| (-663 (-976 *8))) + (-661 + (-2 (|:| |eqzro| (-661 *11)) (|:| |neqzro| (-661 *11)) + (|:| |wcond| (-661 (-974 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *8)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *8)))))))))) - (|:| |rgsz| (-560)))) - (-5 *1 (-954 *8 *9 *10 *11)) (-5 *7 (-560))))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *8)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *8)))))))))) + (|:| |rgsz| (-558)))) + (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) + (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) - (|:| |wcond| (-663 (-976 *4))) + (-661 + (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) + (|:| |wcond| (-661 (-974 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *4)))))))))) - (-5 *1 (-954 *4 *5 *6 *7)) (-4 *7 (-980 *4 *6 *5))))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *4)))))))))) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-663 - (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) - (|:| |wcond| (-663 (-976 *5))) + (-661 + (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) + (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) - (-5 *4 (-1191)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-980 *5 *7 *6)) - (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) (-5 *2 (-560)) - (-5 *1 (-954 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-4 *8 (-980 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-872) (-633 (-1209)))) (-4 *7 (-817)) - (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) - (|:| |wcond| (-663 (-976 *5))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) + (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-978 *5 *7 *6)) + (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) (-5 *2 (-558)) + (-5 *1 (-952 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-709 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) + (-4 *6 (-13 (-870) (-631 (-1207)))) (-4 *7 (-815)) + (-5 *2 + (-661 + (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) + (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) - (-5 *1 (-954 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-5 *4 (-663 (-1209))) (-4 *8 (-980 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) - (-4 *7 (-817)) + (-12 (-5 *3 (-709 *8)) (-5 *4 (-661 (-1207))) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) + (-4 *7 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) - (|:| |wcond| (-663 (-976 *5))) + (-661 + (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) + (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) - (-5 *1 (-954 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 *7)) (-4 *7 (-980 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-872) (-633 (-1209)))) (-4 *6 (-817)) + (-12 (-5 *3 (-709 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-870) (-631 (-1207)))) (-4 *6 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) - (|:| |wcond| (-663 (-976 *4))) + (-661 + (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) + (|:| |wcond| (-661 (-974 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *4)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *4)))))))))) - (-5 *1 (-954 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *4)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *4)))))))))) + (-5 *1 (-952 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *9)) (-5 *5 (-949)) (-4 *9 (-980 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) - (-4 *8 (-817)) + (-12 (-5 *3 (-709 *9)) (-5 *5 (-947)) (-4 *9 (-978 *6 *8 *7)) + (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) + (-4 *8 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) - (|:| |wcond| (-663 (-976 *6))) + (-661 + (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) + (|:| |wcond| (-661 (-974 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *6)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *6)))))))))) - (-5 *1 (-954 *6 *7 *8 *9)) (-5 *4 (-663 *9)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *6)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *6)))))))))) + (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-661 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1209))) (-5 *5 (-949)) - (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) + (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1207))) (-5 *5 (-947)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) - (|:| |wcond| (-663 (-976 *6))) + (-661 + (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) + (|:| |wcond| (-661 (-974 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *6)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *6)))))))))) - (-5 *1 (-954 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *6)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *6)))))))))) + (-5 *1 (-952 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-5 *4 (-949)) (-4 *8 (-980 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) - (-4 *7 (-817)) + (-12 (-5 *3 (-709 *8)) (-5 *4 (-947)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) + (-4 *7 (-815)) (-5 *2 - (-663 - (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) - (|:| |wcond| (-663 (-976 *5))) + (-661 + (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) + (|:| |wcond| (-661 (-974 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1299 (-421 (-976 *5)))) - (|:| -2236 (-663 (-1299 (-421 (-976 *5)))))))))) - (-5 *1 (-954 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1297 (-419 (-974 *5)))) + (|:| -2232 (-661 (-1297 (-419 (-974 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 *9)) (-5 *5 (-1191)) - (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-560)) - (-5 *1 (-954 *6 *7 *8 *9)))) + (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 *9)) (-5 *5 (-1189)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-558)) + (-5 *1 (-952 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1209))) (-5 *5 (-1191)) - (-4 *9 (-980 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-872) (-633 (-1209)))) (-4 *8 (-817)) (-5 *2 (-560)) - (-5 *1 (-954 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *8)) (-5 *4 (-1191)) (-4 *8 (-980 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-872) (-633 (-1209)))) - (-4 *7 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *5 *6 *7 *8)))) + (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1207))) (-5 *5 (-1189)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-870) (-631 (-1207)))) (-4 *8 (-815)) (-5 *2 (-558)) + (-5 *1 (-952 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-709 *8)) (-5 *4 (-1189)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-870) (-631 (-1207)))) + (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 *10)) (-5 *5 (-949)) (-5 *6 (-1191)) - (-4 *10 (-980 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-872) (-633 (-1209)))) (-4 *9 (-817)) (-5 *2 (-560)) - (-5 *1 (-954 *7 *8 *9 *10)))) + (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 *10)) (-5 *5 (-947)) (-5 *6 (-1189)) + (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-870) (-631 (-1207)))) (-4 *9 (-815)) (-5 *2 (-558)) + (-5 *1 (-952 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 (-1209))) (-5 *5 (-949)) (-5 *6 (-1191)) - (-4 *10 (-980 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-872) (-633 (-1209)))) (-4 *9 (-817)) (-5 *2 (-560)) - (-5 *1 (-954 *7 *8 *9 *10)))) + (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 (-1207))) (-5 *5 (-947)) (-5 *6 (-1189)) + (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-870) (-631 (-1207)))) (-4 *9 (-815)) (-5 *2 (-558)) + (-5 *1 (-952 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *9)) (-5 *4 (-949)) (-5 *5 (-1191)) (-4 *9 (-980 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-872) (-633 (-1209)))) - (-4 *8 (-817)) (-5 *2 (-560)) (-5 *1 (-954 *6 *7 *8 *9))))) + (-12 (-5 *3 (-709 *9)) (-5 *4 (-947)) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) + (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-870) (-631 (-1207)))) + (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-952 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1275 *4)) - (-5 *1 (-953 *4 *2))))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4)) + (-5 *1 (-951 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-951)) (-5 *2 (-2 (|:| -4470 (-663 *1)) (|:| -2654 *1))) - (-5 *3 (-663 *1))))) + (-12 (-4 *1 (-949)) (-5 *2 (-2 (|:| -4466 (-661 *1)) (|:| -2650 *1))) + (-5 *3 (-661 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-951)) (-5 *2 (-713 (-663 *1))) (-5 *3 (-663 *1))))) + (-12 (-4 *1 (-949)) (-5 *2 (-711 (-661 *1))) (-5 *3 (-661 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-976 *4))) (-5 *3 (-663 (-1209))) (-4 *4 (-466)) - (-5 *1 (-948 *4))))) + (-12 (-5 *2 (-661 (-974 *4))) (-5 *3 (-661 (-1207))) (-4 *4 (-464)) + (-5 *1 (-946 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-976 *4))) (-5 *3 (-663 (-1209))) (-4 *4 (-466)) - (-5 *1 (-948 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2 *3) (-12 (-5 *3 (-1003)) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2) (-12 (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-935 (-560))) (-5 *1 (-947)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-935 (-560))) (-5 *1 (-947))))) + (-12 (-5 *2 (-661 (-974 *4))) (-5 *3 (-661 (-1207))) (-4 *4 (-464)) + (-5 *1 (-946 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2 *3) (-12 (-5 *3 (-1001)) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-933 (-558))) (-5 *1 (-945)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-933 (-558))) (-5 *1 (-945))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *2)) - (-4 *2 (-980 *5 *3 *4)))) + (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *2)) + (-4 *2 (-978 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *5 (-319)) (-5 *1 (-946 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *5 (-319)) (-5 *1 (-944 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *6 *4 *5)) (-5 *1 (-946 *4 *5 *6 *2)) - (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-944 *2)))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) + (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-942 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-51)) (-5 *1 (-945 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-51)) (-5 *1 (-943 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-419 (-976 *6))) (-5 *5 (-1209)) (-5 *3 (-976 *6)) - (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-945 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-944 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-944 *3)) (-4 *3 (-319))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1203 *3)) (-5 *1 (-944 *3)) (-4 *3 (-319))))) -(((*1 *1 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-319))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1275 (-421 (-560)))) (-5 *1 (-943 *3 *2)) - (-4 *2 (-1275 (-421 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1275 (-421 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) - (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *5)) - (-4 *5 (-1275 (-421 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1275 (-421 (-560)))) - (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-943 *3 *4)) - (-4 *4 (-1275 (-421 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1275 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1275 (-421 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-1275 (-421 *3))) (-5 *2 (-949)) - (-5 *1 (-943 *4 *5)) (-4 *5 (-1275 (-421 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) - (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-571) (-1070 (-560)))) - (-5 *2 (-2 (|:| -4288 (-793)) (|:| -2628 *8))) - (-5 *1 (-941 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) - (-4 *4 (-1275 (-421 (-560)))) (-4 *5 (-1275 (-421 *4))) - (-4 *6 (-355 (-421 (-560)) *4 *5)) - (-5 *2 (-2 (|:| -4288 (-793)) (|:| -2628 *6))) (-5 *1 (-942 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1275 *5)) - (-4 *7 (-1275 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-114)) - (-5 *1 (-941 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1275 (-421 (-560)))) - (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114)) - (-5 *1 (-942 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-466)))) + (-12 (-5 *4 (-417 (-974 *6))) (-5 *5 (-1207)) (-5 *3 (-974 *6)) + (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-943 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-942 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-942 *3)) (-4 *3 (-319))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1201 *3)) (-5 *1 (-942 *3)) (-4 *3 (-319))))) +(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-319))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1273 (-419 (-558)))) (-5 *1 (-941 *3 *2)) + (-4 *2 (-1273 (-419 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1273 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) + (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *5)) + (-4 *5 (-1273 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1273 (-419 (-558)))) + (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-941 *3 *4)) + (-4 *4 (-1273 (-419 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1273 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-558)) (-4 *4 (-1273 (-419 *3))) (-5 *2 (-947)) + (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-419 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1068 (-558)))) + (-5 *2 (-2 (|:| -4284 (-791)) (|:| -2624 *8))) + (-5 *1 (-939 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) + (-4 *4 (-1273 (-419 (-558)))) (-4 *5 (-1273 (-419 *4))) + (-4 *6 (-355 (-419 (-558)) *4 *5)) + (-5 *2 (-2 (|:| -4284 (-791)) (|:| -2624 *6))) (-5 *1 (-940 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1273 *5)) + (-4 *7 (-1273 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-114)) + (-5 *1 (-939 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1273 (-419 (-558)))) + (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) + (-5 *1 (-940 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-464)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1203 *6)) (-4 *6 (-980 *5 *3 *4)) (-4 *3 (-817)) (-4 *4 (-872)) - (-4 *5 (-940)) (-5 *1 (-471 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-940))))) -(((*1 *2 *3) - (-12 (-5 *2 (-419 (-1203 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1203 *1)) - (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1133)))) - ((*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-419 (-1203 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1203 *1)) - (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1133)))) - ((*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-419 (-1203 *1))) (-5 *3 (-1203 *1))))) + (-12 (-5 *2 (-1201 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-870)) + (-4 *5 (-938)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-938))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) + (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1131)))) + ((*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) + (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1131)))) + ((*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-417 (-1201 *1))) (-5 *3 (-1201 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 *5))) (-5 *3 (-1203 *5)) (-4 *5 (-168 *4)) - (-4 *4 (-559)) (-5 *1 (-151 *4 *5)))) + (|partial| -12 (-5 *2 (-661 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-168 *4)) + (-4 *4 (-557)) (-5 *1 (-151 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-1275 *4)) + (|partial| -12 (-5 *2 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 (-560)))) (-5 *3 (-1203 (-560))) - (-5 *1 (-586)))) + (|partial| -12 (-5 *2 (-661 (-1201 (-558)))) (-5 *3 (-1201 (-558))) + (-5 *1 (-584)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 *1))) (-5 *3 (-1203 *1)) (-4 *1 (-940))))) + (|partial| -12 (-5 *2 (-661 (-1201 *1))) (-5 *3 (-1201 *1)) (-4 *1 (-938))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1299 *1)))) + (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-940)) - (-5 *2 (-1299 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-147)))) + (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-938)) + (-5 *2 (-1297 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)))) ((*1 *1 *1) (-4 *1 (-363))) - ((*1 *2 *1) (-12 (-5 *2 (-713 *1)) (-4 *1 (-147)) (-4 *1 (-940))))) + ((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-938))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-872)) (-4 *5 (-940)) (-4 *6 (-817)) - (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-419 (-1203 *8))) (-5 *1 (-937 *5 *6 *7 *8)) - (-5 *4 (-1203 *8)))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-870)) (-4 *5 (-938)) (-4 *6 (-815)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-417 (-1201 *8))) (-5 *1 (-935 *5 *6 *7 *8)) + (-5 *4 (-1201 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) - (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5))))) + (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5))))) (((*1 *2) - (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-940)) (-5 *1 (-471 *3 *4 *2 *5)) - (-4 *5 (-980 *2 *3 *4)))) + (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-938)) (-5 *1 (-469 *3 *4 *2 *5)) + (-4 *5 (-978 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-817)) (-4 *4 (-872)) (-4 *2 (-940)) (-5 *1 (-937 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-940)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-4 *3 (-815)) (-4 *4 (-870)) (-4 *2 (-938)) (-5 *1 (-935 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-938)) (-5 *1 (-936 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) - (-5 *2 (-419 (-1203 *7))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-417 (-1201 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) - (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5))))) + (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-980 *4 *5 *6)) - (-5 *2 (-419 (-1203 *7))) (-5 *1 (-937 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-417 (-1201 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-940)) (-4 *5 (-1275 *4)) (-5 *2 (-419 (-1203 *5))) - (-5 *1 (-938 *4 *5)) (-5 *3 (-1203 *5))))) + (-12 (-4 *4 (-938)) (-4 *5 (-1273 *4)) (-5 *2 (-417 (-1201 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1201 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 *7))) (-5 *3 (-1203 *7)) - (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-940)) (-4 *5 (-817)) (-4 *6 (-872)) - (-5 *1 (-937 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-661 (-1201 *7))) (-5 *3 (-1201 *7)) + (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-870)) + (-5 *1 (-935 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 *5))) (-5 *3 (-1203 *5)) - (-4 *5 (-1275 *4)) (-4 *4 (-940)) (-5 *1 (-938 *4 *5))))) + (|partial| -12 (-5 *2 (-661 (-1201 *5))) (-5 *3 (-1201 *5)) + (-4 *5 (-1273 *4)) (-4 *4 (-938)) (-5 *1 (-936 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-663 (-1203 *7))) (-5 *3 (-1203 *7)) - (-4 *7 (-980 *5 *6 *4)) (-4 *5 (-940)) (-4 *6 (-817)) (-4 *4 (-872)) - (-5 *1 (-937 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-663 *6)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) ((*1 *1) (-4 *1 (-559))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-932 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-932 *3))) (-4 *3 (-1133)) (-5 *1 (-935 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-1129 *3)))) + (|partial| -12 (-5 *2 (-661 (-1201 *7))) (-5 *3 (-1201 *7)) + (-4 *7 (-978 *5 *6 *4)) (-4 *5 (-938)) (-4 *6 (-815)) (-4 *4 (-870)) + (-5 *1 (-935 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-661 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-930 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-661 (-661 (-791)))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-930 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1127 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1133)) (-5 *2 (-1129 (-663 *4))) (-5 *1 (-935 *4)) - (-5 *3 (-663 *4)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-1127 (-661 *4))) (-5 *1 (-933 *4)) + (-5 *3 (-661 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1133)) (-5 *2 (-1129 (-1129 *4))) (-5 *1 (-935 *4)) - (-5 *3 (-1129 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) + (-12 (-4 *4 (-1131)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-933 *4)) + (-5 *3 (-1127 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-1129 (-1129 *3))) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-663 (-793))) - (-5 *1 (-935 *4))))) + (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-661 (-791))) + (-5 *1 (-933 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-932 *4)) (-4 *4 (-1133)) (-5 *2 (-663 (-793))) - (-5 *1 (-935 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-1129 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1133)) (-5 *2 (-114)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) + (-12 (-5 *3 (-930 *4)) (-4 *4 (-1131)) (-5 *2 (-661 (-791))) + (-5 *1 (-933 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1127 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-114)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-935 *4)) (-4 *4 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-935 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-934 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-4 *1 (-934 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1174 *4 *2)) (-14 *4 (-949)) - (-4 *2 (-13 (-1081) (-10 -7 (-6 (-4513 "*"))))) (-5 *1 (-933 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-663 *3)) (|:| |image| (-663 *3)))) - (-5 *1 (-932 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1133)) (-5 *1 (-932 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-932 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-932 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-1070 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-932 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-1070 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-932 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1129 *3)) (-5 *1 (-932 *3)) (-4 *3 (-381)) (-4 *3 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-932 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2) (-12 (-5 *1 (-931 *2)) (-4 *2 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) + (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-932 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-4 *1 (-932 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-947)) + (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4509 "*"))))) (-5 *1 (-931 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-661 *3)) (|:| |image| (-661 *3)))) + (-5 *1 (-930 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1131)) (-5 *1 (-930 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-930 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-930 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1068 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-930 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-1068 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-930 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1127 *3)) (-5 *1 (-930 *3)) (-4 *3 (-381)) (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-930 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1249)))) - ((*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-922 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1249)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) + ((*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-930 *4)) - (-4 *4 (-1133)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-930 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-930 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-928 *4)) + (-4 *4 (-1131)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-928 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) + (-12 (-5 *3 (-789)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) - (-5 *1 (-579)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-1095)) + (-12 (-5 *3 (-789)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) - (-5 *1 (-579)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-809)) (-5 *3 (-1095)) + (-12 (-4 *1 (-807)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) - (|:| |extra| (-1067)))))) + (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) + (|:| |extra| (-1065)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-809)) (-5 *3 (-1095)) + (-12 (-4 *1 (-807)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)) - (|:| |extra| (-1067)))))) + (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)) + (|:| |extra| (-1065)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-824)) (-5 *3 (-1095)) + (-12 (-4 *1 (-822)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) + (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) ((*1 *2 *3) - (-12 (-5 *3 (-832)) + (-12 (-5 *3 (-830)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-829)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-1095)) + (-12 (-5 *3 (-830)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-829)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-827)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-863)) (-5 *3 (-1095)) - (-5 *4 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) - (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) + (-12 (-4 *1 (-861)) (-5 *3 (-1093)) + (-5 *4 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) + (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-863)) (-5 *3 (-1095)) + (-12 (-4 *1 (-861)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) - (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) + (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) ((*1 *2 *3) - (-12 (-5 *3 (-865)) + (-12 (-5 *3 (-863)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-864)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-865)) (-5 *4 (-1095)) + (-12 (-5 *3 (-863)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-864)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-923)) (-5 *3 (-1095)) + (-12 (-4 *1 (-921)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |pde| (-663 (-326 (-229)))) + (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| - (-663 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) - (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) - (|:| |dFinish| (-711 (-229)))))) - (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) + (-661 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) + (|:| |dFinish| (-709 (-229)))))) + (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) - (-5 *2 (-2 (|:| -3155 (-391)) (|:| |explanations| (-1191)))))) + (-5 *2 (-2 (|:| -3151 (-391)) (|:| |explanations| (-1189)))))) ((*1 *2 *3) - (-12 (-5 *3 (-926)) + (-12 (-5 *3 (-924)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-925)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-926)) (-5 *4 (-1095)) + (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *1 (-925))))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *1 (-923))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-924 *2 *4)) (-4 *2 (-1275 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-5 *1 (-922 *2 *4)) (-4 *2 (-1273 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-924 *2 *3)) (-4 *2 (-1275 *3))))) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-922 *2 *3)) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-923)) + (-12 (-4 *1 (-921)) (-5 *3 - (-2 (|:| |pde| (-663 (-326 (-229)))) + (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| - (-663 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) - (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) - (|:| |dFinish| (-711 (-229)))))) - (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) + (-661 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) + (|:| |dFinish| (-709 (-229)))))) + (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) - (-5 *2 (-1067))))) -(((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-744))) ((*1 *1) (-4 *1 (-748))) - ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133)))) - ((*1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-872))))) -(((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) - (-5 *2 (-663 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |k| (-919 *3)) (|:| |c| *4)))) - (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-694 *3))) (-5 *1 (-919 *3)) (-4 *3 (-872))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) - (-14 *4 (-663 (-1209))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1249)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209))))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-919 *3)) (-4 *3 (-872))))) -(((*1 *2 *3) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-663 *5)) (-5 *1 (-917 *4 *5)) - (-4 *5 (-1249))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (-5 *2 (-1065))))) +(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-4 *1 (-742))) ((*1 *1) (-4 *1 (-746))) + ((*1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131)))) + ((*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870))))) +(((*1 *2 *1) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) + (-5 *2 (-661 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-661 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) + (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-692 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-661 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247)))) + ((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(((*1 *2 *3) + (-12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-661 *5)) (-5 *1 (-915 *4 *5)) + (-4 *5 (-1247))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-917 *4 *3)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1247))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-5 *2 (-114)) - (-5 *1 (-914 *4 *5)) (-4 *5 (-1133)))) + (|partial| -12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-5 *2 (-114)) + (-5 *1 (-912 *4 *5)) (-4 *5 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-917 *5 *3)) - (-4 *3 (-1249)))) + (-12 (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-915 *5 *3)) + (-4 *3 (-1247)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1133)) (-4 *6 (-1249)) - (-5 *2 (-114)) (-5 *1 (-917 *5 *6))))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-914 *5)) (-4 *5 (-1131)) (-4 *6 (-1247)) + (-5 *2 (-114)) (-5 *1 (-915 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133))))) + ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2984 (-115)) (|:| |arg| (-663 (-916 *3))))) - (-5 *1 (-916 *3)) (-4 *3 (-1133)))) + (|partial| -12 (-5 *2 (-2 (|:| -2980 (-115)) (|:| |arg| (-661 (-914 *3))))) + (-5 *1 (-914 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-916 *4))) (-5 *1 (-916 *4)) - (-4 *4 (-1133))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-914 *4))) (-5 *1 (-914 *4)) + (-4 *4 (-1131))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) - (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-914 *3)) (|:| |den| (-914 *3)))) + (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-114)) (-5 *1 (-916 *4)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-914 *4)) (-4 *4 (-1131))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-51)) (-5 *1 (-916 *4)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-51)) (-5 *1 (-914 *4)) (-4 *4 (-1131))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-663 (-1209))) (|:| |pred| (-51)))) - (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) -(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-2 (|:| |var| (-661 (-1207))) (|:| |pred| (-51)))) + (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-663 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1133))))) + (|partial| -12 (-5 *2 (-661 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-4 *4 (-1133)) (-5 *2 (-114)) (-5 *1 (-911 *3 *4 *5)) (-4 *3 (-1133)) - (-4 *5 (-688 *4)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-114)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1131)) + (-4 *5 (-686 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-912 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *1) - (-12 (-4 *3 (-1133)) (-5 *1 (-911 *2 *3 *4)) (-4 *2 (-1133)) - (-4 *4 (-688 *3)))) - ((*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) + (-12 (-4 *3 (-1131)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1131)) + (-4 *4 (-686 *3)))) + ((*1 *1) (-12 (-5 *1 (-912 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1133)) (-4 *2 (-1133)) - (-5 *1 (-914 *4 *2))))) + (|partial| -12 (-5 *3 (-914 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-912 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1133)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-914 *4)) (-4 *4 (-1131)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-4 *6 (-912 *5)) (-5 *2 (-911 *5 *6 (-663 *6))) - (-5 *1 (-913 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-916 *5))))) + (-12 (-4 *5 (-1131)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-661 *6))) + (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-661 *6)) (-4 *4 (-631 (-914 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-913 *5 *3 *4)) - (-4 *3 (-1070 (-1209))) (-4 *3 (-912 *5)) (-4 *4 (-633 (-916 *5))))) + (-12 (-4 *5 (-1131)) (-5 *2 (-661 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) + (-4 *3 (-1068 (-1207))) (-4 *3 (-910 *5)) (-4 *4 (-631 (-914 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-5 *2 (-663 (-305 (-976 *3)))) (-5 *1 (-913 *5 *3 *4)) - (-4 *3 (-1081)) (-3045 (-4 *3 (-1070 (-1209)))) (-4 *3 (-912 *5)) - (-4 *4 (-633 (-916 *5))))) + (-12 (-4 *5 (-1131)) (-5 *2 (-661 (-305 (-974 *3)))) (-5 *1 (-911 *5 *3 *4)) + (-4 *3 (-1079)) (-3041 (-4 *3 (-1068 (-1207)))) (-4 *3 (-910 *5)) + (-4 *4 (-631 (-914 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-5 *2 (-914 *5 *3)) (-5 *1 (-913 *5 *3 *4)) - (-3045 (-4 *3 (-1070 (-1209)))) (-3045 (-4 *3 (-1081))) (-4 *3 (-912 *5)) - (-4 *4 (-633 (-916 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1209)) (-5 *2 (-114)))) + (-12 (-4 *5 (-1131)) (-5 *2 (-912 *5 *3)) (-5 *1 (-911 *5 *3 *4)) + (-3041 (-4 *3 (-1068 (-1207)))) (-3041 (-4 *3 (-1079))) (-4 *3 (-910 *5)) + (-4 *4 (-631 (-914 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1133)))) + (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1133)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1133)) (-5 *2 (-114)))) + (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1131)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1131)) (-5 *2 (-114)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-913 *5 *3 *4)) (-4 *3 (-912 *5)) - (-4 *4 (-633 (-916 *5))))) + (-12 (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-910 *5)) + (-4 *4 (-631 (-914 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6)) (-4 *6 (-912 *5)) (-4 *5 (-1133)) (-5 *2 (-114)) - (-5 *1 (-913 *5 *6 *4)) (-4 *4 (-633 (-916 *5)))))) + (-12 (-5 *3 (-661 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1131)) (-5 *2 (-114)) + (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-631 (-914 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-914 *4 *5)) (-5 *3 (-914 *4 *6)) (-4 *4 (-1133)) - (-4 *5 (-1133)) (-4 *6 (-688 *5)) (-5 *1 (-911 *4 *5 *6))))) + (-12 (-5 *2 (-912 *4 *5)) (-5 *3 (-912 *4 *6)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-686 *5)) (-5 *1 (-909 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1133)) (-5 *2 (-914 *3 *5)) (-5 *1 (-911 *3 *4 *5)) - (-4 *3 (-1133)) (-4 *5 (-688 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-560))))) + (-12 (-4 *4 (-1131)) (-5 *2 (-912 *3 *5)) (-5 *1 (-909 *3 *4 *5)) + (-4 *3 (-1131)) (-4 *5 (-686 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-558))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560))))) + (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558))))) ((*1 *2 *3) - (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560)))))) + (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *3 (-663 (-560))) (-5 *1 (-909))))) + (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *3 (-661 (-558))) (-5 *1 (-907))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1187 (-663 (-560)))) (-5 *1 (-909)) (-5 *3 (-663 (-560)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 (-663 (-949)))) (-5 *1 (-909))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-903 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-905 *2)) (-4 *2 (-1249)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-908 *2)) (-4 *2 (-1249))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1249))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-1214))) (-5 *1 (-906))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(((*1 *2 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-248)) (-5 *3 (-1191)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-248)))) - ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-899))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1249)) (-4 *3 (-1249))))) -(((*1 *2 *1) - (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-119 *3)) (-14 *3 (-560)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-177 (-560))) (-5 *1 (-787 *3)) (-4 *3 (-418)))) - ((*1 *2 *1) - (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-896 *3)) (-14 *3 (-560)))) - ((*1 *2 *1) - (-12 (-14 *3 (-560)) (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-897 *3 *4)) - (-4 *4 (-895 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) - ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) - ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-1187 (-560)))))) + (-12 (-5 *2 (-1185 (-661 (-558)))) (-5 *1 (-907)) (-5 *3 (-661 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 (-661 (-947)))) (-5 *1 (-907))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-1212))) (-5 *1 (-904))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(((*1 *2 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189)))) + ((*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-248)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-897))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247))))) +(((*1 *2 *1) + (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-119 *3)) (-14 *3 (-558)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-785 *3)) (-4 *3 (-416)))) + ((*1 *2 *1) + (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-894 *3)) (-14 *3 (-558)))) + ((*1 *2 *1) + (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-895 *3 *4)) + (-4 *4 (-893 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-1185 (-558)))))) (((*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1275 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1275 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1081)))) + ((*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-735 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-5 *2 (-560))))) -(((*1 *1 *1) (-4 *1 (-895 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1203 (-560))) (-5 *3 (-560)) (-4 *1 (-895 *4))))) + ((*1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-558))))) +(((*1 *1 *1) (-4 *1 (-893 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1201 (-558))) (-5 *3 (-558)) (-4 *1 (-893 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) - (-5 *1 (-892 *5 *4 *6)) (-4 *4 (-1292 *5)) (-4 *6 (-1275 *5)))) + (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-419 *6)) + (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1209)) (-14 *7 *5) (-5 *2 (-421 (-1268 *6 *5))) - (-5 *1 (-893 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-419 (-1266 *6 *5))) + (-5 *1 (-891 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1209)) (-14 *7 *5) (-5 *2 (-421 (-1268 *6 *5))) - (-5 *1 (-893 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-419 (-1266 *6 *5))) + (-5 *1 (-891 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) - (-5 *1 (-892 *5 *4 *6)) (-4 *4 (-1292 *5)) (-4 *6 (-1275 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) - (-5 *2 (-663 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-890))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-888))))) -(((*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-888))))) -(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1249)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) - (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) - ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-888))))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) + (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-177 *6)) + (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) + (-5 *2 (-661 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-756 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-451))) (-5 *1 (-888))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-886))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-791)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) + ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-391))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-560))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-171 (-391))))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-560)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-558)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-171 (-391))))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-560)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-558)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-560))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-716))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-714))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-721))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-719))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-976 (-560)))) (-5 *4 (-326 (-723))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-974 (-558)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-716)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-714)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-721)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-719)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-326 (-723)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-721)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-716)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-714)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-721)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-719)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-326 (-723)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-716))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-723))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-716))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-326 (-723))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-1191)) (-5 *1 (-342)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-888)))) - ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1 *1) (-5 *1 (-888))) - ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) - ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-326 (-721)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-714))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-719))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-714))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-719))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-709 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-714))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) ((*1 *1 *1) (-4 *1 (-310))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888)))) - ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1191)) (-5 *1 (-195)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-888))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-886))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-875)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-843 *3)) (|:| |rm| (-843 *3)))) - (-5 *1 (-843 *3)) (-4 *3 (-872)))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793))) - ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-888)))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-887)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-887))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-130))) (-5 *3 (-130))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-564))) (-5 *3 (-564))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *2 (-713 (-1258))) (-5 *3 (-1258))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-886)) (-5 *3 (-131)) (-5 *2 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1305)) (-5 *1 (-884))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) + (-5 *1 (-841 *3)) (-4 *3 (-870)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-791))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-791))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-885))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-885))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-130))) (-5 *3 (-130))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-562))) (-5 *3 (-562))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-711 (-1256))) (-5 *3 (-1256))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *3 (-131)) (-5 *2 (-791))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-51))) (-5 *2 (-1303)) (-5 *1 (-882))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-38 (-421 (-560)))) + (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-881 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-879 *2)) (-4 *2 (-175))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) + (-12 (-4 *3 (-376)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) - (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) - (-4 *3 (-877 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) - (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) + (-5 *1 (-786 *3 *4)) (-4 *3 (-728 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) + (-12 (-4 *3 (-376)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1081)) - (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) - (-4 *3 (-877 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1081)) - (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) - (-4 *3 (-877 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-571)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| -2198 *1) (|:| -3389 *1))) (-4 *1 (-877 *3)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2194 *1) (|:| -3385 *1))) (-4 *1 (-875 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1081)) - (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-878 *5 *3)) - (-4 *3 (-877 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1081)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-877 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-668 *5)) (-4 *5 (-1079)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-709 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1081)) (-5 *1 (-878 *2 *3)) - (-4 *3 (-877 *2))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-876 *2 *3)) + (-4 *3 (-875 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1081)) (-5 *1 (-878 *5 *2)) - (-4 *2 (-877 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) (-5 *1 (-876 *5 *2)) + (-4 *2 (-875 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) - (-4 *1 (-877 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (-12 (-4 *3 (-376)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) + (-4 *1 (-875 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1081)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) - (-4 *1 (-877 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-877 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) + (-12 (-4 *3 (-376)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) + (-4 *1 (-875 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) (((*1 *1) - (-12 (-4 *1 (-418)) (-3045 (|has| *1 (-6 -4502))) - (-3045 (|has| *1 (-6 -4494))))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-872)))) - ((*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-872)))) ((*1 *1) (-4 *1 (-868))) - ((*1 *1 *1 *1) (-4 *1 (-875)))) + (-12 (-4 *1 (-416)) (-3041 (|has| *1 (-6 -4498))) + (-3041 (|has| *1 (-6 -4490))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-870)))) ((*1 *1) (-4 *1 (-866))) + ((*1 *1 *1 *1) (-4 *1 (-873)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) - (-14 *4 (-793))))) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) + (-14 *4 (-791))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) - (-14 *4 (-793))))) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) + (-14 *4 (-791))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1299 *5)) (-4 *5 (-816)) (-5 *2 (-114)) (-5 *1 (-869 *4 *5)) - (-14 *4 (-793))))) -(((*1 *2) (-12 (-5 *2 (-866 (-560))) (-5 *1 (-548)))) - ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1133))))) -(((*1 *2) (-12 (-5 *2 (-866 (-560))) (-5 *1 (-548)))) - ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1133))))) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) + (-14 *4 (-791))))) +(((*1 *2) (-12 (-5 *2 (-864 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1131))))) +(((*1 *2) (-12 (-5 *2 (-864 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-856 *3)) (-4 *3 (-1133)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-866 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-866 *3)) (-4 *3 (-1133))))) -(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1067)) (-5 *1 (-864)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) - (-5 *1 (-864))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-865)) (-5 *4 (-1095)) (-5 *2 (-1067)) (-5 *1 (-864)))) - ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1067)) (-5 *1 (-864)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1065)) (-5 *1 (-862)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) + (-5 *1 (-862))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-863)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-862)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1065)) (-5 *1 (-862)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-866 (-391)))) - (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1067)) - (-5 *1 (-864)))) + (-12 (-5 *4 (-661 (-391))) (-5 *5 (-661 (-864 (-391)))) + (-5 *6 (-661 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1065)) + (-5 *1 (-862)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *5 (-663 (-866 (-391)))) - (-5 *2 (-1067)) (-5 *1 (-864)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *5 (-661 (-864 (-391)))) + (-5 *2 (-1065)) (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) - (-5 *1 (-864)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) + (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1067)) - (-5 *1 (-864))))) + (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1065)) + (-5 *1 (-862))))) (((*1 *2 *3) - (-12 (-4 *1 (-863)) + (-12 (-4 *1 (-861)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) - (-5 *2 (-1067)))) - ((*1 *2 *3) - (-12 (-4 *1 (-863)) - (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) - (-5 *2 (-1067))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-217 (-516))) (-5 *1 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1133)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)))) - ((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-710 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6)))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) + (-5 *2 (-1065)))) + ((*1 *2 *3) + (-12 (-4 *1 (-861)) + (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) + (-5 *2 (-1065))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-514))) (-5 *1 (-859))))) +(((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1131)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-708 *4 *5 *6 *3)) + (-4 *3 (-706 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) + (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081))))) + (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079))))) (((*1 *2 *2) - (-12 (-4 *2 (-175)) (-4 *2 (-1081)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1081))))) + (-12 (-4 *2 (-175)) (-4 *2 (-1079)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1079))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2)) - (-4 *2 (-1133)))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-661 *2)) (-5 *1 (-116 *2)) + (-4 *2 (-1131)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1133)) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-661 *4))) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4))) (-5 *1 (-116 *4)) - (-4 *4 (-1133)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-661 *4))) (-5 *1 (-116 *4)) + (-4 *4 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1081)) - (-5 *1 (-736 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-858 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1079)) + (-5 *1 (-734 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-856 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1081)) - (-5 *1 (-736 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-858 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1079)) + (-5 *1 (-734 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-856 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1081)) (-5 *1 (-736 *4 *2)) (-4 *2 (-670 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-858 *2)) (-4 *2 (-1081))))) + (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-734 *4 *2)) (-4 *2 (-668 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1079))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1081)) (-5 *1 (-736 *2 *4)) - (-4 *4 (-670 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-858 *2)) (-4 *2 (-1081))))) -(((*1 *2) (-12 (-5 *2 (-856 (-560))) (-5 *1 (-548)))) - ((*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1133))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1305)) (-5 *1 (-855))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-846)) (-5 *4 (-51)) (-5 *2 (-1305)) (-5 *1 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-51)) (-5 *1 (-855))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-853))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-114)) (-5 *1 (-853))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-114)) (-5 *1 (-853))))) -(((*1 *2 *3) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-853)) (-5 *3 (-1191))))) -(((*1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-853))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-853))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-51)) (-5 *1 (-853))))) -(((*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-51)) (-5 *1 (-853))))) -(((*1 *1 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-852 *2 *3)) (-4 *2 (-730 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-730 *3)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-1191)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-845)) (-5 *3 (-114)) (-5 *2 (-1191)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-845)) (-5 *3 (-847)) (-5 *2 (-1305)))) + (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1079)) (-5 *1 (-734 *2 *4)) + (-4 *4 (-668 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1303)) (-5 *1 (-853))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189))))) +(((*1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851))))) +(((*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-850 *2 *3)) (-4 *2 (-728 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-728 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303)))) ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-845)) (-5 *3 (-847)) (-5 *4 (-114)) (-5 *2 (-1305)))) + (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-845) (-1081))) (-5 *2 (-1191)) - (-5 *1 (-851 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1079))) (-5 *2 (-1189)) + (-5 *1 (-849 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-845) (-1081))) - (-5 *2 (-1191)) (-5 *1 (-851 *5)))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1079))) + (-5 *2 (-1189)) (-5 *1 (-849 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-847)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-845) (-1081))) - (-5 *2 (-1305)) (-5 *1 (-851 *5)))) + (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1079))) + (-5 *2 (-1303)) (-5 *1 (-849 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-847)) (-5 *4 (-326 *6)) (-5 *5 (-114)) - (-4 *6 (-13 (-845) (-1081))) (-5 *2 (-1305)) (-5 *1 (-851 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-849))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-849))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-663 (-1209))) (-5 *1 (-849))))) -(((*1 *1) (-5 *1 (-848)))) -(((*1 *1) (-5 *1 (-848)))) -(((*1 *1) (-5 *1 (-848)))) -(((*1 *1) (-5 *1 (-848)))) -(((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-847))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1191)) (|:| -4056 (-1191)))) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1209)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-847))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-848)) (-5 *1 (-847))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-848)) (-5 *1 (-847))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-114)) (-5 *1 (-846))))) + (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114)) + (-4 *6 (-13 (-843) (-1079))) (-5 *2 (-1303)) (-5 *1 (-849 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-847))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-661 (-1207))) (-5 *1 (-847))))) +(((*1 *1) (-5 *1 (-846)))) +(((*1 *1) (-5 *1 (-846)))) +(((*1 *1) (-5 *1 (-846)))) +(((*1 *1) (-5 *1 (-846)))) +(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4052 (-1189)))) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-114)) (-5 *1 (-844))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-1152)) (-5 *2 (-114)) (-5 *1 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-847)) (-5 *1 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-847)) (-5 *1 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-846))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-846))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-872)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-872)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-843 *3)) (-4 *3 (-872))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-1150)) (-5 *2 (-114)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-844))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-870)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-870)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-870))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1299 *4)) - (-5 *1 (-838 *4 *3)) (-4 *3 (-680 *4))))) + (|partial| -12 (-5 *5 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4)) + (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) (-5 *1 (-838 *4 *5)) - (-4 *5 (-680 *4)))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)) (-5 *1 (-836 *4 *5)) + (-4 *5 (-678 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-711 *5)) - (-5 *1 (-838 *5 *6)) (-4 *6 (-680 *5))))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-709 *5)) + (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-976 *5))) (-5 *4 (-663 (-1209))) (-4 *5 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *5)))))) (-5 *1 (-792 *5)))) + (-12 (-5 *3 (-661 (-974 *5))) (-5 *4 (-661 (-1207))) (-4 *5 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *5)))))) (-5 *1 (-790 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-571)) - (-5 *2 (-663 (-663 (-305 (-421 (-976 *4)))))) (-5 *1 (-792 *4)))) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-569)) + (-5 *2 (-661 (-661 (-305 (-419 (-974 *4)))))) (-5 *1 (-790 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *7)) + (-12 (-5 *3 (-709 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2236 (-663 *6))) *7 *6)) - (-4 *6 (-376)) (-4 *7 (-680 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2232 (-661 *6))) *7 *6)) + (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1299 *6) "failed")) - (|:| -2236 (-663 (-1299 *6))))) - (-5 *1 (-837 *6 *7)) (-5 *4 (-1299 *6))))) + (-2 (|:| |particular| (-3 (-1297 *6) "failed")) + (|:| -2232 (-661 (-1297 *6))))) + (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 - (-2 (|:| A (-711 *5)) + (-2 (|:| A (-709 *5)) (|:| |eqs| - (-663 - (-2 (|:| C (-711 *5)) (|:| |g| (-1299 *5)) (|:| -3770 *6) + (-661 + (-2 (|:| C (-709 *5)) (|:| |g| (-1297 *5)) (|:| -3766 *6) (|:| |rh| *5)))))) - (-5 *1 (-837 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) - (-4 *6 (-680 *5)))) + (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) + (-4 *6 (-678 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-680 *5)) - (-5 *2 (-2 (|:| -1795 (-711 *6)) (|:| |vec| (-1299 *5)))) - (-5 *1 (-837 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1299 *5))))) + (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) + (-5 *2 (-2 (|:| -1793 (-709 *6)) (|:| |vec| (-1297 *5)))) + (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *6)) (-5 *4 (-1297 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *6 (-1275 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) + (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *6 (-1273 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-677 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) - (-5 *5 (-1 (-419 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *7 (-1275 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-836 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *6 (-1275 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) + (-12 (-5 *3 (-675 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) + (-5 *5 (-1 (-417 *7) *7)) + (-4 *6 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *7 (-1273 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *6 (-1273 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-678 *7 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) - (-5 *5 (-1 (-419 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *7 (-1275 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-836 *6 *7)))) + (-12 (-5 *3 (-676 *7 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) + (-5 *5 (-1 (-417 *7) *7)) + (-4 *6 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *7 (-1273 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-677 (-421 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-421 *5))) (-5 *1 (-836 *4 *5)))) + (-12 (-5 *3 (-675 (-419 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) + (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6)))) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-678 *5 (-421 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-421 *5))) (-5 *1 (-836 *4 *5)))) + (-12 (-5 *3 (-676 *5 (-419 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) + (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-421 *6))) (-5 *1 (-836 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) - (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3770 *3)))) - (-5 *1 (-833 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *6 (-1275 *5)) - (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3770 (-678 *6 (-421 *6)))))) - (-5 *1 (-836 *5 *6)) (-5 *3 (-678 *6 (-421 *6)))))) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) + (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3766 *3)))) + (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *6 (-1273 *5)) + (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3766 (-676 *6 (-419 *6)))))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-663 *7) *7 (-1203 *7))) (-5 *5 (-1 (-419 *7) *7)) - (-4 *7 (-1275 *6)) (-4 *6 (-13 (-376) (-149) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -3770 *3)))) - (-5 *1 (-833 *6 *7 *3 *8)) (-4 *3 (-680 *7)) (-4 *8 (-680 (-421 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-663 (-2 (|:| |frac| (-421 *6)) (|:| -3770 (-678 *6 (-421 *6)))))) - (-5 *1 (-836 *5 *6)) (-5 *3 (-678 *6 (-421 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *7 (-1275 *5)) (-4 *4 (-746 *5 *7)) - (-5 *2 (-2 (|:| -1795 (-711 *6)) (|:| |vec| (-1299 *5)))) - (-5 *1 (-835 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-834 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1275 *4)) (-5 *1 (-834 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-834 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-2 (|:| -2236 (-663 (-421 *6))) (|:| -1795 (-711 *5)))) - (-5 *1 (-834 *5 *6)) (-5 *4 (-663 (-421 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2236 (-663 *4)))) - (-5 *1 (-834 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-2 (|:| -2236 (-663 (-421 *6))) (|:| -1795 (-711 *5)))) - (-5 *1 (-834 *5 *6)) (-5 *4 (-663 (-421 *6)))))) + (-12 (-5 *4 (-1 (-661 *7) *7 (-1201 *7))) (-5 *5 (-1 (-417 *7) *7)) + (-4 *7 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-2 (|:| |frac| (-419 *7)) (|:| -3766 *3)))) + (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) (-4 *8 (-678 (-419 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-661 (-2 (|:| |frac| (-419 *6)) (|:| -3766 (-676 *6 (-419 *6)))))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-744 *5 *7)) + (-5 *2 (-2 (|:| -1793 (-709 *6)) (|:| |vec| (-1297 *5)))) + (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-676 *2 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-832 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-419 *6))) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-2 (|:| -2232 (-661 (-419 *6))) (|:| -1793 (-709 *5)))) + (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2232 (-661 *4)))) + (-5 *1 (-832 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-419 *6))) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-2 (|:| -2232 (-661 (-419 *6))) (|:| -1793 (-709 *5)))) + (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-1275 *4)) - (-5 *1 (-833 *4 *3 *2 *5)) (-4 *2 (-680 *3)) (-4 *5 (-680 (-421 *3))))) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-1273 *4)) + (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) (-4 *5 (-678 (-419 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-421 *5)) (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) - (-4 *5 (-1275 *4)) (-5 *1 (-833 *4 *5 *2 *6)) (-4 *2 (-680 *5)) - (-4 *6 (-680 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-663 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *6 (-1275 *5)) - (-5 *2 (-663 (-2 (|:| -4468 *5) (|:| -3770 *3)))) (-5 *1 (-833 *5 *6 *3 *7)) - (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) - (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3770 *5)))) - (-5 *1 (-833 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1275 *4)) (-5 *1 (-833 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) - (-4 *5 (-680 (-421 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1275 *4)) (-5 *1 (-831 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) - (-4 *5 (-680 (-421 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1275 *4)) (-5 *1 (-831 *4 *2 *5 *3)) - (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-680 *2)) - (-4 *3 (-680 (-421 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) - (-5 *2 (-663 (-2 (|:| -4289 *5) (|:| -3730 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) - (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *4 (-1275 *5)) - (-5 *2 (-663 (-2 (|:| -4289 *4) (|:| -3730 *4)))) (-5 *1 (-831 *5 *4 *3 *6)) - (-4 *3 (-680 *4)) (-4 *6 (-680 (-421 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *5 (-1275 *4)) - (-5 *2 (-663 (-2 (|:| -4289 *5) (|:| -3730 *5)))) (-5 *1 (-831 *4 *5 *6 *3)) - (-4 *6 (-680 *5)) (-4 *3 (-680 (-421 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *4 (-1275 *5)) - (-5 *2 (-663 (-2 (|:| -4289 *4) (|:| -3730 *4)))) (-5 *1 (-831 *5 *4 *6 *3)) - (-4 *6 (-680 *4)) (-4 *3 (-680 (-421 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1275 *5)) - (-5 *1 (-831 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) - (-4 *3 (-680 *2)) (-4 *6 (-680 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1275 *5)) (-5 *1 (-831 *5 *2 *3 *6)) - (-4 *5 (-13 (-376) (-149) (-1070 (-421 (-560))))) (-4 *3 (-680 *2)) - (-4 *6 (-680 (-421 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *6 (-1275 *5)) (-4 *7 (-1275 (-421 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-830 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-828 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1235) (-990)))))) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) + (-4 *5 (-1273 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) + (-4 *6 (-678 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-661 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *6 (-1273 *5)) + (-5 *2 (-661 (-2 (|:| -4464 *5) (|:| -3766 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) + (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) + (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3766 *5)))) + (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) + (-4 *5 (-678 (-419 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) + (-4 *5 (-678 (-419 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3)) + (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-678 *2)) + (-4 *3 (-678 (-419 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) + (-5 *2 (-661 (-2 (|:| -4285 *5) (|:| -3726 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) + (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *4 (-1273 *5)) + (-5 *2 (-661 (-2 (|:| -4285 *4) (|:| -3726 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) + (-4 *3 (-678 *4)) (-4 *6 (-678 (-419 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *5 (-1273 *4)) + (-5 *2 (-661 (-2 (|:| -4285 *5) (|:| -3726 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) + (-4 *6 (-678 *5)) (-4 *3 (-678 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *4 (-1273 *5)) + (-5 *2 (-661 (-2 (|:| -4285 *4) (|:| -3726 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) + (-4 *6 (-678 *4)) (-4 *3 (-678 (-419 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1273 *5)) + (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) + (-4 *3 (-678 *2)) (-4 *6 (-678 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-419 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) + (-4 *5 (-13 (-376) (-149) (-1068 (-419 (-558))))) (-4 *3 (-678 *2)) + (-4 *6 (-678 (-419 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-419 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-828 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1233) (-988)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-5 *1 (-828 *4 *2)) (-4 *2 (-13 (-29 *4) (-1235) (-990)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) - (-5 *1 (-827))))) + (-5 *1 (-825))))) (((*1 *1 *2) (-12 (-5 *2 - (-663 + (-661 (-2 - (|:| -4376 + (|:| -4372 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2300 + (|:| -2296 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) - (-5 *1 (-827))))) + (-5 *1 (-825))))) (((*1 *2 *1) (-12 (-5 *2 - (-663 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-661 + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) - (-5 *1 (-574)))) + (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-663 *3)))) + (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-661 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-663 + (-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) - (-5 *1 (-827))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-827))))) -(((*1 *1) (-5 *1 (-827)))) + (-5 *1 (-825))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825))))) +(((*1 *1) (-5 *1 (-825)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1209)) (-4 *6 (-13 (-319) (-1070 (-560)) (-660 (-560)) (-149))) - (-4 *4 (-13 (-29 *6) (-1235) (-990))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2236 (-663 *4)))) - (-5 *1 (-825 *6 *4 *3)) (-4 *3 (-680 *4))))) + (-12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1068 (-558)) (-658 (-558)) (-149))) + (-4 *4 (-13 (-29 *6) (-1233) (-988))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2232 (-661 *4)))) + (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-824)) + (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-1067))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1028 *3)) (-4 *3 (-175)) (-5 *1 (-822 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175))))) + (-5 *2 (-1065))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) (((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *2)) + (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-4043 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1249))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1249))))) - ((*1 *1 *1) (-4 *1 (-487))) - ((*1 *2 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) + (-4039 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1247))))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-820 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) - ((*1 *1 *1 *1) (-4 *1 (-817)))) + ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) + ((*1 *1 *1 *1) (-4 *1 (-815)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3908 *4) (|:| -1751 *4) (|:| |totalpts| (-560)) + (-2 (|:| -3904 *4) (|:| -1749 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-811)) (-5 *5 (-560))))) + (-5 *1 (-809)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) - (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-560)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391)))) - (-5 *7 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) - (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) + (-12 (-5 *4 (-558)) + (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391)))) + (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) + (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-560)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1619 (-391)))) - (-5 *7 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) (-5 *3 (-1299 (-391))) - (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810))))) + (-12 (-5 *4 (-558)) + (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1617 (-391)))) + (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) + (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) - (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) - (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810)))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1305) (-1299 *5) (-1299 *5) (-391))) - (-5 *3 (-1299 (-391))) (-5 *5 (-391)) (-5 *2 (-1305)) (-5 *1 (-810))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-808))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-809)) (-5 *2 (-1067)) + (-12 (-4 *1 (-807)) (-5 *2 (-1065)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -1650 (-663 (-1121 (-866 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1648 (-661 (-1119 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) ((*1 *2 *3 *2) - (-12 (-4 *1 (-809)) (-5 *2 (-1067)) + (-12 (-4 *1 (-807)) (-5 *2 (-1065)) (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-949)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1191)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-949)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1191)) (-5 *1 (-808))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-947)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1189)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-947)) (-5 *1 (-806))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1189)) (-5 *1 (-806))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-976 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-974 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-976 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-175)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-974 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-175)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-421 (-976 (-171 *4)))) (-4 *4 (-571)) - (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-419 (-974 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-421 (-976 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-419 (-974 (-171 *5)))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) - (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-872)) - (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-872)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-807 *5))))) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-870)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-805 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 *2)) - (-5 *2 (-391)) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 *2)) + (-5 *2 (-391)) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) - (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) + (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) - (-5 *2 (-391)) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) + (-5 *2 (-391)) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) + (|partial| -12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) - (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) - (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) + (-12 (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) - (-4 *3 (-633 (-391))))) + (-12 (-5 *4 (-947)) (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) + (-4 *3 (-631 (-391))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-947)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-976 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-974 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-175)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-974 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-175)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-419 (-974 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-571)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-419 (-974 (-171 *5)))) (-5 *4 (-947)) (-4 *5 (-569)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-872)) - (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) - (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) + (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) + (-12 (-5 *4 (-947)) (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-976 *4)) (-4 *4 (-1081)) (-4 *4 (-633 *2)) (-5 *2 (-391)) - (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-974 *4)) (-4 *4 (-1079)) (-4 *4 (-631 *2)) (-5 *2 (-391)) + (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 *5)) (-5 *4 (-949)) (-4 *5 (-1081)) (-4 *5 (-633 *2)) - (-5 *2 (-391)) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-974 *5)) (-5 *4 (-947)) (-4 *5 (-1079)) (-4 *5 (-631 *2)) + (-5 *2 (-391)) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 (-976 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) - (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-419 (-974 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) + (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-633 *2)) - (-5 *2 (-391)) (-5 *1 (-807 *5)))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-631 *2)) + (-5 *2 (-391)) (-5 *1 (-805 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-872)) (-4 *4 (-633 *2)) - (-5 *2 (-391)) (-5 *1 (-807 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-631 *2)) + (-5 *2 (-391)) (-5 *1 (-805 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-949)) (-4 *5 (-571)) (-4 *5 (-872)) - (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-947)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) + (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) + (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1081))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1079))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571)) - (-4 *3 (-1081))))) + (-12 (-5 *2 (-661 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-569)) + (-4 *3 (-1079))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -4272 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1081))))) + (-5 *2 (-2 (|:| -4268 *3) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4272 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) - (-4 *3 (-571)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-2 (|:| -4268 *3) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) + (-4 *3 (-569)) (-4 *3 (-1079))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4272 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) - (-4 *3 (-571)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-2 (|:| -4268 *3) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) + (-4 *3 (-569)) (-4 *3 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-421 (-560)))) + (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 - (-663 - (-2 (|:| |outval| *4) (|:| |outmult| (-560)) - (|:| |outvect| (-663 (-711 *4)))))) - (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-871)))))) + (-661 + (-2 (|:| |outval| *4) (|:| |outmult| (-558)) + (|:| |outvect| (-661 (-709 *4)))))) + (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-869)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4)) - (-4 *4 (-13 (-376) (-871)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) + (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-799 *4)) + (-4 *4 (-13 (-376) (-869)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-709 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-175)) (-4 *2 (-1275 *4)) (-5 *1 (-180 *4 *2 *3)) - (-4 *3 (-746 *4 *2)))) + (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3)) + (-4 *3 (-744 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-421 (-976 *5)))) (-5 *4 (-1209)) (-5 *2 (-976 *5)) - (-5 *1 (-304 *5)) (-4 *5 (-466)))) + (-12 (-5 *3 (-709 (-419 (-974 *5)))) (-5 *4 (-1207)) (-5 *2 (-974 *5)) + (-5 *1 (-304 *5)) (-4 *5 (-464)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-976 *4)))) (-5 *2 (-976 *4)) (-5 *1 (-304 *4)) - (-4 *4 (-466)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1275 *3)))) + (-12 (-5 *3 (-709 (-419 (-974 *4)))) (-5 *2 (-974 *4)) (-5 *1 (-304 *4)) + (-4 *4 (-464)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-976 (-171 (-421 (-560))))) - (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871))))) + (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-974 (-171 (-419 (-558))))) + (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1209)) - (-5 *2 (-976 (-171 (-421 (-560))))) (-5 *1 (-786 *5)) - (-4 *5 (-13 (-376) (-871))))) + (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *4 (-1207)) + (-5 *2 (-974 (-171 (-419 (-558))))) (-5 *1 (-784 *5)) + (-4 *5 (-13 (-376) (-869))))) ((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-976 (-421 (-560)))) - (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-871))))) + (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-974 (-419 (-558)))) + (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-869))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1209)) - (-5 *2 (-976 (-421 (-560)))) (-5 *1 (-801 *5)) (-4 *5 (-13 (-376) (-871)))))) + (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *4 (-1207)) + (-5 *2 (-974 (-419 (-558)))) (-5 *1 (-799 *5)) (-4 *5 (-13 (-376) (-869)))))) (((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-663 (-793))) - (-5 *1 (-800 *3 *4 *5 *6 *7)) (-4 *3 (-1275 *6)) (-4 *7 (-980 *6 *4 *5))))) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-661 (-791))) + (-5 *1 (-798 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-978 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1275 *9)) (-4 *7 (-817)) (-4 *8 (-872)) (-4 *9 (-319)) - (-4 *10 (-980 *9 *7 *8)) + (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-870)) (-4 *9 (-319)) + (-4 *10 (-978 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-663 (-1203 *10))) - (|:| |dterm| (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10)))) - (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1203 *10)) (-5 *4 (-663 *6)) - (-5 *5 (-663 *10))))) + (-2 (|:| |deter| (-661 (-1201 *10))) + (|:| |dterm| (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-661 *6)) (|:| |nlead| (-661 *10)))) + (-5 *1 (-798 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-661 *6)) + (-5 *5 (-661 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1275 *5)) (-5 *2 (-663 *3)) - (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1275 *6)) (-14 *7 (-949))))) + (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-661 *3)) + (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-947))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -1755 *4)))) - (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1753 *4)))) + (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1191)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) - (-4 *4 (-1097 *6 *7 *8)) (-5 *2 (-1305)) (-5 *1 (-798 *6 *7 *8 *4 *5)) - (-4 *5 (-1103 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1189)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) + (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1303)) (-5 *1 (-796 *6 *7 *8 *4 *5)) + (-4 *5 (-1101 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *3 (-1097 *5 *6 *7)) - (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -1755 *4)))) - (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1753 *4)))) + (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *2 (-1097 *4 *5 *6)) - (-5 *1 (-798 *4 *5 *6 *2 *3)) (-4 *3 (-1103 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) - ((*1 *1 *1 *1) (-4 *1 (-559))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-505)) (-5 *4 (-984)) (-5 *2 (-713 (-547))) (-5 *1 (-547)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-984)) (-4 *3 (-1133)) (-5 *2 (-713 *1)) (-4 *1 (-789 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-171 (-421 (-560))))) - (-5 *2 - (-663 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-560)) - (|:| |outvect| (-663 (-711 (-171 *4))))))) - (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4))) - (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-871)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-783)))) -(((*1 *1 *1 *1) (-4 *1 (-487))) ((*1 *1 *1 *1) (-4 *1 (-783)))) -(((*1 *1 *1 *1) (-4 *1 (-783)))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-781))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-976 (-560)))) (-5 *1 (-450)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-711 (-229))) (-5 *2 (-1135)) (-5 *1 (-781)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-711 (-560))) (-5 *2 (-1135)) (-5 *1 (-781))))) -(((*1 *2 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-781))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *2 (-1095 *4 *5 *6)) + (-5 *1 (-796 *4 *5 *6 *2 *3)) (-4 *3 (-1101 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) + ((*1 *1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-791))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-503)) (-5 *4 (-982)) (-5 *2 (-711 (-545))) (-5 *1 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-982)) (-4 *3 (-1131)) (-5 *2 (-711 *1)) (-4 *1 (-787 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-787 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-709 (-171 (-419 (-558))))) + (-5 *2 + (-661 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-558)) + (|:| |outvect| (-661 (-709 (-171 *4))))))) + (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-171 *4))) + (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-869)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-781)))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-781)))) +(((*1 *1 *1 *1) (-4 *1 (-781)))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-779))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-974 (-558)))) (-5 *1 (-448)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-709 (-229))) (-5 *2 (-1133)) (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-709 (-558))) (-5 *2 (-1133)) (-5 *1 (-779))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-779))))) (((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) + (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) + (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1191)) (-5 *4 (-229)) - (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1189)) (-5 *4 (-229)) + (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1191)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1067)) - (-5 *1 (-780))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1065)) + (-5 *1 (-778))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1191)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1067)) - (-5 *1 (-780))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1065)) + (-5 *1 (-778))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) + (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1191)) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1189)) (-5 *3 (-229)) + (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-780))))) + (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-779))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-777))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-779))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-777))))) (((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) - (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-779))))) + (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) + (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-779))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) - (-5 *2 (-1067)) (-5 *1 (-778))))) + (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) - (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) + (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1067)) - (-5 *1 (-778))))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1065)) + (-5 *1 (-776))))) (((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) - (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) + (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-776))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) - (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) + (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1067)) - (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1065)) + (-5 *1 (-776))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229)))) - (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-171 (-229)))) + (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) - (-5 *2 (-1067)) (-5 *1 (-777)))) + (-5 *2 (-1065)) (-5 *1 (-775)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) - (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *4 (-229)) - (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *4 (-229)) + (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) - (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) + (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) - (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) + (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1067)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1065)) + (-5 *1 (-774))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) - (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) + (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) - (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *4 (-661 (-114))) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) + (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229))) - (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1067)) (-5 *1 (-776))))) + (-12 (-5 *4 (-709 (-558))) (-5 *5 (-114)) (-5 *7 (-709 (-229))) + (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229))) (-5 *8 (-711 (-560))) - (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1067)) - (-5 *1 (-776))))) + (-12 (-5 *6 (-661 (-114))) (-5 *7 (-709 (-229))) (-5 *8 (-709 (-558))) + (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1065)) + (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) - (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-560)) - (-5 *2 (-1067)) (-5 *1 (-775))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) + (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-558)) + (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) - (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-560)) - (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-775))))) + (-12 (-5 *5 (-709 (-229))) (-5 *6 (-114)) (-5 *7 (-709 (-558))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) + (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *2 (-1067)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1067)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1067)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1067)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) - (-5 *2 (-1067)) (-5 *1 (-775))))) + (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1191)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) - (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) + (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) - (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) + (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) - (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) + (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1191)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) - (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1189)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) + (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560)) - (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *3 (-558)) + (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) - (-5 *3 (-560)) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) + (-5 *3 (-558)) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1067)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1065)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) - (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) - (-5 *3 (-229)) (-5 *2 (-1067)) (-5 *1 (-772))))) + (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-695 (-229))) + (-5 *3 (-229)) (-5 *2 (-1065)) (-5 *1 (-770))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1191)) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1067)) - (-5 *1 (-772))))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1065)) + (-5 *1 (-770))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1067)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1065)) + (-5 *1 (-770))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) - (-5 *4 (-229)) (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *4 (-229)) (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1067)) - (-5 *1 (-771)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1065)) + (-5 *1 (-769)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1067)) - (-5 *1 (-771))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-560)) (-5 *5 (-1191)) (-5 *6 (-711 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-560)) (-5 *5 (-1191)) (-5 *6 (-711 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-1189)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-771))))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-770))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1067)) (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1065)) (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *3 (-229)) - (-5 *2 (-1067)) (-5 *1 (-770))))) + (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *3 (-229)) + (-5 *2 (-1065)) (-5 *1 (-768))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-1191)) (-5 *5 (-711 (-229))) (-5 *2 (-1067)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1189)) (-5 *5 (-709 (-229))) (-5 *2 (-1065)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1067)) (-5 *1 (-769))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1065)) (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1067)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1067)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-229)) (-5 *4 (-560)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3581)))) (-5 *2 (-1067)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3577)))) (-5 *2 (-1065)) + (-5 *1 (-766))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1067)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1065)) + (-5 *1 (-765))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1067)) - (-5 *1 (-767))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-766 *3)) (-4 *3 (-175))))) + (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1065)) + (-5 *1 (-765))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-764 *3)) (-4 *3 (-175))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1203 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5))))) + (-12 (-5 *2 (-1201 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-4 *7 (-872)) - (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) (-4 *8 (-319)) (-5 *2 (-663 (-793))) - (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793))))) + (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-4 *7 (-870)) + (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-661 (-791))) + (-5 *1 (-762 *6 *7 *8 *9)) (-5 *5 (-791))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-980 *7 *5 *6)) - (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-817)) (-4 *6 (-872)) (-4 *7 (-319))))) + (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-978 *7 *5 *6)) + (-5 *1 (-762 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-870)) (-4 *7 (-319))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) - (-4 *7 (-872)) (-4 *8 (-319)) (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) + (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) + (-4 *7 (-870)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 - (-2 (|:| |upol| (-1203 *8)) (|:| |Lval| (-663 *8)) - (|:| |Lfact| (-663 (-2 (|:| -4248 (-1203 *8)) (|:| -2646 (-560))))) + (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-661 *8)) + (|:| |Lfact| (-661 (-2 (|:| -4244 (-1201 *8)) (|:| -2642 (-558))))) (|:| |ctpol| *8))) - (-5 *1 (-764 *6 *7 *8 *9))))) + (-5 *1 (-762 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-872)) (-4 *8 (-319)) - (-4 *6 (-817)) (-4 *9 (-980 *8 *6 *7)) + (-12 (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-870)) (-4 *8 (-319)) + (-4 *6 (-815)) (-4 *9 (-978 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-663 (-2 (|:| -4248 (-1203 *9)) (|:| -2646 (-560))))))) - (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9))))) + (|:| |suPart| (-661 (-2 (|:| -4244 (-1201 *9)) (|:| -2642 (-558))))))) + (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1201 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-560)) (-4 *6 (-817)) (-4 *7 (-872)) (-4 *8 (-319)) - (-4 *9 (-980 *8 *6 *7)) - (-5 *2 (-2 (|:| -2228 (-1203 *9)) (|:| |polval| (-1203 *8)))) - (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)) (-5 *4 (-1203 *8))))) + (-12 (-5 *5 (-558)) (-4 *6 (-815)) (-4 *7 (-870)) (-4 *8 (-319)) + (-4 *9 (-978 *8 *6 *7)) + (-5 *2 (-2 (|:| -2224 (-1201 *9)) (|:| |polval| (-1201 *8)))) + (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-817)) (-4 *4 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) - (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-980 *6 *5 *4))))) + (-12 (-4 *5 (-815)) (-4 *4 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-762 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -4248 (-1203 *6)) (|:| -2646 (-560))))) - (-4 *6 (-319)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-560)) - (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5))))) + (-12 (-5 *3 (-661 (-2 (|:| -4244 (-1201 *6)) (|:| -2642 (-558))))) + (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-558)) + (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-319)) (-5 *2 (-419 *3)) - (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-980 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-761 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-760))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-758 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1133)))) - ((*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1133))))) + (-12 (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-759 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-756 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1131)))) + ((*1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-793)))) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) (-5 *2 (-793)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-748))))) + (-12 (-5 *2 (-791)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-746))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-571)) (-4 *2 (-980 *3 *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) - (-5 *3 (-421 (-976 *6))) (-4 *5 (-817)) - (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)))))))) + (-12 (-4 *6 (-569)) (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) + (-5 *3 (-419 (-974 *6))) (-4 *5 (-815)) + (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 (-976 *6))) (-4 *6 (-571)) - (-4 *2 (-980 (-421 (-976 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) - (-4 *5 (-817)) (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $)))))))) + (-12 (-5 *3 (-1201 (-974 *6))) (-4 *6 (-569)) + (-4 *2 (-978 (-419 (-974 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) + (-4 *5 (-815)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *2)) (-4 *2 (-980 (-421 (-976 *6)) *5 *4)) - (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-817)) - (-4 *4 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) (-4 *6 (-571))))) + (-12 (-5 *3 (-1201 *2)) (-4 *2 (-978 (-419 (-974 *6)) *5 *4)) + (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) + (-4 *4 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) (-4 *6 (-569))))) (((*1 *2 *3) - (-12 (-4 *4 (-817)) (-4 *5 (-13 (-872) (-10 -8 (-15 -4488 ((-1209) $))))) - (-4 *6 (-571)) (-5 *2 (-2 (|:| -2887 (-976 *6)) (|:| -2282 (-976 *6)))) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-980 (-421 (-976 *6)) *4 *5))))) + (-12 (-4 *4 (-815)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4484 ((-1207) $))))) + (-4 *6 (-569)) (-5 *2 (-2 (|:| -2883 (-974 *6)) (|:| -2278 (-974 *6)))) + (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-978 (-419 (-974 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) - (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) + (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *9)) (-4 *9 (-1081)) (-4 *5 (-872)) (-4 *6 (-817)) - (-4 *8 (-1081)) (-4 *2 (-980 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-817)) (-4 *4 (-980 *8 *6 *5))))) + (-12 (-5 *3 (-661 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-815)) + (-4 *8 (-1079)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1275 *5)) - (-5 *1 (-749 *5 *2)) (-4 *5 (-376))))) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) + (-5 *1 (-747 *5 *2)) (-4 *5 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3578 (-419 *3)) (|:| |special| (-419 *3)))) - (-5 *1 (-749 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3574 (-417 *3)) (|:| |special| (-417 *3)))) + (-5 *1 (-747 *5 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-746)) (-5 *2 (-114))))) (((*1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-661 (-1207))))) ((*1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-791)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207))))) ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *2 (-355 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) - ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1275 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1299 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1275 *5)) (-5 *2 (-711 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) - ((*1 *1 *1) (|partial| -4 *1 (-744)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) - ((*1 *1 *1) (|partial| -4 *1 (-744)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))) + ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-744 *2 *3)) (-4 *3 (-1273 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-4 *1 (-744 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1273 *5)) (-5 *2 (-709 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-947)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-742)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-742)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1275 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1280 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1209)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) + (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) + (-14 *4 (-1207)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) ((*1 *2 *1) - (-12 (-4 *2 (-1133)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-872)) + (-12 (-4 *2 (-1131)) (-5 *1 (-733 *3 *2 *4)) (-4 *3 (-870)) (-14 *4 - (-1 (-114) (-2 (|:| -2645 *3) (|:| -2646 *2)) - (-2 (|:| -2645 *3) (|:| -2646 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-381)))) + (-1 (-114) (-2 (|:| -2641 *3) (|:| -2642 *2)) + (-2 (|:| -2641 *3) (|:| -2642 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-947)) (-4 *1 (-381)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) ((*1 *2 *1) - (-12 (-4 *2 (-872)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1133)) + (-12 (-4 *2 (-870)) (-5 *1 (-733 *2 *3 *4)) (-4 *3 (-1131)) (-14 *4 - (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *3)) - (-2 (|:| -2645 *2) (|:| -2646 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1275 *3))))) + (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *3)) + (-2 (|:| -2641 *2) (|:| -2642 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-5 *2 (-1299 *3)) (-5 *1 (-734 *3 *4)) - (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-732 *3 *4)) + (-4 *4 (-1273 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1081)) (-5 *1 (-734 *3 *4)) - (-4 *4 (-1275 *3))))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-732 *3 *4)) + (-4 *4 (-1273 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1081)) (-5 *2 (-1299 *3)) (-5 *1 (-734 *3 *4)) - (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-732 *3 *4)) + (-4 *4 (-1273 *3))))) (((*1 *2) - (-12 (-4 *3 (-1081)) (-5 *2 (-988 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) - (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) + (-4 *4 (-1273 *3))))) (((*1 *2) - (-12 (-4 *3 (-1081)) (-5 *2 (-988 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) - (-4 *4 (-1275 *3))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) + (-4 *4 (-1273 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *2 (-1081)) (-5 *1 (-734 *2 *3)) (-4 *3 (-1275 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732))))) -(((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732))))) -(((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-1191)) (-5 *1 (-732))))) + (-12 (-4 *2 (-363)) (-4 *2 (-1079)) (-5 *1 (-732 *2 *3)) (-4 *3 (-1273 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-663 (-1203 *13))) (-5 *3 (-1203 *13)) - (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13)) - (-5 *7 (-663 (-663 (-2 (|:| -3565 (-793)) (|:| |pcoef| *13))))) - (-5 *8 (-663 (-793))) (-5 *9 (-1299 (-663 (-1203 *10)))) (-4 *12 (-872)) - (-4 *10 (-319)) (-4 *13 (-980 *10 *11 *12)) (-4 *11 (-817)) - (-5 *1 (-729 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-661 (-1201 *13))) (-5 *3 (-1201 *13)) + (-5 *4 (-661 *12)) (-5 *5 (-661 *10)) (-5 *6 (-661 *13)) + (-5 *7 (-661 (-661 (-2 (|:| -3561 (-791)) (|:| |pcoef| *13))))) + (-5 *8 (-661 (-791))) (-5 *9 (-1297 (-661 (-1201 *10)))) (-4 *12 (-870)) + (-4 *10 (-319)) (-4 *13 (-978 *10 *11 *12)) (-4 *11 (-815)) + (-5 *1 (-727 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1203 *9))) (-5 *6 (-663 *9)) - (-5 *7 (-663 *12)) (-5 *8 (-663 (-793))) (-4 *11 (-872)) (-4 *9 (-319)) - (-4 *12 (-980 *9 *10 *11)) (-4 *10 (-817)) (-5 *2 (-663 (-1203 *12))) - (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1203 *12))))) + (|partial| -12 (-5 *4 (-661 *11)) (-5 *5 (-661 (-1201 *9))) (-5 *6 (-661 *9)) + (-5 *7 (-661 *12)) (-5 *8 (-661 (-791))) (-4 *11 (-870)) (-4 *9 (-319)) + (-4 *12 (-978 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-661 (-1201 *12))) + (-5 *1 (-727 *10 *11 *9 *12)) (-5 *3 (-1201 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-663 (-1203 *11))) (-5 *3 (-1203 *11)) - (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793))) - (-5 *7 (-1299 (-663 (-1203 *8)))) (-4 *10 (-872)) (-4 *8 (-319)) - (-4 *11 (-980 *8 *9 *10)) (-4 *9 (-817)) (-5 *1 (-729 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-661 (-1201 *11))) (-5 *3 (-1201 *11)) + (-5 *4 (-661 *10)) (-5 *5 (-661 *8)) (-5 *6 (-661 (-791))) + (-5 *7 (-1297 (-661 (-1201 *8)))) (-4 *10 (-870)) (-4 *8 (-319)) + (-4 *11 (-978 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-727 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1209)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) - (-4 *3 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *7 (-1249)))) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *3 *5 *6 *7)) + (-4 *3 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) - (-4 *3 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249))))) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *3 *5 *6)) + (-4 *3 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) - (-4 *4 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *4 *5 *6)) + (-4 *4 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-727 *3 *4)) - (-4 *3 (-1249)) (-4 *4 (-1249))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1209))) (-5 *3 (-1209)) (-5 *1 (-549)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-725 *3 *4)) + (-4 *3 (-1247)) (-4 *4 (-1247))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1207))) (-5 *3 (-1207)) (-5 *1 (-547)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1209)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-663 (-1209))) (-5 *2 (-1209)) (-5 *1 (-726 *3)) - (-4 *3 (-633 (-549)))))) + (-12 (-5 *4 (-661 (-1207))) (-5 *2 (-1207)) (-5 *1 (-724 *3)) + (-4 *3 (-631 (-547)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) - (-4 *3 (-633 (-549))))) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-723 *3)) + (-4 *3 (-631 (-547))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1209)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-725 *3)) - (-4 *3 (-633 (-549)))))) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-723 *3)) + (-4 *3 (-631 (-547)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) - (-4 *4 (-633 (-549))) (-4 *5 (-1249)) (-4 *6 (-1249)) (-4 *7 (-1249))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-723)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-723))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *4 *5 *6 *7)) + (-4 *4 (-631 (-547))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-721)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-721))))) (((*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-710 *3 *4 *5 *6)) - (-4 *6 (-708 *3 *4 *5)))) + (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-708 *3 *4 *5 *6)) + (-4 *6 (-706 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2198 *3) (|:| -3389 *3))) (-5 *1 (-722 *3)) + (-12 (-5 *2 (-2 (|:| -2194 *3) (|:| -3385 *3))) (-5 *1 (-720 *3)) (-4 *3 (-319))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) - ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-721))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) - ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719)))) + ((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-719))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) - (-5 *2 (-1 (-973 (-229)) (-229) (-229))) (-5 *1 (-719))))) + (-5 *2 (-1 (-971 (-229)) (-229) (-229))) (-5 *1 (-717))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) - (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719))))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) + (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1121 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) - (-5 *1 (-719))))) + (-5 *5 (-1119 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) + (-5 *1 (-717))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1121 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1165 (-229))) - (-5 *1 (-719)))) + (-5 *5 (-1119 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1163 (-229))) + (-5 *1 (-717)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-229))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-719)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-229))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-717)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1165 (-229))) (-5 *3 (-1 (-973 (-229)) (-229) (-229))) - (-5 *4 (-1121 (-229))) (-5 *5 (-663 (-270))) (-5 *1 (-719))))) + (-12 (-5 *2 (-1163 (-229))) (-5 *3 (-1 (-971 (-229)) (-229) (-229))) + (-5 *4 (-1119 (-229))) (-5 *5 (-661 (-270))) (-5 *1 (-717))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4)))) + (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3))))) + (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -3060 *5)))) (-4 *5 (-1275 *4)) - (-4 *4 (-363)) (-5 *2 (-663 *5)) (-5 *1 (-220 *4 *5)))) + (-12 (-5 *3 (-661 (-2 (|:| |deg| (-791)) (|:| -3056 *5)))) (-4 *5 (-1273 *4)) + (-4 *4 (-363)) (-5 *2 (-661 *5)) (-5 *1 (-220 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-2 (|:| -4248 *5) (|:| -4464 (-560))))) (-5 *4 (-560)) - (-4 *5 (-1275 *4)) (-5 *2 (-663 *5)) (-5 *1 (-718 *5))))) + (-12 (-5 *3 (-661 (-2 (|:| -4244 *5) (|:| -4460 (-558))))) (-5 *4 (-558)) + (-4 *5 (-1273 *4)) (-5 *2 (-661 *5)) (-5 *1 (-716 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4248 *3) (|:| -4464 *4)))) - (-5 *1 (-718 *3)) (-4 *3 (-1275 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1275 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1249)) (-4 *2 (-1133)))) - ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1133))))) + (-12 (-5 *4 (-558)) (-5 *2 (-661 (-2 (|:| -4244 *3) (|:| -4460 *4)))) + (-5 *1 (-716 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1273 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-717 *3)) (-4 *3 (-1133)) - (-5 *2 (-663 (-2 (|:| -2300 *3) (|:| -2171 (-793)))))))) + (-12 (-4 *1 (-715 *3)) (-4 *3 (-1131)) + (-5 *2 (-661 (-2 (|:| -2296 *3) (|:| -2167 (-791)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-1133)) (-4 *7 (-928 *6)) (-5 *2 (-711 *7)) - (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4511))))))) + (-12 (-5 *5 (-791)) (-4 *6 (-1131)) (-4 *7 (-926 *6)) (-5 *2 (-709 *7)) + (-5 *1 (-712 *6 *7 *3 *4)) (-4 *3 (-385 *7)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4507))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *4 (-663 (-1209))) - (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208)))) + (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-661 (-1207))) + (-5 *2 (-709 (-326 (-229)))) (-5 *1 (-208)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-4 *6 (-928 *5)) (-5 *2 (-711 *6)) - (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511))))))) + (-12 (-4 *5 (-1131)) (-4 *6 (-926 *5)) (-5 *2 (-709 *6)) + (-5 *1 (-712 *5 *6 *3 *4)) (-4 *3 (-385 *6)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-793)) (-4 *6 (-1133)) (-4 *3 (-928 *6)) (-5 *2 (-711 *3)) - (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4511))))))) + (-12 (-5 *5 (-791)) (-4 *6 (-1131)) (-4 *3 (-926 *6)) (-5 *2 (-709 *3)) + (-5 *1 (-712 *6 *3 *7 *4)) (-4 *7 (-385 *3)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4507))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-4 *3 (-928 *5)) (-5 *2 (-711 *3)) - (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511))))))) + (-12 (-4 *5 (-1131)) (-4 *3 (-926 *5)) (-5 *2 (-709 *3)) + (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1133)) (-4 *2 (-928 *4)) (-5 *1 (-714 *4 *2 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4511))))))) + (-12 (-4 *4 (-1131)) (-4 *2 (-926 *4)) (-5 *1 (-712 *4 *2 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4507))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-4 *2 (-928 *5)) (-5 *1 (-714 *5 *2 *3 *4)) - (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511))))))) + (-12 (-4 *5 (-1131)) (-4 *2 (-926 *5)) (-5 *1 (-712 *5 *2 *3 *4)) + (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1133)) (-4 *3 (-928 *5)) (-5 *2 (-1299 *3)) - (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4511))))))) -(((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888)))))) -(((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-888)))))) + (-12 (-4 *5 (-1131)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) + (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4507))))))) +(((*1 *1 *2) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886)))))) +(((*1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-886)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1081)) (-5 *1 (-712 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1081)) (-5 *1 (-712 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) + (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1079)) (-5 *1 (-710 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6))))) + (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) + (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6))))) + (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) + (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *1 (-710 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6))))) + (-12 (-5 *3 (-558)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *1 (-708 *4 *5 *6 *2)) (-4 *2 (-706 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1081)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1081)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-704 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1133))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1133)) (-4 *6 (-1133)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1133))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-704 *4 *5 *6)) (-4 *5 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1133)) (-4 *4 (-1133)) (-4 *6 (-1133)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1131)) (-4 *4 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-705 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-703 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1133)) (-4 *5 (-1133)) (-5 *2 (-1 *5)) - (-5 *1 (-705 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5)) + (-5 *1 (-703 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1133)) - (-4 *3 (-1133))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-703 *4 *3)) (-4 *4 (-1131)) + (-4 *3 (-1131))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1133)) - (-5 *1 (-700 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1133)) (-5 *1 (-704 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1133))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1133)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560)) (-5 *2 (-663 *5)) - (-5 *1 (-704 *5)) (-4 *5 (-1133))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1250))) (-5 *3 (-1250)) (-5 *1 (-703))))) + (-12 (-5 *3 (-1 *2 (-791) *2)) (-5 *4 (-791)) (-4 *2 (-1131)) + (-5 *1 (-698 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-791) *3)) (-4 *3 (-1131)) (-5 *1 (-702 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-702 *2)) (-4 *2 (-1131)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-661 *5) (-661 *5))) (-5 *4 (-558)) (-5 *2 (-661 *5)) + (-5 *1 (-702 *5)) (-4 *5 (-1131))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1248))) (-5 *3 (-1248)) (-5 *1 (-701))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1133)) (-4 *6 (-1133)) - (-4 *2 (-1133)) (-5 *1 (-702 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *2 (-1131)) (-5 *1 (-700 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-699 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-699 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1133)) (-5 *1 (-700 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-791)) (-4 *2 (-1131)) (-5 *1 (-698 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-1124 (-976 (-560)))) (-5 *2 (-342)) + (-12 (-5 *3 (-1207)) (-5 *4 (-1122 (-974 (-558)))) (-5 *2 (-342)) (-5 *1 (-344)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1081)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1079)) (-4 *3 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1081)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1079)) (-4 *3 (-1131))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-1081)) (-4 *2 (-1133))))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1079)) (-4 *2 (-1131))))) (((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1133))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1209)) (-5 *1 (-697 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1299 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1249)) (-5 *2 (-793))))) -(((*1 *2 *3) - (-12 (-5 *3 (-843 *4)) (-4 *4 (-872)) (-5 *2 (-114)) (-5 *1 (-694 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-872)) (-5 *1 (-694 *3))))) + (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-695 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297 (-791))) (-5 *1 (-695 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))) +(((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1247)) (-5 *2 (-791))))) +(((*1 *2 *3) + (-12 (-5 *3 (-841 *4)) (-4 *4 (-870)) (-5 *2 (-114)) (-5 *1 (-692 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-870)) (-5 *1 (-692 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-843 *3)) (-4 *3 (-872)) (-5 *1 (-694 *3))))) + (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-870)) (-5 *1 (-692 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-949)) (-4 *5 (-872)) - (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5))))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-947)) (-4 *5 (-870)) + (-5 *2 (-58 (-661 (-692 *5)))) (-5 *1 (-692 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-949)) (-4 *5 (-872)) (-5 *2 (-663 (-694 *5))) - (-5 *1 (-694 *5))))) + (-12 (-5 *3 (-661 *5)) (-5 *4 (-947)) (-4 *5 (-870)) (-5 *2 (-661 (-692 *5))) + (-5 *1 (-692 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-872)) - (-4 *8 (-980 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-817)) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *7)) (-4 *7 (-870)) + (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-5 *2 - (-2 (|:| |particular| (-3 (-1299 (-421 *8)) "failed")) - (|:| -2236 (-663 (-1299 (-421 *8)))))) - (-5 *1 (-691 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1297 (-419 *8)) "failed")) + (|:| -2232 (-661 (-1297 (-419 *8)))))) + (-5 *1 (-689 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4512)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4512)))) (-5 *2 (-114)) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4508)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))) (-5 *2 (-114)) + (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *5)) (-5 *4 (-1299 *5)) (-4 *5 (-376)) (-5 *2 (-114)) - (-5 *1 (-690 *5))))) + (-12 (-5 *3 (-709 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-114)) + (-5 *1 (-688 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-1203 *4))) (-5 *3 (-1203 *4)) (-4 *4 (-940)) - (-5 *1 (-685 *4))))) -(((*1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) + (|partial| -12 (-5 *2 (-661 (-1201 *4))) (-5 *3 (-1201 *4)) (-4 *4 (-938)) + (-5 *1 (-683 *4))))) +(((*1 *1 *1) (-4 *1 (-682)))) +(((*1 *1 *1 *1) (-4 *1 (-682)))) +(((*1 *1 *1 *1) (-4 *1 (-682)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) - (-4 *2 (-680 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) + (-4 *2 (-678 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1081)) (-4 *3 (-376)))) + (-12 (-5 *2 (-791)) (-4 *1 (-678 *3)) (-4 *3 (-1079)) (-4 *3 (-376)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-682 *5 *2)) - (-4 *2 (-680 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376)))) + (-12 (-5 *3 (-791)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-680 *5 *2)) + (-4 *2 (-678 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) - (-4 *2 (-680 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) + (-4 *2 (-678 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *5 (-1275 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) - (-5 *3 (-677 (-421 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1081)) (-4 *2 (-376))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1266 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1249))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1249)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))) - (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-376) (-149) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *5 (-1273 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) + (-5 *3 (-675 (-419 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1079)) (-4 *2 (-376))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-558))) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1247))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-671 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) + (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))) + (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 *4)))) (-4 *3 (-1133)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 *4)))) (-4 *3 (-1131)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1133)) (-5 *2 (-793)))) + (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1131)) (-5 *2 (-791)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) (-4 *4 (-1133)) + (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-669 *4 *2 *5)) (-4 *4 (-1131)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1133)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1133)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1133)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) + (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-1133)) (-5 *1 (-671 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-558)) (-4 *2 (-1131)) (-5 *1 (-669 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1249)))) - ((*1 *2 *2) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) + ((*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-385 *2)) (-4 *2 (-1249)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) ((*1 *1 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-23)) + (-12 (-5 *2 (-114)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-374 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-1 (-791) (-791))) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)) - (-4 *3 (-1133))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)) + (-4 *3 (-1131))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-374 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-374 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-671 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-669 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1133))))) -(((*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1249))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1133)) (-4 *2 (-1249))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-667 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1131))))) +(((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-661 *3)) (-4 *3 (-1247))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1131)) (-4 *2 (-1247))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) - (-14 *4 (-663 (-1209)))))) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) + (-14 *4 (-661 (-1207)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) - (-5 *2 (-2 (|:| -1795 (-711 *4)) (|:| |vec| (-1299 *4)))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| -1793 (-709 *4)) (|:| |vec| (-1297 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) (-5 *2 (-711 *4))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) (-5 *2 (-709 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-711 *1)) (-5 *4 (-1299 *1)) (-4 *1 (-660 *5)) (-4 *5 (-1081)) - (-5 *2 (-2 (|:| -1795 (-711 *5)) (|:| |vec| (-1299 *5)))))) + (-12 (-5 *3 (-709 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-658 *5)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -1793 (-709 *5)) (|:| |vec| (-1297 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1081)) (-5 *2 (-711 *4))))) + (-12 (-5 *3 (-709 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1079)) (-5 *2 (-709 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) - (-14 *4 (-663 (-1209)))))) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) + (-14 *4 (-661 (-1207)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 *5))) - (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1299 *5)) (-5 *1 (-658 *5 *4)))) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 *5))) + (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) (-5 *1 (-656 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1299 *4)) (-4 *4 (-13 (-1081) (-660 *5))) - (-3045 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1299 (-421 *5))) - (-5 *1 (-658 *5 *4))))) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-658 *5))) + (-3041 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1297 (-419 *5))) + (-5 *1 (-656 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1299 *5)) (-4 *5 (-13 (-1081) (-660 *4))) - (-4 *4 (-571)) (-5 *2 (-1299 *4)) (-5 *1 (-658 *4 *5))))) + (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-658 *4))) + (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-656 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *5)) (-4 *5 (-13 (-1081) (-660 *4))) (-4 *4 (-571)) - (-5 *2 (-114)) (-5 *1 (-658 *4 *5))))) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-658 *4))) (-4 *4 (-569)) + (-5 *2 (-114)) (-5 *1 (-656 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-866 *3))) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-3 (-866 *3) - (-2 (|:| |leftHandLimit| (-3 (-866 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-866 *3) #1#))) + (-3 (-864 *3) + (-2 (|:| |leftHandLimit| (-3 (-864 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-864 *3) #1#))) "failed")) - (-5 *1 (-655 *5 *3)))) + (-5 *1 (-653 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1191)) - (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-866 *3)) - (-5 *1 (-655 *6 *3)))) + (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189)) + (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-864 *3)) + (-5 *1 (-653 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-866 (-976 *5)))) (-4 *5 (-466)) + (-12 (-5 *4 (-305 (-864 (-974 *5)))) (-4 *5 (-464)) (-5 *2 - (-3 (-866 (-421 (-976 *5))) - (-2 (|:| |leftHandLimit| (-3 (-866 (-421 (-976 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-866 (-421 (-976 *5))) #2#))) + (-3 (-864 (-419 (-974 *5))) + (-2 (|:| |leftHandLimit| (-3 (-864 (-419 (-974 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-864 (-419 (-974 *5))) #2#))) #3="failed")) - (-5 *1 (-656 *5)) (-5 *3 (-421 (-976 *5))))) + (-5 *1 (-654 *5)) (-5 *3 (-419 (-974 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-466)) + (-12 (-5 *4 (-305 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-464)) (-5 *2 - (-3 (-866 *3) - (-2 (|:| |leftHandLimit| (-3 (-866 *3) #2#)) - (|:| |rightHandLimit| (-3 (-866 *3) #2#))) + (-3 (-864 *3) + (-2 (|:| |leftHandLimit| (-3 (-864 *3) #2#)) + (|:| |rightHandLimit| (-3 (-864 *3) #2#))) #3#)) - (-5 *1 (-656 *5)))) + (-5 *1 (-654 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 (-421 (-976 *6)))) (-5 *5 (-1191)) - (-5 *3 (-421 (-976 *6))) (-4 *6 (-466)) (-5 *2 (-866 *3)) - (-5 *1 (-656 *6))))) + (|partial| -12 (-5 *4 (-305 (-419 (-974 *6)))) (-5 *5 (-1189)) + (-5 *3 (-419 (-974 *6))) (-4 *6 (-464)) (-5 *2 (-864 *3)) + (-5 *1 (-654 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-305 (-856 *3))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-856 *3)) - (-5 *1 (-655 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (|partial| -12 (-5 *4 (-305 (-854 *3))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-854 *3)) + (-5 *1 (-653 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-856 (-976 *5)))) (-4 *5 (-466)) - (-5 *2 (-856 (-421 (-976 *5)))) (-5 *1 (-656 *5)) (-5 *3 (-421 (-976 *5))))) + (-12 (-5 *4 (-305 (-854 (-974 *5)))) (-4 *5 (-464)) + (-5 *2 (-854 (-419 (-974 *5)))) (-5 *1 (-654 *5)) (-5 *3 (-419 (-974 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-421 (-976 *5)))) (-5 *3 (-421 (-976 *5))) (-4 *5 (-466)) - (-5 *2 (-856 *3)) (-5 *1 (-656 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651))))) -(((*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1) (-5 *1 (-651)))) + (-12 (-5 *4 (-305 (-419 (-974 *5)))) (-5 *3 (-419 (-974 *5))) (-4 *5 (-464)) + (-5 *2 (-854 *3)) (-5 *1 (-654 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-649))))) +(((*1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-5 *1 (-649)))) (((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) - (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-648 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-663 (-1209))) - (-4 *5 (-466)) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-661 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-661 (-1207))) + (-4 *5 (-464)) (-5 *1 (-648 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-889 *4)) (-14 *4 (-663 (-1209))) - (-4 *5 (-466)) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-887 *4)) (-14 *4 (-661 (-1207))) + (-4 *5 (-464)) (-5 *1 (-648 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466)) - (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1209))) (-5 *1 (-650 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-255 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-255 *5 *6)) (-14 *5 (-661 (-1207))) (-5 *1 (-648 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-973 (-229)) (-973 (-229)))) (-5 *3 (-663 (-270))) + (-12 (-5 *2 (-1 (-971 (-229)) (-971 (-229)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) (-14 *5 (-663 (-1209))) - (-4 *6 (-466)) (-5 *2 (-1299 *6)) (-5 *1 (-650 *5 *6))))) + (-12 (-5 *4 (-661 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-661 (-1207))) + (-4 *6 (-464)) (-5 *2 (-1297 *6)) (-5 *1 (-648 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1209))) (-4 *4 (-466)) - (-5 *1 (-650 *3 *4))))) + (-12 (-5 *2 (-661 (-493 *3 *4))) (-14 *3 (-661 (-1207))) (-4 *4 (-464)) + (-5 *1 (-648 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-889 *5)) (-14 *5 (-663 (-1209))) - (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) + (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-661 (-1207))) + (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-889 *5)) (-14 *5 (-663 (-1209))) - (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466))))) + (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-661 (-1207))) + (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) - (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) + (-5 *2 (-661 (-255 *4 *5))) (-5 *1 (-648 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-663 (-1209))) (-4 *5 (-466)) - (-5 *2 (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560))))) - (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5)))))) + (-12 (-14 *4 (-661 (-1207))) (-4 *5 (-464)) + (-5 *2 (-2 (|:| |glbase| (-661 (-255 *4 *5))) (|:| |glval| (-661 (-558))))) + (-5 *1 (-648 *4 *5)) (-5 *3 (-661 (-255 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1209))) (-4 *5 (-466)) - (-5 *2 (-2 (|:| |gblist| (-663 (-255 *4 *5))) (|:| |gvlist| (-663 (-560))))) - (-5 *1 (-650 *4 *5))))) + (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1207))) (-4 *5 (-464)) + (-5 *2 (-2 (|:| |gblist| (-661 (-255 *4 *5))) (|:| |gvlist| (-661 (-558))))) + (-5 *1 (-648 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1034) (-1235))))) - ((*1 *1 *1) (-4 *1 (-649)))) + (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1032) (-1233))))) + ((*1 *1 *1) (-4 *1 (-647)))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-435 *4)))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-433 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) - (-4 *5 (-435 *4)))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) + (-4 *5 (-433 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) - (-4 *5 (-13 (-435 *4) (-1034))))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) + (-4 *5 (-13 (-433 *4) (-1032))))) ((*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1133)) (-5 *2 (-114)) (-5 *1 (-434 *4 *5)) - (-4 *4 (-435 *5)))) + (-12 (-5 *3 (-115)) (-4 *5 (-1131)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) + (-4 *4 (-433 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-445 *4 *5)) - (-4 *5 (-435 *4)))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) + (-4 *5 (-433 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-648 *4 *5)) - (-4 *5 (-13 (-435 *4) (-1034) (-1235)))))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-646 *4 *5)) + (-4 *5 (-13 (-433 *4) (-1032) (-1233)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) - (-14 *6 (-663 (-1209))) - (-5 *2 (-663 (-1178 *5 (-545 (-889 *6)) (-889 *6) (-802 *5 (-889 *6))))) - (-5 *1 (-647 *5 *6))))) + (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-661 (-1207))) + (-5 *2 (-661 (-1176 *5 (-543 (-887 *6)) (-887 *6) (-800 *5 (-887 *6))))) + (-5 *1 (-645 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-802 *5 (-889 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) - (-14 *6 (-663 (-1209))) (-5 *2 (-663 (-1078 *5 *6))) (-5 *1 (-647 *5 *6))))) + (-12 (-5 *3 (-661 (-800 *5 (-887 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-661 (-1207))) (-5 *2 (-661 (-1076 *5 *6))) (-5 *1 (-645 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 (-976 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-661 (-974 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-461 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-459 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *7)))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-461 *4 *5 *6 *7)))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-459 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-663 (-802 *3 (-889 *4)))) (-4 *3 (-466)) - (-14 *4 (-663 (-1209))) (-5 *1 (-647 *3 *4))))) + (-12 (-5 *2 (-661 (-800 *3 (-887 *4)))) (-4 *3 (-464)) + (-14 *4 (-661 (-1207))) (-5 *1 (-645 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-663 (-976 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-663 (-1209))))) + (|partial| -12 (-5 *2 (-661 (-974 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-663 (-802 *3 (-889 *4)))) (-4 *3 (-466)) - (-14 *4 (-663 (-1209))) (-5 *1 (-647 *3 *4))))) + (|partial| -12 (-5 *2 (-661 (-800 *3 (-887 *4)))) (-4 *3 (-464)) + (-14 *4 (-661 (-1207))) (-5 *1 (-645 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-976 *4))) (-4 *4 (-466)) (-5 *2 (-114)) - (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1209))))) + (-12 (-5 *3 (-661 (-974 *4))) (-4 *4 (-464)) (-5 *2 (-114)) + (-5 *1 (-373 *4 *5)) (-14 *5 (-661 (-1207))))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-802 *4 (-889 *5)))) (-4 *4 (-466)) - (-14 *5 (-663 (-1209))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5))))) + (-12 (-5 *3 (-661 (-800 *4 (-887 *5)))) (-4 *4 (-464)) + (-14 *5 (-661 (-1207))) (-5 *2 (-114)) (-5 *1 (-645 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-872)) (-5 *2 (-663 (-686 *4 *5))) - (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560))))) - (-14 *6 (-949))))) + (-12 (-5 *3 (-661 *4)) (-4 *4 (-870)) (-5 *2 (-661 (-684 *4 *5))) + (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-13 (-175) (-737 (-419 (-558))))) + (-14 *6 (-947))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) - (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949))))) + (-12 (-5 *2 (-661 (-2 (|:| |k| (-692 *3)) (|:| |c| *4)))) + (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-872)) - (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-949))))) + (-12 (-5 *2 (-661 (-305 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-947))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -2001 (-663 (-2 (|:| |irr| *10) (|:| -2640 (-560))))))) - (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-872)) (-4 *3 (-319)) - (-4 *10 (-980 *3 *9 *8)) (-4 *9 (-817)) + (|:| -1997 (-661 (-2 (|:| |irr| *10) (|:| -2636 (-558))))))) + (-5 *6 (-661 *3)) (-5 *7 (-661 *8)) (-4 *8 (-870)) (-4 *3 (-319)) + (-4 *10 (-978 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 - (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3) - (|:| |corrfact| (-663 (-1203 *3))))) - (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1203 *3)))))) + (-2 (|:| |polfac| (-661 *10)) (|:| |correct| *3) + (|:| |corrfact| (-661 (-1201 *3))))) + (-5 *1 (-642 *8 *9 *3 *10)) (-5 *4 (-661 (-1201 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-872)) - (-4 *7 (-817)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8)) - (-4 *8 (-980 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *6 (-1097 *3 *4 *5)) - (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1103 *3 *4 *5 *6)) - (-4 *2 (-1141 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1275 *2))))) + (-12 (-5 *4 (-791)) (-5 *5 (-661 *3)) (-4 *3 (-319)) (-4 *6 (-870)) + (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-642 *6 *7 *3 *8)) + (-4 *8 (-978 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-641 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1101 *3 *4 *5 *6)) + (-4 *2 (-1139 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1235) (-990) (-29 *4)))))) -(((*1 *1) (-5 *1 (-636)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-29 *4)))))) +(((*1 *1) (-5 *1 (-634)))) (((*1 *2 *3 *3 *3) (|partial| -12 - (-4 *4 (-13 (-149) (-27) (-1070 (-560)) (-1070 (-421 (-560))))) - (-4 *5 (-1275 *4)) (-5 *2 (-1203 (-421 *5))) (-5 *1 (-634 *4 *5)) - (-5 *3 (-421 *5)))) + (-4 *4 (-13 (-149) (-27) (-1068 (-558)) (-1068 (-419 (-558))))) + (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-419 *5))) (-5 *1 (-632 *4 *5)) + (-5 *3 (-419 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-149) (-27) (-1070 (-560)) (-1070 (-421 (-560))))) - (-5 *2 (-1203 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1133)) (-4 *2 (-1133)) - (-5 *1 (-631 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) -(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1235)))) - ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1133))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) + (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-149) (-27) (-1068 (-558)) (-1068 (-419 (-558))))) + (-5 *2 (-1201 (-419 *6))) (-5 *1 (-632 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-628 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-629 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-628 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1209)) (-5 *1 (-630 *3)) (-4 *3 (-1133)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-628 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1133)) - (-5 *1 (-630 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1209)) (-5 *1 (-630 *3)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-115)) (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-1131)) + (-5 *1 (-628 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-628 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-114))))) + (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-625)))) -(((*1 *1) (-5 *1 (-624)))) -(((*1 *1) (-5 *1 (-624)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) + (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) +(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) (((*1 *1) (-5 *1 (-623)))) (((*1 *1) (-5 *1 (-623)))) +(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-623)))) (((*1 *1) (-5 *1 (-623)))) (((*1 *1) (-5 *1 (-622)))) (((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *1) (-12 (-5 *2 (-988 (-187 (-141)))) (-5 *1 (-345)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-619))))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *2 *1) (-12 (-5 *2 (-986 (-187 (-141)))) (-5 *1 (-345)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-617))))) (((*1 *2 *1) (-12 (-5 *2 - (-663 + (-661 (-2 - (|:| -4376 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (|:| -4372 + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2300 + (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -11804,508 +11795,508 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-574)))) + (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-663 *4))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-661 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-114))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1249)) (-5 *2 (-663 *3))))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1247)) (-5 *2 (-661 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1133)) - (-4 *3 (-1249)) (-4 *3 (-1133)) (-5 *2 (-114))))) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1131)) + (-4 *3 (-1247)) (-4 *3 (-1131)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1133)) (-4 *2 (-872))))) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1131)) (-4 *2 (-870))))) (((*1 *2 *1) - (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1249)) (-4 *2 (-1133)) (-4 *2 (-872))))) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1131)) (-4 *2 (-870))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1249)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4512)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1133)) - (-4 *2 (-1249))))) + (-12 (|has| *1 (-6 -4508)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1247))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4512)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1133)) - (-4 *4 (-1249)) (-5 *2 (-1305))))) + (-12 (|has| *1 (-6 -4508)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1247)) (-5 *2 (-1303))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1209))) - (-4 *2 (-13 (-435 (-171 *5)) (-1034) (-1235))) (-4 *5 (-571)) - (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1034) (-1235)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3)) - (-4 *5 (-13 (-435 *4) (-1034) (-1235))) - (-4 *3 (-13 (-435 (-171 *4)) (-1034) (-1235)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1034) (-1235))) - (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1034) (-1235)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1034) (-1235))) - (-5 *1 (-614 *4 *2 *3)) (-4 *3 (-13 (-435 (-171 *4)) (-1034) (-1235)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1034) (-1235))) (-4 *4 (-571)) - (-4 *2 (-13 (-435 (-171 *4)) (-1034) (-1235))) (-5 *1 (-614 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-611)))) -(((*1 *1) (-5 *1 (-611)))) -(((*1 *1) (-5 *1 (-611)))) -(((*1 *1) (-5 *1 (-611)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611))))) + (-12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-661 (-1207))) + (-4 *2 (-13 (-433 (-171 *5)) (-1032) (-1233))) (-4 *5 (-569)) + (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1032) (-1233)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) + (-4 *5 (-13 (-433 *4) (-1032) (-1233))) + (-4 *3 (-13 (-433 (-171 *4)) (-1032) (-1233)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1032) (-1233))) + (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1032) (-1233)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1032) (-1233))) + (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1032) (-1233)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1032) (-1233))) (-4 *4 (-569)) + (-4 *2 (-13 (-433 (-171 *4)) (-1032) (-1233))) (-5 *1 (-612 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-609))) (-5 *1 (-609))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1058 (-866 (-560)))) - (-5 *3 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1081)) - (-5 *1 (-609 *4))))) + (-12 (-5 *2 (-1056 (-864 (-558)))) + (-5 *3 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1079)) + (-5 *1 (-607 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1058 (-866 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-1056 (-864 (-558)))) (-5 *1 (-607 *3)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-609 *3)) - (-4 *3 (-1081))))) + (-12 (-5 *2 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-607 *3)) + (-4 *3 (-1079))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1081))))) -(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1081))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1081))))) + (|partial| -12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1079))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1079))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1187 (-2 (|:| |k| (-560)) (|:| |c| *6)))) - (-5 *4 (-1058 (-866 (-560)))) (-5 *5 (-1209)) (-5 *7 (-421 (-560))) - (-4 *6 (-1081)) (-5 *2 (-888)) (-5 *1 (-609 *6))))) + (-12 (-5 *3 (-1185 (-2 (|:| |k| (-558)) (|:| |c| *6)))) + (-5 *4 (-1056 (-864 (-558)))) (-5 *5 (-1207)) (-5 *7 (-419 (-558))) + (-4 *6 (-1079)) (-5 *2 (-886)) (-5 *1 (-607 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1081))))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *1 *1) - (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1081))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-1141 *5 *6 *7 *8)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-1097 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-605 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-949))) (-5 *4 (-932 (-560))) (-5 *2 (-711 (-560))) - (-5 *1 (-604)))) + (-12 (-5 *3 (-661 (-947))) (-5 *4 (-930 (-558))) (-5 *2 (-709 (-558))) + (-5 *1 (-602)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 (-949))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) + (-12 (-5 *3 (-661 (-947))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-949))) (-5 *4 (-663 (-932 (-560)))) - (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-949))) (-5 *2 (-793)) (-5 *1 (-604))))) + (-12 (-5 *3 (-661 (-947))) (-5 *4 (-661 (-930 (-558)))) + (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-947))) (-5 *2 (-791)) (-5 *1 (-602))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1235) (-29 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 *5))) (-5 *4 (-1209)) (-4 *5 (-149)) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-326 *5)) - (-5 *1 (-603 *5))))) + (-12 (-5 *3 (-419 (-974 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-326 *5)) + (-5 *1 (-601 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1235))) (-5 *1 (-599 *4 *2)) - (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))))) + (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1233))) (-5 *1 (-597 *4 *2)) + (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))))) ((*1 *2 *3) - (-12 (-5 *3 (-597 (-421 (-976 *4)))) - (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *2 (-326 *4)) - (-5 *1 (-603 *4))))) + (-12 (-5 *3 (-595 (-419 (-974 *4)))) + (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-326 *4)) + (-5 *1 (-601 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-602 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) +(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) + (|partial| -12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3181 *3) (|:| -2646 (-793)))) (-5 *1 (-601 *3)) - (-4 *3 (-559))))) + (-12 (-5 *2 (-2 (|:| -3177 *3) (|:| -2642 (-791)))) (-5 *1 (-599 *3)) + (-4 *3 (-557))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600))))) + (-12 (-5 *4 (-791)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-663 - (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 *2)) - (|:| |logand| (-1203 *2))))) - (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) - (-5 *1 (-597 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376))))) + (-661 + (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 *2)) + (|:| |logand| (-1201 *2))))) + (-5 *4 (-661 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) + (-5 *1 (-595 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376))))) (((*1 *2 *1) (-12 (-5 *2 - (-663 - (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1203 *3)) - (|:| |logand| (-1203 *3))))) - (-5 *1 (-597 *3)) (-4 *3 (-376))))) -(((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-597 *3)) (-4 *3 (-376))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-596))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-593))))) -(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593))))) -(((*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593))))) -(((*1 *2 *1) (-12 (-5 *2 (-713 (-1 (-549) (-663 (-549))))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-592)))) -(((*1 *1) (-5 *1 (-592)))) -(((*1 *1) (-5 *1 (-592)))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-591)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591))))) + (-661 + (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1201 *3)) + (|:| |logand| (-1201 *3))))) + (-5 *1 (-595 *3)) (-4 *3 (-376))))) +(((*1 *2 *1) + (-12 (-5 *2 (-661 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-595 *3)) (-4 *3 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-595 *3)) (-4 *3 (-376))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-594))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591))))) +(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-591))))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-711 (-591))) (-5 *1 (-591))))) +(((*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-547) (-661 (-547))))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-661 (-547)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-590)))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-589))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1209)) - (-4 *4 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1235) (-990) (-1171) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-1169) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-588 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6)) + (-2 (|:| |ir| (-595 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6))))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-642 *4 *5)) + (|partial| -12 (-5 *2 (-640 *4 *5)) (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3625 *4) (|:| |sol?| (-114))) (-560) *4)) - (-4 *4 (-376)) (-4 *5 (-1275 *4)) (-5 *1 (-588 *4 *5))))) + (-1 (-2 (|:| |ans| *4) (|:| -3621 *4) (|:| |sol?| (-114))) (-558) *4)) + (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2365 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1275 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2361 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-663 (-421 *7))) (-4 *7 (-1275 *6)) - (-5 *3 (-421 *7)) (-4 *6 (-376)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-661 (-419 *7))) (-4 *7 (-1273 *6)) + (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-588 *6 *7))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-586 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -2365 (-421 *6)) (|:| |coeff| (-421 *6)))) - (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -2361 (-419 *6)) (|:| |coeff| (-419 *6)))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3625 *7) (|:| |sol?| (-114))) (-560) *7)) - (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1275 *7)) (-5 *3 (-421 *8)) + (-1 (-2 (|:| |ans| *7) (|:| -3621 *7) (|:| |sol?| (-114))) (-558) *7)) + (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-588 *7 *8))))) + (-5 *1 (-586 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2365 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1275 *7)) (-5 *3 (-421 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2361 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-588 *7 *8))))) + (-5 *1 (-586 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3625 *6) (|:| |sol?| (-114))) (-560) *6)) - (-4 *6 (-376)) (-4 *7 (-1275 *6)) + (-1 (-2 (|:| |ans| *6) (|:| -3621 *6) (|:| |sol?| (-114))) (-558) *6)) + (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) - (-2 (|:| -2365 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) - (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -2361 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2365 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1275 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2361 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) - (-2 (|:| -2365 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) - (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -2361 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) - (-4 *6 (-376)) (-4 *7 (-1275 *6)) - (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) - (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-661 *6) "failed") (-558) *6 *6)) + (-4 *6 (-376)) (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3625 *6) (|:| |sol?| (-114))) (-560) *6)) - (-4 *6 (-376)) (-4 *7 (-1275 *6)) - (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) - (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) + (-1 (-2 (|:| |ans| *6) (|:| -3621 *6) (|:| |sol?| (-114))) (-558) *6)) + (-4 *6 (-376)) (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2365 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1275 *6)) - (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) - (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2361 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-597 *3) *3 (-1209))) + (-12 (-5 *5 (-1 (-595 *3) *3 (-1207))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1209))) - (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1070 *4)) (-4 *3 (-435 *7)) - (-5 *4 (-1209)) (-4 *7 (-633 (-916 (-560)))) (-4 *7 (-466)) - (-4 *7 (-912 (-560))) (-4 *7 (-1133)) (-5 *2 (-597 *3)) - (-5 *1 (-587 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1207))) + (-4 *3 (-296)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-433 *7)) + (-5 *4 (-1207)) (-4 *7 (-631 (-914 (-558)))) (-4 *7 (-464)) + (-4 *7 (-910 (-558))) (-4 *7 (-1131)) (-5 *2 (-595 *3)) + (-5 *1 (-585 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-466)) (-4 *4 (-1133)) (-5 *1 (-587 *4 *2)) - (-4 *2 (-296)) (-4 *2 (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-464)) (-4 *4 (-1131)) (-5 *1 (-585 *4 *2)) + (-4 *2 (-296)) (-4 *2 (-433 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-4 *4 (-1133)) (-5 *1 (-587 *4 *2)) - (-4 *2 (-435 *4))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-4 *4 (-1131)) (-5 *1 (-585 *4 *2)) + (-4 *2 (-433 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-1209)) (-4 *6 (-435 *5)) (-4 *5 (-1133)) - (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6))))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-1207)) (-4 *6 (-433 *5)) (-4 *5 (-1131)) + (-5 *2 (-661 (-628 *6))) (-5 *1 (-585 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1209)) (-5 *2 (-630 *6)) - (-4 *6 (-435 *5)) (-4 *5 (-1133)) (-5 *1 (-587 *5 *6))))) + (-12 (-5 *3 (-661 (-628 *6))) (-5 *4 (-1207)) (-5 *2 (-628 *6)) + (-4 *6 (-433 *5)) (-4 *5 (-1131)) (-5 *1 (-585 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1133)) (-5 *2 (-630 *5)) - (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4))))) + (-12 (-5 *3 (-661 (-628 *5))) (-4 *4 (-1131)) (-5 *2 (-628 *5)) + (-5 *1 (-585 *4 *5)) (-4 *5 (-433 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1209)) (-4 *5 (-435 *4)) - (-4 *4 (-1133)) (-5 *1 (-587 *4 *5))))) + (-12 (-5 *2 (-661 (-628 *5))) (-5 *3 (-1207)) (-4 *5 (-433 *4)) + (-4 *4 (-1131)) (-5 *1 (-585 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-149))) - (-5 *2 (-2 (|:| -2365 (-421 (-976 *5))) (|:| |coeff| (-421 (-976 *5))))) - (-5 *1 (-584 *5)) (-5 *3 (-421 (-976 *5)))))) + (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-149))) + (-5 *2 (-2 (|:| -2361 (-419 (-974 *5))) (|:| |coeff| (-419 (-974 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-974 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 (-421 (-976 *6)))) - (-5 *3 (-421 (-976 *6))) (-4 *6 (-13 (-571) (-1070 (-560)) (-149))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 (-419 (-974 *6)))) + (-5 *3 (-419 (-974 *6))) (-4 *6 (-13 (-569) (-1068 (-558)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-584 *6))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-582 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-421 (-976 *4))) (-5 *3 (-1209)) - (-4 *4 (-13 (-571) (-1070 (-560)) (-149))) (-5 *1 (-584 *4))))) + (|partial| -12 (-5 *2 (-419 (-974 *4))) (-5 *3 (-1207)) + (-4 *4 (-13 (-569) (-1068 (-558)) (-149))) (-5 *1 (-582 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1235) (-29 *5))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-149))) - (-5 *2 (-597 (-421 (-976 *5)))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-976 *5)))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-149))) + (-5 *2 (-595 (-419 (-974 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-974 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1070 *2))))) + (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1068 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-376) (-149) (-1070 (-560)))) + (|partial| -12 (-5 *4 (-661 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-376) (-149) (-1068 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-582 *5 *6))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1070 (-560)))) (-4 *5 (-1275 *4)) - (-5 *2 (-2 (|:| -2365 (-421 *5)) (|:| |coeff| (-421 *5)))) - (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1068 (-558)))) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -2361 (-419 *5)) (|:| |coeff| (-419 *5)))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) - (-4 *3 (-13 (-376) (-149) (-1070 (-560)))) (-5 *1 (-582 *3 *4))))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) + (-4 *3 (-13 (-376) (-149) (-1068 (-558)))) (-5 *1 (-580 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-633 (-916 (-560)))) - (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) - (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1235) (-435 *5))))) + (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-631 (-914 (-558)))) + (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1233) (-433 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1209)) (-5 *4 (-866 *2)) (-4 *2 (-1171)) - (-4 *2 (-13 (-27) (-1235) (-435 *5))) (-4 *5 (-633 (-916 (-560)))) - (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) - (-5 *1 (-581 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1209)) (-4 *5 (-633 (-916 (-560)))) - (-4 *5 (-912 (-560))) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) - (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-1070 (-560)) (-466) (-660 (-560)))) - (-5 *2 (-2 (|:| -2571 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) + (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) + (-4 *2 (-13 (-27) (-1233) (-433 *5))) (-4 *5 (-631 (-914 (-558)))) + (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) + (-5 *1 (-579 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-631 (-914 (-558)))) + (-4 *5 (-910 (-558))) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-1068 (-558)) (-464) (-658 (-558)))) + (-5 *2 (-2 (|:| -2567 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-1209)) (-4 *4 (-13 (-435 *7) (-27) (-1235))) - (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133))))) + (-12 (-5 *5 (-628 *4)) (-5 *6 (-1207)) (-4 *4 (-13 (-433 *7) (-27) (-1233))) + (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1209))) - (-4 *2 (-13 (-435 *5) (-27) (-1235))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1133))))) + (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) + (-4 *2 (-13 (-433 *5) (-27) (-1233))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1131))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) + (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1133))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1131))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1235))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-580 *5 *3 *6)) - (-4 *6 (-1133))))) + (|partial| -12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1233))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) + (-4 *6 (-1131))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1235))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) - (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1133))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) - (-4 *7 (-1275 (-421 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2364 *3))) - (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-376)) - (-5 *2 - (-2 (|:| |answer| (-421 *6)) (|:| -2364 (-421 *6)) - (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) - (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) -(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) + (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1233))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1131))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) + (-4 *7 (-1273 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2360 *3))) + (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) + (-5 *2 + (-2 (|:| |answer| (-419 *6)) (|:| -2360 (-419 *6)) + (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-791)) (-5 *1 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) +(((*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319)) + (-12 (-5 *3 (-661 (-661 *4))) (-5 *2 (-661 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *8)) + (-12 (-5 *3 (-661 *8)) (-5 *4 - (-663 - (-2 (|:| -2236 (-711 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-711 *7))))) - (-5 *5 (-793)) (-4 *8 (-1275 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| -2236 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7)))) - (-5 *1 (-512 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))) + (-661 + (-2 (|:| -2232 (-709 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-709 *7))))) + (-5 *5 (-791)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| -2232 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7)))) + (-5 *1 (-510 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-1203 *4)) - (-4 *4 (-13 (-435 *7) (-27) (-1235))) - (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2236 (-663 *4)))) - (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133)))) + (-12 (-5 *5 (-628 *4)) (-5 *6 (-1201 *4)) + (-4 *4 (-13 (-433 *7) (-27) (-1233))) + (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2232 (-661 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1203 *4))) - (-4 *4 (-13 (-435 *7) (-27) (-1235))) - (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2236 (-663 *4)))) - (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1133))))) + (-12 (-5 *5 (-628 *4)) (-5 *6 (-419 (-1201 *4))) + (-4 *4 (-13 (-433 *7) (-27) (-1233))) + (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2232 (-661 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-630 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1209))) (-5 *5 (-1203 *2)) - (-4 *2 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1133)))) + (|partial| -12 (-5 *3 (-628 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1207))) (-5 *5 (-1201 *2)) + (-4 *2 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1131)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1209))) - (-5 *5 (-421 (-1203 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1133))))) + (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1207))) + (-5 *5 (-419 (-1201 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1131))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-1203 *3)) - (-4 *3 (-13 (-435 *7) (-27) (-1235))) - (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) + (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-1201 *3)) + (-4 *3 (-13 (-433 *7) (-27) (-1233))) + (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1133)))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1131)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-421 (-1203 *3))) - (-4 *3 (-13 (-435 *7) (-27) (-1235))) - (-4 *7 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) + (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-419 (-1201 *3))) + (-4 *3 (-13 (-433 *7) (-27) (-1233))) + (-4 *7 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1133))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1131))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1203 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) - (-4 *7 (-1133)))) + (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-1201 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) + (-4 *7 (-1131)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1203 *3))) - (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) - (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) - (-4 *7 (-1133))))) + (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1201 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) + (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) + (-4 *7 (-1131))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-1203 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) - (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133)))) + (-12 (-5 *4 (-628 *3)) (-5 *5 (-1201 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1203 *3))) - (-4 *3 (-13 (-435 *6) (-27) (-1235))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) - (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1133))))) + (-12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1201 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1233))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1131))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 @@ -12318,20 +12309,20 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-574))))) + (-5 *1 (-572))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 @@ -12344,25 +12335,25 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-574))))) + (-5 *1 (-572))))) (((*1 *1 *2) (-12 (-5 *2 - (-663 + (-661 (-2 - (|:| -4376 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (|:| -4372 + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2300 + (|:| -2296 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12375,1301 +12366,1299 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-574))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-574))))) -(((*1 *1) (-5 *1 (-574)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))) + (-5 *1 (-572))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-572))))) +(((*1 *1) (-5 *1 (-572)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1209)) (-5 *6 (-663 (-630 *3))) (-5 *5 (-630 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *7))) - (-4 *7 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-572 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-597 *3)) (-5 *1 (-572 *5 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) + (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-661 (-628 *3))) (-5 *5 (-628 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *7))) + (-4 *7 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-595 *3)) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1209)) - (-4 *4 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4)))))) + (|partial| -12 (-5 *3 (-1207)) + (-4 *4 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1209)) (-5 *5 (-663 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *6))) - (-4 *6 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-661 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *6))) + (-4 *6 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *6 *3))))) + (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1209)) - (-4 *5 (-13 (-466) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-2 (|:| -2365 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3)) - (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1994 *1) (|:| -4498 *1) (|:| |associate| *1))) - (-4 *1 (-571))))) -(((*1 *1 *1) (-4 *1 (-571)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114))))) + (|partial| -12 (-5 *4 (-1207)) + (-4 *5 (-13 (-464) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-2 (|:| -2361 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1990 *1) (|:| -4494 *1) (|:| |associate| *1))) + (-4 *1 (-569))))) +(((*1 *1 *1) (-4 *1 (-569)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) (((*1 *1 *2) - (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))))) - ((*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235)))))) -(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1235)))))) + (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))))) + ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233)))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1233)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1235))) (-5 *2 (-114))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568))))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1233))) (-5 *2 (-114))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-566))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1275 *5)) - (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1070 (-560)))) - (-4 *7 (-1275 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1068 (-558)))) + (-4 *7 (-1273 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-13 (-27) (-435 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)))) (-4 *8 (-1275 (-421 *7))) - (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-433 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)))) (-4 *8 (-1273 (-419 *7))) + (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1275 *6)) (-4 *6 (-13 (-27) (-435 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)))) (-4 *8 (-1275 (-421 *7))) - (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-433 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)))) (-4 *8 (-1273 (-419 *7))) + (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1203 *3) (-1203 *3))) - (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3)) - (-5 *1 (-566 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))) -(((*1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) -(((*1 *1 *1 *1) (-4 *1 (-559)))) + (-12 (-5 *4 (-628 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3))) + (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-569)) (-5 *2 (-595 *3)) + (-5 *1 (-564 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-560) #1="failed") *5)) (-4 *5 (-1081)) - (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1275 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-558) #1="failed") *5)) (-4 *5 (-1079)) + (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1273 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-560) #1#) *4)) (-4 *4 (-1081)) (-5 *2 (-560)) - (-5 *1 (-557 *4 *3)) (-4 *3 (-1275 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1079)) (-5 *2 (-558)) + (-5 *1 (-555 *4 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-560) #1#) *4)) (-4 *4 (-1081)) (-5 *2 (-560)) - (-5 *1 (-557 *4 *3)) (-4 *3 (-1275 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1275 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1275 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1079)) (-5 *2 (-558)) + (-5 *1 (-555 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1273 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) - (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1275 *3))))) + (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-791))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-553 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-553 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1209))) (-4 *6 (-376)) - (-5 *2 (-663 (-305 (-976 *6)))) (-5 *1 (-552 *5 *6 *7)) (-4 *5 (-466)) - (-4 *7 (-13 (-376) (-871)))))) + (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1207))) (-4 *6 (-376)) + (-5 *2 (-661 (-305 (-974 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) + (-4 *7 (-13 (-376) (-869)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-663 (-976 *6))) (-5 *4 (-663 (-1209))) (-4 *6 (-466)) - (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) - (-4 *5 (-13 (-376) (-871)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) - (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-976 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) - (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549)))) - ((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1249))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-5 *2 (-549)) (-5 *1 (-550 *4)) (-4 *4 (-1249))))) -(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-549))))) -(((*1 *1 *1) (-5 *1 (-549)))) -(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-549))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-549))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1209)) (-5 *1 (-549))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1209)) (-5 *3 (-663 (-549))) (-5 *1 (-549))))) + (-12 (-5 *3 (-661 (-974 *6))) (-5 *4 (-661 (-1207))) (-4 *6 (-464)) + (-5 *2 (-661 (-661 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) + (-4 *5 (-13 (-376) (-869)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-974 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-547)))) + ((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1247))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-547))) (-5 *1 (-547))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-547))))) +(((*1 *1 *1) (-5 *1 (-547)))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-547))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-547))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-547))) (-5 *2 (-1207)) (-5 *1 (-547))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-661 (-547))) (-5 *1 (-547))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1203 *6)) (-1203 *6))) + (-12 (-5 *3 (-709 *6)) (-5 *5 (-1 (-417 (-1201 *6)) (-1201 *6))) (-4 *6 (-376)) (-5 *2 - (-663 - (-2 (|:| |outval| *7) (|:| |outmult| (-560)) - (|:| |outvect| (-663 (-711 *7)))))) - (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-871)))))) + (-661 + (-2 (|:| |outval| *7) (|:| |outmult| (-558)) + (|:| |outvect| (-661 (-709 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-869)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6)) - (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-871)))))) + (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-661 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-869)))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1203 *4)) - (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-871)))))) + (-12 (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-869)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-543)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-543))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-541))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-541))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1203 *1)) + (-12 (-5 *3 (-947)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1)) (-4 *1 (-341 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1275 *3)))) + (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1273 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4))))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4))))) (((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1299 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1297 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) (((*1 *2 *2) - (-12 (-5 *2 (-1299 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319)) (-4 *3 (-571)) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-376)) (-5 *2 (-1299 *1)) (-4 *1 (-341 *4)))) - ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1299 *1)) (-4 *1 (-341 *3)))) + (-12 (-5 *3 (-947)) (-4 *4 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *4)))) + ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3)))) ((*1 *2) - (-12 (-4 *3 (-175)) (-4 *4 (-1275 *3)) (-5 *2 (-1299 *1)) - (-4 *1 (-424 *3 *4)))) + (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) + (-4 *1 (-422 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) - (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))))) + (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) + (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-5 *2 (-1299 *6)) - (-5 *1 (-429 *3 *4 *5 *6 *7)) (-4 *6 (-424 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1299 *1)) (-4 *1 (-432 *3)))) + (-12 (-4 *3 (-319)) (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) + (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1299 (-1299 *4))) (-5 *1 (-542 *4)) + (-12 (-5 *3 (-947)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-540 *4)) (-4 *4 (-363))))) (((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-542 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-949)))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-947)))) ((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-949)) (-5 *1 (-542 *4))))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-947)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4))))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1152)) (-4 *4 (-363)) (-5 *1 (-542 *4))))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-542 *4))))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1299 *5)) (-5 *3 (-793)) (-5 *4 (-1152)) (-4 *5 (-363)) - (-5 *1 (-542 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-793)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1299 *4)) (-4 *4 (-363)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) - (-4 *4 (-363)) (-5 *2 (-1305)) (-5 *1 (-542 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1258)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1255)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-539))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1250))) (-5 *1 (-538))))) + (-12 (-5 *2 (-1297 *5)) (-5 *3 (-791)) (-5 *4 (-1150)) (-4 *5 (-363)) + (-5 *1 (-540 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-791)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-540 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) + (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-130)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-562)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1256)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-559)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1253)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-560)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1254)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1248))) (-5 *1 (-536))))) (((*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-531))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-339 *3)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-529))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-530 *3 *4)) (-14 *4 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) ((*1 *2 *1) - (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 (-560))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-791)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-558))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1249)))) + (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1249)) (-14 *4 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-875))))) -(((*1 *1) (-5 *1 (-520)))) + (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873))))) +(((*1 *1) (-5 *1 (-518)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) - (-5 *3 (-663 (-889 *4))) (-14 *4 (-663 (-1209))) (-14 *5 (-793)) - (-5 *1 (-519 *4 *5))))) + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) + (-5 *3 (-661 (-887 *4))) (-14 *4 (-661 (-1207))) (-14 *5 (-791)) + (-5 *1 (-517 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-663 (-1209))) (-14 *5 (-793)) + (-12 (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 - (-663 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560)))))) - (-5 *1 (-519 *4 *5)) + (-661 + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558)))))) + (-5 *1 (-517 *4 *5)) (-5 *3 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560)))))))) + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-518 (-421 (-560)) (-246 *4 (-793)) (-889 *3) (-255 *3 (-421 (-560))))) - (-14 *3 (-663 (-1209))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4))))) + (-516 (-419 (-558)) (-246 *4 (-791)) (-887 *3) (-255 *3 (-419 (-558))))) + (-14 *3 (-661 (-1207))) (-14 *4 (-791)) (-5 *1 (-517 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) - (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) - (-5 *1 (-519 *4 *5))))) + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) + (-5 *1 (-517 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-518 (-421 (-560)) (-246 *5 (-793)) (-889 *4) (-255 *4 (-421 (-560))))) - (-14 *4 (-663 (-1209))) (-14 *5 (-793)) (-5 *2 (-114)) - (-5 *1 (-519 *4 *5))))) + (-516 (-419 (-558)) (-246 *5 (-791)) (-887 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-661 (-1207))) (-14 *5 (-791)) (-5 *2 (-114)) + (-5 *1 (-517 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6))))) + (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1121 (-866 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) + (-12 (-5 *4 (-1119 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6))))) + (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) - (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6))))) + (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *2)) - (-4 *2 (-980 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *2)) + (-4 *2 (-978 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4))))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) + (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 - (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) - (|:| |genIdeal| (-518 *4 *5 *6 *7)))) - (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6))))) + (-2 (|:| |mval| (-709 *4)) (|:| |invmval| (-709 *4)) + (|:| |genIdeal| (-516 *4 *5 *6 *7)))) + (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) - (|:| |genIdeal| (-518 *3 *4 *5 *6)))) - (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6)) - (-4 *6 (-980 *3 *4 *5))))) + (-2 (|:| |mval| (-709 *3)) (|:| |invmval| (-709 *3)) + (|:| |genIdeal| (-516 *3 *4 *5 *6)))) + (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6)) + (-4 *6 (-978 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-817)) (-4 *4 (-872)) (-5 *1 (-518 *2 *3 *4 *5)) - (-4 *5 (-980 *2 *3 *4))))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-870)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-978 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) - (-5 *2 (-427 *4 (-421 *4) *5 *6)))) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) + (-5 *2 (-425 *4 (-419 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 *6)) (-4 *6 (-13 (-424 *4 *5) (-1070 *4))) - (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-4 *3 (-319)) - (-5 *1 (-427 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) + (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) + (-5 *1 (-425 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-980 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-663 *6)) (-4 *6 (-872)) (-4 *4 (-376)) (-4 *5 (-817)) - (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-980 *4 *5 *6)))) + (-12 (-5 *3 (-661 *6)) (-4 *6 (-870)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-978 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-518 *3 *4 *5 *2)) - (-4 *2 (-980 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-516 *3 *4 *5 *2)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *5 *6)) (-4 *6 (-633 (-1209))) - (-4 *4 (-376)) (-4 *5 (-817)) (-4 *6 (-872)) - (-5 *2 (-1198 (-663 (-976 *4)) (-663 (-305 (-976 *4))))) - (-5 *1 (-518 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *6 (-631 (-1207))) + (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-870)) + (-5 *2 (-1196 (-661 (-974 *4)) (-661 (-305 (-974 *4))))) + (-5 *1 (-516 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1305)) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-947)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) (-4 *4 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) - (-15 -2189 (*2 $))))))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) + (-15 -2185 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1305)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-872) - (-10 -8 (-15 -4316 ((-1191) $ (-1209))) (-15 -4133 (*2 $)) - (-15 -2189 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-516))))) + (-13 (-870) + (-10 -8 (-15 -4312 ((-1189) $ (-1207))) (-15 -4129 (*2 $)) + (-15 -2185 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-514))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *6 (-1275 *5)) - (-5 *2 (-1203 (-1203 *7))) (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1275 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *6 (-1273 *5)) + (-5 *2 (-1201 (-1201 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1273 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-711 (-1203 *8))) - (-4 *5 (-1081)) (-4 *8 (-1081)) (-4 *6 (-1275 *5)) (-5 *2 (-711 *6)) - (-5 *1 (-515 *5 *6 *7 *8)) (-4 *7 (-1275 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-709 (-1201 *8))) + (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-709 *6)) + (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1273 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1203 *7)) - (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *2 (-1275 *5)) - (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1275 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7)) + (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1081)) (-4 *7 (-1081)) - (-4 *2 (-1275 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1275 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) + (-4 *2 (-1273 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1081)) (-4 *7 (-1081)) (-4 *4 (-1275 *5)) - (-5 *2 (-1203 *7)) (-5 *1 (-515 *5 *4 *6 *7)) (-4 *6 (-1275 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *4 (-1273 *5)) + (-5 *2 (-1201 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1273 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2236 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) - (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *4 (-1275 *3)) - (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))) + (-2 (|:| -2232 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *4 (-1273 *3)) + (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))) + (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) + (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))) + (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-793)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) - (-4 *4 (-1275 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))) + (-12 (-5 *2 (-791)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-711 *2)) (-5 *4 (-560)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *5 (-1275 *2)) - (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5))))) + (-12 (-5 *3 (-709 *2)) (-5 *4 (-558)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *5 (-1273 *2)) + (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4487 ((-419 $) $))))) (-4 *5 (-1275 *2)) - (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5))))) + (-12 (-5 *3 (-709 *2)) (-5 *4 (-791)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4483 ((-417 $) $))))) (-4 *5 (-1273 *2)) + (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1275 *5)) + (-12 (-5 *4 (-791)) (-4 *5 (-363)) (-4 *6 (-1273 *5)) (-5 *2 - (-663 - (-2 (|:| -2236 (-711 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-711 *6))))) - (-5 *1 (-512 *5 *6 *7)) + (-661 + (-2 (|:| -2232 (-709 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-709 *6))))) + (-5 *1 (-510 *5 *6 *7)) (-5 *3 - (-2 (|:| -2236 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6)))) - (-4 *7 (-1275 *6))))) + (-2 (|:| -2232 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6)))) + (-4 *7 (-1273 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-663 + (-661 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-560))))) - (-5 *1 (-419 *3)) (-4 *3 (-571)))) + (|:| |xpnt| (-558))))) + (-5 *1 (-417 *3)) (-4 *3 (-569)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1275 *3)) - (-5 *2 (-663 (-1203 *3))) (-5 *1 (-512 *3 *5 *6)) (-4 *6 (-1275 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-505))))) + (-12 (-5 *4 (-791)) (-4 *3 (-363)) (-4 *5 (-1273 *3)) + (-5 *2 (-661 (-1201 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1273 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-503))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1249)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4512)) (-4 *1 (-503 *3)) - (-4 *3 (-1249))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4508)) (-4 *1 (-501 *3)) + (-4 *3 (-1247))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) - (-4 *4 (-1249)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) + (-4 *4 (-1247)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) - (-4 *4 (-1249)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) + (-4 *4 (-1247)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-503 *3)) (-4 *3 (-1249)) (-4 *3 (-1133)) - (-5 *2 (-793)))) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-501 *3)) (-4 *3 (-1247)) (-4 *3 (-1131)) + (-5 *2 (-791)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4511)) (-4 *1 (-503 *4)) - (-4 *4 (-1249)) (-5 *2 (-793))))) -(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4)) - (-4 *4 (-1275 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1275 (-560))) (-5 *1 (-500 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1275 (-560))) (-5 *1 (-500 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1275 (-560)))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-498 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-901))) (-5 *1 (-497))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-901))) (-5 *1 (-497))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4507)) (-4 *1 (-501 *4)) + (-4 *4 (-1247)) (-5 *2 (-791))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499))))) +(((*1 *2 *3) + (-12 (-5 *3 (-661 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) + (-4 *4 (-1273 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1273 (-558))) (-5 *1 (-498 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1273 (-558))) (-5 *1 (-498 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1273 (-558)))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-496 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-899))) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-518))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-899))) (-5 *1 (-495))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4)) (-14 *3 (-663 (-1209))) - (-4 *4 (-1081)))) + (-12 (-5 *2 (-661 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-661 (-1207))) + (-4 *4 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1209))) (-5 *1 (-468 *3 *4 *5)) - (-4 *4 (-1081)) (-4 *5 (-245 (-4473 *3) (-793))))) + (-12 (-5 *2 (-661 (-558))) (-14 *3 (-661 (-1207))) (-5 *1 (-466 *3 *4 *5)) + (-4 *4 (-1079)) (-4 *5 (-245 (-4469 *3) (-791))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4)) (-14 *3 (-663 (-1209))) - (-4 *4 (-1081))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-889 *5))) (-14 *5 (-663 (-1209))) (-4 *6 (-466)) - (-5 *2 (-2 (|:| |dpolys| (-663 (-255 *5 *6))) (|:| |coords| (-663 (-560))))) - (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466))))) + (-12 (-5 *2 (-661 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-661 (-1207))) + (-4 *4 (-1079))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-492))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-492))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-887 *5))) (-14 *5 (-661 (-1207))) (-4 *6 (-464)) + (-5 *2 (-2 (|:| |dpolys| (-661 (-255 *5 *6))) (|:| |coords| (-661 (-558))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-889 *4))) - (-14 *4 (-663 (-1209))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) - (-4 *6 (-466))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-889 *5))) (-14 *5 (-663 (-1209))) (-4 *6 (-466)) - (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) - (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466))))) -(((*1 *1) (-5 *1 (-482)))) + (|partial| -12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-661 (-887 *4))) + (-14 *4 (-661 (-1207))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-661 (-887 *5))) (-14 *5 (-661 (-1207))) (-4 *6 (-464)) + (-5 *2 (-661 (-661 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) +(((*1 *1) (-5 *1 (-480)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) - (-5 *4 (-663 (-949))) (-5 *5 (-663 (-270))) (-5 *1 (-482)))) + (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) + (-5 *4 (-661 (-947))) (-5 *5 (-661 (-270))) (-5 *1 (-480)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) - (-5 *4 (-663 (-949))) (-5 *1 (-482)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482)))) - ((*1 *1 *1) (-5 *1 (-482)))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *1 (-482))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) + (-5 *4 (-661 (-947))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480)))) + ((*1 *1 *1) (-5 *1 (-480)))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *1 (-480))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-482))))) + (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-480))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-973 (-229))) (-5 *4 (-899)) (-5 *5 (-949)) (-5 *2 (-1305)) - (-5 *1 (-482)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-482)))) + (-12 (-5 *3 (-971 (-229))) (-5 *4 (-897)) (-5 *5 (-947)) (-5 *2 (-1303)) + (-5 *1 (-480)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-480)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *4 (-899)) (-5 *5 (-949)) - (-5 *2 (-1305)) (-5 *1 (-482))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-973 (-229))) (-5 *2 (-1305)) (-5 *1 (-482))))) + (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *4 (-897)) (-5 *5 (-947)) + (-5 *2 (-1303)) (-5 *1 (-480))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-971 (-229))) (-5 *2 (-1303)) (-5 *1 (-480))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-663 (-663 (-973 (-229))))) (-5 *3 (-663 (-899))) - (-5 *1 (-482))))) + (-12 (-5 *2 (-661 (-661 (-971 (-229))))) (-5 *3 (-661 (-897))) + (-5 *1 (-480))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-663 (-973 (-229))))) (-5 *2 (-663 (-229))) - (-5 *1 (-482))))) + (-12 (-5 *3 (-661 (-661 (-971 (-229))))) (-5 *2 (-661 (-229))) + (-5 *1 (-480))))) (((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) - ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1299 (-1299 (-560)))) (-5 *1 (-480))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947)) (-5 *2 (-1297 (-1297 (-558)))) (-5 *1 (-478))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1299 (-1299 (-560)))) (-5 *3 (-949)) (-5 *1 (-480))))) + (-12 (-5 *2 (-1297 (-1297 (-558)))) (-5 *3 (-947)) (-5 *1 (-478))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-872)) (-4 *5 (-817)) (-4 *6 (-571)) - (-4 *7 (-980 *6 *5 *3)) (-5 *1 (-476 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-815)) (-4 *6 (-569)) + (-4 *7 (-978 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-1070 (-421 (-560))) (-376) - (-10 -8 (-15 -4462 ($ *7)) (-15 -3485 (*7 $)) (-15 -3484 (*7 $)))))))) + (-13 (-1068 (-419 (-558))) (-376) + (-10 -8 (-15 -4458 ($ *7)) (-15 -3481 (*7 $)) (-15 -3480 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) + (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *2)) - (-2 (|:| -2645 *5) (|:| -2646 *2)))) - (-4 *2 (-245 (-4473 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-872)) (-4 *7 (-980 *4 *2 (-889 *3)))))) + (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *2)) + (-2 (|:| -2641 *5) (|:| -2642 *2)))) + (-4 *2 (-245 (-4469 *3) (-791))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-870)) (-4 *7 (-978 *4 *2 (-887 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-663 (-1209))) (-4 *4 (-175)) (-4 *5 (-245 (-4473 *3) (-793))) + (-12 (-14 *3 (-661 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-4469 *3) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *2) (|:| -2646 *5)) - (-2 (|:| -2645 *2) (|:| -2646 *5)))) - (-4 *2 (-872)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-980 *4 *5 (-889 *3)))))) + (-1 (-114) (-2 (|:| -2641 *2) (|:| -2642 *5)) + (-2 (|:| -2641 *2) (|:| -2642 *5)))) + (-4 *2 (-870)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-978 *4 *5 (-887 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-663 (-1209))) (-4 *2 (-175)) (-4 *4 (-245 (-4473 *5) (-793))) + (-12 (-14 *5 (-661 (-1207))) (-4 *2 (-175)) (-4 *4 (-245 (-4469 *5) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *3) (|:| -2646 *4)) - (-2 (|:| -2645 *3) (|:| -2646 *4)))) - (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-872)) - (-4 *7 (-980 *2 *4 (-889 *5)))))) + (-1 (-114) (-2 (|:| -2641 *3) (|:| -2642 *4)) + (-2 (|:| -2641 *3) (|:| -2642 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) + (-4 *7 (-978 *2 *4 (-887 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-663 (-1209))) (-4 *2 (-175)) (-4 *3 (-245 (-4473 *4) (-793))) + (-12 (-14 *4 (-661 (-1207))) (-4 *2 (-175)) (-4 *3 (-245 (-4469 *4) (-791))) (-14 *6 - (-1 (-114) (-2 (|:| -2645 *5) (|:| -2646 *3)) - (-2 (|:| -2645 *5) (|:| -2646 *3)))) - (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-872)) - (-4 *7 (-980 *2 *3 (-889 *4)))))) + (-1 (-114) (-2 (|:| -2641 *5) (|:| -2642 *3)) + (-2 (|:| -2641 *5) (|:| -2642 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) + (-4 *7 (-978 *2 *3 (-887 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-663 *3)) (-5 *5 (-949)) (-4 *3 (-1275 *4)) (-4 *4 (-319)) - (-5 *1 (-474 *4 *3))))) + (-12 (-5 *2 (-661 *3)) (-5 *5 (-947)) (-4 *3 (-1273 *4)) (-4 *4 (-319)) + (-5 *1 (-472 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-949)) (-4 *5 (-319)) (-4 *3 (-1275 *5)) - (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5))) (-5 *1 (-474 *5 *3)) - (-5 *4 (-663 *3))))) + (-12 (-5 *6 (-947)) (-4 *5 (-319)) (-4 *3 (-1273 *5)) + (-5 *2 (-2 (|:| |plist| (-661 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) + (-5 *4 (-661 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *5)) (-4 *5 (-1275 *3)) (-4 *3 (-319)) (-5 *2 (-114)) - (-5 *1 (-469 *3 *5))))) + (-12 (-5 *4 (-661 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319)) (-5 *2 (-114)) + (-5 *1 (-467 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1299 (-663 *3))) (-4 *4 (-319)) (-5 *2 (-663 *3)) - (-5 *1 (-469 *4 *3)) (-4 *3 (-1275 *4))))) + (|partial| -12 (-5 *5 (-1297 (-661 *3))) (-4 *4 (-319)) (-5 *2 (-661 *3)) + (-5 *1 (-467 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1275 *4)) - (-5 *2 (-1299 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6))))) + (|partial| -12 (-5 *3 (-791)) (-4 *4 (-319)) (-4 *6 (-1273 *4)) + (-5 *2 (-1297 (-661 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-661 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-319)) (-5 *2 (-793)) - (-5 *1 (-469 *5 *3))))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319)) (-5 *2 (-791)) + (-5 *1 (-467 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2236 (-663 *1)))) (-4 *1 (-380 *3)))) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2232 (-661 *1)))) (-4 *1 (-380 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-467 *3 *4 *5 *6)) - (|:| -2236 (-663 (-467 *3 *4 *5 *6))))) - (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) - (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3)))))) + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2232 (-661 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) + (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2236 (-663 *1)))) (-4 *1 (-380 *3)))) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2232 (-661 *1)))) (-4 *1 (-380 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-467 *3 *4 *5 *6)) - (|:| -2236 (-663 (-467 *3 *4 *5 *6))))) - (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-949)) - (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3)))))) + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -2232 (-661 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-947)) + (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1299 (-1209))) (-5 *3 (-1299 (-467 *4 *5 *6 *7))) - (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-949)) - (-14 *6 (-663 (-1209))) (-14 *7 (-1299 (-711 *4))))) + (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-947)) + (-14 *6 (-661 (-1207))) (-14 *7 (-1297 (-709 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-1299 (-467 *4 *5 *6 *7))) - (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-949)) (-14 *6 (-663 *2)) - (-14 *7 (-1299 (-711 *4))))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-947)) (-14 *6 (-661 *2)) + (-14 *7 (-1297 (-709 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3))))) + (-12 (-5 *2 (-1297 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 (-1209))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-949)) (-14 *5 (-663 (-1209))) (-14 *6 (-1299 (-711 *3))))) + (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-947)) (-14 *5 (-661 (-1207))) (-14 *6 (-1297 (-709 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1209)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-949)) (-14 *5 (-663 *2)) (-14 *6 (-1299 (-711 *3))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-947)) (-14 *5 (-661 *2)) (-14 *6 (-1297 (-709 *3))))) ((*1 *1) - (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-949)) - (-14 *4 (-663 (-1209))) (-14 *5 (-1299 (-711 *2)))))) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-947)) + (-14 *4 (-661 (-1207))) (-14 *5 (-1297 (-709 *2)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-976 *4))) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-974 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) ((*1 *2) - (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1203 (-976 *3))))) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) + (-5 *2 (-1201 (-974 *3))))) ((*1 *2) - (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) - (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) - (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-976 *4))) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-974 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) ((*1 *2) - (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1203 (-976 *3))))) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) + (-5 *2 (-1201 (-974 *3))))) ((*1 *2) - (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) - (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1203 (-421 (-976 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) - (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-1201 (-419 (-974 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2) - (-12 (-5 *2 (-421 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3)))))) + (-12 (-5 *2 (-419 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-663 (-976 *4))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-661 (-974 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-663 (-976 *4))) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) - ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-976 *3))))) + (-12 (-4 *4 (-175)) (-5 *2 (-661 (-974 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-661 (-974 *3))))) ((*1 *2) - (-12 (-5 *2 (-663 (-976 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) - (-4 *3 (-175)) (-14 *4 (-949)) (-14 *5 (-663 (-1209))) - (-14 *6 (-1299 (-711 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1299 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-976 *4))) - (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175)) (-14 *5 (-949)) - (-14 *6 (-663 (-1209))) (-14 *7 (-1299 (-711 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) - ((*1 *1 *1 *1) (-4 *1 (-466)))) -(((*1 *2 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-793)) - (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6))))) + (-12 (-5 *2 (-661 (-974 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-947)) (-14 *5 (-661 (-1207))) + (-14 *6 (-1297 (-709 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 (-465 *4 *5 *6 *7))) (-5 *2 (-661 (-974 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-947)) + (-14 *6 (-661 (-1207))) (-14 *7 (-1297 (-709 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464)))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-791)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -2228 *4))) (-5 *5 (-793)) - (-4 *4 (-980 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-817)) (-4 *8 (-872)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-791)) (|:| -2224 *4))) (-5 *5 (-791)) + (-4 *4 (-978 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-464 *6 *7 *8 *4))))) + (-5 *1 (-462 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-817)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) - (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7))))) + (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) + (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) - (-5 *2 (-1305)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-980 *4 *5 *6))))) + (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) + (-5 *2 (-1303)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *2 (-1305)) (-5 *1 (-464 *4 *5 *6 *7))))) + (-12 (-5 *3 (-661 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *2 (-1303)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-560)) + (-12 (-5 *2 (-558)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-817)) (-4 *4 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-872)) - (-5 *1 (-464 *5 *6 *7 *4))))) + (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-870)) + (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-560)) + (-12 (-5 *2 (-558)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-817)) (-4 *4 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-872)) - (-5 *1 (-464 *5 *6 *7 *4))))) + (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-870)) + (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-1305)) - (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-1303)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-466)) (-4 *5 (-817)) (-4 *6 (-872)) (-5 *2 (-560)) - (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-980 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-870)) (-5 *2 (-558)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *6))))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-663 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) + (-661 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-817)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-872)) - (-5 *1 (-464 *3 *4 *5 *6))))) + (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-870)) + (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-817)) (-4 *2 (-980 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2)) - (-4 *4 (-466)) (-4 *6 (-872))))) + (-4 *5 (-815)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-870))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -2228 *3)))) (-5 *4 (-793)) - (-4 *3 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) (-4 *7 (-872)) - (-5 *1 (-464 *5 *6 *7 *3))))) + (-12 (-5 *2 (-661 (-2 (|:| |totdeg| (-791)) (|:| -2224 *3)))) (-5 *4 (-791)) + (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-870)) + (-5 *1 (-462 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-466)) (-4 *4 (-817)) (-4 *5 (-872)) (-5 *1 (-464 *3 *4 *5 *2)) - (-4 *2 (-980 *3 *4 *5))))) + (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *2)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-980 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-817)) - (-4 *7 (-872)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-464 *5 *6 *7 *3))))) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) + (-4 *7 (-870)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-462 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-663 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) + (-661 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-817)) (-4 *6 (-980 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-872)) - (-5 *1 (-464 *4 *3 *5 *6))))) + (-4 *3 (-815)) (-4 *6 (-978 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-870)) + (-5 *1 (-462 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-663 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) + (-661 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-817)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-872)) - (-5 *1 (-464 *3 *4 *5 *6))))) + (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-870)) + (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-663 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) + (-661 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-817)) (-4 *3 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) - (-5 *1 (-464 *4 *5 *6 *3))))) + (-4 *5 (-815)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) + (-5 *1 (-462 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-466)) (-4 *3 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-980 *4 *3 *5))))) + (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-466)) (-4 *3 (-817)) (-4 *5 (-872)) (-5 *2 (-114)) - (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-980 *4 *3 *5))))) + (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-870)) (-5 *2 (-114)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-817)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-872)) - (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7))))) + (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-870)) + (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-466)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-558)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *2))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *1 (-464 *4 *5 *6 *2))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) - (-5 *3 (-663 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-661 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) - (-5 *3 (-663 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-661 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) - (-5 *3 (-663 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-661 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) - (-5 *3 (-663 *8))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-661 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-817)) (-4 *6 (-872)) - (-4 *7 (-980 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) - (-5 *3 (-663 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-870)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-661 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-817)) (-4 *7 (-872)) - (-4 *8 (-980 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) - (-5 *3 (-663 *8))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-870)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-661 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-663 *6)) (-4 *6 (-980 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-817)) - (-4 *5 (-872)) (-5 *1 (-462 *3 *4 *5 *6)))) + (-12 (-5 *2 (-661 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) + (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *7)))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-1191)) (-4 *7 (-980 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-817)) (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *2 (-661 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) + (-4 *5 (-815)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-980 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-817)) - (-4 *6 (-872)) (-5 *1 (-462 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) + (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-458)) (-5 *3 (-558))))) (((*1 *2 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081)))) + (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079)))) ((*1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079))))) (((*1 *2 *3) - (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079))))) (((*1 *2 *3) - (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1081))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-459 *3)) (-4 *3 (-1081))))) -(((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081))))) -(((*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081)))) - ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1081))))) + (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-457 *3)) (-4 *3 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079)))) + ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1081))))) + (-12 (-5 *3 (-791)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-419 *6)) (-4 *6 (-1275 *5)) (-4 *5 (-1081)) - (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6))))) + (-12 (-5 *3 (-947)) (-5 *4 (-417 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1079)) + (-5 *2 (-661 *6)) (-5 *1 (-456 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-949)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) + (|partial| -12 (-5 *3 (-947)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-793)) (-5 *1 (-456 *2)) - (-4 *2 (-1275 (-560))))) + (|partial| -12 (-5 *3 (-947)) (-5 *4 (-791)) (-5 *1 (-454 *2)) + (-4 *2 (-1273 (-558))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2)) - (-4 *2 (-1275 (-560))))) + (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *1 (-454 *2)) + (-4 *2 (-1273 (-558))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) - (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) + (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) + (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) - (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1275 (-560))))) + (|partial| -12 (-5 *3 (-947)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) + (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1273 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-419 *2)) (-4 *2 (-1275 *5)) (-5 *1 (-458 *5 *2)) - (-4 *5 (-1081))))) + (-12 (-5 *3 (-947)) (-5 *4 (-417 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-456 *5 *2)) + (-4 *5 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -4248 *4) (|:| -4464 (-560))))) - (-4 *4 (-1275 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4)))) + (-12 (-5 *3 (-661 (-2 (|:| -4244 *4) (|:| -4460 (-558))))) + (-4 *4 (-1273 (-558))) (-5 *2 (-756 (-791))) (-5 *1 (-454 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-1081)) - (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1081)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1275 *3))))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) + (-5 *2 (-756 (-791))) (-5 *1 (-456 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) - (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) - (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-793)) (-4 *5 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *5 *3 *6)) - (-4 *3 (-1275 *5)) (-4 *6 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))))) + (-12 (-5 *4 (-791)) (-4 *5 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) + (-4 *3 (-1273 *5)) (-4 *6 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))))) ((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) - (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296)))))) + (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) - (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296)))))) + (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-13 (-418) (-1070 *4) (-376) (-1235) (-296))) - (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1275 *4)))) + (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-416) (-1068 *4) (-376) (-1233) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-1081)) - (-4 *2 (-13 (-418) (-1070 *5) (-376) (-1235) (-296))) - (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1275 *5))))) + (-12 (-5 *4 (-947)) (-4 *5 (-1079)) + (-4 *2 (-13 (-416) (-1068 *5) (-376) (-1233) (-296))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1273 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) - (-4 *3 (-1275 *4)) (-4 *5 (-13 (-418) (-1070 *4) (-376) (-1235) (-296)))))) + (-12 (-4 *4 (-1079)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1273 *4)) (-4 *5 (-13 (-416) (-1068 *4) (-376) (-1233) (-296)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-1129 (-793))) (-5 *6 (-793)) - (-5 *2 - (-2 (|:| |contp| (-560)) - (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) - (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3063 (-560)) (|:| -2001 (-663 *3)))) (-5 *1 (-456 *3)) - (-4 *3 (-1275 (-560)))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -4248 *4) (|:| -4464 (-560))))) - (-4 *4 (-1275 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560))))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-456 *3)) (-4 *3 (-1275 (-560)))))) + (-12 (-5 *4 (-114)) (-5 *5 (-1127 (-791))) (-5 *6 (-791)) + (-5 *2 + (-2 (|:| |contp| (-558)) + (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3059 (-558)) (|:| -1997 (-661 *3)))) (-5 *1 (-454 *3)) + (-4 *3 (-1273 (-558)))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-661 (-2 (|:| -4244 *4) (|:| -4460 (-558))))) + (-4 *4 (-1273 (-558))) (-5 *2 (-791)) (-5 *1 (-454 *4))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-454 *3)) (-4 *3 (-1273 (-558)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-663 + (-661 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-560))))) - (-4 *2 (-571)) (-5 *1 (-419 *2)))) + (|:| |xpnt| (-558))))) + (-4 *2 (-569)) (-5 *1 (-417 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-560)) - (|:| -2001 (-663 (-2 (|:| |irr| *4) (|:| -2640 (-560))))))) - (-4 *4 (-1275 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-451))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-451))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-451))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -4426 "void"))) (-5 *1 (-450))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1070 (-48))) (-4 *4 (-13 (-571) (-1070 (-560)))) - (-4 *5 (-435 *4)) (-5 *2 (-419 (-1203 (-48)))) (-5 *1 (-449 *4 *5 *3)) - (-4 *3 (-1275 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) - (-5 *2 - (-3 (|:| |overq| (-1203 (-421 (-560)))) (|:| |overan| (-1203 (-48))) - (|:| -3124 (-114)))) - (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) - (-5 *2 (-419 (-1203 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3)) - (-4 *3 (-1275 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 *3)) - (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1275 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) + (-2 (|:| |contp| (-558)) + (|:| -1997 (-661 (-2 (|:| |irr| *4) (|:| -2636 (-558))))))) + (-4 *4 (-1273 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-449))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-449))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-449))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4422 "void"))) (-5 *1 (-448))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *1) (-5 *1 (-448)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1068 (-48))) (-4 *4 (-13 (-569) (-1068 (-558)))) + (-4 *5 (-433 *4)) (-5 *2 (-417 (-1201 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1273 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) + (-5 *2 + (-3 (|:| |overq| (-1201 (-419 (-558)))) (|:| |overan| (-1201 (-48))) + (|:| -3120 (-114)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) + (-5 *2 (-417 (-1201 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1273 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)))) (-5 *2 (-1305)) (-5 *1 (-447 *3 *4)) - (-4 *4 (-435 *3))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)))) (-5 *2 (-1303)) (-5 *1 (-445 *3 *4)) + (-4 *4 (-433 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-571) (-1070 (-560)))) (-5 *2 (-421 (-560))) - (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-558)))) (-5 *2 (-419 (-558))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-571) (-1070 (-560)))) - (-5 *2 (-1203 (-421 (-560)))) (-5 *1 (-447 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))) + (-12 (-5 *4 (-628 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1068 (-558)))) + (-5 *2 (-1201 (-419 (-558)))) (-5 *1 (-445 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) - (-4 *2 (-13 (-872) (-21)))))) + (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) + (-4 *2 (-13 (-870) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) - (-4 *2 (-13 (-872) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1235) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1133)) (-5 *2 (-793))))) -(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1133)) (-4 *2 (-381))))) -(((*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1133))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1235) (-435 *3))) - (-14 *4 (-1209)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-4 *2 (-13 (-27) (-1235) (-435 *3) (-10 -8 (-15 -4462 ($ *4))))) - (-4 *4 (-871)) + (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) + (-4 *2 (-13 (-870) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1131)) (-5 *2 (-791))))) +(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1131)) (-4 *2 (-381))))) +(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1131))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-433 *3))) + (-14 *4 (-1207)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-4 *2 (-13 (-27) (-1233) (-433 *3) (-10 -8 (-15 -4458 ($ *4))))) + (-4 *4 (-869)) (-4 *5 - (-13 (-1278 *2 *4) (-376) (-1235) - (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) - (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1015 *5)) (-14 *7 (-1209))))) + (-13 (-1276 *2 *4) (-376) (-1233) + (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) + (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) (-14 *7 (-1207))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-4 *3 (-13 (-27) (-1235) (-435 *6) (-10 -8 (-15 -4462 ($ *7))))) - (-4 *7 (-871)) + (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-4 *3 (-13 (-27) (-1233) (-433 *6) (-10 -8 (-15 -4458 ($ *7))))) + (-4 *7 (-869)) (-4 *8 - (-13 (-1278 *3 *7) (-376) (-1235) - (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) + (-13 (-1276 *3 *7) (-376) (-1233) + (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) - (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1191)) (-4 *9 (-1015 *8)) - (-14 *10 (-1209))))) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1013 *8)) + (-14 *10 (-1207))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-4 *3 (-13 (-27) (-1235) (-435 *6) (-10 -8 (-15 -4462 ($ *7))))) - (-4 *7 (-871)) + (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-4 *3 (-13 (-27) (-1233) (-433 *6) (-10 -8 (-15 -4458 ($ *7))))) + (-4 *7 (-869)) (-4 *8 - (-13 (-1278 *3 *7) (-376) (-1235) - (-10 -8 (-15 -4274 ($ $)) (-15 -4328 ($ $))))) + (-13 (-1276 *3 *7) (-376) (-1233) + (-10 -8 (-15 -4270 ($ $)) (-15 -4324 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) - (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1191)) (-4 *9 (-1015 *8)) - (-14 *10 (-1209))))) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1013 *8)) + (-14 *10 (-1207))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1191)) (|:| |prob| (-1191)))))) - (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1235) (-435 *5))) - (-14 *6 (-1209)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1133)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-816)) (-4 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1133))))) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-433 *5))) + (-14 *6 (-1207)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1131)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1079)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1131))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1209)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1133)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-661 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1131)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1209)) (-4 *1 (-435 *3)) (-4 *3 (-1133))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1133)) - (-5 *2 (-2 (|:| -4470 (-560)) (|:| |var| (-630 *1)))) (-4 *1 (-435 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) + (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-433 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| -4466 (-558)) (|:| |var| (-628 *1)))) (-4 *1 (-433 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1275 *4)) (-4 *4 (-1254)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1275 (-421 *3))))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-419 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1299 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1299 *4)) (-5 *3 (-1299 *1)) (-4 *4 (-175)) - (-4 *1 (-383 *4 *5)) (-4 *5 (-1275 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) - (-4 *4 (-1275 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1299 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) - ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) - ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175))))) -(((*1 *2 *3) (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) - ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) - ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) + (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) + ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) + ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) - ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) + (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) - ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) + (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1070 *4)) (-4 *3 (-319)) - (-4 *4 (-1023 *3)) (-4 *5 (-1275 *4)) (-4 *6 (-424 *4 *5)) - (-14 *7 (-1299 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-319)) + (-4 *4 (-1021 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) + (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1299 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1023 *3)) - (-4 *5 (-1275 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1021 *3)) + (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-319)) (-4 *3 (-1023 *2)) (-4 *4 (-1275 *3)) - (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1070 *3)))))) + (-12 (-4 *2 (-319)) (-4 *3 (-1021 *2)) (-4 *4 (-1273 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-793)) (-5 *4 (-1299 *2)) (-4 *5 (-319)) (-4 *6 (-1023 *5)) - (-4 *2 (-13 (-424 *6 *7) (-1070 *6))) (-5 *1 (-427 *5 *6 *7 *2)) - (-4 *7 (-1275 *6))))) + (-12 (-5 *3 (-791)) (-5 *4 (-1297 *2)) (-4 *5 (-319)) (-4 *6 (-1021 *5)) + (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) (-5 *1 (-425 *5 *6 *7 *2)) + (-4 *7 (-1273 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)) - (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5)))) + (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)) + (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) - (-5 *2 (-711 *3))))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) + (-5 *2 (-709 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1299 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1275 *4)) (-5 *2 (-711 *4)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1273 *4)) (-5 *2 (-709 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1275 *3)) - (-5 *2 (-711 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) + (-5 *2 (-709 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 (-560))))) (-5 *1 (-374 *3)) - (-4 *3 (-1133)))) + (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 (-558))))) (-5 *1 (-374 *3)) + (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-399 *3)) (-4 *3 (-1133)) - (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -4459 (-793))))))) + (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) + (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4455 (-791))))))) ((*1 *2 *1) - (-12 (-5 *2 (-663 (-2 (|:| -4248 *3) (|:| -2646 (-560))))) (-5 *1 (-419 *3)) - (-4 *3 (-571))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571))))) + (-12 (-5 *2 (-661 (-2 (|:| -4244 *3) (|:| -2642 (-558))))) (-5 *1 (-417 *3)) + (-4 *3 (-569))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-419 *4)) (-4 *4 (-571))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))) + (-12 (-5 *3 (-558)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-417 *4)) (-4 *4 (-569))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-419 *2)) (-4 *2 (-571))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270)))) - ((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571))))) -(((*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4502)) (-4 *1 (-418)))) - ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-949))))) -(((*1 *2 *3) - (-12 (-5 *3 (-560)) (|has| *1 (-6 -4502)) (-4 *1 (-418)) (-5 *2 (-949))))) -(((*1 *2 *3) - (-12 (-5 *3 (-560)) (|has| *1 (-6 -4502)) (-4 *1 (-418)) (-5 *2 (-949))))) -(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-793)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793)))) - ((*1 *1 *1) (-4 *1 (-416)))) + (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-417 *2)) (-4 *2 (-569))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-270)))) + ((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-114)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-947)) (|has| *1 (-6 -4498)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-947))))) +(((*1 *2 *3) + (-12 (-5 *3 (-558)) (|has| *1 (-6 -4498)) (-4 *1 (-416)) (-5 *2 (-947))))) +(((*1 *2 *3) + (-12 (-5 *3 (-558)) (|has| *1 (-6 -4498)) (-4 *1 (-416)) (-5 *2 (-947))))) +(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-791)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-791))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-791)))) + ((*1 *1 *1) (-4 *1 (-414)))) (((*1 *1 *2) - (-12 (-5 *2 (-421 *4)) (-4 *4 (-1275 *3)) (-4 *3 (-13 (-376) (-149))) - (-5 *1 (-413 *3 *4))))) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) + (-5 *1 (-411 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1275 *3)) (-5 *1 (-413 *3 *2)) (-4 *3 (-13 (-376) (-149)))))) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) - (-5 *2 (-663 (-2 (|:| -2646 (-793)) (|:| -4289 *4) (|:| |num| *4)))) - (-5 *1 (-413 *3 *4)) (-4 *4 (-1275 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-409))))) + (-5 *2 (-661 (-2 (|:| -2642 (-791)) (|:| -4285 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1273 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-407))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1209))))) - (-5 *6 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1135)) (-5 *1 (-409)))) + (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1207))))) + (-5 *6 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1133)) (-5 *1 (-407)))) ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1209))))) - (-5 *6 (-663 (-1209))) (-5 *3 (-1209)) (-5 *2 (-1135)) (-5 *1 (-409)))) + (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1207))))) + (-5 *6 (-661 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1133)) (-5 *1 (-407)))) ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-663 (-1209))) (-5 *5 (-1212)) (-5 *3 (-1209)) (-5 *2 (-1135)) - (-5 *1 (-409))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-407))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-405))))) -(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1305)) (-5 *1 (-405)))) - ((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1180 (-1191))) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1180 (-1191))) (-5 *1 (-405))))) -(((*1 *2 *1) - (-12 (-5 *2 (-888)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) + (-12 (-5 *4 (-661 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) (-5 *2 (-1133)) + (-5 *1 (-407))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405))))) +(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(((*1 *2 *1) + (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175))))) (((*1 *2 *1) - (-12 (-5 *2 (-888)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) + (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1191)) (-4 *1 (-403))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1191))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1133))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1133)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-1133)) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-421 (-976 (-560))))) (-5 *4 (-663 (-1209))) - (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-871) (-376))))) + (-12 (-5 *3 (-661 (-419 (-974 (-558))))) (-5 *4 (-661 (-1207))) + (-5 *2 (-661 (-661 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-869) (-376))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-871) (-376)))))) + (-12 (-5 *3 (-419 (-974 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-869) (-376)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 (-171 (-560))))) (-5 *2 (-663 (-171 *4))) - (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-871))))) + (-12 (-5 *3 (-419 (-974 (-171 (-558))))) (-5 *2 (-661 (-171 *4))) + (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-869))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-421 (-976 (-171 (-560)))))) (-5 *4 (-663 (-1209))) - (-5 *2 (-663 (-663 (-171 *5)))) (-5 *1 (-392 *5)) - (-4 *5 (-13 (-376) (-871)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-421 (-976 (-171 (-560)))))) - (-5 *2 (-663 (-663 (-305 (-976 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-871))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-305 (-421 (-976 (-171 (-560))))))) - (-5 *2 (-663 (-663 (-305 (-976 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-871))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-421 (-976 (-171 (-560))))) - (-5 *2 (-663 (-305 (-976 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-871))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-421 (-976 (-171 (-560)))))) - (-5 *2 (-663 (-305 (-976 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-871)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391))))) + (-12 (-5 *3 (-661 (-419 (-974 (-171 (-558)))))) (-5 *4 (-661 (-1207))) + (-5 *2 (-661 (-661 (-171 *5)))) (-5 *1 (-392 *5)) + (-4 *5 (-13 (-376) (-869)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-419 (-974 (-171 (-558)))))) + (-5 *2 (-661 (-661 (-305 (-974 (-171 *4)))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-661 (-305 (-419 (-974 (-171 (-558))))))) + (-5 *2 (-661 (-661 (-305 (-974 (-171 *4)))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-974 (-171 (-558))))) + (-5 *2 (-661 (-305 (-974 (-171 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-419 (-974 (-171 (-558)))))) + (-5 *2 (-661 (-305 (-974 (-171 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-869)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-391))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391))))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1209))) (-14 *3 (-663 (-1209))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1207))) (-14 *3 (-661 (-1207))) (-4 *4 (-401)))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) (((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1305)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1303)) (-5 *1 (-391))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1249)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4512))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4508))))))) (((*1 *1 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-872)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175))))) + (-12 (-5 *2 (-692 *3)) (-4 *3 (-870)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1249)) (-4 *3 (-872)) (-5 *2 (-114)))) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1249)) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-114))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-560)) (|has| *1 (-6 -4512)) (-4 *1 (-385 *3)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-558)) (|has| *1 (-6 -4508)) (-4 *1 (-385 *3)) (-4 *3 (-1247))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4512)) (-4 *1 (-385 *2)) (-4 *2 (-1249)) (-4 *2 (-872)))) + (-12 (|has| *1 (-6 -4508)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4512)) (-4 *1 (-385 *3)) - (-4 *3 (-1249))))) -(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1299 *1)) (-4 *1 (-380 *3))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4508)) (-4 *1 (-385 *3)) + (-4 *3 (-1247))))) +(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3))))) (((*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) @@ -13714,327 +13703,327 @@ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1299 *4))) (-5 *1 (-379 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-661 (-1297 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) - (-5 *2 (-663 (-1299 *3)))))) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) + (-5 *2 (-661 (-1297 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1203 *3))))) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1201 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1203 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175))))) -(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175))))) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1201 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) +(((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1191)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1133)) (-4 *4 (-1133)))) - ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) + (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1131)) (-4 *4 (-1131)))) + ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1191)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) (((*1 *1 *1) (-4 *1 (-176))) - ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-1133))))) + ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) (-5 *2 (-1191))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1133)) (-4 *2 (-1133))))) + (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-1189))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-4 *2 - (-13 (-416) - (-10 -7 (-15 -4462 (*2 *4)) (-15 -2234 ((-949) *2)) - (-15 -2236 ((-1299 *2) (-949))) (-15 -4444 (*2 *2))))) + (-13 (-414) + (-10 -7 (-15 -4458 (*2 *4)) (-15 -2230 ((-947) *2)) + (-15 -2232 ((-1297 *2) (-947))) (-15 -4440 (*2 *2))))) (-5 *1 (-370 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-988 (-1203 *4))) (-5 *1 (-369 *4)) - (-5 *3 (-1203 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (-12 (-4 *4 (-363)) (-5 *2 (-986 (-1201 *4))) (-5 *1 (-369 *4)) + (-5 *3 (-1201 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1203 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) + (-12 (-5 *3 (-947)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-947)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) (((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) (((*1 *2) - (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 (-936 *3)) (|:| -2645 (-1152)))))) - (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) + (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 (-934 *3)) (|:| -2641 (-1150)))))) + (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) ((*1 *2) - (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152)))))) - (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1203 *3) *2)))) + (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150)))))) + (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152)))))) - (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949))))) + (-12 (-5 *2 (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150)))))) + (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947))))) (((*1 *2) - (-12 (-5 *2 (-711 (-936 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949)))) + (-12 (-5 *2 (-709 (-934 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) + (-14 *4 (-947)))) ((*1 *2) - (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-709 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 - (-3 (-1203 *3) (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152))))))))) + (-3 (-1201 *3) (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150))))))))) ((*1 *2) - (-12 (-5 *2 (-711 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949))))) + (-12 (-5 *2 (-709 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) - (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4)))) + (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) + (-4 *4 (-363)) (-5 *2 (-791)) (-5 *1 (-360 *4)))) ((*1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) + (-12 (-5 *2 (-791)) (-5 *1 (-365 *3 *4)) (-14 *3 (-947)) (-14 *4 (-947)))) ((*1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-791)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 - (-3 (-1203 *3) (-1299 (-663 (-2 (|:| -3908 *3) (|:| -2645 (-1152))))))))) + (-3 (-1201 *3) (-1297 (-661 (-2 (|:| -3904 *3) (|:| -2641 (-1150))))))))) ((*1 *2) - (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-949))))) + (-12 (-5 *2 (-791)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-947))))) (((*1 *2) (-12 (-4 *1 (-363)) - (-5 *2 (-663 (-2 (|:| -4248 (-560)) (|:| -2646 (-560)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1221 (-949) (-793)))))) + (-5 *2 (-661 (-2 (|:| -4244 (-558)) (|:| -2642 (-558)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1219 (-947) (-791)))))) (((*1 *1) (-4 *1 (-363)))) (((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) + (-12 (-5 *3 (-947)) (-5 *2 - (-3 (-1203 *4) (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152))))))) + (-3 (-1201 *4) (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150))))))) (-5 *1 (-360 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-949)) - (-5 *2 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) + (|partial| -12 (-5 *3 (-947)) + (-5 *2 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-5 *1 (-360 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) - (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4))))) + (-12 (-5 *3 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) + (-4 *4 (-363)) (-5 *2 (-709 *4)) (-5 *1 (-360 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) - (-5 *2 (-1299 (-663 (-2 (|:| -3908 *4) (|:| -2645 (-1152)))))) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) + (-5 *2 (-1297 (-661 (-2 (|:| -3904 *4) (|:| -2641 (-1150)))))) (-5 *1 (-360 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1203 *4)) (-4 *4 (-363)) (-5 *2 (-988 (-1152))) + (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-986 (-1150))) (-5 *1 (-360 *4))))) (((*1 *2) - (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-357 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949)))) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-14 *3 (-947)) + (-14 *4 (-947)))) ((*1 *2) - (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-1203 *3)))) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) + (-14 *4 (-1201 *3)))) ((*1 *2) - (-12 (-5 *2 (-988 (-1152))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) + (-14 *4 (-947))))) (((*1 *2) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) - (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) + (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-793))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-791))))) (((*1 *2) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1254)) (-4 *5 (-1275 *3)) (-4 *6 (-1275 (-421 *5))) + (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) - (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) - (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) - (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *3 (-1254)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1254)) (-4 *3 (-1275 *4)) - (-4 *5 (-1275 (-421 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *2) - (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) - (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4)))))) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) - (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4)))))) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1299 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) - (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4)))))) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-2 (|:| |num| (-1299 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-2 (|:| |num| (-1299 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1299 *3)) (-4 *3 (-1275 *4)) (-4 *4 (-1254)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1275 (-421 *3)))))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-419 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1254)) - (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) - (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-709 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 (-421 *2))) (-4 *2 (-1275 *4)) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1254)) - (-4 *4 (-1275 (-421 *2))) (-4 *2 (-1275 *3))))) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) + (-4 *4 (-1273 (-419 *2))) (-4 *2 (-1273 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 (-421 *2))) (-4 *2 (-1275 *4)) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-419 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1254)) - (-4 *4 (-1275 (-421 *2))) (-4 *2 (-1275 *3))))) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) + (-4 *4 (-1273 (-419 *2))) (-4 *2 (-1273 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-1254)) - (-4 *6 (-1275 (-421 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1252)) + (-4 *6 (-1273 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *5 (-1254)) (-4 *6 (-1275 *5)) - (-4 *7 (-1275 (-421 *6))) (-5 *2 (-663 (-976 *5))) + (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) + (-4 *7 (-1273 (-419 *6))) (-5 *2 (-661 (-974 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1254)) - (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) (-4 *4 (-376)) - (-5 *2 (-663 (-976 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) (-4 *4 (-376)) + (-5 *2 (-661 (-974 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) (-4 *6 (-1275 (-421 *5))) - (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6)) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-419 *5))) + (-5 *2 (-661 (-661 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1254)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-661 (-661 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) - (-14 *4 (-663 (-1209))) (-4 *5 (-401)))) + (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) + (-14 *4 (-661 (-1207))) (-4 *5 (-401)))) ((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1209))) - (-14 *4 (-663 (-1209))) (-4 *5 (-401))))) + (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1207))) + (-14 *4 (-661 (-1207))) (-4 *5 (-401))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-376)) (-4 *3 (-1275 *4)) (-4 *5 (-1275 (-421 *3))) + (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1275 *2)) - (-4 *5 (-1275 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6)) + (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1273 *2)) + (-4 *5 (-1273 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-376)) (-4 *3 (-1275 *2)) (-4 *4 (-1275 (-421 *3))) + (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) + (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1275 *3)) - (-4 *5 (-1275 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-1299 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1275 *3)) (-4 *5 (-1275 (-421 *4))) - (-5 *2 (-1299 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-419 *4))) + (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-898 (-1214) (-793)))) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-988 (-793))) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-896 (-1212) (-791)))) (-5 *1 (-345))))) +(((*1 *2 *1) (-12 (-5 *2 (-986 (-791))) (-5 *1 (-345))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1209)) (-5 *4 (-976 (-560))) (-5 *2 (-342)) (-5 *1 (-344))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-872))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-974 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-870))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1124 (-976 (-560)))) (-5 *3 (-976 (-560))) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1124 (-976 (-560)))) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-1191))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-342))))) + (-12 (-5 *2 (-1122 (-974 (-558)))) (-5 *3 (-974 (-558))) (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-974 (-558)))) (-5 *1 (-342))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-1189))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342))))) (((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-342)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) ((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-342))))) (((*1 *1) (-5 *1 (-342)))) (((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-888))) (-5 *1 (-342))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1209))) (-5 *2 (-1209)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-886))) (-5 *1 (-342))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342))))) (((*1 *2 *1) (-12 (-5 *2 @@ -14051,149 +14040,149 @@ (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1209)) (|:| |arrayIndex| (-663 (-976 (-560)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) + (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-661 (-974 (-558)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1209)) (|:| |rand| (-888)) + (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1208)) (|:| |thenClause| (-342)) + (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| - (-2 (|:| -3909 (-114)) - (|:| -3908 (-2 (|:| |ints2Floats?| (-114)) (|:| -3757 (-888)))))) - (|:| |blockBranch| (-663 (-342))) (|:| |commentBranch| (-663 (-1191))) - (|:| |callBranch| (-1191)) + (-2 (|:| -3905 (-114)) + (|:| -3904 (-2 (|:| |ints2Floats?| (-114)) (|:| -3753 (-886)))))) + (|:| |blockBranch| (-661 (-342))) (|:| |commentBranch| (-661 (-1189))) + (|:| |callBranch| (-1189)) (|:| |forBranch| - (-2 (|:| -1650 (-1124 (-976 (-560)))) (|:| |span| (-976 (-560))) - (|:| -3737 (-342)))) - (|:| |labelBranch| (-1152)) - (|:| |loopBranch| (-2 (|:| |switch| (-1208)) (|:| -3737 (-342)))) + (-2 (|:| -1648 (-1122 (-974 (-558)))) (|:| |span| (-974 (-558))) + (|:| -3733 (-342)))) + (|:| |labelBranch| (-1150)) + (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3733 (-342)))) (|:| |commonBranch| - (-2 (|:| -4056 (-1209)) (|:| |contents| (-663 (-1209))))) - (|:| |printBranch| (-663 (-888))))) + (-2 (|:| -4052 (-1207)) (|:| |contents| (-661 (-1207))))) + (|:| |printBranch| (-661 (-886))))) (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-342))))) -(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-342))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-342))))) (((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1203 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376))))) + (-12 (-5 *2 (-1201 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3))))) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3))))) (((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) - (-5 *2 (-1203 *3)))) + (-5 *2 (-1201 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3))))) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814))))) (((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1081)) (-4 *3 (-816))))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-814))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1081)) (-4 *4 (-816)) + (-12 (-5 *2 (-791)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *3 (-175))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1133)) (-4 *2 (-133))))) + (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1131)) (-4 *2 (-133))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-133))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1133)) (-4 *3 (-133)) (-4 *3 (-816))))) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)) (-4 *3 (-814))))) (((*1 *2 *3) - (-12 (-5 *3 (-560)) (-4 *4 (-817)) (-4 *5 (-872)) (-4 *2 (-1081)) - (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-980 *2 *4 *5))))) + (-12 (-5 *3 (-558)) (-4 *4 (-815)) (-4 *5 (-870)) (-4 *2 (-1079)) + (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-978 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1203 *7)) (-5 *3 (-560)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) - (-4 *5 (-872)) (-4 *6 (-1081)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1201 *7)) (-5 *3 (-558)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *1 (-333 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1203 *6)) (-4 *6 (-1081)) (-4 *4 (-817)) (-4 *5 (-872)) - (-5 *2 (-1203 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-980 *6 *4 *5))))) + (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1079)) (-4 *4 (-815)) (-4 *5 (-870)) + (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1203 *7)) (-4 *7 (-980 *6 *4 *5)) (-4 *4 (-817)) (-4 *5 (-872)) - (-4 *6 (-1081)) (-5 *2 (-1203 *6)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1201 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-870)) + (-4 *6 (-1079)) (-5 *2 (-1201 *6)) (-5 *1 (-333 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1203 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8)) (-4 *7 (-872)) - (-4 *8 (-1081)) (-4 *9 (-980 *8 *6 *7)) (-4 *6 (-817)) (-5 *2 (-1203 *8)) + (-12 (-5 *3 (-1201 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 *8)) (-4 *7 (-870)) + (-4 *8 (-1079)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1209)) (-14 *5 *3)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) + (-14 *4 (-1207)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) - (-5 *6 (-560)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) + (-5 *6 (-558)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) - (-5 *6 (-560)) (-5 *7 (-1191)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) + (-5 *6 (-558)) (-5 *7 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) - (-5 *6 (-229)) (-5 *7 (-560)) (-5 *2 (-1245 (-957))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) + (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1121 (-229))) - (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1191)) (-5 *2 (-1245 (-957))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1119 (-229))) + (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5)) - (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))) + (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) + (-4 *5 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7)) (-4 *7 (-435 *6)) - (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-661 *7)) (-4 *7 (-433 *6)) + (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) + (-12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8)) - (-5 *6 (-663 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) + (-12 (-5 *3 (-661 (-305 *8))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *8)) + (-5 *6 (-661 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) + (-12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8))) - (-4 *8 (-435 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-571) (-633 (-549)))) + (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-115))) (-5 *6 (-661 (-305 *8))) + (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6)) - (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) + (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) + (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) - (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) + (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) - (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) + (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3)) (-4 *3 (-435 *7)) - (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3))))) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-661 *3)) (-4 *3 (-433 *7)) + (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1131))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1133))))) + (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1131))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-791))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2654 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2650 *1))) (-4 *1 (-319))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-316 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-661 *1)) (-4 *1 (-319))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-869)) (-5 *1 (-316 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) + (-12 (-5 *3 (-661 (-229))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-419 (-558))) (-5 *2 (-229)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-976 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-976 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-974 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-974 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) - (-5 *2 (-1067)) (-5 *1 (-315))))) + (-5 *2 (-1065)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14207,793 +14196,793 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-229))) + (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1650 + (|:| -1648 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1067)) (-5 *1 (-315))))) + (-5 *2 (-1065)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))))) - (-5 *2 (-1067)) (-5 *1 (-315)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))))) + (-5 *2 (-1065)) (-5 *1 (-315)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3155 (-391)) (|:| -4056 (-1191)) - (|:| |explanations| (-663 (-1191))) (|:| |extra| (-1067)))) - (-5 *2 (-1067)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1191)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1121 (-866 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-195)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-313)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1191))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1191)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1191)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *2 (-1299 (-326 (-391)))) + (-2 (|:| -3151 (-391)) (|:| -4052 (-1189)) + (|:| |explanations| (-661 (-1189))) (|:| |extra| (-1065)))) + (-5 *2 (-1065)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-1119 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-195)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1189))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391)))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1299 (-721))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1297 (-719))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-719)) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-2 (|:| -3626 (-421 (-560))) (|:| -3625 (-421 (-560)))))) - (-5 *2 (-663 (-229))) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-1121 (-866 (-229)))) (-5 *1 (-315))))) + (-12 (-5 *3 (-661 (-2 (|:| -3622 (-419 (-558))) (|:| -3621 (-419 (-558)))))) + (-5 *2 (-661 (-229))) (-5 *1 (-315))))) +(((*1 *2 *2) (-12 (-5 *2 (-1119 (-864 (-229)))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560)))) (-5 *1 (-315))))) + (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-558)))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-1299 (-326 (-229)))) + (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 - (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) - (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) + (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) + (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))) + (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) - ((*1 *2 *3) (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315))))) + ((*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-558))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-558))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-1121 (-866 (-391)))) (-5 *2 (-1121 (-866 (-229)))) + (-12 (-5 *3 (-1119 (-864 (-391)))) (-5 *2 (-1119 (-864 (-229)))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 (-391))) (-5 *2 (-866 (-229))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-976 (-421 (-560)))) (-5 *4 (-1209)) - (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-974 (-419 (-558)))) (-5 *4 (-1207)) + (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-1187 (-229))) (-5 *1 (-195)))) + (-5 *2 (-1185 (-229))) (-5 *1 (-195)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1209))) - (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313)))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1207))) + (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1299 (-326 (-229)))) (-5 *4 (-663 (-1209))) - (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-661 (-1207))) + (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1209)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) + (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1209))) - (-5 *5 (-1121 (-866 (-229)))) (-5 *2 (-1187 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1207))) + (-5 *5 (-1119 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1209)) (-5 *5 (-1121 (-866 (-229)))) - (-5 *2 (-663 (-229))) (-5 *1 (-195)))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1119 (-864 (-229)))) + (-5 *2 (-661 (-229))) (-5 *1 (-195)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1209)) (-5 *5 (-1121 (-866 (-229)))) - (-5 *2 (-663 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1119 (-864 (-229)))) + (-5 *2 (-661 (-229))) (-5 *1 (-313))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1249)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-661 (-628 *1))) (-5 *3 (-661 *1)) (-4 *1 (-310)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310))))) (((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1209)) (-5 *2 (-114)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-628 *1)) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-661 (-115)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1070 (-560))) - (-4 *4 (-571)) (-5 *2 (-1203 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-628 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1068 (-558))) + (-4 *4 (-569)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1081)) (-4 *1 (-310)) (-5 *2 (-1203 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308)))) + (-12 (-5 *3 (-628 *1)) (-4 *1 (-1079)) (-4 *1 (-310)) (-5 *2 (-1201 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-323)) (-5 *1 (-308)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-1191))) (-5 *3 (-1191)) (-5 *2 (-323)) (-5 *1 (-308))))) + (-12 (-5 *4 (-661 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))) (((*1 *2 *2) - (-12 (-4 *3 (-1081)) (-4 *4 (-1275 *3)) (-5 *1 (-166 *3 *4 *2)) - (-4 *2 (-1275 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1249))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1249))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1249))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2)) + (-4 *2 (-1273 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1247))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1247))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571)) - (-4 *3 (-1249))))) + (-12 (-5 *2 (-661 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) + (-4 *3 (-1247))))) (((*1 *2 *3) - (-12 (-4 *4 (-466)) + (-12 (-4 *4 (-464)) (-5 *2 - (-663 - (-2 (|:| |eigval| (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4)))) - (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-976 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-976 *4))))))) + (-661 + (-2 (|:| |eigval| (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4)))) + (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-974 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-974 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-466)) + (-12 (-4 *4 (-464)) (-5 *2 - (-663 - (-2 (|:| |eigval| (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4)))) - (|:| |geneigvec| (-663 (-711 (-421 (-976 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-976 *4))))))) + (-661 + (-2 (|:| |eigval| (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4)))) + (|:| |geneigvec| (-661 (-709 (-419 (-974 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-974 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-421 (-976 *6)) (-1198 (-1209) (-976 *6)))) (-5 *5 (-793)) - (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-976 *6))))) (-5 *1 (-304 *6)) - (-5 *4 (-711 (-421 (-976 *6)))))) + (-12 (-5 *3 (-3 (-419 (-974 *6)) (-1196 (-1207) (-974 *6)))) (-5 *5 (-791)) + (-4 *6 (-464)) (-5 *2 (-661 (-709 (-419 (-974 *6))))) (-5 *1 (-304 *6)) + (-5 *4 (-709 (-419 (-974 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-421 (-976 *5)) (-1198 (-1209) (-976 *5)))) - (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4)))) - (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-976 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-711 (-421 (-976 *5))))))) + (-2 (|:| |eigval| (-3 (-419 (-974 *5)) (-1196 (-1207) (-974 *5)))) + (|:| |eigmult| (-791)) (|:| |eigvec| (-661 *4)))) + (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-974 *5))))) (-5 *1 (-304 *5)) + (-5 *4 (-709 (-419 (-974 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-421 (-976 *5)) (-1198 (-1209) (-976 *5)))) (-4 *5 (-466)) - (-5 *2 (-663 (-711 (-421 (-976 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-711 (-421 (-976 *5))))))) + (-12 (-5 *3 (-3 (-419 (-974 *5)) (-1196 (-1207) (-974 *5)))) (-4 *5 (-464)) + (-5 *2 (-661 (-709 (-419 (-974 *5))))) (-5 *1 (-304 *5)) + (-5 *4 (-709 (-419 (-974 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 (-421 (-976 *4)))) (-4 *4 (-466)) - (-5 *2 (-663 (-3 (-421 (-976 *4)) (-1198 (-1209) (-976 *4))))) + (-12 (-5 *3 (-709 (-419 (-974 *4)))) (-4 *4 (-464)) + (-5 *2 (-661 (-3 (-419 (-974 *4)) (-1196 (-1207) (-974 *4))))) (-5 *1 (-304 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1117))) (-5 *1 (-303))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1135))) (-5 *1 (-303))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-303))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-663 (-995))) (-5 *1 (-303))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-995))) (-5 *1 (-303))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1115))) (-5 *1 (-303))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-1133))) (-5 *1 (-303))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1133)) (-5 *1 (-303))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-661 (-993))) (-5 *1 (-303))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-993))) (-5 *1 (-303))))) (((*1 *1) (-5 *1 (-303)))) (((*1 *1) (-5 *1 (-303)))) (((*1 *1) (-5 *1 (-303)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1249)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4512)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1133)) - (-4 *2 (-1249))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1187 *4))) (-5 *1 (-297 *4 *5)) - (-5 *3 (-1187 *4)) (-4 *5 (-1292 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1292 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1266 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1249)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1249))))) + (-12 (|has| *1 (-6 -4508)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-376)) (-5 *2 (-661 (-1185 *4))) (-5 *1 (-297 *4 *5)) + (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4511)) (-4 *1 (-242 *3)) - (-4 *3 (-1133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1249))))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4507)) (-4 *1 (-242 *3)) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292))))) + (-12 (-5 *2 (-598)) (-5 *3 (-609)) (-5 *4 (-303)) (-5 *1 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-292))))) (((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-291))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1133)) (-5 *1 (-291))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-421 (-560))) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4))) - (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2))))) + (-12 (-5 *3 (-628 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4))) + (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-1209)) - (-4 *2 (-13 (-27) (-1235) (-435 *5))) - (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *5 *2))))) + (|partial| -12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-1207)) + (-4 *2 (-13 (-27) (-1233) (-433 *5))) + (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-571) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1235) (-435 *3))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-13 (-571) (-1070 (-560)) (-660 (-560)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1235) (-435 *4)))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-569) (-1068 (-558)) (-658 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-433 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1209)) (-4 *5 (-13 (-571) (-1070 (-560)) (-660 (-560)))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-569) (-1068 (-558)) (-658 (-558)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3))) (|:| |vals| (-663 *3)))) - (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1235) (-435 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-661 (-628 *3))) (|:| |vals| (-661 *3)))) + (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-433 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) - (-4 *3 (-13 (-435 *4) (-1034)))))) + (-12 (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-433 *4) (-1032)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114))))) - (-4 *2 (-13 (-435 *4) (-1034))) (-4 *4 (-571)) (-5 *1 (-287 *4 *2))))) + (|partial| -12 (-5 *3 (-661 (-2 (|:| |func| *2) (|:| |pole| (-114))))) + (-4 *2 (-13 (-433 *4) (-1032))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1034)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1032)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571))))) + (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) (((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1034))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286))))) -(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286))))) + (-12 (-4 *2 (-13 (-433 *3) (-1032))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286))))) +(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-286))))) (((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3952 (-663 (-229))))))) - (-5 *2 (-663 (-1191))) (-5 *1 (-278))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-1209)) (-5 *1 (-278))))) + (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3948 (-661 (-229))))))) + (-5 *2 (-661 (-1189))) (-5 *1 (-278))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1207)) (-5 *1 (-278))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) + (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-278))))) -(((*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))) +(((*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))) (((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3952 (-663 (-229))) - (|:| |lb| (-663 (-866 (-229)))) (|:| |cf| (-663 (-326 (-229)))) - (|:| |ub| (-663 (-866 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3948 (-661 (-229))) + (|:| |lb| (-661 (-864 (-229)))) (|:| |cf| (-661 (-326 (-229)))) + (|:| |ub| (-661 (-864 (-229)))))) (-5 *1 (-278))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-866 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4)) + (-12 (-5 *3 (-661 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 *4)) (-5 *1 (-278))))) (((*1 *2 *1) - (-12 (-4 *3 (-240)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-277 *4)) - (-4 *6 (-817)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6)))) + (-12 (-4 *3 (-240)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-277 *4)) + (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-1081)) (-4 *3 (-872)) (-4 *5 (-277 *3)) (-4 *6 (-817)) - (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-872))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) + (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-277 *3)) (-4 *6 (-815)) + (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-277 *2)) (-4 *2 (-870))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) - (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-793)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) - (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-872)) (-5 *2 (-793))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-870)) (-5 *2 (-791))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *2 (-51)) (-5 *1 (-270)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *1 (-272 *2)) - (-4 *2 (-1249))))) + (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *1 (-272 *2)) + (-4 *2 (-1247))))) (((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) (((*1 *1) (-5 *1 (-146))) - ((*1 *1 *2) (-12 (-5 *2 (-1165 (-229))) (-5 *1 (-270)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-899)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-899)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-229))) (-5 *1 (-270)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-947)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) (((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) (((*1 *2 *3) - (-12 (-5 *3 (-955)) + (-12 (-5 *3 (-953)) (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-955)) (-5 *4 (-421 (-560))) + (-12 (-5 *3 (-953)) (-5 *4 (-419 (-558))) (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) - (-5 *1 (-155)) (-5 *3 (-663 (-973 (-229)))))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) + (-5 *1 (-155)) (-5 *3 (-661 (-971 (-229)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) - (-5 *1 (-155)) (-5 *3 (-663 (-663 (-973 (-229))))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270)))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) + (-5 *1 (-155)) (-5 *3 (-661 (-661 (-971 (-229))))))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-270)))) +(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-899)) (-5 *1 (-270)))) +(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-421 (-560))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-1121 (-391)))) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-419 (-558))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 (-1119 (-391)))) (-5 *1 (-270))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1209)) (-5 *2 (-114)) (-5 *1 (-270))))) + (-12 (-5 *3 (-661 (-270))) (-5 *4 (-1207)) (-5 *2 (-114)) (-5 *1 (-270))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1302)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1300)) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1302)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) - (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1302)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) + (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 *5)) (-5 *4 (-1124 (-391))) - (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1302)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) - (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) + (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-1124 (-391))) - (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1303)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1301)) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1303)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-908 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) - (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) + (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-908 *5)) (-5 *4 (-1124 (-391))) - (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1303)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *5 (-663 (-270))) - (-5 *2 (-1302)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *5 (-661 (-270))) + (-5 *2 (-1300)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1302)) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1302)) (-5 *1 (-265)))) + (-12 (-5 *3 (-901 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1302)) + (-12 (-5 *3 (-901 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) + (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) + (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) (-5 *2 (-1303)) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1303)) (-5 *1 (-265)))) + (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1301)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-1209)) (-5 *5 (-663 (-270))) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-872) (-1070 (-560)))) (-5 *2 (-1302)) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-661 (-270))) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-558)))) (-5 *2 (-1300)) (-5 *1 (-266 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1302)) (-5 *1 (-269)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1300)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1302)) + (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *2 (-1302)) (-5 *1 (-269)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-973 (-229)))) (-5 *4 (-663 (-270))) (-5 *2 (-1302)) + (-12 (-5 *3 (-661 (-971 (-229)))) (-5 *4 (-661 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1303)) (-5 *1 (-269)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1301)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1303)) + (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1301)) (-5 *1 (-269))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1121 (-229))) - (-5 *2 (-1303)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1119 (-229))) + (-5 *2 (-1301)) (-5 *1 (-267))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1121 (-229))) - (-5 *5 (-114)) (-5 *2 (-1303)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1119 (-229))) + (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-973 (-229)) (-229) (-229))) + (-12 (-5 *2 (-1 (-971 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) - (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) + (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) + (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 *5)) (-5 *4 (-1124 (-391))) - (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) + (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1124 (-391))) (-5 *2 (-1165 (-229))) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-633 (-549)) (-1133))))) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-631 (-547)) (-1131))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-908 *6)) (-5 *4 (-1124 (-391))) (-5 *5 (-663 (-270))) - (-4 *6 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) + (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-661 (-270))) + (-4 *6 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-908 *5)) (-5 *4 (-1124 (-391))) - (-4 *5 (-13 (-633 (-549)) (-1133))) (-5 *2 (-1165 (-229))) + (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-631 (-547)) (-1131))) (-5 *2 (-1163 (-229))) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-1 (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-903 (-1 (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-973 (-229)) (-229))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-973 (-229)) (-229) (-229))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-971 (-229)) (-229) (-229))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *5 (-663 (-270))) (-5 *2 (-1165 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-661 (-270))) (-5 *2 (-1163 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-908 (-1 (-229) (-229) (-229)))) (-5 *4 (-1121 (-391))) - (-5 *2 (-1165 (-229))) (-5 *1 (-265))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-226 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-263 *3)))) - ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) - (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-663 *4))))) + (-12 (-5 *3 (-906 (-1 (-229) (-229) (-229)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1163 (-229))) (-5 *1 (-265))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-226 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3)))) + ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1081)) (-4 *3 (-872)) - (-4 *5 (-277 *3)) (-4 *6 (-817)) (-5 *2 (-663 (-793))))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) - (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-663 (-793)))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 (-791)))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1081)) (-4 *4 (-872)) - (-4 *5 (-277 *4)) (-4 *6 (-817)) (-5 *2 (-114))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1081)) (-4 *4 (-872)) (-4 *5 (-817)) + (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-815)) (-4 *2 (-277 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1081)) (-4 *3 (-872)) - (-4 *4 (-277 *3)) (-4 *5 (-817))))) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) + (-4 *4 (-277 *3)) (-4 *5 (-815))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1081)) (-4 *3 (-872)) - (-4 *4 (-277 *3)) (-4 *5 (-817))))) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) + (-4 *4 (-277 *3)) (-4 *5 (-815))))) (((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) (((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256))))) (((*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) (((*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-5 *2 (-1305)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-793)) - (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560)))))) + (|partial| -12 (-5 *2 (-791)) + (-4 *3 (-13 (-746) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-253 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-252 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-251 *2)) (-4 *2 (-1249))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-560)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-560)) (-5 *1 (-248))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-1305)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-663 (-1191))) (-5 *2 (-1305)) (-5 *1 (-248))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1191)) (-5 *3 (-560)) (-5 *1 (-248))))) -(((*1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-248))))) -(((*1 *1 *2) (-12 (-5 *2 (-1299 *4)) (-4 *4 (-1249)) (-4 *1 (-245 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-305 (-976 (-560)))) - (-5 *2 - (-2 (|:| |varOrder| (-663 (-1209))) - (|:| |inhom| (-3 (-663 (-1299 (-793))) "failed")) - (|:| |hom| (-663 (-1299 (-793)))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-252 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-251 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-558)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-558)) (-5 *1 (-248))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-661 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-558)) (-5 *1 (-248))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248))))) +(((*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-305 (-974 (-558)))) + (-5 *2 + (-2 (|:| |varOrder| (-661 (-1207))) + (|:| |inhom| (-3 (-661 (-1297 (-791))) "failed")) + (|:| |hom| (-661 (-1297 (-791)))))) (-5 *1 (-243))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-4 *1 (-242 *3)))) - ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1133))))) -(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1235)))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-4 *1 (-242 *3)))) + ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1131))))) +(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-976 *6)) (-5 *4 (-1209)) - (-5 *5 (-866 *7)) (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-4 *7 (-13 (-1235) (-29 *6))) (-5 *1 (-228 *6 *7)))) + (|partial| -12 (-5 *2 (-114)) (-5 *3 (-974 *6)) (-5 *4 (-1207)) + (-5 *5 (-864 *7)) (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1203 *6)) (-5 *4 (-866 *6)) - (-4 *6 (-13 (-1235) (-29 *5))) - (-4 *5 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-228 *5 *6))))) + (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6)) + (-4 *6 (-13 (-1233) (-29 *5))) + (-4 *5 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-228 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-866 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114)) - (-4 *4 (-13 (-1235) (-29 *6))) - (-4 *6 (-13 (-466) (-1070 (-560)) (-660 (-560)))) (-5 *1 (-228 *6 *4))))) + (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-628 *4)) (-5 *5 (-114)) + (-4 *4 (-13 (-1233) (-29 *6))) + (-4 *6 (-13 (-464) (-1068 (-558)) (-658 (-558)))) (-5 *1 (-228 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191)) (-4 *4 (-13 (-466) (-1070 (-560)) (-660 (-560)))) - (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1235) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1081)) (-14 *3 (-663 (-1209))))) + (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-464) (-1068 (-558)) (-658 (-558)))) + (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-661 (-1207))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) - (-14 *3 (-663 (-1209)))))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-661 (-1207)))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1081)) - (-14 *4 (-663 (-1209))))) + (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-661 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1081) (-872))) - (-14 *4 (-663 (-1209)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-661 (-1207)))))) (((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1081) (-872))) (-5 *1 (-227 *3 *4)) - (-14 *4 (-663 (-1209)))))) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-227 *3 *4)) + (-14 *4 (-661 (-1207)))))) (((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1081) (-872))) - (-14 *3 (-663 (-1209)))))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-661 (-1207)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1209)) (-5 *6 (-114)) - (-4 *7 (-13 (-319) (-149) (-1070 (-560)) (-660 (-560)))) - (-4 *3 (-13 (-1235) (-990) (-29 *7))) + (-12 (-5 *4 (-1207)) (-5 *6 (-114)) + (-4 *7 (-13 (-319) (-149) (-1068 (-558)) (-658 (-558)))) + (-4 *3 (-13 (-1233) (-988) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-866 *3)) (|:| |f2| (-663 (-866 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-661 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *7 *3)) (-5 *5 (-866 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221))))) + (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1275 *4))))) + (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3060 *3)))) - (-5 *1 (-220 *4 *3)) (-4 *3 (-1275 *4))))) + (-12 (-4 *4 (-363)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3056 *3)))) + (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -2001 (-663 (-2 (|:| |irr| *3) (|:| -2640 (-560))))))) - (-5 *1 (-220 *5 *3)) (-4 *3 (-1275 *5))))) + (|:| -1997 (-661 (-2 (|:| |irr| *3) (|:| -2636 (-558))))))) + (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1275 (-421 *2))) - (-4 *2 (-1275 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-419 *2))) + (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-949)) (-4 *2 (-1133))))) + (-12 (-5 *3 (-791)) (-5 *1 (-216 *4 *2)) (-14 *4 (-947)) (-4 *2 (-1131))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-663 (-326 (-229)))) + (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| - (-663 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) - (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) - (|:| |dFinish| (-711 (-229)))))) - (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1191)) + (-661 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) + (|:| |dFinish| (-709 (-229)))))) + (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) + (-12 (-5 *4 (-661 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213))))) (((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1299 (-326 (-229)))) (|:| |yinit| (-663 (-229))) - (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-661 (-229))) + (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208))))) (((*1 *2 *3) - (-12 (-5 *3 (-711 (-326 (-229)))) + (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208))))) -(((*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) +(((*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208))))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-661 (-391))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-560)) (-5 *1 (-207))))) + (-5 *2 (-558)) (-5 *1 (-207))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-663 (-229))) (-5 *1 (-207))))) + (-5 *2 (-661 (-229))) (-5 *1 (-207))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -2984 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-1209)) (-5 *1 (-195))))) + (-5 *2 (-2 (|:| -2980 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1207)) (-5 *1 (-195))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") @@ -15005,8 +14994,8 @@ (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1209)) (|:| |fn| (-326 (-229))) - (|:| -1650 (-1121 (-866 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) + (|:| -1648 (-1119 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") @@ -15015,242 +15004,242 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-1203 (-560)))) (-5 *1 (-194)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *2 (-663 (-1203 (-560)))) (-5 *1 (-194)) (-5 *3 (-560))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-1201 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-661 (-1201 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-661 (-558))) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-949))) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-661 (-947))) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1211 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1211 (-421 (-560)))) (-5 *1 (-193))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1299 (-711 *4))) (-4 *4 (-175)) - (-5 *2 (-1299 (-711 (-976 *4)))) (-5 *1 (-192 *4))))) + (-12 (-5 *3 (-1209 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-1209 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-709 *4))) (-4 *4 (-175)) + (-5 *2 (-1297 (-709 (-974 *4)))) (-5 *1 (-192 *4))))) (((*1 *1) (-5 *1 (-190)))) (((*1 *1) (-5 *1 (-190)))) (((*1 *1) (-5 *1 (-190)))) (((*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) ((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114)))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-890)))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-1214))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -(((*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1249)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-114)))))) +(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-888)))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-186))) (-5 *1 (-186))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1249)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) (-4 *3 (-696 *4))))) + (-12 (-4 *4 (-1247)) (-5 *2 (-791)) (-5 *1 (-185 *4 *3)) (-4 *3 (-694 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1249)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3))))) + (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-871))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2001 (-419 *3)))) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1275 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-869))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1997 (-417 *3)))) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1273 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1275 (-171 *2)))))) + (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1273 (-171 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-871))) - (-4 *3 (-1275 *2))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-869))) + (-4 *3 (-1273 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1275 (-171 *2))))) + (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1273 (-171 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-871))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1275 (-171 *2)))))) + (-12 (-4 *2 (-13 (-376) (-869))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1273 (-171 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-871))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1275 (-171 *3)))))) + (-12 (-4 *3 (-13 (-376) (-869))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1273 (-171 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) + (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1275 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1273 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-871))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1275 (-171 *3)))))) + (-12 (-4 *3 (-13 (-376) (-869))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1273 (-171 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-871))) - (-5 *2 (-663 (-2 (|:| -2001 (-663 *3)) (|:| -1751 *5)))) - (-5 *1 (-184 *5 *3)) (-4 *3 (-1275 (-171 *5))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-869))) + (-5 *2 (-661 (-2 (|:| -1997 (-661 *3)) (|:| -1749 *5)))) + (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-871))) - (-5 *2 (-663 (-2 (|:| -2001 (-663 *3)) (|:| -1751 *4)))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-869))) + (-5 *2 (-661 (-2 (|:| -1997 (-661 *3)) (|:| -1749 *4)))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4)) - (-4 *3 (-1275 (-171 (-560)))) (-4 *4 (-13 (-376) (-871))))) + (-12 (-5 *2 (-661 (-171 *4))) (-5 *1 (-157 *3 *4)) + (-4 *3 (-1273 (-171 (-558)))) (-4 *4 (-13 (-376) (-869))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-663 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-661 (-171 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-871))) (-5 *2 (-663 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1275 (-171 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) + (-12 (-4 *4 (-13 (-376) (-869))) (-5 *2 (-661 (-171 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-973 *3) (-973 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1235) (-1034)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1032)))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-973 *3)) (-4 *3 (-13 (-376) (-1235) (-1034))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-376) (-1233) (-1032))) (-5 *1 (-179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-109))) (-5 *1 (-178))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-303)) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-713 (-292))) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-303)) (-5 *1 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-711 (-292))) (-5 *1 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-661 (-711 (-292)))) (-5 *1 (-170))))) (((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1092)) (-4 *3 (-1235)) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1090)) (-4 *3 (-1233)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163))))) -(((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-163))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) ((*1 *1 *1) (-4 *1 (-162)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1124 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1209))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) (((*1 *1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2))))) (((*1 *1 *1) (-4 *1 (-145))) - ((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) + ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) - (-4 *4 (-571))))) -(((*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *1) (-5 *1 (-159)))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-159))))) +(((*1 *2) (-12 (-5 *2 (-947)) (-5 *1 (-159))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 *4)))) (|:| |xValues| (-1121 *4)) - (|:| |yValues| (-1121 *4)))) - (-5 *1 (-155)) (-5 *3 (-663 (-663 (-973 *4))))))) + (-2 (|:| |brans| (-661 (-661 (-971 *4)))) (|:| |xValues| (-1119 *4)) + (|:| |yValues| (-1119 *4)))) + (-5 *1 (-155)) (-5 *3 (-661 (-661 (-971 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-955)) + (-12 (-5 *3 (-953)) (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-955)) (-5 *4 (-421 (-560))) + (-12 (-5 *3 (-953)) (-5 *4 (-419 (-558))) (-5 *2 - (-2 (|:| |brans| (-663 (-663 (-973 (-229))))) - (|:| |xValues| (-1121 (-229))) (|:| |yValues| (-1121 (-229))))) + (-2 (|:| |brans| (-661 (-661 (-971 (-229))))) + (|:| |xValues| (-1119 (-229))) (|:| |yValues| (-1119 (-229))))) (-5 *1 (-155))))) (((*1 *1 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) - (-14 *5 (-1025 *3 *4))))) + (-12 (-5 *2 (-947)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) + (-14 *5 (-1023 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1249))))) + (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1247))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4511)) (-4 *1 (-153 *2)) (-4 *2 (-1249)) - (-4 *2 (-1133))))) + (-12 (|has| *1 (-6 -4507)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) + (-4 *2 (-1131))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) - (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1275 (-421 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) + (|:| |c2| (-419 *5)) (|:| |deg| (-791)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-419 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1275 *2)) (-4 *2 (-1254)) (-5 *1 (-150 *2 *4 *3)) - (-4 *3 (-1275 (-421 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-421 *6)) (-4 *5 (-1254)) (-4 *6 (-1275 *5)) - (-5 *2 (-2 (|:| -2646 (-793)) (|:| -4470 *3) (|:| |radicand| *6))) - (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1275 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) - (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1275 (-421 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1254)) (-4 *5 (-1275 *4)) - (-5 *2 (-2 (|:| -4470 (-421 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) - (-4 *3 (-1275 (-421 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-146)))) - ((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146))))) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) + (-4 *3 (-1273 (-419 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) + (-5 *2 (-2 (|:| -2642 (-791)) (|:| -4466 *3) (|:| |radicand| *6))) + (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-791)) (-4 *7 (-1273 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-791)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -4466 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) + (-4 *3 (-1273 (-419 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-146))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) + ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-146))))) (((*1 *1) (-5 *1 (-146)))) (((*1 *1) (-5 *1 (-146)))) (((*1 *1) (-5 *1 (-146)))) @@ -15266,1104 +15255,1104 @@ (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143)))) - ((*1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-143))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 (-146))) (-5 *1 (-143)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143))))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-862))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-860))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) - (-14 *4 (-793)) (-4 *5 (-175))))) + (-12 (-5 *2 (-661 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-791)) (-4 *5 (-175))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) - (-14 *4 (-793)) (-4 *5 (-175))))) + (-12 (-5 *2 (-661 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-791)) (-4 *5 (-175))))) (((*1 *1 *2) - (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) - (-14 *4 (-793))))) -(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136))))) + (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-791))))) +(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-136))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) (((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) (((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1305))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-791)) (-5 *2 (-1303))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-133)))) (((*1 *1) (-5 *1 (-132)))) (((*1 *1) (-5 *1 (-132)))) (((*1 *1) (-5 *1 (-132)))) -(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131))))) -(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1133)))) - ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1133))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-128 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1133))))) +(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) +(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-130))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-128 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1131))))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-872)) (-5 *1 (-123 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-872))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) - ((*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1275 (-560)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-121 *2)) (-4 *2 (-1249))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4512)) (-4 *1 (-121 *2)) (-4 *2 (-1249))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-1070 (-421 *2)))) (-5 *2 (-560)) - (-5 *1 (-117 *4 *3)) (-4 *3 (-1275 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1133))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1133))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-870)) (-5 *1 (-123 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-870))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-558)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-121 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-121 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-1068 (-419 *2)))) (-5 *2 (-558)) + (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1131))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1133)) + (-12 (-5 *2 (-115)) (-5 *3 (-661 (-1 *4 (-661 *4)))) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1133)) (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-116 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4)))) - (-5 *1 (-116 *4)) (-4 *4 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-663 (-995))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1191) (-795))) (-5 *1 (-115))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-1 *4 (-661 *4)))) + (-5 *1 (-116 *4)) (-4 *4 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-661 (-993))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-793))) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1191)) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1191)) (-5 *3 (-795)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1191) (-795))) (-5 *1 (-115))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-793)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-793)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-793))) (-5 *1 (-115))))) (((*1 *1 *1) (-5 *1 (-114)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-995))) (-5 *1 (-109))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1249))))) -(((*1 *2) (-12 (-5 *2 (-663 (-1209))) (-5 *1 (-105))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-993))) (-5 *1 (-109))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-661 (-1207))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1209)) + (-12 (-5 *3 (-1207)) (-5 *2 - (-2 (|:| |zeros| (-1187 (-229))) (|:| |ones| (-1187 (-229))) - (|:| |singularities| (-1187 (-229))))) + (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) + (|:| |singularities| (-1185 (-229))))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4513 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1081)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1275 *2)) - (-4 *4 (-708 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4509 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) + (-4 *4 (-706 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4513 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1081)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1275 *2)) - (-4 *4 (-708 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4509 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) + (-4 *4 (-706 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1275 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) + (-12 (-4 *4 (-1079)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1081)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1275 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1133))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-103 *3))))) + (-12 (-4 *4 (-1079)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-103 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1133)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1133))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1131))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1133)) (-5 *1 (-103 *2)))) + (-12 (-5 *3 (-1 (-661 *2) *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1133)) (-5 *1 (-103 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *4 *3)) - (-4 *3 (-1275 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-663 *3)) (-4 *3 (-1275 *5)) (-4 *5 (-13 (-466) (-149))) - (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1081)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1081)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1191)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1305)) (-5 *1 (-97))))) + (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-661 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-464) (-149))) + (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97))))) (((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1191)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1191)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1133)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1131)) (-5 *1 (-91 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *5 (-571)) + (-12 (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 - (-2 (|:| |minor| (-663 (-949))) (|:| -3770 *3) - (|:| |minors| (-663 (-663 (-949)))) (|:| |ops| (-663 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-680 *5))))) + (-2 (|:| |minor| (-661 (-947))) (|:| -3766 *3) + (|:| |minors| (-661 (-661 (-947)))) (|:| |ops| (-661 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-947)) (-4 *3 (-678 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-1299 (-711 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-711 *4)) (-4 *5 (-680 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-709 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-709 *4)) (-4 *5 (-678 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-571)) - (-5 *2 (-2 (|:| -1795 (-711 *5)) (|:| |vec| (-1299 (-663 (-949)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-680 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-58 *3)) (-4 *3 (-1249)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1249)) (-5 *1 (-58 *3))))) + (-12 (-4 *5 (-569)) + (-5 *2 (-2 (|:| -1793 (-709 *5)) (|:| |vec| (-1297 (-661 (-947)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-947)) (-4 *3 (-678 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-58 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1247)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1249)) (-4 *3 (-385 *4)) + (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1249)) (-4 *5 (-385 *4)) + (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-1209))) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4))))))) + (-12 (-5 *3 (-661 (-1207))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-663 (-1107 *4 *5 *2))) (-4 *4 (-1133)) - (-4 *5 (-13 (-1081) (-912 *4) (-633 (-916 *4)))) - (-4 *2 (-13 (-435 *5) (-912 *4) (-633 (-916 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-661 (-1105 *4 *5 *2))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1079) (-910 *4) (-631 (-914 *4)))) + (-4 *2 (-13 (-433 *5) (-910 *4) (-631 (-914 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-663 (-1107 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1133)) - (-4 *6 (-13 (-1081) (-912 *5) (-633 (-916 *5)))) - (-4 *2 (-13 (-435 *6) (-912 *5) (-633 (-916 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-795)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51))))) + (-12 (-5 *3 (-661 (-1105 *5 *6 *2))) (-5 *4 (-947)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1079) (-910 *5) (-631 (-914 *5)))) + (-4 *2 (-13 (-433 *6) (-910 *5) (-631 (-914 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1133)) (-5 *3 (-793)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2) - (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1070 (-560)))) - (-4 *5 (-571)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) + (-12 (-5 *3 (-115)) (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1068 (-558)))) + (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *5 (-630 $)) $)) - (-15 -3484 ((-1157 *5 (-630 $)) $)) - (-15 -4462 ($ (-1157 *5 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *5 (-628 $)) $)) + (-15 -3480 ((-1155 *5 (-628 $)) $)) + (-15 -4458 ($ (-1155 *5 (-628 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-435 *3)) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-435 *3)) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-466) (-1070 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-435 *3)) + (-12 (-4 *3 (-13 (-464) (-1068 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-571)) (-5 *2 (-1203 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-569)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) - (-15 -3484 ((-1157 *4 (-630 $)) $)) - (-15 -4462 ($ (-1157 *4 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) + (-15 -3480 ((-1155 *4 (-628 $)) $)) + (-15 -4458 ($ (-1155 *4 (-628 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 *2)) + (-12 (-5 *3 (-661 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) - (-15 -3484 ((-1157 *4 (-630 $)) $)) - (-15 -4462 ($ (-1157 *4 (-630 $))))))) - (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) + (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) + (-15 -3480 ((-1155 *4 (-628 $)) $)) + (-15 -4458 ($ (-1155 *4 (-628 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-663 (-630 *2))) + (-12 (-5 *3 (-661 (-628 *2))) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *4 (-630 $)) $)) - (-15 -3484 ((-1157 *4 (-630 $)) $)) - (-15 -4462 ($ (-1157 *4 (-630 $))))))) - (-4 *4 (-571)) (-5 *1 (-41 *4 *2))))) + (-10 -8 (-15 -3481 ((-1155 *4 (-628 $)) $)) + (-15 -3480 ((-1155 *4 (-628 $)) $)) + (-15 -4458 ($ (-1155 *4 (-628 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3485 ((-1157 *3 (-630 $)) $)) - (-15 -3484 ((-1157 *3 (-630 $)) $)) - (-15 -4462 ($ (-1157 *3 (-630 $)))))))))) + (-10 -8 (-15 -3481 ((-1155 *3 (-628 $)) $)) + (-15 -3480 ((-1155 *3 (-628 $)) $)) + (-15 -4458 ($ (-1155 *3 (-628 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1275 *4)) (-5 *2 (-1305)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1275 (-421 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1275 (-48)))))) + (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-419 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1133)) (-4 *4 (-1133)) - (-5 *2 (-2 (|:| -4376 *3) (|:| -2300 *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| -4372 *3) (|:| -2296 *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1070 *4)) - (-4 *3 (-571))))) + (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1068 *4)) + (-4 *3 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571)) (-5 *2 (-888)) + (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-886)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1203 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) + (-12 (-5 *3 (-1201 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-976 (-560))) (-5 *3 (-1209)) (-5 *4 (-1121 (-421 (-560)))) + (-12 (-5 *2 (-974 (-558))) (-5 *3 (-1207)) (-5 *4 (-1119 (-419 (-558)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1209)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-976 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) + (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-974 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1209)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1209)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-976 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1209)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571))))) -((-1334 . 724872) (-1335 . 724476) (-1336 . 724355) (-1337 . 724253) - (-1338 . 724140) (-1339 . 724023) (-1340 . 723969) (-1341 . 723834) - (-1342 . 723758) (-1343 . 723602) (-1344 . 723374) (-1345 . 722410) - (-1346 . 722163) (-1347 . 721878) (-1348 . 721593) (-1349 . 721308) - (-1350 . 720987) (-1351 . 720895) (-1352 . 720803) (-1353 . 720711) - (-1354 . 720619) (-1355 . 720527) (-1356 . 720435) (-1357 . 720340) - (-1358 . 720245) (-1359 . 720153) (-1360 . 720061) (-1361 . 719969) - (-1362 . 719877) (-1363 . 719785) (-1364 . 719683) (-1365 . 719581) - (-1366 . 719479) (-1367 . 719387) (-1368 . 719336) (-1369 . 719284) - (-1370 . 719214) (-1371 . 718790) (-1372 . 718595) (-1373 . 718568) - (-1374 . 718445) (-1375 . 718322) (-1376 . 718178) (-1377 . 718008) - (-1378 . 717884) (-1379 . 717645) (-1380 . 717572) (-1381 . 717431) - (-1382 . 717380) (-1383 . 717331) (-1384 . 717261) (-1385 . 717126) - (-1386 . 716991) (-1387 . 716763) (-1388 . 716515) (-1389 . 716460) - (-1390 . 716280) (-1391 . 716109) (-1392 . 716032) (-1393 . 715958) - (-1394 . 715803) (-1395 . 715648) (-1396 . 715462) (-1397 . 715279) - (-1398 . 715102) (-1399 . 715045) (-1400 . 714989) (-1401 . 714933) - (-1402 . 714859) (-1403 . 714782) (-1404 . 714751) (-1405 . 714682) - (-1406 . 714537) (-1407 . 714428) (-1408 . 714358) (-1409 . 714284) - (-1410 . 714210) (-1411 . 714158) (-1412 . 714106) (-1413 . 714054) - (-1414 . 713931) (-1415 . 713609) (-1416 . 713538) (-1417 . 713457) - (-1418 . 713336) (-1419 . 713255) (-1420 . 713174) (-1421 . 713017) - (-1422 . 712866) (-1423 . 712788) (-1424 . 712730) (-1425 . 712657) - (-1426 . 712592) (-1427 . 712527) (-1428 . 712465) (-1429 . 712392) - (-1430 . 712276) (-1431 . 712224) (-1432 . 712169) (-1433 . 712117) - (-1434 . 712065) (-1435 . 712037) (-1436 . 712009) (-1437 . 711981) - (-1438 . 711937) (-1439 . 711866) (-1440 . 711814) (-1441 . 711765) - (-1442 . 711713) (-1443 . 711661) (-1444 . 711545) (-1445 . 711429) - (-1446 . 711337) (-1447 . 711245) (-1448 . 711122) (-1449 . 711056) - (-1450 . 710990) (-1451 . 710931) (-1452 . 710903) (-1453 . 710875) - (-1454 . 710847) (-1455 . 710819) (-1456 . 710709) (-1457 . 710657) - (-1458 . 710605) (-1459 . 710553) (-1460 . 710501) (-1461 . 710449) - (-1462 . 710397) (-1463 . 710369) (-1464 . 710341) (-1465 . 710313) - (-1466 . 710285) (-1467 . 710257) (-1468 . 710229) (-1469 . 710201) - (-1470 . 710173) (-1471 . 710145) (-1472 . 710042) (-1473 . 709990) - (-1474 . 709824) (-1475 . 709640) (-1476 . 709429) (-1477 . 709314) - (-1478 . 709081) (-1479 . 708982) (-1480 . 708888) (-1481 . 708772) - (-1482 . 708374) (-1483 . 708156) (-1484 . 708107) (-1485 . 708079) - (-1486 . 708003) (-1487 . 707904) (-1488 . 707805) (-1489 . 707706) - (-1490 . 707607) (-1491 . 707508) (-1492 . 707409) (-1493 . 707251) - (-1494 . 707175) (-1495 . 707008) (-1496 . 706950) (-1497 . 706892) - (-1498 . 706583) (-1499 . 706329) (-1500 . 706245) (-1501 . 706112) - (-1502 . 706054) (-1503 . 706002) (-1504 . 705920) (-1505 . 705845) - (-1506 . 705774) (-1507 . 705719) (-1508 . 705667) (-1509 . 705593) - (-1510 . 705519) (-1511 . 705438) (-1512 . 705357) (-1513 . 705302) - (-1514 . 705228) (-1515 . 705154) (-1516 . 705080) (-1517 . 705003) - (-1518 . 704948) (-1519 . 704889) (-1520 . 704789) (-1521 . 704689) - (-1522 . 704589) (-1523 . 704489) (-1524 . 704389) (-1525 . 704289) - (-1526 . 704189) (-1527 . 704074) (-1528 . 703959) (-1529 . 703844) - (-1530 . 703729) (-1531 . 703614) (-1532 . 703499) (-1533 . 703381) - (-1534 . 703305) (-1535 . 703229) (-1536 . 702842) (-1537 . 702496) - (-1538 . 702394) (-1539 . 702132) (-1540 . 702030) (-1541 . 701825) - (-1542 . 701712) (-1543 . 701610) (-1544 . 701453) (-1545 . 701364) - (-1546 . 701270) (-1547 . 701190) (-1548 . 701116) (-1549 . 701038) - (-1550 . 700979) (-1551 . 700920) (-1552 . 700818) (-7 . 700790) (-8 . 700762) - (-9 . 700734) (-1556 . 700615) (-1557 . 700533) (-1558 . 700451) - (-1559 . 700369) (-1560 . 700287) (-1561 . 700205) (-1562 . 700111) - (-1563 . 700041) (-1564 . 699971) (-1565 . 699880) (-1566 . 699786) - (-1567 . 699704) (-1568 . 699622) (-1569 . 699131) (-1570 . 698578) - (-1571 . 698368) (-1572 . 698293) (-1573 . 698039) (-1574 . 697812) - (-1575 . 697602) (-1576 . 697472) (-1577 . 697391) (-1578 . 697242) - (-1579 . 696887) (-1580 . 696595) (-1581 . 696303) (-1582 . 696011) - (-1583 . 695719) (-1584 . 695660) (-1585 . 695553) (-1586 . 695125) - (-1587 . 695027) (-1588 . 694867) (-1589 . 694668) (-1590 . 694532) - (-1591 . 694432) (-1592 . 694332) (-1593 . 694238) (-1594 . 694179) - (-1595 . 693844) (-1596 . 693743) (-1597 . 693624) (-1598 . 693408) - (-1599 . 693227) (-1600 . 693067) (-1601 . 692862) (-1602 . 692440) - (-1603 . 692388) (-1604 . 692279) (-1605 . 692164) (-1606 . 692095) - (-1607 . 692026) (-1608 . 691957) (-1609 . 691891) (-1610 . 691766) - (-1611 . 691549) (-1612 . 691471) (-1613 . 691421) (-1614 . 691350) - (-1615 . 691207) (-1616 . 691066) (-1617 . 690985) (-1618 . 690904) - (-1619 . 690848) (-1620 . 690792) (-1621 . 690719) (-1622 . 690579) - (-1623 . 690526) (-1624 . 690467) (-1625 . 690408) (-1626 . 690253) - (-1627 . 690201) (-1628 . 690083) (-1629 . 689965) (-1630 . 689847) - (-1631 . 689714) (-1632 . 689433) (-1633 . 689297) (-1634 . 689241) - (-1635 . 689185) (-1636 . 689126) (-1637 . 689067) (-1638 . 689011) - (-1639 . 688955) (-1640 . 688758) (-1641 . 686416) (-1642 . 686289) - (-1643 . 686143) (-1644 . 686015) (-1645 . 685963) (-1646 . 685911) - (-1647 . 685859) (-1648 . 681820) (-1649 . 681725) (-1650 . 681586) - (-1651 . 681377) (-1652 . 681275) (-1653 . 681173) (-1654 . 680257) - (-1655 . 680180) (-1656 . 680051) (-1657 . 679924) (-1658 . 679847) - (-1659 . 679770) (-1660 . 679643) (-1661 . 679516) (-1662 . 679350) - (-1663 . 679223) (-1664 . 679096) (-1665 . 678879) (-1666 . 678441) - (-1667 . 678075) (-1668 . 677968) (-1669 . 677749) (-1670 . 677680) - (-1671 . 677621) (-1672 . 677540) (-1673 . 677429) (-1674 . 677363) - (-1675 . 677297) (-1676 . 677223) (-1677 . 677151) (-1678 . 676774) - (-1679 . 676722) (-1680 . 676663) (-1681 . 676574) (-1682 . 676485) - (-1683 . 676393) (-1684 . 676301) (-1685 . 676209) (-1686 . 676117) - (-1687 . 676025) (-1688 . 675933) (-1689 . 675841) (-1690 . 675749) - (-1691 . 675657) (-1692 . 675565) (-1693 . 675473) (-1694 . 675381) - (-1695 . 675289) (-1696 . 675197) (-1697 . 675105) (-1698 . 675013) - (-1699 . 674921) (-1700 . 674829) (-1701 . 674737) (-1702 . 674645) - (-1703 . 674553) (-1704 . 674461) (-1705 . 674369) (-1706 . 674277) - (-1707 . 674185) (-1708 . 674093) (-1709 . 673929) (-1710 . 673819) - (-1711 . 673575) (-1712 . 673286) (-1713 . 673090) (-1714 . 672933) - (-1715 . 672772) (-1716 . 672720) (-1717 . 672658) (-1718 . 672606) - (-1719 . 672543) (-1720 . 672490) (-1721 . 672438) (-1722 . 672386) - (-1723 . 672334) (-1724 . 672244) (-1725 . 672055) (-1726 . 671901) - (-1727 . 671821) (-1728 . 671741) (-1729 . 671661) (-1730 . 671531) - (-1731 . 671299) (-1732 . 671271) (-1733 . 671243) (-1734 . 671215) - (-1735 . 671135) (-1736 . 671058) (-1737 . 670981) (-1738 . 670900) - (-1739 . 670840) (-1740 . 670682) (-1741 . 670489) (-1742 . 670004) - (-1743 . 669762) (-1744 . 669500) (-1745 . 669399) (-1746 . 669318) - (-1747 . 669237) (-1748 . 669167) (-1749 . 669097) (-1750 . 668938) - (-1751 . 668634) (-1752 . 668404) (-1753 . 668280) (-1754 . 668221) - (-1755 . 668159) (-1756 . 668097) (-1757 . 668032) (-1758 . 667970) - (-1759 . 667691) (-1760 . 667481) (-1761 . 667207) (-1762 . 666667) - (-1763 . 666153) (-1764 . 666008) (-1765 . 665941) (-1766 . 665860) - (-1767 . 665779) (-1768 . 665677) (-1769 . 665603) (-1770 . 665522) - (-1771 . 665448) (-1772 . 665239) (-1773 . 665026) (-1774 . 664936) - (-1775 . 664869) (-1776 . 664733) (-1777 . 664666) (-1778 . 664584) - (-1779 . 664503) (-1780 . 664401) (-1781 . 664201) (-1782 . 664133) - (-1783 . 663891) (-1784 . 663640) (-1785 . 663398) (-1786 . 663156) - (-1787 . 663088) (-1788 . 662752) (-1789 . 661751) (-1790 . 661531) - (-1791 . 661450) (-1792 . 661376) (-1793 . 661302) (-1794 . 661228) - (-1795 . 661124) (-1796 . 661051) (-1797 . 660983) (-1798 . 660773) - (-1799 . 660721) (-1800 . 660666) (-1801 . 660575) (-1802 . 660487) - (-1803 . 658730) (-1804 . 658651) (-1805 . 657906) (-1806 . 657789) - (-1807 . 657582) (-1808 . 657420) (-1809 . 657258) (-1810 . 657097) - (-1811 . 656958) (-1812 . 656864) (-1813 . 656766) (-1814 . 656672) - (-1815 . 656557) (-1816 . 656472) (-1817 . 656374) (-1818 . 656178) - (-1819 . 656087) (-1820 . 655993) (-1821 . 655926) (-1822 . 655873) - (-1823 . 655820) (-1824 . 655767) (-1825 . 654629) (-1826 . 654119) - (-1827 . 654040) (-1828 . 653981) (-1829 . 653953) (-1830 . 653925) - (-1831 . 653866) (-1832 . 653753) (-1833 . 653376) (-1834 . 653323) - (-1835 . 653212) (-1836 . 653159) (-1837 . 653106) (-1838 . 653050) - (-1839 . 652994) (-1840 . 652829) (-1841 . 652759) (-1842 . 652664) - (-1843 . 652569) (-1844 . 652474) (-1845 . 652422) (-1846 . 652363) - (-1847 . 652289) (-1848 . 652237) (-1849 . 652080) (-1850 . 651923) - (-1851 . 651770) (-1852 . 651012) (-1853 . 650759) (-1854 . 650448) - (-1855 . 650096) (-1856 . 649879) (-1857 . 649616) (-1858 . 649240) - (-1859 . 649056) (-1860 . 648922) (-1861 . 648756) (-1862 . 648590) - (-1863 . 648456) (-1864 . 648322) (-1865 . 648188) (-1866 . 648054) - (-1867 . 647923) (-1868 . 647792) (-1869 . 647661) (-1870 . 647278) - (-1871 . 647151) (-1872 . 647023) (-1873 . 646771) (-1874 . 646647) - (-1875 . 646395) (-1876 . 646271) (-1877 . 646019) (-1878 . 645895) - (-1879 . 645610) (-1880 . 645337) (-1881 . 645064) (-1882 . 644766) - (-1883 . 644664) (-1884 . 644519) (-1885 . 644378) (-1886 . 644227) - (-1887 . 644066) (-1888 . 643978) (-1889 . 643950) (-1890 . 643868) - (-1891 . 643771) (-1892 . 643303) (-1893 . 642952) (-1894 . 642519) - (-1895 . 642378) (-1896 . 642308) (-1897 . 642238) (-1898 . 642168) - (-1899 . 642077) (-1900 . 641986) (-1901 . 641895) (-1902 . 641804) - (-1903 . 641713) (-1904 . 641627) (-1905 . 641541) (-1906 . 641455) - (-1907 . 641369) (-1908 . 641283) (-1909 . 641209) (-1910 . 641104) - (-1911 . 640878) (-1912 . 640800) (-1913 . 640725) (-1914 . 640632) - (-1915 . 640528) (-1916 . 640432) (-1917 . 640263) (-1918 . 640186) - (-1919 . 640109) (-1920 . 640018) (-1921 . 639927) (-1922 . 639727) - (-1923 . 639572) (-1924 . 639417) (-1925 . 639262) (-1926 . 639107) - (-1927 . 638952) (-1928 . 638797) (-1929 . 638730) (-1930 . 638575) - (-1931 . 638420) (-1932 . 638265) (-1933 . 638110) (-1934 . 637955) - (-1935 . 637800) (-1936 . 637645) (-1937 . 637490) (-1938 . 637416) - (-1939 . 637342) (-1940 . 637287) (-1941 . 637232) (-1942 . 637177) - (-1943 . 637122) (-1944 . 637051) (-1945 . 636846) (-1946 . 636745) - (-1947 . 636554) (-1948 . 636461) (-1949 . 636324) (-1950 . 636187) - (-1951 . 636050) (-1952 . 635982) (-1953 . 635866) (-1954 . 635750) - (-1955 . 635634) (-1956 . 635581) (-1957 . 635384) (-1958 . 635299) - (-1959 . 634991) (-1960 . 634936) (-1961 . 634284) (-1962 . 633969) - (-1963 . 633685) (-1964 . 633566) (-1965 . 633447) (-1966 . 633388) - (-1967 . 633329) (-1968 . 633277) (-1969 . 633225) (-1970 . 633173) - (-1971 . 633120) (-1972 . 633067) (-1973 . 633008) (-1974 . 632895) - (-1975 . 632782) (-1976 . 632724) (-1977 . 632666) (-1978 . 632616) - (-1979 . 632481) (-1980 . 632431) (-1981 . 632368) (-1982 . 632308) - (-1983 . 631711) (-1984 . 631651) (-1985 . 631484) (-1986 . 631392) - (-1987 . 631279) (-1988 . 631195) (-1989 . 631080) (-1990 . 630989) - (-1991 . 630898) (-1992 . 630709) (-1993 . 630654) (-1994 . 630467) - (-1995 . 630344) (-1996 . 630271) (-1997 . 630198) (-1998 . 630078) - (-1999 . 630005) (-2000 . 629932) (-2001 . 629592) (-2002 . 629519) - (-2003 . 629299) (-2004 . 628966) (-2005 . 628781) (-2006 . 628636) - (-2007 . 628273) (-2008 . 628105) (-2009 . 627937) (-2010 . 627681) - (-2011 . 627425) (-2012 . 627230) (-2013 . 627035) (-2014 . 626441) - (-2015 . 626365) (-2016 . 626226) (-2017 . 625819) (-2018 . 625691) - (-2019 . 625531) (-2020 . 625212) (-2021 . 624729) (-2022 . 624246) - (-2023 . 623741) (-2024 . 623673) (-2025 . 623602) (-2026 . 623531) - (-2027 . 623358) (-2028 . 623239) (-2029 . 623120) (-2030 . 623044) - (-2031 . 622968) (-2032 . 622693) (-2033 . 622578) (-2034 . 622526) - (-2035 . 622474) (-2036 . 622422) (-2037 . 622370) (-2038 . 622318) - (-2039 . 622176) (-2040 . 622002) (-2041 . 621769) (-2042 . 621581) - (-2043 . 621553) (-2044 . 621525) (-2045 . 621497) (-2046 . 621469) - (-2047 . 621441) (-2048 . 621413) (-2049 . 621385) (-2050 . 621333) - (-2051 . 621243) (-2052 . 621193) (-2053 . 621124) (-2054 . 621055) - (-2055 . 620950) (-2056 . 620579) (-2057 . 620428) (-2058 . 620277) - (-2059 . 620072) (-2060 . 619950) (-2061 . 619875) (-2062 . 619797) - (-2063 . 619722) (-2064 . 619644) (-2065 . 619566) (-2066 . 619491) - (-2067 . 619413) (-2068 . 619179) (-2069 . 619024) (-2070 . 618725) - (-2071 . 618570) (-2072 . 618244) (-2073 . 618104) (-2074 . 617964) - (-2075 . 617883) (-2076 . 617802) (-2077 . 617537) (-2078 . 616804) - (-2079 . 616667) (-2080 . 616576) (-2081 . 616439) (-2082 . 616371) - (-2083 . 616302) (-2084 . 616214) (-2085 . 616126) (-2086 . 615955) - (-2087 . 615881) (-2088 . 615737) (-2089 . 615277) (-2090 . 614897) - (-2091 . 614133) (-2092 . 613989) (-2093 . 613845) (-2094 . 613683) - (-2095 . 613445) (-2096 . 613304) (-2097 . 613157) (-2098 . 612918) - (-2099 . 612682) (-2100 . 612443) (-2101 . 612251) (-2102 . 612128) - (-2103 . 611924) (-2104 . 611701) (-2105 . 611462) (-2106 . 611321) - (-2107 . 611183) (-2108 . 611044) (-2109 . 610791) (-2110 . 610535) - (-2111 . 610378) (-2112 . 610224) (-2113 . 609983) (-2114 . 609698) - (-2115 . 609560) (-2116 . 609473) (-2117 . 608807) (-2118 . 608631) - (-2119 . 608449) (-2120 . 608273) (-2121 . 608091) (-2122 . 607912) - (-2123 . 607733) (-2124 . 607546) (-2125 . 607164) (-2126 . 606985) - (-2127 . 606806) (-2128 . 606619) (-2129 . 606237) (-2130 . 605244) - (-2131 . 604860) (-2132 . 604476) (-2133 . 604358) (-2134 . 604201) - (-2135 . 604059) (-2136 . 603941) (-2137 . 603759) (-2138 . 603635) - (-2139 . 603345) (-2140 . 603055) (-2141 . 602771) (-2142 . 602487) - (-2143 . 602208) (-2144 . 602120) (-2145 . 602035) (-2146 . 601936) - (-2147 . 601837) (-2148 . 601613) (-2149 . 601513) (-2150 . 601410) - (-2151 . 601332) (-2152 . 601007) (-2153 . 600715) (-2154 . 600642) - (-2155 . 600257) (-2156 . 600229) (-2157 . 600030) (-2158 . 599856) - (-2159 . 599615) (-2160 . 599560) (-2161 . 599484) (-2162 . 599113) - (-2163 . 598998) (-2164 . 598921) (-2165 . 598848) (-2166 . 598767) - (-2167 . 598686) (-2168 . 598605) (-2169 . 598504) (-2170 . 598445) - (-2171 . 598206) (-2172 . 598082) (-2173 . 597958) (-2174 . 597731) - (-2175 . 597678) (-2176 . 597623) (-2177 . 597291) (-2178 . 596967) - (-2179 . 596779) (-2180 . 596588) (-2181 . 596424) (-2182 . 596089) - (-2183 . 595922) (-2184 . 595681) (-2185 . 595353) (-2186 . 595161) - (-2187 . 594944) (-2188 . 594771) (-2189 . 594349) (-2190 . 594122) - (-2191 . 593851) (-2192 . 593713) (-2193 . 593572) (-2194 . 593093) - (-2195 . 592970) (-2196 . 592734) (-2197 . 592480) (-2198 . 592230) - (-2199 . 591935) (-2200 . 591794) (-2201 . 591450) (-2202 . 591309) - (-2203 . 591116) (-2204 . 590923) (-2205 . 590748) (-2206 . 590474) - (-2207 . 590039) (-2208 . 590011) (-2209 . 589938) (-2210 . 589777) - (-2211 . 589614) (-2212 . 589453) (-2213 . 589286) (-2214 . 589233) - (-2215 . 589180) (-2216 . 589051) (-2217 . 588991) (-2218 . 588938) - (-2219 . 588868) (-2220 . 588808) (-2221 . 588749) (-2222 . 588689) - (-2223 . 588630) (-2224 . 588570) (-2225 . 588511) (-2226 . 588452) - (-2227 . 588310) (-2228 . 588215) (-2229 . 588124) (-2230 . 588008) - (-2231 . 587914) (-2232 . 587816) (-2233 . 587722) (-2234 . 587581) - (-2235 . 587316) (-2236 . 586457) (-2237 . 586301) (-2238 . 585932) - (-2239 . 585876) (-2240 . 585824) (-2241 . 585721) (-2242 . 585636) - (-2243 . 585548) (-2244 . 585402) (-2245 . 585253) (-2246 . 584963) - (-2247 . 584885) (-2248 . 584810) (-2249 . 584757) (-2250 . 584704) - (-2251 . 584673) (-2252 . 584610) (-2253 . 584491) (-2254 . 584402) - (-2255 . 584282) (-2256 . 583987) (-2257 . 583793) (-2258 . 583605) - (-2259 . 583460) (-2260 . 583315) (-2261 . 583029) (-2262 . 582584) - (-2263 . 582550) (-2264 . 582513) (-2265 . 582476) (-2266 . 582439) - (-2267 . 582402) (-2268 . 582371) (-2269 . 582340) (-2270 . 582309) - (-2271 . 582275) (-2272 . 582241) (-2273 . 582186) (-2274 . 582010) - (-2275 . 581775) (-2276 . 581540) (-2277 . 581310) (-2278 . 581258) - (-2279 . 581203) (-2280 . 581133) (-2281 . 581044) (-2282 . 580975) - (-2283 . 580903) (-2284 . 580673) (-2285 . 580621) (-2286 . 580566) - (-2287 . 580535) (-2288 . 580429) (-2289 . 580203) (-2290 . 579892) - (-2291 . 579717) (-2292 . 579534) (-2293 . 579262) (-2294 . 579189) - (-2295 . 579124) (-2296 . 579096) (-2297 . 579046) (-2298 . 577623) - (-2299 . 576475) (-2300 . 575337) (-2301 . 574859) (-2302 . 574295) - (-2303 . 573567) (-2304 . 573004) (-2305 . 572374) (-2306 . 571795) - (-2307 . 571721) (-2308 . 571669) (-2309 . 571617) (-2310 . 571543) - (-2311 . 571488) (-2312 . 571436) (-2313 . 571384) (-2314 . 571332) - (-2315 . 571262) (-2316 . 570814) (-2317 . 570607) (-2318 . 570357) - (-2319 . 570022) (-2320 . 569767) (-2321 . 569464) (-2322 . 569260) - (-2323 . 568970) (-2324 . 568420) (-2325 . 568282) (-2326 . 568079) - (-2327 . 567798) (-2328 . 567712) (-2329 . 567377) (-2330 . 567235) - (-2331 . 566943) (-2332 . 566722) (-2333 . 566596) (-2334 . 566471) - (-2335 . 566324) (-2336 . 566180) (-2337 . 566064) (-2338 . 565933) - (-2339 . 565560) (-2340 . 565300) (-2341 . 565025) (-2342 . 564785) - (-2343 . 564455) (-2344 . 564110) (-2345 . 563702) (-2346 . 563279) - (-2347 . 563082) (-2348 . 562807) (-2349 . 562639) (-2350 . 562438) - (-2351 . 562216) (-2352 . 562061) (-2353 . 561875) (-2354 . 561772) - (-2355 . 561744) (-2356 . 561716) (-2357 . 561540) (-2358 . 561466) - (-2359 . 561405) (-2360 . 561352) (-2361 . 561283) (-2362 . 561213) - (-2363 . 561094) (-2364 . 560916) (-2365 . 560861) (-2366 . 560615) - (-2367 . 560542) (-2368 . 560472) (-2369 . 560402) (-2370 . 560312) - (-2371 . 560122) (-2372 . 560049) (-2373 . 559979) (-2374 . 559914) - (-2375 . 559859) (-2376 . 559768) (-2377 . 559475) (-2378 . 559147) - (-2379 . 559073) (-2380 . 558751) (-2381 . 558544) (-2382 . 558458) - (-2383 . 558372) (-2384 . 558286) (-2385 . 558200) (-2386 . 558114) - (-2387 . 558028) (-2388 . 557942) (-2389 . 557856) (-2390 . 557770) - (-2391 . 557684) (-2392 . 557598) (-2393 . 557512) (-2394 . 557426) - (-2395 . 557340) (-2396 . 557254) (-2397 . 557168) (-2398 . 557082) - (-2399 . 556996) (-2400 . 556910) (-2401 . 556824) (-2402 . 556738) - (-2403 . 556652) (-2404 . 556566) (-2405 . 556480) (-2406 . 556394) - (-2407 . 556308) (-2408 . 556205) (-2409 . 556116) (-2410 . 555906) - (-2411 . 555847) (-2412 . 555791) (-2413 . 555702) (-2414 . 555590) - (-2415 . 555502) (-2416 . 555354) (-2417 . 555292) (-2418 . 555264) - (-2419 . 555236) (-2420 . 555208) (-2421 . 555180) (-2422 . 555009) - (-2423 . 554856) (-2424 . 554703) (-2425 . 554529) (-2426 . 554319) - (-2427 . 554195) (-2428 . 553987) (-2429 . 553895) (-2430 . 553803) - (-2431 . 553667) (-2432 . 553572) (-2433 . 553477) (-2434 . 551961) - (-2435 . 551837) (-2436 . 551809) (-2437 . 551781) (-2438 . 551753) - (-2439 . 551725) (-2440 . 551697) (-2441 . 551669) (-2442 . 551641) - (-2443 . 551613) (-2444 . 551585) (-2445 . 551557) (-2446 . 551529) - (-2447 . 551501) (-2448 . 551473) (-2449 . 551445) (-2450 . 551417) - (-2451 . 551389) (-2452 . 551336) (-2453 . 551308) (-2454 . 551280) - (-2455 . 551202) (-2456 . 551149) (-2457 . 551096) (-2458 . 551043) - (-2459 . 550965) (-2460 . 550875) (-2461 . 550780) (-2462 . 550698) - (-2463 . 550389) (-2464 . 550193) (-2465 . 550098) (-2466 . 549990) - (-2467 . 549572) (-2468 . 549544) (-2469 . 549379) (-2470 . 549302) - (-2471 . 549113) (-2472 . 548933) (-2473 . 548509) (-2474 . 548357) - (-2475 . 548177) (-2476 . 548004) (-2477 . 547742) (-2478 . 547490) - (-2479 . 546679) (-2480 . 546510) (-2481 . 546291) (-2482 . 545449) - (-2483 . 545317) (-2484 . 545185) (-2485 . 545053) (-2486 . 544921) - (-2487 . 544789) (-2488 . 544657) (-2489 . 544462) (-2490 . 544268) - (-2491 . 544125) (-2492 . 543810) (-2493 . 543695) (-2494 . 543355) - (-2495 . 543195) (-2496 . 543056) (-2497 . 542917) (-2498 . 542788) - (-2499 . 542703) (-2500 . 542651) (-2501 . 542170) (-2502 . 540906) - (-2503 . 540777) (-2504 . 540634) (-2505 . 540296) (-2506 . 540191) - (-2507 . 539940) (-2508 . 539706) (-2509 . 539601) (-2510 . 539526) - (-2511 . 539451) (-2512 . 539376) (-2513 . 539317) (-2514 . 539246) - (-2515 . 539193) (-2516 . 539131) (-2517 . 539060) (-2518 . 538697) - (-2519 . 538410) (-2520 . 538299) (-2521 . 538206) (-2522 . 538113) - (-2523 . 538026) (-2524 . 537806) (-2525 . 537586) (-2526 . 537168) - (-2527 . 536896) (-2528 . 536753) (-2529 . 536660) (-2530 . 536517) - (-2531 . 536365) (-2532 . 536211) (-2533 . 536140) (-2534 . 535931) - (-2535 . 535753) (-2536 . 535543) (-2537 . 535365) (-2538 . 535331) - (-2539 . 535297) (-2540 . 535266) (-2541 . 535148) (-2542 . 534833) - (-2543 . 534555) (-2544 . 534434) (-2545 . 534307) (-2546 . 534222) - (-2547 . 534149) (-2548 . 534059) (-2549 . 533988) (-2550 . 533932) - (-2551 . 533876) (-2552 . 533820) (-2553 . 533749) (-2554 . 533678) - (-2555 . 533607) (-2556 . 533528) (-2557 . 533450) (-2558 . 533365) - (-2559 . 533105) (-2560 . 533016) (-2561 . 532718) (-2562 . 532620) - (-2563 . 532542) (-2564 . 532464) (-2565 . 532321) (-2566 . 532242) - (-2567 . 532170) (-2568 . 531967) (-2569 . 531911) (-2570 . 531723) - (-2571 . 531624) (-2572 . 531506) (-2573 . 531385) (-2574 . 531242) - (-2575 . 531099) (-2576 . 530959) (-2577 . 530819) (-2578 . 530676) - (-2579 . 530549) (-2580 . 530419) (-2581 . 530295) (-2582 . 530171) - (-2583 . 530065) (-2584 . 529959) (-2585 . 529856) (-2586 . 529706) - (-2587 . 529553) (-2588 . 529400) (-2589 . 529256) (-2590 . 529102) - (-2591 . 529025) (-2592 . 528945) (-2593 . 528790) (-2594 . 528710) - (-2595 . 528630) (-2596 . 528550) (-2597 . 528447) (-2598 . 528388) - (-2599 . 528326) (-2600 . 528151) (-2601 . 527998) (-2602 . 527845) - (-2603 . 527671) (-2604 . 527479) (-2605 . 527180) (-2606 . 526985) - (-2607 . 526870) (-2608 . 526744) (-2609 . 526667) (-2610 . 526535) - (-2611 . 526229) (-2612 . 526046) (-2613 . 525501) (-2614 . 525281) - (-2615 . 525107) (-2616 . 524937) (-2617 . 524838) (-2618 . 524739) - (-2619 . 524521) (-2620 . 524419) (-2621 . 524346) (-2622 . 524270) - (-2623 . 524191) (-2624 . 523894) (-2625 . 523795) (-2626 . 523633) - (-2627 . 523399) (-2628 . 522957) (-2629 . 522827) (-2630 . 522687) - (-2631 . 522378) (-2632 . 522076) (-2633 . 521760) (-2634 . 521354) - (-2635 . 521286) (-2636 . 521218) (-2637 . 521150) (-2638 . 521055) - (-2639 . 520947) (-2640 . 520839) (-2641 . 520737) (-2642 . 520635) - (-2643 . 520533) (-2644 . 520455) (-2645 . 520131) (-2646 . 519663) - (-2647 . 519036) (-2648 . 518972) (-2649 . 518853) (-2650 . 518734) - (-2651 . 518626) (-2652 . 518518) (-2653 . 518362) (-2654 . 517760) - (-2655 . 517473) (-2656 . 517305) (-2657 . 517183) (-2658 . 516785) - (-2659 . 516549) (-2660 . 516348) (-2661 . 516140) (-2662 . 515947) - (-2663 . 515677) (-2664 . 515498) (-2665 . 515429) (-2666 . 515353) - (-2667 . 515212) (-2668 . 515009) (-2669 . 514865) (-2670 . 514615) - (-2671 . 514307) (-2672 . 513951) (-2673 . 513792) (-2674 . 513586) - (-2675 . 513426) (-2676 . 513353) (-2677 . 513234) (-2678 . 513115) - (-2679 . 512955) (-2680 . 512775) (-2681 . 512592) (-2682 . 512494) - (-2683 . 512396) (-2684 . 512295) (-2685 . 512191) (-2686 . 512065) - (-2687 . 511939) (-2688 . 511810) (-2689 . 511678) (-2690 . 511580) - (-2691 . 511482) (-2692 . 511381) (-2693 . 511280) (-2694 . 511114) - (-2695 . 510948) (-2696 . 510754) (-2697 . 510588) (-2698 . 510420) - (-2699 . 510249) (-2700 . 510084) (-2701 . 509919) (-2702 . 509819) - (-2703 . 509627) (-2704 . 509526) (-2705 . 509331) (-2706 . 509081) - (-2707 . 508836) (-2708 . 508514) (-2709 . 508126) (-2710 . 507925) - (-2711 . 507661) (-2712 . 507118) (-2713 . 506824) (-2714 . 506687) - (-2715 . 506441) (-2716 . 506237) (-2717 . 506130) (-2718 . 506029) - (-2719 . 505919) (-2720 . 505809) (-2721 . 505681) (-2722 . 505574) - (-2723 . 505470) (-2724 . 505314) (-2725 . 505180) (-2726 . 505046) - (-2727 . 504936) (-2728 . 504817) (-2729 . 504640) (-2730 . 504506) - (-2731 . 504369) (-2732 . 504238) (-2733 . 504128) (-2734 . 504006) - (-2735 . 503881) (-2736 . 503780) (-2737 . 503596) (-2738 . 503422) - (-2739 . 503223) (-2740 . 503049) (-2741 . 502933) (-2742 . 502808) - (-2743 . 502680) (-2744 . 502561) (-2745 . 502336) (-2746 . 502165) - (-2747 . 501994) (-2748 . 501817) (-2749 . 501665) (-2750 . 501388) - (-2751 . 500996) (-2752 . 500865) (-2753 . 500660) (-2754 . 500477) - (-2755 . 500293) (-2756 . 500164) (-2757 . 500060) (-2758 . 499919) - (-2759 . 499787) (-2760 . 499673) (-2761 . 499525) (-2762 . 499386) - (-2763 . 499285) (-2764 . 499181) (-2765 . 499074) (-2766 . 498964) - (-2767 . 498863) (-2768 . 498756) (-2769 . 498649) (-2770 . 498536) - (-2771 . 498429) (-2772 . 498316) (-2773 . 498185) (-2774 . 498036) - (-2775 . 497498) (-2776 . 497355) (-2777 . 497205) (-2778 . 497082) - (-2779 . 496978) (-2780 . 496874) (-2781 . 496767) (-2782 . 496629) - (-2783 . 496522) (-2784 . 496391) (-2785 . 496235) (-2786 . 495962) - (-2787 . 495815) (-2788 . 495612) (-2789 . 495511) (-2790 . 495357) - (-2791 . 495237) (-2792 . 495108) (-2793 . 495013) (-2794 . 494925) - (-2795 . 494837) (-2796 . 494749) (-2797 . 494661) (-2798 . 494573) - (-2799 . 494479) (-2800 . 494391) (-2801 . 494303) (-2802 . 494215) - (-2803 . 494127) (-2804 . 494039) (-2805 . 493951) (-2806 . 493863) - (-2807 . 493775) (-2808 . 493687) (-2809 . 493599) (-2810 . 493461) - (-2811 . 493323) (-2812 . 493203) (-2813 . 493083) (-2814 . 492942) - (-2815 . 492854) (-2816 . 492766) (-2817 . 492678) (-2818 . 492590) - (-2819 . 492452) (-2820 . 492314) (-2821 . 492226) (-2822 . 492138) - (-2823 . 492050) (-2824 . 491962) (-2825 . 491874) (-2826 . 491786) - (-2827 . 491695) (-2828 . 491601) (-2829 . 491507) (-2830 . 491410) - (-2831 . 491360) (-2832 . 491310) (-2833 . 491257) (-2834 . 491003) - (-2835 . 490954) (-2836 . 490904) (-2837 . 490870) (-2838 . 490805) - (-2839 . 490768) (-2840 . 490631) (-2841 . 490393) (-2842 . 490322) - (-2843 . 490136) (-2844 . 489887) (-2845 . 489729) (-2846 . 489202) - (-2847 . 489003) (-2848 . 488788) (-2849 . 488626) (-2850 . 488227) - (-2851 . 488060) (-2852 . 486985) (-2853 . 486862) (-2854 . 486645) - (-2855 . 486514) (-2856 . 486383) (-2857 . 486225) (-2858 . 486121) - (-2859 . 486062) (-2860 . 486003) (-2861 . 485897) (-2862 . 485791) - (-2863 . 484873) (-2864 . 482744) (-2865 . 481928) (-2866 . 480123) - (-2867 . 480055) (-2868 . 479987) (-2869 . 479919) (-2870 . 479851) - (-2871 . 479783) (-2872 . 479705) (-2873 . 479303) (-2874 . 478947) - (-2875 . 478765) (-2876 . 478226) (-2877 . 478050) (-2878 . 477828) - (-2879 . 477606) (-2880 . 477384) (-2881 . 477165) (-2882 . 476946) - (-2883 . 476727) (-2884 . 476508) (-2885 . 476289) (-2886 . 476070) - (-2887 . 475969) (-2888 . 475236) (-2889 . 475181) (-2890 . 475126) - (-2891 . 475071) (-2892 . 475016) (-2893 . 474865) (-2894 . 474572) - (-2895 . 474323) (-2896 . 474295) (-2897 . 474245) (-2898 . 473653) - (-2899 . 473119) (-2900 . 472670) (-2901 . 472508) (-2902 . 472327) - (-2903 . 472038) (-2904 . 471650) (-2905 . 470774) (-2906 . 470432) - (-2907 . 470263) (-2908 . 470040) (-2909 . 469789) (-2910 . 469439) - (-2911 . 468421) (-2912 . 468106) (-2913 . 467894) (-2914 . 467327) - (-2915 . 466811) (-2916 . 465033) (-2917 . 464561) (-2918 . 463962) - (-2919 . 463712) (-2920 . 463578) (-2921 . 463363) (-2922 . 463310) - (-2923 . 463257) (-2924 . 463205) (-2925 . 463153) (-2926 . 463061) - (-2927 . 462990) (-2928 . 462916) (-2929 . 462845) (-2930 . 462792) - (-2931 . 462721) (-2932 . 462668) (-2933 . 462615) (-2934 . 462562) - (-2935 . 462509) (-2936 . 462456) (-2937 . 462403) (-2938 . 462350) - (-2939 . 462297) (-2940 . 462244) (-2941 . 462191) (-2942 . 462138) - (-2943 . 462085) (-2944 . 462032) (-2945 . 461979) (-2946 . 461908) - (-2947 . 461837) (-2948 . 461765) (-2949 . 461693) (-2950 . 461618) - (-2951 . 461565) (-2952 . 461512) (-2953 . 461459) (-2954 . 461406) - (-2955 . 461353) (-2956 . 461300) (-2957 . 461247) (-2958 . 461194) - (-2959 . 461141) (-2960 . 461088) (-2961 . 461035) (-2962 . 460982) - (-2963 . 460929) (-2964 . 460876) (-2965 . 460824) (-2966 . 460772) - (-2967 . 460719) (-2968 . 460666) (-2969 . 460575) (-2970 . 460522) - (-2971 . 460494) (-2972 . 460466) (-2973 . 460438) (-2974 . 460410) - (-2975 . 460332) (-2976 . 460272) (-2977 . 460220) (-2978 . 460168) - (-2979 . 460116) (-2980 . 460064) (-2981 . 460012) (-2982 . 459236) - (-2983 . 459159) (-2984 . 459082) (-2985 . 459016) (-2986 . 458949) - (-2987 . 458882) (-2988 . 458825) (-2989 . 458749) (-2990 . 458681) - (-2991 . 458610) (-2992 . 458539) (-2993 . 458473) (-2994 . 458386) - (-2995 . 458314) (-2996 . 458207) (-2997 . 458021) (-2998 . 457852) - (-2999 . 457672) (-3000 . 457081) (-3001 . 456918) (-3002 . 456340) - (-3003 . 456270) (-3004 . 456195) (-3005 . 455829) (-3006 . 455150) - (-3007 . 454972) (-3008 . 454900) (-3009 . 454760) (-3010 . 454570) - (-3011 . 454463) (-3012 . 454356) (-3013 . 454240) (-3014 . 454124) - (-3015 . 454008) (-3016 . 453730) (-3017 . 453579) (-3018 . 453435) - (-3019 . 453361) (-3020 . 453275) (-3021 . 453201) (-3022 . 453127) - (-3023 . 453053) (-3024 . 452909) (-3025 . 452758) (-3026 . 452583) - (-3027 . 452432) (-3028 . 452281) (-3029 . 452154) (-3030 . 451765) - (-3031 . 451479) (-3032 . 451193) (-3033 . 450782) (-3034 . 450496) - (-3035 . 450423) (-3036 . 450276) (-3037 . 450170) (-3038 . 450096) - (-3039 . 450026) (-3040 . 449947) (-3041 . 449870) (-3042 . 449793) - (-3043 . 449641) (-3044 . 449538) (-3045 . 449479) (-3046 . 449414) - (-3047 . 449349) (-3048 . 449252) (-3049 . 449155) (-3050 . 448995) - (-3051 . 448908) (-3052 . 448821) (-3053 . 448734) (-3054 . 448675) - (-3055 . 448616) (-3056 . 448483) (-3057 . 448424) (-3058 . 448254) - (-3059 . 448166) (-3060 . 448069) (-3061 . 448035) (-3062 . 448004) - (-3063 . 447920) (-3064 . 447864) (-3065 . 447802) (-3066 . 447768) - (-3067 . 447734) (-3068 . 447700) (-3069 . 447666) (-3070 . 447632) - (-3071 . 444879) (-3072 . 444845) (-3073 . 444811) (-3074 . 444777) - (-3075 . 444665) (-3076 . 444631) (-3077 . 444579) (-3078 . 444545) - (-3079 . 444448) (-3080 . 444386) (-3081 . 444295) (-3082 . 444204) - (-3083 . 444149) (-3084 . 444097) (-3085 . 444045) (-3086 . 443993) - (-3087 . 443941) (-3088 . 443516) (-3089 . 443350) (-3090 . 443297) - (-3091 . 443228) (-3092 . 443175) (-3093 . 442945) (-3094 . 442789) - (-3095 . 442268) (-3096 . 442127) (-3097 . 442093) (-3098 . 442038) - (-3099 . 441327) (-3100 . 441012) (-3101 . 440507) (-3102 . 440429) - (-3103 . 440377) (-3104 . 440325) (-3105 . 440141) (-3106 . 440089) - (-3107 . 440037) (-3108 . 439961) (-3109 . 439899) (-3110 . 439681) - (-3111 . 439614) (-3112 . 439520) (-3113 . 439426) (-3114 . 439243) - (-3115 . 439161) (-3116 . 439039) (-3117 . 438893) (-3118 . 438233) - (-3119 . 437526) (-3120 . 437422) (-3121 . 437321) (-3122 . 437220) - (-3123 . 437109) (-3124 . 436941) (-3125 . 436735) (-3126 . 436642) - (-3127 . 436565) (-3128 . 436509) (-3129 . 436438) (-3130 . 436318) - (-3131 . 436217) (-3132 . 436119) (-3133 . 436039) (-3134 . 435959) - (-3135 . 435882) (-3136 . 435811) (-3137 . 435740) (-3138 . 435669) - (-3139 . 435598) (-3140 . 435527) (-3141 . 435456) (-3142 . 435363) - (-3143 . 435168) (-3144 . 434924) (-3145 . 434754) (-3146 . 434382) - (-3147 . 434213) (-3148 . 434097) (-3149 . 433593) (-3150 . 433211) - (-3151 . 432965) (-3152 . 432536) (-3153 . 432444) (-3154 . 432347) - (-3155 . 429057) (-3156 . 428394) (-3157 . 428281) (-3158 . 428207) - (-3159 . 428115) (-3160 . 427921) (-3161 . 427727) (-3162 . 427656) - (-3163 . 427584) (-3164 . 427503) (-3165 . 427422) (-3166 . 427297) - (-3167 . 427163) (-3168 . 427082) (-3169 . 427008) (-3170 . 426843) - (-3171 . 426684) (-3172 . 426453) (-3173 . 426305) (-3174 . 426201) - (-3175 . 426097) (-3176 . 426012) (-3177 . 425644) (-3178 . 425563) - (-3179 . 425476) (-3180 . 425395) (-3181 . 425149) (-3182 . 424929) - (-3183 . 424742) (-3184 . 424420) (-3185 . 424127) (-3186 . 423834) - (-3187 . 423524) (-3188 . 423207) (-3189 . 423055) (-3190 . 422867) - (-3191 . 422394) (-3192 . 422312) (-3193 . 422096) (-3194 . 421880) - (-3195 . 421621) (-3196 . 421197) (-3197 . 420683) (-3198 . 420553) - (-3199 . 420279) (-3200 . 420100) (-3201 . 419985) (-3202 . 419881) - (-3203 . 419826) (-3204 . 419749) (-3205 . 419679) (-3206 . 419606) - (-3207 . 419551) (-3208 . 419478) (-3209 . 419423) (-3210 . 419068) - (-3211 . 418660) (-3212 . 418507) (-3213 . 418354) (-3214 . 418273) - (-3215 . 418120) (-3216 . 417967) (-3217 . 417832) (-3218 . 417697) - (-3219 . 417562) (-3220 . 417427) (-3221 . 417292) (-3222 . 417157) - (-3223 . 417101) (-3224 . 416947) (-3225 . 416836) (-3226 . 416725) - (-3227 . 416640) (-3228 . 416530) (-3229 . 416427) (-3230 . 412276) - (-3231 . 411828) (-3232 . 411401) (-3233 . 410784) (-3234 . 410183) - (-3235 . 409965) (-3236 . 409787) (-3237 . 409527) (-3238 . 409116) - (-3239 . 408822) (-3240 . 408379) (-3241 . 408201) (-3242 . 407808) - (-3243 . 407415) (-3244 . 407230) (-3245 . 407023) (-3246 . 406802) - (-3247 . 406496) (-3248 . 406297) (-3249 . 405668) (-3250 . 405511) - (-3251 . 405120) (-3252 . 405068) (-3253 . 405019) (-3254 . 404967) - (-3255 . 404918) (-3256 . 404866) (-3257 . 404720) (-3258 . 404668) - (-3259 . 404522) (-3260 . 404470) (-3261 . 404324) (-3262 . 404272) - (-3263 . 403897) (-3264 . 403845) (-3265 . 403796) (-3266 . 403744) - (-3267 . 403695) (-3268 . 403643) (-3269 . 403594) (-3270 . 403542) - (-3271 . 403493) (-3272 . 403441) (-3273 . 403392) (-3274 . 403326) - (-3275 . 403208) (-3276 . 402046) (-3277 . 401629) (-3278 . 401521) - (-3279 . 401278) (-3280 . 401128) (-3281 . 400978) (-3282 . 400811) - (-3283 . 398595) (-3284 . 398331) (-3285 . 398177) (-3286 . 398031) - (-3287 . 397885) (-3288 . 397666) (-3289 . 397534) (-3290 . 397459) - (-3291 . 397384) (-3292 . 397249) (-3293 . 397119) (-3294 . 396989) - (-3295 . 396862) (-3296 . 396735) (-3297 . 396608) (-3298 . 396481) - (-3299 . 396378) (-3300 . 396278) (-3301 . 396184) (-3302 . 396054) - (-3303 . 395903) (-3304 . 395524) (-3305 . 395409) (-3306 . 395166) - (-3307 . 394703) (-3308 . 394390) (-3309 . 393821) (-3310 . 393250) - (-3311 . 392235) (-3312 . 391691) (-3313 . 391378) (-3314 . 391040) - (-3315 . 390709) (-3316 . 390389) (-3317 . 390336) (-3318 . 390209) - (-3319 . 389704) (-3320 . 388561) (-3321 . 388506) (-3322 . 388451) - (-3323 . 388375) (-3324 . 388256) (-3325 . 388181) (-3326 . 388106) - (-3327 . 388028) (-3328 . 387803) (-3329 . 387744) (-3330 . 387685) - (-3331 . 387582) (-3332 . 387479) (-3333 . 387376) (-3334 . 387273) - (-3335 . 387192) (-3336 . 387118) (-3337 . 386903) (-3338 . 386669) - (-3339 . 386635) (-3340 . 386601) (-3341 . 386573) (-3342 . 386545) - (-3343 . 386326) (-3344 . 386047) (-3345 . 385896) (-3346 . 385765) - (-3347 . 385634) (-3348 . 385533) (-3349 . 385355) (-3350 . 385194) - (-3351 . 385093) (-3352 . 384915) (-3353 . 384754) (-3354 . 384594) - (-3355 . 384454) (-3356 . 384303) (-3357 . 384172) (-3358 . 384041) - (-3359 . 383893) (-3360 . 383765) (-3361 . 383661) (-3362 . 383553) - (-3363 . 383455) (-3364 . 383289) (-3365 . 383140) (-3366 . 382724) - (-3367 . 382623) (-3368 . 382519) (-3369 . 382430) (-3370 . 382349) - (-3371 . 382198) (-3372 . 382067) (-3373 . 382014) (-3374 . 381940) - (-3375 . 381863) (-3376 . 381586) (-3377 . 381473) (-3378 . 381159) - (-3379 . 380977) (-3380 . 379364) (-3381 . 378730) (-3382 . 378669) - (-3383 . 378550) (-3384 . 378431) (-3385 . 378286) (-3386 . 378130) - (-3387 . 377968) (-3388 . 377806) (-3389 . 377597) (-3390 . 377407) - (-3391 . 377251) (-3392 . 377092) (-3393 . 376933) (-3394 . 376777) - (-3395 . 376636) (-3396 . 376209) (-3397 . 376080) (-3398 . 375951) - (-3399 . 375822) (-3400 . 375678) (-3401 . 375534) (-3402 . 375391) - (-3403 . 375245) (-3404 . 374487) (-3405 . 374326) (-3406 . 374137) - (-3407 . 373979) (-3408 . 373738) (-3409 . 373490) (-3410 . 373242) - (-3411 . 373030) (-3412 . 372890) (-3413 . 372678) (-3414 . 372387) - (-3415 . 372175) (-3416 . 372035) (-3417 . 371823) (-3418 . 371515) - (-3419 . 371369) (-3420 . 371226) (-3421 . 371001) (-3422 . 370858) - (-3423 . 370632) (-3424 . 370432) (-3425 . 370274) (-3426 . 369942) - (-3427 . 369781) (-3428 . 369620) (-3429 . 369459) (-3430 . 369286) - (-3431 . 369113) (-3432 . 368937) (-3433 . 368584) (-3434 . 368389) - (-3435 . 368226) (-3436 . 368151) (-3437 . 368076) (-3438 . 368001) - (-3439 . 367926) (-3440 . 367851) (-3441 . 367776) (-3442 . 367651) - (-3443 . 367476) (-3444 . 367351) (-3445 . 367264) (-3446 . 367197) - (-3447 . 367130) (-3448 . 367063) (-3449 . 366996) (-3450 . 366929) - (-3451 . 366862) (-3452 . 366795) (-3453 . 366728) (-3454 . 366661) - (-3455 . 366594) (-3456 . 366527) (-3457 . 366460) (-3458 . 366393) - (-3459 . 366326) (-3460 . 366259) (-3461 . 366192) (-3462 . 366125) - (-3463 . 366058) (-3464 . 365991) (-3465 . 365924) (-3466 . 365857) - (-3467 . 365790) (-3468 . 365723) (-3469 . 365656) (-3470 . 365589) - (-3471 . 365522) (-3472 . 364871) (-3473 . 364220) (-3474 . 364091) - (-3475 . 363967) (-3476 . 363843) (-3477 . 363701) (-3478 . 363545) - (-3479 . 363400) (-3480 . 363223) (-3481 . 362612) (-3482 . 362487) - (-3483 . 362361) (-3484 . 361680) (-3485 . 360979) (-3486 . 360877) - (-3487 . 360820) (-3488 . 360763) (-3489 . 360706) (-3490 . 360649) - (-3491 . 360589) (-3492 . 360524) (-3493 . 360415) (-3494 . 360306) - (-3495 . 360197) (-3496 . 359916) (-3497 . 359841) (-3498 . 359614) - (-3499 . 359532) (-3500 . 359453) (-3501 . 359374) (-3502 . 359295) - (-3503 . 359215) (-3504 . 359136) (-3505 . 359042) (-3506 . 358941) - (-3507 . 358872) (-3508 . 358822) (-3509 . 358128) (-3510 . 357477) - (-3511 . 356683) (-3512 . 356601) (-3513 . 356496) (-3514 . 356403) - (-3515 . 356310) (-3516 . 356235) (-3517 . 356160) (-3518 . 356085) - (-3519 . 356029) (-3520 . 355973) (-3521 . 355906) (-3522 . 355839) - (-3523 . 355776) (-3524 . 355384) (-3525 . 354889) (-3526 . 354429) - (-3527 . 354174) (-3528 . 353983) (-3529 . 353639) (-3530 . 353341) - (-3531 . 353171) (-3532 . 353039) (-3533 . 352898) (-3534 . 352742) - (-3535 . 352572) (-3536 . 351178) (-3537 . 351040) (-3538 . 350894) - (-3539 . 350663) (-3540 . 350393) (-3541 . 350333) (-3542 . 350276) - (-3543 . 350219) (-3544 . 350006) (-3545 . 349866) (-3546 . 349758) - (-3547 . 349640) (-3548 . 349573) (-3549 . 349499) (-3550 . 349384) - (-3551 . 349127) (-3552 . 349025) (-3553 . 348827) (-3554 . 348511) - (-3555 . 348037) (-3556 . 347930) (-3557 . 347822) (-3558 . 347671) - (-3559 . 347529) (-3560 . 347110) (-3561 . 346860) (-3562 . 346183) - (-3563 . 346028) (-3564 . 345913) (-3565 . 345802) (-3566 . 344979) - (-3567 . 344926) (-3568 . 344873) (-3569 . 344677) (-3570 . 343396) - (-3571 . 342945) (-3572 . 341549) (-3573 . 340693) (-3574 . 340643) - (-3575 . 340593) (-3576 . 340543) (-3577 . 340475) (-3578 . 340399) - (-3579 . 340208) (-3580 . 340135) (-3581 . 340059) (-3582 . 339986) - (-3583 . 339868) (-3584 . 339816) (-3585 . 339736) (-3586 . 339656) - (-3587 . 339576) (-3588 . 339524) (-3589 . 339277) (-3590 . 338974) - (-3591 . 338889) (-3592 . 338804) (-3593 . 338742) (-3594 . 338352) - (-3595 . 337476) (-3596 . 336900) (-3597 . 335662) (-3598 . 334851) - (-3599 . 334599) (-3600 . 334347) (-3601 . 333920) (-3602 . 333674) - (-3603 . 333428) (-3604 . 333182) (-3605 . 332936) (-3606 . 332690) - (-3607 . 332444) (-3608 . 332197) (-3609 . 331950) (-3610 . 331703) - (-3611 . 331456) (-3612 . 330873) (-3613 . 330755) (-3614 . 329904) - (-3615 . 329872) (-3616 . 329523) (-3617 . 329295) (-3618 . 329194) - (-3619 . 329093) (-3620 . 327320) (-3621 . 327206) (-3622 . 326151) - (-3623 . 326058) (-3624 . 325134) (-3625 . 324799) (-3626 . 324464) - (-3627 . 324359) (-3628 . 324272) (-3629 . 324243) (-3630 . 324186) - (-3631 . 324106) (-3632 . 324034) (-3633 . 323959) (-3634 . 323884) - (-3635 . 323852) (-3636 . 323820) (-3637 . 323788) (-3638 . 323756) - (-3639 . 323724) (-3640 . 323692) (-3641 . 323660) (-3642 . 323628) - (-3643 . 323599) (-3644 . 323486) (-3645 . 323373) (-3646 . 323260) - (-3647 . 323147) (-3648 . 322057) (-3649 . 321935) (-3650 . 321798) - (-3651 . 321664) (-3652 . 321530) (-3653 . 321233) (-3654 . 320936) - (-3655 . 320588) (-3656 . 320358) (-3657 . 320128) (-3658 . 320015) - (-3659 . 319902) (-3660 . 314619) (-3661 . 310244) (-3662 . 309932) - (-3663 . 309777) (-3664 . 309249) (-3665 . 308916) (-3666 . 308719) - (-3667 . 308522) (-3668 . 308325) (-3669 . 308128) (-3670 . 308012) - (-3671 . 307886) (-3672 . 307770) (-3673 . 307654) (-3674 . 307559) - (-3675 . 307464) (-3676 . 307351) (-3677 . 307145) (-3678 . 305988) - (-3679 . 305893) (-3680 . 305777) (-3681 . 305682) (-3682 . 305433) - (-3683 . 305320) (-3684 . 305101) (-3685 . 304982) (-3686 . 304681) - (-3687 . 303950) (-3688 . 303367) (-3689 . 302886) (-3690 . 302638) - (-3691 . 302390) (-3692 . 302042) (-3693 . 301428) (-3694 . 300979) - (-3695 . 300822) (-3696 . 300676) (-3697 . 300350) (-3698 . 300192) - (-3699 . 300049) (-3700 . 299906) (-3701 . 299763) (-3702 . 299482) - (-3703 . 299260) (-3704 . 298733) (-3705 . 298518) (-3706 . 298303) - (-3707 . 297915) (-3708 . 297735) (-3709 . 297523) (-3710 . 297211) - (-3711 . 297017) (-3712 . 296842) (-3713 . 295696) (-3714 . 295324) - (-3715 . 295121) (-3716 . 294915) (-3717 . 294072) (-3718 . 294043) - (-3719 . 293974) (-3720 . 293903) (-3721 . 293736) (-3722 . 293707) - (-3723 . 293678) (-3724 . 293622) (-3725 . 293469) (-3726 . 293409) - (-3727 . 292713) (-3728 . 291327) (-3729 . 291266) (-3730 . 290940) - (-3731 . 290868) (-3732 . 290811) (-3733 . 290754) (-3734 . 290697) - (-3735 . 290640) (-3736 . 290565) (-3737 . 289973) (-3738 . 289613) - (-3739 . 289538) (-3740 . 289478) (-3741 . 289360) (-3742 . 288409) - (-3743 . 288282) (-3744 . 288069) (-3745 . 287994) (-3746 . 287940) - (-3747 . 287886) (-3748 . 287777) (-3749 . 287464) (-3750 . 287356) - (-3751 . 287253) (-3752 . 287092) (-3753 . 286991) (-3754 . 286893) - (-3755 . 286755) (-3756 . 286617) (-3757 . 286479) (-3758 . 286217) - (-3759 . 286007) (-3760 . 285869) (-3761 . 285580) (-3762 . 285427) - (-3763 . 285148) (-3764 . 284926) (-3765 . 284773) (-3766 . 284620) - (-3767 . 284467) (-3768 . 284314) (-3769 . 284161) (-3770 . 283951) - (-3771 . 283831) (-3772 . 283439) (-3773 . 283103) (-3774 . 282757) - (-3775 . 282405) (-3776 . 282059) (-3777 . 281713) (-3778 . 281325) - (-3779 . 280937) (-3780 . 280549) (-3781 . 280177) (-3782 . 279445) - (-3783 . 279093) (-3784 . 278635) (-3785 . 278205) (-3786 . 277587) - (-3787 . 276985) (-3788 . 276593) (-3789 . 276257) (-3790 . 275865) - (-3791 . 275529) (-3792 . 275307) (-3793 . 274780) (-3794 . 274565) - (-3795 . 274350) (-3796 . 274134) (-3797 . 273954) (-3798 . 273738) - (-3799 . 273558) (-3800 . 273170) (-3801 . 272990) (-3802 . 272778) - (-3803 . 272688) (-3804 . 272598) (-3805 . 272507) (-3806 . 272395) - (-3807 . 272305) (-3808 . 272197) (-3809 . 272008) (-3810 . 271952) - (-3811 . 271871) (-3812 . 271790) (-3813 . 271709) (-3814 . 271574) - (-3815 . 271439) (-3816 . 271315) (-3817 . 271194) (-3818 . 271076) - (-3819 . 270940) (-3820 . 270807) (-3821 . 270688) (-3822 . 270428) - (-3823 . 270143) (-3824 . 270071) (-3825 . 269979) (-3826 . 269887) - (-3827 . 269801) (-3828 . 269703) (-3829 . 269562) (-3830 . 269505) - (-3831 . 269448) (-3832 . 269388) (-3833 . 268991) (-3834 . 268467) - (-3835 . 268189) (-3836 . 267768) (-3837 . 267655) (-3838 . 267213) - (-3839 . 266981) (-3840 . 266778) (-3841 . 266596) (-3842 . 266466) - (-3843 . 266260) (-3844 . 266053) (-3845 . 265862) (-3846 . 265297) - (-3847 . 265041) (-3848 . 264750) (-3849 . 264456) (-3850 . 264159) - (-3851 . 263859) (-3852 . 263729) (-3853 . 263596) (-3854 . 263460) - (-3855 . 263321) (-3856 . 262104) (-3857 . 261796) (-3858 . 261432) - (-3859 . 261335) (-3860 . 261094) (-3861 . 260798) (-3862 . 260502) - (-3863 . 260241) (-3864 . 260066) (-3865 . 259987) (-3866 . 259899) - (-3867 . 259798) (-3868 . 259703) (-3869 . 259621) (-3870 . 259549) - (-3871 . 258748) (-3872 . 258676) (-3873 . 258344) (-3874 . 258272) - (-3875 . 257940) (-3876 . 257868) (-3877 . 257419) (-3878 . 257347) - (-3879 . 257242) (-3880 . 257167) (-3881 . 257092) (-3882 . 257020) - (-3883 . 256677) (-3884 . 256547) (-3885 . 256470) (-3886 . 255921) - (-3887 . 255778) (-3888 . 255635) (-3889 . 255180) (-3890 . 254849) - (-3891 . 254636) (-3892 . 254381) (-3893 . 254031) (-3894 . 253806) - (-3895 . 253581) (-3896 . 253356) (-3897 . 253131) (-3898 . 252918) - (-3899 . 252705) (-3900 . 252553) (-3901 . 252369) (-3902 . 252264) - (-3903 . 252141) (-3904 . 252033) (-3905 . 251925) (-3906 . 251598) - (-3907 . 251331) (-3908 . 251018) (-3909 . 250712) (-3910 . 250402) - (-3911 . 249667) (-3912 . 249072) (-3913 . 248895) (-3914 . 248750) - (-3915 . 248595) (-3916 . 248472) (-3917 . 248367) (-3918 . 248252) - (-3919 . 248153) (-3920 . 247669) (-3921 . 247559) (-3922 . 247449) - (-3923 . 247339) (-3924 . 246252) (-3925 . 245737) (-3926 . 245670) - (-3927 . 245596) (-3928 . 244723) (-3929 . 244649) (-3930 . 244593) - (-3931 . 244537) (-3932 . 244505) (-3933 . 244419) (-3934 . 244387) - (-3935 . 244301) (-3936 . 243877) (-3937 . 243453) (-3938 . 242896) - (-3939 . 241784) (-3940 . 240060) (-3941 . 238498) (-3942 . 237702) - (-3943 . 237198) (-3944 . 236706) (-3945 . 236298) (-3946 . 235638) - (-3947 . 235563) (-3948 . 235471) (-3949 . 235399) (-3950 . 235327) - (-3951 . 235271) (-3952 . 235149) (-3953 . 235095) (-3954 . 235034) - (-3955 . 234980) (-3956 . 234877) (-3957 . 234437) (-3958 . 233997) - (-3959 . 233557) (-3960 . 233035) (-3961 . 232870) (-3962 . 232705) - (-3963 . 232394) (-3964 . 232307) (-3965 . 232217) (-3966 . 231859) - (-3967 . 231742) (-3968 . 231661) (-3969 . 231502) (-3970 . 231388) - (-3971 . 231313) (-3972 . 230460) (-3973 . 229273) (-3974 . 229173) - (-3975 . 229073) (-3976 . 228742) (-3977 . 228663) (-3978 . 228587) - (-3979 . 228480) (-3980 . 228322) (-3981 . 228214) (-3982 . 228078) - (-3983 . 227942) (-3984 . 227819) (-3985 . 227723) (-3986 . 227574) - (-3987 . 227478) (-3988 . 227323) (-3989 . 227168) (-3990 . 226502) - (-3991 . 225836) (-3992 . 225107) (-3993 . 224553) (-3994 . 223999) - (-3995 . 223445) (-3996 . 222778) (-3997 . 222111) (-3998 . 221444) - (-3999 . 220889) (-4000 . 220334) (-4001 . 219779) (-4002 . 219225) - (-4003 . 218671) (-4004 . 218117) (-4005 . 217563) (-4006 . 217009) - (-4007 . 216455) (-4008 . 216351) (-4009 . 215762) (-4010 . 215656) - (-4011 . 215580) (-4012 . 215437) (-4013 . 215344) (-4014 . 215251) - (-4015 . 215158) (-4016 . 215059) (-4017 . 214953) (-4018 . 214829) - (-4019 . 214705) (-4020 . 214338) (-4021 . 214215) (-4022 . 214113) - (-4023 . 213749) (-4024 . 213214) (-4025 . 213138) (-4026 . 213062) - (-4027 . 212969) (-4028 . 212786) (-4029 . 212690) (-4030 . 212614) - (-4031 . 212521) (-4032 . 212428) (-4033 . 212265) (-4034 . 211714) - (-4035 . 211163) (-4036 . 208366) (-4037 . 208193) (-4038 . 206777) - (-4039 . 206215) (-4040 . 206016) (-12 . 205844) (-4042 . 205672) - (-4043 . 205500) (-4044 . 205328) (-4045 . 205156) (-4046 . 204984) - (-4047 . 204812) (-4048 . 204697) (-4049 . 204376) (-4050 . 204313) - (-4051 . 204250) (-4052 . 204187) (-4053 . 203909) (-4054 . 203642) - (-4055 . 203589) (-4056 . 202946) (-4057 . 202895) (-4058 . 202702) - (-4059 . 202629) (-4060 . 202549) (-4061 . 202436) (-4062 . 202246) - (-4063 . 201882) (-4064 . 201610) (-4065 . 201559) (-4066 . 201508) - (-4067 . 201438) (-4068 . 201319) (-4069 . 201290) (-4070 . 201188) - (-4071 . 201066) (-4072 . 201012) (-4073 . 200835) (-4074 . 200774) - (-4075 . 200593) (-4076 . 200532) (-4077 . 200460) (-4078 . 199985) - (-4079 . 199609) (-4080 . 196003) (-4081 . 195950) (-4082 . 195822) - (-4083 . 195672) (-4084 . 195619) (-4085 . 195478) (-4086 . 193416) - (-4087 . 184177) (-4088 . 184026) (-4089 . 183956) (-4090 . 183905) - (-4091 . 183855) (-4092 . 183804) (-4093 . 183753) (-4094 . 183555) - (-4095 . 183412) (-4096 . 183298) (-4097 . 183177) (-4098 . 183059) - (-4099 . 182947) (-4100 . 182829) (-4101 . 182724) (-4102 . 182643) - (-4103 . 182539) (-4104 . 181601) (-4105 . 181381) (-4106 . 181144) - (-4107 . 181062) (-4108 . 180715) (-4109 . 179560) (-4110 . 179486) - (-4111 . 179391) (-4112 . 179317) (-4113 . 179115) (-4114 . 179024) - (-4115 . 178908) (-4116 . 178795) (-4117 . 178704) (-4118 . 178613) - (-4119 . 178523) (-4120 . 178433) (-4121 . 178343) (-4122 . 178255) - (-4123 . 175893) (-4124 . 175825) (-4125 . 175771) (-4126 . 175646) - (-4127 . 175582) (-4128 . 175457) (-4129 . 175338) (-4130 . 174570) - (-4131 . 174509) (-4132 . 174390) (-4133 . 173641) (-4134 . 173588) - (-4135 . 173460) (-4136 . 173396) (-4137 . 173342) (-4138 . 173233) - (-4139 . 171931) (-4140 . 171849) (-4141 . 171759) (-4142 . 171701) - (-4143 . 171451) (-4144 . 171366) (-4145 . 171291) (-4146 . 171206) - (-4147 . 171149) (-4148 . 170933) (-4149 . 170791) (-4150 . 170070) - (-4151 . 169514) (-4152 . 168958) (-4153 . 168402) (-4154 . 167681) - (-4155 . 167013) (-4156 . 166449) (-4157 . 165885) (-4158 . 165621) - (-4159 . 165179) (-4160 . 164844) (-4161 . 164500) (-4162 . 164193) - (-4163 . 164060) (-4164 . 163927) (-4165 . 163538) (-4166 . 163445) - (-4167 . 163352) (-4168 . 163259) (-4169 . 163166) (-4170 . 163073) - (-4171 . 162980) (-4172 . 162887) (-4173 . 162794) (-4174 . 162701) - (-4175 . 162608) (-4176 . 162515) (-4177 . 162422) (-4178 . 162329) - (-4179 . 162236) (-4180 . 162143) (-4181 . 162050) (-4182 . 161957) - (-4183 . 161864) (-4184 . 161771) (-4185 . 161678) (-4186 . 161585) - (-4187 . 161492) (-4188 . 161399) (-4189 . 161306) (-4190 . 161213) - (-4191 . 161028) (-4192 . 160713) (-4193 . 159141) (-4194 . 158986) - (-4195 . 158848) (-4196 . 158705) (-4197 . 158502) (-4198 . 156547) - (-4199 . 156419) (-4200 . 156294) (-4201 . 156166) (-4202 . 155942) - (-4203 . 155718) (-4204 . 155590) (-4205 . 155387) (-4206 . 155208) - (-4207 . 154681) (-4208 . 154154) (-4209 . 153873) (-4210 . 153455) - (-4211 . 152928) (-4212 . 152743) (-4213 . 152600) (-4214 . 152100) - (-4215 . 151457) (-4216 . 151400) (-4217 . 151305) (-4218 . 151183) - (-4219 . 151111) (-4220 . 151036) (-4221 . 150803) (-4222 . 150177) - (-4223 . 149745) (-4224 . 149663) (-4225 . 149521) (-4226 . 149043) - (-4227 . 148921) (-4228 . 148799) (-4229 . 148659) (-4230 . 148472) - (-4231 . 148356) (-4232 . 148072) (-4233 . 148003) (-4234 . 147804) - (-4235 . 147622) (-4236 . 147467) (-4237 . 147360) (-4238 . 147309) - (-4239 . 146925) (-4240 . 146397) (-4241 . 146175) (-4242 . 145953) - (-4243 . 145712) (-4244 . 145621) (-4245 . 143869) (-4246 . 143280) - (-4247 . 143201) (-4248 . 137732) (-4249 . 136941) (-4250 . 136562) - (-4251 . 136490) (-4252 . 136224) (-4253 . 136049) (-4254 . 135558) - (-4255 . 135132) (-4256 . 134688) (-4257 . 133820) (-4258 . 133696) - (-4259 . 133569) (-4260 . 133460) (-4261 . 133308) (-4262 . 133194) - (-4263 . 133055) (-4264 . 132973) (-4265 . 132891) (-4266 . 132783) - (-4267 . 132363) (-4268 . 131938) (-4269 . 131863) (-4270 . 131597) - (-4271 . 131329) (-4272 . 130945) (-4273 . 130243) (-4274 . 129199) - (-4275 . 129139) (-4276 . 129064) (-4277 . 128989) (-4278 . 128866) - (-4279 . 128614) (-4280 . 128527) (-4281 . 128451) (-4282 . 128375) - (-4283 . 128279) (-4284 . 124360) (-4285 . 123177) (-4286 . 122513) - (-4287 . 122326) (-4288 . 120110) (-4289 . 119784) (-4290 . 119299) - (-4291 . 118855) (-4292 . 118620) (-4293 . 118372) (-4294 . 118281) - (-4295 . 116834) (-4296 . 116755) (-4297 . 116649) (-4298 . 115165) - (-4299 . 114759) (-4300 . 114356) (-4301 . 114254) (-4302 . 114172) - (-4303 . 114014) (-4304 . 112715) (-4305 . 112633) (-4306 . 112554) - (-4307 . 112199) (-4308 . 112142) (-4309 . 112070) (-4310 . 112013) - (-4311 . 111956) (-4312 . 111826) (-4313 . 111622) (-4314 . 111253) - (-4315 . 110831) (-4316 . 106867) (-4317 . 106264) (-4318 . 105636) - (-4319 . 105421) (-4320 . 105206) (-4321 . 105038) (-4322 . 104823) - (-4323 . 104655) (-4324 . 104487) (-4325 . 104319) (-4326 . 104151) - (-4327 . 103879) (-4328 . 97004) (** . 94037) (-4330 . 93617) (-4331 . 93369) - (-4332 . 93312) (-4333 . 92814) (-4334 . 89989) (-4335 . 89839) - (-4336 . 89675) (-4337 . 89511) (-4338 . 89415) (-4339 . 89297) - (-4340 . 89173) (-4341 . 89030) (-4342 . 88859) (-4343 . 88732) - (-4344 . 88587) (-4345 . 88434) (-4346 . 88274) (-4347 . 87758) - (-4348 . 87667) (-4349 . 86997) (-4350 . 86802) (-4351 . 86706) - (-4352 . 86396) (-4353 . 85220) (-4354 . 85013) (-4355 . 83836) - (-4356 . 83761) (-4357 . 82580) (-4358 . 78987) (-4359 . 78623) - (-4360 . 78346) (-4361 . 78254) (-4362 . 78161) (-4363 . 77884) - (-4364 . 77791) (-4365 . 77698) (-4366 . 77605) (-4367 . 77221) - (-4368 . 77150) (-4369 . 77058) (-4370 . 76900) (-4371 . 76546) - (-4372 . 76388) (-4373 . 76280) (-4374 . 76251) (-4375 . 76184) - (-4376 . 76030) (-4377 . 75871) (-4378 . 75477) (-4379 . 75402) - (-4380 . 75296) (-4381 . 75224) (-4382 . 75146) (-4383 . 75073) - (-4384 . 75000) (-4385 . 74927) (-4386 . 74855) (-4387 . 74783) - (-4388 . 74710) (-4389 . 74469) (-4390 . 74129) (-4391 . 73981) - (-4392 . 73908) (-4393 . 73835) (-4394 . 73762) (-4395 . 73508) - (-4396 . 73364) (-4397 . 72028) (-4398 . 71834) (-4399 . 71563) - (-4400 . 71415) (-4401 . 71267) (-4402 . 71027) (-4403 . 70832) - (-4404 . 70562) (-4405 . 70366) (-4406 . 70337) (-4407 . 70236) - (-4408 . 70135) (-4409 . 70034) (-4410 . 69933) (-4411 . 69832) - (-4412 . 69731) (-4413 . 69630) (-4414 . 69529) (-4415 . 69428) - (-4416 . 69327) (-4417 . 69212) (-4418 . 69097) (-4419 . 69046) - (-4420 . 68929) (-4421 . 68871) (-4422 . 68770) (-4423 . 68669) - (-4424 . 68568) (-4425 . 68452) (-4426 . 68423) (-4427 . 67690) - (-4428 . 67565) (-4429 . 67440) (-4430 . 67300) (-4431 . 67182) - (-4432 . 67057) (-4433 . 66902) (-4434 . 65918) (-4435 . 65058) - (-4436 . 65004) (-4437 . 64950) (-4438 . 64742) (-4439 . 64368) - (-4440 . 63954) (-4441 . 63593) (-4442 . 63232) (-4443 . 63079) - (-4444 . 62777) (-4445 . 62621) (-4446 . 62295) (-4447 . 62224) - (-4448 . 62153) (-4449 . 61941) (-4450 . 61134) (-4451 . 60928) - (-4452 . 60554) (-4453 . 60034) (-4454 . 59766) (-4455 . 59282) - (-4456 . 58798) (-4457 . 58672) (-4458 . 57457) (-4459 . 56265) - (-4460 . 55692) (-4461 . 55474) (-4462 . 37057) (-4463 . 36871) - (-4464 . 34770) (-4465 . 32593) (-4466 . 32445) (-4467 . 32263) - (-4468 . 31854) (-4469 . 31553) (-4470 . 31202) (-4471 . 31034) - (-4472 . 30866) (-4473 . 30451) (-4474 . 16372) (-4475 . 15253) (* . 11185) - (-4477 . 10929) (-4478 . 10743) (-4479 . 9781) (-4480 . 9727) (-4481 . 9667) - (-4482 . 9398) (-4483 . 8763) (-4484 . 7481) (-4485 . 6222) (-4486 . 5342) - (-4487 . 4075) (-4488 . 424) (-4489 . 308) (-4490 . 174) (-4491 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1207)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-974 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) +((-1332 . 724189) (-1333 . 723793) (-1334 . 723672) (-1335 . 723570) + (-1336 . 723457) (-1337 . 723340) (-1338 . 723286) (-1339 . 723151) + (-1340 . 723075) (-1341 . 722919) (-1342 . 722691) (-1343 . 721727) + (-1344 . 721480) (-1345 . 721195) (-1346 . 720910) (-1347 . 720625) + (-1348 . 720304) (-1349 . 720212) (-1350 . 720120) (-1351 . 720028) + (-1352 . 719936) (-1353 . 719844) (-1354 . 719752) (-1355 . 719657) + (-1356 . 719562) (-1357 . 719470) (-1358 . 719378) (-1359 . 719286) + (-1360 . 719194) (-1361 . 719102) (-1362 . 719000) (-1363 . 718898) + (-1364 . 718796) (-1365 . 718704) (-1366 . 718653) (-1367 . 718601) + (-1368 . 718531) (-1369 . 718107) (-1370 . 717912) (-1371 . 717885) + (-1372 . 717762) (-1373 . 717639) (-1374 . 717495) (-1375 . 717325) + (-1376 . 717201) (-1377 . 716962) (-1378 . 716889) (-1379 . 716748) + (-1380 . 716697) (-1381 . 716648) (-1382 . 716578) (-1383 . 716443) + (-1384 . 716308) (-1385 . 716080) (-1386 . 715832) (-1387 . 715777) + (-1388 . 715597) (-1389 . 715426) (-1390 . 715349) (-1391 . 715275) + (-1392 . 715120) (-1393 . 714965) (-1394 . 714779) (-1395 . 714596) + (-1396 . 714419) (-1397 . 714362) (-1398 . 714306) (-1399 . 714250) + (-1400 . 714176) (-1401 . 714099) (-1402 . 714068) (-1403 . 713999) + (-1404 . 713854) (-1405 . 713745) (-1406 . 713675) (-1407 . 713601) + (-1408 . 713527) (-1409 . 713475) (-1410 . 713423) (-1411 . 713371) + (-1412 . 713248) (-1413 . 712926) (-1414 . 712855) (-1415 . 712774) + (-1416 . 712653) (-1417 . 712572) (-1418 . 712491) (-1419 . 712334) + (-1420 . 712183) (-1421 . 712105) (-1422 . 712047) (-1423 . 711974) + (-1424 . 711909) (-1425 . 711844) (-1426 . 711782) (-1427 . 711709) + (-1428 . 711593) (-1429 . 711541) (-1430 . 711486) (-1431 . 711434) + (-1432 . 711382) (-1433 . 711354) (-1434 . 711326) (-1435 . 711298) + (-1436 . 711254) (-1437 . 711183) (-1438 . 711131) (-1439 . 711082) + (-1440 . 711030) (-1441 . 710978) (-1442 . 710862) (-1443 . 710746) + (-1444 . 710654) (-1445 . 710562) (-1446 . 710439) (-1447 . 710373) + (-1448 . 710307) (-1449 . 710248) (-1450 . 710220) (-1451 . 710192) + (-1452 . 710164) (-1453 . 710136) (-1454 . 710026) (-1455 . 709974) + (-1456 . 709922) (-1457 . 709870) (-1458 . 709818) (-1459 . 709766) + (-1460 . 709714) (-1461 . 709686) (-1462 . 709658) (-1463 . 709630) + (-1464 . 709602) (-1465 . 709574) (-1466 . 709546) (-1467 . 709518) + (-1468 . 709490) (-1469 . 709462) (-1470 . 709359) (-1471 . 709307) + (-1472 . 709141) (-1473 . 708957) (-1474 . 708746) (-1475 . 708631) + (-1476 . 708398) (-1477 . 708299) (-1478 . 708205) (-1479 . 708089) + (-1480 . 707691) (-1481 . 707473) (-1482 . 707424) (-1483 . 707396) + (-1484 . 707320) (-1485 . 707221) (-1486 . 707122) (-1487 . 707023) + (-1488 . 706924) (-1489 . 706825) (-1490 . 706726) (-1491 . 706568) + (-1492 . 706492) (-1493 . 706325) (-1494 . 706267) (-1495 . 706209) + (-1496 . 705900) (-1497 . 705646) (-1498 . 705562) (-1499 . 705429) + (-1500 . 705371) (-1501 . 705319) (-1502 . 705237) (-1503 . 705162) + (-1504 . 705091) (-1505 . 705036) (-1506 . 704984) (-1507 . 704910) + (-1508 . 704836) (-1509 . 704755) (-1510 . 704674) (-1511 . 704619) + (-1512 . 704545) (-1513 . 704471) (-1514 . 704397) (-1515 . 704320) + (-1516 . 704265) (-1517 . 704206) (-1518 . 704106) (-1519 . 704006) + (-1520 . 703906) (-1521 . 703806) (-1522 . 703706) (-1523 . 703606) + (-1524 . 703506) (-1525 . 703391) (-1526 . 703276) (-1527 . 703161) + (-1528 . 703046) (-1529 . 702931) (-1530 . 702816) (-1531 . 702698) + (-1532 . 702622) (-1533 . 702546) (-1534 . 702159) (-1535 . 701813) + (-1536 . 701711) (-1537 . 701449) (-1538 . 701347) (-1539 . 701142) + (-1540 . 701029) (-1541 . 700927) (-1542 . 700770) (-1543 . 700681) + (-1544 . 700587) (-1545 . 700507) (-1546 . 700433) (-1547 . 700355) + (-1548 . 700296) (-1549 . 700237) (-1550 . 700135) (-7 . 700107) (-8 . 700079) + (-9 . 700051) (-1554 . 699932) (-1555 . 699850) (-1556 . 699768) + (-1557 . 699686) (-1558 . 699604) (-1559 . 699522) (-1560 . 699428) + (-1561 . 699358) (-1562 . 699288) (-1563 . 699197) (-1564 . 699103) + (-1565 . 699021) (-1566 . 698939) (-1567 . 698448) (-1568 . 697895) + (-1569 . 697685) (-1570 . 697610) (-1571 . 697356) (-1572 . 697129) + (-1573 . 696919) (-1574 . 696789) (-1575 . 696708) (-1576 . 696559) + (-1577 . 696204) (-1578 . 695912) (-1579 . 695620) (-1580 . 695328) + (-1581 . 695036) (-1582 . 694977) (-1583 . 694870) (-1584 . 694442) + (-1585 . 694344) (-1586 . 694184) (-1587 . 693985) (-1588 . 693849) + (-1589 . 693749) (-1590 . 693649) (-1591 . 693555) (-1592 . 693496) + (-1593 . 693161) (-1594 . 693060) (-1595 . 692941) (-1596 . 692725) + (-1597 . 692544) (-1598 . 692384) (-1599 . 692179) (-1600 . 691757) + (-1601 . 691705) (-1602 . 691596) (-1603 . 691481) (-1604 . 691412) + (-1605 . 691343) (-1606 . 691274) (-1607 . 691208) (-1608 . 691083) + (-1609 . 690866) (-1610 . 690788) (-1611 . 690738) (-1612 . 690667) + (-1613 . 690524) (-1614 . 690383) (-1615 . 690302) (-1616 . 690221) + (-1617 . 690165) (-1618 . 690109) (-1619 . 690036) (-1620 . 689896) + (-1621 . 689843) (-1622 . 689784) (-1623 . 689725) (-1624 . 689570) + (-1625 . 689518) (-1626 . 689400) (-1627 . 689282) (-1628 . 689164) + (-1629 . 689031) (-1630 . 688750) (-1631 . 688614) (-1632 . 688558) + (-1633 . 688502) (-1634 . 688443) (-1635 . 688384) (-1636 . 688328) + (-1637 . 688272) (-1638 . 688075) (-1639 . 685733) (-1640 . 685606) + (-1641 . 685460) (-1642 . 685332) (-1643 . 685280) (-1644 . 685228) + (-1645 . 685176) (-1646 . 681137) (-1647 . 681042) (-1648 . 680903) + (-1649 . 680694) (-1650 . 680592) (-1651 . 680490) (-1652 . 679574) + (-1653 . 679497) (-1654 . 679368) (-1655 . 679241) (-1656 . 679164) + (-1657 . 679087) (-1658 . 678960) (-1659 . 678833) (-1660 . 678667) + (-1661 . 678540) (-1662 . 678413) (-1663 . 678196) (-1664 . 677758) + (-1665 . 677392) (-1666 . 677285) (-1667 . 677066) (-1668 . 676997) + (-1669 . 676938) (-1670 . 676857) (-1671 . 676746) (-1672 . 676680) + (-1673 . 676614) (-1674 . 676540) (-1675 . 676468) (-1676 . 676091) + (-1677 . 676039) (-1678 . 675980) (-1679 . 675891) (-1680 . 675802) + (-1681 . 675710) (-1682 . 675618) (-1683 . 675526) (-1684 . 675434) + (-1685 . 675342) (-1686 . 675250) (-1687 . 675158) (-1688 . 675066) + (-1689 . 674974) (-1690 . 674882) (-1691 . 674790) (-1692 . 674698) + (-1693 . 674606) (-1694 . 674514) (-1695 . 674422) (-1696 . 674330) + (-1697 . 674238) (-1698 . 674146) (-1699 . 674054) (-1700 . 673962) + (-1701 . 673870) (-1702 . 673778) (-1703 . 673686) (-1704 . 673594) + (-1705 . 673502) (-1706 . 673410) (-1707 . 673246) (-1708 . 673136) + (-1709 . 672892) (-1710 . 672603) (-1711 . 672407) (-1712 . 672250) + (-1713 . 672089) (-1714 . 672037) (-1715 . 671975) (-1716 . 671923) + (-1717 . 671860) (-1718 . 671807) (-1719 . 671755) (-1720 . 671703) + (-1721 . 671651) (-1722 . 671561) (-1723 . 671372) (-1724 . 671218) + (-1725 . 671138) (-1726 . 671058) (-1727 . 670978) (-1728 . 670848) + (-1729 . 670616) (-1730 . 670588) (-1731 . 670560) (-1732 . 670532) + (-1733 . 670452) (-1734 . 670375) (-1735 . 670298) (-1736 . 670217) + (-1737 . 670157) (-1738 . 669999) (-1739 . 669806) (-1740 . 669321) + (-1741 . 669079) (-1742 . 668817) (-1743 . 668716) (-1744 . 668635) + (-1745 . 668554) (-1746 . 668484) (-1747 . 668414) (-1748 . 668255) + (-1749 . 667951) (-1750 . 667721) (-1751 . 667597) (-1752 . 667538) + (-1753 . 667476) (-1754 . 667414) (-1755 . 667349) (-1756 . 667287) + (-1757 . 667008) (-1758 . 666798) (-1759 . 666524) (-1760 . 665984) + (-1761 . 665470) (-1762 . 665325) (-1763 . 665258) (-1764 . 665177) + (-1765 . 665096) (-1766 . 664994) (-1767 . 664920) (-1768 . 664839) + (-1769 . 664765) (-1770 . 664556) (-1771 . 664343) (-1772 . 664253) + (-1773 . 664186) (-1774 . 664050) (-1775 . 663983) (-1776 . 663901) + (-1777 . 663820) (-1778 . 663718) (-1779 . 663518) (-1780 . 663450) + (-1781 . 663208) (-1782 . 662957) (-1783 . 662715) (-1784 . 662473) + (-1785 . 662405) (-1786 . 662069) (-1787 . 661068) (-1788 . 660848) + (-1789 . 660767) (-1790 . 660693) (-1791 . 660619) (-1792 . 660545) + (-1793 . 660441) (-1794 . 660368) (-1795 . 660300) (-1796 . 660090) + (-1797 . 660038) (-1798 . 659983) (-1799 . 659892) (-1800 . 659804) + (-1801 . 658047) (-1802 . 657968) (-1803 . 657223) (-1804 . 657106) + (-1805 . 656899) (-1806 . 656737) (-1807 . 656575) (-1808 . 656414) + (-1809 . 656275) (-1810 . 656181) (-1811 . 656083) (-1812 . 655989) + (-1813 . 655874) (-1814 . 655789) (-1815 . 655691) (-1816 . 655495) + (-1817 . 655404) (-1818 . 655310) (-1819 . 655243) (-1820 . 655190) + (-1821 . 655137) (-1822 . 655084) (-1823 . 653946) (-1824 . 653436) + (-1825 . 653357) (-1826 . 653298) (-1827 . 653270) (-1828 . 653242) + (-1829 . 653183) (-1830 . 653070) (-1831 . 652693) (-1832 . 652640) + (-1833 . 652529) (-1834 . 652476) (-1835 . 652423) (-1836 . 652367) + (-1837 . 652311) (-1838 . 652146) (-1839 . 652076) (-1840 . 651981) + (-1841 . 651886) (-1842 . 651791) (-1843 . 651739) (-1844 . 651680) + (-1845 . 651606) (-1846 . 651554) (-1847 . 651397) (-1848 . 651240) + (-1849 . 651087) (-1850 . 650329) (-1851 . 650076) (-1852 . 649765) + (-1853 . 649413) (-1854 . 649196) (-1855 . 648933) (-1856 . 648557) + (-1857 . 648373) (-1858 . 648239) (-1859 . 648073) (-1860 . 647907) + (-1861 . 647773) (-1862 . 647639) (-1863 . 647505) (-1864 . 647371) + (-1865 . 647240) (-1866 . 647109) (-1867 . 646978) (-1868 . 646595) + (-1869 . 646468) (-1870 . 646340) (-1871 . 646088) (-1872 . 645964) + (-1873 . 645712) (-1874 . 645588) (-1875 . 645336) (-1876 . 645212) + (-1877 . 644927) (-1878 . 644654) (-1879 . 644381) (-1880 . 644083) + (-1881 . 643981) (-1882 . 643836) (-1883 . 643695) (-1884 . 643544) + (-1885 . 643383) (-1886 . 643295) (-1887 . 643267) (-1888 . 643185) + (-1889 . 643088) (-1890 . 642620) (-1891 . 642269) (-1892 . 641836) + (-1893 . 641695) (-1894 . 641625) (-1895 . 641555) (-1896 . 641485) + (-1897 . 641394) (-1898 . 641303) (-1899 . 641212) (-1900 . 641121) + (-1901 . 641030) (-1902 . 640944) (-1903 . 640858) (-1904 . 640772) + (-1905 . 640686) (-1906 . 640600) (-1907 . 640526) (-1908 . 640421) + (-1909 . 640195) (-1910 . 640117) (-1911 . 640042) (-1912 . 639949) + (-1913 . 639845) (-1914 . 639749) (-1915 . 639580) (-1916 . 639503) + (-1917 . 639426) (-1918 . 639335) (-1919 . 639244) (-1920 . 639044) + (-1921 . 638889) (-1922 . 638734) (-1923 . 638579) (-1924 . 638424) + (-1925 . 638269) (-1926 . 638114) (-1927 . 638047) (-1928 . 637892) + (-1929 . 637737) (-1930 . 637582) (-1931 . 637427) (-1932 . 637272) + (-1933 . 637117) (-1934 . 636962) (-1935 . 636807) (-1936 . 636733) + (-1937 . 636659) (-1938 . 636604) (-1939 . 636549) (-1940 . 636494) + (-1941 . 636439) (-1942 . 636368) (-1943 . 636163) (-1944 . 636062) + (-1945 . 635871) (-1946 . 635778) (-1947 . 635641) (-1948 . 635504) + (-1949 . 635367) (-1950 . 635299) (-1951 . 635183) (-1952 . 635067) + (-1953 . 634951) (-1954 . 634898) (-1955 . 634701) (-1956 . 634616) + (-1957 . 634308) (-1958 . 634253) (-1959 . 633601) (-1960 . 633286) + (-1961 . 633002) (-1962 . 632883) (-1963 . 632764) (-1964 . 632705) + (-1965 . 632646) (-1966 . 632594) (-1967 . 632542) (-1968 . 632490) + (-1969 . 632437) (-1970 . 632384) (-1971 . 632325) (-1972 . 632212) + (-1973 . 632099) (-1974 . 632041) (-1975 . 631983) (-1976 . 631933) + (-1977 . 631798) (-1978 . 631748) (-1979 . 631151) (-1980 . 631091) + (-1981 . 630924) (-1982 . 630832) (-1983 . 630719) (-1984 . 630635) + (-1985 . 630520) (-1986 . 630429) (-1987 . 630338) (-1988 . 630149) + (-1989 . 630094) (-1990 . 629907) (-1991 . 629784) (-1992 . 629711) + (-1993 . 629638) (-1994 . 629518) (-1995 . 629445) (-1996 . 629372) + (-1997 . 629032) (-1998 . 628959) (-1999 . 628739) (-2000 . 628406) + (-2001 . 628221) (-2002 . 628076) (-2003 . 627713) (-2004 . 627545) + (-2005 . 627377) (-2006 . 627121) (-2007 . 626865) (-2008 . 626670) + (-2009 . 626475) (-2010 . 625881) (-2011 . 625805) (-2012 . 625666) + (-2013 . 625259) (-2014 . 625131) (-2015 . 624971) (-2016 . 624652) + (-2017 . 624169) (-2018 . 623686) (-2019 . 623181) (-2020 . 623113) + (-2021 . 623042) (-2022 . 622971) (-2023 . 622798) (-2024 . 622679) + (-2025 . 622560) (-2026 . 622484) (-2027 . 622408) (-2028 . 622133) + (-2029 . 622018) (-2030 . 621966) (-2031 . 621914) (-2032 . 621862) + (-2033 . 621810) (-2034 . 621758) (-2035 . 621616) (-2036 . 621442) + (-2037 . 621209) (-2038 . 621021) (-2039 . 620993) (-2040 . 620965) + (-2041 . 620937) (-2042 . 620909) (-2043 . 620881) (-2044 . 620853) + (-2045 . 620825) (-2046 . 620773) (-2047 . 620683) (-2048 . 620633) + (-2049 . 620564) (-2050 . 620495) (-2051 . 620390) (-2052 . 620019) + (-2053 . 619868) (-2054 . 619717) (-2055 . 619512) (-2056 . 619390) + (-2057 . 619315) (-2058 . 619237) (-2059 . 619162) (-2060 . 619084) + (-2061 . 619006) (-2062 . 618931) (-2063 . 618853) (-2064 . 618619) + (-2065 . 618464) (-2066 . 618165) (-2067 . 618010) (-2068 . 617684) + (-2069 . 617544) (-2070 . 617404) (-2071 . 617323) (-2072 . 617242) + (-2073 . 616977) (-2074 . 616244) (-2075 . 616107) (-2076 . 616016) + (-2077 . 615879) (-2078 . 615811) (-2079 . 615742) (-2080 . 615654) + (-2081 . 615566) (-2082 . 615395) (-2083 . 615321) (-2084 . 615177) + (-2085 . 614717) (-2086 . 614337) (-2087 . 613573) (-2088 . 613429) + (-2089 . 613285) (-2090 . 613123) (-2091 . 612885) (-2092 . 612744) + (-2093 . 612597) (-2094 . 612358) (-2095 . 612122) (-2096 . 611883) + (-2097 . 611691) (-2098 . 611568) (-2099 . 611364) (-2100 . 611141) + (-2101 . 610902) (-2102 . 610761) (-2103 . 610623) (-2104 . 610484) + (-2105 . 610231) (-2106 . 609975) (-2107 . 609818) (-2108 . 609664) + (-2109 . 609423) (-2110 . 609138) (-2111 . 609000) (-2112 . 608913) + (-2113 . 608247) (-2114 . 608071) (-2115 . 607889) (-2116 . 607713) + (-2117 . 607531) (-2118 . 607352) (-2119 . 607173) (-2120 . 606986) + (-2121 . 606604) (-2122 . 606425) (-2123 . 606246) (-2124 . 606059) + (-2125 . 605677) (-2126 . 604684) (-2127 . 604300) (-2128 . 603916) + (-2129 . 603798) (-2130 . 603641) (-2131 . 603499) (-2132 . 603381) + (-2133 . 603199) (-2134 . 603075) (-2135 . 602785) (-2136 . 602495) + (-2137 . 602211) (-2138 . 601927) (-2139 . 601648) (-2140 . 601560) + (-2141 . 601475) (-2142 . 601376) (-2143 . 601277) (-2144 . 601053) + (-2145 . 600953) (-2146 . 600850) (-2147 . 600772) (-2148 . 600447) + (-2149 . 600155) (-2150 . 600082) (-2151 . 599697) (-2152 . 599669) + (-2153 . 599470) (-2154 . 599296) (-2155 . 599055) (-2156 . 599000) + (-2157 . 598924) (-2158 . 598553) (-2159 . 598438) (-2160 . 598361) + (-2161 . 598288) (-2162 . 598207) (-2163 . 598126) (-2164 . 598045) + (-2165 . 597944) (-2166 . 597885) (-2167 . 597646) (-2168 . 597522) + (-2169 . 597398) (-2170 . 597171) (-2171 . 597118) (-2172 . 597063) + (-2173 . 596731) (-2174 . 596407) (-2175 . 596219) (-2176 . 596028) + (-2177 . 595864) (-2178 . 595529) (-2179 . 595362) (-2180 . 595121) + (-2181 . 594793) (-2182 . 594601) (-2183 . 594384) (-2184 . 594211) + (-2185 . 593789) (-2186 . 593562) (-2187 . 593291) (-2188 . 593153) + (-2189 . 593012) (-2190 . 592533) (-2191 . 592410) (-2192 . 592174) + (-2193 . 591920) (-2194 . 591670) (-2195 . 591375) (-2196 . 591234) + (-2197 . 590890) (-2198 . 590749) (-2199 . 590556) (-2200 . 590363) + (-2201 . 590188) (-2202 . 589914) (-2203 . 589479) (-2204 . 589451) + (-2205 . 589378) (-2206 . 589217) (-2207 . 589054) (-2208 . 588893) + (-2209 . 588726) (-2210 . 588673) (-2211 . 588620) (-2212 . 588491) + (-2213 . 588431) (-2214 . 588378) (-2215 . 588308) (-2216 . 588248) + (-2217 . 588189) (-2218 . 588129) (-2219 . 588070) (-2220 . 588010) + (-2221 . 587951) (-2222 . 587892) (-2223 . 587750) (-2224 . 587655) + (-2225 . 587564) (-2226 . 587448) (-2227 . 587354) (-2228 . 587256) + (-2229 . 587162) (-2230 . 587021) (-2231 . 586756) (-2232 . 585897) + (-2233 . 585741) (-2234 . 585372) (-2235 . 585316) (-2236 . 585264) + (-2237 . 585161) (-2238 . 585076) (-2239 . 584988) (-2240 . 584842) + (-2241 . 584693) (-2242 . 584403) (-2243 . 584325) (-2244 . 584250) + (-2245 . 584197) (-2246 . 584144) (-2247 . 584113) (-2248 . 584050) + (-2249 . 583931) (-2250 . 583842) (-2251 . 583722) (-2252 . 583427) + (-2253 . 583233) (-2254 . 583045) (-2255 . 582900) (-2256 . 582755) + (-2257 . 582469) (-2258 . 582024) (-2259 . 581990) (-2260 . 581953) + (-2261 . 581916) (-2262 . 581879) (-2263 . 581842) (-2264 . 581811) + (-2265 . 581780) (-2266 . 581749) (-2267 . 581715) (-2268 . 581681) + (-2269 . 581626) (-2270 . 581450) (-2271 . 581215) (-2272 . 580980) + (-2273 . 580750) (-2274 . 580698) (-2275 . 580643) (-2276 . 580573) + (-2277 . 580484) (-2278 . 580415) (-2279 . 580343) (-2280 . 580113) + (-2281 . 580061) (-2282 . 580006) (-2283 . 579975) (-2284 . 579869) + (-2285 . 579643) (-2286 . 579332) (-2287 . 579157) (-2288 . 578974) + (-2289 . 578702) (-2290 . 578629) (-2291 . 578564) (-2292 . 578536) + (-2293 . 578486) (-2294 . 577063) (-2295 . 575915) (-2296 . 574777) + (-2297 . 574299) (-2298 . 573735) (-2299 . 573007) (-2300 . 572444) + (-2301 . 571814) (-2302 . 571235) (-2303 . 571161) (-2304 . 571109) + (-2305 . 571057) (-2306 . 570983) (-2307 . 570928) (-2308 . 570876) + (-2309 . 570824) (-2310 . 570772) (-2311 . 570702) (-2312 . 570254) + (-2313 . 570047) (-2314 . 569797) (-2315 . 569462) (-2316 . 569207) + (-2317 . 568904) (-2318 . 568700) (-2319 . 568410) (-2320 . 567860) + (-2321 . 567722) (-2322 . 567519) (-2323 . 567238) (-2324 . 567152) + (-2325 . 566817) (-2326 . 566675) (-2327 . 566383) (-2328 . 566162) + (-2329 . 566036) (-2330 . 565911) (-2331 . 565764) (-2332 . 565620) + (-2333 . 565504) (-2334 . 565373) (-2335 . 565000) (-2336 . 564740) + (-2337 . 564465) (-2338 . 564225) (-2339 . 563895) (-2340 . 563550) + (-2341 . 563142) (-2342 . 562719) (-2343 . 562522) (-2344 . 562247) + (-2345 . 562079) (-2346 . 561878) (-2347 . 561656) (-2348 . 561501) + (-2349 . 561315) (-2350 . 561212) (-2351 . 561184) (-2352 . 561156) + (-2353 . 560980) (-2354 . 560906) (-2355 . 560845) (-2356 . 560792) + (-2357 . 560723) (-2358 . 560653) (-2359 . 560534) (-2360 . 560356) + (-2361 . 560301) (-2362 . 560055) (-2363 . 559982) (-2364 . 559912) + (-2365 . 559842) (-2366 . 559752) (-2367 . 559562) (-2368 . 559489) + (-2369 . 559419) (-2370 . 559354) (-2371 . 559299) (-2372 . 559208) + (-2373 . 558915) (-2374 . 558587) (-2375 . 558513) (-2376 . 558191) + (-2377 . 557984) (-2378 . 557898) (-2379 . 557812) (-2380 . 557726) + (-2381 . 557640) (-2382 . 557554) (-2383 . 557468) (-2384 . 557382) + (-2385 . 557296) (-2386 . 557210) (-2387 . 557124) (-2388 . 557038) + (-2389 . 556952) (-2390 . 556866) (-2391 . 556780) (-2392 . 556694) + (-2393 . 556608) (-2394 . 556522) (-2395 . 556436) (-2396 . 556350) + (-2397 . 556264) (-2398 . 556178) (-2399 . 556092) (-2400 . 556006) + (-2401 . 555920) (-2402 . 555834) (-2403 . 555748) (-2404 . 555645) + (-2405 . 555556) (-2406 . 555346) (-2407 . 555287) (-2408 . 555231) + (-2409 . 555142) (-2410 . 555030) (-2411 . 554942) (-2412 . 554794) + (-2413 . 554732) (-2414 . 554704) (-2415 . 554676) (-2416 . 554648) + (-2417 . 554620) (-2418 . 554449) (-2419 . 554296) (-2420 . 554143) + (-2421 . 553969) (-2422 . 553759) (-2423 . 553635) (-2424 . 553427) + (-2425 . 553335) (-2426 . 553243) (-2427 . 553107) (-2428 . 553012) + (-2429 . 552917) (-2430 . 551401) (-2431 . 551277) (-2432 . 551249) + (-2433 . 551221) (-2434 . 551193) (-2435 . 551165) (-2436 . 551137) + (-2437 . 551109) (-2438 . 551081) (-2439 . 551053) (-2440 . 551025) + (-2441 . 550997) (-2442 . 550969) (-2443 . 550941) (-2444 . 550913) + (-2445 . 550885) (-2446 . 550857) (-2447 . 550829) (-2448 . 550776) + (-2449 . 550748) (-2450 . 550720) (-2451 . 550642) (-2452 . 550589) + (-2453 . 550536) (-2454 . 550483) (-2455 . 550405) (-2456 . 550315) + (-2457 . 550220) (-2458 . 550138) (-2459 . 549829) (-2460 . 549633) + (-2461 . 549538) (-2462 . 549430) (-2463 . 549012) (-2464 . 548984) + (-2465 . 548819) (-2466 . 548742) (-2467 . 548553) (-2468 . 548373) + (-2469 . 547949) (-2470 . 547797) (-2471 . 547617) (-2472 . 547444) + (-2473 . 547182) (-2474 . 546930) (-2475 . 546119) (-2476 . 545950) + (-2477 . 545731) (-2478 . 544889) (-2479 . 544757) (-2480 . 544625) + (-2481 . 544493) (-2482 . 544361) (-2483 . 544229) (-2484 . 544097) + (-2485 . 543902) (-2486 . 543708) (-2487 . 543565) (-2488 . 543250) + (-2489 . 543135) (-2490 . 542795) (-2491 . 542635) (-2492 . 542496) + (-2493 . 542357) (-2494 . 542228) (-2495 . 542143) (-2496 . 542091) + (-2497 . 541610) (-2498 . 540346) (-2499 . 540217) (-2500 . 540074) + (-2501 . 539736) (-2502 . 539631) (-2503 . 539380) (-2504 . 539146) + (-2505 . 539041) (-2506 . 538966) (-2507 . 538891) (-2508 . 538816) + (-2509 . 538757) (-2510 . 538686) (-2511 . 538633) (-2512 . 538571) + (-2513 . 538500) (-2514 . 538137) (-2515 . 537850) (-2516 . 537739) + (-2517 . 537646) (-2518 . 537553) (-2519 . 537466) (-2520 . 537246) + (-2521 . 537026) (-2522 . 536608) (-2523 . 536336) (-2524 . 536193) + (-2525 . 536100) (-2526 . 535957) (-2527 . 535805) (-2528 . 535651) + (-2529 . 535580) (-2530 . 535371) (-2531 . 535193) (-2532 . 534983) + (-2533 . 534805) (-2534 . 534771) (-2535 . 534737) (-2536 . 534706) + (-2537 . 534588) (-2538 . 534273) (-2539 . 533995) (-2540 . 533874) + (-2541 . 533747) (-2542 . 533662) (-2543 . 533589) (-2544 . 533499) + (-2545 . 533428) (-2546 . 533372) (-2547 . 533316) (-2548 . 533260) + (-2549 . 533189) (-2550 . 533118) (-2551 . 533047) (-2552 . 532968) + (-2553 . 532890) (-2554 . 532805) (-2555 . 532545) (-2556 . 532456) + (-2557 . 532158) (-2558 . 532060) (-2559 . 531982) (-2560 . 531904) + (-2561 . 531761) (-2562 . 531682) (-2563 . 531610) (-2564 . 531407) + (-2565 . 531351) (-2566 . 531163) (-2567 . 531064) (-2568 . 530946) + (-2569 . 530825) (-2570 . 530682) (-2571 . 530539) (-2572 . 530399) + (-2573 . 530259) (-2574 . 530116) (-2575 . 529989) (-2576 . 529859) + (-2577 . 529735) (-2578 . 529611) (-2579 . 529505) (-2580 . 529399) + (-2581 . 529296) (-2582 . 529146) (-2583 . 528993) (-2584 . 528840) + (-2585 . 528696) (-2586 . 528542) (-2587 . 528465) (-2588 . 528385) + (-2589 . 528230) (-2590 . 528150) (-2591 . 528070) (-2592 . 527990) + (-2593 . 527887) (-2594 . 527828) (-2595 . 527766) (-2596 . 527591) + (-2597 . 527438) (-2598 . 527285) (-2599 . 527111) (-2600 . 526919) + (-2601 . 526620) (-2602 . 526425) (-2603 . 526310) (-2604 . 526184) + (-2605 . 526107) (-2606 . 525975) (-2607 . 525669) (-2608 . 525486) + (-2609 . 524941) (-2610 . 524721) (-2611 . 524547) (-2612 . 524377) + (-2613 . 524278) (-2614 . 524179) (-2615 . 523961) (-2616 . 523859) + (-2617 . 523786) (-2618 . 523710) (-2619 . 523631) (-2620 . 523334) + (-2621 . 523235) (-2622 . 523073) (-2623 . 522839) (-2624 . 522397) + (-2625 . 522267) (-2626 . 522127) (-2627 . 521818) (-2628 . 521516) + (-2629 . 521200) (-2630 . 520794) (-2631 . 520726) (-2632 . 520658) + (-2633 . 520590) (-2634 . 520495) (-2635 . 520387) (-2636 . 520279) + (-2637 . 520177) (-2638 . 520075) (-2639 . 519973) (-2640 . 519895) + (-2641 . 519571) (-2642 . 519103) (-2643 . 518476) (-2644 . 518412) + (-2645 . 518293) (-2646 . 518174) (-2647 . 518066) (-2648 . 517958) + (-2649 . 517802) (-2650 . 517200) (-2651 . 516913) (-2652 . 516745) + (-2653 . 516623) (-2654 . 516225) (-2655 . 515989) (-2656 . 515788) + (-2657 . 515580) (-2658 . 515387) (-2659 . 515117) (-2660 . 514938) + (-2661 . 514869) (-2662 . 514793) (-2663 . 514652) (-2664 . 514449) + (-2665 . 514305) (-2666 . 514055) (-2667 . 513747) (-2668 . 513391) + (-2669 . 513232) (-2670 . 513026) (-2671 . 512866) (-2672 . 512793) + (-2673 . 512674) (-2674 . 512555) (-2675 . 512395) (-2676 . 512215) + (-2677 . 512032) (-2678 . 511934) (-2679 . 511836) (-2680 . 511735) + (-2681 . 511631) (-2682 . 511505) (-2683 . 511379) (-2684 . 511250) + (-2685 . 511118) (-2686 . 511020) (-2687 . 510922) (-2688 . 510821) + (-2689 . 510720) (-2690 . 510554) (-2691 . 510388) (-2692 . 510194) + (-2693 . 510028) (-2694 . 509860) (-2695 . 509689) (-2696 . 509524) + (-2697 . 509359) (-2698 . 509259) (-2699 . 509067) (-2700 . 508966) + (-2701 . 508771) (-2702 . 508521) (-2703 . 508276) (-2704 . 507954) + (-2705 . 507566) (-2706 . 507365) (-2707 . 507101) (-2708 . 506558) + (-2709 . 506264) (-2710 . 506127) (-2711 . 505881) (-2712 . 505677) + (-2713 . 505570) (-2714 . 505469) (-2715 . 505359) (-2716 . 505249) + (-2717 . 505121) (-2718 . 505014) (-2719 . 504910) (-2720 . 504754) + (-2721 . 504620) (-2722 . 504486) (-2723 . 504376) (-2724 . 504257) + (-2725 . 504080) (-2726 . 503946) (-2727 . 503809) (-2728 . 503678) + (-2729 . 503568) (-2730 . 503446) (-2731 . 503321) (-2732 . 503220) + (-2733 . 503036) (-2734 . 502862) (-2735 . 502663) (-2736 . 502489) + (-2737 . 502373) (-2738 . 502248) (-2739 . 502120) (-2740 . 502001) + (-2741 . 501776) (-2742 . 501605) (-2743 . 501434) (-2744 . 501257) + (-2745 . 501105) (-2746 . 500828) (-2747 . 500436) (-2748 . 500305) + (-2749 . 500100) (-2750 . 499917) (-2751 . 499733) (-2752 . 499604) + (-2753 . 499500) (-2754 . 499359) (-2755 . 499227) (-2756 . 499113) + (-2757 . 498965) (-2758 . 498826) (-2759 . 498725) (-2760 . 498621) + (-2761 . 498514) (-2762 . 498404) (-2763 . 498303) (-2764 . 498196) + (-2765 . 498089) (-2766 . 497976) (-2767 . 497869) (-2768 . 497756) + (-2769 . 497625) (-2770 . 497476) (-2771 . 496938) (-2772 . 496795) + (-2773 . 496645) (-2774 . 496522) (-2775 . 496418) (-2776 . 496314) + (-2777 . 496207) (-2778 . 496069) (-2779 . 495962) (-2780 . 495831) + (-2781 . 495675) (-2782 . 495402) (-2783 . 495255) (-2784 . 495052) + (-2785 . 494951) (-2786 . 494797) (-2787 . 494677) (-2788 . 494548) + (-2789 . 494453) (-2790 . 494365) (-2791 . 494277) (-2792 . 494189) + (-2793 . 494101) (-2794 . 494013) (-2795 . 493919) (-2796 . 493831) + (-2797 . 493743) (-2798 . 493655) (-2799 . 493567) (-2800 . 493479) + (-2801 . 493391) (-2802 . 493303) (-2803 . 493215) (-2804 . 493127) + (-2805 . 493039) (-2806 . 492901) (-2807 . 492763) (-2808 . 492643) + (-2809 . 492523) (-2810 . 492382) (-2811 . 492294) (-2812 . 492206) + (-2813 . 492118) (-2814 . 492030) (-2815 . 491892) (-2816 . 491754) + (-2817 . 491666) (-2818 . 491578) (-2819 . 491490) (-2820 . 491402) + (-2821 . 491314) (-2822 . 491226) (-2823 . 491135) (-2824 . 491041) + (-2825 . 490947) (-2826 . 490850) (-2827 . 490800) (-2828 . 490750) + (-2829 . 490697) (-2830 . 490443) (-2831 . 490394) (-2832 . 490344) + (-2833 . 490310) (-2834 . 490245) (-2835 . 490208) (-2836 . 490071) + (-2837 . 489833) (-2838 . 489762) (-2839 . 489576) (-2840 . 489327) + (-2841 . 489169) (-2842 . 488642) (-2843 . 488443) (-2844 . 488228) + (-2845 . 488066) (-2846 . 487667) (-2847 . 487500) (-2848 . 486425) + (-2849 . 486302) (-2850 . 486085) (-2851 . 485954) (-2852 . 485823) + (-2853 . 485665) (-2854 . 485561) (-2855 . 485502) (-2856 . 485443) + (-2857 . 485337) (-2858 . 485231) (-2859 . 484313) (-2860 . 482184) + (-2861 . 481368) (-2862 . 479563) (-2863 . 479495) (-2864 . 479427) + (-2865 . 479359) (-2866 . 479291) (-2867 . 479223) (-2868 . 479145) + (-2869 . 478743) (-2870 . 478387) (-2871 . 478205) (-2872 . 477666) + (-2873 . 477490) (-2874 . 477268) (-2875 . 477046) (-2876 . 476824) + (-2877 . 476605) (-2878 . 476386) (-2879 . 476167) (-2880 . 475948) + (-2881 . 475729) (-2882 . 475510) (-2883 . 475409) (-2884 . 474676) + (-2885 . 474621) (-2886 . 474566) (-2887 . 474511) (-2888 . 474456) + (-2889 . 474305) (-2890 . 474012) (-2891 . 473763) (-2892 . 473735) + (-2893 . 473685) (-2894 . 473093) (-2895 . 472559) (-2896 . 472110) + (-2897 . 471948) (-2898 . 471767) (-2899 . 471478) (-2900 . 471090) + (-2901 . 470214) (-2902 . 469872) (-2903 . 469703) (-2904 . 469480) + (-2905 . 469229) (-2906 . 468879) (-2907 . 467861) (-2908 . 467546) + (-2909 . 467334) (-2910 . 466767) (-2911 . 466251) (-2912 . 464473) + (-2913 . 464001) (-2914 . 463402) (-2915 . 463152) (-2916 . 463018) + (-2917 . 462803) (-2918 . 462750) (-2919 . 462697) (-2920 . 462645) + (-2921 . 462593) (-2922 . 462501) (-2923 . 462430) (-2924 . 462356) + (-2925 . 462285) (-2926 . 462232) (-2927 . 462161) (-2928 . 462108) + (-2929 . 462055) (-2930 . 462002) (-2931 . 461949) (-2932 . 461896) + (-2933 . 461843) (-2934 . 461790) (-2935 . 461737) (-2936 . 461684) + (-2937 . 461631) (-2938 . 461578) (-2939 . 461525) (-2940 . 461472) + (-2941 . 461419) (-2942 . 461348) (-2943 . 461277) (-2944 . 461205) + (-2945 . 461133) (-2946 . 461058) (-2947 . 461005) (-2948 . 460952) + (-2949 . 460899) (-2950 . 460846) (-2951 . 460793) (-2952 . 460740) + (-2953 . 460687) (-2954 . 460634) (-2955 . 460581) (-2956 . 460528) + (-2957 . 460475) (-2958 . 460422) (-2959 . 460369) (-2960 . 460316) + (-2961 . 460264) (-2962 . 460212) (-2963 . 460159) (-2964 . 460106) + (-2965 . 460015) (-2966 . 459962) (-2967 . 459934) (-2968 . 459906) + (-2969 . 459878) (-2970 . 459850) (-2971 . 459772) (-2972 . 459712) + (-2973 . 459660) (-2974 . 459608) (-2975 . 459556) (-2976 . 459504) + (-2977 . 459452) (-2978 . 458676) (-2979 . 458599) (-2980 . 458522) + (-2981 . 458456) (-2982 . 458389) (-2983 . 458322) (-2984 . 458265) + (-2985 . 458189) (-2986 . 458121) (-2987 . 458050) (-2988 . 457979) + (-2989 . 457913) (-2990 . 457826) (-2991 . 457754) (-2992 . 457647) + (-2993 . 457461) (-2994 . 457292) (-2995 . 457112) (-2996 . 456521) + (-2997 . 456358) (-2998 . 455780) (-2999 . 455710) (-3000 . 455635) + (-3001 . 455269) (-3002 . 454590) (-3003 . 454412) (-3004 . 454340) + (-3005 . 454200) (-3006 . 454010) (-3007 . 453903) (-3008 . 453796) + (-3009 . 453680) (-3010 . 453564) (-3011 . 453448) (-3012 . 453170) + (-3013 . 453019) (-3014 . 452875) (-3015 . 452801) (-3016 . 452715) + (-3017 . 452641) (-3018 . 452567) (-3019 . 452493) (-3020 . 452349) + (-3021 . 452198) (-3022 . 452023) (-3023 . 451872) (-3024 . 451721) + (-3025 . 451594) (-3026 . 451205) (-3027 . 450919) (-3028 . 450633) + (-3029 . 450222) (-3030 . 449936) (-3031 . 449863) (-3032 . 449716) + (-3033 . 449610) (-3034 . 449536) (-3035 . 449466) (-3036 . 449387) + (-3037 . 449310) (-3038 . 449233) (-3039 . 449081) (-3040 . 448978) + (-3041 . 448919) (-3042 . 448854) (-3043 . 448789) (-3044 . 448692) + (-3045 . 448595) (-3046 . 448435) (-3047 . 448348) (-3048 . 448261) + (-3049 . 448174) (-3050 . 448115) (-3051 . 448056) (-3052 . 447923) + (-3053 . 447864) (-3054 . 447694) (-3055 . 447606) (-3056 . 447509) + (-3057 . 447475) (-3058 . 447444) (-3059 . 447360) (-3060 . 447304) + (-3061 . 447242) (-3062 . 447208) (-3063 . 447174) (-3064 . 447140) + (-3065 . 447106) (-3066 . 447072) (-3067 . 444319) (-3068 . 444285) + (-3069 . 444251) (-3070 . 444217) (-3071 . 444105) (-3072 . 444071) + (-3073 . 444019) (-3074 . 443985) (-3075 . 443888) (-3076 . 443826) + (-3077 . 443735) (-3078 . 443644) (-3079 . 443589) (-3080 . 443537) + (-3081 . 443485) (-3082 . 443433) (-3083 . 443381) (-3084 . 442956) + (-3085 . 442790) (-3086 . 442737) (-3087 . 442668) (-3088 . 442615) + (-3089 . 442385) (-3090 . 442229) (-3091 . 441708) (-3092 . 441567) + (-3093 . 441533) (-3094 . 441478) (-3095 . 440767) (-3096 . 440452) + (-3097 . 439947) (-3098 . 439869) (-3099 . 439817) (-3100 . 439765) + (-3101 . 439581) (-3102 . 439529) (-3103 . 439477) (-3104 . 439401) + (-3105 . 439339) (-3106 . 439121) (-3107 . 439054) (-3108 . 438960) + (-3109 . 438866) (-3110 . 438683) (-3111 . 438601) (-3112 . 438479) + (-3113 . 438333) (-3114 . 437673) (-3115 . 436966) (-3116 . 436862) + (-3117 . 436761) (-3118 . 436660) (-3119 . 436549) (-3120 . 436381) + (-3121 . 436175) (-3122 . 436082) (-3123 . 436005) (-3124 . 435949) + (-3125 . 435878) (-3126 . 435758) (-3127 . 435657) (-3128 . 435559) + (-3129 . 435479) (-3130 . 435399) (-3131 . 435322) (-3132 . 435251) + (-3133 . 435180) (-3134 . 435109) (-3135 . 435038) (-3136 . 434967) + (-3137 . 434896) (-3138 . 434803) (-3139 . 434608) (-3140 . 434364) + (-3141 . 434194) (-3142 . 433822) (-3143 . 433653) (-3144 . 433537) + (-3145 . 433033) (-3146 . 432651) (-3147 . 432405) (-3148 . 431976) + (-3149 . 431884) (-3150 . 431787) (-3151 . 428497) (-3152 . 427834) + (-3153 . 427721) (-3154 . 427647) (-3155 . 427555) (-3156 . 427361) + (-3157 . 427167) (-3158 . 427096) (-3159 . 427024) (-3160 . 426943) + (-3161 . 426862) (-3162 . 426737) (-3163 . 426603) (-3164 . 426522) + (-3165 . 426448) (-3166 . 426283) (-3167 . 426124) (-3168 . 425893) + (-3169 . 425745) (-3170 . 425641) (-3171 . 425537) (-3172 . 425452) + (-3173 . 425084) (-3174 . 425003) (-3175 . 424916) (-3176 . 424835) + (-3177 . 424589) (-3178 . 424369) (-3179 . 424182) (-3180 . 423860) + (-3181 . 423567) (-3182 . 423274) (-3183 . 422964) (-3184 . 422647) + (-3185 . 422495) (-3186 . 422307) (-3187 . 421834) (-3188 . 421752) + (-3189 . 421536) (-3190 . 421320) (-3191 . 421061) (-3192 . 420637) + (-3193 . 420123) (-3194 . 419993) (-3195 . 419719) (-3196 . 419540) + (-3197 . 419425) (-3198 . 419321) (-3199 . 419266) (-3200 . 419189) + (-3201 . 419119) (-3202 . 419046) (-3203 . 418991) (-3204 . 418918) + (-3205 . 418863) (-3206 . 418508) (-3207 . 418100) (-3208 . 417947) + (-3209 . 417794) (-3210 . 417713) (-3211 . 417560) (-3212 . 417407) + (-3213 . 417272) (-3214 . 417137) (-3215 . 417002) (-3216 . 416867) + (-3217 . 416732) (-3218 . 416597) (-3219 . 416541) (-3220 . 416387) + (-3221 . 416276) (-3222 . 416165) (-3223 . 416080) (-3224 . 415970) + (-3225 . 415867) (-3226 . 411716) (-3227 . 411268) (-3228 . 410841) + (-3229 . 410224) (-3230 . 409623) (-3231 . 409405) (-3232 . 409227) + (-3233 . 408967) (-3234 . 408556) (-3235 . 408262) (-3236 . 407819) + (-3237 . 407641) (-3238 . 407248) (-3239 . 406855) (-3240 . 406670) + (-3241 . 406463) (-3242 . 406242) (-3243 . 405936) (-3244 . 405737) + (-3245 . 405108) (-3246 . 404951) (-3247 . 404560) (-3248 . 404508) + (-3249 . 404459) (-3250 . 404407) (-3251 . 404358) (-3252 . 404306) + (-3253 . 404160) (-3254 . 404108) (-3255 . 403962) (-3256 . 403910) + (-3257 . 403764) (-3258 . 403712) (-3259 . 403337) (-3260 . 403285) + (-3261 . 403236) (-3262 . 403184) (-3263 . 403135) (-3264 . 403083) + (-3265 . 403034) (-3266 . 402982) (-3267 . 402933) (-3268 . 402881) + (-3269 . 402832) (-3270 . 402766) (-3271 . 402648) (-3272 . 401486) + (-3273 . 401069) (-3274 . 400961) (-3275 . 400718) (-3276 . 400568) + (-3277 . 400418) (-3278 . 400251) (-3279 . 398035) (-3280 . 397771) + (-3281 . 397617) (-3282 . 397471) (-3283 . 397325) (-3284 . 397106) + (-3285 . 396974) (-3286 . 396899) (-3287 . 396824) (-3288 . 396689) + (-3289 . 396559) (-3290 . 396429) (-3291 . 396302) (-3292 . 396175) + (-3293 . 396048) (-3294 . 395921) (-3295 . 395818) (-3296 . 395718) + (-3297 . 395624) (-3298 . 395494) (-3299 . 395343) (-3300 . 394964) + (-3301 . 394849) (-3302 . 394606) (-3303 . 394143) (-3304 . 393830) + (-3305 . 393261) (-3306 . 392690) (-3307 . 391675) (-3308 . 391131) + (-3309 . 390818) (-3310 . 390480) (-3311 . 390149) (-3312 . 389829) + (-3313 . 389776) (-3314 . 389649) (-3315 . 389144) (-3316 . 388001) + (-3317 . 387946) (-3318 . 387891) (-3319 . 387815) (-3320 . 387696) + (-3321 . 387621) (-3322 . 387546) (-3323 . 387468) (-3324 . 387243) + (-3325 . 387184) (-3326 . 387125) (-3327 . 387022) (-3328 . 386919) + (-3329 . 386816) (-3330 . 386713) (-3331 . 386632) (-3332 . 386558) + (-3333 . 386343) (-3334 . 386109) (-3335 . 386075) (-3336 . 386041) + (-3337 . 386013) (-3338 . 385985) (-3339 . 385767) (-3340 . 385489) + (-3341 . 385339) (-3342 . 385209) (-3343 . 385079) (-3344 . 384979) + (-3345 . 384802) (-3346 . 384642) (-3347 . 384542) (-3348 . 384365) + (-3349 . 384205) (-3350 . 384046) (-3351 . 383907) (-3352 . 383757) + (-3353 . 383627) (-3354 . 383497) (-3355 . 383350) (-3356 . 383223) + (-3357 . 383120) (-3358 . 383013) (-3359 . 382916) (-3360 . 382751) + (-3361 . 382603) (-3362 . 382188) (-3363 . 382088) (-3364 . 381985) + (-3365 . 381897) (-3366 . 381817) (-3367 . 381667) (-3368 . 381537) + (-3369 . 381484) (-3370 . 381410) (-3371 . 381333) (-3372 . 381056) + (-3373 . 380943) (-3374 . 380629) (-3375 . 380447) (-3376 . 378834) + (-3377 . 378200) (-3378 . 378139) (-3379 . 378020) (-3380 . 377901) + (-3381 . 377756) (-3382 . 377600) (-3383 . 377438) (-3384 . 377276) + (-3385 . 377067) (-3386 . 376877) (-3387 . 376721) (-3388 . 376562) + (-3389 . 376403) (-3390 . 376247) (-3391 . 376106) (-3392 . 375679) + (-3393 . 375550) (-3394 . 375421) (-3395 . 375292) (-3396 . 375148) + (-3397 . 375004) (-3398 . 374861) (-3399 . 374715) (-3400 . 373957) + (-3401 . 373796) (-3402 . 373607) (-3403 . 373449) (-3404 . 373208) + (-3405 . 372960) (-3406 . 372712) (-3407 . 372500) (-3408 . 372360) + (-3409 . 372148) (-3410 . 371857) (-3411 . 371645) (-3412 . 371505) + (-3413 . 371293) (-3414 . 370985) (-3415 . 370839) (-3416 . 370696) + (-3417 . 370471) (-3418 . 370328) (-3419 . 370102) (-3420 . 369902) + (-3421 . 369744) (-3422 . 369412) (-3423 . 369251) (-3424 . 369090) + (-3425 . 368929) (-3426 . 368756) (-3427 . 368583) (-3428 . 368407) + (-3429 . 368054) (-3430 . 367859) (-3431 . 367696) (-3432 . 367621) + (-3433 . 367546) (-3434 . 367471) (-3435 . 367396) (-3436 . 367321) + (-3437 . 367246) (-3438 . 367121) (-3439 . 366946) (-3440 . 366821) + (-3441 . 366734) (-3442 . 366667) (-3443 . 366600) (-3444 . 366533) + (-3445 . 366466) (-3446 . 366399) (-3447 . 366332) (-3448 . 366265) + (-3449 . 366198) (-3450 . 366131) (-3451 . 366064) (-3452 . 365997) + (-3453 . 365930) (-3454 . 365863) (-3455 . 365796) (-3456 . 365729) + (-3457 . 365662) (-3458 . 365595) (-3459 . 365528) (-3460 . 365461) + (-3461 . 365394) (-3462 . 365327) (-3463 . 365260) (-3464 . 365193) + (-3465 . 365126) (-3466 . 365059) (-3467 . 364992) (-3468 . 364341) + (-3469 . 363690) (-3470 . 363561) (-3471 . 363437) (-3472 . 363313) + (-3473 . 363171) (-3474 . 363015) (-3475 . 362870) (-3476 . 362693) + (-3477 . 362082) (-3478 . 361957) (-3479 . 361831) (-3480 . 361150) + (-3481 . 360449) (-3482 . 360347) (-3483 . 360290) (-3484 . 360233) + (-3485 . 360176) (-3486 . 360119) (-3487 . 360059) (-3488 . 359994) + (-3489 . 359885) (-3490 . 359776) (-3491 . 359667) (-3492 . 359386) + (-3493 . 359311) (-3494 . 359084) (-3495 . 359002) (-3496 . 358923) + (-3497 . 358844) (-3498 . 358765) (-3499 . 358685) (-3500 . 358606) + (-3501 . 358512) (-3502 . 358411) (-3503 . 358342) (-3504 . 358292) + (-3505 . 357598) (-3506 . 356947) (-3507 . 356153) (-3508 . 356071) + (-3509 . 355966) (-3510 . 355873) (-3511 . 355780) (-3512 . 355705) + (-3513 . 355630) (-3514 . 355555) (-3515 . 355499) (-3516 . 355443) + (-3517 . 355376) (-3518 . 355309) (-3519 . 355246) (-3520 . 354854) + (-3521 . 354359) (-3522 . 353899) (-3523 . 353644) (-3524 . 353453) + (-3525 . 353109) (-3526 . 352811) (-3527 . 352641) (-3528 . 352509) + (-3529 . 352368) (-3530 . 352212) (-3531 . 352042) (-3532 . 350648) + (-3533 . 350510) (-3534 . 350364) (-3535 . 350133) (-3536 . 349863) + (-3537 . 349803) (-3538 . 349746) (-3539 . 349689) (-3540 . 349476) + (-3541 . 349336) (-3542 . 349228) (-3543 . 349110) (-3544 . 349043) + (-3545 . 348969) (-3546 . 348854) (-3547 . 348597) (-3548 . 348495) + (-3549 . 348297) (-3550 . 347981) (-3551 . 347507) (-3552 . 347400) + (-3553 . 347292) (-3554 . 347141) (-3555 . 346999) (-3556 . 346580) + (-3557 . 346330) (-3558 . 345653) (-3559 . 345498) (-3560 . 345383) + (-3561 . 345272) (-3562 . 344449) (-3563 . 344396) (-3564 . 344343) + (-3565 . 344147) (-3566 . 342866) (-3567 . 342415) (-3568 . 341019) + (-3569 . 340163) (-3570 . 340113) (-3571 . 340063) (-3572 . 340013) + (-3573 . 339945) (-3574 . 339869) (-3575 . 339678) (-3576 . 339605) + (-3577 . 339529) (-3578 . 339456) (-3579 . 339338) (-3580 . 339286) + (-3581 . 339206) (-3582 . 339126) (-3583 . 339046) (-3584 . 338994) + (-3585 . 338747) (-3586 . 338444) (-3587 . 338359) (-3588 . 338274) + (-3589 . 338212) (-3590 . 337822) (-3591 . 336946) (-3592 . 336370) + (-3593 . 335132) (-3594 . 334321) (-3595 . 334069) (-3596 . 333817) + (-3597 . 333390) (-3598 . 333144) (-3599 . 332898) (-3600 . 332652) + (-3601 . 332406) (-3602 . 332160) (-3603 . 331914) (-3604 . 331667) + (-3605 . 331420) (-3606 . 331173) (-3607 . 330926) (-3608 . 330343) + (-3609 . 330225) (-3610 . 329374) (-3611 . 329342) (-3612 . 328993) + (-3613 . 328765) (-3614 . 328664) (-3615 . 328563) (-3616 . 326790) + (-3617 . 326676) (-3618 . 325621) (-3619 . 325528) (-3620 . 324604) + (-3621 . 324269) (-3622 . 323934) (-3623 . 323829) (-3624 . 323742) + (-3625 . 323713) (-3626 . 323656) (-3627 . 323576) (-3628 . 323504) + (-3629 . 323429) (-3630 . 323354) (-3631 . 323322) (-3632 . 323290) + (-3633 . 323258) (-3634 . 323226) (-3635 . 323194) (-3636 . 323162) + (-3637 . 323130) (-3638 . 323098) (-3639 . 323069) (-3640 . 322956) + (-3641 . 322843) (-3642 . 322730) (-3643 . 322617) (-3644 . 321528) + (-3645 . 321406) (-3646 . 321269) (-3647 . 321135) (-3648 . 321001) + (-3649 . 320704) (-3650 . 320407) (-3651 . 320059) (-3652 . 319829) + (-3653 . 319599) (-3654 . 319486) (-3655 . 319373) (-3656 . 314090) + (-3657 . 309715) (-3658 . 309403) (-3659 . 309248) (-3660 . 308720) + (-3661 . 308387) (-3662 . 308190) (-3663 . 307993) (-3664 . 307796) + (-3665 . 307599) (-3666 . 307483) (-3667 . 307357) (-3668 . 307241) + (-3669 . 307125) (-3670 . 307030) (-3671 . 306935) (-3672 . 306822) + (-3673 . 306616) (-3674 . 305459) (-3675 . 305364) (-3676 . 305248) + (-3677 . 305153) (-3678 . 304904) (-3679 . 304791) (-3680 . 304572) + (-3681 . 304453) (-3682 . 304152) (-3683 . 303421) (-3684 . 302838) + (-3685 . 302357) (-3686 . 302109) (-3687 . 301861) (-3688 . 301513) + (-3689 . 300899) (-3690 . 300451) (-3691 . 300294) (-3692 . 300148) + (-3693 . 299822) (-3694 . 299664) (-3695 . 299521) (-3696 . 299378) + (-3697 . 299235) (-3698 . 298954) (-3699 . 298732) (-3700 . 298205) + (-3701 . 297990) (-3702 . 297775) (-3703 . 297387) (-3704 . 297207) + (-3705 . 296995) (-3706 . 296683) (-3707 . 296489) (-3708 . 296314) + (-3709 . 295168) (-3710 . 294796) (-3711 . 294593) (-3712 . 294387) + (-3713 . 293544) (-3714 . 293515) (-3715 . 293446) (-3716 . 293375) + (-3717 . 293208) (-3718 . 293179) (-3719 . 293150) (-3720 . 293094) + (-3721 . 292941) (-3722 . 292881) (-3723 . 292185) (-3724 . 290799) + (-3725 . 290738) (-3726 . 290412) (-3727 . 290340) (-3728 . 290283) + (-3729 . 290226) (-3730 . 290169) (-3731 . 290112) (-3732 . 290037) + (-3733 . 289445) (-3734 . 289085) (-3735 . 289010) (-3736 . 288950) + (-3737 . 288832) (-3738 . 287881) (-3739 . 287754) (-3740 . 287541) + (-3741 . 287466) (-3742 . 287412) (-3743 . 287358) (-3744 . 287249) + (-3745 . 286936) (-3746 . 286828) (-3747 . 286725) (-3748 . 286564) + (-3749 . 286463) (-3750 . 286365) (-3751 . 286227) (-3752 . 286089) + (-3753 . 285951) (-3754 . 285689) (-3755 . 285479) (-3756 . 285341) + (-3757 . 285052) (-3758 . 284899) (-3759 . 284620) (-3760 . 284398) + (-3761 . 284245) (-3762 . 284092) (-3763 . 283939) (-3764 . 283786) + (-3765 . 283633) (-3766 . 283423) (-3767 . 283303) (-3768 . 282911) + (-3769 . 282575) (-3770 . 282229) (-3771 . 281877) (-3772 . 281531) + (-3773 . 281185) (-3774 . 280797) (-3775 . 280409) (-3776 . 280021) + (-3777 . 279649) (-3778 . 278917) (-3779 . 278565) (-3780 . 278107) + (-3781 . 277677) (-3782 . 277059) (-3783 . 276457) (-3784 . 276065) + (-3785 . 275729) (-3786 . 275337) (-3787 . 275001) (-3788 . 274779) + (-3789 . 274252) (-3790 . 274037) (-3791 . 273822) (-3792 . 273606) + (-3793 . 273426) (-3794 . 273210) (-3795 . 273030) (-3796 . 272642) + (-3797 . 272462) (-3798 . 272250) (-3799 . 272160) (-3800 . 272070) + (-3801 . 271979) (-3802 . 271867) (-3803 . 271777) (-3804 . 271669) + (-3805 . 271480) (-3806 . 271424) (-3807 . 271343) (-3808 . 271262) + (-3809 . 271181) (-3810 . 271046) (-3811 . 270911) (-3812 . 270787) + (-3813 . 270666) (-3814 . 270548) (-3815 . 270412) (-3816 . 270279) + (-3817 . 270160) (-3818 . 269900) (-3819 . 269615) (-3820 . 269543) + (-3821 . 269451) (-3822 . 269359) (-3823 . 269273) (-3824 . 269175) + (-3825 . 269034) (-3826 . 268977) (-3827 . 268920) (-3828 . 268860) + (-3829 . 268463) (-3830 . 267939) (-3831 . 267661) (-3832 . 267240) + (-3833 . 267127) (-3834 . 266685) (-3835 . 266453) (-3836 . 266250) + (-3837 . 266068) (-3838 . 265938) (-3839 . 265732) (-3840 . 265525) + (-3841 . 265334) (-3842 . 264769) (-3843 . 264513) (-3844 . 264222) + (-3845 . 263928) (-3846 . 263631) (-3847 . 263331) (-3848 . 263201) + (-3849 . 263068) (-3850 . 262932) (-3851 . 262793) (-3852 . 261576) + (-3853 . 261268) (-3854 . 260904) (-3855 . 260807) (-3856 . 260566) + (-3857 . 260270) (-3858 . 259974) (-3859 . 259713) (-3860 . 259538) + (-3861 . 259459) (-3862 . 259371) (-3863 . 259270) (-3864 . 259175) + (-3865 . 259093) (-3866 . 259021) (-3867 . 258220) (-3868 . 258148) + (-3869 . 257816) (-3870 . 257744) (-3871 . 257412) (-3872 . 257340) + (-3873 . 256891) (-3874 . 256819) (-3875 . 256714) (-3876 . 256639) + (-3877 . 256564) (-3878 . 256492) (-3879 . 256149) (-3880 . 256019) + (-3881 . 255942) (-3882 . 255393) (-3883 . 255250) (-3884 . 255107) + (-3885 . 254652) (-3886 . 254321) (-3887 . 254108) (-3888 . 253853) + (-3889 . 253503) (-3890 . 253278) (-3891 . 253053) (-3892 . 252828) + (-3893 . 252603) (-3894 . 252390) (-3895 . 252177) (-3896 . 252025) + (-3897 . 251841) (-3898 . 251736) (-3899 . 251613) (-3900 . 251505) + (-3901 . 251397) (-3902 . 251070) (-3903 . 250803) (-3904 . 250490) + (-3905 . 250184) (-3906 . 249874) (-3907 . 249139) (-3908 . 248544) + (-3909 . 248367) (-3910 . 248222) (-3911 . 248067) (-3912 . 247944) + (-3913 . 247839) (-3914 . 247724) (-3915 . 247625) (-3916 . 247141) + (-3917 . 247031) (-3918 . 246921) (-3919 . 246811) (-3920 . 245724) + (-3921 . 245209) (-3922 . 245142) (-3923 . 245068) (-3924 . 244195) + (-3925 . 244121) (-3926 . 244065) (-3927 . 244009) (-3928 . 243977) + (-3929 . 243891) (-3930 . 243859) (-3931 . 243773) (-3932 . 243349) + (-3933 . 242925) (-3934 . 242368) (-3935 . 241256) (-3936 . 239532) + (-3937 . 237970) (-3938 . 237174) (-3939 . 236670) (-3940 . 236178) + (-3941 . 235770) (-3942 . 235110) (-3943 . 235035) (-3944 . 234943) + (-3945 . 234871) (-3946 . 234799) (-3947 . 234743) (-3948 . 234621) + (-3949 . 234567) (-3950 . 234506) (-3951 . 234452) (-3952 . 234349) + (-3953 . 233909) (-3954 . 233469) (-3955 . 233029) (-3956 . 232507) + (-3957 . 232342) (-3958 . 232177) (-3959 . 231866) (-3960 . 231779) + (-3961 . 231689) (-3962 . 231331) (-3963 . 231214) (-3964 . 231133) + (-3965 . 230974) (-3966 . 230860) (-3967 . 230785) (-3968 . 229933) + (-3969 . 228746) (-3970 . 228646) (-3971 . 228546) (-3972 . 228215) + (-3973 . 228136) (-3974 . 228060) (-3975 . 227953) (-3976 . 227795) + (-3977 . 227687) (-3978 . 227551) (-3979 . 227415) (-3980 . 227292) + (-3981 . 227196) (-3982 . 227047) (-3983 . 226951) (-3984 . 226796) + (-3985 . 226641) (-3986 . 225975) (-3987 . 225309) (-3988 . 224580) + (-3989 . 224026) (-3990 . 223472) (-3991 . 222918) (-3992 . 222251) + (-3993 . 221584) (-3994 . 220917) (-3995 . 220362) (-3996 . 219807) + (-3997 . 219252) (-3998 . 218698) (-3999 . 218144) (-4000 . 217590) + (-4001 . 217036) (-4002 . 216482) (-4003 . 215928) (-4004 . 215824) + (-4005 . 215235) (-4006 . 215129) (-4007 . 215053) (-4008 . 214910) + (-4009 . 214817) (-4010 . 214724) (-4011 . 214631) (-4012 . 214532) + (-4013 . 214426) (-4014 . 214302) (-4015 . 214178) (-4016 . 213811) + (-4017 . 213688) (-4018 . 213586) (-4019 . 213222) (-4020 . 212688) + (-4021 . 212612) (-4022 . 212536) (-4023 . 212443) (-4024 . 212260) + (-4025 . 212164) (-4026 . 212088) (-4027 . 211995) (-4028 . 211902) + (-4029 . 211739) (-4030 . 211188) (-4031 . 210637) (-4032 . 207840) + (-4033 . 207667) (-4034 . 206251) (-4035 . 205689) (-4036 . 205490) + (-12 . 205318) (-4038 . 205146) (-4039 . 204974) (-4040 . 204802) + (-4041 . 204630) (-4042 . 204458) (-4043 . 204286) (-4044 . 204171) + (-4045 . 203850) (-4046 . 203787) (-4047 . 203724) (-4048 . 203661) + (-4049 . 203383) (-4050 . 203116) (-4051 . 203063) (-4052 . 202420) + (-4053 . 202369) (-4054 . 202176) (-4055 . 202103) (-4056 . 202023) + (-4057 . 201910) (-4058 . 201720) (-4059 . 201356) (-4060 . 201084) + (-4061 . 201033) (-4062 . 200982) (-4063 . 200912) (-4064 . 200793) + (-4065 . 200764) (-4066 . 200662) (-4067 . 200540) (-4068 . 200486) + (-4069 . 200309) (-4070 . 200248) (-4071 . 200067) (-4072 . 200006) + (-4073 . 199934) (-4074 . 199459) (-4075 . 199083) (-4076 . 195477) + (-4077 . 195424) (-4078 . 195296) (-4079 . 195146) (-4080 . 195093) + (-4081 . 194952) (-4082 . 192890) (-4083 . 183651) (-4084 . 183500) + (-4085 . 183430) (-4086 . 183379) (-4087 . 183329) (-4088 . 183278) + (-4089 . 183227) (-4090 . 183029) (-4091 . 182886) (-4092 . 182772) + (-4093 . 182651) (-4094 . 182533) (-4095 . 182421) (-4096 . 182303) + (-4097 . 182198) (-4098 . 182117) (-4099 . 182013) (-4100 . 181075) + (-4101 . 180855) (-4102 . 180618) (-4103 . 180536) (-4104 . 180189) + (-4105 . 179034) (-4106 . 178960) (-4107 . 178865) (-4108 . 178791) + (-4109 . 178589) (-4110 . 178498) (-4111 . 178382) (-4112 . 178269) + (-4113 . 178178) (-4114 . 178087) (-4115 . 177997) (-4116 . 177907) + (-4117 . 177817) (-4118 . 177729) (-4119 . 175367) (-4120 . 175299) + (-4121 . 175245) (-4122 . 175181) (-4123 . 175117) (-4124 . 175053) + (-4125 . 174992) (-4126 . 174250) (-4127 . 174189) (-4128 . 174128) + (-4129 . 173499) (-4130 . 173446) (-4131 . 173318) (-4132 . 173254) + (-4133 . 173200) (-4134 . 173091) (-4135 . 171789) (-4136 . 171707) + (-4137 . 171617) (-4138 . 171559) (-4139 . 171309) (-4140 . 171224) + (-4141 . 171149) (-4142 . 171064) (-4143 . 171007) (-4144 . 170791) + (-4145 . 170649) (-4146 . 169928) (-4147 . 169372) (-4148 . 168816) + (-4149 . 168260) (-4150 . 167539) (-4151 . 166871) (-4152 . 166307) + (-4153 . 165743) (-4154 . 165479) (-4155 . 165037) (-4156 . 164702) + (-4157 . 164358) (-4158 . 164051) (-4159 . 163918) (-4160 . 163785) + (-4161 . 163396) (-4162 . 163303) (-4163 . 163210) (-4164 . 163117) + (-4165 . 163024) (-4166 . 162931) (-4167 . 162838) (-4168 . 162745) + (-4169 . 162652) (-4170 . 162559) (-4171 . 162466) (-4172 . 162373) + (-4173 . 162280) (-4174 . 162187) (-4175 . 162094) (-4176 . 162001) + (-4177 . 161908) (-4178 . 161815) (-4179 . 161722) (-4180 . 161629) + (-4181 . 161536) (-4182 . 161443) (-4183 . 161350) (-4184 . 161257) + (-4185 . 161164) (-4186 . 161071) (-4187 . 160886) (-4188 . 160571) + (-4189 . 158999) (-4190 . 158844) (-4191 . 158706) (-4192 . 158563) + (-4193 . 158360) (-4194 . 156405) (-4195 . 156277) (-4196 . 156152) + (-4197 . 156024) (-4198 . 155800) (-4199 . 155576) (-4200 . 155448) + (-4201 . 155245) (-4202 . 155066) (-4203 . 154539) (-4204 . 154012) + (-4205 . 153731) (-4206 . 153313) (-4207 . 152786) (-4208 . 152601) + (-4209 . 152458) (-4210 . 151958) (-4211 . 151315) (-4212 . 151258) + (-4213 . 151163) (-4214 . 151041) (-4215 . 150969) (-4216 . 150894) + (-4217 . 150661) (-4218 . 150035) (-4219 . 149603) (-4220 . 149521) + (-4221 . 149379) (-4222 . 148901) (-4223 . 148779) (-4224 . 148657) + (-4225 . 148517) (-4226 . 148330) (-4227 . 148214) (-4228 . 147930) + (-4229 . 147861) (-4230 . 147662) (-4231 . 147480) (-4232 . 147325) + (-4233 . 147218) (-4234 . 147167) (-4235 . 146783) (-4236 . 146255) + (-4237 . 146033) (-4238 . 145811) (-4239 . 145570) (-4240 . 145479) + (-4241 . 143727) (-4242 . 143138) (-4243 . 143059) (-4244 . 137590) + (-4245 . 136799) (-4246 . 136420) (-4247 . 136348) (-4248 . 136082) + (-4249 . 135907) (-4250 . 135416) (-4251 . 134990) (-4252 . 134546) + (-4253 . 133678) (-4254 . 133554) (-4255 . 133427) (-4256 . 133318) + (-4257 . 133166) (-4258 . 133052) (-4259 . 132913) (-4260 . 132831) + (-4261 . 132749) (-4262 . 132641) (-4263 . 132221) (-4264 . 131797) + (-4265 . 131722) (-4266 . 131456) (-4267 . 131189) (-4268 . 130806) + (-4269 . 130105) (-4270 . 129061) (-4271 . 129001) (-4272 . 128926) + (-4273 . 128851) (-4274 . 128728) (-4275 . 128476) (-4276 . 128389) + (-4277 . 128313) (-4278 . 128237) (-4279 . 128141) (-4280 . 124222) + (-4281 . 123039) (-4282 . 122375) (-4283 . 122188) (-4284 . 119972) + (-4285 . 119646) (-4286 . 119161) (-4287 . 118717) (-4288 . 118482) + (-4289 . 118234) (-4290 . 118143) (-4291 . 116696) (-4292 . 116617) + (-4293 . 116511) (-4294 . 115027) (-4295 . 114621) (-4296 . 114218) + (-4297 . 114116) (-4298 . 114034) (-4299 . 113876) (-4300 . 112577) + (-4301 . 112495) (-4302 . 112416) (-4303 . 112061) (-4304 . 112004) + (-4305 . 111932) (-4306 . 111875) (-4307 . 111818) (-4308 . 111688) + (-4309 . 111484) (-4310 . 111115) (-4311 . 110693) (-4312 . 106729) + (-4313 . 106126) (-4314 . 105498) (-4315 . 105283) (-4316 . 105068) + (-4317 . 104900) (-4318 . 104685) (-4319 . 104517) (-4320 . 104349) + (-4321 . 104181) (-4322 . 104013) (-4323 . 103741) (-4324 . 96866) + (** . 93899) (-4326 . 93479) (-4327 . 93231) (-4328 . 93174) (-4329 . 92676) + (-4330 . 89851) (-4331 . 89701) (-4332 . 89537) (-4333 . 89373) + (-4334 . 89277) (-4335 . 89159) (-4336 . 89035) (-4337 . 88892) + (-4338 . 88721) (-4339 . 88594) (-4340 . 88449) (-4341 . 88296) + (-4342 . 88136) (-4343 . 87620) (-4344 . 87529) (-4345 . 86859) + (-4346 . 86664) (-4347 . 86568) (-4348 . 86258) (-4349 . 85082) + (-4350 . 84875) (-4351 . 83698) (-4352 . 83623) (-4353 . 82442) + (-4354 . 78849) (-4355 . 78485) (-4356 . 78208) (-4357 . 78116) + (-4358 . 78023) (-4359 . 77746) (-4360 . 77653) (-4361 . 77560) + (-4362 . 77467) (-4363 . 77083) (-4364 . 77012) (-4365 . 76920) + (-4366 . 76762) (-4367 . 76408) (-4368 . 76250) (-4369 . 76142) + (-4370 . 76113) (-4371 . 76046) (-4372 . 75892) (-4373 . 75733) + (-4374 . 75339) (-4375 . 75264) (-4376 . 75158) (-4377 . 75086) + (-4378 . 75008) (-4379 . 74935) (-4380 . 74862) (-4381 . 74789) + (-4382 . 74717) (-4383 . 74645) (-4384 . 74572) (-4385 . 74331) + (-4386 . 73991) (-4387 . 73843) (-4388 . 73770) (-4389 . 73697) + (-4390 . 73624) (-4391 . 73370) (-4392 . 73226) (-4393 . 71890) + (-4394 . 71696) (-4395 . 71425) (-4396 . 71277) (-4397 . 71129) + (-4398 . 70889) (-4399 . 70694) (-4400 . 70424) (-4401 . 70228) + (-4402 . 70199) (-4403 . 70098) (-4404 . 69997) (-4405 . 69896) + (-4406 . 69795) (-4407 . 69694) (-4408 . 69593) (-4409 . 69492) + (-4410 . 69391) (-4411 . 69290) (-4412 . 69189) (-4413 . 69074) + (-4414 . 68959) (-4415 . 68908) (-4416 . 68791) (-4417 . 68733) + (-4418 . 68632) (-4419 . 68531) (-4420 . 68430) (-4421 . 68314) + (-4422 . 68285) (-4423 . 67552) (-4424 . 67427) (-4425 . 67302) + (-4426 . 67162) (-4427 . 67044) (-4428 . 66919) (-4429 . 66764) + (-4430 . 65780) (-4431 . 64920) (-4432 . 64866) (-4433 . 64812) + (-4434 . 64604) (-4435 . 64230) (-4436 . 63816) (-4437 . 63455) + (-4438 . 63094) (-4439 . 62941) (-4440 . 62639) (-4441 . 62483) + (-4442 . 62157) (-4443 . 62086) (-4444 . 62015) (-4445 . 61803) + (-4446 . 60996) (-4447 . 60790) (-4448 . 60416) (-4449 . 59896) + (-4450 . 59628) (-4451 . 59144) (-4452 . 58660) (-4453 . 58534) + (-4454 . 57319) (-4455 . 56127) (-4456 . 55554) (-4457 . 55336) + (-4458 . 36988) (-4459 . 36802) (-4460 . 34701) (-4461 . 32524) + (-4462 . 32376) (-4463 . 32194) (-4464 . 31785) (-4465 . 31484) + (-4466 . 31133) (-4467 . 30965) (-4468 . 30797) (-4469 . 30382) + (-4470 . 16303) (-4471 . 15184) (* . 11117) (-4473 . 10861) (-4474 . 10675) + (-4475 . 9713) (-4476 . 9659) (-4477 . 9599) (-4478 . 9330) (-4479 . 8695) + (-4480 . 7413) (-4481 . 6154) (-4482 . 5274) (-4483 . 4007) (-4484 . 424) + (-4485 . 308) (-4486 . 174) (-4487 . 30))
\ No newline at end of file |